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1. Introduction.

Of primary interest in this project are systems that are

modelled as beams or thin plates which may undergo either small or

large deformations. Hence, linear, so called Kirchhoff, and

nonlinear, so called von Karman, are amoung the model equations to

be studied. Linear models are derived under assumptions of pure

bending with deformations that are small compared to thickness

which in turn is assumed to be small. Larger deformations give

rise to in plane forces from the stretching of the middle surface

and lead to nonlinear models, (22,23]. For beams linear models

with various linear and nonlinear damping terms are among those of

interest.

An identification problem seeks to determine parameters

within a mathematical model from observed data. The central issue

is how to utilize data to determine the desired parameters with

in the context of the model. Thus, available is a model equation

(1.1) L(q)u(q) = f(q)

in which the parameters q to be estimated belong to a specified

admissible set Oad of a Banach or Hilbert space Q. The set Qad

should be physically meaningful, such that the mapping q '-h u(q)

is well-defined from the state space X, and such that q '- u(q)

is continuous with respect to suitable topologies on Q and X.

Available are data z which are in the form of measurements on the

system. We view these data as belonging to an observation space Z

(Hilbert space). One seeks to determine a parameter q such that

Cu(q) "matches" z in a suitable sense. Here C represents an

observation operator that maps X into Z.
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One approach to this problem, sometimes called the "regular-

ized" output least squares method, cf[1-6,9-19,25-35], is formu-

lated as a minimization problem:

Find q0 s Oad such that

(1.2) J(q0 ) = infimum{J(q): q s Qad }

where

(1.3) J(q) = !!Cu(q) - z11. 2

with 9 0. This formulation is given with Q and Z 4ilbert

spaces. Solving this problem often requires constraints on Qad

to provide (i) existence of a solution to the state equation

(1.1) and (ii) sufficient compactness to obtain existence of a

solution to (1.2)-(1.3). Issues of interest for (1.2)-(1.3)

include existence, regularity of the solution, approximation,

stability with respect to data or constraints, and uniqueness or

identifiabilty.

If one expects to use estimation techniques to identify

parameters from measurements, then one must first decide upon the

basic form of the mathematical model (1.1). Hence, one must

decide whether the mathematical model is appropriate for the

physical system being observed. The mathematical model embodies

the pertinent principles a.,d assumptions from physics and contin-

uum mechanics in addition to those made on the basis of geometry,

etc. Certainly, one must be cautious about using models to fit

data that do not satisfy the assumptions upon which the models

are based.
Having chosen the mathematical model, one must address how to

use the data within the framework it imposes. The data for

systems of interest in this work are assumed to be obtained as

pointwise measurements of deformation, velocity, or acceleration

or their Fourier transforms. These data typically should be

processed in some manner and perhaps smoothed before their use.

Also, data should be in a form consistent with the mathematical

model having the proper units, etc. The mathematical analysis of

identification problems such as (1.1)-(1.3) guides in how best to

formulate estimation to use these data. Of direct interest to

this analysis is to determine how to design and collect data to
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utilize desirable theoretical properties. Conversely if data is

available from a system, an important issue is to determine how

much one may reasonably expect to determine from the data.

In Section 2 we indicate results that we have obtained on

the estimation of elastic coefficients in structures composed of

beams. In Section 3 we report our results on the estimation of

elastic parameters in nonlinear static models of thin plates

undergoing large deformations. In Section 4 we consider the

estimation of electrical conductivity from laboratory measurements

of electrical potential. This is of interest since in this study

we have available laboratory measurements with which to test our

algorithms. Finally, in Section 5 we indicate some results on the

stability of sets of optimal estimators with respect to data as

viewed as set-valued mappings.

2. Estimation in a connected beam model.

During this project we have initiated an investigation

concerning the estimation of coefficients or the design of beam

systems. In particular, we have studied the following simple

problem. Suppose two beams, 1 and 2, of length Q, and ?2,

respectively, are joined at right angles to one another. The other

end of beam 1 is clamped and the remaining end of beam 2 is free.

In response to a force that is perpendicular to the plane

containing the beams are deformations wl and w 2 of beams 1 and 2,

respectively, and a rotation 6? of twist along beam 1. For the

static problem we study the following system of elliptic equations

with coupled boundary conditions in which x and y represent local

coordinates for beams 1 and 2 respectively.

(a Wxx)xx = fl in (0, 'I)

(2.1)(i) -(b x)x = g in (0, "I)

(c w2yy)yy f2  in (0, 02) ,

with boundary conditions
wl(O) = wlx(O) = 0
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e(0) = 0
at the clamped end,

(2.l)(Li) Wlxx(!"l) = 0

(2.1)(iii) Wl('?I ) = w 2 (0)

(2.1)(iv) (' )  = W2y(0)

(2.1)(v) (b ex)(!l) = (c W2yy)(0)

(2.1)(vi) (a Wlxx)x( ?I) = (c W 2 y y )y(O)

at the junction, and

W2yy( "2 ) = (c W2yy)y( '2 ) = 0

at the free end. Equations (2.1) are the Euler equations for the

potential energy functional

(2.2) P(wl, P, w 2 ) = j 1  (a(x) w~xx(x) + b(x) -2(x)] dx +

+ 2 c(y) W3yy(y) dy - 2 [fl(x) wl(x) + g(x) E(x)] dx -

- 2 Q2 f2 (y) w 2 (y) dy.
-0

The solution of (2.1) may be obtained by minimizing the

functional (2.2) over the Hilbert space

V = {v = (Wl,1 ,w 2 ) e H 2 (0, 1 ) x HI(O, Q1) x H2(0,

Wl(0) = wlx(0) = 0, e(o) = 0,

e(pl) W2y(O) , wl('1 ) = w2(0)}.

To solve (2.1) numerically, the space of basis functions

should satisfy the conditions at the junction. However, it is

much more difficult to enforce the essential boundary conditions

at the junction on the basis elements that are used to construct

the finite dimensional approximating space as one does for example

with the clamped boundary conditions. We take two approaches to

this problem. The first is to use basis functions that are non-

conforming at the junction and hence do not satisfy the essential

boundary conditions at the junction. The conditions are enforced

as constraints on the discrete version of the problem to minimize

the potential energy functional. We use a penalization or an

augmented Lagrangian method to impose the conditions. The second

approach involves directly changing variables by using the junc-

tion constraints to reduce the number of variables of the problem.

In this method we solve for certain variables in terms of the
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others by using the junction conditions. In this way the mini-

mization problem for the potential energy becomes an unconstrained

problem in the new variables. In effect these new variables are

coefficients of basis functions that satisfy the junction condi-

tions.

We are confident at this point that our model is reasonable.

This is based on experimental spectral data that we have obtained

with the aid of Prof. D.L. Russell at MIPAC. Specifically, we

measured the eigenfrequencies for an aluminum carpenter's square

that was clamped at one end. We obtained the first six frequencies

as

3.75, 10.62, 39.37, 75, 126.87, and 198.75 Hz.

Based on our model using a direct method for the treatment of the

boundary condition at the junction, we obtained using a cubic

spline based scheme frequencies of

2.28, 14.28, 39.69, 78.45, 129.93, and 194.82 Hz.

Considering experimental and discretization error, we feel that

these numbers compare favorably. A new set of experiments will

be run again this spring with improved clamping apparatus to

obtain a new set of data. In addition to comparing with experi-

mental data, we have also compared our results with the NISA

engineering package for static deflection problems with point

loads. Predictions for the model equations (2.1) agree to within

5 to 6 decimal places to those from the NISA package.

We have considered estimation problems for this structure. A

report of results is in the Proceedings of the 1989 IEEE Confer-

ence on Decision and Control (33]. In that work we formulate a

sequence of estimation problems where in each case the underlying

system is one obtained from the augmented Lagrangian functional

associated with the minimization of the potential energy

functional. Hence, a sequence of estimation problems is defined

on the approximating systems obtained from the augmented

Lagrangian and penalty approximating scheme. A manuscript

describing further results for beams at different angles is in

preparation.

3. Estimation of parameters in plate models.
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In work funded under this grant we studied the

estimation of both damping and elastic parameters in linear

equations that modeled small deformations of thin plates (25-33].

In this work we obtained results concerning the properties and

regularity of solutions, the approximation of solutions, Pad the

numerical treatment of sample problems. In addition we studied

the stability of regularized output-least-squares optimal esti-

mators with respect to data, second order sufficient conditions,

and the error of solutions in terms of sampling density of the

data [34].

We wish to indicate in more detail the investigations we have

been conducting on model equations modelling thin plates but with

large deformations. We describe our work on time independent

problems. Currently, we are working on time dependent problems.

Our approach currently is to use weak solutions. However, we are

also considering classical solutions as in [21,24] with

observation:, before blow-up times. In the derivation of

approximate plate theories, linear mathematical models are

obtained by including bending terms only. The retention of only

these terms embodies the assumption that deformation is in fact

small when compared to the thickness of the plate which in turn is

assumed to be small. For larger deformations it is necessary to

include terms that model the stretching of the middle plane [7,8].

These models give rise to the so called von Karman equations.

(3.1) Au = s[0, uI + f
in

Bt = -[u, u]
where the bracket term is given by

[ ' ] = ' xx 'V yy + T yy *xx - 2 "+Pxy '+xy"
The operators A and B are typically fourth order linear elliptic

operators. The function u represents the deformation of the

plate from an equilibium position and a is commonly called the

Airy stress function. Equations (3.1) are accompanied with

boundary conditions, for example, homogenous Dirichlet boundary

conditions

U : = du 0 on 7.

We have recently considered the estimation of the parameter a :
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a(x,y) in the specific cases of

A '' = -(a -')
and

A 1 = V (- (a - )) +

+ (l-v)((a+Pxx)xx + (a yy yy + 2 (a'Rxy)xy)

with

B , 2 ,.
Such operators arise with variable coefficients for thin plates

of uniform thickness but with variable Young's modulus. It turns

out that solutions u of (3.1) are stationary points of a quartic

functional. Moreover, it is possible that equation (3.1) has more

than one solution [7,8.20J, and therefore the parameter to state

mapping may not be well-defined. Even so we have demonstrated

existence of an optimal parameter for the following regularized

output-least squares problem.

(3.2) Find a0 a Qad such that J(a0 ) = inf{J(a): a c Qad)

where

J(a) = :!u(a) - P) la112,

and

(3.3) Qad = [a H2 (C2): a 0>O}.

If there may exist multiple solutions to the equation (3.1), the

fit-to-data functional above is not well-defined. However, it can

be shown that the solution set U(a) of equation (3.1) is closed

and compact in the weak topology of H(O). Since the embedding of

H22
H(7) into L2 (2) is compact when S2 is an open domain in p2 with a

Lipschitz boundary, we denote by

11u(a) - Z1lL2 (n) = min{;u - zU!L2 (.i-): u s- U(a) for a Q

The minimimum exists by the continuity of the L2 -norm with

respect to the weak topology on H (2). It can be shown that

there exists a solution to the problem (3.2)-(3.3).
Let us set

= and Rli' = II.-#ll 0 .

It is well-known that thus defined is a norm on H2('). More-

over, there is a constant k such that for any 'HO(1)

!'Pflo k 'V2. In addition there is a constant K such that for u,
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v, and v in H2(Q)

J [u, vi w dx I S K Iu:! 'vl !w'l.

Set P = (k lf'l 0 )/ and r = K 2 / 1.

It is natural to consider linear approximations to (3.l).

By imposing conditions on E, i,, and f we may obtain by the

contraction mapping principle approximating linear systems for

which convergence may be established. Based on this approach we

obtain.

Theorem. Let M be chosen such that 2 < P < M and assume r

satisfies r < (M - P.,/(M7). Then for any a = Qad there is a

unique solution u(a) of (3.1) with !lu(a)ll _ M.

In (31] we consider the following approximating linear

systems.

(3.4) u-I = e0 =  0

for i = 0, 1,...

"(a " u i ) = - [ i, ui-l]I + f in C2

du. 0 on F"

(3.5) .2 oi+ = - [ui, ui] in 2,

I= xi = 0 on r.~i

Theorem. With M, -., and r defined as above, the sequence ui

generated from (3.4)-(3.5) converges uniformly to u(a) in H2(2)

for a = Qad where ilu(a)lI _ M and

1!ui  - u(a)!: 1 M(3 r.M)i/(l-3r'M).

The assumptions that 2M/3 < P and r < (M - P)/M imply that

3r:M < 1. Hence, if we consider the mapping a -4 u(a) of Qad

into the ball {u c H0(Q): l1ull 1 M1, then it is well-defined. We
may demonstrate differentiability, of solutions of (3.1) with

respect to a under the assumption that 3r:M < 1. Therefore,

regularity results for optimal estimators may be obtained under

the above conditions.

Theorem. Let 3r'M < 1. If a is a solution of (3.2)-(3.3), then a

H2+n(,n) for (0,1).
These results enable us to provide an approximation theory for
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these problems.

We base an estimation algorithm on the above approximating

problems in which we estimate the parameter a in each linear

approximating system and use the computed state for the update in

the next linear problem. Details and the results of numerical

experiments are reported in (311.

The above formulation imposes rather strong conditions on

f, - and , in order to apply the contraction mapping princple.

These conditions also imply differentiability of the mapping a -

u(a). We note however that existence of optimal estimators does

not depend upon the these conditions. We consider the following

weak model error formulation. Define w : H2 ( 2) x V '-" V as

follows

(3.6) _2 w = (a u) - of, uI - f

' 2 u , u ]I in '

with boundary conditions

w = dw 0 on r
It is easy to see that

(3.7) w(a,u) = 0

if and only if equation (3.7) is satisfied. We can show that the

equation (3.7) implicitly defines a function a - u(a) if
i

(3.8) - K (f)- IIfIHI-2(-2) > 0

and this function is differentiable. Thus, we may weaken condi-

tions to obtain local existence and local difterentiability of the

parameter-to-state mapping.

The optimization problem in this formulation is given as

Find (a0 ,u0 ) such that

J(a 0 ,u0 ) = inf{J(a,u): a c Qad and w(a,u) = 0}

where

J(a,u) = !lu - zl12 + P .a .2

Again under the condition (3.8), we may obtain the existence of

Lagrange multipliers associated with the constraint (3.3). This

Lagrange multiplier may be estimated in terms of luo-zllV. Thus
we may find conditions for the choice of i and the positive

definiteness of the second derivative of the Lagrangian func-

tional. With these estimates we may obtain local uniqueness and
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stability results and show that the augmented Lagrangian method

converges [321. These results have been submitted for publi-

cation. They have also been presented at the Midwest Differ-

ential Equations Conference in November 1989.

Without further assumptions such as those in (3.7) '.e may

penalize the constraint (3.6). This general formulation is given

by means of the minimization problem

Minimize lu - z : + , a + 7 ;Hw(a,u):.

We have analyzed this problem and have presented initial results

in a colloquium at the Division of Applied Mathematics at Brown

University last spring.

We include some preliminary results of numerical tests using

both the penalty method and the augmented Lagrangian for this

problem. In this case we consider the equation

..2 w(a,u) = -*( a _u) + E [B(u,u),u] - f

with w = w(a,u) c Ho(C-) and

_2 B(u,u) = [u, ul.

We consider the minimization problem:

Minimize L(a,u;) subject to u = V and a = H2

for

L(a,u;-') = flu - Z11 2
2  + . a122  - (;,w(a,u))v + K llw(a,u)1l2

7L2 l H V
where V = H2 . We generate f by determining f from0*

f = '( aT  -uT) + IB(uT,uT),uT]

where uT = 256 x2 y2 (l-x) 2 (l-y) 2. We used discretizations with

8 subintervals in both x and y directions for approximating u and

3 subintervals in both x and y directions for approximating a.

Accordingly, the mesh for the example that we give is very coarse.
Approximating functions were tensor products of cubic B-splines

adjusted for boundary conditions. We used the conjugate gradient

method for the optimization steps. Our initial guesses were off

by relative L2 errors of 87% and 45% for u and a, respectively.
Below we give values of the exact and computed functions for the

state u and the coefficient a. As an example consider a problem
with a discontinuous elliptic coefficient
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-I.5, (x,y) such that 0.251y 0.75
aT 1 l1.0, otherwise

with initial relative L2 errors of 79.4% and 231%, for u and a,

respectively. After 19 iterations we obtained the following with

the augmented Lagrangian :.ethod.

_ _ (0,0) (0.2,0.2) (0.4.0.4) (0.6,0.6) (0.8,0.8)

UT 0 0.168 0.849 0.849 0.168

Ucalc 0 0.111 0.989 0.849 0.260

For the coefficient a we have

I(0,0) (0.2,0.2) (0.4,0.4) (0.6,0.6) (0.8,0.8)

aT I 1.00 1.00 1.50 1.50 1.00

acalc[ 0.649 0.948 1.67 1.67 0.925

llw(a,u)ilL2 = 0.0884.

For the penalty method we have for the state

,(0,0) (0.2.0.2) (0.4,0.4) (0.6,0.6) (0.8.0.8)

UT _ 1 0 0.168 0.849 0.849 0.168

Ucalci 0 0.171 0.844 0.794 0.0893

For the coefficient we obtain the following.

i(0.0) (0.2.0.2) (0.4,0.4) (0.6,0.6) (0.8,0.8)

aT I 1.00 1.00 1.50 1.50 1.50

acalcl 0.533 0.603 1.43 1.51 0.619

I1w(a,u)flL 2  = 0.140.

4. Estimation with experimental data.

In the previous proposal we expressed one goal as that of
considering estimation problems using data that has been obtained
experimentally. We feel that this is the essential next step in

producing useful estimation algorithms. We report our efforts
here for an experiment to obtain electrical conductivity from

potential measurements in a circular reservoir. The situation is
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the same as that of determining elasticity coefficients for a

membrane from displacement measurements. It is shown in [8J that

such a membrane equation may be obtained as a limiting case of von

Karman equations.

The experimental setup was as follows. A cylindrical tank

with circular cross-section . is filled with sand in which there

is a salt water solution. There are eleven locations in . at

which a source electrode may be located or potential may be

measured. There is a ground located at an additional position.

The walls of the tank are nonconducting. The electrodes that are

used are such that the current is focused so as to be two dimen-

sional. This allows us to consider a two dimensional problem. At

a certain point in time, a volume of salt water is extracted and

replaced by injecting fresh water. Consequentially, the electi-

cal conductivity is a spacially dependent function. An electrical

source of current is placed at a position and measurements are

then made at the remaining locations. These measurements are

repeated with the source at various locations. The diffusion of

the salt into the fresh region is sufficiently slow as compared

with the time it takes to make the measurements that the problem

may be considered time independent.

The governing model is given by a two dimensional elliptic

Neumann problem
- (a u) = f in 1:

7Wn 0 on ,_..

where u is the electrical potential function, the coefficient a is

the electric conductivity, and f is the source term. Here for the

purpose of mathematical formulation we consider f to be given by

f =: Is

where Ts is a function of small support (in a ball centered at

the source location xs ) such that

i s(x) dx = 1.

Measurements of the electrical potential are made at Nobs

locations over the domain 2. Thus the observation operator C

takes u into TNobs is given by
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C u(a) = col{<u(a),6i>:i=l,...,Nob s }

where 0i are continuous linear functionals on H1(2)(or possibly

H2 (Q) depending on the regularity). For example, we can take
1

= 1 u(x) dx

where Di is a disk centered at the observation location xi to be

an observation functional. The measurements are given as an

Nobs-vector z of real numbers.

To treat the equation, we consider the weak model error

w = w(a,u) defined as the solution of

- w + w =- (au) -f in 2
with

boundary condition

= 0 on *P2.

The estimation problem is now given in terms of the optimi-

zation problem

Find (a0 ,u0 ) s Q x HI(2) such that

J(a0,u0 ) = inf(J(au): a = Q and u - HI(C2) satisfy w(a,u) = 0}

where

J(a,u) = C u - z 2 a+ Il 0al,

2 NobQ = H2 (2) and :I is the Euclidean norm in PN obs

To solve this problem numerically, we approximate the disk

centered at the origin with quadrilaterals obtained by partition-

ing the y-direction with an odd number of Ny equally spaced

horizontal lines where the (Ny- 1)/2 + 1 is line y = 0. Each

horizontal segment we partitioned into Nx subintervals. Connec-

ting the corresponding points forms the system of finite elements.

This discretization may be mapped to a square region that is

partitioned similarly by defining transformations that map each

subquadrilateral to the corresponding subrectangle. We use a

system of basis functions that are bicubic functions made up of
tensor products of cubic B-splines as basis functions for the

square. The composition of the transformations with these func-

tions then determines basis functions on the disk. We used 64

basis functions to approximate the state and 49 to approximate the

coefficient a.
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The estimation problem is solved by means of the augmented

Lagrangian method. Thus we form the functional
2

F(a,u;x,K) = J(a,u) + <:.,w(a,u)> + K ;nw(a,u):IHi

and use the conjugate gradient method for minimization at each

step. We use v = 1.0, - = 10-8, and K = 10.0. The coefticient a

is calculated for two different sets of data to compare the

estimated a's. We obtain the following.

CASE 1.
x y values of a (est)

-53.2 -109.8 2.87
-17.7 -109.8 3.09
17.7 -109.8 2.99

-116.4 -36.6 2.83
-38.8 -36.6 3.04
38.8 -36.6 2.82

-116.4 36.6 2.48
-38.8 36.6 2.80

38.8 36.6 2.75
Nobs

The relative error for u sqrt( i i (u(x i'Y ) z i )

Nobs

i=1
is 4.9% while flw1IH: =0.071. In the second case we have the

following

CASE 2.
x y values of a (est)

-53.2 -109.8 2.91
-17.7 -109.8 3.11
17.7 -109.8 3.00

-116.4 -36.6 2.87
-38.8 -36.6 3.05
38.8 -36.6 2.83

-116.4 36.6 2.51
-38.8 36.6 2.82
38.8 36.6 2.78

with relative error for u = 4.4% while IIw1H' =0.038. Thus, we

are able to estimate the coefficient a so that, for different

sets of data, the values of the estimated function agree to

within the accuracy of the data. We feel that this is as much as

one can reasonably expect and is a successful application of our
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methods. This work will appear as an invited paper in a special

issue on parameter identification in the Journal on Advances in

Water Resouces [35].

5. Stability properties with respect to data.

We have studied stability properties of optimal estimators

with respect to data. Except for results in [131 in which there is

strong regularization and it is assumed that the data is in the

attainable set solutions of output least squares estimation

problems are not unique. In [9,31,34] conditions are given for

regularization under which there is a certain degree of stability.

These results do not require that the data belong to the attain-

able set and do not provide for uniqueness. We have thus begun a

study of the continuity properties of the set of optimal esti-

mators as a set-valued function. To be more specific, we study the

following sample problem. Let be a bounded open domain in R1n

with a Lipschitz boundary 7. We consider the following sample

boundary value problem

(5.1) - (a - u) = f in

u = 0 on

with f = W-I' 2(C2). The coefficient a belongs to Wk, 2 (..) for k=1,2

and satisfies

(5.2) 0 < .0 a .4, a.e. in

For a fit-to-data functional we use
2 2

(5.3) J(a;z) = Hlu(a) - z11L2 + P Hal !k

where we denote the dependence of u on a by u(a) and the

dependence of J on z by J(';z). The regularizing parameter P is

required to be positive. Finally, 1" k is the seminorm

(5.4) 1 lf I i =I D':': ' dx.(5.42') <l~ I, =w 1-1 O l k

The estimation problem is given as

(5.5) Find a0 (z) c Qad

such that J(a 0 (z);z) = {J(a;z): a Qad }

where

Oad = [a = Wk, 2 : a satisfies (5.2)}.
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There exists a solution to (5.5) and we denote the set of

solutions to (5.5) by Q(z) and study the continuity properties of

the set-valued mapping z Q(z). We show that in general this

mapping is upper semicontinuous with the weak topology on 'ad and

the strong L 2 topology on the domain space as a set-valu napping

in the following sense:

Given a neighborhood N of Q(z 0 ) tYre exists a neighborhood M

of z0 such that Q(M) S- N.

By introducing stronger regularization, for example with n=2

taking k=2 or as in the cases in [9,31] or taking Qad to be in a

finite dimensional space one obtains the stability results of

(9,31]. These results amount to weak lower semicontinuity of the

mapping z ' Q(z) in the following sense:

Given an element a 0 c Q(z 0 ) and a neigh- borhood N of a0

there exists a neighborhood M of z0 such that if z E M then Q(z) 7:

N o '. With the two results together we obtain that the mapping

z Q- 0(z) is continuous as a set-valued mapping with respect to

the Hausdorff metric on the collection of closed sets in the veak

topology on bounded sets of Qad"
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