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1. Introduction.

Of primary interest in this project are systems that are
modelled as beams or thin plates which may undergo either small or
large deformations. Hence, linear, so called Kirchhoff, and
nonlinear, so called von Karman, are amoung the model equations to
be studied. Linear models are derived under assumptions of pure
bending with deformations that are small compared to thickness
which in turn is assumed to be small. Larger deformations give
rise to in plane forces from the stretching of the middle surface
and lead to nonlinear models, [22,23]. For beams linear models
with various linear and nonlinear damping terms are among those of
interest.

An identification problem seeks to determine parameters
within a mathematical model from observed data. The central issue
is how to utilize data to determine the desired parameters with
in the context of the model. Thus, available is a model equation

(1.1) L(glu(q) = £(q)

in which the parameters q to be estimated belong to a specified
admissible set Q.4 of a Banach or Hilbert space Q. The set Q44
should be physically meaningful, such that the mapping q — u(q)
is well-defined from the state space X, and such that q — ul(q)
is continuous with respect to suitable topologies on Q and X.
Avallable are data z which are in the form of measurements on the
system. We view these data as belonging to an observation space 2
(Hilbert space). One seeks to determine a parameter q such that
Cu(q) "matches" 2z in a suitable sense. Here C represents an
observation operator that maps X into Z.




One approach to this problem, sometimes called the "regqular-
ized" output least squares method, cf(1-6,9-19,25-35], is formu-
lated as a minimization problem:

Find g4 = Q34 such that

(1.2) J(qg) = infimum{J(q): q = Qg 4!}
where
(1.3) J(q) = ilculq) - zIg + & uqud

with g 2 0. This formulation is given with Q and Z Hilbert
spaces. Solving this problem often requires constraints on Qg
to provide (i) existence of a solution to the state equation
(1.1) and (ii) sufficient compactness to obtain existence of a
solution to (1.2)-(1.3). Issues of interest for (1.2)-(1.3)
include existence, regularity of the solution, approximation,
stability with respect to data or constraints, and uniqueness or
identifiabilty. )

If one expects to use estimation techniques to identify
parameters from measurements, then one must first decide upon the
basic form of the mathematical model (1.1). Hence, one must
decide whether the mathematical model is appropriate for the
physical system being observed. The mathematical model embodies
the pertinent principles a..d assumptions from physics and contin-
uum mechanics in addition to those made on the basis of geometry,
etc. Certainly, one must be cautious about using models to fit
data that do not satisfy the assumptions upon which the models
are based.

Having chosen the mathematical model, one must address how to
use the data within the framework it imposes. The data for
systems of interest in this work are assumed to be obtained as
pointwise measurements of deformation, velocity, or acceleration
or their Fourier transforms. These data typically should be
processed in some manner and perhaps smoothed before their use.
Also, data should be in a form consistent with the mathematical
model having the proper units, etc. The mathematical analysis of
identification problems such as (1.1)-(1.3) guides in howv best to
formulate estimation to use these data. O0f direct interest to
this analysis is to determine how to design and collect data to




utilize desirable theoretical properties. Conversely if data is
available from a system, an important issue is to determine how
much one may reasonably expect to determine from the data.

In Section 2 we indicate results that we have obtained on
the estimation of elastic coefficients in structures composed of
beams. In Section 3 we report our results on the estimation of
elastic parameters in nonlinear static models of thin plates
undergoing large deformations. In Section 4 we consider the
estimation of electrical conductivity from laboratory measurements
of electrical potential. This is of interest since in this study
we have available laboratory measurements with which to test our
algorithms. Finally, in Section 5 we indicate some results on the
stability of sets of optimal estimators with respect to data as
viewed as set-valued mappings.

2. Estimation in a connected beam model.

During this project we have initiated an investigation
concerning the estimation of coefficients or the design of beam
systems. In particular, we have studied the following simple
problem. Suppose two beams, 1 and 2, of length ?; and ?,,
respectively, are joined at right angles to one another. The other
end of beam 1 is clamped and the remaining end of beam 2 is free.
In response to a force that is perpendicular to the plane
containing the beams are deformations vy and vy of beams 1 and 2,
respectively, and a rotation & of twist along beam 1. For the
static problem we study the following system of elliptic equations
with coupled boundary conditions in which x and y represent local
coordinates for beams 1 and 2 respectively.
£, in (0, %p)

(@ Wyylyx =

(2.1)(1H -(b 8.}y = g in (0, 7p)
(c w2yy)yy = £, in (0, 75)

with boundary conditions
wi(0) = wy,(0) =0




a(0) =0

at the clamped end,
(2.1)(11) wixx( ) =0
(2.1)(iii) wil®3) = wol(0)
(2.1)(iv) S(M) = wzy(O)
(2.1)(v) (b 80 (™M) = (c wzyy)(O)
(2.1)(vi) (@ wigex)x( ") = (c VZYY)Y(O)
at the junction, and

wzyy(ﬁz) = (c wzyy)y(ﬂz) =0

at the free end. Equations (2.1} are the Euler equations for the
potential energy functional

(2.2) Plwy, 8, wp) = [ 1 tato wi () + bix) 83(x)1 dx +
a i L 1
+ 102 cly) wiy (y) dy - 2 Job TE1(x) wi(x) + g(x) 8(x)] dx -

-2 jsz f£o(y) wply) dy.
The solution of (2.1) may be obtained by minimizing the
functional (2.2) over the Hilbert space
V= {v = (w,5,wy) € H2(0,2) x #l(0,2;) x HZ(0, o)
vi(0) = wy,(0) = 0, 2(0) = O,
':-‘(r'l) = sz(O), Vl(!?l) = Vz(o)}-

To solve (2.1) numerically, the space of basis functions
should satisfy the conditions at the junction. Howvever, it is
much more difficult to enforce the essential boundary conditions
at the junction on the basis elements that are used to construct
the finite dimensional approximating space as one does for example
with the clamped boundary conditions. We take two approaches to
this problem. The first is to use basis functions that are non-
conforming at the junction and hence do not satisfy the essential
boundary conditions at the junction. The conditions are enforced
as constraints on the discrete version of the problem to minimize
the potential energy functional. We use a penalization or an
augmented Lagrangian method to impose the conditions. The second
approach involves directly changing variables by using the junc-
tion constraints to reduce the number of variables of the problem.
In this method we solve for certain variables in terms of the




others by using the junction conditions. 1In this way the mini-
mization problem for the potential energy becomes an unconstrained
problem in the new variables. In effect these new variables are
coefficients of basis functions that satisfy the junction condi-
tions,.

We are confident at this point that our model is reasonable.
This is based on experimental spectral data that we have obtained
with the aid of Prof. D.L. Russell at MIPAC. Specifically, wve
measured the eigenfrequencies for an aluminum carpenter's square
that was clamped at one end. We obtained the first six frequencies
as

3.75, 10.62, 39.37, 75, 126.87, and 198.75 Hz.

Based on our model using a direct method for the treatment of the
boundary condition at the junction, we obtained using a cubic
spline based scheme frequencies of

2.28, 14.28, 39.69, 78.45, 129.93, and 194.82 Hz.
Considering experimental and discretization error, we feel that
these numbers compare favorably. A new set of experiments will
be run again this spring with improved clamping apparatus to
obtain a new set of data. 1In addition to comparing with experi-
mental data, we have also compared our results with the NISA
engineering package for static deflection problems with point
loads. Predictions for the model equations (2.1) agree to within
5 to 6 decimal places to those from the NISA package.

We have considered estimation problems for this structure. A
report of results is in the Proceedings of the 1989 IEEE Confer-
ence on Decision and Control (33]. In that work we formulate a
sequence of estimation problems where in each case the underlying
system is one obtained from the augmented Lagrangian functional
associated with the minimization of the potential energy
functional. Hence, a sequence of estimation problems is defined
on the approximating systems obtained from the augmented
Lagrangian and penalty approximating scheme. A manuscript
describing further results for beams at different angles is in
preparation.

3. Estimation of parameters in plate models.




In work funded under this grant we studied the
estimation of both damping and elastic parameters in linear
equations that modeled small deformations of thin plates [25-33].
In this work we obtained results concerning the properties and
regularity of solutions, the approximation of solutions, 2ad the
numerical treatment of sample problems. In addition we studied
the stability of regularized output-least-squares optimal esti-
mators with respect to data, second order sufficient conditions,
and the error of solutions in terms of sampling density of the
data [34].

We wish to indicate in more detail the investigations we have
been conducting on model equations modelling thin plates but with
large deformations. W2 describe our work on time independent
problems. Currently, we are working on time dependent problenms.
Our approach currently is to use weak solutions. However, we are
also considering classical solutions as in [21,24) with
observation: before blow-up times. 1In the derivation of
approximate plate theories, linear mathematical models are
obtained by including bending terms only. The retention of only
these terms embodies the assumption that deformation is in fact
small when compared to the thickness of the plate which in turn is
assumed to be small. For larger deformations it is necessary to
include terms that model the stretching of the middle plane ({7,81].
These models give rise to the so called von Karman equations.

(3.1) Au = =[g, u) + £
in o
Be = -{u, ul
where the bracket term is given by
9, ¥] = Pyy Vyy t @YY ¥ ~ 2 Txy Feye
The operators A and B are typically fourth order linear elliptic
operators. The function u represents the deformation of the

plate from an equilibium position and & is commonly called the
Airy stress function. Eguations (3.1) are accompanied with
boundary conditions, for example, homogenous Dirichlet boundary

conditions
da _ -

u = %% = o =% =0onr.
We have recently considered the estimation of the parameter a =




a(x,y) in the specific cases of

A ¥ = ~(a =« ¥)

and
Af = v (= (a 2¥F)) +
t(l-v)((af)yx * (a’Fyy)yy + 2 (a@xy)xy)
with
B ¥ = 2 4,

Such operators arise with variable coefficients for thin plates
of uniform thickness but with variable Young's modulus. It turns

out that solutions u of (3.1) are stationary points of a quartic
functional. Moreover, it is possible that equation (3.1) has more
than one solution (7,8.20)}, and therefore the parameter to state
mapping may not be well-defined. Even so we have demonstrated
existence of an optimal parameter for the following regularized
output-least squares problem.

(3.2) Find ag = Qyq such that J(ag) = inf{J(a): a = Q,a!

vhere

J(a) = tua) - zifz(my + 8 Haldz n
and
(3.3) Qug = {a = HZ(Z): a t 3 > O}.

If there may exist multiple solutions to the equation (3.1), the
fit-to-data functional above is not well-defined. However, it can
be shown that the solution set U(a) of equation (3.1) is closed
and compact in the weak topology of H%(Q . Since the embedding of

H%(Q) into L2(Q) is compact when 2 is an open domain in 2 with a
Lipschitz boundary, we denote by

huta) - zlp2(gy = min{iu - zlp2(=): u = U(a) for a = Qy4}.

The minimimum exists by the continuity of the L2-norm with
respect to the weak topology on Hg(i). It can be shown that

there exists a solution to the problem (3.2)-(3.3).
Let us set

iy = Ul ez and I¥fll = lla¥ilg.
It is well-known that "' thus defined is a norm on Hg(i). More-
over, there is a constant k such that for any +* = H%(T),

1flg § k 141, In addition there is a constant K such that for u,
0




v, and ¥ in H%(Q)
| IQ [u, v} wdx | ¢ K Huil v lwi,

Set » = (k WElg)/ I and r = = K2/
It is natural to consider linear approximations to (5.1).

By imposing conditions on =, v, and f we may obtain by the

contraction mapping principle approximating linear systems for

vhich convergence may be established. Based on this approach wve

obtain.

Theorem. Let M be chosen such that Z% < r

Vel

M and assume r

satisfies r < (M - p:/(M7). Then for any
unique solution u(a) of (3.1) with !lu(a)il

[T}
]

Qad there is a

(1)

M.
In [31) we consider the following approximating linear
systems.
(3.4) u_y = ¥ =0
for it =0, 1,...

=(a & u;) = =z [@;, uj_71 + £ in Q
u; = g%i = 0 on ™
(3.5) =2 8,1 = - luj, ujl) in =
J. = %§i= 0 on .

i
Theorem. With M, -, and r defined as above, the sequence uj
generated from (3.4)-(3.5) converges uniformly to u(a) in H%(Q

for a = Qag where liu(a)!ll § M and

fuy - ufa)! € M(3 £ l/(1-3rM).
The assumptions that 2M/3 < F and r < (M - #)/M? imply that
3r*M < 1. Hence, if we consider the mapping a +— u(a) of Q.4

into the ball {u = H(2): llull ¢ M}, then it is well-defined. We
may demonstrate differentiability, of solutions of (3.1) with
respect to a under the assumption that 3r“M < 1. Therefore,
reqularity results for optimal estimators may be obtained under
the above conditions.

Theorem. Let 3r*M < 1. If a is a solution of (3.2)-(3.3), then a
HZ¥(2) for w = (0,1).

These results enable us to provide an approximation theory for

=




these problems.

We base an estimation algorithm on the above approximating
problems in which we estimate the parameter a in each linear
approximating system and use the computed state for the update in
the next linear problem. Details and the results of numerical
experiments are reported in [31].

The above formulation imposes rather strong conditions on

f, = and © in order to apply the contraction mapping princple.
These conditions also imply differentiability of the mapping a —
u{a). We note however that existence of optimal estimators does
not depend upon the these conditions. We consider the following
veak model error formulation. Define w : H2(Z) x V — V as
follows
(3.6) -2 v = 2(axu) - zla, ul - f

<2 &= - [u, ul in =

with boundary conditions

It is easy to see that
(3.7) vw(a,u) = 0
if and only if equation (3.7) is satisfied. We can show that the

equation (3.7) implicitly defines a function a — u(a) if
1

(3.8) D= K (3)T iflly-2(ay > 0
and this function is differentiable. Thus, we may weaken condi-
tions to obtain local existence and local difterentiability of the
parameter-to-state mapping.

The optimization problem in this formulation is given as
Find (ag,up) such that

J(ag,ug) = inf{J(a,u): a = Q4 and v(a,u) = 0}
vhere
J(a,u) = lu - zll? + & rauf:.

Again under the condition (3.8), we may obtain the existence of
Lagrange multipliers associated with the constraint (3.3). This
Lagrange multiplier may be estimated in terms of 'lug-z!ly. Thus
ve may find conditions for the choice of = and the positive
definiteness of the second derivative of the Lagrangian func-
tional. With these estimates we may obtain local unigqueness and




stability results and show that the augmented Lagrangian method
converges [32]). These results have been submitted for publi-
cation. They have also been presented at the Midwest Differ-
ential Equations Conference in November 1989.

Without further assumptions such as those in (3.7) .e may

penalize the constraint (3.6). This general formulation is given
by means of the minimization problem
3 3 H | - |v2 =3 " 2- K i v12 .
Minimize !lu zug + 7 odlallg: + 5 dw(a,u)if:

We have analyzed this problem and have presented initial results
in a colloquium at the Division of Applied Mathematics at Brown
University last spring.

We include some preliminary results of numerical tests using
both the penalty method and the augmented Lagrangian for this

problem. In this case we consider the equation

=2 w(a,u) = ={ a -u) + = [B(u,u),ul]l - £
with w = w(a,u) = H%(Q) and

-2 B(u,u) = {u, ul.
We consider the minimization problem:
Minimize L{a,u;*) subject to u = V and a = H?

for

3 2 § nvta,wnd

Lta,u;») = 5 llu - zHLz + § Haﬂéz + (x,wla,u))y +
£

where V = H%. We generate
£ = 2 ( ap <up) + = [(Blup,up),urp!

by determining £ from

[\

where up = 256 x y2 (1-x)2 (l-y)z. We used discretizations with
8 subintervals in both x and y directions for approximating u and

3 subintervals in both x and y directions for approximating a.

Accordingly, the mesh for the example that we give is very coarse.

Approximating functions were tensor products of cubic B-splines
adjusted for boundary conditions. We used the conjugate gradient
method for the optimization steps. Our initial guesses were off
by relative L2 errors of 87% and 45% for u and a, respectively.
Below we give values of the exact and computed functions for the
state u and the coefficient a. As an example consider a problem
with a discontinuous elliptic coefficient

_10_




1.5, (x,y) such that 0.25¢y£0.75
ar ¥ (1.0, otherwise
wvith initial relative L2 errors of 79.4% and 231%, for u and a,
respectively. After 19 iterations we obtained the following with
the augmented Lagrangian :..ethod.

1{0,0) (0.2,0.2) (0.4,0.4) (0.6,0.6) (0.8,0.8)
up | 0 0.168 0.849 0.849 0.168
Ucg1c| O 0.111 0.989 0.849 0.260

For the coefficient a we have

1 40,0) (0.2,0.2) (0.4,0.4) (0.6,0.6) _(0.8,0.8)
an 1.00 1.00 1.50 1.50 1.00
acalc! 0.649 0.948 1.67 1.67 0.925

Hw(a,u)llp 2 = 0.0884.
For the penalty method we have for the state

1(0,0) (0.2,0.2) (0.4,0.4) (0.6,0.6) (0.8,0.8)
up |0 0.168 0.849 0.849 0.168
Ucale] O 0.171 0.844 0.794 0.0893

For the coefficient we obtain the following.

{0,0) (0.2,0.2) (0.4,0.4) (0.6,0.6) (0.8,0.8)
ap l 1.00 1.00 1.50 1.50 1.50
Arz1c| 0.533 0.603 1.43 1.51 0.619

liw(a,u)ll;2 = 0.140.

4. Estimation with experimental data.

In the previous proposal we expressed one goal as that of
considering estimation problems using data that has been obtained
experimentally. We feel that this is the essential next step in
producing useful estimation algorithms. We report our efforts
here for an experiment to obtain electrical conductivity from
potential measurements in a circular reservoir. The situation is

-11_
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the same as that of determining elasticity coefficients for a
membrane from displacement measurements. It is shown in (8] that
such a membrane equation may be obtained as a limiting case of von
Karman equations.

The experimental setup was as follows. A cylindrical tank
with circular cross-section 2 is filled with sand in whici. there
is a salt water solution. There are eleven locations in = at
which a source electrode may be located or potential may be
measured. There is a ground located at an additional position.
The walls of the tank are nonconducting. The electrodes that are
used are such that the current is focused so as to be two dimen-
sional. This allows us to consider a two dimensional problem. At
a certain point in time, a volume of salt wvater is extracted and
replaced by injecting fresh water. Consequentially, the electi-
cal conductivity is a spacially dependent function. An electrical
source of current is placed at a position and measurements are
then made at the remaining locations. These measurements are
repeated with the source at various locations. The diffusion of
the salt into the fresh region is sufficiently slow as compared
with the time it takes to make the measurements that the problem
may be considered time independent.

The governing model is given by a two dimensional elliptic
Neumann problem

-~{a ~*u) = f in 2
5% = 0 on 2.

where u is the electrical potential function, the coefficient a is
the electric conductivity, and £ is the source term. Here for the
purpose of mathematical formulation we consider £ to be given by

£ = F F
vhere ¥, is a function of small support (in a ball centered at

the source location xs) such that

Jo Eg(x) dx = 1.
Measurements of the electrical potential are made at N, ¢
locations over the domain &, Thus the observation operator C

N
takes u into ¥ °PS i35 given by




}

C u(a) = colfi<u(a),e;>:i=1,...,N

obs

wvhere @; are continuous linear functionals on Hl(Q)(or possibly

HZ(Q) depending on the regularity). For example, we can take
<u, ;> = E%T f u(x) dx
101
vhere D; is a disk centered at the observation location x; to be

an observation functional. The measurements are given as an
Nops-vector z of real numbers.
To treat the equation, we consider the weak model error
w = w(a,u) defined as the solution of
- aw +tws=-7%"(a~ u) - £ in &
with
boundary condition

2 = 0 on 3.
The estimation problem is now given in terms of the optimi-
zation problem

Find (ag,up) = Q x Hl(2) such that

3

Q and u = Hl(2) satisfy w(a,u) = 0}

im

Jlag,ug) = inf{J(a,u): a
where

Ja,u) = v iCu - z1? + & lalg,

Q = H2(%Z), and i+| is the Euclidean norm in mNobs.

To solve this problem numerically, we approximate the disk
centered at the origin with quadrilaterals obtained by partition-
ing the y-direction with an odd number of Ny equally spaced
horizontal lines where the (NY- 1)/2 + 1 is line y = 0. Each
horizontal segment we partitioned into N, subintervals. Connec-
ting the corresponding points forms the system of finite elements.
This discretization may be mapped to a square region that is
partitioned similarly by defining transformations that map each
subquadrilateral to the corresponding subrectangle. We use a
system of basis functions that are bicubic functions made up of
tensor products of cubic B-splines as basis functions for the
square. The composition of the transformations with these func-
tions then determines basis functions on the disk. We used 64
basis functions to approximate the state and 49 to approximate the
coefficient a.




The estimation problem is solved by means of the augmented
Lagrangian method. Thus we form the functional

F(a,u;»,K) J(a,u) + <x,w(a,u)> + K Hw(a,u)nﬁ;
and use the conjugate gradient method for minimization at each
step. We use » = 1.0, = = 10"8, and K = 10.0. The coefticient a
is calculated for two different sets of data to compare the
estimated a's. We obtain the following.

CASE 1.
X Yy values of a (est)
-53.2 -109.8 2.87
~-17.1 -109.8 3.09
17.17 ~109.8 2.99
~116.4 -36.6 2.83
~-38.8 -36.6 3.04
38.8 -36.6 2.82
~116.4 36.6 2.48
-38.8 36.6 2.80
38.8 36.6 2.75
Nobs 2
= (ulx;,y;) - z3)
The relative error for u = sqgrt( i3l )
-obs 2.2
i=1 i
is 4.9% wvhile Hwily - =0.071. In the second case we have the
following
CASE 2.
X Yy values of a (est)
-53.2 -109.8 2.91
-17.7 -109.8 3.11
17.1 -109.8 3.00
-116.4 -36.6 2.87
-38.8 -36.6 3.05
38.8 -36.6 2.83
-116.4 36.6 2.51
-38.8 36.6 2.82
38.8 36.6 2.78

with relative error for u = 4.4% while livily: =0.038. Thus, we
are able to estimate the coefficient a so that, for different
sets of data, the values of the estimated function agree to
within the accuracy of the data. We feel that this is as much as
one can reasonably expect and is a successful application of our

_14_




-15-

methods. This work will appear as an invited paper in a special
issue on parameter identification in the Journal on Advances in

Water Resouces [35].

5. Stability properties with respect to data.

We have studied stability properties of optimal estimators
with respect to data. Except for results in [13) in which there is
strong regularization and it is assumed that the data is in the
attainable set solutions of output least squares estimation
problems are not unique. In [(9,31,34) conditions are given for
regularization under which there is a certain degree of stability.
These results do not require that the data belong to the attain-
able set and do not provide for uniqueness. We have thus begun a
study of the continuity properties of the set of optimal esti-
mators as a set-valued function. To be more specific, we study the
following sample problem. Let % be a bounded open domain in RP
with a Lipschitz boundary ™. We consider the following sample
boundary value problem

(5.1) -7+« (a ~7u) = £ in @

u=0on"
with £ = W 1/2(2). The coefficient a belongs to WK/2(Z) for k=1,2
and satisfies
(5.2) 0 < #bg $@a f 1y a.e. in 2
For a fit-to-data functional we use
(5.3) J(a;z) = u(a) - zily + & llal

where we denote the dependence of u on a by u(a) and the
dependence of J on z by J(-;z). The regularizing parameter ¢ is

required to be poesitive. Finally, |'!y is the seminorm
- n g 2
5.4 #) |2 = L ID®®i< dx.
(5.4) R = Ly 0ei3sk
The estimation problem is given as
(5.5) ' Find ag(z) = Quq

such that J(ag(z);z) = {J(a;z): a = Q4!
wvhere

Qg = {a = wks2; 3 satisfies (5.2)}.
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There exists a solution to (5.5) and we denote the set of
solutions to (5.5) by Q(z) and study the continuity properties of
the set-valued mapping z ~* Q(z). We show that in general this
mapping is upper semicontinuous with the weak topology or 7,4 and

the strong L? topology on the domain space as a set-valu - napping
in the following sense:

Given a neighborhood N of Q(z,) tr=re exists a neighborhood M
of zg such that Q(M) £ N.

By introducing stronger regularization, for example with n=2
taking k=2 or as in the cases in [9,31] or taking Q 4 to be in a
finite dimensional space one obtains the stability results of
(9,31]. These results amount to weak lover semicontinuity of the
mapping z — Q(z) in the following sense:

Given an element ag = Q(zg) and a neigh- borhood N of ag
there exists a neighborhood M of z5 such that if z = M then Q(z) ™
N = o. With the two results together we obtain that the mapping
z —» Q(z) is continuous as a set-valued mapping with respect to
the Hausdorff metric on the collection of closed sets in the weak
topology on bounded sets of Qg4.
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