
I FCW,, A00ov,"IIENTATION PAGE ONO7"1

me00"Sm To a..*eq. I lo4I .w , -EafMUAO um now tor 41 1amsg~f~ ~eq
tI am M0" tMOO M *a qtnfou e . softOm. g 0 O

AD- 22 502 o~ .owo
RIPORT OAT[ 3. RPORT TYPE ANO OATI$ COVIRio
vember 8, 1990 I Final Report 15 Sep 89 to 14 Sep 90

. nTTL AND SUGTI-L S. PUNOIG NUMBERS
MULTIVARIATE MULTISCALE ANALYSIS AFOSR-89-0524

61102F 2304/ A9

6. AUTHOR(S)

W. R. Madych

7. PtNJORMING ORGANIZA'lON NAME(S) AND AOCRESS4ES) L. PIRFORMMN O*GAmwiTom

University of Connecticut RpnUMBR

Department of Mathematics, U-9 404R" R ) 1) . I I a) 9
Storrs, CT 06269

9. SPONSORI/MONTOR NG AGENCY NAMEES) AND ADORISS(IS) I. SPONSOMJ /pMgOITRhG

B 2 g 4 1 0 A8

Boiling AFB DC 20332-6448 AFOSR-89-0524

1t. SUPPLMENTARY NOTES

Appro'ved fe :'i! :7...

i&. ABSTRACT (M~amum 200 waed

The PI 'produced five-5 published paperV-during the period of

support. The work centered on questions of Fourier/wavelet analysis.

This is an area which promises to have a major impact on signal

processing and numerical analysis and requires careful theoretical

underpinning. Dr. Madych has resolved several questions related to

translation invariance, mmultiscale analysis and Radon transforms.

14. SUBSiECT RM I& NUMBER OF PAGEs

IL. POc Cool

17. sCUI-T CASSCATM IL. SECUR TY CLASSCATO 11. SECOTM OASSICAnOU A4. UANAON OF ASSTRA
OpRipoT OP THIS PAGE 0, AUTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

Nsh 7140h01.2U.SO Stand Po" 299 (Rev. 2.99)
O LiI te 29.



MULTIVARIATE HULTISCALE ANALYSIS

Final Technical Report for AFOSR-89-0524
November 8, 1990 AEOSR.TR. $, () 1 1 &"

PI - W. R. Madych

The following is a list of work completed while the principal investigator
was partially supported by this grant.
The following are either published or accepted for publication:

1. Translation invariant multiscale analysis, pages 455-462 in Recent Ad-
vances in Fourier Analysis and Its Applications, J. S. Byrnes and J. L.
Byrnes, eds., NATO ASI Series C, Vol. 315, Kluwer, Dordrecht, 1990.

2. Polyharmonic Splines, Multiscale Analysis, and Entire Functions, pages
205- 216 in Multivariate Approximation and Interpolation, W. Hauss-
mann and K. Jetter, eds., International Series of Numerical Mathemat-
ics, Vol. 94, Birkhauser Verlag, Basel, 1990.

3. Summability and Approximate Reconstruction from Radon Transform
Data, to appear in Contemp. Math., 34 pp.

The following are preprints submitted for publication and technical reports:

1. Bounds on Multivariate Polynomials and Exponential Error Estimates
for Multiquadric Interpolation, BRC/Math-TR-90-1, 19 pp.

2. Error Estimates for Interpolation by Generalized Splines, BRC/Math-
TR-90-3, 8 pp.

A copy of each of the above works is included in the enclosed volume.
This grant provided at least part of the cost of participation in each of

the following conferences.

1. June '90 - Chamonix, France. Invited participant in conference on mul-
tivariate approximation and interpolation. Gave talk on error estimates
for generalized splines.

2. August '90 - Oberwolfach, W. Germany. Invited participant in con-
ference on the Radon Transform and its applications. Gave talk on
wavelets and their potential applications in this area.

1



Contents

1 Translation invariant multiscale analysis; -pages 455-462 in Recent Ad-
vances in Fourier Analysi's and Its Appl[YPt ions, J. S. Blyrnes and J. L.
Byrnes, eds., NAT 0 ASI Series C; Vol. 315, Kluwer, Dorrct 90

-2) Polvharmonic Splines, Multiscale Analysis, and Entire Functions ages
205- 216 in Multivariate Approximation and Interpolation, W.)iauss-
mann and K. JetteF--eds., International Sieries of Num~erical M~themat-
iks, Vol. 94, Birkhauser Verlag, Basel, 1996.

3)/ Summability and Approximate Reconstruction from Radon Transform
Data: o appear in Contemp. Alath., 34 pp

4) Bounds on Multivariate Polynomials and Exponential Error Estimates
fo'r Mudtiquadric Interpolation 1 RC/Math-TR-90-1, l9pp.

-5,1 Error Estimates for Interpolation by Generalized Splines, BRC/Math-
TR-90-3, 8 pp.

Aacessionz For
NTIS GRA&I OMI DIC TAB Gi

Unannounced 1 6 cla
justifioatiO

1BY
iDistributioi/
Availability Codes

~vail and/or
-Dist Special



Translation Invariant Multiscale Analysis

W. R. Madych*

Abstract

The notion of multiscale analysis introduced by R. R. Coifman and
Y. Meyer is considered and the translation invariant case is character-
ized.

I Introduction

Recall that a dyadic mulliscale analysis of L2 (Rn) is an increasing sequence
V = {IV : j = ... , -1,0,1,2,.. .} of closed subspaces of L 2(R n ) which has
the following properties:

(1). U '-_. Vj is dense in L2(R') and - 17 = {0}.

(2). f(x) is in V- if and only if f(2x) is in l,+,.

(3). There is a lattice F in Rn such that for every f in 1"o and every Y in F
the function f, is in I 0. Here and in what follows we use the notation

f, )= f(x - Y).

(4). There are two positive constants C 2 > C1 > 0 and a function g in Vo
such that V is the close( linear span of gy, -y E F, and

c2 '12 < ()121~~j l jag()Idx < C22 a-, 2
YEr iEr

*Department of Mathematics, University of Connecticut, Storrs, CT 06268. Prelimi-
nary report of work partially supported by a grant from the Air Force Office of Scientific
Research.



An introduction to the subject may be found in [1,2]. A basic property
of a multiscale analysis V is the following:

(5). There is a function € in 1,; such that the collection {.},Er is an or-
thonormal basis in V0.

This fact may be regarded as a substitute for (4) and plays an important role
in what follows.

A dyadic multiscale analysis is translation invariant if all the translates
of f, {f : y E Rn}, are in ;'V whenever f is in V0.

The canonical example of a translation invariant multiscale analysis of
L2(R) is when 1," is the collection of those functions in L2(R) whose Fourier
transforms are supported in the interval [-7r, 7r]. A natural choice of 0 in

this case is given by

sin jrx
7rX

The point of this paper is to give a characterization of translation in-
variant multiscale analyses. For the sake of clarity in what follows we will
restrict our attention to the case n = 1 and F = Z, the lattice of integers.

The statements and arguments in the general case are completely analogous
to this basic case.

We now briefly digress to list some of the conventions which are used

here: The Fourier transform f of a function f is defined by

1 " eCicf (x)d x

whenever it makes sense and distributionally otherwise. Basic facts con-
cerning Fourier transforms and distributions will be used without further
elaboration in what follows. To avoid the pedantic repetition of "almost
everywhere" and othe modifying phrases which are inevitably necessary
when dealing with functions defined almost everywhere, all equalities be-
tween functions and other related notions are interpreted in the distribu-
tional sense whenever possible. The term support is also used in the dis-
tributional sense; in particular the support of a function f in L2 (R) is a
well defined closed set. If TV is a collection of tempered distributions then
OV is the collection of Fourier transforms of elements of TV, in other words

01 = {f : f = g for some g in W}. For a subset Q2 of R and a real number
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r the sets rQ and Q + r are defined by rQ = {x : x = rw for some w in Q}
and Q + r = fx : x = w+ r for some w in Q}; L 2 (Q) is the L2 closure of the
subspace of those functions in L 2 (R) whose support is contained in Q. For
notational simplicity we use Q to denote the closed interval [-r, 7r].

We can now conveniently state our main observation.

Theorem Suppose V is a translation invariant dyadic mulliscale analysis
of L 2(R). Then Vo = L2 (Q) where Q is a closed subset of R which has the
following properties:

(a). Q C 2Q.

(b). {Q + 2rij} -l{Q + 2rk} is a set of Lebesgue measure 0 for any pair of
Integers such that j :A k.

(c). U'{-,.Q + 2rk} = R.

(d). U 0-1 L 2 (2 k1) is dense in L2(R).

Conversely, if lI,, k E Z is defined by ',, = L2 (2 kQ) where Q is a closed subset
of R which satisfies the properties above then the sequence of subspaces {1',}
is a translation invariant multiscale analysis of L2(R).

Remark 1 In view of the example given above it is very tempting to con-
jecture that the set Q in the Theorem must be of the form Q = Q + a for
some real number a which satisfies r < a < 7r. Certainly such Q's satisfy
the desired conditions. However the conditions of the Theorem are satisfied
by Q's which need not be connected as the following example due to Rudi
Lorentz shows.

Remark 2 Consider

= [-1, 1]U[2r + 1,4r - 1]
Q6 [-5,5]
Q= [-I, I]

Q= [0, 2r] .

3



It is not difficult to verify that each Q, listed above is a closed set which
fails to satisfy condition (a) but satisfies the remaining conditions in the
Theorem. These examples show that conditions (a)-(d) are not redundant.

Remark 3 Note that condition (a) implies that 0 is contained in Q. In
addition to this it is clear that if Q? contains a neighborhood of the origin
then it satisfies condition (d). In view of this it seems reasonable to suspect
that subsets Q which satisfy the conditions of the Theorem must contain an
open neighborhood of the origin. That this is not the case can be seen by
considering the following example of Q:

{ U [-(2 - 2-")2-r-2 rh]} U[0, -r]{ U [(2 - (2 - 2-)2-)7r, (2 - 2-k) 7]}
k=1 k=1

Remark 4 In view of the examples listed above it may be of some interest
to obtain a significantly more lucid description of the set Q than that given
in the Theorem.

A corollary concerning wavelets generated by V is recorded at the end of
Section 2.

2 Details

We begin by establishing a basic lemma. First recall that the indicator
function of a set Q is usually denoted by Xn and satisfies

I if. EQ
n = 0 otherwise.

Lemma Suppose V is a translation invariant dyadic multiscale analysis of
L2(R) and 0 is a function whose existence is guaranteed by (5). Then

11 = Xn

where XA is the indicator function of a closed set Q which has properties
(a)-(d) in the statement of the Theorem.

Let Q be the support of 0. To prove the lemma. we will first show that Q
satisfies property (b).

4



Recall that (5) implies that for all f in V; we may write

(6) f() =)g(o)

where g is 27r periodic and square integrable over Q. In particular, since V0
is translation invariant, 0. is in V0 so setting a = -y we may write

e =

for some such g. Hence

e i°(C-2) ( - 27rm) = g( - 2 ,)(- 27rm) = g( )q( - 2rm)

which implies that
ei(C-27= g(m)

on Q + 2rm. For two different values of m the last equality implies that

C ia(C-21rj) = e i,( - 27r )

on {IQ + 2irj} fl{n + 2rk}. Re-expressing the last relation as

eia( -2rk)(ei27ra
(k

- j
) - 1) = 0

it is clear that either a is an integer, j is equal to k, or {Q+ 27rj} n{(+ 27rk}

is a set of measure zero. Since a may be any real number we conclude that
{ Q + 2,rj} n {+ 2rk } has measure zero whenever j - k.

Now, since C( ) = e-q( ), k E Z, are orthonormal, we may write

(7) JR Ok(x)ole(x)dx= JR eimfI ( )12d =

f im c 2 1 when m = 0

jZ -0 otherwise

where m = f - k. The last equality implies that

ZI( - 27r))12 - 1

jE Z 27r

5



on R and since {f + 27rj} nf{Q + 2-rk} has measure zero whenever j : k we
may conclude that

1

and U Q+2rl= R.
kE Z

To see (a) observe that (2) and the facts demonstrated above imply that

xa( ) = h( )Xn(C/2)

where h is 4r periodic and square integrable over 2Q. Since X2R( ) =

xn( / 2 ), the last equality involving h implies that Xn vanishes whenever

X2n does so Q C 2Q.
Finally, the fact that U? L 2 (2kQ) is dense in L2 (R) is an immediate

consequence of property (1). The proof of the Lemma is complete.
Now, suppose 0 and (I are as in the Lemma and its proof. Since V'o

consists of functions f which satisfy (6) it is clear that 1 ' is contained in

To see that 1V0 - L 2(Q) let f be any element in L2(Q) and let h be defined
by

1) 0 otherwise.

By virtue of the properties of Q established above it is clear that

1(z 
)h( - 2w))

and

j) =g(N )

where

T s() and he ( wmaye)) ( hat 2() s\.EZ jE Z

Thus f satisfies (6) and hence we may conclude that L 2 (Q) is contained in

6



The Lemma together with the last observation imply the first assertion
of the Theorem.

To see the converse, let V be the sequence of subspaces {V}, k E Z,
defined by fV, = L2 (2kQ) where Q is a closed set which satisfies properties
(a)-(d) of the Theorem.

The fact that V is translation invariant and, in particular, satisfies prop-
erty (3) with F = Z is an immediate consequence of the definition. Property
(2) is also immediate. That V is an increasing sequence of subspaces and

UkEZ ", is dense in L2(R) are consequences of properties (a) and (d).
That kl&EZ T = {0} follows from the fact that the measure of Q is finite.

Indeed, its measure is 27r which can be seen from

IR( JQ+ = E xfn( )k= xnd2j ~
.EZ + jEZ

by using properties (b) and (c).
Finally, to see property (5) take

1

and use properties (b) and (c) to write (7) which shows that k(x), k E Z,
are orthonormal and, for f in VO,

f()=V'i2(7r ~ 27rk)) k)

or

f(x)= f(J)O(x - k)
kE Z

which shows that they are complete in Vo.
This completes the proof of the Theorem.

Remark 5 Suppose V is a translation invariant multiscale analysis and Q is
a closed set such that 1-o = L 2(Q). Then if W0 is the orthogonal complement
of V in V1 , V0 = V.(T) where T = 2Q \ Q. Let 0 be such that the set
{b : k E Z} is an orthonormal basis for W0 . Such a 0 may be referred to

7



as a wavelet. Using reasoning analogous to the proof of the Theorem, it is
clear that i, is a wavelet if and only if

M= 
I

Now, an analyzing wavelet in the sense of Meyer, [1], is globally integrable
and hence its Fourier Transform must be continuous. Clearly V) is not such
an analyzing wavelet.

Corollary A translation invariant multiscale analysis cannot give rise to
analyzing wavelets in the sense of Meyer.

References

[11 J. M. Combs, A. Grossman, and Ph. Tchamitchian, eds., Wavelets, Pro-
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Polyharmonic Splines, Multiscale Analysis,
and Entire Functions

W. R. Madych-

Abstract

Two applications of cardinal polyharmonic splines are considered.
First, the notion of multiscale analysis in the sense of R. Coifman
and Y. Meyer is defined and it is shown that certain subclasses of
polyharmonic splines generate such analyses. Next, it is shown that
polyharmonic splines can be used in a summability method for the
recovery of a large class of entire functions of exponential type from
samples taken on the integer lattice.

1 Introduction

If k is a positive integer an n-variate k-harmonic cardinal spline is a tempered
distribution f on R n such that Af is a measure supported on the integer
lattice Z" in Rn . Symbolically

(1) -,,f (x) = ajb(z - j)

jEZ"

where A is the n-variate Laplacian, Ak = AAh- ' for k > 1, and 6(x) is the
unit Dirac measure supported at the origin. The class of k-harmonic cardinal
splines on R' is denoted by SHk(Rn). A polyharmonic spline is one which is

k-harmonic for some k.
The basic properties of these splines are recorded in [12, 13]. Here we are

primarily concerned with certain applications. 'More specifically, in Section 2
we show that certain subclasses of the spaces SHk(R n) provide examples of
multiscale analyses whose general theory was developed recently by Y. Meyer
and his collaborators. In Section 3 we show that polyharmonic splines provide
a summability method for the recovery of entire functions of exponential type
from samples on the lattice Z". The introductions to these sections contain
a more complete description of their contents. Various comments which are

*Department of Mathematics, University of Connecticut, Storrs, CT 06268. Partially
supported by a grant from the Air Force Office of Scientific Research, AFOSR-89-0524
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not particularly germane to the developr:,ent but are pertinent to the subject
matter are given in Section 4.

The notation used here is standard, if necessary see [13] for a more de-
tailed explanation. Here we merely remind the reader that there are several
common normalizations for the Fourier transform. In this note we use

V = (27)- - ' , (X)e-'(C")dx

for the Fourier transform V) of a test function 4. Also, for convenience, we use
the notation T( )f( ) for the product of a distribution T and a function f
even when such an expression makes no sense pointwise; however, its meaning
in the distributional sense should be clear from the context.

2 Multiscale analysis

Recall that a dyadic multiscale analysis of L2 (Rn) is an increasing sequence
V = {V, j - ... ,-1, 0,1,2,.. .} of closed subspaces of L2 (R n) which has
the following properties:

(i). U V~- ,V is dense in L (Rn) and flm0_ Vj = {0}.

(ii). f(x) is in V1 if and only if f(2x) is in V1+-.

(iii). There is a lattice r in R'
n such that for every f in Vo and every Y in r

the fLnction f, is in 1 . Here and i. what follows we use the notation
MX) = fX - 7).

(iv). There are two positive constants C 2 _> C1 > 0 and a function g in V0
such that V'o is the closed linear span of gy, y E F, and

c2 a, < a -(X) 12 < C2, 12 , ,=

-Er -YEr

An introduction to the subject may be found in [5, 6, 9]. A basic property
of a multiscale analysis V is the following:

(v). There is a function 0 in Vj such that the collection {fO-}',er is an or-
thonormal basis in 1'o.

This fact may be regarded as a substitute for (iv) and plays an important
role in what follows.

Finally, we say that a dyadic multiscale analysis is composed of generalized
spline functions in the sense of Y. Meyer if all the elements of the subspace
V0 are continuous and the mapping which maps f into the sequence of values

{f()}- Er is an isomorphism from V0 onto e(r).

2



In what follows we will restrict our attention to the case F = Zr', the
lattice of integers. The statements and arguments in the general case are
completely analogous to this basic case. Note that, by virtue of item (ii) in
the above definition, a multiscale analysis is determined by the subspace I".

For any positive integer k consider the subspace

Vo(k) = SHk(R-)nL 2(R-) .

For any integer m define

1'7(k) = {f : f(2-x) is in V(k)}.

In other words, f is in I (k) if and only if f(2 m x) is in V(k). The questions
we address in this section are the following: For what values of k, if any, is
th_ increasing family

(2) V(k)={I'm(k) in -...,1,0,1,2,...}

a dyadic multiscale analysis of L2(R") and when is it composed of spline
functions in the sense of Y. Meyer.

The answers to the above questions are not difficult. We begin by recalling
several facts concerning SHk(Rn).

If f is in SHk(Rn) then for x in a sufficiently small neighborhood of j

(3) f(x) = ajEk(x - j) + h(x)

where Ek is the fundamental solution of A k , namely,

f c(n, k)jz1
k - n if n is odd

(4) Ek(x) = I c(n, k)Ix12k-n log IXI if n is even

here the constant c(n, k) depends only on n and k and is chosen so that
A'Ek(x) = 6(x); h is infinitely differentiable and aj is the constant in rep-

resentation (1) of AJf. Moreover if A'f = 0 then f is a k-harmonic poly-
nomial. These observations together with the behavior of Ek at the origin
allow us to conclude the following:

Proposition 1 1f4k < n then I 0(k) = {0}.

If 4k > n then the function 4)k defined by the formula for its Fourier
transform
(5) 4()=(2jI LA 1/

(5) (2,,)-n,2 (ZjEZn 1K 27rjjL4k )1/

is well defined and is in lo(k). Note that, by virtue of the same reasoning
as used in [13], '$k can be extended to a function which is holomorphic in

3



a tube containing Rn in complex n-space. As a consequence 4)k enj,,ys the
representation

(X) ajEk( - j)
jEZn

where the sequence {aj} decays exponentially, namely,

jajj < Ce -' l

and where C and c are positive constants which depend only on k and n.
Observe that

R- 4k(z - j)4k(x - m)dx = (2nr) - IR. eZm - jl- 4 k dIR IREjEZ' [ - 27rjl-4

= (2r)-nJ ei(r-j)d

where
Qn G {=(l..{) : -7r" < j /_ 7r, j =1.,n}

and hence the collection

(6) {4(x-j) : jE Zn}

is an orthonormal set in Vo(k). Thus Vo(k) certainly contains much more
than the 0 element in this case. As it turns out, the collection (6) is also
complete in I'0(k).

To see this, let f be any element in I '(k). Viewing f as a distribution on

So(Rn) = {E . S(Rn ) : Dv4(O) = 0 for all multi-indices v},

it is clear that
(7) f(=) P( )1,1 - 2k

where P is locally square integrable and periodic, that is, P( - 27rj) = P( )
for all j in Z". Here S(Rn) is the Schwartz space of rapidly decreasing
functions on R . It follows from (7), the periodicity of P, and the fact that
. is square integrable that

Q({) = (2,-r)/ 2 P( ) [{- 27ri-4k)

is locally square integrable. Hence we may write

=



or
f(x) aj k - j)

jEZ"

where
Q( ) = aje-J and E lajl' < o.

jEZn jEZn

As a result we may conclude that (6) is a complete orthonormal set in Vo
and the family V(k) satisfies property (v).

The fact that the family V(k) enjoys properties (ii) and (iii) is an imme-
diate consequence of the definition. Hence, to conclude that V(k) is a dyadic
multiscale analysis, it remains to show that it satisfies property (i).

First, to see that fl=. v (k) = {O} observe that if f is in nrl:=-. Vm(k)
then f must be a k-harmonic polynomial in L 2(R " ) and consequently f = 0.

To conclude that U'=-0 _ (k) is dense in L 2(Rn) we argue as follows:

Let f be any element in L2(R n) such that f is bounded and has compact
support. Define sm to be the k-harmonic spline whose Fourier transform is

i = pm(()ICL
2 k

where P, is the 2m+ilr periodization of 12kf( ), namely,

P. (6)-" E ( f- 2'+lrj 2 k(C_ 2m+lrrj).
jEZn

Clearly s, is in 1,(k). Now for m sufficiently large we may write

llf - SLj 2(Rn) J Rn I~)- I

weeCiacosat = Jcim!2-ir I im( ) 12 d 5 JI 2mw KV14kd

where C is a constant independent of m. Finally, since the last integral in

the above string clearly goes to 0 as m goes to infinity and the class of such
f's is dense in L2(Rn), we may conclude that the desired result holds.

We summarize these observations as follows:

Proposition 2 If 4k > n then the increasing sequence of subspaces V(k)
defined by (2) is a dyadic multiscale analysis of L2 (Rn). Furthermore, if 4)k
is defined by (5) then the collection (6) is a complete orthonormal basis for
Vo(k).

Note that if 2k < n then the non-zero elements of Vo(k) are not locally
bounded. On the other hand if 2k > n then the elements f of V0(k) are
continuous and enjoy the representation

(8) f(x) = E f(j)Lh(x - j)
jEZn

5



where Lk is defined by the formula for its Fourier transform

(9) 
- (27r) -n2 ll-2k

ZjEZn I - l7jl-r"

and the series converges uniformly for x on compact subsets of Rn. For each
such f we may write

if2  7= f ,, 2p( 1
IHL2(Rn) = 1(2) ( k()d

f) JEZn 1 - 27rj l-4k d"
- Q (ZJEZn I - 2 jl- )

where
(2ir)n/ 2pf( )= f(j)e-'(J)

jEZ"

Since there are constants 0 < C1 _< C2, independent of such that
c1  EjEZ" [f- 27rJ1- 4k 2< c 2

(ZJEZn - 27rj ) -k

we may conclude from the last formula for 11f 112(Rn) that

CJ Z If() 2 < IIfIL2(Rn) < C2 Z<1 If(j)12

JEZn *jEZ"

w lie el j, it. In '0 ) alllU ZA , > it.

In other words we have the following:

Proposition 3 If 2k > n then the increasing sequence of subspaces V(k)
defined by (2) is a dyadic multiscale analysis of L2 (Rn) which is composed
of spline functions in the sense of Y. Aleyer. Furthermore, in this case the
complete orthonormal basis for V(k) defined by (5) and (6) enjoys exponential
decay, namely, I(kX)l < Ce- '' l

and where C and c are positive constants u'hict depend only on k and n.

3 Entire functions of exponential type

Suppose f is a tempered distribution on R' whose Fourier transform j is
supported in

Q= = , -7r < _ 7r, j 1,...n}.

6



It is a consequence of a well known generalization of a Pale%-Wiener theorem
that such an f is analytic, is of polynomial growth on R", and its holomorphic
extension to complex n-space is an entire function of exponential type. The
class of all such f's will be denoted by E,,(R n).

In particular, given such an f the sequence of values

(10) {f(j) : j E Z" }

is well defined. If, in addition, f is in L2(Rn) then it is well known that f
can be recovered from these values via the formula

(1)f W)=E f U) sinc(X -j)

jEZn

where

sinc(z) = sinc(zl,..., X) = 11 sin(7rx,)
j=l 7rXj

Here the series converges uniformly and absolutely on compact subsets of
R"; it also converges in L2(R"). Similar results hold if the sequence of values
(10) is in fV(Z") for some p, 1 < p < co. Unfortunately, if the sequence of
values (10) fails to be in tP(Z") for some p, 1 < p < co, the series (11) may
not make sense. On the other hand, since the sequence (10) is of polynomial
growth the k-harmonic spline interpolant

(12) Shf(x) = E f(j)Lk(X - j)
jEZn

is well defined for all f in E,(R n) and all k such that 2k > n. In view of the
fact that

lim Lk(x) = sinc(x)
k-o

it is natural to use (12) to approximate f with the expectation that

(13) lim Skf(z) = f(z) .
k- oo

Such a development is reminiscent of classical summability theory for Fourier

series. In what follows we will show that (13) holds for a relatively wide class
of f's in E,(Rn).

To set up our result we will need several technical definitions. First, recall
,hat if T is a distribution with compact support then the periodization of T,
pT, can be defined by

(pT, €) = (T, pO)
where 0 is any test function in the Schwartz class S(R"),

=E 2j),
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and (T,O) denotes the distribution T acting on the test function 6. Note
that pT is a well defined periodic tempered distribution.

Observe that if f is in E,(R n ) then

(14) S-I(j) = (2 r)n,2 pj({)Lk( )

where the multiplication on the right hand side makes sense because Lk is
smooth.

Define the functions A and X by the formulas

(15) (21r)--n/X( ) = A() = lim Lk( ).
k-oo

Note that X( ) is 1 if C is in the interior of Qn and 0 if C is in R n \ Qn. If is
in the boundary of Qn then X( ) = 2-m if exactly m components of have
modulus 7r.

Finally, recall that T is said to be a distribution of order 0 in an open set
f if

I(T, 0)l < cII¢IL-.

for all 0 in Co-(Q) where C is a constant independent of 0. We remind
the reader that given such a T, by virtue of Riesz representation, there is a
bounded Borel measure /z such that

(T, ) = 0 J ( )dp( ).

Furthermore, if Q1 is an open set whose closure is in Q and g is any bounded
function which is infinitely differentiable on R"\Ql then the product g( )T( )
is well defined as a distribution on Rn. Namely, for any test function 0 this
product is defined by

(gT, ") = (gT, 4,6) + (gT, V,(1 - 0))

= j g( )V( )¢( )d( ) + (T, giV)(1 - 0))

where 0 is a function in C (Q) such that €(C) = 1 for in Q1. Note that this
definition is independent of the particular choice of 0 and that the resulting
product is tempered whenever T is tempered.

Proposition 4 Suppose f is in E(Rn), j is a distribution of order 0 in
some neighborhood of the boundary of Qn, and X( )pf( ) = f( ). Then

lim Skf(X) = f(X)
k- oo

uniformly on compact subsets of Rn.
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Proof Choose (, 0 < ( < -t, such that j is a distribution of order zero in

= distance from to the boundary of Q' is < e}

Set

,= distance from c to the boundary of Q' is < (/2}

Let 01 be a function in CO-(f() such that 01( ) = 1 for in Q, and let 00 and
402 be infinitely differentiable functions such that 0( ) + (' ( ) + 02(C) = 1 for
all in R', 0 has support in Qfl \ Q1, and 02 has support in R' \ (Qn U 11 ).

Now, if e. denotes the exponential e.,( ) = e;(',f) we may write

(16) SIf(x) - f(x) = (Lk f, e.) - (27r)-. 2 (f, e.)

= ((Lh - A)f, e.,) = ((Lk- A)pi, e. j).
j=O,1,2

Consider each term which comprises the sum in the last expression.
First

i((L - A)pf, e.0o)I = I(f, (L - A)e.0o)I

_ C E sup jD ((L,(C) -
1II<N CEQI\nl

since f is a distribution of order no greater than N. Because for each v
h'(Lk( ) - A( ))I goes to zero as k --* oo uniformly for in Q' \ Q, and
IDve.()I < C.Ixlx'I it follows from the last equality/inequality string that

(17) lim I((Lk - A)pf, e.0o)I - 0
k-oo

uniformly for x in bounded subsets of R'.
Next, there is a. bounded Borel measure p such that

((k - A)pf, e.01) = j(L(k)-

and, by virtue of the bounded convergence theorem, we may conclude that

(18) lim 1((Lk - A)V i, e,',3)1 = 0

uniformly in x.
Finally,

((Lk - A)pj, e.02)1 = 1(1, p[(Lk- A)e.2)1

< C E E sup IDv((Ld(C)- A())e.C )02Cg)j
jEZ" IvI<N CEQ7
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where Q= - 2-j is in Q'}. Note that the term corresponding to
j = 0 is 0 because of the factor 02 and that the series converges whenever
2k > n. Estimating the size of each term in the last sum following essentially
the same reasoning as used in the case of the term involving 00 allows us to
conclude that
(19) lim 1((LI, - A)pf, e.02)1 = 0

uniformly for x in bounded subsets of Rn.
Formulas (17), (18), (19), and (16) imply the desired result. U

Corollary 1 Suppose f is in E.,(Rn), f is a distribution of order 0 in some
neighborhood of the boundary of Qn . Then

Jim Skif(X) = f(X) + g(z)
k-oo

uniformly on compact subsets of Rn where

) = x(' ) ,( )- ()
is a distribution with support in the boundary of Qn

Examples show that the condition that f be a measure in a neighborhood
of the boundary of Q" is not necessary. However other examples show that
without some restriction on the behavior of f near the boundary of Qn the
sequence Shf may fail to converge.

Many subclasses of distributions in E, (R n) satisfy the hypothesis of
Proposition 4. Consider the following transparent examples:

* f is in LP(R " ) for some p, I < p< 2.

" A~f is in LP(R n ) for some p, 1 < p < 2 and some positive number a.
Here Ac-(f) = If ( ). This includes various classes of distributions
which themselves may not be in LP(Rn) but whose derivatives are.

Such examples include many of the classes considered by Schoenberg in the
univariate case.

4 Remarks

Various forms and features of multiscale analysis have been known and used
in harmonic analysis for some time. We cannot go into details here. The
formal definitions used here were adopted from [9]. The current popularity
of multiscale analysis is due to primarily to the efforts of R. R. Coifman and
Y. Meyer and their collaborators. An introduction to the subject together
with further developments and more references may be found in [5, 6, 9].
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Orthogonal bases composed of spline functions (piecewise polynomials)
in the univariate case have been considered quite early, for example see [4, 7].
However the introduction of such bases which are translates and dilates of
one function (wavelet) is more recent; it can be found in [21].

In the case n = 2 the wavelets corresponding to V(k) can be easily con-
structed using the recipe given in [9]. Their construction in the general case
is not so clear.

The distributional variant of the Paley-Wiener Theorem alluded to in the
introduction to Section 3 can be found in [8]. For basic facts concerning
sampling and the n-variate sinc series see [16].

At this workshop Sherman Riemenschneider pointed out that certain vari-
ants of Proposition 4 were known in the univariate case, see [17]. When f is
in E,(R-) fl L 2 (R") then (12) also holds in the L2(Rn) sense. Similar results
hold for other subclasses of E,(Rn). For examples in the univariate case see
[15, 19]; we are currently preparing various analogues in the n-variate case.

The material in [1, 2, 3, 9, 10, 11, 18] indicates that box splines also
generate interesting examples of multicale analyses. However, summability
theory for regularly sampled functions in E,(R') using box spiines instead
of k-harmonic splines seems to be more difficult, see [1, 18] and the pertinent
references cited there.
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Summability and Approximate
Reconstruction from Radon Transform

Data

W. R. Madych"

Abstract

We derive various reconstruction formulas using complete and in-
complete Radon transform data. In particular, the limited angle prob-
lem is treated. These formulas are of convolution type and are rerni-
niscent of summability theory for Fourier series. In cases where exact
reconstruction is not possible, formulas for approximate reconstruction
are given together with bounds on the error which are asymptotically
optimal.

1 Introduction

Recall that the Radon transform of a scalar valued function f on R' is defined
by

(1) "Rf(u, t) = f(tu + y)dy

where u is an element of the unit sphere S - in R', t is a real number, and
U' = {y E R" : (y, u) = 0} is the hyperplane through the origin which is
perpendicular to u. Thus R.f(u, 1) is the integral of f over the hyperplane
{y E Rn : (y, u) = 1} which is perpendicular to u and intersects tu. The
mapping f - iKf maps functions f defined on Rn to functions 7.f defined
onS x R.

In what follows we will often consider "Rf(u, t) as a family of functions of
the variable i parametrized by u. In such cases we will use the notation

(2) fu(i) = Rf(u, )

Thus fu is the function of the real variable i defined by (2).
A problem associated with 7. which has attracted wide attention concerns

the recovery of the phantom f from fidl or partial knowledge of Rf. In

*Department of Mathematics, University of Connecticut, Storrs, CT 06269. Partially
supported by a grant from the Air Force Office of Scientific Research, AFOSR-89-0524
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this report we address certain aspects of this problem. Our approach is
motivated by the classical theory of Fourier series arid the constructive theory
of functions. The main ideas may be described as follows:

For certain classes of convolution kernels K, the convolution K f can
be conveniently expressed in terms of Rf. Such K can be chosen to be
approximates of the identity. Doing so results in approximations of f and,
in the limit, leads to various reconstruction formulas and algorithms. This
is reminiscent of summability theory for Fourier series.

In the case of incomplete data the class of kernels K for which K , f
may be conveniently expressed is considerably more narrow than in the case
of full data 'JRf. Here we consider data of the form {TRf(u, 1) : -co <
I < oc, u E A} where A is a proper subset of S" . For certain subsets
A the problem of reconstruction from such data is sometimes referred to as
the limited angle problem. We show that it is possible to express K * f in
terms of this data for a sufficiently wide class of kernels K to obtain various
summability theorems and approximate reconstruction formulas which result
in the "correct" degree of approximation.

1.1 Contents

This paper is organized as follows:
Section 2 contains a description of the basic results in the case of full

data. Various examples are contained in Section 3. Certain technical results
needed for the development of the partial data case are also contained in
Section 3.

Section 4 is perhaps the most interesting; it contains a description of
a class of reconstruction and approximate reconstruction formulas for f in
terms of {ff. : U E A} where A is a proper subset of S n- 1. Error bounds are
also included.

Various comments which are not particularly germane to the development
but are pertinent to the subject matter are given in Section 5.

The introduction to each section contains a rough indication of its con-
tents.

1.2 Notation

We now briefly digress to list some of the conventions which are used here:
The Fourier transform j of a function f on R n is defined by

j( )= (27.-"n 2 fRn e(C~x)f(x)dx

whenever it makes sense and distributionally otherwise. Ba--ic facts con-
cerning Fourier transforms and distributions will be used without further
elaboration in what follows; for example, see (10]. The term support is also
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used in the distributional sense; in particular the support of a measurable
function f is a well defined closed set. LP(Rn) is the usual Lebesgue class of
measurable functions on R ', see [10]. If Q is a subset of R ' then LP(Q) is
the LP closure of the subspace of those functions in LP(Rn) whose support is
contained in Q.

The symbol c is used to denote generic constants. Its value depends on
the context.

2 Full data

As mentioned in the introduction, in this section we indicate how to obtain
general formulas for approximations of f in terms of R.f which are analogous
to the classical summability formulas associated with, for example, the Fejer
or Abel kernels in the theory of Fourier series. These formulas are based on
certain elementary observations.

2.1 Summability Formulas

A function H on R' is said to be a ridge function if H(x) = h((x, u))
for some unit vector u and some univariate function h. If H is such a ridge
function then convolving it with another function f on R" and expressing
the integral in the {u, u± } coordinate system results in

Jf I(x - y)f(y)dy = f (j h((x, u1 - t)f(tu + z)dz) dt

= h((x, u) - t)f,,(l)dt

or, in more compact and suggestive notation,

(3) H * f(x) = h * f.,((x,u)).

In other words, the multivariate convolution of H and f evaluated at x is
equal to the univariate convolution of h and f, evaluated at (x, u). We are
assuming of course that all the functions involved are sufficiently well behaved
so that the integrals make sense.

Formula (3) is elementary and, as we have seen, easily verifiable. Never-
theless it is very useful; indeed, it is the basis of the summability formulas
given below. For instance it should be quite easy to see that if a convolution
kernel K is a sum of ridge functions then K * f can be readily computed
from knowledge of Rf. The definitions and formulas below are simply more
precise versions of this observation.

A locally integrable function K on R" is a uniform sum of ridge functions
if there is an even locally integrable univariate function h such that

(4) K(x) = I I h((z, u)) da(u)

3



for almost all x in Rn. Here da(u) denotes the usual rotation invariant
Lebesgue measure on the unit sphere Sn- 1 in R" and an denotes its total
measure.

Observe that, as a consequence of the definition, if K is a uniform sum
of ridge functions then it must be a radial function. In other words, K(x) =
k(IxI) where k is a univariate function.

The proposition below gives a formula for K * f in terms of Rf. It is a
transparent consequence of (3), (-1), and an appropriate change in the order
of integration which can be justified via Fubini's Theorem.

Proposition 1 If a locally bounded function K is a uniform sum of ridge
functions and f is an integrable function with compact support then

(5) K - f(x) = -f h f.((x,u)du(u)

where h and K are related by ('4).

The hypothesis on f and K in the above proposition can be relaxed in
various ways. For example, if both K and h are integrable over Rn and R re-
spectively then f need not have compact support. We will not go into further
details here since the proposition is sufficiently general for our applications.

Formula (5) is very suggestive; it should allow us to obtain summability
results analogous to the classical summability results alluded to in the be-
ginning of this section. In view of this, the question concerning what radial
functions are uniform sums of ridge functions is of some interest.

2.2 Uniform Sums of Ridge Functions

To obtain an answer to the question concerning what radial functions are
uniform sums of ridge functions we begin by writing

(6) K(x) = k(JxJ)

to express the relationship between the radial function K and the correspond-
ing univariate function k. Using this notation and the Funk-Hecke theorem,
we may rewrite formulla (4) as

(7) k(r) = - h(rt)(1 -

where r = lxi. This can also be derived more directly by using polar coordi-
nates to express the integral on the right hand side of (.4) as

a,_ fj h(r cos O)(sin O)"-2 dO
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followed by the change of variables I = cos O. Another useful variant or (1)

(8) k(r) = 2,,-, fj h(s)(r2 - 2 )(n3)/2dsanrn -2

follows from using the change of variables s = rt and the fact that h is an

even function.
It is clear from formula (8) that for given k the function h is unique. A

representation of h in terms of k follows from (8) and the identities on pages
14 and 15 in [15]. An alternate approach results from the observation that
the change of variables a = s2 and p = r 2 reduces (8) to a standard half line

convolution equation which can be solved by routine methods, for example,

Laplace transforms. In any" case a representation of h in terms of k is given
by

(9) h(t) = c,1t 1 d) (12 S2)(n-3)12 s-'-k(s)ds

which may also be expressed as

(10) h(t) == tj -- 23 f' (I - s2)(--3)/2 n-'k(ts)ds

where
Cn

F((n - 1)/2)F(n/2)

These observations can be summarized as follows:

Proposition 2 (i) If K is a uniform sum of ridge functions then K is radial

and the h in representation (4) is unique. (ii) Conversely, if K is a radial
function, K(x) = k(Ijx), and k is n - 1 times continuously differentiable then

K is a uniform sum of ridge funclions. Furthermore, the h in representation
(4) is unique and can be obtaincd from formula (9) or (10).

The conditions on k in the second half of the statement of the proposition
can be somewhat relaxed. In the cases n = 2 and n = 3 the details are given
below.

2.2.1 The Cases n=2 and n=3

In the case n = 2 equation (9) may be written more explicitly as

h(t) = f (12 _ 2)-l/ k(s)d,

Integration by parts followed by the indicated differentiation results in

(11) h(t) = k(O) + t (j2 _ S2)', 2 dk(s)
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where the integral is a standard Stieltjes integral.
The above calculations are valid whenever k is a function of bounded

variation on every finite interval [0, T], 0 < T < oc. Furthermore, if k
satisfies this hypothesis, it follows from Fubini's theorem that

0  t (2 _ s2)1, 2 dk(s)dt ( 2 _ 2)1,2 dk(s)

By inserting absolute values and replacing = with < in the appropriate places
in the last formula one can readily see that h is a locally integrable function
and fo' Ih(t)Idt is bounded by T times the sum of Ik(0)I and the total variation
of k over the interval [0, T].

These observations can be summarized by the following addendum to
part (ii) of Proposition 2.

Proposition 3 Suppose K is a radial function on R2 , K(x) = k(IzI), and k
is a function of bounded variation on the intervals [0, T], 0 < T < co. Then
K is a uniform sum of ridge functions and the h in representation (4) can
be obtained from formula (11).

In the case n = 3 equation (9) reduces to

(12) h(t) = k(t) + tk'(t)

where k' denotes the derivative of k. From this we may easily conclude the
following:

Proposition 4 Suppose K is a radial function on R3 such that K(x) =
k(lxl) and k is absolutely continuous. Then K is a uniform sum of ridge
functions and the h in representation (4) can be obtained from formula (12).

2.3 Sumrnmability and reconstruction

The above results allow for a very large class of summability and reconstruc-
tion formulas.

To see this, suppose K is an integrable function on R', that is it satisfies

(13) JR IK(x)Idx < 0.

Normalize K so that
(14) Jft K(x)dT = 1

and for positive e write

(15) K,(x) =
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Recall that if f is in LP(R " ) for some p which satisfies 1 < p < Oc, then
K, * f converges to f in LP(R ' ) as E goes to zero. Furthermore if K also
satisfies

IK(x)l < 1(jx) where 4) is a nonincreasing function
(16) on the interval 0 < t < oo and fo' 4)(r)r '- dr < co

then K, * f(x) converges to f(x) almost everywhere. Detailed proofs of these
facts can be found in [52]. Estimates on the rates of convergence of K, - f
to f can be had in term of various smoothness conditions on f and certain
moment conditions on K. If such a K is a uniform sum of ridge functions
then by virtue of Proposition 1 we can easily obtain the type of results alluded
to above.

To state some of this more precisely, suppose K is a uniform sum of ridge
functions. Then

(17) K,(x) = 1 j h,((z, u))da(u)
a~

n  
n-I

where h,(t) = -nh(I/E) and h is the function in representation (4) of K.

Proposition 5 Suppose K is an integrable kernel which is a uniform sum of
ridge functions and which satisfies (13), (14), and (16). Define the functions
K, and h, via (15) and (17) and assume that h, is integrable. Suppose f is
an integrable function. Then

1ia

(18) Jim - h, f. ((X, u))d,(u) = f(x)

for almost all x in Rn. If, in addition, f is in LP(Rn) for some p satisfying
1 p < co then

}m f h, *f((x, u))d(u)Idx = O.

Furthermore, if f is uniformly continuous, (18) holds uniformly in z for
x E Rn.

As a specific example of K, satisfying the conditions of the above propo-
sition consider the Poisson kernel

K,(x) = Cne
(W + lx 2)(n+)/2

where cn is constant. That this kernel is a uniform sum of ridge functions
follows from Proposition 2. The formula for the corresponding ridge function
is

Tn(EI/ +t2)
(19) h,(t) = Cn W + J2)n/2

where Tn is the classical Tchebichef polynomial of the first kind of degree n,
see Subsection 3.2.1.

7



Corollary 1 Suppose h, is defincd by (19) and suppose f is an integrable
function. Then

(20) f(x) = lim 1 J h, * f,((x, u))da(u)

for almost all x in R". If, in addition, f is in LP(R n ) for some p satisfying
1 < p < cx then

Jim ., h* f((x, u))d/)(u)jd = O.

Furthermore, if f is bounded and uniformly continuous, (20) holds uniformly
in x.

These results can be used to obtain elementary derivation of various vari-
ants of the usual type of "inversion formulas". For example, in the case n = 2
formula (19) gives

1 C -t 2

(21) h,(t) = 27r(2 + 2)2"

Since ff. h,(t)dt = 0 we may write

(22) 1 J h - f.((x, u))da(u)

=- L J h,(1){f,((x, u) - t) - f((z, u))}dtdo(u)

or, using the fact that h, is even,

(23) - h f,((r, u))da(u) =

= 4 Sf h((t){fU((x, u)+t)-2f.((x, u))+ f((x, u)-t)}dtdo(u)

Now, assuming that f,, is sufficiently smooth, the right hand side of (22)
may be expressed as

2-1 f t h,(t)f.1 ((X , u) - t) dt ds do(u)

where f, denotes the derivative of f,,. Since lim,_otho,(t) = -1/(27rt), it

can be anticipated that if c goes to 0 then the innermost integral in the last
expression will converge to the Hilbert transform of fu; for examples of such
arguments see [53]. This will result in an integrand which is independent of
the s and so this variable can be integrated out.

Letting c go to zero in (23) also results in an expression which is inde-
pendent of c. XVe summarize these elementary calculations as follows:
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Corollary 2 If f is a function on R ' which is Iwice continuously differcn-
liable and has compact support then

(24) fW) = / f f'((x, u) -) dtda(u)

and
-f ((x, u) + ) 2 f((x, u)) + f ((x, u) - I)f~x)= -4j j ~ ii + ~- 2dtdo(u)

for all x. The integral in the I variable in (24) is to be inlerpreted in the
principal value sense and f, denotes the derivative of f,,.

Formula (24) is one of the standard variants of the Radon inversion formula
and may be found, for instance, in [41]. We have not attempted to give
the most general hypothesis on f in the last corollary; by going through
the above calculations the reader should have no difficulty in relaxing the
conditions on f somewhat. It may be of some interest to obtain the weakest
possible conditions on f for which the formulas in the above corollary are
valid almost everywhere.

3 Examples and miscellaneous results

The first three subsections below contain examples of ridge function repre-
sentations and alternate ways of computing such representations. The final
three subsections contain material which will be used in our treatment of
partial data.

3.1 Ridge function representations for certain bivariate kernels

Because it models certain non-destructive imaging schemes, the bivariate
case is particularly important in practical applications. For example see
[8, 16, 41]. In this subsection we give several examples in the case n = 2 of
radial approximations of the identity and their ridge function representations.

3.1.1 Averaging kernels

If K is 1/r times the indicator function of the unit disk centered at the
origin then K, * f(x) is the average of f over the disk centered at x. The
corresponding ridge function h, can be easily derived from (11). Thus if

{ 1/(-(2 )  if < :
K 1(x) = { otherwise

then the corresponding ridge function in representation (4) is given by

h, W 1/(7rc2) if ItI < f
S{1/(7rc)}{1 - 11/02 - E2 } otherwise.

9



3.1.2 Multiples of (1 + IX12),.

If K(x) = (1 + JX12), then its corresponding ridge function h(t) can obtained
from (11) quite conveniently. Indeed,

h(t) = 1 + 2cet j0i + S2 )a-l(12 - S2 12 sds

which, after appropriate change of variables, can be expressed as

(25) h(t) = 1 + 2at(1 + 12) - 1/2 f' T (1 - s2)'-ds

In the cases when a is an integer multiple of 1/2 the integral in (25) can
be easily evaluated and expressed in terms of elementary functions. For
example, in the case a = -3/2 formula (25) reduces to

1 - 12h(1) =(1+2)
(I + 2 ) 2

Thus if K, is the so-called Poisson kernel

I E
K, (x) = ((@2 + ',2)Z3/2

then the corresponding ridge function in representation (4) is given by

h, W f2 - 02

h(t) 2(E2 + t2)2

3.2 Fourier transforms

The notion of uniform sum of ridge functions expressed by (4) can be ex-
tended to tempered distributions as follows: Recall that the usual way of
defining linear t-ansformaticns un distributions is via duality and observe
that the formal dual of the mapping

0(t) )-,/ ., 0((x, u))da(u)

which maps sufficiently well behaved univariate functions into n-variate func-
tions is the mapping

OW - f-/ .O,(u, IOd-(u).

Hence it is quite natural to define a distribution K in S'(Rn) to be a uniform
sum of ridge distributions if there is an even distribution h in S'(R) such
that

(26) (K, (h, 0.)da(u)

10



for all 6 in S(R"). Here (a. 3) denotes the action of the distribution a on

the test function 0. We also remind the reader that 0,,(1) = RZ/(u, 1).
Note that for fixed u in Sn- 1 the mapping 0 ) €,, maps S(R n ) contin-

uously into S(R). Thus the tempered distribution K is well defined by (26)

for every even distribution h in S'(R).
Having defined (4) distributionally, its Fourier transform is also well de-

fined as follows: If K satisfies (26) then its Fourier transform k satisfies

(27) (K,', = f(u)
for all € in S(R'). Here €u(f) = 0(tu). Of course k and h are the Fourier
transforms of K and h as distributions on R" and R respectively. In the case
when h is sufficiently smooth, (27) may be expressed as

_h(l~l)

(28) K (,)- -1 *

3.2.1 The Poisson kernel

Formula (28) is useful in determining the ridge function representation of

certain radial K's. For example consider the Poisson kernel which is defined

for positive c by CnE

(29) K(x) = ( + i i1)cn+ )p

and whose Fourier transform is given by

(30) k, () = (2)-/ er)-n/

Here c,, is a constant whose exact expression is

c = 7r(n+l)/
2r((n + 1)/2).

The formula for the Fourier transform of the corresponding h, is easily ob-
tained from (28) and(30); it is

(31) h,(7-) = (2 r,)-n/2f1f"j n- le-f l .

To obtain a formula for h, observe that (31) may be expressed as

h,(7) = (2 r)-,/ 2 0n(_d CE

and recall that exp(-clr) is the Fourier transform of a constant multiple of
2/(E + t2). Thus h, is a, constant multiple of

d "-' , T,,(,/V"-i+

( 2 + 2)

)n-11 
T



where the equality follows from an induction argument, c is a constant, and
T is the classical Tchebichef polynomial of the first kind of degree n, namely,
T.(cos 9) = cos nO. This constant can be determined by evaluating both K,
and h, at the origin which results in

T.(,/Vr, +t 2)

(32) h,(1) = C, - W€ + J2)/2

where c,, is the same constant as in (29).

3.3 Polynomials and ridge functions

Since it is quite transparent that

(33) L_, u)-do-(u) = a(n, m)X1 2m

where a(n, m) is a positive constant, ridge function representations of radial
polynomials is rather appealing. Thus if P is any radial polynomial

Al
P(x) = E bjJX12 j

j=1

then
P(X) = L _ h((X, u))da(u)

where

hI(1) = 1 21.

j=1 a(n, j)

The above formulas lead to several interesting relations between various
classes of classical orthogonal polynomials. This can be realized by observing
that

a(n, m) = a,,-, 12-(1 - j2) ( n- 1)12 dt

and, as in [30], using the representation of these polynomials in terms of the
hypergeometric function. However a. more intuitive approach can be outlined
as follows:

Let L2(B '
n, A) be the Hilbert space consisting of those measurable func-

tions f on the unit ball Bn for which
! l-f(X)12(1 l )d

LB- X1 2 I )Adx
is finite. This Hilbert space is equipped with the inner product

(f, g) = 'B" f(z)g(I( - IxI 2)Adz.

12



If -Pm denotes the set of n-variate polynomials of degree < m then we define
L2 (B n , A, 0) = Po and for m> 1

L(BnA,m) = {P E Pm : (P, Q}) = O for all Q E 'Pml}.

Finally, recall the classical Jacoby polynomials P,)(t), m = 0, 1, 2,..., and
the classical Gegenbauer or ultraspherical polynomials CA(t), m = 0, 1,2,...;
these are families of univariate polynomials which are orthogonal on the
interval -1 < t < 1 with respect to the weights (1 +t)" (1 -1) and (1 -t2) - 1/2

respectively; m denotes the degree of the polynomials, a, 3, and A are real
parameters. The notation for these polynomials is standard, see [11].

Proposition 6 (i) A radial polynomial is in L2(B'A,2m) if and only if it
is a constant multiple of P("- 2 )/2 )(21x1 2 - 1). (ii) A ridge function is in
L 2(B , A, m) if and only if it is a constant multiple ofnC +l 2 ((x, u) for some
unit vector u.

Proof If P is a radial polynomial in PT2m then P(x) = P(IX12) where p is
a univariate polynomial of degree m and if Q is in P27 -1 then

(P Q), = p(r2)q(r 2)(i - 2 )Arn-dr

where
q(r 2 ) = L Q(ru)do(u)

and q is a univariate polynomials of degree < m - 1. Hence

(P, Q) A = -' p(t)q(t)(1 -t)At("-)/2dt

and, since q may range over all polynomials of degree < m - 1, (i) follows by
virtue of the fact that constant multiples of p(A,(n- 2)/)(2t - 1) are the only
polynomials of degree m which are orthogonal in this sense to all polynomials
q of degree < m- 1.

If P is a ridge polynomial in Pm then P(x) = p((x, u)) for some univariate
polynomials of degree in and if Q is in P,- then

(P = Q)A p(t)g(t)dt

where

g) M f Q(tu + y)( - t -y 1
2)A dy

and A(t) = {y E u' JyJ 2 < 1 - t2}. The the change of variable y =

(1 - t2)/2z allows us to express g as

g(t) = (1 - t2).+(n- 1)/2 JA() Q(tu + (1 - t2)'/ 2z)(1 -z1
2)Adz

13



Since Q(tu + (1 - 12)112 =) 13(1 - t2),I-/2z- where the sum is taken over
all integers j and multi-indices v = (I,',... , Vn 1 ) such that IvI + j = v, +
• -- + Vn- 1 + j < m - 1, the terms with odd IvI integrate out to 0 and as a
result g(t) = q(t)(1 - 12)A+(n-1) / 2 where q is a polynomial of degree < m- 1.
Hence

(P, Q), = p(l)q(t)(1 -

and, since q may range over all polynomials of degree < m - 1, (ii) follows
by virtue of the fact that constant multiples of C(+/I )(t) are the only poly-
nomials of degree m which are orthogonal in this sense to all polynomials q
of degree < m -i.

Now, by virtue of (ii) of the above proposition fs.-, c' 2 ((X, u))dr(u) is
in L 2(B n, A, 2m) and, since it is clearly radial, it must be a constant multiple
of P.('(n- 2)/ 2)(21Xl 2 - 1) view of (i) of this proposition. The constant can be
easily evaluated by setting x = 0 in both expressions. As a result we may

conclude the following:

Corollary 3 For A > -1
p(A(n-)/2 12a I~n1 ),";+./2 (u

(34) P('( n- )I)(2Ixi2- 1)= /-, C 12 ((x, u))do(u)

3.4 Moduli of smoothness, moment conditions, and degree of ap-
proximation

If f is in LP(Rn) for some value of p, 1 < p < oo, its LP modulus of continuity
wp(f; 6 ), 6 > 0, is defined by

wP(f;6) -su p If( - Y) - f(x)I"&dx "/
1Yl<6 Rn

Observe that this modulus is well defined and

(35) limwp(f;6) = 0
6-0O

for all f in LP(Rn).
In the case p = co this modulus reduces to the usual modulus of conti-

nuity, namely,
wXo; 6) = sup If(W)-f ).

Furthermore
li W"(f;6) = 0
6--0

if and only if f is uniformly continuous.
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We briefly summarize som(e of the elementary properties of these moduli.
In what follows we take the parameter p and function f to be fixed and
consider w as a function of the parameter 6, 6 > 0; thus for simplicity we
write ",(f; 6) = W(.

* The function w(6) increases monotonically.

* For non-negative parameters 61 and 62, 9(61 + 62) < 9'(61) + L,;(6 2 ).

" For any positive integer n. 9(n6) < n.(6).
This is an immediate consequence of the previous item.

" If A > 0, then w(A6) -_ (A + 1)w(6).
To see this choose an integer n such that n < A < n + I and write

w(A6) _< w((n + 1)6) (n + i)w(6) _< (A + 1)w(6).

* If 61 < 62 then
U;(62) < (~

62 - 6

To see this simply write

L(#2) = U) (6) 2 + 1) w(bj) :5 2 1W(61)

These moduli provide a natural and useful measure of the degree of ap-
proximation of various processes. For example, suppose K,(x), ( > 0, is a
family of integrable convolution kernels which satisfy

(36) j A(z)dx = 1

(37) L IK,(x)ldx <

and
(38) .IxllK,'(x)ldx < C2(

where cl and c2 are constants independent of c. Then it is not diflicult to
show the following:

Proposition 7 If K,(r), ( > 0. is a family of integrable convolution kernels
which satisfy (36), (37), and (38) then for any f in LP(10), I < p < o,

11K, * f - fJlL,(i,-) _< cW,(f; C)

where c is a constant independent of f and c.
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Proof By virtue of (36) we may write

K, - ff(x) - f(x) = Rn K,(y){f(x - y) - f(x)}dy.

Direct estimation in the cases p = 1 and oo or, in the cases I < p < oc, an
application of the integral variant of Minkowski's inequality results in

1lK, * f - fl jLInn) J w,(f; lyI)IKdy)ly

Finally, the estimate

w;,(f; I1I) = W, (f; +L) 5 + )W,(f; c

together with (37) and (38) imply the desired result. N

Using the notation Ayff(x) to denote the difference f(x - y) - f(x) and,

if k is an integer > 2, IAf(x) = Ay (Ak-Xf) (X), we define the k-tb order LP

modulus of smoothness wk(f; 6), 6 > 0, via

k(f; 6) sup !IAkfIlLP(Rn
P lYl<6 Y

Note that w, = WP. In the case k > 2 the properties of wk are also well

known; they are completely analogous to the case k = 1 with the obvious
modifications, see [56]. Here we only point out the transparent facts that
w-(f; 6) < 2 -kW(f; 6 ) if k < m and that Wk(f; 6) can go to zero as fast as
O(6 k) without being identically zero.

As in the case k = 1, these moduli provide a natural and useful measure
of the degree of approximation for various processes. In the example where
K,(x), c > 0, is a family of integrable convolution kernels, condition (38)
ought to be replaced with

(39) J. IxlkIK,(x)ldx < c2E"

where c2 is a constant independent of c, in order to take advantage of the po-
tentially faster decay as c - 0. Then it is not difficult to show the following:

Proposition 8 Suppose K,(x), f > 0, is a family of integrable convolution
kernels whirh satisfy (36), (37) and (39). Define

k-1 k?

/fk(X) = (-1)-J-( j (k -j)-AK,(x/(k -j)).
j=O(k-j!J

Then for any f in LP(R h), 1 < p < oo,

* f -/fItn- < cwn(f; )

where c is a constant independent of f and c.
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Proof By virtue of (36) and the nature of K' we may write

- f(x) - f =() I. K(y)k f (x)dy.

The rest of the proof follows along the same lines as that of the previous
proposition. N

Before leaving this section, we remark that if K(x) is an integrable func-
tion which satisfies (13), (14), and

(40) IRn xlklK(x)ldx < o

then the family of convolution kernels K,(x) = -nK(x/) satisfies (36), (37),
and (39).

3.5 Polynomial convolution kernels

In many problems of practical and theoretical interest the phantom f is taken
to have support in a fixed disk or ball of finite radius, say 1/2, about the
origin. In this case consideration of K * f(x) for x in B/2= {X E R •

IJx < 1/2} does not involve the behavior of K outside the ball of radius one
about the origin. Similarly for such f and x the calculation of tht quantities
on the right hand side of formulas (5) does not involve the behavior of h
outside the interval -1 < t < 1. In this case the criteria. that K be a good
approximation of the identity can be modified to

(41) J K(x)dx = 1

and
(42) f I IK(x)ldx <c

for sufficiently small 6 and E. A wide class of such kernels are given by certain
radial polynomials. In view of the fact that ridge function representation of
such polynomials is very appealing, the corresponding kernels should have
significant applications in tomography.

There are many ways of producing radial polynomial kernels which heha~e
like good approximations of the identity. A possible method of producing
good kernels suitable Jor numerical work can be based on the Christoffel-
Darboux formula for orthogonal polynomials.

For our purposes, summability and degree of approximation, we need
polynomial kernels which, in addition to (41), enjoy appropriate analogues
of (16), (37), and/or (39). These properties are easily verified for the families
given below.

17



3.5.1 Kernels for summability

A family of radial polynomials which can be easily shown to possess an
analogue of (16) is the following:

Consider the sequence of polynomials P,, m = 0, 1,2,..., defined by

(413) Pm(x) = c(n, m)(1 -Ix12)m

where

(-44) c(n, m) n 1xl=)mdx -

= J1 _)min/2-ldt = Un P(m + 1)r(n/2)

2 J0 2 r(m + n/2 + 1)

is a. constant chosen so that

(15) JB4 Pm(x)dx 1

for all m. Observe that

(1 -x 12)m < e-m l l whenever IjxI- 1

and
c(n, m) < c mn n 2

where c is a constant independent of m; the last inequality foilows easily
from the definition of the gamma function F in the case of even n and by
virtue of Stirling's formula in the case of odd n. These inequalities allow us
to conclude that

(46) P,(X) < cMn/12e - 'm' XI whenever Ix1 < 1

where c is a constant independent of m.
Observe that (46) is a special example of (16) in the case m -12 with

the restriction that ]xI _ 1. Hence we may conclude the following:

Proposition 9 Suppose f is an integrable function with support in B'/2,
in other words f E L'(B' ) and Pr, m = 0,1,2,..., is the sequence of
polynomials defined by (43]. Then

(47) lirn Pm * f(X) = f(X)

for almost all x in B112. 1f, in addition, f is in LP(B'1 2) for some p satisfying
< p < oo then

lrn J. if(X) - P. f(i)l'dx = 0.
1/2

Furthermore, if f is continuous, (47) holds uniformly in x for X E B112.
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3.5.2 Degree of approximation

Unfortunately, the simple family of polynomial kernels defined by (43) is not
sufficient to obtain the "correct" degree of approximation results. What is
needed is a family which in addition to satisfying (45) also satisfies moment
conditions of the form

CIBo IXI1"1Pm,(X:)ldX < -_.

where c is a constant independent of rn. I know of no elementary formulas
for such polynomials. Theoretically the most convenient and least technical
construction seems to be the following:

The idea is, for each positive integer k, to construct a sequence of positive
radial polynomials, P,, m = 1,2,..., where Pm is of degree no greater than
2m, which satisfy

(48) f <I 21P,7()dx < C Pm(x)dx

where c is a constant independent of m.
Using polar coordinates and the change of variable t - r2 it is clear that

it suffices to construct a sequence of positive univariate polynomials p, such
that

(4t9) p,,,(1)ik+(n-2 )l2dt = j pm(t)t(n-2)/2dtfo M n 2 k

where pm is of degree no greater than m and c is a constant independent of
m.

The construction of such a. sequence pm is outlined as follows:

" Let N be the integer defined by

N= - (n- 2)/2 if n is even

(n -1)/2 if nis odd

and let f = (n - 2)/2 - N. Note that fl = 0 or -1/2.

" Let f be the integer defined by

I=k+N.

* Let M be the integer defined by

A, { (f+m+2)/2 ifI+ miseven
+ m+ 1)/2 ift+misodd.
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Let0 < z(1) < zw(2) < ... < zM,(Al) < I be the zeros of P' 9(2- 1)

where /9(0,) is the classical Jacob, polynomial of degree M and recall
that for fixed j
(50) ZAJ(j) < -

where c is a constant independent of Al. See [55].

" Define M

(51) pm(t) (I t- ZA(j))2

and observe that pro(t) t ' and pmo(t) jh+N are polynomials of degree
no greater than 2M - I so that Gaussian quadrature with knots at
z5A(1), zA(2),..., zjt(AI) can be used to evaluate the integrals in (49).

" Finally, inequality (49) follows from the following strings of equali-
ties/inequalities and (50):

j pm(t("2 2 dt = j pm(t)IN+dt = AM(JlP,(ZM(J))zM(J)'
j=1

and

j pm(t)t +(o-)I dt =d P,(t)tk+jkdl = 1k+(-2)2 P(t~kAN(j)pm(z;)zA.)
I +

d13 j=1

<-ZM(e) {j Z*(i)Pm(Zj)ZM(i)}

The properties of the sequence of polynomials just constructed together
with the methods of Subsection 3.4 allow us to conclude the following:

Proposition 10 Suppose PM(x), m = 1,2,..., is the family of positive ra-
dial polynomials defined by P,(x) = p,,,(X1 2) where Pm is the univariate

polynomial given by (51). Dcfine

k-kPk (X) = - I(_lk!---P
1) (k - j)- (X/(k j))

j=O

Then P is a polynomial of degree no greater than 2m and for any f in
LP(BnI2) , 1 < p < o0,

IIp. - f - fIlL,,(.5 < cw(f; 1/r)

where c is a constant independent of f and m. In other words, for fixed k
the sequence of polynomials Pm - f, m- 1,2,..., converges to f in LP(B,'12 )

at a rate which is O(w'(f; 1l/m)) as m -- x.
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4 Incomplete data

In this section we consider summability and approximate reconstruction
when the data f,, are known only for u's in a proper subset A of S" . Ap-
plying the same philosophy used in the previous section immediately leads
to the question concerning what summability kernels K can be expressed as
sums of ridge functions in directions u which lie in A. It is to be expected
that the class of kernels which enjoy such a representation is somewhat more
restricted than in the case of full data.

In the case when A is a finite set the results of [37] show that the only
radial kernels which can be expressed in terms of the corresponding ridge
functions are polynomials. To be more specific, let A = {ul,..., UN} and
suppose K is a radial function such that

N

K(x)= Zhi((x,ui))

for appropriate univariate functions hl,..., hN. Then K must be a polyno-
mial of degree no greater than a certain bound determined by A. Further-
more, this will be significant in our considerations below, the hi's can be cho-
sen to be scalar multiples of one univariate function h, namely, hi(t) = wih(t),
i=1,...,N.

Motivated by these and related considerations we restrict our attention

to radial polynomial kernels in what follows.

4.1 Quadrature on the sphere and ridge function representations

Our summability formulas are based on the following:

Proposition 11 Suppose A is a measurable subset of Sn- and p is a bounded
Borel measure on A. The following are equivalent:

(i). There is a constant c so that the formula

(52) p(u)dp (u) = L p(u)do(u)

holds for all even polynomials of degree < 2m.

(ii). Formula (52) holds for all homogeneous polynomials of degree = 2m.

(iii). There is a constant c so that the formula

(53) Jp, u)"dp(u) = c _ (X, U)2hdu(u)

holds for all x when k = m.
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(iv). Formula (53) holds for all x and all integers k which satisfy 0 < k < m.
In other words

(54) I p((x, u))d 1i(u) = c J,_, p((x, u))dcr(u)

for every even univariate polynomial p of degree < 2m.

(v). There is a nonzero constant c such that

fA dji(u) = cu,

and
JA, Y(u)dy(u) = 0

for every spherical harmonic Y of degree 2k, k = 1,... ,m.

(vi). For every radial polynomial P of degree < 2m there is a univariate
polynomial p with the same degree as P such that

(55) P(x) = A

holds for all z. Furthermore, the formula for p in terms of P may be
derived from

(56) P(X) = 0-n, p(IX11)(1 _ tl)(n-3)/2d.

The proof of this proposition is contained in subsection 4.1.2. Here we
merely give a related definition which will be useful later.

Motivated by the above proposition we say that a. subset A of S"- 1 is
in Q(m) if there is a. bounded measure pi on A, which depends on A of
course, such that (52) holds for all polynomials homogeneous of degree 2m,
m = 0, 1, 2. .... In other words, Q(m) is the collection of all measurable
subsets A of Sn-1 which admit a measure y for which (ii) of Proposition 11
holds. For convenience we set Q(oo) - fl1= 0 Q(m).

The significance of Q(m) in our application is the fact that property (vi)
of Proposition 11 holds for each of its members.

We bring to the reader's attention the following list of transparent obser-
vations concerning Q(m):

" S"'- is contained in Q(m) for each m, m = 0, 1,2,... ; namely, Sn-n E
Qc2().

" Q(0) contains every non-empty subset of S" - 1.

" Q(m + 1) C Q(m) for all m.

" If A E Q(m) and B D A then B E Q(m).

* If A is in Q(m) then the measure yL associated with A whose existence
is guaranteed by the definition need not be unique.
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4.1.1 Examples

Suppose A is an open subset of Sn- 1. It is not, vpry difficult to see that

A E (oc).
Indeed, to see this, let P(m) be the space of polynomials homogeneous

of degree 2m and let (p, q).A be the bilinear form defined on P(m) via the
formula

(p, q = Ip(u)q(u)do-(u) 
.

Clearly (p, q). is a positive definite bilinear form and thus, equipped with
this form as an inner product, P(m) is a Hlilbert space. Now consider the
linear form I,1 p(ulda(u)

which is well defined on P(m). Elementary Hilbert space theory now implies
that there is a homogeneous polynomial of degree 2m, call it q,, such that

(p, q.)A = L, p(u)du(u).

We summarize these observations as follows:

Proposition 12 If A is an open subset of Sn-1 then A E Q(m) for every
m, m = 0, 1, 2,... ; in other words A E Q(oo). Furthermore the measure
p which does the job for a given m can be taken to be djI(u) = qm(u)do7(u)
where q,. is a homogeneous polynomial of degrce 2m.

In the case when Y is a finite subset of S'-1 (v) of Proposition 11 can be
useful in determining whether F is in Q(m).

To wit, let Y = {ul,..., uM'} then any measure t on Y is determined by

weights, or scalars, wl,..., w)%, and

Jp(u)dp(u) = M p(uj)w,.
j=1

Now, if }9, k = 1,...,N(nj), is an orthonormal basis for the space of
spherical harmonics on S -1 which are homogeneous of degree t then by
virtue of (v) of Proposition 11 we may conclude that Y is Q(m) if and only
if the system of equations

M At

(57) Z wj = 1 and X Irkl(uj)wi = 0
j=1 j=-

where
k = 1,...,N(n,f) and f = 2,4,...,2m

has a solution wl,..., w51 .
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We remind the reader that this system has

(2m + n - 1)!
L(n, 2m) -=2)( )

equations. However the number of elements Al in Y need not necessarily be
> L(n, 2m) in order for a solution wl,..., wM of (57) to exist. For example,
in the case n = 2, L(2, 2m) = 2r+ 1; but ifuj = (cosOj,sin j), j = 1,..., I,
are uniformly spaced, e.g. Oy = (j - 1)w/M, then it suffices to have A >
m + 1 to guarantee the existence of a solution for (57). This, of course, is
reminiscent of classical Gaussian quadrature.

We also remark that in the case n = 2 any collection -T = {ul, ... , uM} of
distinct directions is in Q(m) whenever Al > 2m + 1. (By distinct directions
here we mean ui 0 +uj whenever i 0 j.) In the general case it is also
true that most finite subsets consisting of > L(n, m) directions are in Q(m).
However, determining them is not so simple; one needs to verify (57) or some
other equivalent system.

To conclude this paragraph we summarize the main result concerning
finite subsets of S n - 1 as follows:

Proposition 13 Suppose F = {ul,..., Um } is a finite subset of Sn - . Then
F is in Q(m) if and only if the system of equations (57) has a solution
W17 ..•.. , WM.-

4.1.2 Proof of Proposition 11

The proposition is an easy consequence of the following strings of implica-
tions: (i) => (ii) = (iii) = (iv) * (v) . (i) and (iv) => (vi) = (iii).

To wit, (i) = (ii) (iii) is clear since each condition is apparently
weaker than its predecessor. Applying the Laplacian in x to (53) in the case
k = m results in (53) in the case k = m - 2 and successive applications of
the Laplacian show that (iii) => (iv).

To see that (iv) - (v), recall that any spherical harmonic of degree t can
be expressed as

1'(u) = c(nj) j u))dov

where C,' is the Gegenbauer polynomial of degree ! with respect to the weight
(1 + t2)A-1/2 and c(nj) is a constant which depends only on n and f. Hence
we may write

(58) J Y (u)dpiu) = c(nf) 15,j 1 V ) (L((v, ))dp(u) ) do, (v) .
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Now, if t = 2k, k = 1,. .. , y, h virtue of hypothesis (iv) the inner integral
on the right hand side of (58) can be replaced with

2h°- (.(v-2/ , u)) d( (u),

which is equal to 0 if k = 1,..., m, and o-,, if k = 0. This, of course, implies
the desired result.

To see that (v) => (i), recall that any homogeneous polynomial p of degree
2k can be expressed as

p(x) = IX12k ao + 3j(x/Ixl)

where a0 is a constant and I'j is a spherical harmonic of degree 2j. Hence

(59) fs, p(u)du(u) =

and, by virtue of (v), there is a constant c such that

(60) p(u)dp(u) =

A comparison of (59) with (60) and a linearity argument imply the desired
result.

Finally, to see the second string of implications, observe that (iv) implies
that there are positive constants a0,... , a, such that

JAp, u)2kdp(u) = akjxI"

for k = 0,..., m. Hence if P is any radial polynomial of degree < 2m, say
P(x) = Zj0 bjlxllj, then (55) must hold with p(t) = E=o(b/aj)t2-. Thus
(iv) (vi).

Now, if (vi) holds, equating the highest degree terms in (55) immediately
implies (iii).

4.2 Sumrnability, reconstruction, and degree of approximation

Proposition 11 together with the large variety of available polynomial summa-
bility kernels, some of which were described in Section 3.5, allow us to easily
derive summability and reconstruction methods for Radon transform data of
the form {R.f(u, t) : -co < t < 00, u E A}, where A is a proper subset of
S"'- and the phantom f is assumed to have compact support.

The following are examples of the type of reconstruction methods which
are consequences of the developments outlined above:
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Proposition 14 Suppose A is a subset of Sn -' which is in Q(oc) and f is
an integrable function with support in B,' 2 . Let p,, m = 1, 2,..., be the
squnct Uf univailute polynomials defined by

P_(t) = Cnt 1 2 n- 3 j (1 _ s2)(n3)/2Sn1(1 - (ts)2 )m ds

Let pm be a measure such that

I P (u) du,,(u)=s- P(u)do(u)

holds for all polynomials homogeneous of degree 2m. Then

(61) f(X) r lim 1 /P. f x, u))dp. (u)

for almost all x in B",2 . If, in addition, f is in LP(B/ 2 ) for some p satisfying

1 p < oo then

'B", if 1A- pm * fA((x, u))dii,(u)ldx = 0.
M- BI n /2 O-n A

Furthermore, if f is uniformly continuous, (61) holds uniformly in z for
x E B1/2.

Note that the summability formula (61) is a reconstruction formula for f in
terms of the data. {R.f(u, t) : -o < t < oc, u E A}.

Recall that if A is an open subset of Sn-1 then the measure in the last
proposition can be taken to be dm(u) = q(u)dou(u) where q,, is a poly-
nomial homogeneous of degree 2m. Now, if Eke, k = 1,..., N(n, 1), is an
orthonormal basis for the space of spherical harmonics on S" which are

homogeneous of degree I then the polynomial qm may be expressed as
NC,,)

(62) qm(u) = ao + Ej Z al,13(u)
1=2,4,._.2m k=1

as a function on the unit sphere where, by virtue of (iii) of Proposition 11
and the construction of qm, the constants ak, may be calculated by solving
the system of equations

N(n,)

(63) a0 ]J dcr(u) + 1: _ ajt JA Ykt(u)do(u)=1
1=2,...,2rn k=1

and
N(n,t)

(64) ao L+(u)du(u) + ak, J T'(u)Ya(u)da(u) = 0

where i = 1,..., N(n, j) and j = 2,4, ... ,2m.
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Proposition 15 If A is an open subset of S"-' then the conclusions of
Proposition 14 hold with ditt(u) = qm(u)do(u) where q, is a polynomial
dejincd by (62), (63), end (64).

Typical results concerning degree of approximation are the foilowing:

Proposition 16 Suppose A is in Q(m) and f is in LP(Bn'/2) for some p,
1 < p < oo. Let i be a measure such that

If P (u) dp(u) = cJ P(u)do(u)

holds for all polynomials homogeneous of degree 2m. Then there is a uni.
variate polynomial Q of degree no greater than 2m such that

(65) IIf(X) - J Q * fu((x, u))dII(u)ILP(ZEB. cwp(f, 1/r)

where w, i.q he LP modulus of continuity off and c is a constant independent
of A, f, and m. More generally, given any positive integer k, there is a
univariate polynomial Q of degree no greater than 2m, such that

(66) jjf(X) - j Q * f,,((x, u))dp(u)JILP(-EBn cwu(f, 1/r)

where 2 is the k-th order LP modulus of smoothness off and c is a constant
independent of A, f, and m.

Polynomials Q which do the job in the above proposition can be constructed
via the methods of Subsection 3.3 combined with those of Subsection 3.5.
For example, given an integer k let P,, be the polynomial defined in the
statement of Proposition 10. If P m (xlj) = P,,,(x) then the polynomial Q
defined by

Q(t) = c~t I o) t2n-3 fj (i- s2)(n-3)/2sn-'P ..(ts)ds

does the job in (66).
Inequalities (65) and (66) can be viewed as approximate reconstruction

formulas for f in terms of the data {l~f(u, t) : -oo < t < 0o, u E A}. Note
that the error bound holds for all f in LP(BI 2 ) and depends only on f and
M.

It should be mentioned that given data of the form {'JfJ(u, 1) : -c <
t < c, u E A}, where A is in Q(m) it is not possible to obtain approximate
reconstruction algorithms which will give better degree of approximation
than that given by (66). Thus the result in Proposition 16 is best possible
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in the foilowing sense: There are examples of A in Q(m) and functions f in
LP(B I2) such that f,, = 0 for all u in A and

1lf IILP/ w(f, 1/rn) > c

where c is a constant independent of m.
The approximate reconstruction formulas described above rely on the

fact that a radial polynomial P(x) of degree < 2m enjoys the ridge function
representation described by (55) whenever A is in 0(m). It is clear that
the corresponding ridge function Q(t) can be obtained from (10) or one of
its variants. However, for numerical work it is usually more convenient to

obtain a representation of P in terms of orthogonal polynomials of the form

P(X) = b bpA,(n 2)I2)(21XI- 1)
j=0

for some A > -1. Then use (3-1) to obtain

m

Q(t) b (t
j=0

which can be efficiently evaluated via the three term recurrence relation.
Explicit numerical examples will appear elsewhere.

5 Miscellaneous remarks

Introductory material concerning the Radon transform and its applications
can be found in [8, 16, 27, 41, 47] and the pertinent references cited there.
Our use of the term ridge function is adopted from [23].

The notion of representing kernels, K, in terms of ridge functions to
obtain approximate reconstruction formulas has been used for quite some
time under various guises, see [4, 7, 23, 47]. For example, the so-called filtered
backprojection method is a concrete and numerically useful manifestation of
it, see [47, .18, -19, 16, 41].

It should be clear that in order to express a convolution Kcf(x) in terms
of the full Radon transform data of f it suffices to express K as a sum of
ridge functions. For example,

(67) K(x) =/s, h(u, (x, u))do(u)

is such an expression; here the ridge functions vary from direction to direc-
tion. Representation (67) holds for most reasonable functions, at least in
some wide sense, with h given by

(68) h(u, (x, u)) = (27r) - n /2 f K(ru)ei(z)rrn- ' dr
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where k' is the n variate F,,urier transform of K. Note that the pair (67)
and. (68) is simply a variant of the Fourier inversion formula. The restric-
tion to uniform sums allows for an elementary development of the desired
summability formulas.

The results in Sections 2.1-3.2, restricted to the case n = 2, together with
related material and more examples were recorded and circulated in [34]; the

key ideas were announced in [35]. Some of this material was published using
different notation in [-12, -13]; I gratefully acknowledge the referee for pointing
out these references and making other constructive comments.

Radial kernels have been used in tomographic applications by other au-
thors, most notably [20, 50]. However, the application, perspective, and
basic results in [20, 50] are significantly different from ours. For example,
the formula for h in terms of K is based on, in our notation,

'"(K f)(u,t) = K,* f,(t)

and
f(X) =A 1 L -, "R.f(u, (x, u))do(u)

to get
(69) h(i) = "R(A - ' K)(u, 1) or ,'-l'RK(u, i)

where ,n-l is the pseudo-differential operator whose symbol is a constant
multiple of J jn' - . Note the similarity between (69) and (28). Formula (69)
appears to require conditions on K which are more elaborate than those in
Proposition 3 in order to make sense pointwise. Furthermore, the derivation
of (69) uses an inversion formula whereas our development leads to various
inversion formulas. I gratefully acknowledge Don Solmon who brought my
attention to these matters and suggested the comments in this paragraph.

The uniform ridge function representation of the bivariate Poisson kernel
can be found in [-17]. Additional examples of uniform ridge function repre-
sentations may be found in [20, 3-1, 50].

Observe that (5) may be regarded as a variant of

(' h) f = *'(h * l)

where R" is the formal adjoint of 'R. In this formulati,.n it has been suc-
cessfully applied in other more general contexts of integal geometry, see
[2, 3, 14].

Various inversion formulas are well known for full Radon transform data,
see [41] and the notes and references cited there; for example, [8, 15, 16, 17,

20, 47, 50, 51].
Polynomials arise quite naturally in the study of the Radon transform,

see [41] and the notes and references cited there. For example they occur in
in singular value decompositions [7, 24, 28, 41, 44], in optimal reconstruction
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in the L2 sense [23], and in many olher contexts [5, 8. 2q. 30. 31, 32, 33, 36,
37, 39, 41]. We note that the results of [33] show that the output of any
reconstruction algorithm which uses Radon transform data di.cretized in the
angular variable and is both rotation and translation invariant in a certain
mild physically meaningful sense must be the convolution of the phantom
with a polynomial. The development in Section 3.3 is simply an extension
of some of the results in [32].

Moduli of smoothness provide a natural and useful measure of the de-
gree of approximation for various processes. For classical results see [12, 56].
These moduli can be used to define precise and meaningful notions of reso-
lution for very wide classes of approximants. We will not go into the details
here. However we do melitiun that if ( is a sufficiently well behaved set in
R", such as a ball or parallelepiped, then the indicator function of (2, call it
X satisfies

p(X, "E) = 0(c'-)

as c goes to 0. Hence error estimates in terms of this modulus are O(ElIP) as
S-+ 0. In the case p = 2 this should be compared with estimates in terms of

Sobolev space type norms for such phantoms which are 0(01 ), 3 < 1/2; in
particular, see the introductory discussion in Section IV.2 of [41].

Polynomial approximation is a classical subject, see [12, 56]. For details
and various formulas concerning classical orthogonal polynomials, including
Gaussian quadrature, see [11, 18, 55]. The polynomials Pm,, ff = 1,2,...,
described in Subsection 3.5.2 were constructed in the case n = 2 and k = I
in [29, 30]; they are modifications of polynomials considered in [12] and used
for similar purposes. Other related constructions can be found in [31].

For other approaches to the limited angle problem see [7, 41, 46] and
the pertinent references cited in these works. For other types of restrictions
see [9, 21, 39, 41, 45] and the pertinent references cited there. The results in
Section 4.1 are extensions of some of the results in [32, 37]. The notion that a
set is in Q(m) appears to be related to the notion of m-resolving; see Section
111.2 in [41]. For results concerning mechanical quadrature on spheres see
[13, -11, -10, 54]. For properties of spherical harmonics see [11, 18, 53].

The results in Section 4.2 are an extension and improvement of some
of the work recorded in [31] and announced in [32]. These estimates can
be used to obtain acceptable bounds on errors due to discretization of the
Radon transform in the angular variables but not in the t variable. For such
bounds which take discretization in both types of variables into account but
use Sobolev type norms see [41, Section IV.2] and the pertinent references
cited there; note however the restrictions on the various parameters in these
results. For bounds on resolution from another point of view see [22].

The degree of approximation or resolution from limited angle data de-
pends only on the parameter rn and not on any other properties of the set
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A. This is not the case when conditionedness of the problem is taken into
account. For estimates on the accuracy of the data required for a given reso-
lution in the reconstruction see [38]; for results related to resolution and the
size of singular values see [6, 26, 28, 41] and the pertinent references in these
works.
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Bounds on Multivariate Polynomials and
Exponential Error Estimates for

Multiquadric Interpolation

W. R. Madych" S. A. Nelson t

Abstract

A class of multivariate scattered data interpolation methods which
includes the so-called multiquadrics is considered. Pointwise error
bounds are given in terms of several parameters including a parameter
d which, roughly speaking, measures the spacing of the points at which
interpolation occurs. In the multiquadric case these estimates are
O(A/d) as d -- 0 where A is a constant which satisfies 0 < A < 1. An
essential ingredient in this development which may be of independent
interest is a bound on the size of a polynomial over a cube in R'
in terms of its values .ri a discrete subset which is scattered in a
sufficiently uniform mc ier.

1 Introduction

Let h be a continuous function on R ' which is conditionally positive definite
of order m. Given data (xj, fj), j = 1,.. ., N, where X= {X1 , ... , XN} is a
subset of points in R n and the fj's are real or complex numbers, the so-called
h spline interpolant of this data is the function s defined by

N

(1) s(x) = p(x) + 1  h(x - xi)
j=1

where p(z) is a polynomial in Pn,_ and the cj's are chosen so that

N

(2) E cjq(x1) = 0
j=1

*University of Connecticut. Both authors were partially supported by a grant from the
Air Force Office of Scientific Research, AFOSR-86-0145

tIowa State University.
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for all polynomials q in 'Pm-i and

N

(3) p(xi) + Z cjh(xi - xj) = f,, i= 1,..., N.
j=I

Here P,-i denotes the class of those polynomials on Rn of degree < m - 1.
It is well known that the system of equations (2) and (3) has a unique

solution when X is a determining set for Pmi and h is strictly conditionally
positive definite. Thus, in this case, the interpolant s(x) is well defined.

We remind the reader that X is said to be a determining set for , if
p is in P,- and p vanishes on X implies that p is identically zero.

If h is the function defined by the formula

(4) h(x) = /1 + 1x1

where IxI is the Euclidean norm of x then m = 1 and corresponding method
of interpolation defined by (1), (2), (3) and (4) is often referred to as the
multiquadric method. This and closely related methods are currently quite
fashionable, see [3, 8]

In an earlier paper [6] we obtained bounds on the pointwise difference
between a function f and the h spline which agrees with f on a finite subset
X of R'. These estimates involve a parameter d that measures the spacing of
the points in X and are O(de) as d -- 0 where I depends on h. The results of
the present paper imply that for certain h's, which include (4), the estimates
can be improved to O(A d) as d -- 0 where A is a constant which satisfies
0 < A < 1. The conditions on f are are same as those in [6].

1.1 A bound for multivariate polynomials

A key ingredient in the development of our estimates is the following lemma
which gives a bound on the size of a polynomial on a cube in Rn in terms
of its values on a discrete subset which is scattered in a sufficiently uniform
manner. This result may be of independent interest.

Lemma 1 For n = 1, 2,..., define -y,, by the formulas -y = 2 and, if n > 1,
7, = 2n(1 + 7,,-1)- Let Q be a cube in R" that is subdivided into qfn identical
subcubes. Let Y be a set of qfl points obtained by selecting a point from each
of those subcubes. If q > 1,,(k + 1), then for all p in Pk

sup Ip(x)I < e2 n sup Ip(y) •
zEQ yEY

We remark that it is not essential for the set Y to intersect every subcube
of Q as hypothesized above. A variant of this lemma where Y intersects a
certain percentage of these subcubes can be found in subsection 3.3.
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1.2 A variational framework for interpolation

The precise statement of our estimates concerning h splines requires a certain
amount of technical notation and terminology which are identical to that used
in [6]. For the convenience of the reader we recall several basic notions.

The space of complex valued functions on R" that are compactly sup-
ported and infinitely differentiable is denoted by D. The Fourier transform
of a function 0 in 79 is

k I- e-J(z'q C) O(x)dx.

A continuous function h is conditionally positive definite of order m if

(5) f h(x)o * (x)dx > 0

holds whenever 0 = p(D)o with 0 in V and p(D) a linear homogeneous
constant coefficient differential operator of order m. Here O(x) = 0(-x) and
* denotes thc convolution product

1 * 02(t) = I 01(X)02(i - x)dx.

Note that (5) can be rewritten as

f h(x - y)O(x)O(y)dxdy > 0.

In what follows h will always denote a continuous conditionally positive
definite function of order m. The Fourier transform of such distributions
uniquely determines a positive Borel measure p on R' - {} and constants
a-v, 1I1 = 2m as follows: For all ) t: 'D

(6)

J h(x) V)(x) dx = f 5(0) - ;( ) + D1:(0)Y dp( a-,
1-l<2, I 1-y<2-

where for every choice of complex numbers ca, Iai = m,

(7) E a,+jdcoe > 0.
Ia1-,m I 1--,

Here X is a function in P such that 1 - ( ) has a zero of order 2m + 1
at = 0; both of the integrals f0<1,1< 1 1I 2mdp( ), _ dp( ) are finite. The
choice of X affects the value of the coefficients al7 for 1I-y < 2m.

If
V, = 1 V: J z"O(z)dx = 0 for all jai < m}
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then Ch,, is the class of those continuous functions f which satisfy

(8) Iff(x)4(x)dx c(f) Jh(x - Y)(x)(y)dxdy112

for some constant c(f) and all € in Dmn. If f E Ch,m let 11f 1h denote the
smallest constant c(f) for which (8) is true. Recall that If 11h is a semi-norm
and Ch,m is a semi Hilbert space; in the case m = 0 it is a norm and a Hilbert
space respectively. Elements f in Ch,,m are of the form

f = f + f

where the Fourier transform of f is given by

j( = g( )dp( )

with g in L2 (dji) and f2 is a polynomial of degree m.
Given a function f in Ch,,, there is an element s of minimal Ch,, norm

which is equal to f on X. If X is a determining set for P,,,-1 then s is unique.
We refer to such s as the h spline interpolant of f on X.

In the case when X is a finite subset of R' as considered in beginning of
this introduction the h spline s is given by (1), where f(xi) = fi, i = 1,..., N,

1.3 Exponential error estimates

Our basic theorem concerns how well s approximates f in regions Q where
X provides sufficient coverage. In other words, we are interested in bounds
on the quantity
(9) 1f(x) - s()I

IlfllIh

where x is in Q; the estimates should be in terms of parameters which measure
how closely X covers Q. For example, the parameter d = d(Q, X) defined by

d(Q,X) = sup inf ly - x
y1En xEX

is one such measure.
In [6] we showed that in many cases the quantity in (9) is O(d') as d ---+ 0

where k is a constant whose maximum value is determined by h. In this paper
we restrict our attention to h's whose corresponding measures M defined by
(6) satisfy certain moment conditions. For example, if h is given by (4) there
is a positive constant p such that for all integers k greater than 2

(10) J Ilhdp( ) _ _k!

4



In this case we are able to obtain the exponential estimate described in the
abstract.

In subsection 2.3 we consider a variant of (10) where k! is replaced by krk,
r an arbitrary real constant. As might be expected, this leads to somewhat
different bounds on (9).

Because of the local nature of the result, we restrict our attention to the
case where 9 is a cube.

Theorem 1 Suppose h is conditionally positive definite of order m and the
corresponding measure p satisfies (10) for all k greater than 2m. Then, given
a positive number bo, there are positive constants 6o and A, 0 < A < 1, which
depend on bo and h for which the following is true: If f E Ch,,, and s is the
h spline that interpolates f on X then

If(X) - s(x)! < A1/6 If Ilh

holds for all x in a cube E provided that (i) E has side b and b > bo, (ii)
0 < b < 6o, and (iii) every subcube of E of side 6 contains a point of X.

Observe that every cube of side 6 contains a ball of radius 6/2. Thus the
subcube condition is satisfied when 6 = 2d(E, X). More generally, we can
easily conclude the foiiowiig:

Corollary 1 Suppose h satisfies the hypotheses of the Theorem, 0l is a set
which can be expressed as the union of rotations and translations of a fixed
cube, and X is a subset of Rn. Then there are positive constants do and A,
0 < A < 0, which depend on bo and h for which the following is true: If
d < do, f E Ch,,, and s is the h spline that interpolates f on X then

If(X)- s(X)I < Ai/dIfIlk

holds for all x in Q where d = d(2, X).

Note that any ball in R" satisfies the hypothesis on Q2 in the above corol-
lary. Indeed, any set Q with sufficiently smooth boundary satisfies this hy-
pothesis.

2 Details for Theorem 1, examples, and generalizations

As alluded to in the introduction, Lemma I is an important ingredient in
the proof of this theorem. The following lemma, which is a transparent
consequence of Lemma I and routine arguiments involving linear functionals,
is in convenient form for applying this ingredient.
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Lemma 2 Let Q, Y, and -Yn be as in Lemma 1. Then, given a point x in

Q, there is a measure o- supported on Y such that

I p(y)do(y) = p(x)

for all p in Pk, and

J do-o(y) <

2.1 Proof of Theorem 1

First, let p, y,', and b0 be the constants appearing in inequality (9), Lemma
1, and Theorem 1 respectively. Let

B = 2pJi-e2n*," and C = max B,2

Let 1
3Cy(m + 1)'

where m is the order of conditional positive definiteness of h. We will show
that b0 as defined above can be used for the constant in the statement of
Theorem 1.

For now, let x be any point of the cube E and recall that Theorem 4.2 of
[6] implies that

(11) If(x) - s(x)I ckIlfI1h JlY - da(y)

whenever k > m where a is any compactly supported measure such that

(12) f p(y)d(y) = p(x)

for all polynomials p in Pk-. Here

{J, = f1/2

C f (k!)2

whenever k > m and by virtue of (9)

(13) Ck < (2p)k.

To obtain the desired bound on If(x) - s(x)l it suffices to find a. suitable
bound for I = ckJlY- xlday) •

This is done by choosing the measure a appropriately. We proceed as follows:

6



Let b be a parameter as in the statement of the Theorem. Since b < 60
we may chose an integer k so that

(14) 1 < 3Cy.kb < 2.

Note that such a k is > m + 1 and -y,kb < bo. Let Q be any cube which
contains x, has side -ykb, and is contained in E. Subdivide Q into (-ynk) '

congruent subcubes of side 6. Since each of these subcubes must contain a
point of X, select a point of X from each such subcube and call the resulting
discrete set Y. By virtue of Lemma 1 we may conclude that there is a
measure o supported on Y which satisfies (12) and enjoys the estimate

(15) 1 dII(y) 5 e< "k

We use this measure in (11) to obtain an estimate on I.
Using (13), (15), and the fact that support of a is contained in Q whose

diameter is vfn/-,ikb we may write

(16) 1 < (2p)k(v/'.n-y )ke 2nk < (Cynkb) k .

Since 2 1
(C-ykS) - and k >

3 -3Cytnb

inequality (16) implies that

I < (( 2 / 3 1 3C-h))

Hence we may conclude that

If(X)- S(X)J < A/'11fllh

where
A= ( 2 / 3 ) / (3C Y Y)

2.2 Examples

A well known class of examples of conditionally positive definite h's is given
by I(a/2)

h(x) =(1+I1)/

(I + IzL 2)a/2

where a is a fixed real number : 0, -2, -4,... and I is the classical gamma

function. The corresponding measure p is given by

dp( ) =K(n_,)/2(1 1)

7



where c, is a positive constant and K is a modified Bessel function of the
second kind; see [6] for more details and the cases a = 0, -2, -4, .... Because
of the exponential decay of K,(t) as i - oo the moments of of i grow like
pkk! and hence p satisfies (9) whenever k is sufficiently large.

The important example of the Gaussian

h(x) = e- I 12

has corresponding measure

d = (27r)n/2e-I 2 /4d

of course. The moments of it grow like pkiAT. Although Theorem 1 provides
a bound on the error, in this case one expects better estimates because of
the significantly slower than hypothesized growth of these moments.

More generally, consider the case when the measure y is given by

d )= C-C'd

where a is a positive constant. Here, of course,

h(x) = I

The moments of p grow like pkk"k where r = 1/a. The case a = 2 is
essentially the Gausssian which together with the rest of the cases a > 1 is
covered by Theorem 1. On the other hand if 0 < a < 1 the bound on the
rate of growth of the moments hypothesized in the statement of Theorem 1
fails to hold.

The theorems in Subsection 2.3 provide answers to the questions raised
above.

2.3 Generalizations

As mentioned in the introduction, different bounds on the rate of growth of
the moments of the measure i result in different estimates on the difference
between f and its h spline interpolant s off the interpolated set. Here we
consider the case(17) V hd()_<kr

for k > 2m, where r is a. real constants and p is a positive constant.
Note that in view of Stirling's formula there are positive constants P, and

P2 so that
(18) phk k < kP < pkk
Thus the case r = 1 was treated in Theorem 1. Also observe that Theorem
I provides an estimate in the case r < 1. However it is possible to get a
more sensitive estimate in this case without much more work; this is shown
in Theorem 3 and its proof. We first consider the case r > 1.
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Theorem 2 Suppose h is conditionally positive definite of ordcr m and the
corresponding measure p satisfies (17) with r > I for all k greater than
2m. Then, given a positive number bo, there are positive constants 6o and A,
0 < A < 1, which depend on h, r, and bo and for which the following is true:
If f E Ch,m and s is the h spline that interpolates f on X then

If(x) - s(x)I < A6-' /rIfIIh

holds for all x in a cube E provided that (i) E has side b and b > bo, (ii)
0 < 6 < 6o, and (iii) every subcube of E of side 6 contains a point of X.

Proof In view of (17) and (18) there is a constant P0 such that

Let y,, and bo be the constants appearing in the statements of Lemma 1 and
Theorem 2 respectively. Let

B = 2povr-e2 ' ' " and C = max B, 2- .

and let

=3"Cy(m + 1)'

where m is the order of conditional positive definiteness of h. Let 6 be a
parameter as in the statement of the theorem. Since 6 < b0 so that 3(CYn6)l / r

is less than 1 and we may choose an integer k so that

1 < 3(C7,,6)1/'k < 2.

Note that such a k is > m + 1 and 'ykb < b0.
Proceeding as in the proof of Theorem I we get

(19) lf(x) - s(X)I _ IIIfIjh

where
I < pk(-1)k (-,F7k6)e2nnk < (- n )'I'k)"'

Since 2 1
(CY,6)"lrk < - and k > 3(Cy6)'/"

3
we may conclude that

I < (( 2 / 3 )1/ (3(c- Yn)'/')) -'/,

In view of (19) the theorem now follows with

A = (2 / 3 ) 1(3c'")

9



Theorem 3 Suppose h is conditionally positive definite of order m and the
corresponding measure ji satisfies (17) with r < 1 for all k greater than 2m.
Then, given a positive number bo, there are positive constants 6o, c, and C,
which depend on h, r, and bo and for which the following is true: If f E Ch
and s is the h spline that interpolates f on X then

If() - s(X) I< (C6)c I IfIIh

holds for all x in a cube E provided that (i) E has side b and b > bo, (ii)
0 < 6 < 6o, and (iii) every subcube of E of side 6 contains a point of X.

Proof Let

60= mm 
6{(Bbo)l/(l-r)-N 2-yn(m + 1)

where -N,, is the constant defined in Lemma 1, and

B = p0 v/- e2 n- "n

with P0 as in the proof of Theorem 2 Then if 6 < 6o there is an integer k so
that bo < -,,bk < b0.

2 -

Arguing as in the proof of Theorem 2 we we can conclude that

(20) If(X) - s(x) I ! Illf

where I < (B-yn6k')k Since k < bo/(-,,6) we may write

and since Byn--btrbl- < I and k > bo/( 2y 6 ) it follows that
"-- n' 0O -

I < B -' -) ¢ - .

The last inequality together with (20) imply the desired result with

C = (Bbr)/(1-r).Y and c - (I - r)bo
210
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3 Details for Lemma 1

We begin by noting that it suffices to prove the Lemma in the case Q = [0, 1]n .

To see this, let Q be any cube in R n and let 0 be an affine transformation
mapping [0, 1]n onto Q. Then polynomials p on Q are related to polynomials
f on [0, 1]n via the correspondence

and the corresponding subdivisions and discrete subsets Y are related analo-
gously. It is clear that an estimate like that given by Lemma 1 on the size of
f on [0, 1]n implies the corresponding estimate on the size of p on Q. Hence
in what follows we will always take the cube Q to be [0, I]n.

Our proof of Lemma 1 involves induction on the dimension n. While
Lemma 1 and its proof are elementary and well known in the case n = 1, in
the first subsection we formulate it in a manner convenient for the necessary
induction argument. Since the general case involves certain unpleasant com-
binatoric and geometric complications, for the sake of clarity we spell out
the argument in the case n = 2 in the second subsection. The general case
is considered in the third subsection.

3.1 The case n=1

Proposition 1 Let T = {t0,... ,tk be a subset of the unit interval [0, 1] and
assume ti-1 + 1/q < i,, for i = 1,...,k. Then for all p E 'Pk,

sup p(t) < ( 2 q  sup IP(
tE[O,1] k tET

kkProof Recall p j=0 p(ti)Li where

Li 1t -f
j=o1j~i

The assumption 1/q <_ t, - ti_1 implies It - tjI <_ q/i - J. Also, It - tjI < 1
for all I E [0, 1]. Hence, for such t, IL,(t)I < qk/I[i!(k - i)!] and

A 1 (2q)k'IL,(t)I <_ q' i( - =) k!

which gives the desired inequality. U

Since

(2q)k < e 2q

k! -
this is a simple variant of Lemma i in the case n = 1.
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3.2 The case n=2

Proposition 2 Suppose the square Q = [0, 1] is divided into q2 identical
subsquares and X is a set that intersects each subsquare. If q >_ 12(k + 1),
then for all p E Pk,

(21) sup p(x)I <_ e48 (h+1) sup Ip(X)l.
zEQ zEX

Proof Let Q,, i E I denote the q' subsquares of Q. If q > 12(k + 1) = q'
then Q contains squares Q' that consist of ex-ctly (q')2 subsquares Qi. Since
(21) holds for Q if it holds for all such Q', we assume that q = 12(k + 1).

Instead of (21) we will show that if h E Pk and Ih(x)l < 1 for all z E X
then
(22) sup IhI _ e48(k+l).

Q
That this implies (21) can be seen by considering h = p/(e+supx lpl), f > 0.

Let mi = rinaQ, jhj where 9Qi denotes the boundary of Qi. Let No be
the number of points in lo = {i E I : mi < 1}. We assert that

(23) No (12(k + 1))2 - (2k - 1)2.

To see this, take b (blb 2), let gb(x) = Ih(x)[2 + (b6x1 + 6
2X2 ), and note

that for every i E I I0,

mingo < 1 < (m,) 2 = min go.

Thus we can choose c > 0 so that if IbI < c then for every i E I \ Io

min gb < min gb-
OQ,

When this occurs, gb has a critical point in the interior of Qi. Such a b can
be chosen so that all the critical points of g are nondegenerate, for example
see Lemma 6.2 on page 40 of [7]. Now g E P2k, so by virtue of Proposition 4
in Subsection 3.4 it can have at most (2k - 1)2 nondegenerate critical points.
Thus I \ I0 has at most (2k - 1)2 points and (23) follows.

For each i E lo select a point yi E OQi so that Ih(y;)j < 1 and so that yi
is not one of the four corners of Qj. Partition Io into four subsets I1,... ,14
according to whether yi lies on the top, bottom, left or right edge of Qi. Let
N1 be the number of points in 1 and assume without loss of generality that
N, > No/4.

For each j = 1,..., q let I(j) be the set of i's for which Q, lies in the
horizontal strip

{(t, s) : 0 < t < 1, (j - 1) < qs < j}.
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Let N(j) be the number of points in ii n I(j) and let N b, the number of
points in J = {j: N(j) > 2(k + 1)}.

Note that N1 = q N(j) Nq + (q - N)(2k + 1). Using q = 12(k + 1),
this gives

N, _< N(10k + 11) + 12(k + 1)(2k + 1)

If N < k then N0 < 4N, < 4[(10k 2 + Ilk) + 12(k+ 1)(2k+ 1)] which is easily
seen to violate (23). We conclude that N > k + 1.

Let pj(t) = h(t, j/q). In N(j) of the intervals

r-1 r-( < (<-,r--,.,
q q

there is a point t with [pj(t)I < 1. If j E J there are at least 2(k + 1) such
intervals. Thus we can apply Proposition 1 to pj and see that

(24) max Ipj(t)I < e" = e24( h + 1)

tE[0,1]

for every j E J. Using this and the fact that J has N > k + 1 points we can
apply Proposition 1 again, this time to p(s) = h(a, s), a E [0, 1] to arrive at
(22). U

3.3 The general case

Proposition 3 Define -y, for n = 1,2,... by -y = 2, -y, = 2n(l + y.-),n >
1. Let X be a subset of R , let r E (0, 1] and let k and q be positive integers
with q > -Yn(k + 1)/r. Subdivide the unit n-cube [0, 1]" into q' identical
subcubes and let N be the number of such subcubes that intersect X. If
N > rq" then for all f E Pk

(25) sup If( ) 2 k ) sup If(x)
zE[0,1]nk zEX

Proof We first deal with the case n = I. In that case the subcubes are the
intervals Ii = [(i - 1)/q, i/q], i = 1,..., q. Let i(1) < i(2) < ... < i(N) give
the intervals that intersect X. For each j = 1, ... , N choose x(j) E i(j) n x.
By assumption, N > rq > 2(k + 1). The points

to = X(1),tj = x(3),...,tk = X(1 + 2k)

satisfy tj - ti_. > 1/q so (25) follows from Proposition 1.
To complete the proof we use induction on n. The integers k and q will be

held fixed during the induction. Let n' = n- 1 and define r' by y,,,/r = -y/r.
Then q > -y,(k + 1)/r'. Subdivide the unit n'-cube [0, 1]"' into qn' identical
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subcubes and let N' be the number of such subcubes that intersect X' C Rn'.
If N' > r'q"' then, by induction, for all g E Ph

(26) sup Ijg < ((2q)'" sup gl
[o,ifl' - X

Instead of (25) we will show that if h E 'k and Ih(x)l < 1 for all x E X
then

(27) sup IhI 5(q
[0,11"

That this implies (25) can be seen by considering h = p/(E+supx Ip), c > 0.
Let Q denote the family of q" subcubes of [0, 1]". For each Q E Q let

mQ = minaQ Jhi where aQ denotes the boundary of Q. Let

Qh = {QE Q:mQ < 1},Qx = {Q E Q: Qnx : 0}.

Note that N is the number of elements in Q and let Nh be the number of
elements in Qh.We assert that

(28) N > N - (2k)n.

To see this, for b E Rn consider the the function gb defined by

gb(x) = lh(x) 12 + (bX, + ... + b.X,).

IfQE Qx \ Qh then
ming0 < I < rin go.

Q aQ

Thus we can choose f > 0 so that for all Q E Qx \ Qh and all IbI < c

mingb < mingb.
Q a

When this holds, it is evident that gb has a critical point in the interior of
Q. Thus gb has at least N - N, critical points. Such a b can be chosen so
that the critical points of gb are nondegenerate, see Lemma 6.2 on page 40 of
[7]. Since g E P2k, by virtue of Proposition 4 in Subsection 3.4 it can have
at most (2k - 1)" nondegenerate critical points. Thus N - N (2k - 1)"
which gives (28).

For each Q E Qh a point y(Q) E 0Q can be selected so that lh(y(Q))l < 1.
By moving y(Q) slightly, if necessary, it may also be assumed that y(Q) lies
on exactly one of the hyperplanes

M,,j = {y E R : y,.,, = j/q}, m = 1,..., n, j =0,..., q.
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Let Nh(m,j) be the number of Q's for which y(Q) E 11,j. Let Nh,m =
m), and note that N = Nh,rn Without loss of geners!ityY- 5=O Nh (M~, n noeta r,-.,=n

we assume Nh,,. > Nh/n.
Let Y = {y(Q) : Q E Qh}, Yr = Y fl AM,,. In each hyperplane AI,,,j there

are qn-1 (n - 1)-cubes that correspond to the subdivision of [0, 1]'* into q'
n-cubes. Let N(') be the number of (n - 1)-cubes in AI,,j that intersect Y.
Then N(Y,) _> Nh(n, j)/2 because for each (n - 1)-cube Q' in M,,. there are
at most two n-cubes Q E Q which contain Q'. Thus we have

q

(29) 2(E Noj)) > Nh,,, > Nh/n.
j=O

If N()") > r'q"- ' then from (26) we get

(30) 1 h(x', j/q) 1<5((q - sup IhI < (q -

for all x' E [0, 1]"-'. Let J = {j N(Y1 ) > r'qn-}. We will show below
that J has at least k + 1 elements. This allows us to apply Proposition 1 to
p(t) = h(x',t). The result is

h(x',t) (< k maxlh(x',j/q)Ik! jEJ

for every i E [0, 1]. Because of (30), this gives (27).
Let s be the number of elements in J. It remains to show s > k + 1. For

all j, N(Y,) _ q'-1 and for j € J, N(Ijj) < r'qn'- 1. Thus
q

Z N(Y,) < sqn- 1 + (1 + q - s)r'q"-.
j=O

Combining this with (30),(28) and the hypothesis N > rqn gives

1 q
(rq' - (2k)) Z N(Y.) _< sqn' + (1 + q - s)r'qn - 1

2 n j=0
2n-

or, after division by q,

(31) rq (2k)nq (1 + q)r' < s(1 - r')
2n qn2n

By definition of r', r r"I, /y,..1_ with 7,, = 2n(1 + -y,-). Hence r/2n =
r'(1 + -,-t)/y,, or r/2n - r'= r'/-yn_1 . Thus (31) can be rewritten as

rq ((2k q + r) s( - r').

By assumption we have q > -y,(k+1)/r = y,,-(k+1)/r'. Taking M = -,,- /r'
in the following lemma, we find (1-r')(k+1) _ s(1-r') which gives s > k+1.
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Lemma 3 If n >2, k > 1, r'E (0, 1], Mr'> 2 andq> M(k+ 1) then

q (2k)"q_
(32) (1- r')(k + 1) < q (2n rAl q"2n

Proof From k < k + 1 < q/A we have k/q 1/Al < 1/2 and
(2k, (_ )l 2 2 M(k+l) <k+a 2k

2( 2 ) 2 Al(+ < < kr'.
2n - 2n - A! - M

Multiplying this by -1 and then adding 1 + k gives

1 + k - kr' < 1 _ 2 1)A(k + 1).

Hence

1+ k-kr'< I _ q

which is the same as (32). N

3.4 Critical points of polynomials

Proposition 4 If p is a real valued polynomial on R n of degree d then p can
have at most (d - 1)' nondegenerate critical points.

Proof A simple argument for the case n = 2 goes as follovs: Let q be
the greatest common factor of op/Oxl and Op/OX2 , and write Op/i9xi = qpi,
i = 1, 2. If q vanishes at x0 then

P (Xo) = pj(zo) (x0), so det -0 .

Hence x0 is a degenerate critical point. At any nondegenerate critical point x0

we therefore have p1(xo) = 0 = p2(x 0). Since p, and P2 have no common fac-
tor, the two variable version of Bezout's theorem, for example see [10], implies
that the number of such points zO does not exceed N = (degp 1 )(degp 2 ) <

(d - 1)2 . The lack of such a convenient form of Bezout's theorem when n > 2
is what makes the general case more difficult.

To obtain a proof in the general case we begin by observing that it is a
corollary of its complex analogue. Indeed, there is a unique P E P (Cn) such
that p(x) = P(x + tO) for all z E Rn. Here and in what follows i = V/-I.
From

Op W 9P (z + 10)
'9Xj' OZk

and the corresponding formula for second order partial derivatives, it is clear
that if z0 is a nondegenerate critical point of p then zo = z0 +tO is a nondegen-
erate critical point of P. Thus the general case follows from next proposition.

1
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Proposition 5 If p E 'Pd(C n) then p can have at most (d-l)" nondcgencrate
critical points.

Proof For j = 1,...,n let p3 = Op/8zj. All critical points of p are
degenerate if p3 = 0, so we assume pj 0 0 for all j. Let m = dimPd (Cn); we
identify points c E Cm

(33) C = (C,,)I,,I<d = (a, + tba)laj<_d = a + tb

with points (a, b) E R 2 -m. For z0 E C, z E C" and c E C-m let
d-Ial

f (z,z,c)= z co' Z' Zo
jal<d

Let c, be the point in C' such that p(z) = f(1, z, cp) for all z E Cn. Note
that p1(z) = fj(1, z, c) where fi = 9f/ozj, j= 1,...,n.

Let z(1), ,z(N) be nondegenerate critical points of p. Put (') =

(1, z(r)), r = 1,...,N and observe that z = )e"), A E C is a solution of
system fj(z, cp) = 0, j = 1,..., n. By Bezout's Theorem, [9], if n homoge-
neous equations fj(z) = 0, in n + 1 variables z = (zo, z) have only a finite
number of solution rays z = Aer), r = 1,..., q, () E Cn + 1 \ {0}, then
q < (d - 1)n where d - 1 is the degree of fj, j = 1,. .. , n. The desired con-
clusion, N < (d - 1)n , would follow if we knew that the system fj(z, cp) = 0,
j = 1,..., n had only a finite number of solution rays. The latter may not
be true, but it suffices to show that we can perturb cp to obtain a point
c E Cm for which the number, q,, of solution rays of the system fj(z, c) = 0,

j = 1,..., n is finite and satisfies q, > N.
First we show that q. > N is automatic if c is close enough to cp. Consider

the map T from C" x Cm to C" given by

T(z,c) = (fi(1,z,c),. .. ,fn(1, z,c)).

The points z(i) are nondegenerate, so the n x n matrix aT/az is nonsingular
at (z(i), cp), i = 1,..., N. By the Implicit Function Theorem there are
analytic functions (i on a neighborhood B C C-m of cp such that

T(Ci(c), c) = 0, (j(cp) = z(i), i = 1,...,N.

By making B smaller, if necessary, it may be assumed that (i(c) 0 (j(c) for
all c E B and all i # j. It is then evident that q, > N for all c E B.

To complete the proof we will establish that for almost every point (a, b) E
R2m' , the system fh(z, a + tb) = 0, j = 1,..., n has only a finite number of
solution rays. For k = 0,..., n define maps Jh from R2" to {z E C n+l : Z1 = 0
by

Jk(z1 ,..., 2n) = (x, + tz,,,..., Zj + tXn+k, 1, zk+ + tZn+l,+,,... ,Z + tX2 ,).
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Let V(k, a, b) = l> ={x E R 2 : f,(Jk(x),a + ib) = 0}. The maps jk provide
coordinate systems for complex projective n space. By compactness of that
space, it suffices to prove that 17(k, a, b) consists of isolated points for every
k = 0,...,n and almost all (a,b) E R ' .

The proof of this uses a theorem from [7]. To prepare, define fj, ,(z),
aI< d by

fh,(Zo, Z) = (zo)d--,10za - aco(zo, ZC)

and identify fj, with an n x m matrix.
We assert that fj,a(Jh(Z)) has rank n for every k = ..... , n and every

x E R 2 . For k # 0 we take

c = a(i, k) = e(i) + (d- 1)e(k), i n 1,...

where {e(1),...,e(n)} is the standard basis for R" and consider the n x n
matrix Fj,i(x, k) = fj,,(,k)(J(x)). Then Fk,k(x, k) = d, Fj, j(x, k) = 1 for
j # k and Fj, i(x, k) = 0 for j 0 i, i # k. It follows that det(Fj,i(x, k)) = d,
k :A 0; the off diagonal entries of the kt column of F are not needed for this.
For k = 0, the n x n matrix Fj,j(x, 0) = fj.,(i)(J°(x)) is seen to be bij and
our assertion is verified.

To obtain notation more like [7] we fix k E {0,..., n} and define real
valued functions U,..., U2,. by

Uj(x,a, b) + tU+,.(x, a, b) = fj(J(x), a + ib).

Using the analysis of Fi,i(x, k) above, we see that the 2n x 2(n + m) matrix
of partial derivatives of U1,..., U2,n has rank 2n. By Theorem 7.1 on page
50 of [7] we conclude that for almost all (a, b) E R ' , the 2n x 2n matrix
-' (x, a, b) is nonsingular at every point in

2n

V(k,a,b) = flx E R2 : Ui(za, = 0}.
i=l

Thus for such (a, b) the points in V(k, a, b) are isolated. U

4 Miscellaneous remarks

Note that it follows from Lemma I that Y is a determining set for Ph. We
also note that in the cases where Y is regularly distributed in Q, for example
if ii consists of the centers of each of the subcubes, then the lemma can be
derived by more traditional methods. Indeed. in the example mentioned
above, it is an easy consequence of the results in [1].

The analogues of Corollary 1 for Theorems 2 and 3 are clear. It is also
clear that the analogues of Lemma 1 and the Theorems hold when the cubes
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are replaced by more general parallelepipeds; simply apply an appropriate
affine transformation. Thus analogues of Corollary 1 hold when Q satisfies an
interior cone condition. Since our results seem to apply to most reasonable
situations we refrain from exploring further generalizations.

If the measure IL satisfies (17) with r < 0 then it must have compact
support. Also recall that in this case the constant C can be taken to be
independent of b0. Since the exponent c is (1 - r)bo/(2-y), if 6 is such that
C6 < 1, letting b0 -- oc it is clear that If(x) - s(x) -- 0. In other words,
for sufficiently small 6 if the inters&cc.on of X with any cube of side 6 is not
empty then s(x) = f(x) on Rn. This means, of course, that the values of
f on X uniquely determine f. Tne implications of this to sampling theory,
such as that found in [2] or [4] for example, will be explored elsewhere.

References

[1] L. P. Bos, Bounding the Lebesgue function for Lagrange interpolation
in a simplex, J. of Approx. Theory, 38 (1983), 43-59.

[2] P. L. Butzer and G. Hinsen, Two dimensional nonuniform sampling
expansions - an iterative approach, I and II, Applicable Analysis, 32
(1989), 53-85.

[3] N. Dyn, Interpolation and approximation by radial and rlated func-
tions, in Approximation Theory VI, Vol. I (C. K. Chui, L. L. Schumaker,
J. D. Ward, eds.), Academic Press, Boston, 1989, pp. 211-234.

[4] H. G. Feichtinger and K. Grochenig, Reconstruction of band limited
functions from irregular sampling values, preprint.

[5] W. R. Madych and S. A. Nelson, Multivariate interpolation and condi-
tionally positive definite functions, Approx. Theory and its Applications,
4 (1988), no.4, 77- 89.

[6] W. R. Madych and S. A. Nelson, Multivariate interpolation and condi-
tionally positive definite functions. II, Math. Comp., 54 (1990), 211-230.

[7] M. Morse and S. S. Cairns, Critical Point Theory in Global Analysis and
Differential Topology, Academic Press, New York, 1969.

[8] F. J. Narcowich and J. D. Ward, Norms of inverses and condition num-
bers for matrices associated with scattered data, preprint.

[9] B. L. van der Waerden, Modern Algebra, vol. 2, Ungar, New York, 1964.

[10] R. J. Walker, Algebraic Curves, Dover, New York, 1962.

19



Error estimates for interpolation by generalized splines

W. R. Madych"
Department of Mathematics, U-9

University of Connecticut
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Abstract

Interpolation with linear combinations of translates of a conditionally
positive definite function h are considered. Such interpolants are solutions
to a constrained variational problem involving the data and a quadratic
form determined by h. In the case where the data is the restriction of an
appropriate function f to a subset X in R', pointwise estimates, which
are valid in a neighborhood of X, are given on the difference between f
and its interpolant.

1 Introduction

Suppose h is a continuous function on R' which is conditionally positive definite
of order m. The reader not familiar with this notion should restrict his attention
to the case m = 0 and simply take h to be the Fourier transform of a nositive
integrable function, e.g. h(x) = e - Ir1l or hT(x) = (1 + IX12)-(+1)/2; the case
m = I includes the examples h(x) = Jxj and the celebrated multiquadric h(x) =
v11i- + I2. Such functions h need not be radial. Detailed definitions can be
found in Section 2. More examples and citations can be found in Section 4.

Given data (x,, f,), j = 1,..-., N, where the fj's are scalars and the xj's are
distinct points in R', consider interpolants of the form

N

(1) s(x) = p(x) + 5 c.h(x - xj)

J=1

where p is a polynomial in 'P., the space of polynomials of degree < m - 1,
and c2 's are scalars such that

N

(2) p(xk) + l ,h(x - x) =fk = ... N
j=l

N
(3) c x' = 0 for all ct, jal :rnm-1.

j= 1

We call such interpolants h-splines. We also remind the reader that standard
multi-index notation is used in (3). For convenient reference in what follows we
denote the set of points {x,}LN by the X, namely, X = {x,4}L 1 . Note that in

*Partially supported by a grant from the Air Force Office of Scientific Research, AFOSR-
89-0524



the case of m = 0 the polynomial p does not appear in (1): in other words, in
this case p - 0 and (3) is vacuous.

Assuming that the solution of (2)-(3) exists (it always does in the examples
cited above) and the values {f}=, are the restrictions of an appropriate func-
tion f to the set X, we are interested in estimates of the error If(x) - s(x)l for
x in some open neighborhood fl of X. Of particular interest is the asymptotic
behavior of the estimate as the neighborhood fl stays fixed and coverage by X
increases.

It should be clear that to obtain bounds on the error certain restrictions on
f are necessary. The restriction -onsidered below seems to be a natural one,
namely, f is taken to be such that the corresponding h-spline s is the "minimum
norm" interpolant of f on X in a sense which is made more precise in Section 2.
Indeed, in the estimates given below, it is not required that the set X be finite
or discrete, only that s be the appropriate minimum norm interpolant of f on
X.

2 Variational formulation

In what follows all integrals are taken over all of R', D is the class of infinitely
differentiable functions with compact support,

V. = { E D:Jx°(x)dx = 0 for all a, ja < m} ,

and the Fourier transform f of an integrable function f is defined by

O= f (x)e-( •~)dx.

All Fourier transforms are to be interpreted in the distributional sense.
A continuous function h on R" is said to be conditionally positive definite of

order m if and only if

(4) J fJh(x - yW(x)O4)dxdy ! 0

for all 0 in D,,. The class CCPDm is the class of all continuous positive definite
functions on R'.

If h is in CCPDm then h is a tempered distribution whose Fourier transform
is the sum of a positive Radon measure djL on R4 \ {0} and a distribution

supported at the origin. The measure is such that f(I[I/(1 + I[I))2"ndiL < oo
and the distribution supported at the origin is of the form P(D)b where 6 is
the Dirac measure at the origin and P(D) = F. a.,D" is a partial differential
operator of order < 2m whose principle part, terms homogeneous of degree 2m,
satisfies

E Z a,+pc 0
0,l=M 101=M

for every choice of complex numbers {c.}jj_,=-. In other words if $ is in D,,
then

(5) JJh(x - y)q(x) (y)dx dy = ~~Idu + I(m(0)II2

where

II (m)(0)1 = 1p D & (o) D f (O)
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If h is in CCPD, then the class Ch is defined as follows: f is in Ch if and
only if f is a tempered distribution and there is a constant C such that

(6) 1 , )-0 1 c{ J I h(x - y)q()p(y)dxdy}' 12

for all 0 in D,,,. The semi-norm Ill I is the infimrnum of all C's which do the job
in (6).

In view of (5) it is clear that (6) is equivalent to

I(f +) < II {J 1)2  + ()(0)1 1,

from which it is not difficult to conclude the following:

* The null space of the semi-norm II - 11 is Pm-i, the class of polynomials
of degree < m - 1

* If f is in Ch then f = f, + f2 where

(7) fi = gdg with g in L 2 (RL, dg)

and f2 is a polynomial of degree < m. Of course (7) means that f Ig(C)I 2d14
is finite and for any test function 0 we have (fl, 4) = f"()g()d/i.

* If djI is absolutely continuous with respect to Lebesgue measure, namely
dA = w( )d , and P(D) has no terms of order 2m then

(8) h!I = d C., I () 1

and Ch can be characterized as the class of those distributions f for which
(8) is finite. Formula (8) follows from the fact that in this case f (C) =
g(C)w( ) and f2 is a polynomial of degree < m-1 so that () = ()
if Jal > m and

J yg( d -J I Cg( )w(C)I2W(Yl(d ) -=

7n rn JCIg(C)W( )12 (ICmW(Vl dC

* If f is in Ch then f is continuous on R'.

* If v is a finite measure with compact support which annihilates polyno-
mials of degree < m - 1 then v * h is in Ch. Recall that

v * h(x) = h(x -y)dv(y)

and v is said to annihilate 'P,,-1 if and only if f p(x)dv(x) = 0 for all p in
Pm_1.

Suppose h is in CCPDn, f is in Ch, and X is a closed subset of R* which
is unisolvent for Pm,-1. (Recall that X is said to be unisolvent for P,.- if and
only if the only polynomial in PIN-I which vanishes on X is the constant 0.)
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Then the minimal h norm interpolant off on X is the unique element s in CA
which satisfies

(9) s(x) = 1(x) for all x in X

and
(10) IIsIIA = rarn{lIgI : g E CA and g(x) = f(x) for aU x in X}.

As a consequence(11) I =  Ilf _ S111, + 11.,112

whenever s is a minimal h norm interpolant of f.
As mentioned in the introduction the main results considered here concern

estimate!, of the error if(x) - s(x)l for x in a neighborhood fl of X. Such results
are essentially of a local nature and depend upon, among other things, how well
points in fl are approximated by points in X.

Suppose

(12) the inequality (4) is strict for all non-zero 0 in Dm

and X = {xl, ... ,xN} is a finite subset of R' which is a uni-solvent for P,,,-.
In this case, given any collection of complex numbers {f : f., } there is an f
in CA such that f(x,) = f., J = 1 .... N, and the minimal h norm interpolant
of f on X is the h-spline defined by (1)-(3). Note that (12) is implied by a mild
condition on the support of h and that all the examples mentioned above enjoy
(12).

3 Error estimates

On what follows we always assume that

* h is in CCPDm

* f is in CA

e X is a closed subset of R'

@ s is the minimal h norm interpolant of f on X.

Our first estimate includes the quantity Ek(h, c) which is defined by

Ek(h, c) = inf { sup Ih(x) - p(x)l }
pElPi ll<i

Theorem 1 Suppose fl is a cube of side b, b > bo >0, and k > m -1. Then
there is a positive constant 60 = 60 (b0 , k) such that if every subcube of f1 of side
6 where 6 satisfies 0 < 6 < 6o, contains a point of X then

(13) If(x) - s(x) < C111fllh{Ek(h, C26)} 1/2

for all x in fl where C, and C 2 are positive constants which are independent of
f and 6.

The proof of Theorem 1 can be found in [6]. The next result requires further
hypothesis on h. More specifically, if p is the Radon measure associated with h

as in (5) then we will assume that for sufficiently large k

(14) J IjkIdu( ) < p'ktk

where r > 0 and P > 0 are fixed constants.
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Theorem 2 Suppose the Radon measure p associated with h satisfies (14) for
some fixed constants r > 0 and p > 0 and all integcrs k > ko,. Also suppose Q
is a cube of side b, b > bo > 0. Then there are positive constants 5u = &(bo, h)
and A = A(bo, h), 0 < A < 1, such that if every subcule of f2 of side 6 where 6
satisfies 0 < 6 < 60, contains a point of X then

(15) I1(X) - s(X) :A -i1 1k

for all x in fl where a = min{1, 1/r. Furthermore, if 0 < r < 1, there are
positive constants c = c(bo, h, r) and C = C(ho, h, r) such that

(16) If(x) - s(X) < (C&)c"IllfI1h

for all x in f2 whenever 6 is sufficiently small.

The proof of this theorem in the general n variate case is technically rather
complicated. For simplicity and clarity we outline here the complete argument
in the univariate case which contains all the essential ingredients.
Proof To see (15) without loss of generality we may and do assume that
r > 1. Let x be any point in the interval Ql, set 0 = f - h, let 6o be a positive
constant which will be specified later, and suppose 5 is a positive number < 50.
Suppose k is any positive integer such that 2k < b and let fl. be any subinterval
of fl which contains x and has length (2k - 1)6. Subdivide Q., into 2k - 1
subintervals of length 6; namely,

fjZ = U -1[ ,,
.= 1

where a,,, - al = 6 for I = 1,..., 2k - 1. Let x. be any point in the intersection
of X and the subinterval fa 2 -i1, a2j], i = 1,... k.

If p is the polynomial of degree k - I which interpolates on {x ..... Xk}

then Kowalewski's exact remainder formula for polynomial interpolation reads

k(17) O W - p(X) = (k 1)! 1 : 1 X-- _ ~ -0( ) t d

where the 1j's are the Lagrange interpolating polynomials and (k) denotes the
derivative of d of order k; see [1, page 72] for details. Since p - 0, we may
estimate q(x) by manipulating the right hand side of (17) to obtain

1 k
(18) IO(X)I < k. Itj,()II - XI1I0(k)IIo

J=1

where 11 denotes the L' norm.
To estimate I1k1)I observe that if k > m + 1 the polynomial part of is

annihilated by the derivative of order k. In view of (7) for sufficiently large k
we may write

where V is in L 2 (R*,dM). Applying Schwartz's inequality to the last formula
results in
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Now

{ (,2k c() (2p)kk'k and {j I0 )I-d0( =Ih

and, by virtue of (11), [1h < I![h . Thus (19) simplifies to

(20) Il <k); :S 2 (2)k k'*lf ih.

To estimate the remaining terms in (18) recall that

1,(x)_ = _-x' , x-xjA<2k, and Ijzx,j h -i 1.

1 ) 
"
j -

X ,

By virtue of these inequalities we may write

k

(21) E It,(x)jjx - xl' < e k (2)k•
j=1

Finally, substitute (20) and (21) into (19) to get

W4(:) e k@ (2kH)(2p)kk I 1f !It

This expression can be simplified by using Stirling's approximation for k! and
writing
(22) oxJKukkkf l
where a is a constant multiple of p and, what is important, independent of all
other parameters under consideration.

Now comes the tricky part. Let

W r a (2)' and E01S= max, y,. jf ,nid 6o 3f(4rn + 1)"

Choose k so that 1 < 3(,C') k < 2 . These choices imply that k > m + 1 and,
since r > 1, 2Ek < 26k < 6,. so that all the calculations leading to (22) are
valid. Furthermore, (ao);I'k < 2/3 and k > 1/(3(a5) 1 / ' ) so that (22) implies

(15) with A = (2/3)1/ ( ' -'  ) I his c(mplctes the proof of (15).
To see (16) assume 0 < r < 1, let a be the constant in (22), and set

- m 1 1) (a (bl( 1

Suppose 6 is a pcsitie number < 8j and take the integer k so that it satisfies
b,/2 < 26k < bo. This choice 4 k ensures that k > rn + 1 and 26k < bo so that
all the calculations leading to (22) are valid. Furthermore. k < b-/(28) so that

and since the expression in braccs is < I and k > b,,/(-l) we may write
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Finally, in view of (22) and the above inequalities, we may conclude that if
0 < r < 1 and 0 < 6 < b1 then (16) holds with

C = and c 4

k2T 4

We draw the reader's attention to the following points concerning these
theorems:

9 The hypotheses imply that X is unisolvent for Pk

* In view of well known estimate on Ek(h, c), Theorem 1 implies that er-
ror bound is 0(b(k+1)/2) as 6 --- 0 for arbitrarily large k whenever h is
sufficiently smooth.

* The cube fl can be replaced by more general regions. For example, by
using affine transformations it should be clear that fl can be taken to be
a paralelpiped.

* Consider (14) and (16) in Theorem 2. In the case r = 0 the measure a has
compact support and so do the members of Ch. In this case the constant
C in (16) can be taken to be independent of b0 and c can be taken to be
bo/4. Taking bo = oo, for example this is the case whenever 11 contains
an open cone, it follows that s(x) = f(x). This means, of course, that the
values of f on X uniquely determine f.

9 The estimate needed for n-variate polynomials to replace the estimate on
E j1,(x)J in the above argument may be found in 18]. The remaining
ingredients needed for the proof in the general n-variate case can be found
in [7].

4 Miscellaneous examples and remarks

Observe that the examples mentioned in the introduction h(x) = e- 1X1, (1 +

Ix12) - (
n+l)/2, and - V1+ 1112 are very smooth so that Ek(h, c) = O(ck+ l ) for

any non-negative integer k in all these cases. The first example satisfies (14)
with r = 1/2 and the other two satisfy (1-1) with r = 1. For more examples of
this type see 17]_

The the function h defined by

h(x) =

where Xl..x, are the coordinates of x, in other words x = (xl. x), is
conditionally positive definite of order zero and satisfies (14) with r 0 and
p = V/f.

The other example mentioned in the introduction h(x) = -jxJ is not so
smooth and fails to satisfy (11). More generally we may consider h(x) = 1xia ,

a > 0, which fail to satisfy (11) but enjoy Ek(h,f) = O(ca) asc - 0 whenever
k > a - 1. Thus Theorem 1 implies error bounds which are O(6 a/ 2) as 5 -_ 0
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for these examples. Such error bounds are not optimal. In the case n = 1
and a = 1 or 3 the corresponding interpolants are piecewise linear or piecewise

cubic splines respectively; the optimal pointwise error estimates are known to
be O(6 "+') as 6 -+ 0 in these instances, see [11]. In the case n = 3 and a = 1
Nelson [4] has shown that a pointwise error bound is possible which is 0(6') as
64-+ 0.

The variational theory of h-splines introduced in [5] may be regarded as
an extension of [2]. The motivation for this extension wa- a question implic-
itly raised in [3] concerning the invertibility of (aj) = ( /1 + jx, - xI) which
this theory settled. An alternate, apparently more appealing, solution to this

question is Micchelli's generalization [9] of Schoenberg's theorem [10] concern-
ing positive definite functions; this extension inspired many related publications
which, because of space limitations, cannot be cited here, however, see the re-

lated articles by Buhmann, Powell, Schaback, and Ward in these proceedings.
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