
Applied Research Laboratory

Technical Report
LD

DTIC
ELECTE ~

PEN NSTATE
DXTT mmumpm AT~f

W -,-rrvv ;cr ubse. =,h o wi

The Pennsylvania State University
APPLIED RESEARCH LABORATORY

P.O. Box 30
State College. PA 16804

SOLVING LEAST SQUARES PROBLEMS ON

DISTRIBUTED MEMORY MACHINES

by

Udaya Bhaskar V.S. Vemulapati

DTIC
^ELECTE

Technical Report No. TR 90-015 D

Supported by: LR. Hettche, Director
Space and Naval Warfare Systems Command Applied Research Laboratory

Approved for public release; distribution unlimited

REPORT DOCUMENTATION PAGE 1 .

OLVING LEAST SQUARES PROBLEMS ON DISTRIBUTED MEMORY
ACHINES

THOR(S)

Jdaya Bhaskar V.S. Vemulapati

UWORMING ORGANIZATION NAME(S) AND AOESS(ES) *. PERFORMING ORGANLZATON
REORT NUMBER

Applied Research Laboratory

The Pennsylvania State University
P. 0. Box 30
State College, PA 16804

3NSORING / MONITORING "AGENCY NAME(S) AND ADDRESS4ES) 1 |0. SPONSORJNG / MONITORING'
AGENCY REPORT NUMBER

Space and Naval Warfare Systems Command N000039-88-C-0051
Department of the Navy
Washington, DC 20363-5100

JPP UMENTARY NOTES .iI

STI LESUTEON/ AVAPIOAESOTY STATEMENT 12b. DISTRIUTION COE

Unlimited

OSTRACT (Maximum 200 worw)

Je consider solving unconstrained least squares and equality constrained least
squares problems on distributed memory multi-processors. First, we examine

;ome issues related to matrix computations in general, on such architecutes.
Je then describe three different algorithms to compute an orthogonal factorizqtion
f a matrix on a multi-processor, which are well suited for dense matrices.

s for sparse matrices, efficient solution of problems involving large, sparse
iatrices on distributed memory multi-processors calls for the use of static
ata structures. Often, at the same time, it is critical to detect the rank

)f a matrix during the factorization to get accurate results. We describe a
ange detection strategy, using an incremental condition estimator, that computes
factorization using pre-determined static data structures. We present experimental

vidence to show that the accuracy of the rank detection algorithm is comparable
:D the column pivoting and another recent procedure by Bischof. We further

lemonstrate that the algorithm is quite suitable for parallel sparse matrix

Washington, DC 20363_______5100___

UIST.CI TEAMS 15. NUMER OF PAGES
Least suares, distributed memory, multi-processors, matrix
computations, dense matrices, sparce matrices, hypercule, 1. PIC COte.
rank deletion algorithm

ICURITY C1'ASSWIICAT1ON 16U. SECURITY C]LASSIFICATIOF' 11. SECUIT-Y O.ASSUiIkflOUIEOITOFTi PG fASR 20. UMITATION Of ABSTRAtCT

Unc, lassified Unclassified Unclassified SAR

340-01-260-S5500 Stanard form 299 (Rev 2-49)
.. atmn i iiciei-- on d i mtorf

SOLVING LEAST SQUARES PROBLEMS ON DISTRIBUTED MEMORY MACHINES
Abstract (continued)

factorizations, by showing good speed-ups on a hypercube with up to 128 processors.
We use this algorithm to detect the rank of the constraint matrix in solving
the equality constrained least squares problem. We use the weighting approach
to solve the equality constrained least squares problem, with two iterations
of modified deferred correction technique compute an accurate solution, for

all but ill-conditioned problems. We also show that the entire solution process
can be carried out using a static data structure. Finally we demonstrate good
speed-ups in solving large equality constrained problems on a hypercube.

Accession For

NTIS GRA&I
DTIC TAB -
Unannou-nced]
Justificition

By

Availabillty Ood
Avail and/or'

Dist Special

~iii

Abstract

We consider solving unconstrained least squares and equality constrained least squares

problems on distributed memory multi-processors. First, we examine some issues related

to matrix computations in general, on such architectures. We then describe three different

algorithms to compute an orthogonal factorization of a matrix on a multi-processor, which

are well suited for dense matrices.

As for sparse matrices, efficient solution of problems involving large, sparse matrices

on distributed memory multi-processors calls for the use of static data structures. Often,

at the same time, it is critical to detect the rank of a matrix during the factorization to get

accurate results. We describe a rank detection strategy, using an incremental condition

estimator, that computes a factorization using pre-determined static data structures. We

present experimental evidence to show that the accuracy of the rank detection algorithm is

comparable to the column pivoting and another recent procedure by Bischof. We further

demonstrate that the algorithm is quite suitable for parallel sparse matrix factorizations,

by showing good speed-ups on a hypercube with up to 128 processors. We use this

algorithm to detect the rank of the constraint matrix in solving the equality constrained

least squares problem. We use the weighting approach to solve the equality constrained

least squares problem, with two iterations of modified deferred correction technique, to

improve the accuracy of the original solution. "NWe present results to indicate that two

steps of the modified deferred correction techniqie compute an accurate solution, for all

but ill-conditioned problems. We also show that tl entire solution process can be carried

out using a static data structure. Finally we demonstrate good speed-ups in solving large

equality constrained problems on a hypercube.

N

. -- m~ m i umnnuoun nnun nmnmnimlm n nl luu miN mi nnl |)

iv

Table of Contents

List of Tables... vii

List of Figures. viii

Acknowledgemnents... ix

1 Introduction.. 1

1.1 Supercomputers. 1

1.2 Distributed Memory M ulti- processors. 2

1.3 Equality Constrained Least Squares 3

1.4 Related Work.. 4

1.5 Model of Computation 7

1.6 Hypercube Embeddings. 8

1.7 Issues in Parallel Matrix Computations 9

1.7.1 Granularity of Parallelism. 10

1.7.2 Load Balancing. 10

1.7.3 Design Philosophy. 11

1.7.4 Experimental Methodology 12

1.7.5 General Techniques 13

1.8 Sparse Matrix Terminology 15

1.9 Overview. 16

2 Orthogonal Factorization 18

2.1 Problem Definition 18

2.2 Parallel Givens Rotations. 19

2.3 The Knight Tour Givens Sequence 20

v

2.4 Description of the Algorithm. 21

2.5 The Greedy Givens Sequence 24

2.6 The Greedy Algorithm. 24

2.7 The Recursive Fine Partition Sequence. 26

2.8 Description of the Algorithm. 28

2.9 Comparison of the Algorithms. 28

3 One-way Dissection. 30

3.1 Introduction. 30

3.2 Description of Algorithms. 31

3.3 Error Analysis. 43

3.4 Stability tests 45

3.5 Hypercube Implementation 45

3.5.1 Complexity of the parallel algorithm. 48

4 Rtank Detection 49

4.1 Introduction. 49

4.2 Failure of Traditional Methods. 50

4.3 Issues in Parallel Factorization. 51

4.4 Incremental Condition Estimation. 54

4.5 Issues in Parallel Implementation. 60

4.6 Implementation Details. 62

4.6.1 Compressed and Uncompressed Subscript Notation 62

4.6.2 Static Data Structure for Rank Detection 64

4.7 Timing Results on a Hypercube 65

4.8 Robustness of the Algorithm. 65

5 Weighted and Equality Constrained Least Squares Problems 70

vi

5.1 Traditional Methods. 70

5.1.1 Using the Basis of a Null Space. 71

5.1.2 Direct Elimination. 72

5.1.3 Weighting. 73

5.2 Deferred Correction. 74

5.3 Proper Choice for Parallel Implementation 76

5.4 Issues in Parallel Implementation. 76

5.5 Tests on Parallel Ixiplementation. 78

5.6 Effectiveness of Deferred Correction. 79

Bibliography. 81

vii

List of Tables

3.1 Error in Algorithms 3.3 and 3.5 for Random Matrices 45

3.2 Timings results on Intel ilypercube 47

4.1 Timing results on factorization with the condition estimator 66

4.2 Our condition estimation tests 67

4.3 LINPACK condition estimation tests 67

4.4 Bischof's condition estimation tests 67

4.5 Rank detection tests of our algorithm (k 2 = 1.0e6) 68

4.6 Rank detection tests of Bischof's algorithm (k2 = 1.0e6) 69

4.7 Rank detection tests of Column Pivoting algorithm (k2 = 1.0e6) 69

4.8 Rank detection tests of our algorithm (k 2 = 1.0e9) 69

4.9 Rank detection tests of Bischof's algorithm (k2 = 1.0e9) 69

4.10 Rank detection tests of Column Pivoting algorithm (k 2 = 1.0e9) 69

5.1 Timing results of constrained problem 79

5.2 Trace of the Deferred Correction Algorithm 80

viii

List of Figures

1.1 Connectivity of Hypercubes 8

1.2 Effect of a sequence of Given's rotations on the non-zero structure 16

2.1 The knight tour Givens sequence 20

2.2 The knight tour Givens sequence algorithm 22

2.3 The recursive elimination phase 26

2.4 The fine partition of a matrix 27

4.1 Example matrix R 63

4.2 Uncompressed data storage scheme 63

4.3 Compressed data storage scheme 63

Chapter 1

Introduction

Ever since electronic computers were invented, there has been a constant quest to

make them faster and cheaper at the same time. During the past 40 years, there has

been tremendous technological developments in the field of integrating the electronic com-

ponents to build a computer system. Beginning with Small Scale Integration (SSI), the

technology has taken us through Medium Scale Integration (MSI), Large Scale Integration

(LSI), Very Large Scale Integration (VLSI) and we are going to see Ultra Large Scale In-

tegration (ULSI) in the near future. As a consequence, today we have computer systems

that occupy less space by several orders of magnitude, faster by a factor of 103-104 and

yet cheaper by a factor of 1000, compared to a system built in early 1960's.

At the same time, the computers are being called upon to solve bigger and bigger

problems each day. It was always felt that there are problems that could use faster

computers, however fast the current system might be. Moreover, scientists and engineers

are attempting to solve huge problems, which were not attempted before. For example,

the need for solving dense linear systems with 20,000 equations, with complex coefficients,

arises in radar cross section modeling. In a recent attempt to solve such problems, Scott

et al. [69], anticipates the need to solve even larger ones, perhaps with 100,000 equations.

1.1 Supercomputers

In a broad sense, there have been two schools of thought on building such large com-

puter systems capable of solving huge problems. The traditional approach has been to

build a single, giant, von Neumann type processor, with a large memory to achieve the

goal. Techniques employed in constructing such a machine include ultra fast components,

2

pipelining, multiple arithmetic units, instruction and data caching and vector processing.

However, there are two serious drawbacks to this approach. Firstly, physical limitations,

such as the speed of light, put an upper bound on how fast the processor can be and in

that sense, we can not expect to see the type of increases in the speed of the processors as

we ha-'e seen in the past 40 years. Secondly, these types of systems are very expensive to

build. The second approach has been to build systems with multiple processors and use

all the processors to work on the same problem. Experimental machines were built in the

early 60's, such as ILLIAC IV. But they never became commercially viable or successful.

In late 70's and early 80's, however, multi-processor systems emerged as a cost-effective

competition to the uniprocessor systems. Commercial examples of such systems include

BBN Butterfly and Alliant. These systems hatil relatively small number of processors (typ-

ically 4 to 32), that shared a common memory through some hard-wired interconnection.

They can be broadly classified into Shared memory multi-processors.

1.2 Distributed Memory Multi-processors

In early 1980's, the first prototype of a Distributed memory multi-processor, called

Cosmic Cube, was built at Caltech [70]. This project demonstrated practical feasibility

and effe .tiveness of such machines and it renewed researcher's interests to consider those

architectures seriously. The idea behind these systems is very simple. Several (possibly

identical) processors, each with its own memory, are connected by suitable communication

channels. Each processor can access its (local) memory, without contention from other

processors and it can not directly access the memory of other processors. However, the

processors can communicate with each other by receiving and sending messages. As the

name implies, the memory is distributed between all the processors. They are also referred

to as "local memory multi-processors," because the memory is local to each processor.

They are also called as Afessage-Passing architectures. Commercial products based on

this prototype, known as Hypercubes, have been available in the market since 1985. The

3

notable feature of this architecture are that these systems are easily scalable, as opposed to

shared memory machines - i.e. it is not very clear how to build shared memory machines

with the order of 1000 processors, where as hypercubes with 8096 processors are already

announced. However, not everyone is convinced that these machines are going to be the

"Supercomputers of the Future." But the author believes this machines of that type,

perhaps with thousands (or even millions) of processors can be built and used for solving

large scientific problems.

1.3 Equality Constrained Least Squares

Any problem with sufficient data to over-determine a solution calls for some type of

approximation method. And least squares is the most frequently used approximation

criterion. A well known example is to fit a straight line (curve fitting) through a given set

of points in a plane, such that the sum of the squares of the distances between each point

and the line is minimized. Mathematically, the problem is to find an n-vector z such that

min 1Ib - AxI 2 (1.1)

where b E Rn,A E R x n are the given input data. The problem is called the linear least

squares problem [59]. In addition, if some of the variables are required to satisfy specified

linear constrains, then the problem is called equality constrained least squares, usually

denoted as to find x E Rn such that

min ib - AxI 2 (1.2)

while

Cx = d.

4

These problems occur in many practical engineering problems - optimal design of struc-

tures, constrained optimization.

The theory behind the solution of these problems is well understood for small, dense

problems for sequential computations [59]. Efficient methods for solving the problem

when the matrix B = () is large and sparse were given by Van Loan (731, Barlow
C

and Handy [6]. However the problem of solving such large and sparse instances on multi-

processors poses a lot of interesting challenges and this thesis attempts to examine some

issues involved in such a process.

To solve those problems efficiently on multi-processors, especially on distributed mem-

ory multi-processors (see section 1.2), the proper use of data structures to represent the

sparse matrix factorizations is critical. In this context we put some what an extra empha-

sis on the use of static data structures (see section 1.8) because the use of dynamic data

structures (see section 1.8) on distributed memory multi-processors is not very efficient.

1.4 Related Work

As this thesis places an emphasis in demonstrating that such large and sparse problems

can be solved efficiently on large distributed memory multi-processors, it borrows quite a

few ideas, algorithms and data structures from the sequential counterparts. Here we take

a quick look at the the relevant work in the related areas which influenced the author.

Parallel processing in general and distributed memory machines in particular, have

attracted a lot of attention of researchers in the last 5 years. Initially there was skepticism

among some members of the scientific community about the feasibility of solving real life

problems on distributed memory multi-processors. In fact, in November 1985, Alan Karp

challenged the scientific community to demonstrate a speed-up of at least 200 for real

scientific application on a general purpose MIMD computer [28]. And until that challenge

was finally answered by Gustafson et al. [47] in 1988, most of the research in parallel

5

scientific computing was limited to exploring the new architecture and to demonstrating

speed-ups on a small number of processors. A good survey of these initial works can be

found in McBryan and Van De Velde [62].

Most of the work in the area of parallel matrix computations falls into two main

categories. Some earlier work examined the issues involving dense matrices. Chamberlin

and Powell (19] described an algorithm to compute a QR decomposition of a matrix on

a hypercube. Pothen, Jha and Vemulapati [65] described three algorithms to do the

same, one of which is quite similar to the algorithm described in Chamberlin and Powell

[19]. Chu and George [21) described an algorithm for computing QR factorization of

a rectangular dense matrix on a hypercube, using redundant computations. Geist and

Romine [33] investigated the effect of data-storage schemes and pivoting scheme on the

efficiency of LU factorization on distributed memory /rp. These algorithms concentrated

on the issues of data mapping, processor embedding and to some extent, load balancing

and they exploited the architectural aspects of the hypercube.

As far as parallel sparse matrix computations, some ideas from sequential counterparts

had a strong influence on them. Some initial work examined the symmetric LU factor-

ization (Cholesky) that set the trend for later development. The important contribution

was the concept of symbolic factorization of a sparse matrix to arrive at a static data

structure for carrying out the actual factorization. Sherman [71] and Rose et al. [67] gave

some practical algorithms to carry out the symbolic factorization for symmetric matri-

ces and later George and Liu [38] gave an optimal algorithm in terms of space and time

requirements for the same.

A similar concept of using a static data structure for solving a least squares (using

Givens rotations, see Chapter 2) problem was examined by George and Heath [36], mak-

ing use of the fact that the triangular factor R in a QR factorization of a matrix A is

mathematically equivalent to the Cholesky factor of ATA. Even though this assumption

gives us an overestimate of the structure of R, it can be carried out quite economically in

6

practice. Later, however, Coleman et al. [23] characterized a class of matrices for which

the estimate is exact and suggested a way wherein an arbitrary matrix can be transformed

(using row and column permutations) into block diagonal form, where each block satisfies

the characterizing criterion. In practice, one rarely performs such a transformation be-

cause the effort involved in doing so does not pay for itself in terms of the computational

savings because of lesser number of non-zeros.

Then George and Ng [41] described a way to even store the orthogonal matrix Q in

factored form, if Householder transformations are used to compute the factorization. We

will be using this result to solve the equality constrained least squares problems.

Another problem that attracted attention was to deal with rank deficient matrices.

Because we are dealing with sparse matrices, the techniques like column pivoting are not

very suitable, especially if static data structures are to be used. Heath [51] described a

restricted pivoting procedure, which we call threshold pivoting, that allowed the use of

static data structures to do some selection based on the actual numerical values. But

as we will see later this did not solve all the problems associated with rank deficient

matrices. Later George and Ng [40] developed a sparse matrix subroutine package, called

SPARSPAK-B, for solving least squares related problems, incorporating most of the known

ideas at that time.

In terms of the actual solution of solving least squares problems on multi-processors,

George, Heath, Liu and Ng [37] discussed the problem of factoring a large, sparse, positive

definite matrix on a multi-processor, with a view to design an algorithm that exploits

parallelism, rather than exploiting features of the underlying topology of the hardware.

Other related work has been the solution of triangular system of equations on dis-

tributed memory multi-processors. This was not a trivial problem to implement efficiently

because it has inherently limited parallelism and has less computational demand. However,

by exploiting the architectural aspects of the hypercubes, Heath and Romine [52] discussed

several parallel algorithms for solving triangular systems of linear equations on distributed

7

memory multi-processors. Li and Coleman [60) described another column oriented parallel

triangular solver and later provided some improvements to the same algorithm (61].

In sharp contrast to the above work, Alaghband [2] described a parallel algorithm

for factoring large, sparse, unsymmetric matrices, which dynamically controlled the fill-in

with numerical stability as a goal and a dynamic load distribution. This technique is not a

pre-ordering of the sparse matrix and is applied dynamically as the factoriz:.tion proceeds.

1.5 Model of Computation

As has been explained in the previous section, we assume that the system under

consideration is a distributed memory multi-processor. For conducting experiments, we

used Intel Hypercube (both iPSC/1 and iPSC/2) models. The system consists of P = 2d

independent processors, each with its own local memory. d is called the dimension of the

cube. The interconnection network can be viewed as if a processor (also called as a node)

sits in each corner of a d-dimensional cube and two processors are connected if and only

if there exists an edge between them in the cube. Figure 1.1 shows the interconnection

network for d = 1, 2,3 and 4. Inductively, a d-dimensional cube can be constructed by

taking two (d - 1)-dimensional cubes and connecting all the corresponding vertices. It fits

the MIMD (Multiple Instructions Multiple Data) model of parallel computations. There

is also a separate processor, called the host, which is connected to all the nodes in the

system by direct communication channels. This host acts as a resource manager for the

whole system. It allocates some (or all) nodes to a problem on request and loads the

programs onto the nodes but it is not involved in node-to-node communications.

We assume that the system supports the following communication primitives. One is

to send messages from one node to another. The other is to receive any messages that were

sent. Even though every node is not directly connected to every other node, messages can

be sent from any node to any other node and the underlying node support system routes

the messages appropriately (if needed). In practice, the systems support asynchronous as

101 111

01 11 00

0-D10010~

0 1 00 10 OG- 010

d=l d=2 d=3 d=4

Figure 1.1: Connectivity of Hypercubes

well as synchronous passage of messages. It can be seen easily that the distance between

any two nodes is less than equal to d = log P.

1.6 Hypercube Embeddings

As was noted in the previous section, every node is not directly connected to every other

node. This means that communication between neighboring nodes (or adjacent nodes) on

the cube, is going to be faster than communication between two arbitrary nodes that are

not connected. So if the problem is distributed among nodes such that only neighboring

nodes need to communicate, the communication delays would be reduced. So a majority of

the algorithms designed for Hypercubes try to use only the neighboring communications.

However, this is not a serious constraint on the part of the designer. Although arbitrary

graphs can not be efficiently embedded on a Hypercube, fairly simple ones like rings, two

dimensional grids and trees can be embedded easily. A lot of work has been done on graph

embeddings on hypercubes [25,55,58], but we limit our discussion to embedding simple

graphs like rings and grids.

In the algorithms that are going to be described in this thesis, we make use of only

rings and square grids. On a Hypercube with P nodes, two nodes are connected if and

only if their node number (numbered from 0 to (P - 1)) differs in exactly one bit in the

binary representation. The Binary Reflected Gray Codes are used to number the nodes,

9

we can easily form a ring of P nodes on an a P-node cube. The ith entry, in a Binary

Reflected Gray Code sequence can be computed by the formula

iE(i/2) fori=0, 1,2,...,(P-1),

where e is the exclusive or operator and the division is integer division. For example, on

a cube with 8 nodes, we could order the processors as

000 001 011 010 110 111 101 100

such that the consecutive nodes, including the first and the last are connected on the cube.

By a similar extension, square grids of size v /i x VT can be embedded easily on a cube

of size P. In practice, each row and column of the grid is a ring.

1.7 Issues in Parallel Matrix Computations

The three basic problems in matrix computations, namely the solution of linear system

of equations, linear least squares problems and the eigenvalue problems [43,75], are quite

in rich in terms of arithmetic operations and hence ideal candidates for parallelization.

At the same time, there are some operational dependencies inherently present in the

algorithm, in the sense that some operations are needed to be completed before others

can be performed. A major work in designing parallel algorithms is to identify the parts

of the solution process that can be done in parallel and maximize such parallelism.

But there are a lot of issues, some still unresolved, when it comes to designing parallel

algorithms. Some of the issues that pertain to the algorithms described in this thesis and

those that influenced the design are enumerated here.

10

1.7.1 Granularity of Parallelism

Because the communication cost (the time needed to send one word from one processor

to another) on Local-memory multi-processors is quite expensive compared to arithmetic

cost (the time required to perform an arithmetic operation on one word), it is imperative

that the amount of communication be kept at its minimum. This implies thatthe ratio of

arithmetic to communication cost should be maximized. Philosophically, the communica-

tion cost is an necessary evil that arises as a result of trying to exploit parallelism and it

should be minimized. Toward this goal, medium to coarse grain parallelism seems to be a

good choice and it is reflected clearly in all of the algorithms described here.

1.7.2 Load Balancing

All the algorithms here try to do static load balancing, as opposed to dynamically

balancing the load during the execution of the program. Even though a lot of work is

being done in this area of dynamic load balancing, it was deliberately decided to use

static load balancing to achieve nearly even distribution of work. The main reason is

that the overhead involved in dynamic load balancing is high, especially for distributed

memory multi-processors.

Even the static approach that was taken here is overly simplistic. It is assumed that

equal (or nearly equal) distribution of matrix elements (either by rows, columns or sub-

matrices) will nearly balance the load on individual processors. It is only fair to note

that this is not an unrealistic assumption, if the matrix is carefully distributed among the

processors. For example , if the matrix is distributed by rows on a ring of processors,

wrapping the rows, instead of blocking them, would achieve a fairly good balance of load.

Since wrapping is the the most often used technique in our algorithms, we elaborate on it

here.

Suppose we want to distribute a matrix by rows on a ring of processors. Assume that

11

the input matrix has m rows and that there are P processors numbered from 0 to (P - 1).

In wrapped mapping, row 1 would be assigned to processor 0, row 2 to processor 1 ... etc.

And after assigning row P to processor to (P- 1), we assign row (P + 1) back to processor

0. We continue in this manner till all the columns are distributed. It is easy to note that

the difference in number of rows allocated to different processors differs by at most one

and that each processor has at least one row from any set of P consecutive rows of the

original matrix.

1.7.3 Design Philosophy

There are quite a few metrics that are used to measure the performance of a parallel

algorithm running on a parallel processor. Some of them are speedup, scaled speedup,

processor efficiency, price-performance ratio and a recent one measured serial fraction,

introduced by Karp and Flatt [56]. Gustafson (46] argues that the Amdahl's Law [3] and

his argument (about the maximum speedup attainable) are inappropriate for the current

approach to massive ensemble parallelism. Further, we agree with Gustafson's quote

One does not take a fixed-sized problem and run it on various number of

processors except when doing academic research; in practice, the problem size

scales with the number of processors'.

Even though, in most of the experiments that were done, a known sized problem is

run on various number of processors to demonstrate the speedup, as has been noted by

Gustafson, it is only of academic interest. A careful examination of the algorithms here

will reveal that they are designed for scaled speedup, even though experiments were done

only on a fixed size problems. The underlying philosophy has been that these algorithms

should do better as the problem size grows, if the number of processors is kept constant.

And most algorithms here do not show any increase in the speedup, if the number of

'Q1988 ACM, Communications of the ACM, May 1988; copied by the permission of the Association
for Computing Machinery.

12

processors is increased beyond a limit. Simply put, it is assumed that the problem size

grows with the number of processors. This contrasts sharply with a lot of theoretical

work done in parallel processing, where in they assume that 0(n) or 0(n 2) processors are

available, where n is the size of the matrix.

1.7.4 Experimental Methodology

In reporting the experimental results in this thesis, speedup is often highlighted as the

metric for showing the performance of a parallel algorithm. However, there are a lot of

ways to define this metric. Quinn [66] cites the following definitions.

" the ratio between the time taken by a parallel computer executing the fastest serial

algorithm and the same parallel computer executing the parallel algorithm using

multiple processors.

* the ratio of the execution time of the most efficient serial algorithm running on the

fastest serial computer and the execution time oi the parallel algorithm running on

the parallel computer.

" the ratio of the time taken by a parallel algorithm on a parallel computer using only

one processor to the time taken by the same algorithm using multiple processors.

However, raw numbers, in terms of number of seconds taken to solve a particular size

problem, do not indicate the effectiveness of the parallel algorithm. Often these numbers

may indicate that a 32-node hypercube can not compete with the current minicomputers,

in terms of raw times. This is understandable, since these machines were mainly for

research purposes and newer versions of these machines not only compete, but they also

beat some so called supercomputers. Secondly, it is not fair to compare these raw timing

values with the the best possible sequential time. Because there has not been enough time

and effort spent on these new parallel algorithms (compared to sequential case) to optimize

13

them for a particular architecture. Rather, what Is interesting to monitor is how well the

algorithm fares as problem size increases, keeping the the same number of processors.

And for academic interest, speedup was shown as the factor in decrease in time when the

number of processors is doubled.

1.7.5 General Techniques

As has been noted before, time required to send one word from one processor to another

is significantly greater than the time required for an arithmetic operation. This is true

of current generation hypercubes and there is no reason to believe that this gap will be

closed any time soon.

However there are a few techniques, which, when employed properly, allow us to solve

the problem efficiently. Some notables ones are

9 Longer messages

The time required to send a message of N words from one processor to another can

be modeled with the following equation

(a + #N)6

where a is the start-up time for setting up the message transfer (and is independent

of N), 8 is the time required to send one word from one node to its neighbor after

the start-up procedure and 6 is the distance between the source and the destination.

Even on the recent versions, where dedicated communication handlers exist on each

of the nodes to facilitate message routing, the communication delay could be modeled

as

al +,ON + (2 + ON)h

where a, is the start-up time at the source/destination and 02 is the start-up time

14

at each of the intermediate hops and h = 6 - 1 is the number of intermediate hops.

It is easy to see that the amortized cost of sending one word is reduced considerably

if the message is long. Hence short messages should be grouped together and sent

as a single, long message.

" Pipelining

This is another strategy that reduces the total execution time. Even though it takes

considerable amount of time to send messages from one node to another, if a series

of messages are sent in a pipelined manner, except for the initial delay of (a, + 0 2 h)

units, the messages should be arriving one after the other (at least theoretically).

For example, during a QR factorization of a matrix, short messages describing a se-

quence of Given's rotations could be pipelined and good speed-ups can be achieved,

in spite of sending a large number of short messages. This strategy of overlapping

communication of messages with computations is possible on the second generation

cubes because each node on the hypercube has a dedicated communication handler,

which is different from the node processor. There are several ways to achieve this

overlap. One can send (and receive) messages asynchronously. While sending mes-

sages asynchronously does not save any time in practice, receiving asynchronously

would save considerable time if proper choice is exercised. A good strategy with this

type of protocol would be to keep checking for a message arrival, followed by some

computational work in a repeated fashion.

* Duplication of computations and related asynchrony

There are situations where in a node makes a binary decision depending on certain

values held by all the processors at each step. Traditional approaches used broad-

casting of that value to each node to arrive at a consensus value, which requires

O(log N) message delay with N processors. However, by paying a small price in

terms of computation, we can postpone resolving that decision for a few steps and

15

instead maintain all possible values for that variable. While doing so, we need not

synchronize with other processors at each step and the additional computation is

nothing compared to the waiting time involved if we were to wait for the values from

all the nodes to arrive.

1.8 Sparse Matrix Terminology

Throughout this thesis, we will be using some well understood terminology from the

sparse matrix computations and we take a moment here to review them briefly.

A matrix is sparse if the number of nonzero elements in the matrix is quite small

compared to the total number of elements. And since the computation time for any dense

matrix factorization is of O(n 3) for an n x n matrix, a lot of savings in time and space

can be achieved by not storing the zeros of the sparse matrix.

If the zeros are not be stored, then we need a special structure to represent the sparse

matrix. And that data structure needs to keep track of two things - the values of the

nonzero elements and the positions of all the nonzeros. The former are the actual numerical

values and the later represent the structure of the nonzero pattern. This extra information,

which usually requires space of the order of the number of nonzeros, is not required in

the case of dense matrices because every element is represented. We could use linked lists

or one-dimensional arrays to represent these structures [1). If we use linked lists, any

dynamic changes to the nonzero pattern can be accommodated into the structure.

Consider a matrix, such as shown in figure 1.2, where each x denotes a nonzero.

Regardless of the actual values of these nonzeros, one can arrive at a structure that holds

all the nonzeros of the final factor, if some factorization is performed on the matrix. This

process is called symbolic factorization [39, 67]. This process does not take into account

the effect of numerical zeros i.e. because of some particular numerical values, some of

the entries may become zero during the factorization but this process considers them as

structurally nonzero. The figure 1.2 shows the effect of a sequence of Given's rotations

16

Figure 1.2: Effect of a sequence of Given's rotations on the non-zero structure

applied to a given matrix. The f entries also represent nonzeros but were absent in the

original matrix and hence called fill elements. The i entries indicate that even though

they were zeros at the end but were nonzero during the factorization and hence called

intermediate fill elements.

If we use a symbolic factorization technique to arrive at a structure that holds all the

nonzeros during the entire factorization, then'we can use pre-determined one-dimensional

arrays to represent the sparse factor (see chapter 4). This type of technique is commonly

referred to as using static data structures.

On the other hand, if we do not want to perform symbolic factorization, or if it is not

possible to do so because of pivoting requirements, we will be forced to use linked lists

to represent the matrix as new nonzero elements will have to be introduced during the

factorization. This technique is called using dynamic data structures. In general, because

of indirection involved in accessing an element, dynamic data structures are slower than

static counterparts.

1.9 Overview

In chapter 2, we consider three algorithms to compute an orthogonal factorization of

a rectangular matrix on a hypercube. These techniques are mainly for dense matrices

but can be generalized for sparse matrices as well. In chapter 3, we consider solving a

sparse system of linear equations on a hypercube. But here the sparse matrix has a special

structure, that usually arises out of one-way dissection. In chapter 4, we develop a rank

17

detection technique using an incremental condition estimator that is suitable for parallel

sparse matrix factorizations. We examine the need for such an estimator, describe the

algorithm, show its effectiveness and demonstrate its usefulness on hypercubes. In chap-

ter 5, we consider solving Equality Constrained Least Squares Problems on hypercubes,

using the incremental condition estimator developed in chapter 4 and demonstrate that

large and sparse equality constrained least squares problems can be solved efficiently on

hypercubes. We conclude with some future directions.

Chapter 2

Orthogonal Factorization

Orthogonal factorization is one of the fundamental operations in matrix computations.

Even though using orthogonal factorizations is one of the several ways to solve a system

of linear equations, applying them to linear least squares problems is the most practical

way to solve them. In this chapter, we design and analyze algorithms for computing

orthogonal factorization on a distributed memory multi-processor. A detailed description

of these algorithms and analysis can be found in Pothen et al. [65].

2.1 Problem Definition

Given a matrix A E Rn xn , ive would like to obtain the factorization of the form

A=QR (2.1)

where Q E Rmxm is orthogonal and R E Rm' n is upper trapezoidal. The form in equation

(2.1) is referred to as the QR factorization of the matrix A. It can be calculated in several

ways - Gram-Schmidt method, using Householder transformations and using Givens

rotations, the last two being more popular [43].

Householder matrices, which are of the form (I - UUT), are orthogonal for any

vector u and they can be used to zero any sub-column of a matrix by a proper choice of u.

And the orthogonal factorization can be computed a product of a sequence of Householder

transformations.

Givens rotations allow us to zero elements more selectively compared to Householder

19

transformations. Givens rotations are rank-two corrections to the identity of the form

i k

1 :0

i C ... S ...

J(i,k,0) : : (2.2)

k ...- s ... c

where c = cos(O) and s = sin(O) for some 0. Clearly Givens rotations are orthogonal

for any value of 0. Premultiplication by J(i, k, 0) amounts to a rotation of 0 degrees in

the (i, k) coordinate plane. In fact if x E Rn and y = J(i, k, 0)x, then

Yi = Ci + 8zi

Yk = -sXi + CXk (2.3)

yj = Xj j 6 i or k.

Hence by choosing

anXi d s Xk (2.4)
.T? + , + X~

S ki r k

we can set Yk to zero. And the orthogonal matrix Q in equation (2.1) can be computed

by a product of a sequence of Givens rotations.

2.2 Parallel Givens Rotations

We only consider Givens sequences in which zeros once created are preserved during

the rest of the factorization. Givens rotations are very promising in the parallel context,

since disjoint rotations can potentially be computed in parallel. There is also a great deal

of freedom in the order in which the rotations are applied to the matrix. This freedom

can be exploited to design algorithms for appropriate architectures. Here we study three

20

X X X X

[6 X X X
T xxWx

Figure 2.1: The knight tour Givens sequence

different Givens sequences.

" The Knight tour Givens sequence, discussed by Gentleman [34], who showed that the

grouping of rotations in this sequence led to tighter error bounds, and by Sameh and

Kuck [68], who designed a parallel orthogonalization algorithm for a SIMD machines

using this sequence.

" The Greedy Givens sequence, in which rotations are organized into groups such that

as many disjoint rotations as possible are put into each group. It was studied by

Modi and Clarke [63] and by Cosnard, Robert and Muller [24]. This is a variant of

an algorithm designed and implemented by Chamberlain and Powell [19]

" The recursive fine partition sequence, in which the matrix is partitioned into sub-

matrices and these submatrices are distributed among the processors.

2.3 The Knight Tour Givens Sequence

The name comes from the similarity between this sequence and the way a knight moves

on 4 chess board. In this algorithm, an element aq, is eliminated by a rotation between

rows i and (i - 1).We denote this operation by a tuple (i,j). The sequence is illustrated in

figure 2.1 for a 7 x 4 matrix. The squares indicate that the entry is to be zeroed and the

21

integer inside the square indicates the group number in which that element is zeroed. All

elements in a group can be zeroed concurrently. For an m x n matrix, there are (m+ n - 2)

groups in our sequence.

The entire sequence can be divided into two phases - an increasing phase when the

number of rotations in each successive group increases (more precisely, does not decrease)

and a decreasing phase when the number of rotations decreases in each successive phase.

In the example shown in figure 2.1, groups 1 through 7 belong to the increasing phase and

groups 8,9 and 10 to the decreasing phase.

To implement this algorithm, we assume that the processors numbered 0 to (P - 1)

form a ring. We can then define a predecessor of a processor k as (k - 1) mod P and

successor as (k + 1) mod P. The rows of the matrix are numbered 1 to m and they are

mapped onto processors by wrapping; row m is stored on processor 0, row (m - 1) on

processor 1,...etc. Each processor then gets approximately rows. We also define a top

row of a processor as the lowest numbered row it holds and the bottom row as its highest

numbered row.

2.4 Description of the Algorithm

Zeros are introduced in the matrix from the bottom to top, and from left to right. To

zero an element in row i, a processor receives row (i - 1) from its successor, computes

the rotation and updates row i. Concurrently, its successor receives row i, computes the

rotation and updates row (i - 1). Since we used a ring formation of the nodes on the

hypercube, the processor which communicate are always neighbors. The node program is

illustrated in figure 2.2.

The variable col corresponds to the column position in row i in which a zero is in-

troiuced by the Givens rotation. The algorithm uses the concept of active rows. If the

rotation (i, 1) belongs to group k, then the row i becomes active only when the processor

22

repeat as long as active rows exist
for each active row

/* zero (i, col) */
send row i to predecessor
recv row i - 1 from predecessor
update row i

/* help zero (i + 1, col) */
send row i to successor

recv row i + 1 from successor
update row i

endfor
end-repeat

Figure 2.2: The knight tour Givens sequence algorithm

it is on has completed all rotations in groups smaller than k. In other words, a row be-

comes active when its column element can be zeroed by a rotation in the group currently

executed by the processor. Once a row becomes active, it remains active, until the row is

completely processed.

Initially, the only active row on a processor is its bottom row. By the way the knight

tour Givens Sequence is defined, rotations (i,j+1) and (i-2j, 1) belong to the same group.

Hence the algorithm can deterministically decide when to make its next row active. i.e. if

a node holds a row i, its next higher numbered row will be (i - P) and hence that row

becomes active after r;i zeros have been introduced in row i.

During each iteration, the node program makes new rows active and updates the count

of number of active rows. In the increasing phase, this number increases. Once the top row

has been processed, the program enters the decreasing phase and it terminates when the

number of active rows becomes zero. Only the flow of data has been shown in figure 2.2

and all the above details are not shown.

23

We also note that there is no need for explicit synchronous messages between pro-

cessors, even though at a given instant different processors may be executing rotations

belonging to different groups. This is possible because each processors keeps track of the

next column in which a zero can be introduced. It also keeps track of the column up to

which its predecessor has zeroed using this row. Thus each processor can infer the state

of its predecessor as well as its successor from the rows sent and received.

This sequence has been used a great deal for systolic arrays, which are based entirely

on nearest neighbor communication [7,35, 531.

To analyze the complexity of this algorithm, we bound the time required for a group

of rotations in the sequence. This estimate can only be an upper bound on the complexity

of the algorithm, since in the parallel algorithm that was described above, computations

in different groups can overlap.

The maximum number of rotations in a group is n, one in each column. Hence the

number of rows in a group that need to be updated by a processor is no more than

X = []. When a zero is introduced in column j, there are (n - j) elements in that row

that need to be updated. Let 7r = E. Since the rows are wrapped onto the processors,

the number of elements that a processor updates in a group is bounded by

v = n+(n -7r+(n -27r) +...+ (n- (X - 17)= nx - 7rx(x - 1).

On simplifying, we get v = 2. + !. The number v is also an upper bound on the number

of elements a processor needs to communicate to its neighbor for the rotations in a group.

Updating a row segment of j elements requires 2j flops on a processor. Each group

hence takes time less than 2v flops. Since there are (m + n - 2) groups in the whole

matrix, the arithmetic complexity is bounded by 2v(m + n - 2), which is approximately

2l-(m + n - 2).

By a similar reasoning, the communication time can be shown to be equal to 2-(m +

24

u - 2)a + (m + n - 2),3, where a and 0 are as defined in section (1.7.5).

For a square matrix of order n, the arithmetic time reduces to 3- . Note that the

coefficient of the leading term should be optimally 1 and hence this algorithm is not

optimal. The degradation of the performance can be attributed to the duplication of the

work involved in same rotation being computed on both processors.

2.5 The Greedy Givens Sequence

In this algorithm, the matrix is again distributed by rows among the processors. And

in each partial column that a processor holds, it zeros all but one of the entries that need

to be zeroed, using only the rows that it holds. That is why it is called greedy. This

can be done by all the processors simultaneously. After that the processors cooperate in

a recursive elimination phase to zero the remaining elemenis in that column. And since

there is communication only in the second phase, the communication overhead in this

algorithm is low.

As in the previous algorithm, a ring of P processors is assumed. However, during the

second phase, we also make use of the other interconnections of the hypercube to make

sure that the nodes that communicate with each other are neighbors on the hypercube. A

minor variant of this algorithm has been described and implemented in Chamberlain and

Powell [19], although it was fine-tuned using several architectural features to optimize the

running time.

The nodes are numbered from 0 to (P - 1) and the rows of the matrix are numbered

from 0 to (m - 1). The first n rows are wrapped among the P processors but the rest of

the rows are equally distributed among the processors in any manner.

2.6 The Greedy Algorithm

Each column of the the original matrix is transformed into a column of the triangular

matrix in two phases - an internal rotation phase and a recursive elimination phase. The

25

algorithm essentially computes one column at a time.

Let us consider the transformation of column i of the matrix. It is assumed that

the columns numbered 0 to (j - 1) have already been completely transformed. As a

consequence, the rows 0 to (j - 1) need not be updated any more. Without loss of

generality, let us assume that the row j is being held by processor 0. The top row on a

processor at this stage is the lowest numbered row numbered greater than or equal to j.

In the internal rotation phase, each processor zeros elements in column j that need to

be eliminated, using the rows that it holds. At the end of this phase, there will only be

one nonzero element in the top row in column j on each node.

During the second phase, called recursive elimination phase, all the processors coop-

erate to eliminate the rest of the elements in column j. This proceeds in log P steps. In

each step two processors exchange their top rows and carry out an elimination. At the

end of log P steps, all the necessary elements in column j would have been zeroed.

In k-th step of this phase, processors that differ in their numbers in the k-th most

significant bit pair up to perform the elimination. The processor that appears later in the

Gray code ring zeros its element and the other processor updates its row. Because of the

way the ring of processors is formed using Binary Reflected Gray Codes (see section 1.6,

page 9), all processors that pair up during this entire phase are neighbors. The pairs of

processors that pair up in each stage is illustrated in figure 2.3, for a case of P = 8. This

diagram makes an assumption that processor 0 holds the diagonal element. In practice, it

is not difficult for the nodes to figure out the current holder of the diagonal row and pair

up accordingly.

Chamberlain and Powell's algorithm differs from the above in only one sense. During

the k-th step, processors that differ in their node numbers in their k-th least significant

bit pair up to do the recursive elimination.

To arrive at the complexity of this algorithm, consider the processing of column j.

During the internal rotation phase, each processor zeros r(m - j)/P] - 1 elements and

26

101

110

010

011

001

100

Figure 2.3: The recursive elimination phase

each rotation involves 4(n-j) flops, since two rows of length (n-j) are involved. Summing

the cost over all the columns, we get the arithmetic cost of this phase to be r(m - n/3).

In the recursive elimination phase, each processors updates at most one row in each

step. Since there are log P steps, we get the cost of this phase to be 2(n - j) log P for

column j. Summed over all columns, it comes to n2 log P. Hence the aithmetic complexity

of this algorithm is -(m - n/3) + n2 log P. Similarly the communication complexity can

be shown to be - 2(log P)a + n(log P)O.

2.7 The Recursive Fine Partition Sequence

For ease of exposition, we consider a square matrix of order n. We also assume that

the P processors form a square grid of size p x p (see s,-tion 1.6). The processors form a

27

0,0 0,1 1,2 0,3

1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Figure 2.4: The fine partition of a matrix

ring in each row and in each column of the grid. It is interesting to note that each row or

column of processors is a subcube of dimension log p. We also denote by pij, a processor

on the i-th row and j-th column of the grid, where 0 < ij :_ (p - 1). We call this the

processor grid.

At the same time, the matrix is coarsely divided into p column blocks and p row blocks,

to give us p2 coarse subrmiatrices, each square of order !. These column and row blocks

are numbered from 0 4o (p - 1). Each coarse submatrix is further divided into p column

subblocks and p row subblocks, which partition it in to p2 fine submatrices. Thus each

submatrix is square of order 77 = n/p 2. Within each coarse submatrix, denote by (ij)

the fine fine submatrix formed by the i-th row subblock and j-th column subblock, where

0 < ij _ (p - 1). Now the fine submatrix (ij) is assigned to the processor pii. The

partitioning and the mapping are illustrated in figure 2.4.

28

2.8 Description of the Algorithm

The general idea behind this algorithm also involves two steps. In the first step, called

the diagonalization phase, each processor diagonalizes a column subblock it holds, using

the submatrix that it holds. It also sends these transformations to the other processors

in that row so that they can apply these transformations to their subblocks. In the

second phase, called recursive elimination phase, is very similar to the one described in

the previous algorithm, except that we deal with subblocks of a matrix rather than a

single column. More details of this algorithm can be found in Pothen et al. [65].

The arithmetic complexity can be shown to be

4n 3 n? log P
3PT + 2PI.5 "

And the communication complexity is

n2 n2 log 2 P n log 2 P

- 4P 4

2.9 Comparison of the Algorithms

As has been noted before, the knight tour givens sequence is not optimal in terms of

arithmetic complexity. But the last two algorithms are asymptotically optimal in that

4n
3

sense, as the leading term for a square matrix is 3-7.

Regarding the communication complexity, there have been some results on the lower

bound on the communication requirements for parallel Cholesky factorization [57]. How-

ever we know of no such results for parallel orthogonal factorization. It is conjectured

that the lower bound for that would be --log P, the log P factor coming because of the

difference in Cholesky and orthogonal factorizations. In this sense the greedy algorithms

seems to be optimal. Even the recursive fine partitioning algorithm, with the communi-

cation complexity of O(- log2 F), is only marginally greater than the trivial lower bound

29

Chapter 3

One-way Dissection

In this chapter, we consider solving a sparse system of linear equations, where the ma-

trix has a special structure that arises out of the so-called one-way dissection ordering. We

suggest a solution process for this problem that makes it trivially parallelizable, especially

on distributed memory multi-processors. The error analysis results as well as many of the

algorithmic details are due to Barlow and are cited here for the sake of completeness. A

detailed account of this problem may be found in Barlow and Vemulapati [9].

3.1 Introduction

The basic problem is to solve the n x n system of linear equations

Az = s, (3.1)

where A and s have the form

B1 0 0 S1

0 B2 0

A= 0 ; s = (8l,S 2 ,...,Sk,Sk+l)T. (3.2)

Bk Sk

G T GT *G F

Here Bi, i = 1,2,...,k, are mi x mi matrices, F is a p x p matrix and G, and Si are
k

mi x p matrices, where p + L ri = n. Each si,i = 1,2, k, is an mi-vector and
i=1

sk+l is a p-vector. This is a matrix that arises out of the so-- ied one-way dissection

31

ordering. Much of the discussion of one-way dissection in the literature has concerned

symmetric, positive definite systems. This implies, that Bi,i = 1,2,...,k, and F are

symmetric, positive definite, and Gi = Si, i 1,2,...,k. Instead we make the much

weaker assumption that rank(A) = n, i.e. , that A is nonsingular. Thus we have that

rank(Bi) = 1i < i, i = 1, 2,..., k. Applications of such systems are given in Gunzberger

and Nicholaides [45].

Gunzberger and Nicholaides [44] suggested an algorithm based upon Gaussian elim-

ination with singular pivots. It uses the Moore-Penrose inverses of the diagonal blocks

Bi, i = 1, 2,. . ., k. The Moore-Penrose pseudoinverse of a matrix B, denoted by B+, is

the unique matrix satisfying the four Moore-Penrose conditions

1. BB-B = B 3. (BB+)T = BB +

2. B+BB + = B + 4. (B+B)T = B + B (3.3)

We will use the notation B(i),B(i-), or B(i j,k) to denote matrices satisfying conditions ij,

or k among those in (3.3). Their algorithm [44] has a simple elimination procedure, but a

complicated back substitution procedure.

Here we suggest an alternative method for resolving the singularity in the diagonal

blocks Bi, i = 1, 2,..., k. This method is based upon the weighted pseudoinverse discussed

in a fundamental paper by Elden [29]. We give evidence that this method is more stable.

We also give a more elegant back substitution procedure, which makes the algorithm

easier to implement on a message passing architecture. These algorithms are outlined in

section 3.2. Empirical tests verifying the stability properties of our algorithm are given in

section 3.4. We also give an implementation on Intel Hypercube(iPSC/1) in section 3.5.

3.2 Description of Algorithms

We first describe the elimination procedure of Gunzberger and Nicholaides [44] for

solving (3.1). It makes use of the Moore-Penrose pseudoinverses of the diagonal blocks

32

Bi,i = 1,2,...,k. The other elimination procedures in this section will take a similar

form.

Algorithm 3.1 Block Elimination using the Moore-Penrose Pseudoinverse [44]

1. Compute
k k

F=F- GTBtSi ; k+1 = sk+1 -ZGTBts,
i=1 i=1

GT = GT(I - B+ B i) projection of GT onto orthogonal complement of Range(Bi)

2. For i = 1,2,...,k find an mi x (ri - li) matrix Xi such that BiXi = 0. Note that

Ii = rank(Bi). Thus Xi is a basis for the null space of Bi. Algorithms for finding

such a basis are given by Heath [51] and Pothen [64].

We note that the terms GTBtSi , GTBtsi , i = 1,2,...,k, can be computed in-

dependently, as can the null space bases Xi,i = 1,2,...,k. The same is true for the

GT, i = 1, 2,..., k, but we will see later that it is not necessary to compute these matrices

at all.

The back substitution phase of the Gunzberger-Nicholaides procedure is somewhat

complicated. Let x = (XI, z 2 , . ., , xk+l)T, where the components xi, i = 1, 2,...,k,k+ 1,

are of the form

xi =yi +zi, where 11,zi = 0,i = 1, 2,..., k, k+ 1, (3.1)

and the vectors zi satisfy

Bizi =0, i=1,2,...,k , (3.2a)

Fzk+1 = 0 (3.2b)

33

Since A is nonsingular, P is also nonsingular (cf. [44]). Thus

Zk+1 = 0 , (3.3a)

Xk+1 = Yk+I (3.3b)

Then Algorithm 1 reduces (3.1) to the system

Byj + Sixk+l = si, i = 1,2,...,k, (3.4a)

k

Z rzi + FXk+l = 9k+. (3.4b)
t=1

From (3.2a), GTz = GTz,, i = 1, 2,..., k, thus we can replace (3.4b) with

k

GTzi + FXk+I = ik+l. (3.5)

Thus G'T need never be explicitly computed. The system (3.4) can be written

My = . - Nz (3.6)

where

B1 0 0 S

o B2 *

M = (3.7a)

Bk Sk

0 0 F

34

o Si

o . .0.S
0 0

N - (3.7b)

Sk

GT Go.T0
s= (81,82,.. ., S,S k+l)T

Y -- (yI,...,ykyk+I)T;

z = (z1,...,Zk,Zk+l)T (3.7c)

The consistency of (3.6) and the nonsingularity of F follow from the nonsingulaxity of A.

If we assume that z is known, and let

f = (fl, f 2,.., fk, fk+l)T - -Nz (3.8)

then a basic (non-unique) solution y is given by

Yk+1 = -k+l = Ffk+. (3.9a)

yi= Bi(fi - Siyk+l) (3.9b)

From [44], we have that y solves (3.6). Thus if we define the matrix t such that

y = tf, (3.10)

35

where 4 has the form

B+ 0 -B+s, -1

B+

B+ -8+skP-lk k.

o 0 P-

by combining (3.6) and (3.10) we have

(I - M'O)Nz = (I - Mf)g. (3.12)

Let

X = diag(X 1,X 2,. .. ,X:,0),

where Xi are defined in Algorithm 3.1. Thus (3.12) becomes

Tw=g (3.13)

where T = (I - Mf)NX; z = Xw;g = (I - Mf)i. Equation (3.13) is consistent but

overdetermined (cf. [44]). It can be solved by an orthogonal factorization of T (in

Gunzberger and Nicholaides [44], the use of normal equations is advocated). Gunzberger

and Nicholaides show that T must have full rank if A has full rank. We assume that the

dimensions of the null spaces of Bi, i = 1, 2,..., k, are much smaller than the dimensions of

the blocks themselves. That is, mi - i < mi. Thus, the solution of (3.13) should be very

fast compared with the rest of the algorithm. We state the procedure as Algorithm 3.2.

Algorithm 3.2 Back Substitution Procedure [44]

1. Ezplicitly form T = (I - Mt)NX; g = (I - M4')i.

36

2. Solve Tw = g by orthogonal factorization (or normal equations).

3. Let z = Xw and solve

y = -(P- Nz)

4. The solution x = y + z.

We propose two changes in Algorithms 3.1 and 3.2. The first is a simplification of the

back substitution procedure. This simplification uses computations arising directly out of

the elimination procedure. To describe that, we give a more specific version of Algorithm

3.1 which includes the method for computing B!, i = 1, 2,.. ., k. The method is slightly

different from that given in Gunzberger and Nicholaides [44], but uses the method for

computing Bt given in Golub and Van Loan [43j.

Algorithm 3.3 Implementation of Block Elimination using the Moore-Penrose pseudoin-

verse

1. Forl = 1,2,...,k perform steps 2-7.

2. Factor Bi into

Bi = i PT
0 0)

where Qi is orthogonal, U!'l is an l x li upper triangular, Uf21 is an li X (mi - l)

matrix, and Pi is a permutation matrix. This factorization and the determination

of rank i can be done by orthogonal decomposition with column pivoting (cf. [59,

Chapter 10]) or some other method (cf. [12, 20, 31]).

3. Compute

Sill ,['J
I Q (S,, s,)

where Sillj , l x p and S 12] is (m,-) p.

37

4. Solve fe" 5, an,4 Si
u!] ,, ,)= (sC1], s i])

5. Compute
X - (3.14)

= ~ Imi --)
Xi is a common choice for the null basis matrix of Bi (cf.[51, 64]).

6. Factor

Xi= z,(.

where Zi is orthogonal and Wi is upper triangular and compute

0 Ip-m,)i+) (

The items (Vi, vi) are projections of (Si,. i) onto the space orthogonal to the null

space of B,, thus providing Bt(Si, s,).

7. Compute

(A, r,) -T(,v,)

8. Compute k k
F= F+ Ri; k+i = sk+I + j ri

i--1 1=1

Algorithm 3.3 requires

2mili(mi - li) + W + 2mil,(p+ 1) + lP(mi - li)+

(Mi - li)2 (Mi - l(mi - li)) + 4(mi - li)mi(p + 1) + p(p + 1)li + O(m 2)

38

t&j. for each i = 1,2, .,k. Let m = max m,. If p - rn and Ini - 1i < c = 0(1) thisI__i<k

simpl'fies to

2m11,(p + 1) + 2 + p(p + 1)1, + O(cm2)

for each i = 1,2,..., k. We assume here that all of blocks in (3.2) are dense.

If we consider equation (3.4a) and apply the reduction from Algorithm 3.3, we have

Ujy, + S! 1Xk+1 = (3.15a)

S=]. (3.15b)

where Ui = (U], Uf2]). Since equation (3.15) is just an orthogonal reduction of some rows

from Ax = s, it follows that it is underdetermined but consistent. Using the null basis

(3.14) for Bi and by letting

di = GTX,

equation (3.5) becomes

SGiWi + FXk+ = /k+1 (3.16)

where zi = Xiwi. Thus if we let S 2] = (So21,...,S 2])T, s[21 = (S2],...,slJ)T , and

0= (1 ,.. -, G), then xk+1 and w = (wI, W2,.. ., wk) solve the linear system

(: () wc) = (g+l) (3.17)
0 S(21 xk+l S(21

The nonsingularity of A guarantees that (3.15) is a nonsingular system of linear equations.

For problems arising in practice, its dimension will be small compared to the dimension

of A. It can be solved by Gaussian elimination with partial pivoting or orthogonal de-

composition. Such a reduction is much simpler than the back substitution procedure in

Algorithm 3.2. The values of y,; and xi, i = 1,2,..., k can be recovered from (3.9a) and

39

the step

Xi = Yi + Xiwi. (3.18)

The computation (3.9a) can be simplified into

Yi = [U1t(S' - SIXk+1) (3.19)

thereby avoiding the reuse of the orthogonal factor Qi. We now formally state this pro-

cedure as Algorithm 3.4. This algorithm is a method for solving (3.5) and is simply a

particular implementation of Algorithm 3.2.

Algorithm 3.4 Improved Back Substitution Procedure

1. Solve the linear system in equation (3.17) for xk+l and w = (wl, w2,..., wk)T using

orthogonal factorization by Householder transformations.

2. For i = 1, 2,..., k, do steps 3-6

3. Compute

f s[1 11 - S111k+1. (3.20)

4. Let

g - ()U f! , (3.21)
0

= (In,-,1o)ZTgj.

5. Solve

Yi --=(0l 2' V (~)i
Here SPI, P), G('I U!1, W,, and Z, are from Algorithm 3.3.

6. Compute

40

Xi = Yi + Xiwi,

where Xi is in Algorithm 3.3.

The back substitution procedure requires

2 k k2

i[p + "(mi - li)] + [31(m - 4) +m + zl? + 0(m)
i = 1 2--2

flops. If max Iri - 41 = c = 0(1) then this reduces to
1<i<k

[p+ km]
32i=-

flops.

The second modification to Algorithms 3.1 and 3.2 is to replace B+ with B 1 3) , i -

1, 2,..., k, i.e. any matrix B '3) satisfying Penrose conditions 1 and 3. For the elimination

algorithm, this is equivalent to solving (cf. [29])

rain ll1,(v, v) - (Si, S;)IlF

and then computing

F = F - E GTVi' (3.22a)

Sk+1 8k+1 - E aTvi, (3.22b)
i=1

T = T(I- B!'1'3)eB). (3.22c)

It is essential that all of the columns of

(Hi, hi) = (Si,,si) - Bi(V,, vi) (3.23)

4,

be vectors in the space orthogonal to the columns of Bi. It is guaranteed by the use

of B! ' 3) . This allows us to set up equation (3.17) by orthogonal factorization of Bi by

column pivoting or some other method to detect rank [12,20, 31]. When we substitute

B(1 ,3) for B + , we lose the property that yTzi = 0, but this property is not necessary for the

algorithm to work. Again since GTzi = GTzi, it is not necessary to do the computation

(3.22c).

The matrix B!1'3) is not unique unless Bi has full rank. In our modified algorithm,

we can choose B(1' 3) so as to minimize IIGTB}' 3 S,IIF and iIGTB 1'3)9,11 2. As is shown

in Barlow and Vemulapati [9], this leads to a new algorithm with better numerical stabil-

ity properties. Elden [291 showed that the (1,3) pseudoinverse with this property is the

weighted pseudoinverse defined below.

Definition 3.1 The G-weighted pseudoinverse of B is defined by

B + = (- (GTP)+GT)B+

where

P= I- B+B.

In Elden [29], it is shown that the matrix BG is the (1,3)-inverse such that

JIG TB+SJ[F <, JIG TB(1 3)SI IF (3.24)

for all (1,3)-inverses of B and matrices S. The G-weighted pseudoinverses [BG]t need not

and should not be explicitly computed. Instead we compute the quantities

Ri = -GT[BG tSi i= 1,2,...,k, (3.25a)

ri = -GT[BG]tsi i = 1,2,...,k, (3.25b)

42

and then compute
k k

P= F+ZR; gk+1 = .+s + E r. (3.26)
j=1 i=1

The quantities (Ri, ri) are simply the residuals of the least squares problem

min IIGT(V', vi)IIF; (3.27)(v.,v,)ETB,

where TB, is the set of minimizers of

min II B(V, vi) - (Si,si)IIF.
(V,,v,)iER m x(p+1)

The computation of (V,, vi) is not necessary. The residuals (Ri, ri) can be computed di-

rectly. The problem (3.27) has an unique solution if rank)= mi, i = 1, 2,..., k.

This is a direct consequence of nonsingularity of A. We now give a more detailed descrip-

tion of this procedure. Steps 1-4 are the Bjbrck-Golub [18] direct elimination procedure

for solving (3.27).

Algorithm 3.5 Block Elimination Scheme Using the weighted Pseudoinverse

1. For i = 1,2,..., k, do steps 2-5

2. Same as Steps 2-3 of Algorithm 3.3.

S. Let GT = (G(1J,G(21) where G(1 is a p x li matrix and G(21 is a p x (mi - li) matrix.

Compute di = G(2] - G][U[1J]-IU 2] and (5,, .S,) = -G[U[I]-(S,,sj). (Note that

c, =GTX,).

4. Factor
di = zi ' '

43

where Zi is orthogonal and Wi is upper triangular. Then compute

(Ri, ri) = Z(Zf(s,, ,).
(0 Ip-,+I.

5. Compute
k k

F= F + R; 3k+I = Sk+I + Zri.
i=I 1=l

With the change that

g, = -G('lUIf-'f1] (3.28)

in (3.21), the back substitution procedure in Algorithm 3.4 can be used directly after

Algorithm 3.5. This adds an additional lip'flops for each i = 1,2,...,k. Except for

differences in terms of 0(m 2), the operation count for Algorithm 3.5 is identical to that

of Algorithm 3.3. We note however, one difference that the matrix

.B(1,3) 0 -B(13)Slp - l

03)

41=

B(1,3) 3
* Bk 3 -B(1k SkF

0 0 P-1

is only a (1)-pseudoinverse of M. This can be verified easily. However this is enough to

assure that y = if satisfies (3.10). Hence we can use the back substitution procedure in

Algorithm 3.4.

3.3 Error Analysis

The following error analysis results, due to Barlow [9], are cited below for the sake of

completeness.

44

Theorem 3.1 Let Algorithm 3 or 5 be implemented using Householder transformations

in floating point arithmetic with machine unit p. Let the backward substitution phase be

done using Algorithm 3.4. Then the computed solution x satisfies

(A + 6A)± = s + bs

where

jiIAIIF O qA rAIjAjIF/A + 0(g 2)

PS112H < ¢ AIISlI2I, + o(Ig2)

T'A = IMaX{ max~ jjc1l][u[]11-11 2 , Ma flGB!" 3) 112}

and OA and 46, are modestly sized polynomials in the dimension of A.

We now give a corollary that gives stronger stability results for Algorithm 3.5. It is a

straightforward consequence of Theorem 3.1

Corollary 3.1 Let Algorithm 5 be implemented using Householder transformations in

floating point arithmetic with machine unit A. Then 5A and 6s in Theorem 3.1 satisfy

116AIIF < OA ralAIIrFA + 0(42),

116s112 _ ',7G TGIIsI2A + o(g2),

where

TG = max IG(1l[u!l]-1l1 2,
I<i<k

and OA and OS are modestly sized polynomials in the dimension of A.

The error bounds obtained by this analysis are better for Algorithm 5 than for Al-

gorithm 3.3. In the next section, we give numerical tests which seem to indicate that

45

Algorithm 5 gives more reliable answers.

3.4 Stability tests

We implemented Algorithms 3 and 5 in FORTRAN single precision on the SUN3 with

the back substitution procedure in Algorithm 3.4. The two algorithms differ only in their

computation of B "3) , i = 1,2,..., k.

The matrix A is generated randomly. Rank one singularities are introduced into each

diagonal block by replacing the last row of each such block by the sum of its other rows.

Then the right hand side is formed by making the known solution vector (1, 1,..., 1)T.

We then calculated the relative error in the solution. The results are shown in Table 3.1.

Here the experiments clearly suggest that Algorithm 3.5 has better numerical stability

properties than Algorithm 3. Thus we see that the use of the weighted pseudo-inverse

rather than the Moore-Penrose pseudoinverse gives us a better method of resolving the

singularity in the diagonal blocks.

3.5 Hypercube Implementation

To simplify the implementation on a Hypercube, it is assumed that each diagonal block

B and F are of equal size i.e. m, -- p, i = 1, 2,..., k, and that p = k + 1, i.e. the size of

each diagonal block is also equal to the number of diagonal blocks. It then follows that

n k+1 Estimated Condition No. Error:Alg.3 Error:Alg.5
2 2 2.0E02 0 0
4 2 1.OE01 9.0E-6 6.0E-7
10 2 4.0E01 3.OE-6 2.OE-6
10 3 1.0E02 4.OE-6 2.0E-6
20 4 3.0E02 9.0E-6 3.0E-6
40 5 8.0E02 2.0E-4 4.0E-5
60 6 9.0E02 8.OE-5 7.OE-6
80 8 2.OE03 1.OE-4 2.OE-5
100 10 2.0E04 2.0E-3 5.OE-5

Table 3.1: Error in Algorithms 3.3 and 3.5 for Random Matrices

46

p 2 = n. The number of processors in the Hypercube is denoted by P (numbered from 1

to P). It is further assumed that the number of diagonal blocks k + 1 is at least as large

as the number of processors (P).

The blocks Bi, i = 1, 2,. .. , k are equally distributed among the first P - 1 processors,

along with the corresponding Si and Gi matrices. And the matrix F is processed by the

node P. A brief description of the algorithm emphasizing the flow of data between the

processors follows.

Host Program

generate matrix A and the vector s

compute the number of blocks that each node numbered from 1 to P - 1 gets

for i := to P - 1

send appropriate blocks of B, S, G and s to node i

send F to node P

wat for the solution parts to arrive from all the nodes

Node Program

if it is not the last node (P) then

receive the matrix blocks B, G, S and s

diagonalize each Bi and solve the LSE problem as described in Algorithm 3

send the matrices Gi and S!21 along with s(21, Ri and ri to node P (cf. Algorithm 3.5)

wait for Zk+l and wi vectors to arrive from node P

complete the solution process to get xi

send xi's to the host

else

receive F from the host

47

size of no. of time in
each block(p) processors(P) seconds

8 8 1.22
8 4 1.46
8 2 2.64
16 16 5.36
16 8 7.86
16 4 11.46
32 32 34.12
32 16 48.62
32 8 71.94

Table 3.2: Timings results on Intel Hypercube

receive the matrices di and sf2] s[2] R, and ri sent by all other nodes

solve the system (3.17)

broadcast xk+1 and appropriate blocks of wi to all the other P - 1 nodes

send Xk+1 to host

The above Algorithm was implemented in FORTRAN on an Intel hypercube (iPSC/1)

at the ACRF facility at Argonne National Laboratory and the Table 3.2 shows the timings

results from these experiments. The matrix in each case was an p2 x p2 matrix. For a

fixed value of p, the problem was run on cubes of different dimensions to determine the

speed-up. The time shown is elapsed time in seconds from the moment the host starts

sending the data to the nodes till the final solution is returned to the host.

It appears from the results that by increasing the number of processors by a factor

of 2, one would get a speed-up by a factor of 1.43. The main reason is that the back

substitution process has a bottleneck - the other nodes must remain idle while node P

determines zk+l and w.

48

3.5.1 Complexity of the parallel algorithm

It is assumed that the time required to transmit a message of N words from one node

to another is (a + 3N)d where a is the start-up time for the message and 3 is the time

required to send one word after the initial message is set-up and d is the distance between

the nodes.

The only communication required in the parallel algorithm described above is the

transmission of di, st 2], s(2, Ri and ri to node P and vectors x, w from node P to nodes 1

to P - 1. Since the size of Ri is much larger than other matrices and since the maximum

distance between any two nodes on the Hypercube is log P, it is easily seen that the upper

bound on the communication complexity of the algorithm is O([Pa + 3(p 2 + Pn)] log P).

The computational complexity is easier to bound because all the computational work

except the solution of (3.17) is done in parallel and hence it is divided equally among P- 1
n

processors. However the matrix in the system (3.17) is of the order p + (mi - 1j) and

hence only 2(p + (mi - /))3 are not done in parallel.
i=1

Chapter 4

Rank Detection

As was noted in the introductory chapter, the problem of dealing with rank deficient

matrices during the factorization, especially when using static data structures was not fully

explored in the literature. As we will see in the next chapter, accurate rank detection of a

constraint matrix becomes very critical to the solution process when we deal with equality

constrained least squares problems. In this chapter, we explore ways of detection of rank

using an incremental condition estimation technique, which facilitates us to easily solve

the equality constrained least squares problem. lain S. Duff [27] pointed out to Jesse

Barlow that this particular rank detection technique can be used effectively on frontal

solvers for large, sparse systems of linear equations. Some of preliminary results presented

here a-,eared in Barlow and Vemulapati [10].

4.1 Introduction

Choosing a set of linearly independent columns from a given matrix, within a toler-

ance of machine precision, is a common subproblem, among problems involving matrix

computations. Subtle variations of the same problem are "rank detection" and "condition

estimation."

Traditional methods of rank detection for dense matrices include QR factorization

with column pivoting (43], the singular value decomposition (431 and a host of condition

estimators [54], and the LINPACK 1-norm estimator. The scheme due to Hager and

Higham [49] also gained recent acceptance. Threshold pivoting [51] strategy is often used

in the case of sparse matrices.

However, when we consider solving these problems on a parallel architectures, most

50

of the traditional approaches fail to be cost effective, especially when large and sparse

matrices are involved.

Here we propose an incremental condition estimator, which is quite reliable and is

well suited for parallel sparse matrix QR factorizations. In section 4.2, we examine the

reasons for the failure of traditional methods when applied to our problem. In section 4.3

we discuss the issues in the effective implementation of solving our problem on a parallel

architecture. In section 4.4, we describe the an algorithm that allows us to incrementally

estimate the condition number of the triangular factor during the factorization. In section

4.5, we discuss the implementation issues on a parallel architecture and provide experi-

mental results. In section 4.8, we provide experimental evidence that suggests that the

algorithm is robust enough.

4.2 Failure of Traditional Methods

The general strategy [36] for doing a QR factorization of a sparse matrix C is

1. Determine the symbolic structure of CTC.

2. Using a heuristic approach, find a permutation matrix P, such that pTCTCP has

a sparse cholesky factor.

3. Generate the storage structure for R by doing a symbolic factorization of pTCTCP.

4. Compute R numerically.

Although it is known that finding a permutation in step 2, that produces an optimally

sparse Cholesky factor is a hard problem (in fact, NP-hard), many good heuristic ap-

proaches such as minimum degree and nested dissection give us fill-reducing orderings

[39]. This approach of determining the data structures required for the R factor before

the actual factorization (in other words a static data structure) has some advantages, com-

pared to dynamically set up storage structures during the factorization. The accessing of

51

the elements in a static set up is faster and hence the factorization step is likely to be

faster. Since the static structure does not depend on the numerical values of the original

matrix C, the cost involved in steps 1-3 can be spread over a number of factorizations if

repeated computations of R are required with different numerical values of C.

Most of the known algorithms for rank detection (or condition estimation) are neither

cost effective nor appropriate for sparse matrix applications. Any estimator requiring

O(n 2) units of computation time is too expensive for sparse matrices, considering that the

factorization of a sparse matrix itself requires only O(n'1 5). The QR factorization with

column pivoting upsets the sparsity pattern, because the column ordering chosen in step

2 is not used. Moreover the pivoting process requires us to use a dynamic data structure

for R. The singular value decomposition is too expensive for practical use, even though it

is the most accurate algorithm for rank detection.

4.3 Issues in Parallel Factorization

Here we limit our discussion to distributed memory machines, such as Hypercubes,

while talking about parallel architectures. If we want to implement the factorization in

parallel, we need to re-examine the validity of the traditional methods on such machines.

The column pivoting algorithm requires that the processors have to synchronize to select

the next pivot column. This introduces not only delays due to communication overheads

but also forces the program into a lock-step mode, leaving no room for pipelining ahd / or

overlapping of computations. As was observed already, any pivoting process results in

more fill-in and hence more computation time.

Dynamic data structures are not easy to distribute in a local-memory environment;

even if we manage to do that, keeping track of the current state of the structure among

all processors is not an easy task. Hence we consider using static data structures. The

threshold strategy described by Heath [51] and implemented in SPARSPAK-B [40] allows

us to deal with the static data structures for most of the computations. The following is

52

a brief description of that algorithm.

Algorithm 4.1 Threshold Pivoting

/* c is a tolerance factor */

done --false

k+- 1

While not done do

if Y > E then

Construct an orthogonal transformation H1 = diag(I, f-1) such that

HI(c1+1,k, .. . , C,,k) = -re -

Compute C -- H1C

Pi k

l,,--l+

endif

k*..k+l

done +-- (I > s) or (k > n)

endwhile

The above algorithm does not create any non-zeros that are not predicted by the

George-Heath strategy. Even though empirical tests show that this strategy rarely fails in

practice, dramatic failures in rank detection are possible in some cases. A simple example

is the following bidiagonal matrix, which will be considered full rank matrix for any value

53

of a, even though D could be arbitrarily ill-conditioned. (In fact, actual rK(D) z a3).

0 a 0 ... 0)

0 1 a ... 0

D= 0 0 . a 0

0 ... 1 a

0 ... 0 1

If we use static data structures, during the factorization, we are only allowed to look

at each column only once in a given sequence and we should be able to determine whether

a new column is linearly independent of the others already chosen to be in the factor.

This translates to checking whether the resulting upper triangular factor is going to be

well conditioned.

To Jhus nd, Bischof [12] describes an incremental estimator for the smallest singular

value, which is a modified 2-norm condition estimator suggested by Cline, Conn and Van

Loan [22,74]. However this algorithm has two serious drawbacks when it comes to sparse

matrices. Firstly the estimator requires n2 flops during the triangularization of an n x n

matrix. Secondly, its estimate of the smallest singular value differs arbitrarily from the

actual value, for matrices with special structure. In particular, if the new row being added

is orthogonal to the current approximate singular vector, then the estimate is likely to be

very poor. As an example, consider the following 3 x 3 matrix.

1 0 0"

D= 2 1 0

For a specific value of w = 1- v, the estimate of the smallest singular value from Bischof's

algorithm is 1, independent of /3, while the actual 2-norm of D 2 '62. Such trivial 3 x 3

examples can be constructed easily for any algorithm that does not use look-ahead in the

54

estimation algorithm. However, the look-ahead aspect does not seem to have any serious

effect in most practical situations.

Recently Bischof, Lewis and Pierce [13] extended the original algorithm to handle the

case of general matrices and showed how this modified approach can be used for nested

dissection case.

4.4 Incremental Condition Estimation

The proposed algorithm is an "incremental oo-norm" estimator that uses look-ahead.

It is a modification of LINPACK 1-norm estimator for upper triangular matrices [26].

The algorithm looks at each column just once and decides whether to include that column

in the factorization or not. It does that by incrementally estimating the oo-norm of the

inverse of the partially formed upper triangular factor. There is no column pivoting and

hence static data structures can be used.

We are interested in computing a QR factorization of the matrix C, with accurate

rank detection, so that the factored matrix has the following form

C Q (U 1 1 U12

Define the sequence of upper triangular matrices U(k) k = 1, 2, ... , , by

U(1) = (u11) where u1 1 = ICI1c2

and

where

(CM , (k)Vk+l "- i ,k+11 ...'''k,k+l! '

55

c(k) (c (k) , (k))T
k+l Ck+l,. "Cmlk+l

is the (k + 1)st column of C after H 1 ,H 2 ,..., Hk are applied and

7k+ II(c)," (k))T

= I.,C . +l 112

Let

L(k) = [U~k)IT

and

a(') 1;

&I= 1/UI = I/ICI 2I = 1/71.

To choose the (k + 1)5t column, we let x(k) be such that

L(k)x(k) = a(k)

where a(k) is a vector of ±1, chosen to maximize IIX(k+1)11io. Then compute

x(k+1) = (X(k),G+1)
T

where
k+, = xQ4',(-jg,(T+X (k)) - VT T(k)).

Thus

Ths p= MaX&k, rk+l } = I.e(k+1)-d.o

This procedure is precisely the UINPACE cstimatcr without thie "look-ahead" property.

56

To incorporate a "look-ahead," we consider the partial sums

=3 (;;2)and p = vJT)

where
S= - v~Tx(k))

and

= 1J- - V T '+xk))

and

= (C(k),. .cik))TI'J "--1j ' ' k-l,.j

is the .th column of C after Hi,H 2,..., Hk are applied. Note that the last entry of vi is

not known until after we use column k to form Hk. The pi can be accumulated through

out the computation. For weights tI, t2 ,... , tn > 0, we then examine

(+ -I=+ + tPit

jENonz(c~k])

and

- =- IC+I + tJp
jENonz(cfkJ)

and choose

x(k+I) = (X(k) ++I)
T

or

x(k+l) = (X()'+4)
r

according to whether (+ or - is larger. The choice of weights is heuristic. LINPACK

chooses ti = u7J. However, we have not computed uij at this point. So we choose

57

We now explain how this can be used in column selection. Our algorithm performs

the condition estimator on the most recently formed diagonal block Cii until

1. it finds a zero diagonal

2. the estimate of i1C- 111 exceeds e-1 where - is a predefined tolerance and is usually

0(,p), A being the machine precision.

In both cases, we restart the condition estimator with all pi = 0 (implicitly) and then

begin forming Ci+,,i+l. Of course, in case 2, we must find a dependent column in Ci. To

do this, we solve

C 1h = ek.

Let v be the index such that

1h,1 = max Jhjj.
l<jSk

And we delete the column v from Cii and re-triangularize the new matrix by a sequence

of Given's rotations. We can then conclude that the rank of Cii is (k - 1). The conclusion

is based on the following heuristic. The condition estimator considered the previous set of

(k - 1) columns to be independent. And the addition of the k-th column does not increase

the rank and it also can not decrease it. The reordering of the columns is done to insure

that the last entry in the last column is of negligible magnitude. The general idea of the

algorithm is detailed below.

Algorithm 4.2 Rank detection by incremental condition estimation

/* 4E - is a tolerance factor. cMl denotes the Ith row of C. */

l,-O

done 4.- false

k,-l

58

firstk ,- 1

firstl - 1

qi -- i, i= 1, 2.... n

pi -" 0, i = 1, 2,. .. n

-yi - Icill, i = 1,2,....na4- a,

while not done do

"-ykj(-sign(pk) - Pk)

-- max{a, 1F1}

if -I >Ethen

/* this column is good */

construct an orthogonal transformation such that the current column is zeroed

1 41 + 1 and q - k

for j E Nonz(c[L])

update the column norms -j

4-'(- Pk)
4_ - £(- - p)

for j E Nonz(ct') update the partial sums

Pi- pi + cI+1 +

(4-a maxf+. Jp* I j/tJ

+ - max{;; ., l,+/,-jl}

/* We just looked ahead of the affected columns and computed both possible

values for the partial products */

59

if ' a (;, then

cr ,- max{a, IC+I}

p3 p4-- i~ E Nonz(c['l)

else

or - max{, IC-I}

pi .- p-1 j E Nonz(cl])

else the column is not good

if 7max < f then

/ * no more good columns and we are done */

exit

else

Let C ,, be the submatriz of C with rows from firstl through I

and columns from firstk through k.

Solve C,,h = (0,0,..., 1)T.

Let Ihj4 = max(lh i l)

/* Break ties arbitrarily in choosing the maximum element */

Move the column Y to the last column of C,, and re-triangularize C,,.

firstl 4- 1

firstk - 1

pi 4- 0 /* starting over a new block */

endif

endif

k,-k+l

done 4-- (1 > m1 or k > n)

endwhile

As soon as a bad column is encountered, the matrix being factored will have the

60

appearance as shown below.

C11
C12

Since a back-solve and a re-triangularization is done every time a bad -column is en-

countered, we need a column which is a full vector. But fortunately, we can just reserve one

vector (whose size is equal to the number of rows) to store the intermediate computations.

The typical structure of the matrix after the factorization is shown below.

The final upper trapezoidal form of C may have the following form.

C1 1 C12 C13 C 14

0 C22 C23 C24

0 0 C33 C34

where Cii,i = 1,2,3 have full row rank.

4.5 Issues in Parallel Implementation

The problem is to detect the rank of a large and sparse matrix C and obtain a QR

factorization of that matrix. As was described in section 4.2, the general strategy is

followed. We use SPARSPAK-B [40] for doing steps 1-3 as described in section 4.2. From

the storage structure provided for R by SPARSPAK, we generate the static structure

required for the factorization. Since this work involves only the symbolic structure of C

61

and is a well understood problem, we perform only the numerical factorization part on

the parallel machine.

We consider issues in implementing this algorithm on a Hypercube architecture. In a

rather straightforward way, the columns of the matrix C are wrapped around among the

processors on the hypercube. For the s: ke of simplicity, we may assume that the processors

form a ring, although for "broadcast" purposes, other connections of the hypercube are

implicitly made use of. Each processor makes a decision as to include the next column

in the factorization and sends a message to other processors along with the necessary

transformations(if the column is included). The updating of the rest of the columns on

the same processor is done only after sending the information to other processors.

There are a couple of obvious bottlenecks to this algorithm when implemented on

a parallel machine. The "back-solve" process, when a bad column is found, involves

accessing the partially formed upper triangular factor. Li and Coleman [611 discussed

good back solve procedures for hypercubes that are effective on dense matrices. We used

similar techniques in our implementation, but the over-all result is not impressive on sparse

matrices because the arithmetic complexity is quite low compared to the communication

overhead. This also causes the algorithm to come to a virtual pause, loosing some of the

advantages of the asynchronous behavior of the algorithm. However, this happens only

occasionally, so we can still expect some good speed-ups.

The "look-ahead" part of the algorithm, where it needs to find out which value of p

is to be made permanent, is another bottleneck. There are a couple ways to get around

this problem. We can make the look-ahead local to the columns held by that processor

only. But then, we may be compromising on the quality of the estimate computed by

the algorithm. The other alternative is to maintain a fixed number of possibilities (say

z = 4) of the values of p and in the steady state, by the time we each processor is ready to

process a column y, it would have enough information to fix the value of p corresponding

to column (y - z). We use the latter strategy in our implementation.

62

4.6 Implementation Details

We now give detailed account of the data structures used in implementing the algo-

rithm. As has been noted before, the data structures are very similar to the ones that are

used in sequential computations and hence we review them here for the sake of complete-

ness.

4.6.1 Compressed and Uncompressed Subscript Notation

To represent a sparse matrix, we essentially need to keep track of two things - the

value of each non-zero element as well as the position of each non-zero in the matrix.

There are a lot of ways of achieving that goal but the following two schemes, originally

due to Gustavson [481 and Sherman [71], are commonly used. Detailed descriptions may

be found in George and Liu [391.

Suppose we are interested in storing an upper triangular matrix R, which is an n x n

matrix. For the sake of illustration, we use the matrix R as shown in Figure 4.1. In

the uncompressed format, we have a vector DIAG that stores the diagonal elements of

R. The off-diagonal non-zero elements of R are stores by rows in a vector RNZ and an

accompanying index vector XRNZ is used to point to the beginning of each row into the

RNZ array. And the column indices of the off-diagonal non-zeros are stored in another

vector NZSUB. It is easy to note that XRNZ also indexes into NZSUB vector to give us

the start of each row. This scheme is illustrated in Figure 4.2.

In the compressed format, we still use DIAG, RNZ, and XRNZ. But now NZSUB holds

the compressed subscripts and an accompanying index vector XNZSUB is used to point

to the beginning of the subscript sequence for each row of R. Figure 4.3 illustrates this

scheme.

The SPARSPAK-B, which we used to do the symbolic factorization, uses the com-

pressed scheme for the upper triangular factor.

63

rll r12 r14

r 22 r24

r33 r35 r36

R -r 44 r 4 5

r 55 r 56 r57

r66 r67

r77

Figure 4.1: Example matrix R

DIAG r[l r 2 2 r 33 r 44 r 55 r" r77

NZSUB 2 4 4 5 6 5 6 7 71

RNZ r12 r14 r24 r35 * r36 r45 r56 r57 r67

XRNZ 1 3 4 6 7 9 10

Figure 4.2: Uncompressed data storage scheme

DIAG rl r22 r33 r44 r55 r6 r77

NZSUB 2 4 5 61 5 6 7
X 1 3

7///

XNZSUB 4.3 C d s shm

RNz r12' r14/ / r24.."1 r-5 r3 r I I, r"56 r57 I r67

XRNZ 1 3 4 6 7 9 10

Figure 4.3: Compressed data storage scheme

64

4.6.2 Static Data Structure for Rank Detection

We follow the first three steps of the George-Heath procedure, as described in sec-

tion 4.2 initially. We used already available routines from SPARSPAK-A and SPARSPAK-

B to do the same. But the matrix we use to give as the input is

G=(A 0)

where I is an identity matrix of appropriate dimension so as to make the matrix G a

square matrix. The reason for such a choice results from the following theorem from [41].

Theorem 4.1 Let G be a square matrix of order n with a zero-free diagonal. Define

Nonz(.) to be the non-zero structure of a sparse matrix and let L be the Cholesky factor

of GTG. Let G be reduced to upper triangular form using a sequence of Householder

transformations and let Gk be the matrix G after the first k columns have been eliminated.

Then

Nonz(Gk) 9 Nonz(L + LT) for k = 1,2,..., n - 1.

Moreover, Q (the orthogonal matrix) can also be stored in the same static data structure.

It is to be noted however that this theorem heavily depends on the fact that the matrix

F has a zero-free diagonal. But this assumption is required only at arriving at the static

data structurt; and never used during the actual factorization. And hence we can introduce

symbolic nonzeros for the purpose of arriving at the data structure and ignore them during

the actual factorization.

Bjorck [161 provided the following result which tells us that the static data structure

can be used for the factorization

Theorem 4.2 Let B = (bl, b2,.... b,,) be a column partition of B and let

B -(bjl, bj2,.- -. , bi), 1 f- ji < J2 ... < ik < n

65

be a submatrix of B. Denote the Cholesky factors of BTB and BTB by R and A respec-

tively. Then the nonzero structure of fi is included in the nonzero structure of R.

In essence, we can skip any number of columns during the factorization and still use

the static data structure as long as those columns are not reused for the factor.

4.7 Timing Results on a Hypercube

The above algorithm was implemented on an Intel iPSC/2 hypercube with 128 nodes,

each with 4 megabytes of memory. The static data structure was generated on another

machine (as that is not the part we are trying to parallelize) and was fed as input on the

hypercube.

Since the data structure represented a symmetric matrix, it can be viewed as row or

column oriented storage. However, the symmetric structure allows us to efficiently execute

the steps of the form

for j E Nonz(c[J)

in our algorithm, wherein all the columns in which there is a nonzero entry in the l-th row

need to be dealt with. Since this type of need arises in an inner loop of the algorithm,

efficient implementation of that step is critical.

The constraint matrix used as input was generated randomly but the A was taken

to be a tridiagonal matrix with diagonal elements as unity and off-diagonal nonzeros as

1.0E-3. The test matrix had 10000 columns with approximately 100000 nonzeros in the

final factor. The results are tabulated in table 4.1. The results indicate that each time the

number of processors is doubled, the speed-up obtained is approximately equal to 1.4.

4.8 Robustness of the Algorithm

To test the effectiveness of this estimator, we used this algorithm to estimate the

condition number of a given matrix. As was suggested by Stewart [72], we generated

66

Table 4.1: Timing results on factorization with the condition estimator

no. of time
processors (secs)

2 40.59
4 t 28.59
8 20.42

16 14.69
32 10.35
64 7.34
128 5.24

random test matrices of dimension 10, 25 and 50 with a known condition number - the

values being 1.OE1, 1.0E3, 1.0E6 and 1.0E9. For each of the possibilities, we generated

two types of matrices - one where there is a sharp break in the singular value distribution

and the other in which the singular values are exponentially distributed between 1 and

the condition number.

The algorithm always estimated correctly (within 2 decimal digit accuracy), if there

is a sharp break in the singular value distribution and hence the results in Table 4.2 only

illustrate the case where there is an exponential distribution of singular values. For each

dimension n, 50 test matrices were generated. k2 is the actual condition number of the

test matrix. The numbers quoted in each entry represent the minimum / average value of

the ratio of the estimated condition number to the actual value. The results are rounded

to two significant digits, so a ratio of 1.0 implies that the estimate had at least 2 correct

digits.

Comparative results are included in Table 4.3 for LINPACK, and in Table 4.4 for

Bischof's estimator.

Another way to see the effectiveness of the estimator is to estimate the rank of the

matrix using the estimator during the factorization. The test matrices were generated

as described above, but all of them have an exponential distribution of singular values.

67

Table 4.2: Our condition estimation tests

k2 n = 10 25 50
10 0.36/0.67 0.33/0.53 0.30/0.43
103 0.20/0.58 0.20/0.42 0.22/0.37
106 0.11/0.48 0.12/0.36 0.10/0.27

109 0.12/0.51 0.12/0.33 0.09/0.26

Table 4.3: LINPACK condition estimation tests

k2 n = 10 25 50
10 0.29/0.46 0.24/0.30 0.17/0.23

103 0.29/0.56 0.20/0.33 0.19/0.26
106 0.46/0.76 0.20/0.46 0.22/0.35
109 0.68/0.86 0.24/0.55 0.23/0.40

Table 4.4: Bischof's condition estimation tests

k2 n = 10 25 50
10 0.56/0.77 0.59/0.71 0.63/0.71

103 0.33/0.53 0.40/0.50 0.31/0.45
106 0.12/0.53 0.16/0.38 0.24/0.36
109 0.16/0.45 0.17/0.33 0.19/0.31

68

Table 4.5: Rank detection tests of our algorithm (k 2 = 1.0e6)

n min avg max

10 7/1.0e-4 7/1.0e-4 8/2.2 e-5
25 18/5. 7e-5 19/3.2e-5 21/1.0e-5
50 38/3.0e-5 40/1.7e-5 43/7.2e-6

Comparative results with Bischof's estimator as well as column pivoting technique (for two

values of the condition of the matrix k2 = 1.0E6 and 1.0E9) are tabulated in tables 4.5-

4.10. In each of those tables, n is the size of the test matrix, k2 is the condition number.

Each entry is of the form j/s under each of the min / max / avg columns, where j is the

rank detected by that algorithm and s is the j-th singular value of the test matrix. In

all the estimations, we used a cut-off of 1.0E5 to detect the rank, and hence this singular

value gives us an indication of how good the estimate is. The following points summarize

the test results.

" Our algorithm always gave a conservative estimate compared to the other two strate-

gies.

" Column pivoting seems to obtain a stable value for the rank, with the smallest

difference between its maximum and minimum estimates.

" All the algorithms appear to be reasonably accurate.

The following theorem, due to Barlow [11], confirms the first observation.

Theorem 4.3 Let ranki(C) be the rank as determined by Algorithm 4.1 for a tolerance

c and let rank2(C) be the rank as determined by Algorithm 4.2 with the same tolerance.

Then, excluding the effects of round-off errors, rank2 (C) < ranki(C).

It is also to be noted that column pivoting does not share the property given in the

above theorem [11).

69

Table 4.6: Rank detection tests of Bischof's algorithm (k2 = 1.0e6)

n min avg max
10 8/2.2 e-5 8/2.2e-5 9/4.6e-6
25 20/1.8e-5 21/1.0e-5 23/3.le-6
50 41/1.2e-5 44/5.4e-6 47/2.3e-6

Table 4.7: Rank detection tests of Column Pivoting algorithm (k2 = 1.0e6)

n min avg max
10 8/2.2 e-5 8/2.2e-5 9/4.6e-6
25 21/1.0e-5 21/1.0e-5 22/5.6e-6
50 43/ 7.2e-6 43/7.2e-6 46/3.1e-6

Table 4.8: Rank detection tests of our algorithm (k2 = 1-0e9)

ni min avg max
10 5/1.03-4 5/1.0e-4 6/1.0e-5
25 12/7.5e-5 13/3.2e-5 14/1.3e-5
50 ,24/6.0e-5 ,26/2.6e-5 ,28/1.1e-5

Table 4.9: Rank detection tests of Bischof's algorithm (k2 = 1.0e9)

n min avg max
10 5/1.03-4 5/1.0e-4 6/1.0e-5
25 12/7.5e-5 14/1.3e-5 15/5.6e-6
50 26/2.6e-5 28/1.1e-5 29/ 7.2e-6

Table 4.10: Rank detection tests of Column Pivoting algorithm (k2 =1.0e9)

n min avg max
10 5/1.03-4 5/1.0e-4 6/1.0e-5
25 13/3.2e-5 13/3.2e-5 15/5.6e-6
50 27/1.7e-5 27/1.7e-5 29/7.2e-6

Chapter 5

Weighted Least Squares Problems

Consider the Equality Constrained Least Squares Problem (LSE), usually denoted by

min 11b - Ax112 (5.1a)

subject to

Cx = d (5.1b)

where C E RmIxn, A E Rm2xn, b E Rm2, d E R Tm with m , n mI + M 2 . The problem

LSE has an unique solution if and only if the matrix B = has a rank of n (29].
xC

Usually the matrix B = is large and sparse. These problems arise in optimal
C

design of structures [8], constrained optimization [30], geodetic least squares adjustments

[14], and signal processing [32].

In this chapter, we consider several aspects in solving the above problem on a dis-

tributed memory multi-processors.

5.1 Traditional Methods

This problem has been well studied for sequential computations. Lawson and Hanson

[59] discussed the following popular approaches.

70

5.1.1 Using the Basis of a Null Space

This method is due to Hanson and Lawson [50]. Let

X = {x : Cx = d}. (5.2)

Then if

C = IIRKT (5.3)

is any orthogonal decomposition of C and K is partitioned as

K = [II,, E 2] (5.4)

where K 1 E Rnxkl and K 2 E R7 × (7O- k i), then

X = {x: x = x K 2 Y2} (5.5)

where

= C+d (5.6)

and Y2 ranges over the space of all vectors of dimension (n - kj). Then the minimization

part reduces to finding a (n - k1)-vector Y2 that minimizes

IIA(. + h 2 y 2) - b112 (5.7)

or equivalently

II(AK 2)Y2 - (b - Ai)Il 2. (5.8)

Hence the minimum length Y2 is given by

Y2 = (AK 2)+(b - Ai) (5.9)

71

and hence

XLSE = C+d + K2(AK 2)+(b - AC+d). (5.10)

This method is not suitable for sparse matrices because of excess fill-in created during

the computation of (5.8). Moreover, to arrive at a static structure for the solution of (5.8)

is not easy.

5.1.2 Direct Elimination

This method is due to Bjbrck and Golub [18]. Suppose that the rank of C is m, and

partition

(C =(and x = (5.11)
A A 1 A 2 X2

where C1 E R T1 0m1 with xl E R"". Then, assuming that C,-1 exists, we have

x, = Cj'(d - C 2X 2) (5.12)

and hence

JAx - b1I 2 = IIA1CI 1(d - C 2 x 2) + A 2 x 2 - b[12

= II(A 2 - A 1C7'C2)x2 - (b - Aj 1Cld)1I 2

= IIE2X2 - f112 (5.13)

Suppose C1 = QTC1 is a QR decomposition of C 1. Then

A2 = A 2 - (A 1 C'j1-)(Q 1 C2)

= A 2 - , 1C 2 (5.14)

72

and

b = b - (A41 0 1)(Qld)

= b-Ald. (5.15)

Having solved the smaller dimensional problem, we finally compute

xi = Cj1 (d - C 2x 2). (5.16)

Note that for sparse matrices this is not a good strategy since we can not predict the

structure of the intermediate matrices. The step in equation (5.12) also creates a lot of

fill-in for the intermetliate matrices. A strategy based on this method. due to Bjbrck [17],

is implemented in SPARSPAK-B.

5.1.3 Weighting

In this procedure, we first look at solving the following unconstrained problem

min x ((5.17)
b 2XER n k Ab

for some large, positive weight r.

Let x(r) be the solution to (5.17). By forming the normal equations to this problem,

equation (5.17) is equivalent to

7-1 0 C (i
0 1m, A 1 (5.18)

CT AT 0 2 0

where I,,, and In2 are identity matrices of size nil and M2 respectively.

73

By considering the Lagrange multipliers [42] for equation (5.1), we can rewrite it as

0 (A r b (5.19)

C T A T 0 x 0

It is easy to observe that from equation (5.18) and equation (5.19) above that

lirn x() = XLSE (5.20)

provided that the rank(C) = il.

5.2 Deferred Correction

Powell and Reid [66) showed that for the weighting method, row ordering before the

factorization and column ordering during factorization are very critical to the accuracy of

the solution. In other words, some row ordering before the factorization and some sort

of column pivoting during the factorization are to be used in practice. The row ordering

does not affect the sparsity of the triangular factor, but the column ordering during the

factorization is not appropriate for sparse matrices, especially on Distributed Memory

machines. To overcome this problem, Van Loan [74] proposed a Deferred Correction

scheme to obtain a better estimate from the original solution. The idea behind that

scheme is outlined below.

Algorithm 5.1 Deferred Correction

1. Choose r and compute the solution z(r) for equation (5.17)

74

2. Set
X1) = z(r)

?.(1) = b- Ax(i)

A(l) = r 2 (d - Cx(r))

3. Fork=1,2,..,

(a) Compute the residual

b (k)(k

(k) b - 0 Im A r(k)

6 ()) \0 C T A T 0 X (k)

3 A

(b) Solve

7-1 A(k) b 6 (k)\

(r2P 0 1 (k
0 Im A Ar(k) b(k)

C T A T 0 AX (k) ()

(c) set

A(k+l) = A(k) + AA(k)

r(k+ 1) = r(k) + A r(k)

x(k+l) = 5Xk) + Ax(k)

Barlow [4, 51 gave an efficient and robust implementation of the deferred correction

procedure along with some results on convergence of the algorithm. He also showed that
L

choosing 7 = A-3 gives a solution as good as can be expected in two iterations, for all

but ill-conditioned problems. and that a column pivoting strategy based entirely on the

matrix C can be used to factor the matrix B in a stable manner. We describe the modified

procedure below.

Algorithm 5.2 Modified Van Loan's Procedurm

75

1. Set

x(l) = x(r) where X(r) is the solution of equation (5.17)

rl) = r(r) = b - Ax(r)

w 1
) =d- Cx(r)

A(1) = '~w(1)

T-1

2. Fork =1,2,...,

(a) Solve the system

7C /w (k) + rlIA(k)
Mi A(k) - r(k) (5.21)

(b) set

X(k+l) = X(k) + AX(k)

r(k+l) = r(k) - AAx(k)

(k+ l) = (k) - CA(k)

A(k+i) = A(k) + A X(k) = r2W(k+ l)

5.3 Proper Choice for Parallel Implementation

Of the three methods described above, the weighting approach is well suited for parallel

implementations because of its simplicity. We are essentially solving unconstrained least

squares problem. However as was shown by Van Loan [74] and Barlow [4], care must be

taken to see that the rank of C is detected properly and deferred correction be applied to

improve the solution. We already examined an incremental condition estimation technique

in the previous chapter, that allows us to factor a matrix using a static data structure,

yet detect the rank quite accurately.

Moreover, we can not but over-emphasize the view that on distributed memory multi-

processors, maintaining dynamic data structures for representing the sparse matrix is no,

efficient. Firstly, there is no rational basis on which the required data structures could

76

be distributed over all the nodes. That means that all the data structures are to be held

on all the nodes. And as a consequence, any change in the sparsity structure calls for

updating all the copies held by all the nodes and we know of no way how this can be

done efficiently. In this context the deferred correction approach outweights the other two

approaches.

5.4 Issues in Parallel Implementation

Once the matrix is factored, all the steps in the algorithm are either a matrix-
(A)

vector multiplication or a forward solve or a backward solve, except the solution of equa-

tion (5.21). There are a couple of ways to solve the equation (5.21).

1. If the orthogonal factor Q is available in factored form, then the solution of equa-

tion (5.21) is quite easy. We just need to apply the orthogonal factor to the new right

hand side expression every time and perform a back solve. Our static data structure,

as described in section 4.6 is capable of storing Q in factored form. However, the

Q would be distributed over all the nodes and applying Q to the right hand side

expression would be highly sequential in nature to be executed on a parallel machine.

2. The other way is to use semi-normal equations, as described by Bj6rck [15]. The

basic idea here is as follows. Suppose we want to solve

min IIh - GyJJ2 (5.22)
Y

then, under the normal equations approach, we would be solving

GTGy = GTh. (5.23)

77

Suppose we have an orthogonal factorization of G, such as

G=QR,

then it is easy to see that JTR = GTG and so we could solve

RTRy = GTh (5.24)

instead of solving equation (5.23) to get a solution. Note that solving equation (5.24)

involves a matrix-vector multiplication followed by a forward solve and backward

solve only. Bj6rck showed that if one step of iterative refinement is done by solving

RT RAy = GT(h - Gy) (5.25)

then y + Ay is as good a solution as can be expected under most of the circumstances

for the problem (5.22).

We have chosen to implement the second method here, even though it involves two

back solves and two forward solves per each iteration, instead of storing Q, as shown

below. We first solve

RTRA(k) = (rCT AT) (TW) r(k) (5.26)k. r(k))
and perform an iterative improvement step

TW(k) +'Q' 71\(k (rC -(
R TRA q(k) = (,rCT A T) TI ~ A, ~ f (.7

I (Ak)A (5.27)

and set

AX (k = A ±(k) + Aq(k). (5.28)

78

Table 5.1: Timing results of constrained problem

No. of time
Processors in secs.

2 105.16
4 76.76
8 57.28
16 42.12
32 31.20
64 22.94
128 17.12

5.5 Tests on Parallel Implementation

The constraint matrix C is taken to be of random sparsity structure with random

elements values and the matrix A is taken as a tridiagonal matrix with unit diagonal

elements and the off-diagonal values being 1.OE-3.

As was described in previous chapter, we generated a static data structure for carrying

out the factorization of the constraint matrix. Once the rank of C and the columns that

re included in the factorization are determined, we recompute the R factor, but this time

the matrix we factor is (-). The important point to be noted is that the same static
A

data structure is capable of holding the new factor R. By the updating the right-hand side

simultaneously during the factorization, we can get the initial solution x(r) by doing a

simple back solve. And we perform two steps of deferred correction procedure, as described

in previous section.

Test matrices up to the size of 10,000 columns were generated and up to 128 processors

of the hypercube are used to determine the speed-up. The results are tabulated in table 5.1.

Once again, we note that every time the number of processors is doubled, we get an

effective speed-up of about 1.35. The drop in performance can be attributed to the back

solve processes, especially during the deferred correction procedures.

79

Table 5.2: Trace of the Deferred Correction Algorithm

Iteration II11 2 IIWI112 + IIW3112
1 0.29E-13 0.23E-13 0.22E-13

2 0.90E-14 0.70E-14 0.54E-14
3 0.41E- 14 0.32E-14 0.32E-14
4 0.27E-14 0.21E- 14 0.27E-14
5 0.24E-14 0.19E-14 0.25E-14

5.6 Effectiveness of Deferred Correction

To show that the modified deferred correction works well in practice on sparse matrices,

we generated sparse matrices with random elements as well as random sparsity structure,

with the number of non-zeros in each row being in a range of a small fraction of the number

of columns. This matrix is taken as the constraint matrix. The matrix A was taken to be

a tridiagonal matrix with unit diagonal and the off-diagonal elements being 1.OE-03. The

right-hand side was also taken to be a vector of unit clements. 100 sparse matrices up to

the size of 2,000 columns were tested on a SUN-4 architecture in double precision. The

value of r was chosen to be equal to p 3 where p is the machine precision.

In all cases, the solution converged in two iterations, the convergence criterion being

11 1 +Il < 1o-12. Here 3 - Ar(k). The worst-case progress of the

algorithm on a random matrix is shown in table 5.2. Barlow [4,5] shows evidence that two

iterations give us a solution that is as good as can be expected, for all but ill-conditioned

problems.

5.7 Conclusions

We examined three algorithms for computing an orthogonal factorization of a dense

matrix on distributed memory multi-processors. The factorization is computed as a se-

quence of given's rotations because there is a lot of freedom in the order in which those

80

rotations are applied. The knight's tour givens ordering works on any ring connected

architecture and was shown to be not optimal in terms of computational complexity. The

greedy givens algorithm exploits the hypercube connections during the recursive elimina-

tion phase and is easy to implement. It seems to be asymptotically optimal in terms of

the comiiunication complexity. The recursive fine partition algorithm also makes use of

the hypercube connections but involves more communication than the greedy algorithm.

However it keeps all the processors busy most of the time.

We then consider rank detection of a sparse matrix during factorization, especially

when the factorization is performed on a distributed memory multi-processor. We first

emphasize the use of static data structures to do the sparse factorization. We describe a

rank detection algorithm using an incremental condition estimator that is quite effective

for parallel sparse matrix factorizations. We show that static structures can be used to

carry out the factorization. We show experimental results that suggest that the rank

detection strategy is comparable to that of the column pivoting and a recent algorithm

by Bischof.

Lastly we consider solving equality constrained least squares problems on a distributed

memory multi-processor. After examining popular approaches for solving this problem,

we conclude that the weighted least squares approach is the most efficient way to solve

large and sparse instances. A major concern in solving these problems is the accurate

rank detection of the constraint matrix. We make use of a procedure previously described

to detect the rank. We also note that a static structure can be generated that can be used

for the rank detection of the constraint matrix as well as the rest of the solution process.

To improve the accuracy of the solution from the weighted least squares approach, we

perform two steps of modified deferred correction technique . We show evidence that

the solution after two steps of deferred correction is as good as can be expected, for all

but ill-conditioned problems. We also show good speed-ups in solving large and sparse

equality coiditioned least squares problems on hypercubes up to 128 processors.

Bibliography

[1] Alfred V. Aho, John E. Ilopcroft, and Jeffrey D. Ullman. The Design and Analysis

of Compueter Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[2] Gita Alaghband. Parallel pivoting combined with parallel reduction. Technical Re-

port ICASE 87-75, NASA Langley Research Center, Hampton, VA, 1987.

[3] Gene M. Amdahl. Validity of the single-processor approach to achieving large scale

computing capabilities. In A FIPS Conferenlce Proceedings, volume 30, pages 483-485,

AFIPS Press, Reston, VA, April 1967.

[4] Jesse L. Barlow. Error analysis and implementation aspects of deferred correction for

equality constrained least squares problems. SIAM Journal on Numerical Analysis,

25(6):1340-1358, December 1988.

[5] Jesse L. Barlow. Convergence of deferred correction for equality constrained least

squares problems in two iterations, in preparation, 1990.

[6] Jesse L. Barlow and Susan L. Handy. The direct solution of weighted and equal-

ity constrained least squares problems. SIAM Journal on Scientific and Statistical

Computing, 9(4):70,1-16, July 1988.

[71 Jesse L. Barlow and I. C. F. Ipsen. Parallel scaled Givens rotations for the solution

of linear least squares problems on a systolic array. SIAM Journal on Scientific and

Statistical Comzputing, 8:716-733, September 1987.

[8] Jesse L. Barlow, N. K. Nichols, and Robert J. Plemmons. Iterative methods for equal-

ity constrained least squares problems. SIAM Journal on Scientific and Statistical

Computing, 9(5):892-906, September 1988.

82

[9 Jesse L. Barlow and Udaya B. Vemulapati. An improved method for one-way dissec-

tion with singular diagonal blocks. SIAM Journal on Matrix Analysis and Applica-

tions, 11(4), October 1990.

[10] Jesse L. Barlow and Udaya B. Veniulapati. Incremental condition estimator for par-

allel sparse matrix factorizations. In Procedings of the Fifth Distributed Memory and

Concurrent Computer Conference. IEEE Publications, April 1990.

[11] Jesse L. Barlow and Udaya B. Vemulapati. Rank detection. in preparation, 1990.

[12] Christan H. Bischof. Incremental condition estimation. SIAM Journal on Matrix

Analysis and Applications, 11(2):312-322, April 1990.

[13] Christan 11. Bischof, John G. Lewis, and Daniel J. Pierce. Incremental condition

estimation for general matrices. Technical Repoi, MCS-P106-0989, Mathematics and

Computer sciences division, Argonne National T boratory, Argonne, IL, September

1989.

[14] Ake Bj6rck. A general updating algorithm for constrained linear least squares prob-

lems. SIAM Journal on Scientific and Statistical Computing, 5:394-402, 1984.

[15] Ake Bj6rck. Stability analysis of the method of semi-normal equations for linear least

squares problems. Linear Algebra and Its Applications, 88/89:31-48, April 1987.

[16] Ake Bj6rck. A direct method for sparse least squares problems with lower and upper

bounds. Numerische Alathematik, 54:19-32, 1988.

[17] Ake Bjorck and lain S. Daff. A direct method for the solution of sparse linear least

squares problems. Linear Algebra and Its Applications, 34:43-67, 1980.

[18] Ake Bjorck and Gene It. Golub. Iterative refinement of linear least squares solutions

by Householder transformations. BIT, 7:322-337, 1967.

83

[19] R. M. Chamberlain and M. J. D. Powell. QR factorization for linear least squares

problems on a hypercube multiprocessor. IL4 Journal of Numerical Analysis,

8(4):401-413, 1989.

[20] Tony F. Chan. Rank revealing QR factorizations. Linear Algebra and Its Applica-

tions, 88/89:67-82, 1987.

[211 Eleanor Chu and Alan George. Sparse orthogonal decomposition on a hypercube

multiprocessor. SIAM11 Journal on Matrix Analysis and Applications, 11(3):453-465,

July 1990.

[22] A. K. Cline, A. R. Corn, and Charles F. Van Loan. Generalizing the LINPACK

condition estimator, volume 909 of Lecture Notes in Mathematics. Springer-Verlag,

Berlin, 1982.

[23] Thomas F. Coleman, Anders Edenbrandt, and John R. Gilbert. Predicting fill for

sparse orthogonal factorization. Journal of the ACM, 33(3):517-532, 1986.

[24] M. Cosnard, J. M. Muller, and Y. Robert. Parallel QR decomposition of a rectangular

matrix. Numerische Alathematik, 48:239-249, 1986.

[25] George Cybenko, David W. Krumme, and K. N. Venkataraman. Fixed hypercube

embedding. Information Processing Letters, 25(1):35-39, 1987.

[26] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK User's

Guide. SIAM Publications, Philadelphia, 1979.

[27] lain S. Duff. Private Communication, 1990.

[281 Editor. Editor's note. SIAM Journal on Scientific and Statistical Computing,

9(4):608, July 1988.

(29] L. Elden. Perturbation theory for the least squares problem with equality constraints.

SIAM Journal on Numerical Analysis, 17:338-350, 1980.

84

[30] R. Fletcher. Practical Methods of Optimization. John Wiley L Sons, Second edition,

1987.

[31] L. V. Foster. Rank and null space calculations using matrix decomposition without

column pivoting. Linear Algcbra and Its Applications, 74:47-72, 1986.

[32] 0. L. Frost. An algorithm for linearly constrained adaptive array processing. Proc.

IEEE, 60:926-935, 1972.

[33] George A. Geist and Charles II. Romine. LU factorization algorithms on distributed

memory multiprocessor architectures. SIAM Journal on Scientific and Statistical

Computing, 9(4):639-649, July 1988.

[34] W. M. Gentleman. Error analysis of QR decomposition by Givens transformations.

Linear Algebra and Its Applications, 10:189-197, 1975.

[35] W. M. Gentleman and 11. T. Kung. Matrix triangularization by systolic arrays. Proc.

SPIE Symposium, 298:19-26, August 1981.

[36] Alan George and Michael T. Heath. Solution of sparse linear least squares problems

using Givens rotations. Linear Algebra and Its Applications, 34:69-83, 1980.

[37] Alan George, Michael T. Heath, Joseph W. H. Liu, and Esmond Ng. Sparse Cholesky

factorization on a local memory Multiprocessor. SIAA Journal on Scientific and

Statistical Computing, 9(2):327-340, March 1988.

[38] Alan George and Joseph IV. I. Liu. An optimal algorithm for symbolic factorization

of symmetric matrices. SIAM Journal on Computing, 9:583-593, 1980.

[39] Alan George and Joseph W. H. Liu. Computer Solution of Large Sparse Positive

Definite Systems. Prentice Hall, Englewood Cliffs, N. J., 1981.

I I in I II I I O i Oi I

85

[40] Alan George and Esmond Ng. SPARSPAK: Waterloo sparse matrix package user's

guide for SPARSPAK-B. Technical Report CS-84-37, Dept. of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada, November 1984.

[41] Alan George and Esmond Ng. Orthogonal reduction of sparse matrices to upper

triangular form using Householder transformations. SIAM Journal on Scientific and

Statistical Computing, 7(2):460-472, April 1986.

[42] Philip E. Gill, Walter Murray, and Margaret 11. Wright. Practical Optimization.

Academic Press, New York, 1981.

[43] Gene H1. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins

Press, Baltimore, second edition, 1989.

[44] M. Gunzberger and R. Nicholaides. Elimination with noninvertible pivots. Linear

Algebra and Its Applications, 64:183-189, 1985.

[45] M. Gunzberger and R. Nicholaides. On substructuring algorithms and solution tech-

niques for the numerical approximation of partial differential equations. Applied

Numerical Mathematics, 64:243-256, 1986.

[46] John L. Gustafson. Reevaluating Amdahl's law. Communications of the ACM,

31(5):532-533, May 1988.

[47] John L. Gustafson, G. R. Montry, and R. E. Brenner. Development of parallel meth-

ods for a 1024-processor hypercube. SIAM Journal on Scientific and Statistical Com-

puting, 9(4):609-638, July 1988. Winner of Gordon Bc1l Award.

[48] F. G. Gustavson. Some basic techniques for solving sparse systems of equations. In

D. J. Rose and R. A. Willoughby, editors, Sparse Matrices and their Applications,

pages 41-52. Plenum Press, New York, 1972.

86

[49] W. W. Hager. Condition estimators. SIAM Journal on Scientific and Statistical

Computing, 5:311-316, 1984.

[50] Richard J. Hanson and Charles L. Lawson. Extensions and applications of the House-

holder algorithm for solving linear least squares problems. Math. Comp.. 23(108):787-

812, 1969.

[51] Michael T. Heath. Some extensions of an algorithm for sparse linear least squares

problems. SIAM Journal on Scientific and Statistical Computing, 3:223-237, 1982.

[52] Michael T. Heath and Charles H. Romine. Parallel solution of triangular systems

on distributed memory multiprocessors. SIAM Journal on Scientific and Statistical

Computing, 9(3):558-588, May 1988.

[53] Don E. Heller and I. C. F. Ipsen. Systolic networks for orthogonal decomposition.

SIAM Journal on Scientific and Statistical Computing, 4:261-269, 1983.

[54] Nicholas J. Higham. A survey of condition number estimation for triangular matrices.

SIAM Review, 29(4):575-596, 1987.

[55] Lennart S. Johnson and Ching Tien Ho. Algorithms for matrix transposition on

boolean N-cube configured ensemble architectures. SIAM Journal on Numerical

Analysis, 9(3):419-454, 1989.

[56] Alan H. Karp and Horace P. Flatt. Measuring parallel processor performance. Com-

munications of the ACM, 33(5):539-543, May 1990.

[57] Vijay K.Naik and Merrell L. Patrick. Communication requirements of sparse

Cholesky factorization with nested dissection ordering. In Parallel Processing for

Scienctific Computing, pages 9-14. SIAM Publications, Philadelphia, PA, 1987.

87

[58] David W. Krumme, K. N. Venkataraman, and George Cybenko. Hypercube embed-

ding is NP-Completc. In Michael T. leath, editor, Hypercube Multiprocessors 1986.

SIAM Publications, 1986.

[59] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems. Prentice

Hall, Englewood Cliff, N.J., 1974.

[60] Guangye Li and Thomas F. Coleman. A parallel triangular solver for distributed

memory multiprocessor. SIAM Journal on Scientific and Statistical Computing,

9(3):485-502, May 1988.

[61] Guangye Li and Thomas F. Coleman. A new method for solving triangular systems

on distributed memory message-passing multiprocessors. SIAM Journal on Scientific

and Statistical Computing, 10(2):382-396, March 1989.

[62] Oliver A. McBryan and Eric F. Van De Velde. Hypercube algorithms and imple-

mentations. SIAM Journal on Scientific and Statistical Computing, 8(2):s227-s287,

March 1987.

[63] J. J. Modi and M. R. B. Clarke. An alternative Givens ordering. Numerische Math-

ematik, 43:83-90, 1984.

[64] Alex Pothen. Sparse Null Bases and Marriage Theorems. PhD thesis, Cornell Uni-

versity, Ithaca,NY, 1984.

[65] Alex Pothen, Somesh Jha, and Udaya Vemulapati. Orthogonal factorization on the

hypercube. In Ilypercube Multiprocessors 1987. SIAM Publications, 1987.

[661 M. J. D. Powell and J. K. Reid. On applying Householder transformations to linear

least squares problems. Proc. IFIP Congress, pages 122-6, 1968.

[67] Micheal J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-

Hill, Inc., 1987.

I I I | I

88

[68] Donald J. Rose, Robert E. Tarjan, and George S. Lueker. Algorithmic aspects of

vertex elimination on graphs. SJAI Journal on Computing, 5:266-283, 1976.

[69] A. H. Sameh and D. J. Kuck. On stable parallel linear system solvers. Journal of the

ACM, 25(1):81-91, 1978.

[70] David S. Scott, Enrique Castro-Leon, and Edward J. Kushner. Solving very large

dense system of linear equations on the iPSC/860. In Proceeding of the Fifth Dis-

tributed Memory Compting Conference. IEEE Computer Society Press, 1990.

[71] Charles L. Seitz. The cosmic cube. Communications of the ACM, 28:22-33, 1985.

[72] Andrew H. Sherman. On the efficient solution of sparse systems of linear ans nonlinear

equations. Research Report 46, Dept. of Computer Science, Yale University, New

Haven, CT, 1975.

[73] G. W. Stewart. The efficient generation of random orthogonal matrices with an

application to condition estimators. SIAM Journal on Numerical Analysis, 17:403-9,

1980.

[74] Charles F. Van Loan. On the method of weighting for equality-constrained least-

squares problems. SIAM Journal on Numerical Analysis, 22:851-864, 1985.

[75] Charles F. Van Loan. On estimating the condition of eigenvalues and eigenvectors.

Linear Algebra and Its Applications, 88/89:715-732, 1987.

[76] J. H. Wilkinson. Thc Algebraic Eigcnvalue Problem. Oxford University Press, Lon-

don, 1965.

