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1.0 INTRODUCTION

The RACE (Ring ACceleration Experiment) project at Lawrence Livermore National Laboratory

has demonsirated that plasma toroids can be accelerated as armatures in a coaxial rail gun

configuration (Ref. 1). The magnetic fields of these toroids are similar to those witbin

spheromaks (Ref. 2) except these toroids remain off the axis of symmetry between a pair of

coaxial conducting cylinders that serve as the electrodes for the rail gun. The MARAUDER

(Magnetically Accelerated Rings to Achieve Ultra-high Density Energy and Radiation) project at

the Weapons Laboratory High Energy Plasma Division (AWX) will attempt to carry the concept

to the megajoule energy level. There are many possible applications for high energy toroids.

They may be used to produce intense X-ray radiation by interrupting their motion with a metal

plate or focusing cone. They may provide reliable armatures for plasma flow switches that can

be used in pulsed-power devices for current shaping. There are also some exotic proposals for

accelerated toroids including possibilities for fusion (Ref. 3).

The full MARAUDER experiment will be a three-stage process. The first stage is the formation

of the torus and is performed with a magnetized plasma gun. This is similar to the spheromak

formation that is described by Turner (Ref. 2). The second stage compresses the torus to a

smaller diameter, increasing the plasma density and magnetic induction. The final stage is axial

acceleration of the toroid. The three stages are represented schematically in Figure 1.

This report describes an analytic model of the compression stage. The model is presently being

used to supplement time-dependent two-dimensional magneto-hydrodynamic (MHD)

simulations that are performed on computers. The information from the two approaches will be

used in the design of the compression cone and acceleration circuit. The analytic model gives

the magnetic field and associated magnetic energy for a torus before and after compression. The

increase in torus energy plus the field energy stored behind the torus is an estimate of what the

acceleration circuit must provide. Section 2.0 describes the solutions for the magnetic field and

integrated energy. Section 3.0 presents the method used for finding the eigenvalue for the

MARAUDER geometry, and Section 4.0 derives a model from which comes the energy estimate.
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Figure 1. Schematic of the poloidal magnetic flux during the three stages of the MARAUDER
experiment.
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2.0 ANALYTIC SOLUTION

In low-13 plasmas where hydrostatic pressure is small compared to magnetic field pressure, a

reasonable assumption is that the only forces of interest are those from the magnetic fields.

These plasmas are "force-free" when the plasma current density is nonexistent or everywhere

parallel to the magnetic induction. The latter condition may be expressed as

Vx B=X(x) B (1)

where B is the magnetic induction vector. The only restriction on this equilibrium configuration

is that B- VX( x ) = 0 to enforce V. B = 0. Woltjer (Ref. 3) has shown that the integral of the

dot product of B and A, the magnetic vector potential, over the volume of a closed system is

conserved when the system obeys the ideal MIID approximation. This integral is now known as

the magnetic helicity, and Woltjer also proved that minimizing the magnetic energy of such a

system keeping its helicity constant leads to Equation I with constant X. A minimum energy

configuration is stable, and the fields within spheromaks and the toroids of RACE and

MARAUDER have such configurations. It is also useful to note that A satisfies

V x ,A = ,4 + V , where the gauge determines 0, so the magnetic energy, (1/2t0) B- B d x, is

/2 times the helicity (Ref. 4).

Finding the solution of Equation 1 with constant X subject to appropriate boundary conditions is

not new (Refs. 4 and 5, for example). The method is presented here for completeness. The

energy density of the resulting fields is then integrated for the compression analysis. The

conventions of Finn, Manheimer and Ott (Ref. 4) are used except cylindrical symmetry is

assumed, so the scalar variations with respect to the azimuthal coordinate are zero. This

assumption implies but does not prove that a symmetric configuration has a smaller X, hence

lower energy, than any other configuration.

The solution of Equation I with constant X may be obtained from the solution of the scalar

Helmholtz equation,

V2 + k -=0 (2)

The magnetic induction vector is then determined by
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B= zxVy +(11A)Vx( zxV t) (3)

where z is the axial unit vector in cylindrical coordinates. Morse and Feshbach (Ref. 6) cover

this technique in detail for generalized vector fields. The domain of this model is an annular

volume that forms a rectangle when sliced by the r-z plane--see Figure 2. The rectangle has two

axis

Figure 2. The rectangular annulus that forms the domain of the analytic model and its
intersection with the r-z plane.

sides parallel to z. The boundary conditions that make B tangent to the bounding surfaces are

2

- =0 (4)

at r = r and r = r2, and

2

-- 2 + X =0 (5)

at z=O and z=L, where r is the radial coordinate, r and r are the inner and outer radii of the
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formation section (see Figure 1), and L is the axial length. Equation 2 may be solved by

separation of variables, setting (r,z) = R(r)Z(z), and the differential equation becomes

2

1r ( R +2 I a Z

2
The two sides of the equation must be equal to a constant ax. The resulting ordinary differential

equation for Z has a solution that is the sum of a sine function and a cosine function,

Z = C sin(az) + C cos(oz)
3 C

The boundary conditions then require

2 2 2 2
C (X -t )sin(az) + C (X - a )cos(az) = 0

S C

at z = 0 , z L. To avoid restricting the rest of the solution, the condition at z = 0 requires

C = 0. A series of eigenvalues, a = nit/L with n = 1, 2, ..., for a series of sine terms, will then
C n

satisfy the boundary conditions.

The solution of the differential equation for R is a sum of linearly independent Bessel functions

of order zero. Before applying the boundary conditions at the radial boundaries, the solution for

V is

Wl(r,z)= Cn[J( r -Ax + A Y(rX - n )]sin(ac z) (6)
0 n n I

If r =0 to create a spheromak, then the boundary condition at rI forces An = 0 for all n. This is

not appropriate for coaxial configurations. Substituting Equation 6 into Equation 4 and

evaluating at the two radial boundaries gives two series that are each zero. The differential

equation for the minimum energy configuration has a constant X, and this can be satisfied when

C is nonzero for only one n. Because the energy is the helicity, which is fixed, multiplied by
n

VJ2, the configuration with the smallest X has the lowest energy. The arguments of the Bessel

functions must be real for the cylindrically symmetric case, as the modified Bessel functions that

would arise from imaginary arguments are monotonic and would not satisfy Equation 4 at both

radii. Therefore, X> a. Solving the n=1 terms of the two series with a = n/L,
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JI(r ) + AYI(r -a)= 0 (7a)

and

Nf2 22 r 2 2

J kr2 - a ) + AY(r 2  -a) = 0 (7b)

for the smallest radial factor, - a, and corresponding A gives the solution with the minimum

energy. Determining the radial factor and A is the subject of Section 3.0.

Substituting Equation 6 into Equation 3 gives the components of B. The constant is changed for

convenience to K = C 1- a, and the components are

B = (KaA)cos(az)[J (rX-a2) + AY1 (X _ A (8a)
r

r 2-2 /2 2
B = - Ksin(az)[J (r X - a) + AYI(rI - a ) (8b)

rF2 f-2 (1 2 2)

(Ka-A - a /2.)sin(az)[Jo(rA - a ) + AY o0 - a2)] (8c)

2

The energy of this configuration is the volume integral of the magnetic energy density, B /2. 0

This yields

22 2 2
K a +X 2 2 2 2

EB = - oX(X -a) [(x /2)F (x) - xF(x)G(x) + (x /2)G (x)]

+ (l/aX2)[(x/2)F (x) + (x/2)G (x)] x r 2 --2 (9)

where

F(x)= J0(x) + AY(X)

and
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G(x)= JI(x) + AY (x)

When A and X satisfy the boundary conditions, G(x) is zero at the limits of integration, and the

energy in the toroidal field is half of the total. The flux of toroidal field through the r-z plane is

also necessary for the compression analysis. The area integral of Equation 8b gives

2 x=r -A 2-a2

=F(x) 2 2 2 (10)
xaTr - a
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3.0 RADIAL BOUNDARY CONDITIONS

The two unknowns in Equations 7a and 7b are determined with a numerical root-solver using

SLATEC library routines for the Bessel functions. First, a cost function is defined as the sum of

the squares of the residuals from Equations 7a and 7b when guesses are substituted for A and X.
When the boundary conditions are satisfied, the cost function is a local minimum; in fact it will

be zero. Some knowledge of the Bessel functions and the desired results helps. The Bessel

functions are smooth, and the smallest radial factor is desired.

The program BESROOT (see the Appendix for a listing) provides a semi-automated approach to

finding the roots in the two-dimensional space of A and X. The user selects a set X's, and the

program finds the corresponding set of minimum costs between A = -10 and A = +10 using a
Newton's method in the A dimension. A larger range of A is possible, but this would imply that

the Bessel function of the second kind by itself would almost fit the geometry. Also, the search

in X could have been automated, but this would add much more complexity, and the manual

search is not time consuming for one geometry.

The MARAUDER formation stage dictates r = 0.4477 m and r =. 255 m, the inner and outer

radii, respectively, of the chamber. The smallest radial factor, 4k - a , that satisfies the-I

boundary conditions is 17.744 m , and the corresponding A is 1.3191. The axial length, L, of

the toroid is somewhat arbitrary. The axial confinement of the plasma is a dynamic process in

the experiment and is beyond .ne scope of this analysis. Good confinement would produce a

toroid whose L is about the same as the radial gap between the conducting walls. Therefore, for-1

one example, L is set to 0.2 m, and X becomes 23.698 m . Figure 3 shows the resulting field

distribution serving a second role as initial conditions for a time-dependent computer simulation.

This simulation has K = 1, which gives 4.388 kJ of magnetic field energy.
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L
(a) Poloidal magnetic field vectors.

U
(b) Toroidal magnetic field contours.

Figure 3. The magnetic fields of the analytic model as initial conditions for a computer
simulation.
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4.0 COMPRESSION ANALYSIS

Several assumptions and approximations are necessary to gain useful information about the

compression stage from the expressions that have been derived. The analysis provides the

energy of the compressed state, and the assumptions deal with what the compressed state is

without solving time-dependent equations. The preceding discussion has dealt with "force-free"

magnetic fields within a plasma-filled rectangular annulus and has not addressed what exists

outside of the annulus. If it were surrounded by a perfectly conducting surface, eddy currents

would run along the surface. Material strength of the surface would be required to oppose the

pressure of the poloidal field, which does not penetrate the surface. If there were no conducting

surface, the configuration could remain in equilibrium only if vacuum fields matched the

poloidal fields at the surface of the annulus. The experimental toroids of MARAUDER

represent neither extreme, but they have elements of each. The radial boundaries of the chamber

are only 18 cm apart in the formation section, and the total chamber length can be several meters.

The concept is to form a confined plasma ring, and accelerate it through the chamber. The goal

is not to fill the entire chamber with plasma. Vacuum fields and inertia help the axial

confinement. The whole process is dynamic, and equilibrium is never established.

The compression process is approximated by forcing the torus to remain in a rectangular annulus

whose dimensions collapse linearly towards a point on the axis. Different acceleration tube

geometries may be explored by changing the final size of the theoretical annulus. The inner

radius, r., of the annulus is a convenient parameter, and the outer radius, r, and axial length, 1,

are proportional to it:

r(r) = xr , and l(r) = Tir,

The constant r1 is determined by the formation chamber, and X comes from the arbitrary choice

for L. For the configuration to remain unchanged with various r., the arguments of the

trigonometric functions and Bessel functions in Equations 8a through 8c must remain

unchanged. Therefore,

a(r.) = nt/r. , and X(r.) = A/r
I I I I

where A = rI X(rI). It is also convenient to evaluate the definite integral in the energy expression

that satisfies the boundary conditions, because it will also remain unchanged for various r.:
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22 2
x 2 x=r X- a

20z a ---IF(x)] l--
2 x=r41 -a

Its value is 2.763 for MARAUDER.

If the plasma obeys ideal MHD, where the plasma acts as a perfectly conducting fluid, then the

magnetic flux through a surface element of the plasma remains constant. Thus, the flux
2

expression, Equation 10, implies K(r) = K(rI)(rI/r). The magnetic energy in the torus is now a

function of r only,

2 4
[K(r )] wML2rE= (11)

B g A2 -n212 )p.0 A - x fri )r.

The magnetic energy of the idealized torus is inversely proportional to radius. A compression

cone that has been proposed for MARAUDER reduces the radius by a factor of three, so the

torus illustrated in Figure 3 would emerge from the cone with approximately 13 kJ of energy.

The acceleration circuit provides azimuthal magnetic field behind the torus to compress and

accelerate it. The current in the acceleration circuit peaks when the torus reaches the end of the

compression cone. The circuit is crowbarred at this point to efficiently accelerate the torus as the

stored field expands adiabatically. An estimate of the energy the acceleration circuit must
provide, Ec, for a given torus is the work done on the torus during compression plus the field

C

energy stored behind the torus,

2
E =AE + (1/2)(L. +L )I (12)

The internal energy, kinetic energy and radiative losses are relatively small prior to acceleration.

The inductance per unit length between concentric cones is the same as that between coaxial

cylinders with the same ratio of radii, X. Therefore the inductance internal to the chamber is

L. = (p. h/2i)ln(X)
M 0

where h is the axial distance between the bottom of the formation section and the end of the
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compression cone. The inductance external to the chamber, L , is determined experimentally by
c~x

shorted discharges.

One final approximation is necessary to relate the peak current, I, to the compressed torus. If the

torus at the end of the cone is in equilibrium with the field from the circuit, then the force from

one balances that of the other. These forces do not have the same distribution, and the circuit

field will distort the upstream side of the torus. However, if an imaginary conducting washer

separates the torus from the circuit field, then the area integrals of magnetic pressure can be

matched to provide an expression for I. The toroid has only radial field at the axial boundaries

of the rectangular annulus, and using Equation 8a its force on the washer is

3 4
2 1

[K(r)2 222 222

io A (A - 2 /r2 )r2

2
and the force from the circuit is (g 0I /47c)ln(X), so the current that balances a torus is

2 2 1/2
2t r __ _ _

I =K(r 1) - -TIAl,0r. ln(A)(A - 7t/" ))

The complete expression for the required circuit energy is

2 3
[K(r)] mfr , (r'

E o (A / rI

1 [K(r)147c fr (r, '

+ n(X)+L z z z z z z (13)
2 2n) g0 ri A (A - it/i )ln(X) r)

This is proportional to the square of the initial field, through the K(r1) factor, and it is a quadratic

of the compression ratio, r/r, where the highest order term is the stored field energy behind the

torus. Finally the length of the cone is a linear multiplier in the internal inductance term. With

h = 0.7 m, and L ex 50 nfl--one possible combination for MARAUDER, the peak circuit current
cx

for the toroid in Figure 3 is 1.610 MA, and the circuit must provide a total of 134 I0.
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5.0 DISCUSSION

This analysis for the compression of a torus is not a detailed model. The issue of axial

confinement is neglected as the imaginary conducting surface in the model always encloses the

plasma and magnetic fields. This is a gross approximation when one considers that the same

configuration placed in the actual chamber (without surfaces on the axial boundaries) does not

satisfy Ampere's Law. Therefore, the real torus must have vacuum fields surrounding it.

However, the energy expression from the model does provide useful information. It gives a

rough idea of what circuit parameters are legitimate for a given torus and cone geometry. The

analysis is not complete, but it does help limit the parameter space of the computational study,

saving time and computer resources.
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APPENDIX

program besroot

c ---- this program helps find the solution to the equation

c JI(x) + a*Yl(x) = 0, where x = r*sqrt(mu**2-(pi/L)**2),

c at two values of r.

real sinev, besev, totev, evinc, rl, r2, a, amx, amn

integer ita, ite

common /radii/r I, r2

open( unit = 1, status = 'new', file = 'besout')

call link('unit2=tty//')

c ---- for L = 20 cm

sinev = 15.708

c ---- formation region

rl = 0.4477

r2 = 0.6255

amaxi = 10.

amini = -10.

ita =40

100 write(*,*) 'How many iterations of the eigenvalue,'

write(*,*) 'what starting point, and increment?'

read(2,*) ite, totev, evinc

do 200 iI = Lite

amx = amaxi

amn = amini
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besev = sqrt( totev**2 - sinev**2)

dcostmax =dcost(besev, amx)

dcostmin =dcost(besev, axnn)

if ( (dcostmax * dcostniin) Ilt. 0. )then

c ------ the pair stradle 0.

do 300 i2: =lita

an = (anix + amn) / 2.

dcosmn = dcost(besev, an)

if ( (dcostrnax * dcostn) Alt. 0. )then

ai = an

dcostzmin =dcost(besev, amn)

else

arnx =an

dcostnux =dcost(besev. armx)

endif

300 continue

write(*,*) totev, anin, valu(besev,amn,rl), valu(besev,amn,r2 )

write(1,* totev, axnn, valu(besev,amfl,rl), valu(besev,aflii,r 2 )

else

write(*,*) totev, 'No root between', amn, arnx

write(I,* totev, 'No root between', axnn, arnx

endif

totev = totev + evinc

200 continue

write(*,*) 'Type 1 for another round.'

read(2,*) irep

if (irep .eq, 1) goto 100

close(unit = 1)

stop

end
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function dcost(ev, var)

c----derivative of the cost function with respect to var

c where the cost is the sum of the squares of the residual

c of the function in the first comment

common /radii/ rl, r2

besjll = besjl( ev*rl )

besjl2 = besj I( ev*r2 )

besyll = besyl( ev*rl )

besyl2 = besyl( ev*r2 )

dcost = 2.* ( besjll + var * besyl 1 )*besyll +

% 2. *(besjl2 + var * besyl2 )*besyl2

return

end

function valu(ev, var, r)

c ---- evaluate the function in the first comment

arg = ev * r

valu = besjl(arg) + var * besyl(arg)

return

end
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