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model are most promising.
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1.0 INTRODUCTION

1.1 NEED FOR EXPERIMENTAL DATA

The present study was directed towards experimentally investigating the characteristics of an
incompressible three-dimensional turbulent boundary layer ( 3-D TBL ) generated by a
wing-junction flow. The existence of a Law-of-the-Wall velocity profile was extensively studied with
the aid of some existing 3-D TBL data. The validity of the turbulence models for 3-D TBLs was
tested within the limits of the available data.

As pointed out by Bradshaw (1987), the study of the effect of the three-dimensionality of the flow
on the turbulence structure still necessitates further reliable data sets which include all terms of the
Reynolds stress tensor. Previous reviews on the available 3-D TBL data were made by several
authors, including Johnston (1976), Fernholz and Vagt (1982), Anderson and Eaton (1987), Van

Den Berg ( 1987 ).

The neccessity and importance of the quantities to be measured and how the data sets would be

qualified to be useful was discussed in Van Den Berg ( 1987 ). Van Den Berg pointed out three
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important aspects: the reliability of the data, the necessity of sufficient data to make the calculations
possible, and the flow studied having application in reat life. The reliability or consistency of data
could be verified by examining the Reynolds shear stresses outside the viscous sublayer but very
near the wall to see if they extrapolate to the skin friction value measured, by checking if the global
flow laws such as the momentum integral balance is satisfied or not, and by using different
experimental techniques. The second aspect questions the completeness of the data for
computations. Data sets which document the Reynolds number of the flow, the initial conditions
including the turbulence quantities along the initial line where the computations start, the pressure
distribution on the wall closely enough so that the pressure gradients can be computed and the
necessary boundary conditions for the computations, were seen as adequate. Since the objective
of the measurements is to check the validity of the empirical assumptions which are used in the
computational methods and since these empirical assumptions have only limited validity, the
experiments should be designed by keeping this in mind. This third aspects imposes the conditions

on the experiments that,

* the inital turbulence properties of the shear layer in experiment should be similar to those flows

encountered in engineering practice,
* Rey of the measurements should be greater than 5000,
* Mach number should be in the correct range,

* the pressure gradient parameter A = (6:/q,) X (dp/0x) should be on the order of magnitude

encountered in the real life flows , and
* 5y %) the flow development rate should be comparable with that of the flows used in practice.

In the rest of the Chapter, first the governing equations of the fluid flow for a Newtonian fluid will
be given, then the turbulence closure problem will be addressed and some general rules and

methods to develop these models will be briefly discussed. The available turbulence models used
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for the mathematically closure of the of equations, assumptions made for each model and the
quantities to be measured for the further development of these models are also going to be pointed

out.

1.2 REVIEW OF THE GOVERNING EQUATIONS

For a Newtonian viscous fluid with constant density and viscosity, the momentum equation in the
divergence form, neglecting the body forces, buoyancy, rotation and streamline curvature effects,

can be written as

Opu;  O(puu d &%y,
A
{ (3 ax,
( Bradshaw, 1978 ) or the ensemble-averaged version is
U, au, | U, dug
o U T T Y 2 T ()
{ i 6x, ax,

The transport equations for the Reynolds stresses can be written by taking the x; component of the
instantaneous Navier-Stokes equation, and multiplying it with the u, instantaneous velocity, and
adding the instantaneous Navier-Stokes equation written for x; component multiplied by the u

instantaneous velocity, and then applying ensemble averaging to read as
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U 710 ouU U,
T o, _ — %Y 9U;
At +U[ ax[ = (El_l_il ax[ +uju,—ax( )
convection production
+ P ow 0y
P axj 6x,
redistribution
2 (2
9 1,0 ==, 0 o
~ o )~ (G PTG )y -
M : . . x,
turbulent diffusion pressure diffusion viscous diffusion
8u,' auj
Y ax[ ax1

viscous dissipation

( Launder,Reece and Rodi, 1975; Schumann, 1977 )

The turbulent kinetic energy ( TKE = wuu/2 ) equation can be obtained by multiplying the
instantaneous Navier-Stokes equation with the instantaneous velocity « and applying

ensemble-averaging to the resultant equation and then subtracting the kinetic energy of the mean

flow
a1 o, 1 8 4 1 oy Oy
— — +U—_-'=——_—'_’—vvl— | — -
G2 Uy (2 Gy o T My e )
convection diffusion
)
2 ey 0)9- ax" (3)
production
R A A B
—2v(6xj+6xi)(6xj+6xi)

viscous dissipation

{ Tennekes and Lumley, 1972)
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The dissipation (¢) equation may be written by differentiating the equation of motion for « with

respeci to x; and multiplying through by 2v gg’ After averaging the equation can be written as
1
5 - -
oe  yooe __ %Y (u 5“/')_5‘/; oy ou
ot k 6xk 6x1c7xk & ax, 6Xk axl 6xl
08Uy O Oy 04wy Oy
axl 6x1 6xk axl 6x, 5xk
- “4)
1.9 (u(a”i )2)_ i (a“j op'
2 0x, K ax Ox; © 0x; dx;

where,

( Daly and Harlow, 1970 )

1.3 REVIEW OF SOME TURBULENCE MODELS

The main problem in solving these equations lies in the modeling of turbulence. The exact 3D,
unsteady Navier-Stokes equations can not be solved yet due mainly to limited capacity and speed
of present computers which are necessary in taking into account the fine scales of the flows. Since
the Reynolds-averaged equations have more unknowns than the number of equations, the
approach to overcome the difficulty has been to develop new equations for the unknowns in terms

of {ne other unknowns so that the problem can be mathematically closed.
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The methods of analyzing the turbulence for modeling was briefly given by Tennekes and Lumley
(1972). These methods include dimensional analysis, asymptotic invariance and local invariance.
Dimensional analysis was explained as useful in the cases where it is plausible to assume that there
are only a few independent variables and parameters which control the structure of the turbulence.
When the Reynolds number approaches infinity, the turbulent flows were described as almost
independent of viscosity, and the asymptotic behavior observed was shown as leading to similarity
in flows with Reynolds number being equal. The last method needs the assumption that turbulence
time scales are small enough to permit adjustment to gradually changing environment. Once this
condition is satisfied or assumed, it may be possible to accept that the turbulence is dynamically
similar everywhere if nondimensionalized with local length and time scales. Even though this

method seems very attractive in 3D flows this condition is rarely satisfied due to history effects.

The general rules of constructing models still seem to be unclear, as pointed out by many authors.

Some general rules were suggested by Lumley ( 1983 ). These may be summarized as :

a) The models should have the same tensor structure as terms they replace, to make transformations

to other coordinate systems possible.

b) The symmetry in the various indices for #u modeling should be ensured and, to satisfy the

incompressible continuity equation the moments formed with u; should Vanish.

¢) The realizability conditions should not be violated. These conditions for the Reynolds stress

tensor were studied by Schumann (1977). The conditions

R,3z0¢opa#f

R <Ry Rpg for a#p (5)
det(R,p) 2 0

in which the summation convention is not used ensure that the kineti: energy of turbulence should

be greater than zero and the correlation coefficients should be less ¢~ equal to 1.
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The currently used models for turbulence closure were reviewed by several authors. (Rodi, 1982;
Lakshminarayana, 1986; Humphreys and Lindhout, 1988 ). According to Lakshminarayana (1986)

they are classified as:

a) Zero equation models, such as the algebraic eddy viscosity and mixing length models,
b) One equation models, such as the k model

¢) Two equation models, such as the k-¢

d) Algebraic Reynolds stress models

e) Reynolds stress models

f) Large eddy simulation

Also, the formulation of the various models and their advantages and shortcomings were described

in that paper.

For detailed modeling and development of the models, several books and review papers may be
referred to: Launder and Spalding, 1972; Cebeci and Smith, 1974; Bradshaw, Cebeci and Whitelaw,
1981; Rodi, 1980, Launder, Reece and Rodi, 1975; Lakshminarayana, 1986, Humphreys and
Lindhout, 1988.

In the present study, the difficulties in terms of the measurements necessary for the modeling are

pointed out. The models are listed in order of increasing complexity.

a) A zero equation model relates the turbulent stresses to the mean quantities in the

—pigy=pviUy;+ Up0)

(6)
v =2L2/S;S,

INTRODUCTION 7




form where

Sy=5 (Uyy+ Uy and L, = mixing length

( Lakshminarayana, 1986 )

The idea behind this model is that the turbulent shear stresses could be related to the mean flow
quantities in a similar fashion as in laminar or molecular stresses. But, since the eddy viscosity is
not a property of the fluid, but of the flow and also changes from point to point in the flow, it was
seen as not suitable for the closure of turbulence (Tennekes and Lumley, 1972 ). The necessary
assumption to derive equation ( 6 ) is that the turbulence energy produced at each point in the flow
is dissipated with the same rate, or in other words that the flow is in equilibrium neglecting history
effects. Another disadvantage of the model is observed when buoyancy, rotation or streamline
curvature are taken into account. For these effects, the model can only be devised in an entirely
empirical way ( Rodi, 1982 ). Most of the available computational schemes tend to use this model
( Humphreys and Lindhout, 1988 ) due to its programing simplicity and speed. However, the results
are inadequate or are only in qualitative agreement with Reynolds shear stress data ( Kline,
Cantwell and Lilley, 1982a; Kline, Cantwell and Lilley, 1982b; Marvin, 1983; Wilcox and Rubesin,
1980; Cebeci, 1977; Baldwin and Lomax, 1978; Visbal and Knight, 1984; Kirtley and
Lakshminarayana, 1985; Sugavanan., 1985, Horstman and Hung, 1979; Kussoy, Horstman and

Viegas, 1980 ).

The eddy viscosity was further developed by several researchers to take into account the differences
between the measured and predicted shear stresses. The anisotropic eddy viscosity of Rotta
( 1977), Rhyming and Fannelop ( 1982 ), and Humphreys ( 1986 ) used were seen to be calculating
some flows rather well and some rather poorly ( Humphreys, 1986; Cousteix, 1982; Van Den

Berg, 1988 ).
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b) To remedy the lack of theoretical base that the eddy viscosity model can only be empirically
defined or its being only a result of phenomenological reasoning by analogy to laminar stress so that
the turbulent quantities are not used in the development, and difficulty in defining the mixing length
in some cases, the modeling of turbulent kinetic energy was introduced. Eq. (3) describes the
transport equation for the turbulent kinetic energy. Even though the TKE is the energy of the
turbulence, and it explains how the energy is distributed among various terms so that it gives more
insight to the understanding of turbulence, it still needs to be modeled or related to the shear stresses
to close the mathematical formulation. The modeling necessitates quantities like the pressure
fluctuations, triple correlations, or derivatives of the fluctuations to be measured and eventually
related to shear stresses themselves. Two of the models which stand out are briefly discussed below.
Bradshaw (1967) chose to use the formulation in which the dissipation and diffusion are empiricai
functions of y/é and kinematic shear stress — v, and the ratio of shear stress to kinetic energy is a
constant, where y is the direction of the largest gradient and 6 is the boundary layer thickness. The
functions were empirically defined with the use of the two-dimensional data on a flat plate. He
further solved this equation together with the momentum ard continuity equations and previously

defined functions for the development of the shear stress.

Another approach to relate the shear stress to the turbulent kinetic energy was given by

Prandtl ( 1945 ) and Kolmogorov ( 1968 )

v,=c#\/?L

where L is the dissipation length scale and ¢, is a constant. Dissipation, with dimensional reasoning

is usually modeled as
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and diffusion is modeled as a gradient of k. The representation of L length scale was seen as the
most defective part of the model and Rodi ( 1980 ), tried to extend it. The difficulty arises due to

defining L. in complex flows.

¢) Work towards overcoming the difficulty of defining an appropriate L directed researchers to write

an equation for the L length scale itself. But, since the transport of a length did not have any

- . . . 3 2
physical meaning, the equation for the dissipation itself was used with the relation e~ k The ¢

T
equation was given as ¢q.(4). At high turbulent Reynolds numbers (Re, = % ), the equation could

be further simplified to read as,

————— - —_— —— 2
De Ou; o, op oy dy; Ow; Ow, 5 azu,.
Dt - axk[ k 6x ) P Ox ax, 0Xk (JX[ (3x1 e Exkaxlj
where,
Ou; 2
&= "( axk )

( Launder, Reece and Rodi, 1975)

The difficulty of modeling results from the lack of experimental data for the terms on the right-hand
side of the equation. Pressure fluctuations within a flow can not be measured sufficiently well with
the available experimental techniques. Simultaneous velocity fluctuation gradieats and second
derivatives may perhaps be measured if difficult experimental techniques are applied, but they are
not yet available. The validation of the model therefore is done comparing the computed ¢ with
the measured ¢ from available data; and from the energy balance. The assumptions applied makes
the model equation highly empirical in character. The discussion on the details of the modeling

can be found in ( Launder, Reece and Rodti, 1975; Hanjalic and Launder, 1972).

Once the k and ¢ are computed, the shear stress in this model can be computed from relations

INTRODUCTION 10




and

A thorough survey of the application of the model for free shear flows can be found in ( Launder,
Morse, Rodi and Spalding, 1972 ). Problems concerning the near wall character or the ¢, constant
were further addressed by Bernard ( 1986 ) and Jones, Launder ( 1972, 1973 ). The applicaticns and
limitations of the model were thoroughly discussed by Lakshminarayana ( 1986 ). The predictions
with this model for 3-D flows was found to be poor due to the pressure strain term, the assumnption
of isotropy for e, the eddy viscosity, and the low Reynolds number formulation in the near-wall
vicinity. Still, the application of the model for wing-body junction flow gave better predictions than

the algebraic eddy viscosity formulation ( Gorski, Govindan and Lakshminarayana, 1985 ).

d) The k-¢ model depends on an isotropy assumption and that the turbulence can be represented
by one velocity scale \/Z. . This seemed to be unsatisfactory for complex flows where the eddy
viscosity would depend on the stress ( Rodi, 1982 ). This is observed in 3-D boundary layer flows
and is an indication that the %u, stresses would develop separately. This necessitates that the
transport equation for the ww; given as eq.(2) to be included to the set of equations to be solved.
For tlus reason, the redistribution, diffusion, viscous dissipation terms need to be expressed in terms
of the other unknowns. Due to the terms to be measured this does not seem to be a trivial problem
(Bradshaw, 1987 ). The model was called as "Algebraic Reynolds stress ” to emphasize that, the
equations for the transport of shear stresses after the simplifications are algebraic expressions. As
descnibed by Rodi, if the diffusion and convection terms could be related to the kinetic energy of

turbulence, then the transport equation - for the stresses would yield algebraic expressions. This
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was done by assuming the proportionality of %% to k. This model was also called as an extension

to the k-¢, model since it still uses the k and ¢ equations in conjunction with this equation.

e) Further extension of the turbulence modeling of the Reynolds stress equations can be found in
Launder, Reece and Rodi ( 1975 ). The superiority of their model comes from using more
generalized equations for the pressure strain and diffusion terms. The study of Abid and Schmitt
( 1984 ) on a 3-D boundary layer under infinite swept wing conditions revealed that the flow
characteristics could be better predicted with increasing degree of complexity for the turbulence
closure. At station 7 of Van Den Berg and Elsenaar ( 1972 ) data used in that study, at the points
where the maximuiu stresses were observed, while @ stress was overpredictcd by 67%, 37%, 13%
with the algebraic eddy viscosity, k-¢, anC the algebraic Reynolds stress models respectively, the

models overpredicted the — v kinematic stress as much as 130%, 86%, 44%.

1.4 OUTLINE OF THE PRESENT WORK

In the present study, a three-dimensional boundary layer ( 3D TBL ) formed due to a cylinder
protruding from a plate was studied. The pressure, skin-friction, mean velocity, fluctuating velocity
and Reynolds stresses were measured and used in the investigation of the existence of a
Law-of-the-Wall velocity profile for three-dimensional ( 3D ) boundary layer flows and in
examining the validity of some turbulence models in the prediction of the turbulence structure of
these types of flows. As summarized in the previous sections, the development of the turbulence
models still necessitates reliable, complete data sets of flows which are encountered in engineering
practice. This study was intended to satisfy all the conditions by suggested Van Den Berg ( 1987 )
and discussed in section 1.1 above. The test flow is encountered in many .iows of engineering
interest, for example in the wing/body junction on aeroplanes and the ship appendage and hull

junction on submarines. The reliability of the data was guaranteed by taking the velocity and stress
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measurements with two different techniques, namely the laser-Doppler velocimetry and hot-wire
anemometry techniques. The boundary conditions and the characteristics of the approaching
boundary layer to the wing were established. Pressure data were taken at closcly enough spaced
locations to obtain pressure gradients from the data. The flow studied had a Re; of ~5936 on the
plate at 0.75 chord upstream of the body on the centerline of the tunnel. Another important aspect
of the present study is that it is the unique data set which documents the flow characteristics on a
line which is found by translating in the direction of the mean velocity vector component parallel
to the floor at a point in the boundary layer where * is maximum. Since most of the turbulent
kinetic energy of the flow is stored in the & normal stress, this study gives a chance to investigate
the effect of the turbulent kinetic energy of the flow on the flow characteristics. Compared to the
previous measurements of wing/body junction flows, the present work differs mainly due to the use
of both LDV and hot-wire techniques for the measurements and for the locations of the
measurements being directed to investigate the effect of the turbulent kinetic energy in the flow
development. The previous studies of Shabaka ( 1981, 1979 ) and Mc Mahon, Hubbarrt and
Kubendran ( 1982 ) dealt with constant thickness bodies with 6:1 and 3:2 elliptical noses,
respectively. Shabaka measured the double and triple velocity correlations at 3 different streamwise
planes and the fluctuating velocity and mean velocities at 8 streamwise planes. He studied the
complete balances for the turbulent kinetic energy and momentum equations. Mc Mahon,
Hubbarrt and Kubendran used horizontal and slanted hot wires supported on needles which
projected into the boundary layer from the flat plate that the body was on. The study included all
six Reynolds stresses in 2 streamwise planes. The same shaped symmetric body as used in the
present study, 3:2 elliptical nose/ NACA 0020 tail, body was tested by Merati, Mc Mahan and Yoo
( 1988 ), and by Dickinson ( 1986 ). In those studies Merati et al. used the same two hot-wire
probes as used by Mc Mahon et al., and measurements of all Reynolds stresses at 5 streamwise
planes were made. Dickinson used X configuration hot films and made the measurements of all
Reynolds stresses except the — iw at 7 streamwise planes. Those studies were directed mostly
towards understanding the nature of the wing/body junction flow globally and investigating the size

of the horse-shoe vortex formed around the body and the wake flow. In all these earlier studies,

INTRODUCTION 13




the prongs which held the hot-wire and hot-film sensors produced interference with the flow. The
main goal was to investigate flow features along the selected x-z path mentioned above, not a global
characterization as in earlier studies. Such a path resembles the one studied by Dechow and Felsch
( 1977a ) in front of their cylinder/flat plate junction flow, although their path was along a

free-stream streamline.

The experimental techniques and, the measurement results and associated uncertainties may be
found in Chapters 2 and 3, respectively. The discussion on the quantities which question the
existing assumptions on the structure of 3D boundary layers is the subject of chapter 4. Research
on the Law of the Wall for 3D boundary layers which includes comparison of the nine existing 3D
Laws of the Wall with nine data sets is discussed in Chapter 5. Comparison of the data of shear
stress magnitudes and directions with the predictions of the eddy-viscosity models reveals the
shortcomings of the models in 3D flows. The comparison of four different models with 8 existing
data sets is presented in Chapter 6. Chapter 7 is contains to the conclusions of this study. The
figures 9 to 58 present the data taken in this study. The flow characteristics of the present flow were
investigated with the help of figures 59 to 90. The figures 91 to 111 cover the analysis of the
Law-of-the-Wall research. Examination of the selected Algebraic eddy-viscosity models was carried

out with the aid of figures 112 to 124,
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2.0 EXPERIMENTAL TECHNIQUES

2.1 INTRODUCTION

The measurements in a 3-D turbulent boundary layer created by a wing-body junction flow
performed in this study include single hot-wire measurements at 39 locations and Laser-Doppler
Velocimeter measurements at 8 locations with two different data processing units. The wing used
was a 3 : 2 elliptical nose, NACA 0020 tail symmetric profile which had maximum thickness of 7.17
cm and chord length of 30 cm and heigth of 22.9 cm. The measurements were carried out at a
nominal speed of 27 m/sec and Reynolds number of the flow based on the momentum thickness
at 0.75 chord upstream of the body on the centerline of the tunnel was =~ 5936. The main objective
of these measurements was to observe how the flow characteristics changed in a 3-D pressure-driven
boundary layer type flow along a line whose x-z direction is given by the U, W velocities where u?

normal stress is maximum. The measurement locations can be seen in ( Fig 1 ).

Hot-wire measurements done were aimed to find this line and to compare with the LDV
measurements, besides revealing some other flow quantities. They were done at 18 locations on the

left side of the model, looking upstream ( Table 1 ). The location of the first profile was chosen
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with the information gathered from the oil-flow visualization pictures ( Fig 2 ). The pictures will
be discussed in Chapter III of the present study. The equations used for the hot wire data reduction
are derived ( Appendix 1 ) assuming that the velocity component perpendicular to the wall,
therefore, V mean velocity component and v’ fluctuating velocity component are negligible.
Therefore, the point was chosen such that the governing equations of the hot-wire reduction
programs would not be violated throughout the determination process of the expected line but yet
the effect of the pressure on making the flow 3-D would be felt as much as possible. The most
downstream point was the first point. The next 17 points were found by finding the direction of
the maxtmum normal stress point obtained in each profile and translating in the direction of the
mean velocity component parallel to the wall at that location for 0.5 inches. At some locations near
the leading edge or ahead of the body where the effect of three dimensionality started diminishing,
the distance translated was different than 0.5 inches. The measurement locations were also away
from the region where the bimodal characteristic of the velocity field is seen ( Devenport and
Simpson, 1987a ). Another 12 profiles of hot-wire profiles 0.75 chord upstream of the body on a

crosswise line were taken to define the inlet boundary conditions of the flow ( Table 2 ).

Skin friction at the wall was obtained by Alinger ( 1990 ) using a laser interferometer technique at
the same conditions. The use of the technique supplies the wall friction independently which is

crucially important in the Law-of-the-Wall research in 3-D flows.

Time averaged surface pressures were obtained by a Scanivalve and a pressure transducer couple,
and flow visualization on the tunnel floor was done by using a mixture of Ti0;, oleic acid, and

kerosene.

Purpose of the 3-D LDV measurements were to find the flow characteristics. The experimental
data gathered includes the mean velocities and all six components of the Reynolds stress tensor.
The LDV measurements were done on the right-hand side of the body at the symmetric locations
of the previous hot-wire points but only at 8 points ( Table 3). To check the symmetry of the flow,

before LDV measurements, 7 more hot-wire profiles were taken ( Table 4 ). The gathered data
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from pressure measurements, surface oil-flow visualization patterns and from these hot-wire

measurements shows that the flow around the body is symmetric.

2.2 OIL-FLOW TECHNIQUE

The oil-flow technique was used to reveal the limiting streamline or surface skin friction line
structure on the surface. Self-adhesive black glossy plastic sheet was laid on the surface ( Frisk
Coverseal from Cambridge University, England }. A mixture of kerosine, Ti0O, and oleic acid was
applied on this surface and several runs with different percentages of components were tested to
obtain the most clear picture. It was observed that a lesser amount of TiO; resulted in lower
contrast but finer structure could be seen more clearly. The mixture used in this study is 20 ml of
Ti0,, some amount of kerosene so that the total adds upto 55 ml and 9 ml of oleic acid. This was
different than the original ratio of 5 ml Ti0O, , 15 ml of kerosine, 1 ml of oleic acid proposed by
Sutton ( 1985 ). Once the mixture was applied, the tunnel was run until there was not any visible
movement of the mixture, then the plastic sheet was taken out of the tunnel and further dried with
a hair dryer. To be able to make photocopies directly from the original sheet, painter’s fixer was

used to fix and preserve the picture obtained.

2.3 SKIN-FRICTION INTERFEROMETER

The wall skin-friction magnitudes and directions used in this study were measured by K. Ailinger

( 1990 ) using the skin-friction interferometry technique described below.
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The technique relates the thinning rate of an oil film applied on the surface to the skin friction at
that point by using the lubrication theory for thin films. The thinning rate of oil was found with
the use of an interferometer using a 5 mW Helium-Neon laser and photodiodes ( Monson, Higuchi,

1981).

The laser beam directed with an angle close to the normal angle to the surface of the oil applied to
a body surface reflects back from that body surface and also from the surface of the oil. Once the
two reflected waves interfere with each other either constructively when they are in phase or
destructively when they are out of phase to form interference fringes, which is directly related to the
thickness of the oil, the variation of the intensity in time can be used to measure the thinning of the
oil in time. But, since the thinning of the oil film is a linear function of the shear stress acting on
it, this information could be used to find this stress. As discussed by Monson, the thinning rate and
thus the shear stress may be found easter if two beams with a known spacing in between them are

used to measure the thinning rates at two points on the oil surface.

Dow-Corning ( 50 centi-Stokes ) oil was laid on the floor with a razor blade and the useful data
were taken after it thinned down to 20-50 microns. The beams were directed with a spacing of 4.5
mm between them and they were at 1.5 to 2 beam spacing behind the film leading edge. The
direction of the stresses were found by measuring the stresses in 3 different selected directions, by
rotating the two incident beams so that they would focus on the defined directions on the oil. Each
of these measurements were repeated 3 times, and the direction and magnitude were found by
averaging these values. More detail on the sources of difficulties and solutions to them can be found

in Ailinger ( 1990 ).
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24 PRESSURE MEASUREMENTS

The pressure measurements were made with a J type Scanivalve and a conventional inclined
manometer. The locations of the measurements both on the body and the surface are shown

in ( Fig 3). The pressure taps used were 1 mm in diameter.

The pressure coefficient was calculated using

(P - pref)
C,=—=
P (pO - Pref)

The reference dynamic head and the reference static pressure were obtained from the pitot static
tube ( United Sensor Probe, type PAC-8-KL ) located at 1.55 m downstream of the tunnel

entrance.

2.5 HOT-WIRE TECHNIQUE

The single hot-wire technique used in this study was described also in Devenport and Simpson,
( 1986 ). The technique is designed to measure U and W components of the mean velocity and
w2, w?, iaw components of the Reynolds’ stress tensor with the assumption that V and v’ are small
compared to the velocity magnitude in the X, z, i.e. in (U, W) plane ( Fig 4 ). For the flow studied,
this assumption restricts the use of the technique away from the wing-body junction, since either
flow ahead of the body separates and/or flows backwards and since the flow wraps around the wing
close to the body to form a horse-shoe vortex producing non-negligible V and v’ mean and

fluctuation velocity component. The reduction equations used are presented in Appendix I. The
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probe used was a boundary layer type probe ( TSI 1218T1.5 ). The tungsten wire of the probe was

4um in diameter and 1.5mm in length.

The constant temperature anemometer bridge used was designed by Miller ( 1976 ) and modified
by Simpson et al. ( 1979 ). With an overheat ratio of 0.7, the frequency response of the hot-wire
was flat up to 12 kHz. The linearized output of the anemometer was fed into a universal waveform

analyzer ( DATA 6000, Data Precision Corporation, Analogic Corporation ).

The summing amplifier and Hewlett-Packard power supply were used to adjust the hot-wire
anemometer’s linearized output voltage which changed 0 to 10 V to vary from -5 V to 5 V so that
the full range of the DATA 6000 could be used. The power supply’s drift after a day of experiments

was always less than ImV.

The DATA 6000 was used to gather the 10000 velocity samples in 20 seconds and form a histogram
from it, dividing the range into 256 bins. These 256 values were transferred to the computer by the
A/D converter ( Data Translation Inc. ) to further compute the mean velocity and r.m.s. value.
Even though 10000 values could directly be transferred into the computer which would eliminate
the histogram formation step, this would increase the time of processing at least 10 times. The
computer used was an IBM-PC. The necessary cable connections to the probe which sits at the

end of a dogleg were done through the roof of the test section ( Fig 4).

Calibration of the wire was done using the previously described instrumentation and TSI calibrator
( model 1125) but by taking only 1000 samples of each velocity setting. Calibrations were carried
out daily, just before the experiments and calibration constants were found by a least-square line
fitting to the measured output voltages of the linearizer of the anemometer. To ensure that the
calibrations were performed at the running temperature of the experuments the tunnel was first
allowed to run for 15 minutes, and the calibrations were done just after the drift in the room settled
down. The temperature in the laboratory could be kept constant within +2° around the set

temperature with an air conditioner.
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Due to physical obstructions to reach some of the parts of the test section another probe holder
was designed. The orientation of the probe was found by a voltage divider to obtain resolution of
0.5° or less. The voltage divider was sitting on the probe holder ( Fig 5 ). First a look up table for
the voltages corresponding to the direction of the probe was prepared by setting the probe at known
directions and then reading the output voltages of the voltage divider. Later this table was used to
find the direction of the probe by {inding the angle corresponding to the voltage read. The probe
could be oriented from outside of the tunnel with a tacheometer wire, which is used in the cars in
measuring the speed of the vehicle, worm gear and anti-backlash gear system. A pin connected to
an anti-backlash gear traveling on a 10 K circular resistance was used as the arm for the voltage
divider. The cable connections for the voltage divider were also attached to the holder and they
were extending to the outside of the tunnel for the voltage readings. The wire sitting in a dog-leg

holder was attached to the shaft of the anti-backlash gear.

2.6 LASER-DOPPLER VELOCIMETER (LDYV)

TECHNIQUE

The LDV uses a Coherent Innova 90 argon-ion laser operated at 514.5 nm with a power output
of 1.5 W. The smoke necessary for the light scattering particles was generated by an aeresol
generator originally designed by Echols and Young ( 1963 ). The fluid used in the generator to
produce the smoke was dioctal phatalate. The smoke was injectced into the flow either through the

air intake of the tunnel or at the entrance of the tunnel test section.

Three different optical measurement systems each composed of 3 beams were used to measure the
3 compone s of the mean velocity vector and 6 Reynolds stresses. The optical systems were named

as UV, UW and VW systems to distinguish what are measured by each system. The UV system
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was designed to measure nominally the U and V components of the mean velocity vector and
2, v?, @ components of the Reynolds stress tensor. The UW system nominally measures the U
and W components of the mean velocity vector and u?, w?, iw components of the Reynolds stress
tensor. With the same thinking, VW system nominally measures the V and W components of the
mean velocity vector and v, wi, w components of the Reynolds stress tensor. The description
of the measurement systems and the derivation of the reduction equations used, can be found in
Appendix 1. The each couple of the three beams in each optical system would define a probe
volume and the velocity component perpendicular to the bisector of these two beams could be
measured. First the measurements with the UV system then with the UW system and then with the
VW system were taken. By doing so, the mean velocity components and the normal stress
components were measured two times. Even though this was necessary to do so for the shear stress

measurements, it also increased the confidence to the data.

The signal processing with fast-sweep-rate sampling spectrum analysis used in this study was
described by Simpson and Barr ( 1974, 1975 ) and Simpson and Chew ( 1979 }. The technique uses
a swept spectrum analyzer and peak detection and sample and hold electronics to obtain the
Doppler frequency and A/D converter and computer to store and process the gathered data. The
swept spectrum analyzer sweeps a certain range of frequencies chosen with a chosen band-width
at a rate of 1000 times per second. The location of the band-width within the range can be known
by the calibration of the spectrum analyzer with a known frequency. Within a given range, the
relation between the horizontal voltage output of the spectrum analyzer and the frequency is linear.
This calibration factor changes from range to range, since the sweep rate is constant. When the
bandwidth and the frequency of the input current from the photomultiplier tube to the swept
spectrum analyzer coincide, a peak is generated at the vertical voltage of the analyzer . This voltage
is then used to gate the peak detector circuit and the pulse generated by this circuit is fed into a
sample and hold device for the horizontal voltage. The sampled voltage is held until another peak
is detected. Once the sampled voltage value is converted into frequency by the calibration factor

to obtain the Doppler frequency, the velocity can be computed by multiplying it with the fringe
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spacing of the beams. In this study, two spectrum analyzers, HP8557A and HP8558B, were used
simultaneously. The ranges of the analyzers were spanning between 0.01-350 MHz and 0.0-1500

MHz, respectively.

Another frequency analysis signal processing technique used in this study was Burst-spectrum
analysis. The technique uses a Burst Spectrum Analyzer (BSA type 57 N 10 ) developed by
DANTEC and a host computer for the processing of the data. The BSA extracts the Doppler
frequency by a hardwired Fast Fourier Transform developed by DANTEC. In order to do this the
BSA takes 8. 16, 32 or 64 samples with a chosen band-width and performs a Discrete Fourier
Transform (DFT) on them to find the frequency spectrum and hence the power spectrum. If the
ratio between the two largest maxima of the power spectrum is greater than 4, the burst is validated.
The BSA can be used to sample frequencies up to 80 MHz with high resolution due to the zooming
technique used, and it was designed to extract frequency information from only one sampled data

in time.
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3.0 EXPERIMENTAL RESULTS

3.1 INTRODUCTION

In this chapter, the data obtained with several experimental techniques described before will be
discussed. The coordinate systems used in the study, the pressure distribution resulting due to the
existence of the wing, the limiting streamline structure on the wall are going to be given. The
boundary conditions for the studied flow will be defined and it will be shown with the oil flow
technique, pressure, hot-wire measurement results that, the flow structure around the wing is
symmetric. Mean velocity, fluctuating velocity and shear stress data obtained, and the uncertainties

of these quantities will be studied.

The locations of the mean velocity and Reynolds stress measurements can be seen in Fig 1. The
hot-wire profile locations on the left-hand side of the wing looking upstream are tabulated in Table
1. Table 2 gives the 0.75 chord upstream measurement locations. The laser-Doppler-velocimeter
( LDV ) and hot wire ( HW ) measurement locations on the right-hand side of the wing are given

in Tables 3 and 4 respectively.
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3.2 COORDINATE AXES

The axes used in this study are defined in Fig 6. TC stands for tunnel coordinates. In this
coordinate system, the x axis is parallel to the tunnel centerline pointing downstream as positive,
and, the y axis is perpendicular to the tunnel floor. In all axes, the y axis was identically defined.
The z axis in TC was defined to complete a right handed coordinate system. FS stands for
free-stream ~~ordinate system. Positive x axis in this coordinate system is in the direction of the
mean velocity at the boundary layer edge, parallel to the tunnel floor. The z axis is formed to define
a right handed coordinate system. NS denotes maximum #? normal stress direction coordinate
svstem. It is defined such that the positive X axis is in the direction of the local mean velocity vector
component which is parallel to the tunnel floor at the profile point where the normal stress obtained

1S maximum.

3.3 TUNNEL QUALIFICATIONS

The measurements were carried out in the Virginia Tech. low speed boundary layer tunnel, which
has been used in much previous work at Virginia Tech and at Southern Methodist University ( Fig
7). The air enters through the air filter and the blower increases the pressure, passes through a
honeycomb and 7 screens which are used to remove the swirl of the mean flow and the turbulence
in the flow The flow accelerates through a 2-D four to one contraction nozzle before going into
the tunnel test section. The mcasurements were carried out at a nominal speed of 27 m/sec. Since
the open-circuit tunnel was especially designed to study two dimensional boundary layer separation,
the shape of it was configured to create an adverse pressure gradient to induce separai:on. In the

present study, the tunnel roof was rcj ' ced with a Plexiglass roof which was reinferced with
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aluminum so that, when the model was removed a two dimensional boundary layer with zero

pressure gradient could be obtained. The test section is 0.91m wide and 8m long.

The detailed study of the tunnel characteristics can be found in Ahn ( 1986 ). That work was
directed to study the characteristics of two dimensional boundary layers subject to zero and
favorable pressure gradients with steady free stream and the development of the boundary layers in
unsteady flows in varnious Reynolds numbers. His data of power spectra, mean flow, and v/, v/, v
data showed good agreement with the measurements of previous researchers. The free-stream
velocity along the axis of the tunnel is shown in ( Fig 8 ). At 27m/sec the turbulence intensity
observed in the tunnel was 0.2% and the potential core was uniform within 0.5% in the spanwise

and 1% in the vertical directions, respectively ( Devenport and Simpson, 1987 ).

3.4 BOUNDARY CONDITIONS

The inlet flow, is tripped by the 0.63 cm blunt leading edge of the tunnel floor to ensure that the

boundary layer forming is turbulent.

The two dimensionality of flow when the model is not present was mentioned before. The flow 0.8
chord length ahead of the body, as seen from the hot wire measurements made at the most
upstream, eighteenth hot wire station on the left-hand side, was again 2-D since the W component
of the mean velocity component and uw shear stress component were fluctuating around 0.0.
Thercfore, the flow may be computed by assuming the flow as a two dimensional turbulent
boundary layer on a flat plate approaching a cylindrical protuberance . The hot-wire measurement
results at 0.75 chord upstream of the wing are plotted in Fig 9. Locations of these profiles, boundary

layer thicknesses, displacement and momentum thicknesses calculated with trapezoidal rule, skin
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®
friction coefficients computed using the 2-D law of the wall and 6 point line fit to the logarithmic °
regions of the U/U., profiles are tabulated in Table 4.
The restriction of the flow in the spanwise direction due to the tunnel side walls (as will be clear
with the computed and measured pressure distributions and oil flow pictures) was negligible. ®
A gap of 37 mm between the model and the tunnel roof was left to avoid the interaction of the roof
boundary layer and the model, so as not to generate a second horse-shoe vortex, which could
o
interact with the studied flow.
o
3.5 OIL-FLOW VISUALIZATION RESULTS
The oil flow visualization pictures of the flow studied were taken at 27 m/sec nominal reference @
velocity.
The limiting streamline structure of the flow field developed ahead and around the body are shown °
in Fig 2 and Fig 10. The effect of the lateral and streamwise pressure gradients on skewing the flow
field developed, is clearly seen from these figures. The separation line which forms due to the
adverse pressure gradient, the line of low shear where the mixture accumulates more due to the
lower skin friction , the fish tail shaped wake flow limiting streamline characteristics and the L
separation of the flow on the wing very close to the floor are also clearly observable. Same type
of characteristics was also observed by Dickinson ( 1986 ) in his study of a wing-body junction flow
using a body same in shape with the body used in the present study. Some of the characteristic " )
lengths measured from these figures are presented in Fig 10.
It can be postulated from these figures that the spanwise vorticity in the 2-D turbulent boundary
o
layer transforms into streamwise vorticity which forms the horseshoe-vortex. Between the
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separation line and the body, existence of a low shear line suggests the existence of a counter
rotating flow with respect to the horseshoe vortex, which is in the +z direction. The reversal or
back flow close to the leading edge of the body is also observed. The primary separation line which
was observed to be at 0.47 body thickness (t) away from the leading edge continues to be at the
same perpendicular distance away from the body until it joins with the low shear line at 1.48 t
downstream of the leading edge. Following the body contour, the perpendicular distance between
the body and the low shear line which was observed as 0.28 t away at the leading edge, continues
1o grow until the trailing edge is recached. At the trailing edge, the distance between the trailing edge

and the low shear line is observed as 1.99 t in the + z direction.

The figures presented also indicate that the flow is symmetric. This could be done by comparing
the major distances at several x/t stations. The low shear line locations away from the body

measured on both sides of the model show good agreement and are shown in Fig 10.

3.6 PRESSURE MEASUREMENTS

The perspective view of the measured Cp values are plotted in Fig 11. Positive Cp values
correspond to slower flow regions while the negative Cp values show faster flow regions than the
reference flow region. The measured pressure distributions on both sides of the reference plane are
plotted in ( Fig 12 ). The symbols indicate the negative z values; lines indicate the +z axes side
values. The pressure cofficients on both sides of the model show good agreement at every x/t
station. Along the centerline the flow decelerates towards a stagnation point on the leading edge

(Cp=+ 1)

The lateral pressure gradients seen ahead of the wing at x/t=-2 are close to zero. The accelcration

of the flow around the nose part of the wing results in the sharp drop in the Cp and high positive
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lateral pressure gradients seen at x/t=0.25, 0.5 and 0.75. In the tail part of the airfoil until x/t = 3.25,

the positive pressure gradients observed are milder. After this point the gradient changes sien.

The streamwise pressure gradients at z/t= 0.5 arc observed to be positive till x/t=-0.5, after this
station, the gradients not only changed sign but were higher in magnitude till x/t = 0.756. The lesser
positive gradients observed start after this station. The magnitude of the gradients away from the

body are lower than the near body values.

Overall, the Cp values on the flat plate where the wing is sitting on, show a gradual increase with
a peak at the leading edge when the flow is slowed down approaching to the wing At the sides,
when the flow is going around the wing, encountered higher velocities than the free stream result
in Cps below zero, and after x/t=3.25, Cp values again start to increase at both sides of the wing

when the flow slows down.

The measured pressure values on both sides of the model, on the model, and 9 inches (z/t=3.187)
away from the model at several x/t locations also show the symmetry of the flow. The
measurements at these locations were compared with results from a potential-flow code, which was
selected to have 100 source and sink panels for each side of the model ( Fig 13 ) and ( Fig 14).
The source density distribution code was written using the formulation presented in Bertin and

Smith ( 1979).

The potential-flow results and the data are observed to have differences. While the maximum
difference between the computed and measured Cp values at z/t=3.187 1s 0.04, the measured
quantities on both sides of the body show a maximum difference of 0.01. At this station, whilc the
max Cp read is 0.015, the minimum is -0.09. While the computed and measured values on the body
had a difference of 0.085, the measured pressures show perfect agreement. The contour plot of the
measured and computed values of Cp also displays the difference ( Fig 15). The differences on and
near the body may be attributed to the horse-shoe vortex and to the separation of the flow on the

model before the trailing edge. In a boundary layer code, if the pressure distibution around the
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body is prescribed from a solution of a potential-flow code, as pointed out by Muller ( 1982a ),
may effect the results of the computations. The best remedy to the problem that the difference
might cause in the boundary layer computations may be the use of the measured presure instead

of the computed pressure.

3.7 HOT-WIRE MEASUREMENTS

Hot-wire measurements were made on both sides of the wing. Right-hand side hot-wire
measurements were done at the same locations of the laser measurements, except at the most
upstream laser location where no hot-wire measurement was made, since the flow here was almost
2-D and the rest of the data were seem to be satisfactory for the purposes intended. The mean
velocities and turbulence quantities measured with the hot-wire technique on both sides of the wing
show good agreement throughout the layers ( figures 21-25, 35-38, 47-50 ). In the figures, the lines
show the results of t}  .aeasurements on the right-hand side of the wing and the symbols denote

the left-hand side hot-wire ( HW ) profiles.

First comparison of the data showed that the data taken on both sides of the wing had minor
differences near the wall. To see if the +0.003 inches uncertainty in the probe location adjustment
at the first points of the profiles could be the reason for these differerces, the hot-wire profiles on
the right-hand side of the wing were shifted upwards at the most by 0.005 inches ( 0.127 mm ).
Further comparision resulted in better agreement except at one location which needed a shift of 0.01
inches. This location which corresponds to the fifth LDV location was therefore discarded. The
companson of these six profiles with the corresponding location left-hand side profiles show that
the mean and turbulence quantities measured agree well, which in turn show that the flow is

symmetric.
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3.8 VELOCITY AND STRESS MEASUREMENTS

3.8.1 INTRODUCTION

After the measurements both with the hot-wire system and fast-sweep-rate sampling spectrum
analysis LDV techniques were completed, it was observed that some turbulence quantities reduced
from these two measurement techniques did not match in the inner layer and in the logarithmic
region of the profiles. These discrepancies were originally attributed to the gradient broadening in
the inner region. A simple formulation for the gradient broadening corrections suggested by George
and Lumley ( 1973 ) was applied. Yet, the results were seen to be unsatisfactory, since either the
normal stresses at a few points near the wall were less than zero, the probe volume dimensions were

too big to be acceptable, or the corrections were too small.

The next choice to explain these discrepancies was to examine the measurement electronics and
equipment. With this in mind, the photomuitiplier tube and the acquisition cables were replaced;
the spectrum analysers were checked to see if they satisfied the manufacturer’s standards; the smoke
level was changed; and even the collecting lens itself and its location were changed. The results
obtained showed that there was not any error due to these possibilities. Yet, since the source of the
discrepancy could not be located and since the experimenter was not satisfied with the existing data,

the whole acquisition system was replaced.

Instead of using swept spectrum analyzers, samplers and A/D converter, the BSA was used since
the software and hardware were readily available. The whole LDV measurements were repeated

as if there were no LDV data taken before.

Since the data acquisition system and the program were changed, for the last step of reducing the

data, the reduction program was also changed. This was done by developing an objective procedure
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to distinguish the data from the noise in the histograms instead of judging each histogram one by
one as done previously. This empirical procedure basically fits a parabola to each side of the peak
of the logarithm of the histogram values and finds the noise level with an iterative procedure ( Fig
16). In the parabola fit, first, all the data including the noise are used and the parabolas found are
checked if they are crossing the log(1) =0 line. If the parabolas were crossing this line, the iteration
was stopped, otherwise the amount of the data used was reduced by discarding the data below some
percentage of the peak value. The percentage discarded was increased in each iteration until the
log(1)=0 line was crossed by both parabolas. Once these crossing points were defined, the
maximum value within the 10 bins from each point within the crossing points was seen to be the
best way of assessing the noise level. The data taken underneath this noise level and the regions
outside of these two maximum points found was discarded. The reason to fit a parabola to each
side of the logarithm of the histograin values was that if the distribution were Gaussian, the
logarithm of it would be a parabola. Even though the distributions were not Gaussian, they were
close to it, and that was also the reason why two separate parabolas were fit to each side of the peak

of the histograms.

After the measurements with the BSA were completed it was seen that the stresses measured with
these 3 different techniques were different from each other. The discrepancy had increased. Yet,this
was seen to be due to judging on the noise level of the each histogram one by one for the data
taken with the swept spectrum analyzer technique. Once all the data taken with the swept spectrum
analyzer technique was re-reduced by using the new reduction program, it was observed that the
swept spectrum analyzer and BSA measurements’ results were very close to each other , yet now

they were both different from the hot-wire technique resuits.

The next step in resolving the discrepancy was to recheck the hot-wire technique. Profiles taken
on both sides of the wing show that the system measured the same quantities at symmetric locations
within a reasonable range. Additional measurements were made using the same type of hot-wire
probe and same anemometer but using the non-linearized output of the anemometer as input to

the computer through an A/D converte: 1nd using another reduction program for the calibration
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of the wire and sampling of the data to measure one of the hot-wire station’s profiles again. The
measurements were taken by Fleming ( 1990 ). Since these new profiles overlapped for the mean
and turbulent quantities with the previously taken data, the reason of the dicrepancy could not be

attributed to the hot-wire technique ( Fig 17).

The final situation was that both the hot wire and LDV technique measurement results were
consistent in themselves , yet they were contradicting each other. The gradient broadening and
finite transit time broadening which are applied to LDV data were no longer for overcoming the
discrepancy but to subtract the effects of these from the LDV data. The gradient broadening
correction equations were rederived to take into account all the existing gradients that may
contribute to the broadening , instead of taking only one gradient along the major axis of the probe
volume as suggested by George and Lumley ( Fig 18 ). These equations may be found in Appendix
II. Even though the probe volume dimensions given in Fig 18 suggests that the focused beam
diameter can be computed if the focal length of the focusing lens and the unfocused beam diameter
is known, the measurement of the beam diameter with the definition of it as the points where the
intensity of the beam drops down to the l/e? of the /... raises difficulty in measuring it in the

reality. The way the focused beam diameter is found will be discussed in the next section.

The difference between the hot wire and LDV results, especially for the 2 normal stress, can be

attributed to the hot wire interference with the wall. This should be adressed in a later study.

3.8.2 UNCERTAINTY ANALYSIS

The uncertainties in the measured quantities with the LDV technique were expected to be due to
the uncertainties in the angles between the intersecting beams, focused beam radii used, and how

the histogram edges (noise levels) were defined.
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The uncertainty in the angles were estimated to be less than + 2% and cutting the histograms from
different points of its skirts showed that the uncertainty in the mean quantity computed from the

histogram could vary as much as + 0.5% and the turbulence quantity not more than + 4%.

The definition and assessment of the uncertainty in the focused beam radii was reached in the
following way. As a criteria to be used first, the result of the analysis of Rotta ( 1962 ) in
two-dimensional boundary layers about how the normal stresses very near the wall would vary was
chosen. The analysis shows that very near the wall while #* and w? vary as a cubic function of the
y distance, the 2 vary with the fourth power of the distance. A least-squares, ¢y? + ¢° + ¢; type
of function as suggested by Rotta was fitted to the 4 points of the «? and w? normal stresses starting
from the 2nd point of each profile. Further changing the beam radius standard deviation (the
effective beam radius) ¢ for UV and UW system beam couples to recalculate the #2 and w? stresses
and reapplying the function fit until the minimum total error between the measured and computed
values was found revealed the effective beam radius that could be used. This approach could not
be accepted as totaily satisfactory, since the criteria defined by Rotta ( 1962 ) is effective only for y
values of p* = yu,/v <7, since the first 4 points to which the criteria was applied were located
between y*+ =8 and p* =23 and, since the corrected data did not follow the 2-D flow characteristics
for the close Reynolds number based on momentum thickness data of Klebanoff ( 1955 ), ( Fig

19).

Another approach that was tested was based on subjective judgment on the measured quantities
so that using the same beam diameter for the two different LDV techniques would result in the
fairly close values used and the normal stresses at the first point of the profiles would be close to
zero but non-negative. Since the resultant diameters found with this approach were not highly
different from each other, this approach was used, but since the reasoning was not a result of a
rigorous theory, the uncertainty on the beam diameter was kept as 50 %. Finally, o the effective
beam radius, used for UV system was 0.078 mm and 0.009 mm for the UW system. As described
in Appendix | the VW system uses the same beams of the UV and UW systems and an additional

beam which has a radius of 0.0088 mm.
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The uncertainties in the mean and turbulence quantities were computed using the technique given
in ( Kline, McClintock, 1953; Holman, 1984 ) The technique can be described as follows: If R, the

result, is a function of x, xz, X3, ..., X, independent measured quantities in the form of

R=R(x, x;, ..., Xp)

and if the uncertainty in each of the independently measured quantities are wy, wy, ..., w, with the

same odds then the uncertainty in the result can be found with using
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and using
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if the functional form is not explicit.

Once the uncertainty estimates for the beam radius, angles and histogram edge definition were
found, the uncertainty in the mean and turbulence quantities were computed using the same
program but running it 22 times consecutively by taking each disturbance as 0.1 of the
corresponding uncertainty value. This was due to each uncertainty, separately, in the beam
diameters, in the beam angles, cutting the histogram noise for each measured quantity could effect
the outcome of the each measured quantity. The program was first run by assuming all the beam
angles were uncertain with the uncertainty values estimated. Secondly the beam diameters were
assumed as 50 % smaller than the estimated values. The uncertainty in the each histogram was
changed separately for the nine quantities measured by the each LDV system; the ones taken with
the BSA and for the ones taken with swept spectrum analyzers. The uncertainty in each measured
quantity due to individual uncertainties was found by finding the difference betwecn the computed

value without any uncertainty included, and dividing it with the uncertainty used in the
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computation for each individual uncertainty contributor; therefore using the approximate equation
for the derivatives. These uncertainty values computed were compared to the uncertainties
computed in another way which will be discussed shortly, and the bigger uncertainty value was

accepted as the uncertainty value in the associated quantity.

Final LDV data after the gradient broadening and finite transit time broadening corrections
(Appendix 11} were carried out was found in the following way: since all mean velocity components
and normal stresses were measured four times, an averaging process was applied. The data before
the averaging at each station location can be found in Fig 20. The four profiles did not have equal
number of points. The averaging was done by taking the maximum of the number of points in each
four profiles and linearly interpolating the other 3 profiles in eachselves to find the corresponding
data to the locations of the selected profile. Once four values for each y location were obtained,

Chauvenet's criteria was applied to discard the data points which did not satisfy

maximum acceptable difference / standard deviation < 1.4

The standard deviation for the shear stresses which were measured only two times were found by

using

maximum acceptable difference/standard deviation < 1.15

The acceptable points were then averaged to find the data value at that point. Shear stresses
presented as the data were computed using only the BSA data, since the stresses are the measured
quantities which are smallest in magnitude which makes them hard to measure and since the BSA
data were taken after the data with swept spectrum analyzer technique were taken. In author’s
opinion since the two data sets were essentially same, the most recent set was chosen. The further
computed standard deviation with the acceptable data values were used to define the uncertainty

for the averaged data values using the equation

uncertainty in the quantity = 4 2 * standard deviation
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The data presented in Appendix IV also include these uncertainty analysis results. The uncertainties
of the mean velocity and Reynolds stress data, as will be discussed in the later chapters, were used
to find the uncertainties of the parameters which include these measured quantities. The nominal

values of the mean velacity and stress data uncertainties are given in Table 5.

In the folowing sections of this chapter the measured mean and fluctuating velocities, and the shear
stresses will be discussed. Even though in three-dimensional turbulent boundary layer research
mostly the data are presented in local free-stream coordinates, one of the main reasons for the
present measurements were to reveal the characteristics of the flow field on line where the 22 normal
stress is maximum. Therefore, to see if the presentation of the data in different coordinate systems
supplied more information, the quantities were presented in three different coordinate systems.
First the discussion in tunnel coordinates will be given. Then the observed differences in free-stream

and maximum-normal-stress coordinates will be comparatively discussed.

3.8.3 MEAN FLOW MEASUREMENT RESULTS

3.8.3.1 IN TUNNEL COORDINATES

In the tunnel coordinates, the U mean velocity profiles are plotted in log(y/t) v.s. U/U.s
coordinates, in which t is the maximum body thickness and U, is the reference velocity obtained
at the tunnel test section entrance. The abscissa for each profile is shifted by a decade, and station
numbering for the laser-Doppler-velocimeter technique (LDV) profiles starts by zero being the
zeroth station. The symbols are used to denote the measured quantities and smaller symbols are
used to show the uncertainty band at each measurement point. The solid lines on the LDV data,
and on the hot-wire (HW) data taken at the left-hand side of the modei looking upstream, are the

data taken on the right-hand-side cf the model with the HW at the samc locations of the LDV, and

»
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at symmetric locations with respect to the tunnel axis of the left-hand-side HW data profiles. The

U mean velocity component in tunnel coordinates obtained with LDV are shown in ( Fig 21 ).

The observed deceleration of the flow up to staticn 2 is followed by an accelerating flow region.
Starting with station 3, the profiles get fuller. The logarithmic regions in the profiles are clearly
observed. The slopes of these regions all with respect to the slope of the zeroth station first show
an increase at the first location, a constancy at the second location, and continuous decrcase till the
sixth station, which in turn shows that the skin friction at the wall is increasing with the decreasing

slope. At the seventh location a slight increase with respect to the sixth station is observed.

The 18 HW profiles taken on the left-hand side of the wing were plotted in the same format, with
eighteenth profile being the most upstream profile ( Fig 22 ). The symmetric HW locations start
with the one corresponding to the fifteenth profile location, and the other profiles were taken at
every other profile location. Due to the systematic error of 0.010 inches made at the first
measurement point, the profile at fifth station location at the night-hand side was omitted. The
regions where the flow first experiences a deceleration and then an acceleration and then another
slight deceleration are more clearly observable from these 18 HW profiles. The first 7 profiles,
starting from the eighteenth profile location which is the most upstream location and including the
eleventh station profile, form the first deceleration region. The maximum U velocity component
observed was ~ 0.915 U, at the eleventh station. The next 9 profiles show an accelerating flow
region where the maximum U observed reaches to ~ 1.12 U, at the third station. The next 2
profiles show slight deceleration. In all the profiles the existence of the logarithmic regions are

clearly observed.

The U/U., profiles obtained with the HW and LDV techniques show good agreement, since the
measured quantities with two systems overlap within the uncertainty bands. The HW profiles on

both sides of the body also agree, which shows that the flow is symmetric around the wing.
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The V velocity component presented in V/U,, v.s. log(y/t) coordinates have the scale of the plots
as one tenth of the U and W components ( Fig 23 ). The results were obtained with the LDV
technique, and since the transformation to the freestream and normal stress coordinates were done

only by a rotation along the y axis, they will be presented only once.

The magnitude of the maximum observed at the first 5 stations show a gradual decrease, and
starting with the fifth station profile, the maximum observed increases. In these last t_hree stations,
the maximum observed is at 0.56 inches away from the wall. In all the profiles approaching to the
boundary layer edge the magnitude observed decrease. This results in the hili-shaped profiles which
are clearer at the last § stations. Overall, the maximum V component measured was ~0.022U,,y,
which is an order of magnitude smaller than the U component. This in turn shows that the

negligence of the V component in the HW reduction equations is acceptable.

The W component of the velocity profiles were plotted in W/ U, vs. log(y/t) coordinate system
( Fig 24 ). All the measurements are presented as the top profile being the most upstream profile.
Both the LDV and the HW measurements on the left-hand side of the wing are shown with
symbols, and the solid lines are drawn to emphasize the HW measurements done on the right-hand
side of the wing. The HW measurements on the left-hand side were plotted in -W/ U, vs. log(y/t)

coordinates to be able to make the comparison easier ( Fig 25 ).

The development of the -W component measured is displayed more completely with the profiles
taken on the left-hand side of the wing. The most upstream location profile shows that the
approaching flow at that location is 2-D in the mean. The first 3 profiles show that W component
are slightly effected by the body ahead. Starting with the fifteenth station profile, in the next S
profiles the slowing down of the flow to the zero value at the wall occurs within 0.010 inches away
from the wall. The maximum velocity observed at the first location is at 0.155 inches away from
the wall, and the position of the maxima in the intermediate profiles gradually increases until this

location is reached. The logarithmic r -ons in the profiles span a shorter distance in the more
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developed profiles, and the overlapped portions of the U and W profiles” logarithmic regions are

only at a couple of points in this coordinate system.

The comparison of the profiles taken on the nght-hand side, both with LDV and HW techniques,
show that at third and sixth station locations, the W component measured with HW was slightly
less in magnitude. HW measurements done on both sides show that except for the fifth station of

the left-hand side HW profile location, they are in good agreement.

The free-stream direction was found separately from each profile, by taking the average of the last
three points in each profile. The transformations from tunnel coordinates to the free-stream

coordinates were done by using the same angles throughout the each profile.

3.8.3.2 IN FREE-STREAM COORDINATES

The U velocity profiles in the freestream coordinates show the same kind of development as seen
in TC except at the seventh station ( Fig 26 ). The seventh station profile looks like the sixth
station profile, and it is not fuller than the sixth station profile as observed in tunnel coordinates.
Compared to the profiles in the tunnel coordinates, U profiles on the left-hand side of the wing are

observed to be less full, however the slopes of the logarithmic regions do not change ( Fig 27 ).

The W component shows the same features as in the tunnel coordinates ( Fig 28 ) . The profiles
taken with LDV technique develop until the fourth station is reached. The fourth and fifth station
profiles closely resemble each other; sixth and seventh station profiles show a decrease in the
maximum velocity observed. It is also clearly observable that the maxima of the profiles shift to a
higher y location in each successive location. The W component for the HW measurements done
on the left-hand side of the body in the free-stream coordinates also show the same charactenstics
previously discussed ( Fig 29 ). Clearly  “servable logarithmic regions within the first 7 profiles

span throughout the inner and logarithmic regions of the U profiles, which may be attributed to the
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small velocities and initial development. Starting with the eleventh station location, the logarithmic
regions observed begin only at the end of the logarithmic regions for the U velocity and span into

the outer regions.

3.8.3.3 IN MAXIMUM-NORMAL-STRESS COORDINATES

The measurements done were originally designed to investigate the characteristics of the flow on a
line following the maximum normal stress direction. Transformation of quantities into the normal
stress coordinates was done using the mean flow direction at the maximum normal stress point in
each profile obtained from the HW measurements done on the left-hand side of the wing. The
angles used both for the LDV and right-hand side HW profiles were the same, but the signs were

changed.

The U profiles within the first three stations (zeroth, Ist and 2nd) show a gradual decrease in
fullness and in the freestream velocity ( Fig 30 ). Starting from third station, the profiles becomnie
fuller, and free-stream velocity increases. The slope of the logarithmic region stays constant till the
third station location is reached. From the fourth station till the seventh, the last siation, the slope
is observed to be constant. Compared to the LDV profiles in tunnel coordinates, the profiles
starting with station 3 are fuller, and also the slopes of the logarithmic regions become steeper. The

hot-wire profiles on the left-hand side are plotted in Fig 31.

The effect of the pressure gradient was seen to be least effective in the normal stress coordinate
system. This can also be observed from the W component profiles in this coordinate system ( Fig
32). Since the free-stream angle is always smaller than the maximum normal stress direction, the
W component at the boundary layer edge appears as positive. The ncar wall structurc of the W
profiles shows that since the lateral pressure gradients in NS coordinates is smaller than in FS (
freestream ) coordinates or TC ( tunnel coordinates ), the W component is smaller with respect to

the other corresponding W components in the other coordinate systems. The existence of a
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logarithmic region in the profiles, even though it gets shorter proceeding downstream, is clearly
observable. When compared to the other coordinate system plots, the logarithmic regions in NS
system are observed to be longer. The logarithmic regions as also observed from the left-hand side
profiles show that until the fifth station for the HW profiles or sixth station of the LDV profiles
are reached they overlap in almost all the logarithmic regions of the U profiles plotted in this

coordinate system ( Fig 33).

3.84 FLUCTUATION VELOCITIES

3.8.4.1 IN TUNNEL COORDINATES

The characteristics of the u’, v’, and w’ fluctuation velocities will also be discussed in 3 different
coordinate systems. In the tunnel coordinates in the first three stations, the u’ profiles show
the same characteristics ( Fig 34 ). The magnitude increases very sharply within 0.010 to 0.014
inches from the zero value at the wall to 0.09 of the reference velocity. This region is followed by
a region where the magnitude drops to a value of 0.08 of the reference velocity. Starting from 0.22
~ 0.25 inches away from the wali, the magnitude drops to a value of 0.005 of the reference velocity
at the boundary layer edge. In the third and fourth stations, this maximum very near the wall is
not observed. Instead, the u’ rapidly nises to a value of 0.075 ~ 0.08 U,, then forms a plateau at
this value which is followed by a region until it reaches to ~ 0.005 of the reference velocity at the
edge of the layer. Starting with the fifth station, sixth and seventh stations show a maximum near
the wal!, and even though the maximum occurs at the same y in the profiles, the magnitude
increases proceeding downstream. At the seventh station, the maximum reaches to 0.1 of the
reference velocity which is higher than the value observed in the first three profiles. The rapid rise
up to the maximum value observed in the fifth, sixth, and seventh stations is followed by a rapid

drop region to a plateau and this region is followed by a drop to the boundary layer edge value.

EXPERIMENTAL RESULTS 42




Beginning with the third station profile, the maxima observed in the profiles drop successively till
the sixth station. Even though sixth and seventh stations have the maxima equivalent to the first
three stations, the magnitude observed for the plateau region values still show a decrease. At the
y location of 0.045 inches, the magnitude drop is ~ 21% of the zeroth location profile. The plateau
region was seen to be lying roughly between y/t=0.01 ~ 0.1, which corresponds to the regions
where the logarithmic variation for the U/U,, was observed. In the fifth, sixth, and seventh stations,
the beginning of the plateau regions roughly match with the beginning of the logarithmic regions

in W/ U, profiles.

The HW profiles taken at the locations of LDV profiles were shown with lines for comparison.
The HW profiles near the wall and in most part of the logarithmic regions for the U/U..,
underestimate the u’ velocity. Within the first 4 stations where the comparison is possible, the
maximum difference between the LDV and HW results was seen to be ~ 12% of the LDV value.
The difference between the measured values diminishes away from the wall. Even though it seems
that the HW values tend to be within the uncertainty band of LDV, it is believed that the HW
values are consistently less than the LDV values. In the last two profiles at the sixth and seventh
stations, the difference is more restricted to the near wall and the beginning of the logarithmic

regions, but still consistent. The maximum difference observed is on the order of ~ 20%.

The second set of LDV data were taken because of this discrepancy between the first set of LDV
and HW data. Since the second set of LDV data confirmed the results of the first LDV data and
since the repeated measurements of the HW technique also consistently showed this difference, the
difference betws=en the measurements is believed to be true. This difference is attributed to the

interference of the wire with the wall, which needs to be further investigated.

The hot-wire profiles on the left-hand side in the three most upstream profiles show the rapid rise
of the u’ fluctuating velocity and the transition to the formation of the flat plateau region ( Fig 34
). These profiles are the ones in which the effect of three-dimensionality is least felt. The formation

of the plateau region is due to the increase in the fluctuating velocity away from the wall and
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decrease of the fluctuating velocity near the wall. At station 13, u’/U,, is nearly constant at 0.076
till the end of the log rogion for U/ U,.. Furihier downstream within the next four profiles, an overall
reduction is observed. Starting with the eigth station profile which also corresponds to the station
where the maximum of the W/ U, profiles start shifting away from the wall, the fluctuating velocity
near the wall begins to increase while the fluctuating velocity which corresponds to the logarithmic
region of the W/ U,,, profiles continues to decrease. For y/t=0.1 while u’/U,.;is ~ 0.076 for station
13, it reduces 24% to 0.0575 at station 1. The u’ velocity measured on the right-hand side of the
wing with the hot-wire was plotted with the full lines for comparison. All the stations except the
left-hand side fifth station location profile show that the inner and logarithmic regions of both sides
agree fairly well. The maximum difference observed at the fifth station was ~ 16% of the
maximum value at that station. The maximum difference for the points where y/t > 0.1 was at
station 13 and was computed as 16% of the maximum value at that station. The other stations

show good agreement with differences less than 10% of the maxima observed at those stations.

The v’ velocity profiles show almost the same characteristics in the six profiles obtained ( Fig 36 ).
The magnitude of the v’ fluctuation velocity reaches up to a value of 0.04 ~ 0.045 of the reference
velocity at a y location of ~ 0.035 inch and forms a plateau region which is followed by a region
starting from 0.35 inch where the magnitude drops down to a value of ~ 0.005 at the beundary
layer edge. At the sixth and seventh stations the plateau region is replaced by a short plateau and
a hill region where a maxima of the profiles can be defined. Still the maxima stays within 0.04 ~

0.045 of the reference velocity range.

The w fluctuating velocity is also presented in log(y/t) v.s. w'/U,, coordinate system ( Fig 37 ).
Unlike the u’ or v’ in all the eight profiles observed with the LDV technique, w’ profiles show
somewhat the same characteristics. The rise of the velocity to the maxima of the profiles within
y/t= ~ 0.01 ~ 0.02 is continued with a semi-log region which corresponds to the logarithmic region
of the U/U.,s profiles and a region where the w” drops to its value at the boundary layer edge. The
maximum reached at the zeroth station seem to be slightiy reduced to ~ 0.055 at the first station

from the value of ~ 0.058 of the reference velocity. Within the next six locations, the maximum
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observed increases to a value of ~ 0.066 U, The hot-wire profiles at the locations of LDV show
a difference between the two measurement techniques, mostly at first, second and third stations.
Even though the fourth, sixth and seventh station profiles follow each other very closely, the
difference at the previous three locations is on the order of 25 ~ 40% at the points where maximum

differences occurred. At station 4 the difference is ~ 15%.

The hot-wire profiles taken on the left-hand side of the wing show a continuous increment in the
first seventeen profiles in the average value observed within the near wall and y/t=0.01-0.1 region
which corresponds to the logarithmic region for the U/ U, profiles ( Fig 38 ). The increment in
w’ velocity in the second station is on the order of ~ 25% of the ~ 0.0475 U, average value
estimated at the eighteenth, the most upstream location. The high scatter of the data within the
most upstream five profiles makes it hard to judge the profile shapes. Starting with the thirteenth
station profile, the formation of a semi-logarithmic region spanning to the end of the log region of
the U/U., profiles, preceded by the quick rise near the wall, is seen. In the most downstream
location a slight drop of the average value within y/t=20.01-0.1 with respect to the seventeenth
station profile is observed. The hot-wire profiles obtained on both sides of the body show good
agreement for all the profiles taken, which in turn shows that not only the mean velocity

components but also the turbulence structures on both sides of the body are in symmetry.

The u’ and w’ fluctuating velocities in the free-stream coordinates were found with a tensor
transformation which was applLed to the Reynolds stress tensor, using the appropriate angles
obtained from each profile separately (Appendix III and Table 3 ). Both the LDV and HW
measurements of both fluctuating velocities seem to follow the quantities presented in tunnel
coordinates. This is due to the small free-stream angles encountered. The maximum free-stream
angle observed for the LDV measurements was at station 4 as 10.16° and for the left-hand side HW

measurements it was 13.87° at station 8.
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3.8.4.2 IN FREE-STREAM COORDINATES

The presentation of u’ fluctuating velocity measured with the LDV technique in the free-stream
coordinates follows the presentation in tunnel coordinates very closely except with minor differences
at two stations ( Fig 39 ). At station 4 slight decrease withir. y/t= ~ 0.01-0.] range, and at station
5 very slight increase till y/t =0.01 and small decrease within y/t = 0.01-0.1 range, are observed. The
order of increments and decrements are less than 0.005 in the vicinity of 7% of the observed

quantities in tunnel coordinates.

The HW profiles on the left-hand side of the body show the same characteristics in the FS
coordinates as in TC for the first eight most upstream profiles ( Fig 40 ). In the next four profiles
the u’” velocity is higher for y/ta~ 0.008 to 0.01 and lower within y/t= ~ 0.01-0.1. Even though the
increment near the wall is decreased in y direction from its initial value of 5% difference, the
decrement in the log region of the U/ U,y reaches to a minimum around y/t= ~ 0.02 to the 5%
of the 0.062 at the seventh station. For w’ profiles of LDV, the most significant difference is
observed near the wall before y/t=0.01 where the FS values which are on the order of 16% of the
maximum ~ 0.062 smaller than TC values increase till they start following the gquantities in
TC

( Fig 41 ). This was mostly significant at the sixth station. For the first eight profiles starting
from the most upstream, th: HW profiles do not show any significant change than the profiles in
TC ( Fig 42). Starting from tenth station, the near wall w’ in FS coordinates is observed to be less
till y/t=0.01 and seen to be higher till y/t ~ 0.04, with respect to the TC profiles. This difference
due to the presentation in different coordinate systems is seen to be practically non-existent at

station 3.
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3.8.4.3 IN MAXIMUM-NORMAL-STRESS COORDINATES

The fluctuating velocities in normal stress coordinates were found by applying the tensor
transformation to the Reynolds-stress tensor with the angles found in each left-hand side HW
profile. These angles were also used for the right-hand side HW and LDV profiles at the symmetric

locations with a sign change.

In the first two profiles, u” follows closely the values in TC ( Fig 43 ) Starting with the second
station profile, the coordinate transformation seems to be reducing the u’ fluctuating velocity. In
the second station, except at the few points very close to the wall, above y/t~ 0.005,an overall
reduction on the order of ~ 0.006 or 7% of the maximum 0.087 was observed. In the third station
profile, this reduction is on the order of ~ 0.004 and seems to be reducing to ~ 0.003 after
y/t=0.1. The gradually achieved reduction of u’ in the fourth station profile reaches to a maximum
of ~ 0.011 at y/t=0.03 and reduces further in the profile till y/t= ~ 0.1 is reached. The reduction
after this point is ~ 0.005. The maximum in TC at this station was read as ~ 0.0755. The fifth
station profile points below y/t= ~ 0.01 were observed to have higher u’ by as much as 0.006
which gradually reduced down to zero. Above y/t= ~ 0.01 overall reduction till the edge, within
the order of 0.008 below y/t=0.1 and ~ 0.005 above y/t= ~ 0.1 is noticed. The u’ at station 6
which are observed to be higher in NS coordinates than the TC near the wall below y/t=0.002 at
station 6 gradually decrease to the values of the TC presentation at this y location. The difference
of 0.03 in the third point in the profile is reduced to 0.008 at the 6th point. Between y/t=0.01-0.1,
NS values are seen to be smaller; the maximum difference measured is on the order of 0.004. Above
y/t~ 0.1, the differences further reduce. Except at the first three points in the profile, seventh station

profile presentation in NS follows closely the one in TC.

Tue fust 5 .nost upstream HW profiles of the left-hand side follow the presentation in TC closely
( Fig 44). Starting with the thirteenth station profile, overall reduction in the u’ is observed. In

station 13 starting from y/t = 0.007, the difference was ~ 0.003, ~ 4% of the maximum 0.08 in
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TC. The distinction between the two presentations become more clear starting with the zeroth
station profile. Except the points below y/t~ 0.006, v’ in NS coordinates is observed to be lower
in the whole layer in the next four profiles including the zeroth station. The differences which
gradually increase till y/t~ 0.02 decrease towards the edge of the layers. The difference within the
y/t~ 0.01-0.]1 range is seen to be increasing proceeding downstream. At station 7 this process is
reversed. The difference in this range is on the order of ~ 0.006 at station 10, where the maximum
is ~ 0.073, and ~ 0.009 in sto.on 8, where the maximum is ~ 0.072. In the next four profiles
starting with the sixth statio., the reduction in the difference between the presentations between
y/t=0.01-0.1 is accompanied by the increased values below y/t=~ 0.01. Proceeding downstream,
both the increments and decrements gradually diminish. The increments near the wall is on the
order of 0.07 at station 6, where maximum 1is 0.076 and 0.005 at station 3 where the maximum is

~ 0.082. The decrements at these stations are 0.003 and 0.002 succesively.

Contrary to what is observed for u’, w’ fluctuating velocity in NS coordinates show an increase in
most of the profiles almost in the whole layers ( Fig 45 ). For the LDV profiles in the first two
stations, the values follow closely the TC presentation with a maximum increment of 0.002. The
second station profile reaches to its peak at y/t=~ 0.01 with an increment of ~ 0.01, 17% of the
maximum value ~ 0.059. This positive difference reduces down to 0.005 at y/t~ 0.1. Same
characteristics are also seen in the third station, but the increment is seen to be constant on the
order of 0.006, ~ 10% of the maximum ~ 0.061 in TC in between y/t~ 0.01-0.08. Gut in the
layer, the quantities are seen to be following each other closely. At fourth station w’ shows a peak
at y/t~ 0.02, on the order of 0.012, ~ 19% of the maximum 0.062 in TC which is gradually
achieved starting from y/t~ 0.007. In the outer layer above y/i~ 0.3 where two presentations have
the same value, the w’ in NS coordinates are observed to be slightly less than in TC. Within the
next three stations, near wall w’ values below y/t~ 0.01 are observed to be quite lower. The
differences which are observed to be 50% or more at some points are believed to be mostly due to

the uncertainties. Above yjt~ 0.0]1 proceeding downstream, the higher values observed in NS
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decrease down to the TC values. The maximum difference at station 5 is on the order of ~ 0.011

and the average is ~ 0.003 in the y/t~ 0.01-0.1 range.

The first four profiles of w’ in NS follow closely the values observed in TC ( Fig 46 ). Starting with
the thirteenth profile w’ in NS is seen to increase. thirteenth profile is observed to have increments
in the order of ~ 0.006, ~ 11% of the maximum 0.053 within y/t~ 0.01-0.2 range. Twelfth and
eleventh station profiles do show same characteristics as the thirteenth station, in which the
increments are on the order of 0.004. Beginning with tenth station w’ values reduce proceeding
downstream. At station 7 the maximum difference is on the order of 0.006, ~ 10% of the
maximum 0.062. The increments are mostly observed within y/t=10.01-0.1 range. Below this
range, w’ in NS is lower as much as 0.004, and in the outer layer it was higher with the same
increment. Proceeding downstream starting with the third station, the two presentations of w’
follow each other closely except below y/t=~ 0.007, the NS values are seen to be higher by about

0.003.

3.8.5 REYNOLDS SHEAR-STRESSES

The — wv, — iw, — vw kinematic Reynolds shear stresses will also be discussed in three coordinate
systems. — v’ and * — vw stresses were obtained only by LDV technique. The different symbols
at the points very close to the wall and at the outer edge show where the realizability conditions
are not satisfied. The points where these conditions were not satisfied will not be included in the
discussion. The quantities are discussed in terms of ( kinematic stress/U,,2 ). Small symbols in
TC designates the uncertainty bands. The shear stress components at the wall in the x and z
coordinates of the TC are also going to be shown in the figures of these quantites. The stress
magnitude in the zeroth station was found using Clauser 2-D Law of the Wall, and at station 1
Johnston’s 3-D Law of the Wall was used. At other stations, shear stress magnitudes and directions

arc taken from Ailinger’s data ( 1990 ).
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3.8.5.1 IN TUNNEL COORDINATES

The — i kinematic stresses in TC in the first four most upstream profiles show the same form
( Fig 47 ). The negative stresses very near the wall were followed by a region where the stress
changes sign. This region was followed by a plateau region and a region where the stresses decrease
to zero value outside the boundary layers. At station 0, the plateau forms at ~ 0.0017. This region
includes most of the logarithmic region of U/U,, profile. At station 1 the minimum reached is
slightly less negative than zeroth station. The increase up to ~ 0.0009 was complete at y/t=~ 0.01,
and until y/t~ 0.2, the stress is seen to be constant around this value. Minimum observed in the
second station is lower than the previous two profiles. The value measured at y/t~ 0.01is ~ 0.0016
and at y/t~ 0.08 1s ~ 0.002. Ia the y/t~ 0.01-0.1 region, the average is ~ 0.0019. Quantities
observed in the third station are lower than the zeroth station values. Plateau formed in the y/t~
0.01-0.1 is seen to be ~ 0.0015. In all of the profiles discussed, the very near wall stress was on
the order of ~ -0.0005. In the fourth station, the increase near the wall was followed by a constant
stress region on the order of 0.0012. In the fifth station, the increase near the wall and in the log
region is followed by a region where the stresses decrease until the layer edge. Station 6 shows same
form of a profile. Near wall values at station 7 show a maximum at y/t~0.01. The decrease in the
stresses until y/t~0.03 is further seen to be increasing until y/t~ 0.2. The stresses further decrease
to the zero value at the layer edge. No specific relation between the — v kinematic shear stress and

the mean velocity profiles could be observed.

Development of the — ww kinematic shear stress in TC in all profiles observed to be restricted
within y/t less than 0.2 except at station 7 where a vaniation until y/t~0.5 is observed ( Fig 48 ).
Near wall characteristics were seen to be developing with the development of the W/U.., mean flow
component. In the zeroth station, — #w decreased to -0.0014 near the wall at y/t>~ 0.006, and was
scen to be linearly increasing to the zero value outside the boundary layer. Starting with the first
station profile ncar the wall, — inv are observed to be positive. At first and second stations, the

gradient of — inv above y/jt=0.01 was observed to be less than the zeroth station. Near wall value
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at station 2 at y/t~ 0.004 is ~ 0.0016. Starting with the zeroth profile proceeding downsircam, a
decrease in region y/t=~ 0.01- 0.1 was observed, which in the fourth profile shows a peak at y/t~
0.004, ~ -0.0011. The peak formed is seen to decay downstream of this station, while 1ts location
in the profiles shifted up. Also, proceeding downstream starting with the fourth station, the
maximum observed near the wall gradually increases. At station 6, the maximum was as high as
~ 0.0036. At station 7, the decrease in the — uw up to ~ -0.0005 at y/t~ 0.08 shows an increase

until y/t=~ 0.2, which further decreases to a value of zero at the layer edge.

The HW profiles taken in the locations of the LDV profiles are seen to be following the LDV
profiles closely with slightly lower values in magnitude especially in the negative side up to station

4. The profiles at sixth and seventh stations agree in the whole layer.

The HW profiles obtained on the left-hand side of the body are plotted in log(y/t) v.s. — uw /U2,
coordinates to be able to compare with the HW profiles on the right-hand side, which are in the
w| U,sup2 coordinates in the ordinate ( Fig 49 ). The kinematic stresses observed in the eighteenth
station are virtually zero, which shows in fact that the approaching boundary layer is
two-dimensional not only in the mean but also in the turbulence quantities, too. Within the next
7 profiles downstream, while — iw observed near the wall gradually decreases, the stress in each
profile in the y direction gradually increases to the zero value at the layer edge. Starting with the
tenth station, above y/t~ 0.01 development of the positive stresses begin. Until station 6, while the
near wall stresses reduce slightly in the negative side, the increase of the peak at the positive side
and the following semi-logarithmically decrease to the zero value at the edge are continued. At
station 6 while the peak value reaches to its maximum of 0.001 at y/t~ 0.03, the near wall value
further decreases. Starting with the sixth station profile, development of a region where the
reduction of the stresses after the maximum of the peak takes place is seen. The reduction of the
kinematic shear stresses reaches to a maximum near the wall at station 4 at a value of ~ -0.0019.
In the further downstream profiles, near-wall values gradually relax. The peak values observed on
the positive side gradually reduce starting with the sixth station, while the point in each profile

where the peak cccurs gradually shifts up from y/ta~ 0.03 at sixth station to y/ta~ 0.06 at the first
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station. In the region where the reduction of the kinematic stresses are observed, the minimum
kinematic shear stresses observed are seen to be around y/t~ 0.1 ~ 0.2. These points in the profiles
also indicate the end of the logarithmic region. Kinematic shear stresses further in the profiles
increase to zero value at the layer edge. The comparison between the both side profiles showed that
the — v stresses agree well with each other, which in turn verifies that the flow is not only

symmetric in the mean and fluctuating velocities but also in the stresses formed.

Among the kinematic Reynolds shear stresses measured, — ¥w is seen as the smallest in magnitude.
At all stations the range of the data is between 0.0006 to -0.0005 ( I'ig 50 ). In the first station
except slight decrease near the wall, the stress profiles are seen to be fluctuating around the value
of zero. The slight decrease on tie order of 0.0002 increased down to zero around y/t~ (.006. First
station shows an decrease in the y/t=~0.04 to 0.08. Starting with the second station, the change in
the sign of — ¥w near the wall is observed. The kinematic stress at station 2 was seen to be gradually
decreasing, starting from the maximum of 0.0005 at the first point of the profile, till y/t~ 0.01,
where it reached zero. The third station values are seen to be forming a flat region which spans
between y/t~0.02-0.09 at a value of 0.0004. Starting with the fourth station, — vw profiles look
similar to those of — &w. The stresses near the wall start decreasing from a positive maximum to
a negative minimum and then increase above zero and further in the profile decreases to zero value
at the layer edge. Also, the maximum reached near the wall at station 5 was followed by a decrease
at station 6 and further decrease in station 7. The peak in the negative side observed to be
maximum at station 7, and the maximum obtained at the outer region was seen to be increasing

until station 7. At station 7, the maximum was at the level of that of station 4.

3.8.5.2 IN FREE-STREAM COORDINATES

The presentation of — & stresses in the FS coordinates, in general, follow the TC presentation due

to the small free-stream angles real'zed ( Fig 51 and Fig 52).
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The — uw stresses in general were observed to be shifting down in all the stations ( Fig 53 ). The
decrements were more clearly distinguishable near the wall region and were seen to diminish
towards the layer edges. At zeroth and first stations, the shifting down is on the order of 0.00025
near the wall region until y/t~ 0.1. Downstream, the decrements are seen to gradually decrease,
while second station decrements are ~ 0.0005. It is ~ 0.0006 in the third station. In both stations,
the decrements seem to be gradually increasing above y/t~ 0.1. Beginning with the fourth station,
the decrease of the — iw kinematic stresses in FS with respect to the ones in TC starts to gradually
diminish in the following stations. In station 4, almost constant amount of decrease at each point
of the profile on the order of 0.000S is seen to gradually increase above y/t~ 0.1. This type of
difference is also observed at station 5. At station 6 and 7 the maximum difference between two
presentations are seen near the wall and are seen to decrease in the layer. Maximum difference at

station 7 was ~ 0.0003.

The presentation of the prcfiles taken on the left-hand side of the wing in FS coordinates show
distinguishable differences, starting with the sixteenth staticn profile ( Fig 54 ). Even though the
differences increase in the downstream direction until the tenth station, the increments were seen
to be decreasing in the y direction starting from the wall until the eleventh station. Starting with
the tenth profile proceeding downstream, the differences start to decrease. After station 6, the
differences were mostly seen near the wall below y/t~ 0.01. Between the eleventh and eigth
stations, the differences between y/t=~ 0.02-0.1 were seen to be higher than the near wall differences.
In all the profiles, the values in both coordinate systems near the outer edge above y/t~ 0.3 follow
each other closely. While the difference observed at station 16 was on the order of 0.0001, it was
increased to ~ 0.0005 by station 11. Overall, the — &w kinematic stresses in FS coordinates show

higher stresses in the negative side of the scale, although the shapes of the profiles are similar.

The eftect of coordinate transformation on — ¥w kinematic stress is felt starting with the second
station profile of the LDV profiles. Starting from y/t~ 0.007 up to y/t~ 0.2, the — ¥w kinematic
stresses in the second station were seen to be shifted up as much as 0.0002. The increase in the third

station results in — vw kinematic stresses on the order of ~ 0.0005 in the range y/t~ 0.02-0.2 which
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is a part where the log region of U/U,,,is seen. The increase near the wall is seen to be less. In the
following profiles, the same type of increase was observed, which, overall, results in more
distinguishable stresses away from zero. Starting with fourth station proceeding downstream, the

differences are observed to decrease.

3.8.5.3 IN MAXIMUM-NORMAL-STRESS COORDINATES

The distinguishable difference between two presentations of the — v stresses in TC and NS
coordinates were observed at station 2. At this station, — & in NS coordinates is seen to shift down
on the order of 0.0002 in the whole layer below y/t>~ 0.5 ( Fig 55). The decrement at the fourth
staticn in NS coordinates with respect to the ones in TC was seen to be highest. In the following
stations the decrements reduce. The decrenmionts near the wall are seen to gradualiy increase until
y.t>~ 0.07. The difference which increase up to y/t ~0.2 seen gradually decrease until vit~ 0.5, The
most observable differences are seen between yji~ 0.02-0.15, which also corresponds to log region.
The maximum difference at station 4 was on the order of 0.0005; by station 7 this was seen to drop

down to 0.0001.

The most observable differences between two coordinate system presentations occur for — aw
stresses. In o all the stations, NS coordinate — ww stresses were seen to be lower than TC values
( Fig 56 ). At the zeroth station. maximum decrement was 0. the order of 0.0007 at v, 1=~ 0.008.
By station 4, the maximum decrement reaches to 0.0015. In all the profiles. the almost constant
decrement until y t> 0.0% 1s seen to decrease further i the profiles. and above v t=0.4, the
differ~nce seems neghgble. The decrements observed decrease in downstream stations. At station
4 and 5. a decrease 1n the decrement until y t~ 0.02 and further increase until vt~ (.07 are
observed. At station 6 the decrements near the wall and in the outer region were higher than the

region between vyt 0.02-0.07. At station 7, differences were mostly below vt~ 0.02.
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For the -lw measurements on the left-hand side of the wing, all the stresses including the eigth
station values are secn to be positive ( Fig 57 ). The increase in the -uw stresses proceeding
downstream were seen 1o be reaching to their maxima in each profile around y/t~ 0.1 until station
6. The maximum -&w reached occurs in station 10, with a value of ~ 0.0013. Further downstream
the maximum reached decreases. By station 1 the maximum reduced to 0.0005. Starting with the
seventh station profile near wall, values start to be observed as negative. At station 7, the point
where maximum is reached in the profile shifted down to y/t~ 0.05. By station 1, the maximum
shifts up to y/t~ 0.07. The minimum reached near the wall at station 6 is on order of ~ -0.0013.
Above y/t~ 0.1, starting with station 9 till station 3, stresses above this height are almost zero. In
the further downstream profiles,stresses are below zero. In all the profiles, near wall values are seen
to be gradually increasing to the maximum value observed in the profiles, and, as expected, the

values at the layer edges are zero.

The observable differences between TC and NS coordinate system presentations of — v stresses
start with the zeroth station ( Fig 58 ). At station 0, the difference is seen as an increase above y/t
~ 0.02. In station 1 the — vw in NS coordinates is observed to be higher between y/t~ 0.02-0.2.
In station 2, the increase in — Vv on the order of 0.0009 between y/t~ 0.01-0.2 is seen. In station
3, the increase seen is on the order of 0.0006. In the further downstream profiles, increased — vw
profiles result in more obscrvable profiles away from zero. The differences between two
presentations decrease proceeding downstream. The range where the increase occured observed to
be in the same range as the previous stations. At station 4, the increase was on the order of ~

0.0006 while at station 7 it was only about ~ 0.0002.

N
7,
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4.0 EXAMINATION OF THE FLOW

STRUCTURE

4.1 INTRODUCTION

The derived quantities are the computed values which appear in the form of relations of the
previously discussed measured quantites. These quantites appeared through the ongoing discussion
about the 3-D boundary-layer research, either from the forms of the equations used or by the
assumptions and approaches made for solving the governing equations. These quantities were,
N =anisotropy constant, 4, = Townsend’s constant, flow angle, velocity gradient angle, shear stress
angle, convection and production profiles for the stresses and kinetic energy of turbulence, eddy

viscosities, mixing length, and kinetic energy of turbulence.

Due to the encountered uncertainties in the @v and 1w shear stresses, especially, the shear stress
angle, 4,. Townsend’s constant, and N, anisotropy constant quantities were seen necessary to be
smoothed. To be able to do this task, first the v and ¥w stress profiles were smoothed with a

least-squares parabola fitting to the S successive points in the profiles and computing the value at
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the third point location. For the first two points in the profile, the same parabola fitted for the first
S points was used. The parabola fittings were done for the profiles in free-stream coordinates for
the computation of 4, and shear stress values and in the three coordinate systems for the anisotropy
constant, N. The length scales of the flow studied; boundary layer thickness, displacement
thickness, and momentum thicknesses at each station were computed using the trapezoidal rule for
the integrations. The definition and the values for these lengths may be found in Table 6. The
boundary layer thickness is defined as the point in the layer where the velocity magnitude rcaches
to the 0.995 of the free-stream velocity magnitude. Free stream velocity magnitude was found by

taking the average of the last three points in the profiles at the layer edge.

4.2 N=ANISOTROPY CONSTANT

Anisotropy constant is defined as

v

B (= ENEES, )
w
(- aU|dy )

.

In the approach relating the shear stresses to the mean flow quantities, isotropic eddy viscosity
models make use of a single eddy viscosity value with the assumption that the transfer of
momentum by the fluctuating velocities in any direction in the flow can be related to the local mean
flow gradients in the coordinate system defined, by a single eddy viscosity term as in the laminar
flow with the use of the kinematic viscosity of the fluid. Yet, since the eddy viscosity is not a
property of the fluid but the flow, and turbulence in 3-D flows appears as not only a function of
the local variables, the assumption of isotropy of the eddy viscosity 1s questionable. The anisotropy

constant makes it possible to judge this issue clearly.
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With this in mind, the quantity N was plotted in three different coordinate systems to see even if
in a preferrred direction the assumption could be validated. If the assumption is validated the value
would be computed as 1. The shear stresses in different coordinate systems were computed with
a tensor transformation given in Appendix III. The gradients for the mean flow quantities were
computed with the same type of curve fitting to the profiles in each coordinate system.
Furthermore, not to be misguided with the uncertain quantities, the uncertainties were computed
and the values with uncertainty levels within +1 are presented. The band of the values is also kept
as +2, since the assumption to be valuable the parameter N would be close to 1. The uucertainty
bands of the quantity are presented as bars. For the coordinate system other than TC, the
uncertainty values for individual stresses were kept same as ones in the TC. The uncertainty values

for the gradients are 10% of dW’/dy and 5% of the aU//dy.

Overall, the N values are observed to be mostly less than 1 and sometimes negative, with no distinct
form of vanation in the profiles ( Fig 59,60,61 ). In tunnel coordinates none of the zeroth station
values had less than +1! of uncertainty. Also in all the coordinate systems, starting with station 2
the station where the W and ¥w profiles start to develop more points in the profiies are seen. The
available data within the chosen uncertainty band are clustered within y/t~ 0.01-0.3 region. The
data in TC ( Fig 59 ) were seen to be more scattered with respect to the data in FS ( Fig 60 ), and
data in NS coordinates ( Fig 61 ) were seen to be in a narrower N range than the data in FS
coordinates. While most of the data in TC is in between -0.5-1, it is seen to be within 0-1 in NS
coordinates. Even though the shapes of the profiles do not follow a trend, the data in NS
coordinates seem to be fluctuating in a band of 0.5-1 around the value of 1. Once the uncertaintics
are included except at stations | and 7 where the values observed are closer to 0.5, the N anisotropy
constant is close to 1.0. It could be concluded with the data that N=1 in such a 3-D TBL was
an exception, but not the rule. Data also clearly show that the eddy viscosity is not isotropic, but
rather close to being isotropic in a coordinate system defined in the mean flow direction in the

profile where the u? stress is maximum.
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4.3 Al=TOWNSEND'S STRUCTURAL

PARAMETER

The structural parameter 4,

J (2 + D)

A1= — gy ._2_
(u2+v2+w )

was used by Bradshaw in his 1967 paper in the formulation to relate the transport of the turbulent
kinetic energy to the Reynolds shear stresses. Later on, he solved the momentum, continuity and
turbulent kinetic energy equations, which formed a hyperbolic set of equations, for 2-D TBL. The
value for 4,, as presented in that paper was 4, =0.15=wv/(2k), a constant. If this were a constant
in 3-D TBL, still the magnitude of the stress in a plane parallel to the wall could be related to the
TKE. Thus, the TKE transport equation could be used to represent the transport of the magmitude

of the shear stress.

The magnitude of the shear stress parallel to the “wall and the turbulent kinetic energy do not change
with the teuscr transformation. Therefore, the quantity is presented only once in the tunnel
coordinates. With the known uncertainties of the individual stresses, the uncertainty of the 4, was
computed. Since the quantity defined by Bradshaw was 0.15, the data in a band of 0-0.3 with the

uncertainty less than of + 0.15 were presented, and the rest was discarded.

Starting with the zeroth station, the form of the A, profiles show that the assumption of constancy
of Ay as 0.15 for the present 3-D data is questionable ( Fig 62 ). In the zeroth station, by taking
into account the uncertainty of the quantity in most of the layer, the assumption could be validated,
especially in the logarithmic and outer regions of U/U,,, profile; but the actual values computed are
lower than 0.15, near the wall region and higher in the log and outer regions. At station 1, the values

are mostly less than 0.15 until the end of the log region. At station 2, if the uncertainty is included,
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the structural parameter 4, again is observed to be ~ 0.15, in the whole region. In the stations
downstream beginning with the third station the structural parameter was seen to be ~ 0.15 within
the logarithmic and outer regions of the profiles including uncertainty bands. In all the profiles, near

wall values were seen to be less than 0.15 including the uncertainty bands.

4.4 FLOW ANGLE

Mean flow angle which is

FlowAngle = Arctan( —Uui )

was computed in three different coordinate systems. The uncertainty for the computed flow angles
were found using the individual uncertainties for W and U observed in tunnel coordinates, and these
individual uncertainties were kept the same for the other coordinate systems. The computed
uncertainty is denoted with bars for the LDV measrurements. The hot-wire values computed at
the same profile locations for the LDV profiles were plotted with lines. Even though the
transformation into coordinate systems other than TC only shifts the profiles by the transformation
angle used, the profiles are still discussed in three different coordinate <vstems to emphasize some

important aspects seen.

The profiles in TC starting with the zeroth, including the second station profiles, show a
semi-logarithmic variation almost in the whole layers ( Fig 63 ). The maximum angle reached very
ne»r the wall was -21 ° in station 2. In station 3 and 4, near the wall flow is observed to be
collateral, but the uncertainties near the wall are much higher than the uncertainties observed in the
rest of the profiles. At station 3, the semi-logarithmic variation is seen to be starting at y/ t~ 0.08;

at station 4 it is shifted up to y/t~ 0.014. The minimum angle at station 4 is ~ -37 °, but the
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uncertainty is +£25 °. In the further downstream locations, the near wall flow angle is seen to be
increasing, thus decreasing in magnitude, and the points in the profiles where the semi-log vanations
start are observed as near to the points where the minimum flow angles are reached. This point in
the seventh station is at y/t=~ 0.03. The gradual decrease in the magnitude of the minimum flow
angle results in -13 ° observed at station 7. In all the profiles, the semi-log vanation of the flow
angle is seen to end at y/t=~ 0.4, and the points above are observed to form a region where the angle

slowly decrease to the layer edge values.

Except at station 1, the flow angles computed for the hot-wire profiles at the same location of the
LDV profiles show the same form as the LDV profiles. At station 1, the flow angles seen as low
as -10 ° for the LDV values could not be observed for the HW values, which are down to -5 © only.

The agreement for the other profiles is within the uncertainty limits.

The development of the flow angle is better observed with the computed values for the HW profiles
on the left-hand side of the wing. Since the flow angle is positive, it is plotted in log(y/t) vs -1*
( the flow angle ) for easier comparison with the right-hand side profiles which are plotted with

lines.

The first eight profiles including the eleventh station profile show semi-logarithmic variation in the
whole layer up o y/t=~ 0.4, starting from the minimum flow angle observed near the wall ( Fig
64 ). In these profiles, the gradual decrease in the minimum observed proceeding downstream
results in ~ -33 ° at station 11. In the further downstream profiles, the starting point of the
semi-logarithmic variation starts shifting up, and the minimum observed in the profiles close to this
point starts decreasing in the magnitude. The minimum observed in tenth station was ~ -32 ° at
y/t~ 0.004 and ~ 9 ° at y/t~~ 0.04 at the first station. The end of the log regions are observed to
be at y/t~ 0.3 including the fourth station and further downstream profiles, which results in

shortened regions.
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The HW profiles on both sides of the wing show reasonable agreement except at station 5. At this
station the right-hand side profiles show flow angles ~ 12 ° less at the first 4 points in the profile.
In the rest of the profile, the difference is ~ 6 °. In the other profiles, the difference is less than
~ 6 ° at the few points of discrepancy. This agreement is further validation of the symmetry of the

flow around the body.

The presentation of the profiles in the FS coordinates shows the same type of variation in the layers
( Fig 65 ). The gradual decrease in the flow direction near the wall including the third station,
gradually increases in the further downstream stations. Starting with the fifth station, the location
in the layers where the minimum flow angle reached is observed as shifting up away from the wall.
For the HW profiles taken on the left-hand side of the body, the near-wall flow angle is observed
to be reducing until eleventh station ( Fig 66 ). The minimum at the eleventh station is -23 °. The
profiles in the further downstream show a gradual increase not only near the wall but in the whole
layers. The points where the minimums are reached in the profiles start shifting up with the tenth

station profile, while the minimums themselves decrease in magnitude.

Most of the LDV and HW profiles in NS coordinates were observed to be on the positive side of
the plots ( Fig 67 and Fig 68 ). This is due to the transformation applied. For the LDV profiles
except at station 3, the minimum of the profiles are seen to be very close to 0°. All the previously
discussed characteristics of the flow angle profiles are also observed in this coordinate system,

without any specific difference.
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4.5 FLOW GRADIENT ANGLE

Flow gradient angle was computed using the gradients computed perpendicular to the wall and

oW /ay

Gradient Angle = Arctan( 3013y

relation. The gradients in the y direction were computed by fitting parabolas to the W and U
velocity component profiles in that particular coordinate system at each successive five points in the
profiles, and the derivatives were computed from the denivatives of the parabolas. The uncertainty
of the gradient angle was computed using the estimated uncertainties on the individual gradients
as 5% of the oU/dy for dU/dy and 10% of 1|3y for W |dy, and plotted as bars for each individual
point. The quantities were computed only for the LDV profiles, since the main reason was to
investigate if the gradient angle and shear stress angle were aligned with each other. The full stress

tensor was only measured with the LDV.

In the first three profiles, while the gradient angle gradually decreases to ~ -20 ° below y/t~ 0.005,
it is seen to be increasing up to ~ 10 ° above y/t~ 0.02 ( Fig 69 ). The sudden increment between
the two heights is seen to be at the beginning of the log layer for U{Uref. Within these profiles the
very near wall and above y/t~ 0.02 values are seen to be nearly constant. At station 4, while the
values below y/t= ~ 0.006 are nearly constant around ~ -30 °, the peak value reached 1s ~ 20 °
at yjt= ~ 0.02. Further values in the profile are seen to be decreasing down to a 0 value at the layer
edge. Starting with the fourth station profile, not only the away from wall values but also the near
wall values are seen to be changing with the distance. After forming a lower peak, the reducing
values very near the wall increase to form a peak on the positive side. Further in the profiles, the
values drop down to ~ 0 value near the layer edge. While the magnitude of the lower and higher
peaks increase in magnitude till station 6, at station 7, the lower peak is seen to be decreasing in

magnitude, and the higher peak is observed to continue to increase. Within these stations, also the
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locations where the peaks are observed are seen to be shifting up in the profiles proceeding

downstream.

Gradient angle in other coordinate systems show the same characteristics, since the only difference
in the presentations are due to the shifts resulting by the transformation. The amount of shifts are
same as free-stream and maximum normal stress point flow angles in the other two coordinate

systems.

4.6 SHEAR STRESS ANGLE

Shear stress angle is the angle which the shear stress vector component in the x, z plane makes with

the x coordinate and is computed using

Stress angle = Arctan( -%)

Since the transformations into different coordinate systems only shift the plots the same as the
rotation applied, the shear stress angle will only be discussed in the free-stream coordinates. The
uncertainty analysis on the angles was done using the individual uncertainties for the &v and vw
calculated in tunnel coordinates. Results of the analysis of the quantity is plotted as bars in the
figures ( Fig 70 ). Exceptionally high uncertainties were mostly due to the uncertainties in the nw
being on the order of v measured. This uncertainty and scatter in the data makes the judgment

on the shape of the profiles difficult.

In the first two stations, the sticss angle is seen to be fluctuating around ~ 5° zero.In station 1, the
increase up to ~ 22 ° till y/t>~ 0.02 is followed with a region where the stress angle decreased to
-22 ° at vjt=0.04.In the outer layer or above p*> 250, the stress angle was seen to be zero. At

station 2, the increase near the wall below y* =40 was seen to have decreased in the log layer and
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seen to be around 7 ° till the layer edge. At station 3, the stress angle reaches a peak of ~ 30° at
yit=~0.02, which further reduces down to ~ 5° at y/t=~0.2. The increase of the stress angles in the
whole layers continue procecding downstream. At station 4, near wall values which reach a
maximum of ~ 73° at y/t~0.006, reduce to ~ 10° ai v/t==(.0}. Further increase in the layer results
in higher stress angles on the order of ~ 30° in the whole layer. The station 5 profile shows
resemblance to the fourth station profile. The angles observed near the wall at station 6 show a
minimum at ~ 26° at y/t=~0.005. The almost semi-log increase in the profile results in a peak of
~ 40° at y/t1>~0.04. The variations in the profile after this point are similar to the variations seen in
the previous two profiles. The seventh station profile shows a decrease in the stress angle in the
whole laver. While the minimum reached in the profile is at y/t~0.015 at a value of ~ — 23°, the
maximum is at y/t=~0.06 with a value of 27°. The further decrease in the profiles result in stress

angles ~ 0° at y/t~0.3.

Comparison between shear stress and flow gradient angle reveals that the shear stress angle is
varying in the same form as the flow gradient angle in the layers, but is smaller in magnitude, ic ,
lagging behind the flow gradient angle. The lags are more distinguishable below y/t~0.01 in the
profiles. In the outer regions above y/t =0.01 in the zeroth station the angles are seen to be
following each other. The difference generated at the first station is seen to be decreasing proceeding
downstream. At station 3 while the angles below y/t~0.01 are following each other closely at station
4, the outer region values are seen to be practically the same. Starting with station 5, the station
where the flow gradient angles show sharp changes, ihe stress angles are seen to be lagging more

than the other stations. The lag at station 7, at the outer region is seen to be ~ 20°
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4.7 FLUCTUATION VELOCITIES AND SHEAR
STRESSES NORMALIZED WITH THE

SKIN-FRICTION VELOCITY

Fluctuation velocities and shear stresses measured were non-dimensionalized with u, and 2
respectively to see if the skin-friction velocity defined could be used as the parameter to collapse the
individual profiles into one profile. The skin friction velocity is defined as u, = U./(C/f2) , where

L. 1s the layer edge velocity magnitude and C;is the skin-friction coefficient.

The u’ profiles in the overall were seen to be reducing in magnitude proceeding downstream. At the
sixth and seventh stations while the peaks near the wall reached were higher than the previous 2
stations, starting from y/t= 0.02 the profile values were again to be reducing proceeding downstream

( Fig 71).

The v’ profiles in the first and last four profiles were seen to be collapsed on toy of each other, but
the difference between two groups was noticeable ( Fig 72 ). Same kind of structure was also

observed for the w’ profiles ( Fig 73 ).

While the first four station profiles of the — &v stresses nondimensionalized with «2 show no match
of the profiles, the last four station profiles show fair agreement in the whole layers ( Fig 74 ).
Except at station 2, the nondimensionalized profiles are seen to be decreasing in magnitude in the

whole layers proceeding downstream.

Within the first four profiles, — itw/u? above y/t~ 0.01 are observed to be increasing in magnitude
in the downstrearn direction ( Fig 75). Starting with the fourth station profile, the process reversed,

and a decrease in the magnitude is seen. Due to the small magnitude of the — ¥w/u? values and the
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form of the profiles, it was hard to judge on this quantity’s profiles. While the first 4 profiles do
not collapse on each other, the next three profiles are seen to be following each other closely. The
last station is also seen to be not following these 3 profiles ( Fig 76 ). In general, the u, parameter
could not be observed as the necessary parameter to collapse the fluctuating velocities and Reynolds

stresses into one profile.

4.8 EDDY VISCOSITIES IN X AND Z DIRECTIONS

The eddy viscosity in the mean flow direction at the outer edge of the layer is computed using

- BjUfay)
TS,

and the measured shear stresses, density, external velocity and boundary layer thickness and
computcd dU/[dy, by fitting a parabola for each successive five points and taking the derivative of

this parabola at the third location point.

For the first 4 stations, the profiles start with small negative values on the order of ~ -0.000003
below v/t~ 0.009 ( Fig 77 ). Above this height the x eddy viscosity was observed to be positive and
seen to be parabolically changing with its apex at yjt~ 0.001 and v,=- 0.000C03 for the first four
stations. In the last four stations the apex is of the parabola is v, =-0.000005 at y/t>~ 0.001. In all
the stations, the maximurn is reached at y/t=~ 0.2 and is scen to be reducing further in the profiles.

Also the last 4 profiles below y/1=0.06 follow each other closely.

The eddy viscosity in the z direction of the FS coordinates is d:fined as

7w /(aW]ay)
s =TT r,
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In the first three stations since the W profiles are just starting to develop, the scatter in the
computed profiles are high ( Fig 78 ). In the third station, even though the scatter is also high, the
values are seen to be positive above y/t~ 0.01 and a semi-logarithmic variation till pft~ 0.07 is
observed. In the last four profiles except at station 7, the profiles above y/t>~ 0.02 were observed
to be on the positive side. At station 7, the change in the sign of dW/dy results in negative values
to be computed besides the positive ones within the layer. Overall, the v, profiles seemed to have
no specific form, and the changes in the d1¥/dy and the small magnitude of the — ¥w stress are

suspected to be the reasons for the scatter.

4.9 MIXING LENGTH

Mixing length is computed using

(%) (GO 2

2 2 112 2 2
5y +(5)] [(aU)+<aW)]

6 é

L=

and presented in L,/d v.s. log(y/t) coordinates ( Fig 79 ).The mixing length values were observed
to be very close to zero very near the wall below y/t~ 0.01.The variation suggested by many
researchers as L,/6 =0.41*y/6 near the wall is plotted with the lines in the figures, using the
boundary layer thickness found for the zeroth station. This variation is observed within y/t=
0.02-0.07 of all the profiles. The suggested change as L,/é = 0.09 in the outer region could not be
verified in most of the profiles. While the variation at station 0 the most upstream station is as
L./6=10.09 in the other profiles, the values were either continuously increasing till the layer edge
or leveling at values different than 0.09. Some other length scales of the flow may be found in Table

6.
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4.10 JOHNSTON POLAR PLOTS

The existence of a relation between the lateral and axial components of the mean flow field was
questioned by Johnston ( 1960 ). Johnston suggests the existence of two linearly varying regions
for the mean velocity component in free-stream coordinates plotted in a polar plot; one for the
inner region near the wall and one for the outer region. ( Even though the idea was popularized

by Johnston ( 1960 ), it was attributed to Gruschwitz ( 1935 ) by him. ) In the inner region

w_.U -
0, ={ . where, { = tan(f,,)

and in the outer region

W _q0-YL =
Ue—A(l Ue) where, 4 = 20 g

relations are supposed to hold. In his study Johnston ( 1960 ) found good agreement when he
compared his own data ( Johnston, 1957 ) of a two dimensional air jet forced to flow against a
perpendicular back wall, Gruschwitz’s ( 1935 ) data of well-developed, collateral, turbulent
boundary layer becoming 3-D under the influence of a turning main flow, and the data of Kuethe,

et. al. ( 1949 ) on a yawed wing of elliptical planform.

Figure 80a, b show the polar plots of the present data and the suggested relations by Johnston.
From the figure it is seen that, even though the relation seems to hold for the zeroth station, in the
next four stations the location of the peak values are predicted at points closer to the wall in the
profiles, and the magnitude of the peak values are overestimated as much as 20%. While in the fifth
station the position of the peak in the profile was correctly predicted the magnitude was
underestimated. In the last two profiles neither the position nor the magnitude of the peaks were

correctly estimated. The peak value at station 6 was ~ 60% below the data.
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4.11 TURBULENT KINETIC ENERGY

Turbulent kinetic energy is computed with the relation,

(u2 + v +w2)
2

TKE =

The TKE profiles were nondimensionalized with the Ui, The equation which describes the
transport of the TKE was given in the Introduction chapter. To be able to follow the change in
the TKE within successive stations, the profiles at each four stations were plotted on top of each

other ( Fig 81).

The plots at the first four profiles show that the change in TKE is not significant in these stations.
In these profiles the increment near the wall up to y/t~ 0.01 goes to a value of 0.00575 and is
followed by a region where it is seen to be constant around this value. Above y/t~ 0.06 the decrease
until the layer edge is seen. In the next two profiles (4 and 5), the plateau region values are observed
to be lower, ~ 0.0053. Last two station profiles are observed to be higher near the wall, but lower
in the plateau region with respect to the previous two profiles. While the maximum reached in
station 6 is 0.0062 at y/t~ 0.008, the maximum at station 7 at the same height is ~ 0.007. The
plateau region for both profiles seems to be starting at y/tzx 0.03, and it is seen to be ~ 0.00475.
The profiles show that TKE in the successive locations in the studied flow do not change
significantly overall, which suggests that the production and dissipation at each location was on the
same order, and convection is negligible. Thisl can further be seen from the convection and

production profiles obtained.
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4.12 PRODUCTION OF TKE

Production of TKE as given in the Introduction chapter is expressed with equation

After expanding this equation, the derivatives with respect to x and z were neglected, since the data
taken did not give chance to compute these derivatives. The resultant equation which was used to

compute the profiles of TKE production terms reads as

]
—wdL Y oW

TV — W
dy oy dy

Production profiles were plotted as TKE Production over U3, v.s. log(y/t) coordinate systems ( Fig
82). The mean velocity derivatives and shear and normal stresses were the values computed in the

FS coordinates.

All the profiles presented have the same form. Very near wall values in all the profiles are observed
to be negative, and a very sharp rise to a positive peak value below y/t=~ 0.01 is followed by a region
where the production decays down to the zero value at the layer edge. The negative values near the
wall are seen to be higher in magnitude than the positive peak values. The two positive peak values
were observed to be higher than the others, and they are seen to be at station 2 and station 7. While
the peak at station 215 ~ 0.18, it is ~ 0.36 at station 7. In other stations peaks are observed to

be between 0.08-0.12.
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4.13 CONVECTION OF TKE

Convection term in the transport equation for TKE as given in the Introduction chapter

o2 1.
lj:jaxj(zulul)

was further simplified to read as

0 L7
3 ( > W +v° +w%))
and the plots of the profiles were done using this equation. Neglecting the derivatives other than

in the y direction was necessary since not enough data were gathered to compute these derivatives.

Likewise for the production terms, the convection terms are also seen to be significant below y/t~
N.01 ( Fig 83). In all the profiles, the maxima reached near the wall seem to have decayed below
this y point and are observed as close to zero. The only significant convection term observed above
this height is at station 7 and is ~ -0.006.In all the profiles above y/ta 0.01, the convection terms

are between -0.004 and 0.003 values.

The comparison between production and convection terms show that the convection terms are an

order of magnitude lower than the production terms.
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4.14 PRODUCTION AND CONVECTION OF

NORMAL AND SHEAR STRESSES

Production and convection terms of the governing equations for the transport of the normal and
shear stresses were given in the first chapter. The production term in the tensor form for the
component (1,j= 1,2,3) is given as

o oy,
- @Eﬂ- o)

and the convection term as
U, 2 (4w
6x1 ey

The derivatives were computed in the manner previously described in several discussions. Since the
derivatives with respect to x and z could not be computed due to the way the measurements were
designed, the derivatives only in the y direction were considered. Due to this shortcoming, even
though the discussions will be restricted, especially for the convection terms, since the mean velocity

is a direct multiplier, it is believed that it may be useful for the stress production terms.

Within the profiles, #? production is seen to be the highest ( Fig 84 ). Even though the production
very near the wall is seen to be negative, a sharp rise to a positive peak was completed before y/t
~ 0.01. The peaks of the #? production are seen to be of the same order of magnitude except at the
zeroth and second stations. At station 0, the production seems close to zero, and at station 2 the
production is higher than the other stations in the whole layer. The profiles after the peak is reached

are seen to be decaying to the zero production at the layer edge.
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The ordinate of the ¥? production plots was chosen to be 40 times smaller than the ? production
plots. This was due to the small magnitudes observed, which in general makes the production of
12 insignificant ( Fig 85 ). The values in the profiles seem to be mostly negative except near the
wall. The scatter of the data is mostly due to the small scale of the plots. The production of W is

seen to be increasing in magnitude on the negative side proceeding downstream.

The w? production is plotted with an absissa scale 4 times smaller than the u? ( Fig 86 ). In the
first two profiles, while the production very near the wall seems positive and reaching to a peak,
the values above y/t~ 0.01 are close to zero. Also in the next profile, while the production is ~ 0
above this height, near the wall the production is seen to be negative. In the next four profiles, while
the production is negative below y/t~ 0.01, it is seen to be increasing in magnitude on the positive
side for stations 3, 4 and 5. Starting with station 6, the magnitude observed in the whole layer is
seen to be decreasing. In the seventh station, the production below y/t=~ 0.01 is again seen to be

positive and the values above this height is close to zero.

In all the profiles of & production, the values are seen to be on the negative side ( Fig 87). In the
first four profiles the values near the wall form a negative peak at around y/t~ 0.006 to 0.009. In
the next 4 profiles, values are observed to be reducing towards the wall. Further in the profiles,
production decays down to a zero value at the layer edge. In the first profile, the peak observed is
seen to be higher than the next three station peaks. The production of v in these four profiles near
the wall and in the whole layers except at station 2 were seen to be comparable in magnitude to the
production of #?. In the second station, u? production was higher. In the next four profiles, the
production was seen to be increasing in magnitude downstream. Also the production in these

profiles were seen to be comparable to the 1? production terms in the same locations.

Within the first four stations, iw production profiles seen to be increasing in magnitude above y/t
~ 0.01 ( Fig 88 ). Below this point, they were observed to be negative. The peaks formed at
stations 2 and 3 were seen to be located at y/t~ 0.03. While in the next two stations the peaks

observed at same location are on the same order as seen in station 3, a decrease in the peak at
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station 6, is observed, and a decrease and a shift in the peak value and location is seen in station
7. The peak of seventh station profile is at 0.07. In the near wall region, while all the values of the
fourth station are positive, they are less than zero below y/t~0.015. At station 7, the values below

y/t== 0.04 are negative, and this is seen the case for station 6 below y/t~ 0.02.

The vw production in the first four profiles were seen to be increasing in magnitude both below and
above y/t~ 0.008 and proceeding downstream, in the whole layers ( Fig 89 ). The peak formed at -
station 3 was located at y/t=~ 0.02. In the next four stations, the zero production height within the
layer was seen to be shifting up in the layers proceeding downstream. While the maximum reached
in the production near the wall increase within the first 3 locations, the last station shows a decrease
in the peak reached. While the minimums reached at station 4 and 5 are on the same order, it is

seen to be reducing in magnitude starting with station 6.

In all profiles obtained and for all the stresses, the convection terms computed were seen to be very
close to zero above y/t~ 0.01. The abscissa of the scales of the convection term plots were at least

an order of magnitude smaller than the corresponding production plots ( Fig 90 ).
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5.0 LAW OF THE WALL CONCEPT

5.1 INTRODUCTION

The existence of the similarity “L.aw-of-the-Wall” velocity profile in the form of 'z% = flyu,[v) in two
dimensional turbulent boundary layers has been well established ( Schetz, 1984 ). The existence of
such a similarity “Law-of-the-Wall” reduces the time necessary for the boundary layer computation
codes to calculate the flows studied by reducing the domain of the calculations and gives the
necessary information between the mean velocity profile and the wall shear stress. Existence of such
a “Law-of-the-Wall” in three-dimensional boundary layers was investigated by several authors
(Coles, 1956; Johnston, 1960; Homung-Joubert 1963; Perry-Joubert, 1965; Pierce-Krommenhoek,
1968; Chandrashekhar-Swamy, 1975; East-Hoxey, 1969; White-Lessmann-Christoph, 1975; Van
Den Berg, 1979; Pierce-McAllister-Tenant, 1982).

Nine existing Law-of-the-Wall similarity profiles are compared here with nine different sets of 3-D
turbulent boundary layer data available to further investigate if such a law existed. The relations
chosen included Coles, Johnston, Homung-Joubert, Pierce-Krommenhoek, and

Chandrashekhar-Swamy, East-Hoxey, Perry-Joubert, White-l.essmann-Christoph, and Van Den
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Berg. The pressure-driven experimental data were of Anderson and Eaton ( 1987a, 1987b ) ,
Dechow-Felsch ( 1977a, 1977b ), Madler ( 1982b ), Fernholz-Vagt ( 1981, 1978 ), Elsenaar-Boelsma
( 1972, 1974), and the present data. The shear driven data were taken from Bissonnette-Mellor (
1974 ) and Lohmann ( 1976 ). A summary of the flows included in this study, the techniques used
10 measure the stress and mean velocity in the flow and the skin friction at the wall may bay be
found in Table 7. Before the comparison, all the data sets used were first expressed in free-stream
coordinates, and, U and W 1n this chapter denote the mean velocity components in the xrs and

Zrs directions, respectively.

5.2 LAW-OF-THE-WALL RELATION REVIEW

5.2.1 COLES RELATION

The equation proposed by Coles in 1956 had the form of

cos(B,, — f)
g—rw )

Uy

=Aln(-yvi)+B n

in which he assumed that (i) the velocity vector throughout the layer could be written as a sumr of
near surface and wake vectors and (i) the magnitude of the wake vector near the wall should be
small, so that the direction of the near surface velocity vector should have the direction of the shear
stress vector on the wall. He also presumed that the velocity vector component in the wall shear

stress vector direction versus y* would give the Law of the Wall.
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5.2.2 JOHNSTON RELATION

The second relation was proposed in 1960 by Johnston. His reasoning was based on his “triangular
model” ( U/q vs. W/q, which was popularized by Johnston but attributed by him to Gruschwitz
( 1935 ) ) which points to the existence of a region near the wall where the flow angle is constant
and the fact that the direction of the velocity vector in this region is coincident with the shear siress

vector. Furthermore, he assumed that the fictituous velocity component in the direction of the shear
(/Y
cos(Bu)

stress direction defined as obeyed the 2-D Law of the Wall of Clauser ( 1956 ), resulting

in a Law of the form of

U

yu,
m=/111n(7)+31 (2)

He compared his Law of the Wall with the measurements of Gruschwitz ( 1935 ), Kuethe

(1949 ) and his own data ( Johnston, 1957 ) and found good agreement.

5.2.3 HORNUNG-JOUBERT RELATION

A third relation was proposed by Homung and Joubert. They wished to see if Clauser’s ( 1956 )
Law of the Wall for 2-D turbulent boundary layers applied to 3-D turbulent boundary layers. They
chose to nondimensionalize the magnitude of the velocity vector q with «,. Their relation reads

2 )+ B, 3)

q9
u, = Ay In(

from which they had actually computed w, by fitting their measured velocity profiles with equation

(3). They made no comparison using other data sets.
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5.2.¢ PIERCE-KROMMENHOEK AND

CHANDRASHEKHAR-SWAMY RELATIONS

The Pierce-Krommenhoek ( 1968 ) and Chandrashekhar-Swamy ( 1975 ) relations have the same
form for the streamwise velocity. The latter relation also has a Law of the Wall in the cross-wise
direction. The validity of the 2-D Law of the Wall was assumed with the nondimensionalizing
»in-friction velocity derived from the shear stress vector component in the streamwise direction.

For the streamwise velocity, they propose

12,5 +

v yu (cos '*(B,))
o= Ay In(———= —") + B; @

u(cos “(By)
The latter relation suggests
. 1)2

4 yu(sin " (B,)

=A4In(—————)+B, &)

. 142
u(sin'*(B,))
for the cross-wise velocity component.

The main feature which distinguishes these relations from the previous three is that, the very near
wall velocity vector direction is not assumed to be coincident with the wall shear stress vector
direction, although 8. is the direction of the shear stress vector at the wall with respect to the
streamwise axis. When there were available data for the shear stress direction, this information was
used for the §,. Pierce and East ( 1972 ) and Kliensiek and Pierce ( 1973 ) state that their finite
difference solutions very near the wall did not predict any collateral velocity region, but that the

velocity vector changed direction dcwn to the wall.
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5.2.5 EAST AND HOXEY RELATION

The relation proposed by East and Hoxey in 1969 can be defined as an effort to improve Johnston’s
relation. They reasoned that since the U~ in 2-D flows was a function of y*, the same relation in
3-D flows would hold, taking into account the vectorial nature of the local velocity. Their relation
reads

Ur

v +
wcos(Boy ~ et * B ©

in which B is a modified version of B.. By is derived from Johnston’s U,W polar plot. Johnston's

polar plot in the viscous sublayer or close to the wall represents the cross-flow as

’ ; . . /
% = l(/ tan(f,) and in the outer region as %{i =A(l — -(%'). The apex of the ZV profile where
these two relations meet can be found from the relation that ( Z ) =K Z’ .
¢ apex e

By using the trigonometric sine rule for the Johnston’s triangular polar plot 8, could be written as,

sin(y) -
(K /U * 7

B, = Arcsin{
To compute the angle y, East and Hoxey used the approximation that the whole polar plot could

be represented only with the outer region using

s
U
6, = 1—-—)d
i J;( Ue)y

&
5a= fo — (WU dy

~6,

A= 5
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they found y as

y = Arctan(A)

To reduce scatter in K from their data, which could be computed from the equation for f. above,
they nondimensionalized the friction velocity with {; which was defined as the “working section

reference velocity”. The computed K from their data which is used is 19.45.

The choice of one K and U, resulted in different values for the B, than the measured values. The

equation they used is

sin(y)

Bo = Arcsin{ m} -y (7

The use of this angle instead of . in Johnston'’s relation results in the East-Hoxey relation (eq.6).

5.2.6 PERRY-JOUBERT RELATION

The relation proposed by Perry and Joubert ( 1965 ) takes into account the effect of the pressure
gradient near the wall region. They assumed that the near wall region could be treated as an
equilibrium layer and that mixing length theory was valid. They further assumed that, the
maximum shear stress acts in the same direction as the maximum rate of strain, which in tum
assumes that the turbulence is isotropic. After algebraic manipulation of the momentum equations

near the wall, their final equation reads
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(8)

1=2 TR ;“L2+21/4+

{1=2cos0(— " +(=5) »y "} dy" + constant
u‘l’

vt ?

.
S
<

I...

in which;

p 2 op 212 '
a = [(5;-) + ( Em )] = pressure gradient

0 = the angle between the pressure gradient vector and the wall shear stress vector.
H = arc length on Johnston’s polar plot.

They compared their Law of the Wall formulation with the Homung-Joubert data and found good

agreement.

5.2.7 WHITE-LESSMANN-CHRISTOPH RELATION

The relation proposed by White, Lessmann and Christoph ( 1975 ) also takes into account the effect
of the pressure gradient on the streamwise velocity component. It was part of an integral method
for the analysis of 3-D incompressible turbulent boundary layers. The key assumption in the
development of the relation is that the shear stress component in the local free-stream direction
could be written as a sum of the shear stress component at the wall in the local free-stream direction
and the pressure force in the direction of the local free stream direction. The relation between the

shear stress and velocity was established by the mixing length theory, yielding
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P ot 2L

U . U
x=Txw T " ox ay

5 ©

The skin-friction velocity defined in the direction of the outer streamline is

12
oot (g = (e

Equation (9) was integrated in the y direction to obtain

S-S+ 1)

+_ 1 -
U =-[2S - Sp) +1n[ (S+1)(So-1)]

(10)

where,

S=(1+oh

Sp = (1 +0.1108a)'/2

- v op
 plugcos' (B )Ry 0

3

So was chosen such that in the zero pressure gradient limit U+ = % In(y*) 4+5.5 would be obtained.

To supply the necessary W(y) velocity profile for the integral method, the unilateral hodograph
proposed by Mager ( 1951 ) was used

W*—u*cu——yi)2 (11)
- o

where,
¢ = tan(B.)
p.= angle between the resultant surface shear 7, direction with the streamwise direction.

LAW OF THE WALL CONCEPT 83




A, = metric coefficient since the derivative is taken along the streamwise direction. They compared
the predictions of their Law of the Wall with the data of Kliensiek and Pierce ( 1970 ) and found

only fair agreement.

5.2.8 VAN DEN BERG RELATION

The relation proposed in 1975 by Van Den Berg was designed to take into account both pressure
gradient and inertial forze effects. The relation was developed as a part of a calculation method for
3-D turbulent boundary layers. The relation assumes that mixing length theory holds outside the
viscous sublayer and the shear stress direction coincides with the direction of the maximum rate of
deformation in the region where the Law of the Wall is supposed to hold. The correction of the
logarithmic Law of the Wall for the shear stress variation due to inertial effects was done using the

log-law form in the equations of motion for thin layers.

Van Den Berg preferred to formulate his equations in a right-handed coordinate system in which
x lies in the direction of the wall shear stress, z is perpendicular to this direction lying on the floor
plane, and y is perpendicular to both directions. His final equations after algebraic manipulations

and simplifications are

n(r 2+
U;=—,<1—[1n(y+)+%axy++%ﬂx(——@—22y—]+3'/ (12)
(vt
U:-=_'£__[az(y+)+ﬂzﬂ_2))_y__]+38 (13)

K

in which,
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puf Ox pu 0z
g =t Ou,, g = ou,,
* u3 Ox oz u3 oz '’
+ qcos(ﬁw—ﬁ)
Uy = 7,
+_ 9sin(By, — )
e

T

He compared his calculations from equations (12) and (13) with Van Den Berg and Elsenaar’s
measurements at two stations in terms of the flow angle ¢ relative to the wall shear stress angle

which can be written as

a* +x -f%) + By I 5
¢= In(™) + «B, (9

and found good agreement within 8% up to y*=400.

5.3 EXPERIMENTAL DATA

5.3.1 ANDERSON AND EATON FLOW

Anderson and Eaton at Stanford University studied flow around a wedge facing into the flow with
a 90 degrees included angle ( Fig 91 ). The approach 2-D turbulent boundary layer was subjected
to transverse streamwise pressure gradients which made it three dimensional. The freestream
velocity in the inlet section was 16 m/sec. Data taken include measurements at five different

locations which were on a free-streamn streamline ( Fig 91 ). This flow was chosen such that a
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separation region near the wedge was avoided but yet it was representative of the highly skewing

effects on the development of the shear layer ( Fig 92 ).The flow showed highly anisotropic features.
— (w)/(0W[dy)
— ()[(0U]0y)

The ratio of streamwise eddy viscosity to cross stream eddy viscosity N = changed

from 0.1 to 1.0 Also the structural parameter of Townsend

_J@+ o

defined as 4, = ———————— was lower and not a constant of about 0.15 as in 2-D boundary
(w2 + v +w?)

layers.

53.2 FERNHOLZ AND VAGT FLOW

Fernholz and Vagt at the Technical University of Berlin studied 3-D flow created by a downstream

back plate on a cylinder with an elliptical nose at a nominal speed of 18 m/sec corresponding to
Us

v

of 1.23 x 10¢ /m ( Fig 93). Data taken include mean velocities and six Reynolds stress tensor
components along 3 generators of the cylinder at 24 locations. The streamwise pressure gradient
was dominant in the development, so that the effect of the lateral pressure gradient was only
observed in the downstream part of the test section. One important conclusion of this study was
that the mean-velocity profiles near the wall showed skewing all the way to the wall ( Fig 92 ). It
also seemed that the shear stress vector led the velocity gradient vector. As in Anderson’s data,

Townsend’s structural parameter 4; was not a constant of 0.15.

533 MULLER FLOW

Mudler studied an initially 2-D turbulent boundary layer on a flat plate subjected to lateral and

streamwise pressurc gradients produced by turning vanes, which caused wall skin friction lines to

I
turn up to 50 degrees ( Fig 94 and Fig 92 ). The unit Reynolds number Ve was 1.95 x 10° /m

v

throughout the measurements. Data included measurements of mean velocity and turbulent
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quantities at 21 locations. The data employed here include the measurements on a free-stream

streamline which is closest to the separation line.

He concluded that the shear stress vector direction led the velocity gradient vector direction; the
velocity continued to skew all the way to the wall. However, the structural parameter 4, was

approximately 0.15 as proposed by Bradshaw.

5.3.4 DECHOW AND FELSCH FLOW

Dechow and Felsch studied the 3-D turbulent boundary layers in front of a cylinder standing on a
flat plate ( Fig 95). An initially 2-D turbulent boundary layer was subjected to the transverse and
streamwise pressure gradients which caused three dimensionality ( Fig 92 ).The data included mean
velocities and six Reynolds shear stress tensor components at 10 locations along a free-stream
streamline, 2 on another streamline and on the centerline of the tunnel. Data used in the current
investigation include 7 profiles which were upstream of the 3-D separation line. Their investigation
also pointed out that the flow was anisotropic and that the stress vector direction lagged the velocity

gradient vector.

5.3.5 ELSENAAR AND BOELSMA FLOW

Elsenaar and Boelsma studied an incompressible turbulent boundary layer on an infinite swept wing
in an adverse pressure gradient ( Fig 96 ). A quasi-two dimensional boundary layer as found on an

infinite swept wing was simulated on a flat plate, swept at an angle of 35 degrees. Measurements

0o
v

were carried out at of 2.42 x 10 /m . Measurements included the mean flow and Reynolds

shear stress tensor components at 8 locations ( Fig 92 ).
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The anisotropic character of the 3-D turbulent boundary layers was also noted in these
measurements. The shear stress vector direction lagged behind the direction of the velocity gradient.
The parameter 4, decreased from 0.15 to 0.11 moving downstream; a value of 0.08 was observed

in the wall region.

5.3.6 BISSONNETTE AND MELLOR FLOW

Bissonnette and Mellor studied 3-D turbulent boundary layers formed on a rotating cylinder with
a sudden circumferential strain ( Fig 97 ). Measurements of the shear driven boundary layers were
carried out at 8 stations with two different axial velocities. In the present study 4 stations were
selected where the skin friction coefficients are available ( Fig 92 ). The cylinder used had a diameter
of S inches and the Reynolds numbers based on the radius and the free-stream velocity were
4.16 x 10° and 7.95 x 105 for the low and the high Reynolds number cases, respectively. W, was
kept constant throughout these measurements. It was observed by those authors that the mean rate
of strain vector assumed a constant direction equal to the wall shear stress vector, which meant that
the flow was collateral in the near wall region in a rotating frame of reference. It was also noted that
N was less than 1, which meant that the flow is anisotropic and shear stress vector direction is

lagging behind the velocity gradient vector direction.

5.3.7 LOHMANN FLOW

Lohmann studied the 3-D turbulent boundary layers formed on a rotating cylinder ( Fig 98 ). He
carried out the measurements at a free-stream velocity of 16.8 m/sec at a nominal Reynolds number
of 2.9 x 10° based on 254 cm diameter of the rotating body and free-stream velocity. Surface

velocity to freestream velocity Wy/U,, = 1.65. Data at 6 stations were used in the current analysis
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( Fig 92 ). This flow indicated that near the wall the flow was collateral and that Reynolds shear

stress vector direction was leading the mean velocity gradient vector direction.

5.4 RESULTS AND DISCUSSION

Data taken from the nine selected data sets were plotted in the nondimensional coordinates of nine
selected Law-of-the-Wall relations in order to investigate the applicability and the range of validity
of these relations ( Fig 99-107 ). The range of validity of these relations is summarized in Table 8.
Figure 108 shows the difference of maximum and minimum values for each relation for the different
sets of data at y* = 70, which is a point well out of the viscous sublayer and presumably within any
semi-logarithmic region. Inner ticks show the difference when the least fitting profiles were
excluded. This figure may alsc be interpreted as an evaluation of the method of skin friction
measurement or the accuracy of the measured skin friction. Also, to see if the slopes of the curves
predicted by each relation differed from one data set to the other, a plot of the scatter of the data

at y* =40 and at y* = 100 is shown in Figure 109.

The less complicated relations which do not include the effect of the pressure gradient near the wall

are discussed separately for each flow.

All of the examined relations were seen to be equally applicable for the Elsenaar-Boelsma flow.
The semi-logarithmic region was well defined for all relations. Based on the scatter of the data at
y*=70, the Homung-Joubert relation was seen to be slightly better than the rest ( Fig 108 ), with
A;=2.37 and B,=4.715. ( Fig 100 ) shows a Johnston relation plot for comparison. Van Den
Berg-Elsenaar had plotted the data in Clauser’s 2-D Law-of-the-Wall coordinates with the velocity

magnitude and had found good agreement. It was observed from ( Fig 101 ) that if the profile at
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the first position was omitted, the y* range for Hornung-Joubert relation would extend up to

yr=450.

For Midler’s data it was not easy to see the existence of a logarithmic region in the
Chandrashekhar-Swamy and Pierce-Krommenhoek relations at stations D42, ES3 and Fé5. Scatter
of the O~ at different p* values for Coles and Homung-Joubert relations was around 10% of the
overall 0" range of their relations. The Johnston relation was seen to be the most promissing for
this flow for 20< y* <200. None of the relations except Coles’ relation was able to predict a
logarithmic region for station ES3. Excluding this station, the Johnston relation ( Fig 100 ) may
be approximately fit with 4,=2.922 and B, =4.557. Muller ( 1982b ) plotted his data using the
that he computed using Spalding’s formula with Coles” Law of the Wall constants vs. using u, he

measured with the Preston tubes and found the difference to be about 10%.

In most of the stations ¢ the Fernholz-Vagt flow, the turning angle of the flow was less than 15°.
Since the distinction between the proposed relations depended on how they treated this angle, all
of the relations seemed to be performing equally well within 7.5% scatter among the profiles within
each non-dimensional coordinate. The distinction was clear at the station St 802 where the flow
angle was 22.5 degrees in turn. For this station Johnston'’s relation was able to include this station

within 6% scatter for 15< y* <60 with 4,=3.514 and B,= 1.367.

Fernholz-Vagt ( 1981 ) discussed the possibility of a Law-of-the-Wall with three different relations
including Homung-Joubert, v vs. y*, Ulu, cos(f) vs. y* cos(f), and Van Den Berg’s Law of the
Wall. They concluded that Hornung-Joubert relation was in much better agreement with the data
than the others. They also favored the validity of use of the Law of the Wall for 2-D boundary

layers in 3-D boundary layers.

For the Dechow-Felsch data, the flow skewed up to 50°, which resulted in a good test case for the
relations. Even though the Coles and Johnston relations predict logarithmic regions, the profiles

diverge from each other starting from p* = 20, with 20% scatter for Coles and 9.5% for Johnston
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of the overall range of these plots, 20< y* <150. Pierce-Krommenhoek and Chandrashekhar-
Swamy relations predict a Law of the Wall for this flow except at station St 7. When this station

is excluded, these relations show a good semi-logarithmic fit within 4% of their overall range.

The Hornung-Joubert relation shows a semi-logarithmic fit within 9% overall of the range
including St7, in contrast to 11.5% scatter of the Chandrashekhar- Swamy and
Pierce-Krommenhoek relations. Excluding station St 7 the latter relations produce a fit ( Fig 102)
with 4;=3.025 and B;=3.06. The Homung-Joubert relation including St 7 fits the data with

A,=2.502 and B,=4.167 <5.21.

Due to the measurement techniques the Anderson flow did not have any data at less than y*= 55
which made it hard to investigate the range and applicability of the proposed relations. The flow
had turning angles up to 45 degrees. For this flow, Coles, Hornung-Joubert, Pierce-Krommenhock
and Chandrashekhar-Swamy relations showed 37.5%, 20%, 18% and 18% scatter of the data,
respectively, up to y*=150. For the last station, S5, Coles’ relation had almost zero slope. In this
severe test case, Johnston’s relation with 4,=2.91 and B, =3.357 seemed to be the only one

working up to p* = 250 with scatter of 12.5%. Scatter up to y*= 150 was 7.5% ( Fig 100 ).

The East and Hoxey relation performs in an almost identical manner to Johnston’s relation, but
with a few exceptions. Even though it collapses Miller’s data set better than Johnston's relation,
it performs poorer for the other data sets. This may be due to the choice of K and L, constants.
In their analysis, East and Hoxey also mentioned that different choices of K resulted in better

agreement for the subsets of their own data ( Fig 104 ).

The rest of the discussion in terms of the simple Law-of-the-Wall relations deals with the
shear-driven data in which the direction of the shear stress at the wall was used for f.. For the
Bissonnette- Mellor low Reynolds number data, the Coles and Hornung-Joubert relations did not
work since the slope of Coles’ relation was negative, and Hornung-Joubert relation was resulting

in slopes close to zero, especially for the high Reynolds number data. Among the other proposed
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simple relations, Johnston'’s relation was superior. Plots of the data in Chandrashekhar-Swamy and
Pierce-Krommenhoek relation coordinates had scatter of 18.5%, in contrast to 11% of overall
range of Johnston’s relation ( Fig 100 ). Within a y* range of 45 < y* < 250, Johnston’s relation

could be approximated with 4,=1.78 and B, =9.378.

For the high Reynolds number data of Bissonnette-Mellor, the Coles’ relation showed
approximately zero .lope, but the Homung-Joubert relation was able to capture the
semi-logarithmic region with a reasonable slope. The scatter of data was least in Johnston’s relation
coordinates, 7% of the overall range ( Fig 100 ) with 4,=1.741 and B,=7.554. The scatter in the
Pierce-Krommenhoek, Chandrashekhar- Swamy, and Homung-Joubert relations was 9%, 9%,

16.5%, respectively, in the overall range. Bissonnette-Mellor ( 1974 ) discussed the possibility of
JU + (Wo— W)
u

a law of the wall in a coordinate system of vs. y* in order to test the
applicability of Clauser’s proposition for such a flow. Even though Clauser’s law of the wall did

not fit the data, they still had shown existence of a Law of the Wall in such a coordinate system.

For lohmann’s data surprisingly none of the relations seemed to collapse the data. The
Homung-Joubert relation had approximately zero slope and scatter in Coles” coordinates was
~90%. Even though the remaining three simple relations merged the data into a Law of the Wall,
the slopes of the individual profiles were different. If stations St 1 and St . were excluded,
Johnston's relation was able to collapse the data within 60 < y* < 150 ( Fig 100 ) and 4,=2.182
and B, =6.213. Lohmann ( 1976 ) plotted his velocity data relative to the moving wall W;, divided
by friction velocity w, versus p* and found good agreement except -t stations 1 and 2, where data

followed a the Law-of-the-Wall for 40 < p* < 80 range only.

The Law of the Wall proposed by Chandrashekhar-Swamy for the W velocity component was
observed as not working for the pressure-driven data ( Fig 103 ). For the low Reynolds number
case, scatter was in 6.5% for the overall range and for the high Reynolds number case, scatter was

in 11.5% ( Fig 103).
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Predictions of the Law-of-the-Wall relations which also include the effect of the pressure gradient

near the wa!' are discussed below. The White-Lessmann-Christoph Law of the Wall was
investigated only for the pressure driven data since in the limit of zero pressure gradient it returned
back to the 2-D Law of the Wall. The W-L-C Law of the Wall employed the streamwise shear
stress component at the wall to obtain the skin-friction velocity used to nondimensionalize the
streamwise velocity component. The Q- defined in this manner was the same as the
Chandrashekhar-Swamy or Pierce-Krommenhoek laws of the wall. For the profiles in which ay+
was below (-1), it was not possible to compute the square-root terms in equation (10). This kind
of profiles were observed for Anderson’s fourth and fifth stations and Dechow’s sixth and seventh

stations, which were excluded from the comparson. For Dechow’s data set Q*+ vs.

logio( %j— J 1. cos(B.)]p ) variables performed better than Johnston’s relation ( Fig 106 a ).

The computed values for the streamwise velocity component from the derived W-L-C equation (10)
measured O seemed to overlap each other reasonably well, but only in a short y* range for the
Dechow, Anderson, and Elsenaar-Boelsma flows. For Maller’s data, computed values could not
resemble the wide range of O~ observed, and, for Fernholz-Vagt data, the resemblance was in a very
short range of p* ( Table 9 ). W-L-C method for the shear driven data for the U component was
seen to be working as good as the Perry-Joubert or Johnston relations. Scatter of the data at
y*=70 was 6.25 %, 3.9 %, 2.86 %, for Bissonnette-Mellor, low and high Reynolds number cases

and Lohmann flow respectively of the overall O+ range of 25.

The lateral flow component nondimensionalized with the same skin-friction velocity used for the
streamwise component versus Iogm(%«/rw cos(Bu)/p ) plots <"owed that the choice of these

variables did not produce a Law of the Wall for the crosswise velocity. The computed values for

N A—
(14( cos'2(B.)))

the crosswise velocity in terms of the wall law variables versus were much higher

than the data ( Fig 106 ¢ and d ).

The Perry-Joubert relation was also designed to take into account the effect of the pressure gradient.

The arc length H in the polar plot of Johnston, nondimensionalized with the skin-friction velocity,
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vs. p* could be tested separately for the shear-driven data. For the pressure-driven and shear-driven
data these vaniables were seen to be performing as well as Johnston’s Law of the Wall. For
Dechow's data set, the performance was the same as the W-L-C relation which was also better than
Johnston's relation. The computed values with the use of, 8,a, &, and p* were compared with the
Q= % values discussed above. In a limited y* range, a match of 9+ with the computed values

were observed ( Table 9 ). Also see ( Fig 105aand b).

Van Den Berg chose the velocity component in the direction of the wall shear stress and the
component perpendicular to it in the x-z plane to be nondimensionalised with the . This equation
in the shear stress direction reads the same as Coles” Law of the Wall. The comparison was done
only for the pressure-driven data sets, since shear-driven flows cannot be described, as was the case

for Coles’ Law of the Wall.

The comparison for the computed values vs. the variables U; and U; (equations 12 and 13 ) was
done for B, = B,=0, since the extraction of these terms from the data necessitated either more
information or the neglect of some terms whose order of magnitude could not be determined. For
the Fernholz-Vagt data 8, and §, were computed by neglecting the terms mentioned above, with

little effect on the computed U; and Uy.

For the Van Den Berg relation, it was observed from these comparisons that computed and
mcasured values overlapped within a limited y* range for all data sets. For the Fernholz-Vagt data,
the y* range of agreement between computed and measured was very short ( Table 9 ). Because
measured values of U; are small by definition, it is difficult to judge agreement with this relation.

The constant B; was found to be ~4.7 and B; ~0.15.

The Law-of-the-Wall search for the data presented in this study was plotted separately as all the
nine Law of the Walls for this particular data set ( Fig 110 ). This was made to sec the effect of the
uncertainties in the data in judging the performance of the Law-of-the-Wall relations. The

uncertainty analysis was carried out by using the previously discussed analysis used in Chapter 111
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, and the uncertainties in each quantity. The data used was of the last 6 stations of the LDV data

where the skin fniction values at the wall were measured.

For this data set, within the simple Law-of-the-Wall relations Chandrashekhar- Swamy and
Pierce-Krommenhoek relation seen to be working better than the others if all the profiles are
included. The logarithmic region within y* = 40 to 300 was clearly observable.The constants A3
and B3 were read as, 43=1.514, B;=8.98.(eq.4). Second best fit belongs to the Johnston relation.
This was observed when the least fitting third station profile was omitted. A,, B, were read as
A41=193, B;=8.33. The free-stream component of the other relations were seen to be less
satisfactory. W component of Chandrashekhar-Swamy relation was seen as not working ( Fig

110).

Amongst the relations which include the pressure correction terms, the Perry-Joubert relation
(left-hand side of eq. 8) was seen as superior. Due to higher uncertainties observed, it was less
superior to Pierce-Krommenhoek relation. The match of the left-hand side and right-hand side of
(eq.8) was within a short range of p+, from 20 to 70. Due to the apy* term in (eq.10) being less than
(-1) in all stations except station 2, the White- Lesmann-Christoph relation profiles could not be
fully plotted. Within the available points, only station 2 was observed to be matching the left and
right hand sides of (eq.10) until y* =2000, within the uncertainty bands. The computed W+ values
from data and Mager’s formulation for defining the same quantity in terms of U+ were seen to be
not matching. The left-hand side of the Van Den Berg relation (eq.12), which is same as of the
Coles relation and, the right-hand side of the same equation was seen to be not overlapping, except
for station 7. For this station, an overlap region within y* =40 to 700 with B7=12.5, was observed.
The W* component proposed in the last relation was seen as not working, since the both sides of

the (eq.13) did not overlap for any profiles.

To compare the Law-of-the-Wall relations, the computed quantities at abscissa coordinates of 40,
70,100 and 250 of each relation at each station, were plotted separately ( Fig 111 ). The

uncertainties on the quantities were shown with bars. If the proposed relation is perfectly working,
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the data for each p*, for all stations, should be computed as same.The W-L-C relation, since there
were not enough computed values, was not included into this plot.The Van Den Berg relation was
also excluded, since, 1t was same as the Coles relation, for the left-hand side of the U component
(eq. 12). From this plot it was seen that, the Pierce-Krommenhoek relation was superior to the
others. Eventhough Perry-Joubert relation was seen as working as good as the previous relation,

the uncertainty band was bigger; and the Johnston relation needed station 3 data to be excluded.

Overall, including all data sets, for the U component of the velocity, it was observed that the
Johnston and Perry-Joubert laws of the wall were superior to the others based on ( Fig 108, Fig
111 ). The functions which took into account the pressure gradient effect in the W-L-C,
Perry-Joubert, and Van Den Berg law of the wall relations were seen to perform well for some
profiles up to y*= 1000, but overall the predictions agreed with data only over short ranges of y~.
Between the Johnston and Perry-Joubert relations, Johnston's relation performs better in 6 of the

9 data sets used.

The W component of velocity could not be represented with any of the Laws-of-the-Wall
presented. Mager’s method presented in the W-L-C scheme consistently estimated higher values
than the data, with up to 100 percent difference. The Van Den Berg relation resulted in much
different values than the data for y* > 30, except for the Elsenaar-Boelsma’s data in which the
prediction was good up to y*= 200. The Chandrashekhar-Swamy relation produced very large
scatter of the data except for Bissonnette-Mellor data ( Fig 103 ). If there has to be a choice made

among these three methods, Mager’s method might be suggested ( Fig 106 c and d ).
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6.0 TURBULENCE MODELING

6.1 INTRODUCTION

This chapter describes the performance of selected turbulence models in simulating the shear stress
data. The data used were from the same data sets gathered for the investigation of the existence of
the Law-of-the-Wall velocity profile for three-dimensional boundary layers, except the
Fernholz-Vagt data, since 7w data were not available. Turbulence models selected were chosen
among the models which did not necessitate solving the governing equations. This restricts the

discussion to algebraic eddy viscosity models.

The comparison of the computed and experimental data was performed using two parameters . The

shear stress vector in the plane parallel to the floor with components of =uvrs and —vwgs can be

expressed using complex numbers in the |t|e™ form, where || = [( —w)}s + (—vw)}s]'? and « is
the shear stress angle. The ratio of the measured and computed shear stresses presented in the

complex form give two parameters:
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I,

= Magnitude ratio

Il

a,, — &, = Direction angle difference

where m denotes the measured quantities and ¢ stands for the computed values. If the model was
able to predict the magnitude and the direction of the measured shear stress vector data perfectly,
the ratio of magnitudes would be 1, and the difference between the shear stress directions would

be zero.

All the computations were carried out using the data in free-stream coordinates, and U and W in
this chapter denote the mean velocity components in the xgs and zgs directions, respectively. Except
at the zeroth and first stations of the present data, the shear stresses at the wall were taken from the
data sets included in this study. At station 0, the wall stress was found using the Clauser 2-D Law
of the Wall, and at station !, it was computed with Johnston’s 3-D Law of the Wall. The required
mean flow quantities were also taken from the data, as if the solutions of the governing equations
were same as the data.The necessary maximum shear stress magnitudes in the layers for the
Johnson-King model at each station were taken as the maximum shear stress magnitudes which
satisfy the realizability conditions. Also since the comparison is done in free-stream coordinates,
the necessary experimental shear stresses which were expressed in a coordinate system other than
free-stream coordinates were transformed into the free-stream coordinates using the tensor

transformation in Appendix IIl. This was needed for the Dechow and Elsenaar-Boelsma data.
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6.2 SELECTED ALGEBRAIC TURBULENCE

MODELS

6.2.1 CEBECI-SMITH MODEL

The Cebeci-Smith model used in this study is the one described by Cebeci ( 1984 ). The model uses
two different eddy-viscosity definitions, one described for the inner region and one for the outer

region.

In the inner region, the eddy-viscosity is defined as

220, 9U 2 ow 2.1
a=F U= 2 ) +(—5 - E? )]
I=xy

F=1-exp( —y+/A+)

+_

, 112
)+(‘3W)]

w

= VE(

AT¥=20 x=04

in which / is the mixing length, and F=[1 — exp(y*/4*)] is the van Driest damping function.

The outer region eddy-viscosity is given by

vio = 0.016863, U,
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where y, is Klebanoff’s intermittency correction, and §; is the displacement thickness. The

boundary layer thickness § is defined as the point in the layer where (U? + W?2)[U?is 0.99. By using

a smoothing function, the eddy-viscosity distribution in the layer can be defined as:

vi=vp[l —exp(— v,/vy)]

and the shear stresses are found by using:

—_ oW

— U
- Wrs=vx‘5}’,' ’ —VWFS—"x'a‘

6.2.2 ROTTA’S MODEL

The anisotropic eddy-viscosity model used is based on work by Rotta ( 1979 ). An analysis of the
pressure strain terms in the governing equations for the stresses led Rotta to an anisotropic

eddy-viscosity model ( Rotta, 1977 ). The model uses anisotropy constant T defined as

T= (vDrransverse

(vDstreamwise

the ratio of the transverse eddy-viscosity to the streamwise eddy-viscosity in local free-stream

coordinates.
By assuming T constant in the layer, v in the free-stream coordinates can be computed as
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and the stresses are related to the mean flow gradients with
ve=v,[1 —exp(—veivy,)]
— ou oW
—UWps= "l(ax.x?y' + axz_a};")
— ou oW
— VWps = vt(axza_y' +a;, 3y )
where
U+ Tw? w4+ TU? Uw
a,=—m , @y=——— , a,=(1-T——— , I=xyp
vt w? Z v ewt "’ U+ w?

In this study, v defined by Rotta was used as the inner layer eddy-viscosity and the outer layer
eddy-viscosity was kept the same as the Cebeci-Smith model. For the pressure-driven flow data,
three different anisotropy constants , T=0.3, T=0.5 and T=0.7, were tested. For the shear-driven
data. since the use of the constant less than 1 increased the difference between the measured and

computed shear stress magnitude, T= 1.2 and T = 1.5 were also applied.

6.2.3 PATEL’'S MODEL

The third model selected is the one equation (k) model of Wolfshtein ( 1969 ) as used by Chen and
Patel ( 1988 ) in the k — ¢ turbulence model with the fully elliptic Reynolds-averaged Navier-Stokes
equations to compute the flow charactenstics in the boundary layer or wake of axisymmetric

bodies. The eddy-viscosity in this model is defined as:

TURBULENCE MODELING 101




v, = C#\/z_lﬂ
l,=cpll —exp(—R)/4,)]

=3/4
= KC# !

Re= U, JL|v=Reynolds number
R,= Re.Jk y = Turbulent Reynolds number

v 4 w?

>
L= Bodylength , 4,=70 , ¢,=0.09 , x=04 , k=TKE=2T .

I

and the stresses in cartesian coordinates could be computed using ( Stern, Yoo and Patel, 1988 )

After neglecting the derivatives other than those with respect to y, the stresses in this study are

computed using

— ol
Wgs = —v; dy ' YWps = — v, ay

The validity of the equations for the turbulence model as given was defined to be restricted to the
viscous sublayer, buffer layer, and a part of the fully turbulent layer.Therefore, the comparison with
the data is only meaningful below y* =150 ( Patel and Chen, 1987 ). Since the model length used
in some of the experiments did not exist, to be consistent within the analysis carried out, the body

length L was kept as 1 m for all the data sets.
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6.2.4 JOHNSON-KING MODEL

Eddy viscosity model introduced by Johnson and King ( 1984 ) for 2-D flows subject to strong

pressure gradients and separation was extended to 3-D flows by Abid ( 1988 ).

Instead of using the wall skin friction as the Cecbeci-Smith model does , the model utilizes the
maximum shear stress in the layer to define the eddy viscosities and the Van Driest damping
function which is effective near the wall. The inner layer eddy viscosity, which has the same form
as Cebeci-Smith model, differs due to the use of the maximum shear stress in the layer. The model

is defined as follows:

1/2
vy=FU—2L)
112
F1-exp(—p M),
vA
I=xy
M 2 —2,1/2
—5 = (@ + P )i
At =15

The outer eddy viscosity was also modified to take into account the effect of the maximum shear

stress in the outer layer. Outer layer eddy viscosity is defined as:

OO
Vip = °(0~0168)7kL Ve~ Vidy

where o is found when the relation

™ ou 2. ow 2
() =vl(5,7) +(5,7)]

max
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is satisficd at the location in the layer where the shear stress is maximum. Once ¢ is found the shear

stresses are found using

where

v, = vto(l - exp( '—V"'/Vw))

Even though the maximum shear stress magnitude was found using an ordinary differential
equation derived from the T.K.E. equation, which is valid along a path where the shear stress is
maximum, in this study it was assumed that this equation could exactly compute the maximum
shear stress. The location of it in the layer which would be found once the governing equations are
solved was also assumed to be found accurately. Once these assumptions are made, the constant
multiplier ¢ in the v,, equation was found by Newton iteration and by using the experimental 7
and mean flow gradients. For the Bissonnette-Mellor low and high Reynolds number data and at
first and seventh stations of the present data, ¢ could not be computed, since the iteration did not

converge. At these stations o was kept as 1.

The necessary mean flow gradients to calculate computed shear stresses for each flow were found

by the same parabola fitting program used before.

6.3 RESULTS AND DISCUSSION

The comparison of the computed and measured stress magnitudes and angles for the present data
are presented using log(y/t) as the abscissa of the plots, to be in accordance with the presentations

of the other flow variables. However, to distinguish the different regions in the layers different
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symbols corresponding to inner, logarithmic and outer regions were used. Also the uncertainties in
the variables were found using the uncertainties in each experimental shear-stress and assuming that
the computed shear-stresses did not induce any uncertainty. These uncertainties are plotted as bars
at each point. The uncertainty of the magnitude ratio for this flow was also used to eliminate the
data points which had uncertainties too high to be acceptable. The cata presented are the ones
which have uncertainties less than + 1 and which satisfy the realizability conditions ( Figs

112-117).

The Cebeci-Smith model at the zeroth station of the present data set seems to underpredict the
magnitude of the computed shear stresses ( Fig 112 ). Since this station closely resembles a 2-D
flow and since the model was developed using available 2-D data, the ratio of stresses should be 1.
These high shear stresses observed are attributed to the uncertainties, and the ratio of magnitudes
is 1 within the limits of the uncertainty in most of the log and outer regions. The direction difference
is zero at this station within the uncertainty limits. Even though station 1 plots show scatter, the
magnitude ratio was close to one and stress direction difference was again seen to be zero within
the uncertainty bands. Station 2 profiles show higher |z, within the inner region and part of the
log region. Although including the uncertainty bands the magnitude ratio is still 1.0, the values were
seen to be ~ 1.2 in the part of the log and outer regions. The direction difference at this station
was seen to be decreasing down to 0° at the log region starting from a value of ~60° in the near
wall region. At station 3 even though the end of the log region and beginning of the outer region
magnitude ratio values are close to 1 including the uncertainty bands; overall, a decrease was
observed. Even though the uncertainty in the angle difference is increased, the quantity is close to
zero in the whole layer. Station 4 magnitude ratios resemble station 3 values. The inner layer and
part of the outer layer ratios were seen to be less than I, however, most of the log region values
were | within the uncertainty bands. Angle difference at this station reaches to 100° ncar the wall
which decreases down to zero in the log region. The near wall values of the magnitude ratio at
station 5 are seen to be gradually increasing from a value of ~ 0.2 at the beginning of log region,

which was also observed at station 4. The end of the log region and outer region values were seen
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to be 1.0 within the uncertainty bands. The high angle difference observed at station 4 is seen to
be reduced to ~60° near the wall by station 5. At stauon 6 the decrease of magnitude ratio near the
wall which started at station 3 is most visible. The low, near wall values reach a maximum at
y/t~0.05 with a value of ~1.65. The outer region values were seen to be ~1.1. The angle difference
was seen to form a peak at y/t=~0.015 at a value of ~60° and a lower peak at y/t=~0.08 at -25°.
Station 7 values show the same characteristics of sixth station. While the log region values are close
to ~0.9, outer region values of the magnitude ratio are around 1.1. The angle difference at this
station was reduced, and while the difference in the inner and log regions were ~20°, outer region
values were ~ — 20°. Overall it was observed that the Cebeci-Smith model resulted in lower
magnitude ratios near the wall and higher magnitude ratios in the outer region, and the shear stress

direction difference was most noticable in the near wall and beginning of log regions.

Rotta’s model with T=0.3 seems to be mostly effective in raising appreciably the magnitude ratios
in the log region, in the range y/t~0.01-0.1, ( Fig 113 ). This effect is seen with the fi.st station,
however the effect at this station was small. At station 2, the log region values were seen to be
shifted up as much as 0.1, but the effect was reduced at the outer region. This is due to the use of
vr only in the inner region. Very near wall values were also less aftected than the log region values.
At station 3, the shift at y/t~0.03 was ~0.4, which gave a magnitude ratio of 1.5 at this location.
In the log layer, reduction of the computed shear stress magnitude results in values of more than
1. The stress vector direction difference at these two stations was also seen to ve bigger than zero
in the log and outer regions, opposite to values observed fo. the Cebeci-Smith model including the
uncertainties. The increment in the magnitude ratios for stations 4 and 5 was similar to the previous
two stations. While the maximum shift in the magnitude ratio at station 4 was ~0.5, it was ~0.7
at station 5. Even though the magnitude ratio for the outer region of station 4 was 1.0, at both
stations while the near wall ratios were less than 1, the logarithmic regions had ratios on the order
of ~1.4-1.8. The outer region values of station 5 were reduced to the ratio of 1, but were higher than
Cebeci-Smith model results. At station 4, while the very near wall direction difference was ~100°,

it was seen to be ~30° in the log and outer regions. At station 5, the difference was seen to be
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reduced to ~25° from ~50° of near wall difference. The Cebeci-Smith model at these two stations
seemed to be predicting the stress vector direction in the log and outer regions. In the upper part
of the log region and the lower part of outer region, the magnitude ratio increase at the next two
stations was also accompanied with a direction difference increase. While the increment at y/t~0.03
was ~0.7 for station 6, it was ~0.4 at y/t~0.1 for station 7. Station 6 magnitude difference was seen
to be ~25° for the log and outer regions, and station 7 values were seen to be close to zero in the

whole layer.

Using different anisotropy constants, T=0.5 and 0.7, to compute v, results in the magnitude ratios
and direction differences which are in between the results found using Cebeci-Smith (T = 1) and
Rotta’s models with T=0.3 ( Fig 114 and '15). For this data set, it was observed that using an
amisotropic eddy-viscosity amplified the existing differences of the measured and computed shear

stress magnitude and directions with the Cebeci-Smith model.

Discussion on Patel’s model predictions are restricted until the beginning of 'ogarithmic region since
the equations used were for this rez*on. Quantities were plotted for y+ values less than 250. In all
the stations, Patel’s model was seen to undcrpredict the magnitude ratios very near the wall, similar

to the Cebeci-Smith mode!

For the zeroth station, in the log region, while the magnitude ratio was =1.0, the stress vector
direction difference was scen to be zero within the uncertainty bands ( Fig 116 ). At station |, the
ratio seems to be underpredict. i, and even though the direction difference seems to be zero in the
uncertainty bands, actual values were ~15° till y/t~0.03 and were seen to be ~ —25° at the last three
points. The magnitude ratio for the second station was again scei io be 1.0 within the uncertainty
limits, and the direction difference except near the wall below y* < 40 is seen to be zero. The ratio
of magnitudes above y/t~0.03 for the 3rd station was ~0.7-0.8, and, in the same regicn, the two
vectors were aligned. Station 4 values in the near wall and log regions were scattered between 0.5-0.8
with an average of 220.7 in the uncertainty band. While at the first two points the angle difference

was ~d40° the next point in near wall region had ~100° of difference. This difference reduced to
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zero in the log region. The magnitude ratio at station S was again close to 1.0 in the log region, but
the direction difference was seen to be ~50° near the wall. The differences at the last 3 points were
again zero. The gradual reduction in the ratio observed in the next 2 profiles was accompanied by
less difference in the directions. While the ratio was ~0.8 at station 6, it was ~0.6 at station 7. The
angle difference at station 6 peaked at y/t=~0.02 at a value of 50°. Station 7 values for the direction
difference was seen to be constant at ~15°. In comparison to Cebeci-Smith or Rotta models,
Patel’s model seems to underpredict the magnitude ratio in general, and the direction difference was

similar to the Cebeci-Smith model resuits.

Since, the maximum shear stress for the Johnson-King model was used to find the ¢ parameter in
the outer eddy-viscosity definition such that the shear stress computed would be same as the
experimental value, one point in each of the magnitude ratio profiles is assured to be 1.0. In the
applicaticn of the Johnson-King model, this maximum value is obtained from a solution of a
partial differential equation. As mentioned before, in this study it was taken from the data as if the

solution of this equation were same as the data.

At station 0, even though the very near wall and most of the outer region magnitude ratios are less
than 1.0, the log region values were seen to be ~1.0, and the direction difference at the same station
was zero in the most of the layer ( Fig 117 ). At station 1, the scatter of the data resulted in
divergence of the iteration procedure, so ¢ was taken as 1.0. Data show that, within the uncertainty
bands, the magnitude ratio in the log region is close to 1.0. The direction difference was ~10° in
the near wall and part of the log region and was ~15° in the outer region. Within the uncertainty
bands log region magnitude ratios of station 2 are =~1.0. Near wall and outer regions show
underestimated ratios. The log region and outer region directions of the two stress vectors were the
same, which was reached after a gradual decrease starting from a value of ~100° near the wall.
Magnitude ratios of station 3 show the same hill shaped distribution as station 2, with a peak in the
log region at ~1.0 with underestimated values in the near wall and outer regions. Also, the direction
difference is seen to be zero within the uncertainty bands. For station 4, the values are scattered

within 0.7-1.0, closer to 0.9 in the average. The high direction difference on the order of ~100° near
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the wall decreases to zero in the logarithmic region. The same type of development was also
observed for station 5; high near wall values of direction differences were seen to be reduced to zero
in the log region at y/t=~0.02. The magnitude ratios in the log region values of this station were
predicted correctly as 1.0 within the uncertainty bands. At station 6 the near wall values as seen in
most of the profiles were lower than 1.0; starting with y/t~0.03 the ratios were close to being 1.0
in the uncertainty bands. The difference in the directions of the computed and experimental stress
vector parallel to the wall were seen to be reaching to a peak at y/t=~0.02 at a value of 50°. Further
in the layer, the difference was gradually reduced and was zero within the bands in the log and outer
regions. At station 7, ¢ was taken as 1.0. Starting from very near the wall, a gradual increase of the
magnitude ratios in the layer were seen. This direction difference, which was seen to be ~15° for

the near wall part of the log region, was lower than zero in the outer region.

Overall, the Cebeci-Smith model and the modification to it by using Rotta’s anisotropy constant
were seen to overpredict the mégnitude ratios and Patel’s model was seen to underpredict. Even
though the Johnson-King mode] inherently includes the maximum stress to find the stress
distribution in the layers, it was observed that it underpredicted the magnitude ratios within the near
wall and outer regions. None of the models were able to predict the stress direction perfectly, and
except Rotta’s model, which overpredicts the direction in most of the stations, they all seemed to

work equally well.

The same type of analysis were carried out for the other data sets and the results are presented as

y* vs. the magnitude ratios and p* vs. the angle difference for each data set in one figure.

Estimated shear stress magnitudes for the Elsenaar-Boelsma flow with the Cebeci-Smith model
decrease proceeding downstream ( Fig 118 ). While the first station values were on the order of 1.6,
by station 5 the ratios were seen to be scattered around 1.0. At station 10, the ratio was ~0.6.
Mostly the data for this set above y*= 2000 were too highly scattered to be able to judge on the
performance of the models. The difference of the computed and experimental data sets were seen

to be above zero approximately 10° starting with the fourth station values. Tenth station values
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were seen to be negative in y* =300 to 600. Use of an anisotropy constant T=0.3 seems to be
effective starting with station 6 ( Fig 118 ). The magnitude ratio for stations 7 and 8 within
»* = 300-2000 were scen to be ~0.7-0.8 with a shift of ~0.1 with respect to the Cebeci-Smith model.
For station 9 and 10 , the increase in the ratio was 0.6 and 1.0, respectively, in the y*= 500-1000
range. The stress vector direction difference was seen to be in the negative side for all the stations,
and the difference is seen to be increasing proceeding downstream. The next two applications of the
Rotta model with T=0.5 and T =0.7 give better results in terms of both the magnitude ratio and
the direction difference ( Fig 118 ). The T =0.7 case was seen to be able to predict the stress vector
direction correctly except at station 10. Even though use of T = 0.5 results in lower magnitude ratios
for station 10 and ratios on the order of 1 for the other stations, both T= 0.5 and T= 0.7 anisotropy

constant were not able to resolve the decrease in the magnitude ratio proceeding downstream.

The Johnson-King model magnitude ratio results are seen to be scattered within 0.4 to 1.3. Even
though ratios of stations 5,6,7,8 within y*= 300-900 are close to 1.0, station 4 ratios are seen to be
scattered within 0.8-1.2 range. Station 7 values are ~0.8, and station 10 values are within 0.4-0.6

range. Direction differences are within 0° — 15° range for all stations ( Fig 118 ).

Patel’s model at the points where it could be used are seen to be scattered within 0.8-1.2 except
station 10 values which are ~ 0.6. The direction difference is also seen within the same range of

0° —15°.

First station magnitude ratios for the Dechow flow are observed to be predicted correctly with the
Cebeci-Smith model ( Fig 119 ). However, a further increase up to 1.2 by station 3, and then a
decrease down to 0.6 by station 7 is also observed. The direction difference for this flow is seen
much higher than zero, especially below y* = 400 and for stations 5,6 and 7. Although other station

values of the direction difference are still higher than zero, they were below 10°.

Application of Rotta’s model with T =0.3 shows its effect starting with station 4 ( Fig 119). The

next three station ratios increased by up to an amount of 0.2. While the ratio at y*= 100 ranges
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from 1 to 1.6, at y* =300, it is seen in between 0.7 to 1.2. The angle difference is seen close to zero
for all stations except below y*=80. As seen before, the effect of using T=0.5 and T =0.7 resulted

in ratios and angle differences between Cebeci-Smith and Rotta T=0.3 models ( Fig 119 ).

The Johnson-King model results in a decrease of the magnitudes within the first four stations in the
layer towards the outer region ( Fig 119 ). The fifth station values are seen close to 1.0; the sixth
and seventh station values were seen to be increasing in the layers. While the direction difference
is within =~ 10° for the first four stations, the next three station values showed higher misalignments,

reaching up to ~75° at station 7.

Patel’s model is seen to predict low magnitude ratios for all the stations with similar direction
differences observed for Johnson-King model ( Fig 119 ). While the ratio for station 3 is ~0.9, it

is ~0.5 by station 7.

Magnitude ratios calculated using Muller’s data set with the Cebeci-Smith model are seen to be
changing from 0.6 to 1.5 for station A1l ( Fig 120). For stations B21 and E53, the magnitude ratio
profiles are seen to be changing in the whole layers, more than fluctuating around a value. Last four
station values of the magnitude ratios are seen to be in the range of 0.6 to 0.8. Use of Rotta’s model
with T=0.3 does not result in considerable change for any of the station values except for station
F65 where an increase of ~0.2 in the whole layer is observed ( Fig 120 ). The angle differences
computed with the Cebeci-Smith model are close to zero for all stations above y*=200. Rotta’s

model, however, resulted in differences within —25° and 10°.

The Johnson-King model predicts the magnitude ratios and the stress angles for this flow in
between y*+ = 400-800, except for station B21 where the values increase towards the edge of the layer

( Fig 120 ). However, below p+ =400 the ratios are scattered within 0.7-1.1 range.

Patel’s model results in magnitude ratios of ~0.6 for the A11,B21,D42 and F6S5 stat'ons. The third

and fifth station values were seen to be 0.8 and 1.0, respectively ( Fig 120 ). The stress angle

TURBULENCE MODELING 1




difference except stations E5S3 and F65 were seen to be zero. For these stations the differences were

~ —10° and ~10°, respectively.

Anderson’s data set with the Cebeci-Smith model show a decrease in the calculated ratios
proceeding downstream above y*=200. ( Fig 121 ). While the ratio is ~1.0-1.1 for his first station,
the ratio drops down to 0.5 by station 5. The direction differences increase for the first four stations
from ~0° to ~40°. At station 5, the values are in this range. However, use of Rotta’s model with
T=10.3 results in ~0° differences ( Fig 121 ). The magnitude ratios also range between 0.8-1.1
except for station 5, where all the values of the profile are higher than 1.2. Even though use of
T=0.5 or T=0.7 reduces this station’s ratios down to 0.8-1.1 range, the angle differences were

increased ( Fig 121).

Below y*= 100, the Johnson-King model for this flow overpredicts the magnitude ratios. Except
at station 5, the ratios in the region y*= 100300 are scattered within a range of 0.9-1.1. Above this
value, while ratios of station 2,3,4 are close to 1.0, first station values decrease in the layer towards
the edge. Station 5 values show a lower peak at p*=250 with a value of 0.5. The stress angle
differences increase until station 4 up to a value of ~40°. At station 5, the difference below y* =200
is observed to be ~10°. Magnitude ratios computed using Patel’s model, except at station 1, show

continuous decrease till y*=250. At station 1, values were in 0.8-0.9 range ( Fig 121 ).

For the shear-driven flows application of the models were seen to be less satisfactory than the
pressure-driven flows. For Lohmann’s flow while the 2nd station magnitude ratios were close to
1.0, the downstream station values increase to ~3 at station 9 ( Fig 122 ). Differences in the
directions of the stress vectors for stations 2 and 4 peak between y*+ = 500-1000 are on the order

of 25° and —25°, respectively.

Use of Rotta’s model with T less than 1.0 not only increased the magnitude ratios but also increased
the direction differences. Therefore, T=1.2 and 1.5 were also used. Even though reduced magnitude

ratios are observed, the station 2 values increase semi-logarithmically from a value of 0.4 to 1.5 in
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the layer, and station 9 values except below y* = 200 are higher than 1. The station 2 values are close

to 1.0 with T= 1.5 ( Fig 122).

The Johnson-King model predictions for the shear stress magnitude of Lohmann flow are correct
below y*=250. Above this point in the layers, the angle difference is similar to the Cebeci-Smith

model ( Fig 122).

Patel’s model for this data set underpredicts the magnitude ratios, especially for station 2. The ratios

seen at this station were ~0.4. The direction differences are within ~0° to 10° ( Fig 122).

The same kind of flow structure is also observed for the low and high Reynolds number flows of
Bissonnette-Mellor data. The scale of the magnitude plots were adjusted high enough to present the
values. For all the four stations above y*= 40, magnitude ratios values were higher than 2.0. The
direction difference was also seen to be above 100° for all the stations. The same as for Lohmann’s
data, the use of anisotropy constants below 1.0 results in very high magnitude ratios ranging up to
20 ( Fig 123 and 124 ). The angle difference was also seen to be increased. The values close to zero
for Rotta’s model with T =0.3 below y*=100 are due to angle differences being more than 180°.
Even though calculations using T= 1.5 give some values close to 1.0 near the wall above y*=100
in the layers, most of the magnitude ratios are above 2.0. Angle differences are on the order of

100° or higher in most part of the layers.

The Cebeci-Smith model for the high Re number data result in ratios above 1.0 but below 4.0 (
Fig 124 ). For this case also, the direction differences were high, between 60° — 100°. Although
Rotta’s model with T=0.3 gives better direction differences on the order of 25° —75°, the
magnitude ratios reach up to 12.0. Rotta’s model with T = 1.5 results in magnitude ratios still above
1.0 for most of the stations, mostly on the order of 1.5 to 2.25. Direction differences are the same

as Cebeci-Smith model ( Fig 124 ).
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Below y* =40 for the low Re number case, the Johnson-King model was seen to be satisfactory in
predicting the magnitude ratios. Above this p* value, ratios were seen to be very higher than 1

( Fig 123).

Patel’s model predictions in the range of y+= 60-250 were seen to be scattered within 1.0-1.5 range,

with direction differences similar to Cebeci-Smith model predictions ( Fig 123 and 124 ).

For the high Re number case of the same data set, ratios found using Johnson-King model are close
to 1.0 ( Fig 124 ). Even though the values above this height are not as high as seen in the low Re
number case, they still are scattered between 1.0-3.5 ( Fig 123 ). Directions of the stresses predicted

were off by 60° — 100°.

The range of the computed magnitude ratios and angle differences at y*= 200 for the flows studies

may be found at Table 10.

In all cases, the Cebeci-Smith model overpredicts for the almost 2-D stations but decreases in the
magnitude ratio proceeding downstream in the individual flows. The angle difference is in most of
the profiles in the positive side. For the shear-driven flows the ratios change between 0.5 to 10.0

and the angle differences are very high, especially for Bissonnette-Mellor flow.

Rotta’s model with anisotropy constant T=0.3 for the pressure-driven data predicts the angle
differences in a wider band, even though results in magnitude ratios closer to 1.0 and with lower
scatter of the data. The effect was mostly seen at the stations where the velocity gradients were
higher. This resulted in overestimated magnitude ratios for the most downstream stations such as
in Olcmen, Elsenaar-Boelsma and Anderson flows. The constants T=0.5 and T=0.7 result in
magnitude ratios and angle differences between the predicted values of the Cebeci-Smith model and
T=1.0. The effect of the anisotropy constant T less than 1.0 on the shear-driven flow magnified

the difference in the measured and computed stresses, which resulted in overestimated magnitude
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ratios and angle differences. Even though T = 1.5 for this type of flows is seen to be reducing the

observed magnitude ratios, the ratios were still higher than 1.0 at most of the stations.

Patel’s model for the pressure-driven flow, in the same y* range was observed to predict magnitude
ratios lower than the Cebeci-Smith model values. The angle differences are the same as the
Cebeci-Smith model. For the shear-driven flow, the magnitude ratios calculated with this model

are closer to 1.0 than any other model examined.

The Johnson-King model in the form used in this study mostly underpredicts the magnitude ratios
in the almost 2-D flow stations of the pressure-driven flow data, especially in the outer region. For
the stations where 3-D flow is developed, the scatter of the magnitude ratios are around 1.0 and in
a narrower band than the Cebeci-Smith or any other model. For the shear-driven data except at the
two most downstream stations of Lohmann’s data, the stresses are overpredicted. Also, as
mentioned before, o for the Bissonnette- Mellor data was kept as 1.0, since the equation to find the
o did not converge. The angle differences obtained with the Johnson-King model were not different

than Cebeci-Smith model.

In conclusion, none of the models predict the shear stress data well. Table 10 shows the range of
the angle differences and the magnitude ratios calculated by using different models, for different
flows at y+=200. If there must be a choice made among these models, it may be suggested basing
on ( Table 10 ) that, for the pressure-driven flows the Johnson-King model and for the shear-driven

cases Patel’s model could be used.

TURBULENCE MODELING 118




7.0 CONCLUSIONS

A threc dimensional turbulent boundary layer generated by a 3 : 2 elliptical nose, NACA 0020 tail
cylinder protruding from a flat plate was experimentally studied. The experiments were conducted
in a low speed wind tunnel at a nominal reference velocity of 27 m/sec. In the test section, the
Reynolds number of the flow based on the momentum thickness at 0.75 chord upstream of the
body on the centerline of the tunnel was ~5936. Mean velocity and stress measurements were
carried out by using hot-wire anemometry and laser-Doppler-velocimetry techniques. Data
presented also include the static pressure measurements on the plate surrounding the wing and on
the wing and the skin friction magnitude and direction on the wall. The incoming boundary layer
was studied using the hot-wire technique. With the available data as input, the flow field can be

computed and therefore another benchmark case is thus presented.

The existence of differences between the quantities measured with the hot-wire and LDV
techniques, especially for the u’ fluctuating velocity component near the wall and in the regions
corresponding to the logarithmic regions of the U/U,, profiles on the order of 10%, necessitated
that the data be validated. For this purpose, LDV measurements were repeated by using the Burst
Spectrum Analyzer and the same optical systems used in the measurements done with the Swept

Spectrum Analyzers. The existence of the difference between some measured quantities, especially
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of the normal stresses with the LDV and the hot-wire techniques was established. The difference

is attributed to the effect of the wall on the wire which needs to be studied further.

The data were further used to investigate the flow characteristics. The anisotropy constant N,
which is the ratio of the eddy viscosities in the z and x directions, is not unity as is frequently used
in turbulence closure models. Although in the normal stress coordinates, N is seen to be close to
1.0, it varies through the boundary layer and from station to station. Therefore, the concept of

isotropy or even the constancy of the ratio in a preferred direction is questionable.

The structural parameter A, as used by Bradshaw ( 1967 ) to relate the shear stresses to the TKE
of the flow, is not a constant of 0.15 in the whole layer. While in the outer region 4, is close to
0.15 including the uncertainty band, it is less than 0.15 near the wall with no specific variations in

the profiles.

The comparison of shear stress and flow gradient angles magnitudes revealed that the shear stress
angle lags behind the flow gradient angle, especially in the inner region. In the outer region,
especially at the stations where the mean flow field had higher gradients, the lag was more
distinguishable. This also shows that the anisotropy of the near wall turbulence is greater than in

the outer regions.

The u,, friction velocity could not be observed as the velocity scale of the turbulence structure since,
neither the fluctuating velocity nor the shear stress profiles could be correlated by normalizing with

this velocity.

While the mixing lengths computed from the data near the wall follow the suggested variation of

0.41 y, while they were different constants at each station’s outer region.

The TKE profiles show that in the ,uccessive locations the TKE of the flow does not change
significantly. This suggests that the flow studied is close to an equilibrium flow in which the

production equals the dissipation at each station, and convection is negligible.
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Both the TKE and stress production terms are seen to be significant below the logarithmic regions

of the UJU.,; profiles.

The existence of a Law of the Wall for 3-D pressure and shear driven turbulent boundary layers
was also studied. For the axial component of the flows, among the 9 models chosen to be tested
with 9 different data sets Johnston’s model was seen to be superior, since the scatter of the 6 data
sets in the log regions in this model’s coordinate system was less than the other models” scatter.
For the lateral component of the flows, even though at some locations the Law of the Wall of
Mager was predicts 100 % larger than the data, it is seen to be working qualitatively better than the

other wall laws.

Among the 4 eddy-viscosity models tested, compared to the other models the Johnson-King model
was seen to predict the shear stress magnitudes and directions closer to the pressure-driven flow
data. For the shear-driven data Patel's model was seen to be superior. Even though the
comparison of the Algebraic eddy-viscosity models show that some models are working better than
the others this conclusion in terms of the turbulence modeling would be misguiding; since none of
the models are able to predict the data perfectly. The modeling of turbulence, as mentioned in the
Introduction chapter, necessitates many terms to be measured. Data sets including the triple
correlations of the fluctuating velocities, simultaneous fluctuating velocity gradients seem to be the

first step towards better understanding the nature of turbulence.
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Table 1. LEFT-HAND-SIDE HOT-WIRE LOCATIONS.
Station File X Z U,.s Prs Bns
Number Name (inches) (inches) m/sec (degree)  (degree)
18 LHS18 -9.477 1.079 27.4 1.17 0.
17 LHS17 -6.478 1.125 27.49 -0.69 0.97
16 LHS16 -4.487 1.316 27.54 1.648 6.1
15 LHS15 -3.496 1.449 27.46 2.189 8.52
14 LHS14 -2.759 1.586 27.51 2.144 11.66
13 LHS13 -2.287 1.752 2747 5.504 21.5
12 LHS12 -1.804 1.88 27.46 6.53 14.84
11 LHSI11 -1.328 2.035 27.53 9.01 18
10 LHSI10 -0.904 2.326 27.47 10.95 32.07
9 LHS9 -0.472 2.578 27.44 12.05 30.22
8 LHS8 0.194 2.724 27.44 13.87 30.86
7 LHS7 0.258 2.939 27.46 10.47 25.33
6 LHSé6 0.726 3.117 275 9.48 20.82
5 LHSS 1.193 3.295 27.58 9.15 20.82
4 LHS4 1.674 3.432 27.53 7.34 15.89
3 LHS3 2.165 3.527 27.5 5.03 10.92
2 LHS2 2.66 36 27.49 5.03 8.39
1 LHS1 3.655 3.678 27.62 4.3 448
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Table 2. 0.75 CHORD UPSTREAM HOT-WIRE PROFILE
LJCATIONS.
File Zscft U,y Cx 100 6*(mm) 6O(mm) H=4/0
Name
UP1 0 27.27 3.055 4.679 3.343 14
UP2 0.25 27.28 2.675 4.675 3425 1.365
UP3 0.5 27.25 3.071 4.754 3425 1.388
UP4 0.75 27.28 2.758 4.677 3.505 1.334
UPS [. 27.3 3.032 4.698 3438 1.367
UP6 1.25 27.3 3.045 4747 3.495 1.358
UP? 1.5 27.23 2916 4.664 3.452 1.351
UP8 1.75 27.33 3.302 4.776 3.527 1.354
UP9 2 27.29 2.996 4.651 3.486 1.334
UP10 | 2.25 26.97 2.684 4.776 3.552 1.345
UPl11 2.5 27.06 2.737 4,788 3414 1.403
UP12 | 2.75 27.02 3.536 4.832 3.570 1.353
UPl14 | 3.25 26.89 3.031 4.875 3.465 1.407
UP16 | 3.75 26.9 3.087 4.744 3.563 1.332
UP18 | 425 26.93 3.061 4.779 3.532 1.353
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Table 3.

LASER-DOPPLER VELOCIMETER LOCATIONS.

Station File X z U, Brs Bns B. u,

Number Name  (inches) (inches) m/sec  (degree) (degree) (degree) m/sec
0 LDVO | -4.487 | -1.316 | 27.57 -1.684 | -6.1 -3.816 | 1.152
1 LDVI | -3496 | -1.449 | 2744 -2.288 | -8.52 -17.712| 0.864
2 LDV2 }| -2.287 | -1.752 | 27.40 -5.576 | -21.5 -21.724} 0.865
3 LDV3 | -1.328 | -2.035 | 27.60 -8.774 | -18 -39.823| 0.957
4 LDV4 | -0472 | -2.578 | 27.62 -10.163 ] -30.22 | -26.337] 1.105
5 LDVS5 | 0.258 -2.939 | 27.59 -9.392 | -25.326{ -9.808 | 1.154
6 LDV6 | 1.193 -3.295 | 27.25 -6.509 | -20.82 | -4.692 | 1.162
7 LDV7 | 2.165 -3.527 | 27.29 -3.753 | -10.92 | -1.048 | 1.203
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Table 4. RIGHT-HAND-SIDE HOT-WIRE LOCATIONS.
Station File X Z U, Bes Bns
Number Name (inches) (inches) m/sec (degree) (degree)
1 RHSI1 -3.496 -1.449 26.99 -3.098 -8.52
2 RHS2 -2.287 -1.752 26.99 -3.858 -215
3 RHS3 -1.328 -2.035 27.00 -6.745 -18
4 RHS4 -0.472 -2.578 26.99 -9.249 -30.22
6 RHS6 1.193 -3.295 26.97 -5.421 -20.82
7 RHS7 2.165 -3.527 27.06 -4.615 -10.92
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Table 5. AVERAGED NOMINAL VALUES OF THE
UNCERTAINTIES AT
DIFFERENT REGIONS OF THE BOUNDARY LAYER.

Region uu., Vviv., ww, JU, vIU, WU,

Near wall 0.063 | 0.007 | 0.033 | 0.063 | 0.013 | 0.027

Logarithmic 0.023 | 0.015 | 0.018 | 0.004 | 0.004 | 0.004

Outer 0.035 | 0.011 0.051 0.005 | 0.003 | 0.005
w|U.2 | uw|Uf| vw|U./f

Near wall 0.004 0.004 0.002

Logarithmic 0.0004 | 0.0004 | 0.0003

Outer 0.00005{ 0.0002 | 0.0002
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Table 6. SEVERAL THICKNESSES COMPUTED USING
THE LDV DATA IN ’
FREE-STREAM COORDINATES.

Station o 54 d; S, A

Number (cm) (mm) {mm) (mm) (mm)

0 3.921 6.521 6.518 4.627 0.107

1 3.899 6.676 6.66 4.683 0.82

2 3.996 6.626 6.57 4.628 1.183

3 3.424 5.941 5.802 4.184 1.732

4 3.885 5.323 5.165 3.984 1.802

5 4.1457 4.981 4.846 3.877 1.691

6 3.864 4.76 4.663 3.778 1.668

7 3.757 4.512 4.46 3.592 0.787

TABLES

6 = Boundary Layer Thickness
é
éy = J (1- _LL/J_ )dy = Displacement Thickness
0 e
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)dy = Displacement Thickness
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63= J. (1- A ) - dy = Momentum Thickness
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0 e
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SUMMARY OF EXPERIMENTAL DATA SETS.

Table 7.

Meagsurement method for

Method for skin friction

turbulent bou iary layer
formed on an axially

rotating cylinder,

wire

Obtained from Clauser
plots

Authors Flow studied Y+ tange where
mean velocity & Reynolds |measurements flow angle 13 semi-
" |ehear stress tensor logarithmic
. . o (including all profiles
Anderson- Flow towards a 90 X wire,3,4 hole probe Surface fence . 80-150
Eaton . wedge .
Fernholz. Flow field by a back X wire,slanted or single [Surface fence & 30-105
Vagt plate on a cylinder normal wires,Cobra probes{Preston tube
: with an elliptical )
nosa .
Miller 3-D. flow created by X wire Preston tubes g ’ 6U~105
trangverse and lateral .
pressure gradient with
; use of turning vanes
| on a flat plate N :
[ Dechow- 3-D flow induced by a Conrad tube,boundary Preston tube 70-150
m Felsch cylinder standing on layer type single wire,
i a flat plate X wire
Elsenaar- Incompressible turbulent{X wire,slanted wire,. Stanton type surface 30-150
Roelsma bGoundary layer under single straight wire, pressure probes,Clauser
infinite swept cobra prohe plots
conditions in an adverse .
| pressure gradient
il Bissonnette-|Three dimensional Straight & slanted Obtained by extrapolating | 15-190 low Rel
Mellor turbulent boundary layer|wires the data to the wall 20-200 high Rel
on an axially rotating N
cylinder .
Lohmann Three dimensional Slanted wire)single

70-150

13§

TABLES




Table 8. SUMMARY OF SEMI-LOGARITHMIC y+ REGIONS OF FIVE
“LAW-OF-THE-WALL” RELATIONS.

Flows /Models Coles  Johnston  Hornung-  Piecrce- Chandrashekhar-

studied Joubert Krommenhoek  Swamy

Elsenaar-

Boelsma 45-400 | 60-250 30-450 35-250 35-250

Muller 30-250 | 30-200 30-250 20-200 20-200

Fernholz-

Vagt 15-150 | 15-100 15-100 15-100 15-100

Dechow-

Felsch 20-200 | 20-150 20-120 20-150 20-150

Anderson 60-200 | 60-200 60-200 60-200 60-200

Bissonnette-

Mellor Low Re | 20-200 | 45-250 30-200 20-200 20-200

Bissonnette-

Mellor High Re | - 20-250 - 25-250 25-250

LLohmann - 60-250 - 40-150 40-150

Olcmen 40-560 | 40-200 40-400 40-250 40-250

TABLES
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Table 9. OVERLAP
SIDE OF THE PROPOSED MODELS FOR PRESSURE-

v+ RANGLS FOR THE LEFT-HAND

DRIVEN DATA SETS FOR THE AXIAL COMPONENT.

Flows /Models Perry- W-L-C van Den
studied Joubert Berg
Elsenaar- 40-500 30-200 30-200
Boelsma

Muller 6-150 4-60 4-40
Fembholz- 10-100 15-30 15-30
Vagt

Dechow- 7-20 7-60 7-20
Felsch

Anderson 60-100 60-100 60-80
Olcmen 20-100 20-40 30-40

TABLES
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Table 10a. THE RANGES AND ABSOLUTE RANGES OF ANGLE DIFFERENCES
(%m ~ ¢ ) in degrees CALCULATED WITH SEVERAL TURBULENCE
MODELS AT y+ = 200.
Flows [Models Cebeci- Rotta Rotta Rotta
studied Smith 0.3 05 0.7
Elsenaar- 0°—12.8° —~6.4°—=3.2° -3.2°>6.4° 0°>6.4°
Boelsma 12.8° 9.6° 9.6° 6.4°
Dechow- 6.4°—31.9° -9.6°—>3.2° 0°—6.4° 6.4°-22.3°
Felsch 31.9° 12.8° 6.4° 22.3°
Muller —3.2°3.2° ~31.9°>3.2° —12.8°=3.2° —9.6°-3.2°
6.4° 35.1° 16.0° 12.8°
Anderson 6.4°=31.9° ~6.4°—>3.2° 0°—16.0° 0°—-25.5°
31.9° 9.6° 16.0° 25.5°
Olcmen —-31.9°>25.5° | =25.5°-35.1° | —28.7°=22.3° | -31.9°>12.8°
57.4° 60.6° 51.1° 44.7°
Lohmann -3.2°>64° —319°>16.0° | —12.8°-9.6° —6.4°—9.6°
9.6° 47.9° 22.3° 16.0°
Bissonnette- 83.0°=102.1° 57.5°=95.7° 67.0°=102.1° 76.6°—98.9°
Mellor low Re 102.1° 95.7° 102.1° 98.9°
Bissonnette- 57.5°-70.2° 31.9°=41.5° 38.3°=51.1° 57.5°=73.4°
Mellor high Re 70.2° 41.5° 51.1° 73.4°
Flows /Models Rotta Rotta Johnson- Patel
studied 1.2 1.5 King
Elsenaar- - - 3.2°->12.8° 0°—12.8°
Boelsma 12.8° 12.8°
Dechow- 6.4°—>31.9° 3.2°=28.7°
Felsch 31.9° 28.7°
Muller —-6.4°-32° —9.6°=3.2°
9.6° 12.8°
Anderson - 6.4°=35.1° 6.4°-35.1°
- 5te 35.1°
Olcmen - - —35.1°=25.5° | =35.1°=0°
- - 60.6° 35.1°
Lohmann -3.2°=64° —-3.2°>64° -3.2°>64° —3.2°>64°
9.6° 9.6° 9.6° 9.6°
Bissonnette- 83.0°=102.1° 83.0°=102.1° 76.6°—102.1° 79.8°=102.1°
Mellor low Re 102.1° 102.1° 102.1° 102.1°
Bissonnette- 63.8°>73.4° 38.3°=51.1° 54.3°—63.8° 54.3°—=67.0°
Mellor high Re 73.4° 51.1° 63.8° 67.0°

TABLES

138




Table 10b. THE RANGES AND ABSOLUTE RANGES OF MAGNITUDE RATIOS (
Tm/ CTc ) CALCULATED WITH SEVERAL TURBULENCE MODELS AT

y + = 200.
Flows /Models Cebeci- Rotta Rotta Rotta
studied Smith 0.3 0.8 0.7
Elsenaar- —0.38-0.81 —0.34—1.02 -0.3-0.98 —0.34—-0.89
Bolesma 1.19 1.36 1.28 1.23
Dechow- —0.47-0.34 —0.26—0.3
Felsch 0.81 0.56 0.6 0.72
Muller —0.38—0.02 —-0.4-0.21 —0.36—0.15 —0.38-0.13
04 0.61 0.51 0.51
Anderson -0.34-0.17 —0.26—0.64 —0.34-0.47 —0.36—0.19
0.51 0.9 0.81 0.55
Olcmen -0.32-04 -0.3-0.85 —0.3-0.64 —-0.3-0.34
0.72 1.15 0.94 0.64
Lohmann -0.51-0.51 0.51—6.47 0.17=3.15 —0.17-1.53
1.02 6.47 3.15 1.7
Bissonnette- 1.91-4.47 11.06—19.15 5.74—-12.98 3.4-8.51
Mellor low Re 447 19.15 12.98 8.51
Bissonnette- 0.51-2.17 1.53-4.34 1.28-3.57 0.77-2.43
Mellor high Re 2.17 4.34 3.57 243
Flows [Models Rotta Rotta Johnson- Patel
studied 1.2 1.5 King
Elscnaar- - - —0.55-0.38 —-0.43-0.06
Bolesma - 0.93 0.49
Dechow- —-0.2i—-0.13 —0.64— —0.17
Felsch - 0.34 0.64
Muller —0.3-0.02 —0.43- --0.21
0.32 0.43
Anderson —-0.32-0.09 —0.7- -0.26
- 0.41 0.7
Olcmen - - —0.28-0.21 —0.43-0
- - 0.49 043
Lohmann —1.19-0.68 —1.36—> —0.17 | 0.09-0.17 —2.55- —-0.94
1.87 1.36 0.17 2.55
Bissonnette- 2.34—5.96 1.49—4.68 1.7-3.4 0.85-6.81
Mellor low Re 5.96 4.68 34 6.81
Bissonnette- 0.13-1.53 1.28—3.83 2.04—3.83 —1.02-2.81
Mellor high Re 1.53 3.83 3.83 3.83

TABLES
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Figure 1. Mean velocity, normal and shear stress measurement locations.: The scale of the
plot is in inches. A Left-hand side hot-wire locations, Q right-hand side hot-wire
locations, .75 chord upstream hot-wire locations,+ LDV locations.
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Figure 3a. Positions of pressure tappings on the test wall surrounding wing.
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Figure 3b. Positions of pressure tappings on.the wing surface projected on to an XY plane.
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Figure 4. Hot-wire probe, in the tunnel.
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Figure §.

FIGURES

Probe holder designed to reach to measurement locations.
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Figure 6.
xrc, Yre, 2rce= Tunnel coordinates, Xgs, Vrs, Zrs =

Xns, Yns, 2vs = Maximum normal stress coordinates.
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Definition of the angles and the coordinate axes used in the present study.:
Free-stream coordinates,
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Figure 9a. U velocity component measured with the hot-wire technique at .75 chord length
( chord = 12 inches upstream of the body expressed in tunnel coordinates.
): The height in the profiles is nondimensionalized with t=2.824 inches
maximum body thickness. Profiles from left to right correspond to the stations
proceeding in + zrc direction. Note the shifted scale of the absissa. ( see also fig

4 and table 2)
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Figure 9b.

FIGURES

o))
S
c
<
© e
b o
-
2 @
o)
U O T SN S SR Wt

2
-

-

o

)

log(y/t

,
et S T TS B I P PR UPW YN S SNV ST RPN B RV P T PTPH SR

=

0

U velocity component measured with the hot-wire technique at .75 chord length
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Figure 9c.
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W velocity component measured with the hot-wire technique at .75 chord length
( chord = 12 inches upstream of the body expressed in tunnel coordinates.: The
height in the profiles is nondimensionalized with t = 2.824 inches maximum body
thickness. Profiles from top to bottom starting with the left-hand side figure
correspond to the stations proceeding in + zrc direction. Note the shifted scale

of the ordinate. ( see also fig 4 and table 2)
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Figure 9d. v’ fluctuation velocity component measured with the hot-wire technique at .75
chord length ( chord = 12 inches upstream of the body expressed in tunnel
coordinates.: The height in the profiles is nondimensionalized with t=2.824
inches maximum thickness. Profiles from top to bottom starting with the
left-hand side figure correspond to the stations proceeding in + zrc direction. Note
the shifted scale of the ordinate. ( see also fig 4 and table 2)
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Figure 9e.
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w’ fluctuation velocity component measured with the hot-wire technique at .75
chord length ( chord = 12 inches upstream of the body expressed in tunnel
coordinates.: The height in the profiles is nondimensionalized with t=2.824
inches maximum thickness. Profiles from top to bottom starting with the
left-hand side figure correspond to the stations proceeding in + zrc direction. Note
the shifted scale of the ordinate. ( see also fig 4 and table 2)
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Figure 9f. -uw shear stress component measured with the hot-wire technique at .75 chord
length ( chord = 12 inches thickness.:
nondimensionalized with t=2.824 inches maximum thickness. Profiles from top
to bottom starting with the left-hand side figure correspond to the stations
proceeding in + zyc direction. Note the shifted scale of the ordinate. ( see also fig
4 and table 2)
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Figure 10.  Characteristic dimensions visualized- with the oil flow technique.: The
characteristic dimensions are nondimensionalized with the maximum body
thickness t = 2.824 inches.
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Figure 11.
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Distribution of time-mean static pressure on the test wall surrounding the wing
at Reynolds number based on momentum thickness at 0.75 upstream of the body

on the centerline of the tunnel of 5936.

158



=
Symbol x/t
0.5 .
e -2.0 — -0.25
C — -1.5 — .0
9
Cp = 1.0 s—s (.25
] o ~0.5 = 0.5
0.0
p— L4 el —
.
-O_SJ—
§ - A L g . L

Figure 12a. Distribution of time-mean static pressure on the wall surrounding the wing at
Reynolds number based on momentum thickness of 5936.: Lines indicate
+ zre, points indicate — zr¢.
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Figure 12b. Distnbution of time-mean static pressure on the wall surrounding the wing at

Reynolds number based on momentum thickness of 5936 :
+ 2zr¢, points indicate — zrc.
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Figure 15b.
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Figure 16a. Scheamatic figure of the histogram noise level determining routine.: top:The
histogram with the noise.bottom:Parabola fitting to both sides of the peak of the
logarithm of th= histogram values.
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Figure 16b.

FIGURES

Scheamatic figure of the histogram noise level determining routine.: top:The
noise level of the histogram..bottom:The histogramfter the noise is removed.
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Figure 16b. Comparison of U and W mean velocity components measured with hot-wire
technique using two different set of equipments and reduction programs.: At
station 7 on the right-hand side of the wing.
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measured with hot-wire technique using two different set of equipments and

reduction programs:
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Figure 18. Probe volume formed by two intersecting laser beams.
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Figure 19. Comparison of station 0 u’fluctuation velocity LDV profile with Klebanoff's
two-dimensional turbulent boundary layer data.: x LDV data, + Klebanoff’s
data.
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Figure 20a. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown mn the
figures.
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u’,v,w’ fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.:
beam system used to obtain the data.
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the

figures.
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Figure 20c. -—uv,-uw,-vw shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the

figures.
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Figure 20d. U, V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20e. u’,v’,w’ fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.. UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20f. -TV,-OW,-PW shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate

swept-spectrum analyzer,respectively. Staticn numbers are also shown in the
figures.
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Figure 20g. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrumn  analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20h. u’v’,w’ fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate

swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20i. —Gv,—uw,-Vw shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate

swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20j. U,V,W mean velocity components measured with two different LDV techniques
presented in tunnel coordinates.: UV, UW and VW show the LDV beam
system used to obtain the data. Extensions B and S denote the measurements
taken with Burst Spectrum Analyzer and fast sampling rate swept-spectrum
analyzer respectively. Station numbers are also shown in the figures.
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v’ ,v',w’ fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beamn system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate

swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20l. —~UV,-uw,-VW shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20m. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also showr ia the
figures.
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Figure 20n. u’,v,w’ fluctuation velocity components measured with two different LDV

FIGURES

techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
;_wept-spectrum analyzer,respectively. Station numbers are also shown in the
igures.
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Figure 200. —uv,-uw,~vw shear stress components measured with two different LDV

techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam systemn used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20p. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer respectively. Station numbers are also shown in the
figures.
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Figure 20q. u’,v',w’ fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20r. -uv,~uw,-vw shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer respectively. Station numbers are also shown in the
figures.
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Figure 20s. U,V,W mean velocity components measured with two different LDV techniques
presented in tunnel coordinates.. UV, UW and VW show the LDV beam
system used to obtain the data. Extensions B and S denote the measurements
taken with Burst Spectrum Analyzer and fast sampling rate swept-spectrum
analyzer,respectively. Station numbers are also shown in the figures.
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Figure 20u. -Uv,-uw,-vw shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20w. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the

figures.
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Figure 20x. u’,v’,w’ fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20y. -UV,-UW,-vw shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beamn system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 21. U component of the mean velocity vector measured with LDV technique
presented in tunnel coordinates.: The stations are numbered from left to right
starting with 0. Large symbols denote the data, small symbols denote the
uncertainty band. Lines are used to show the hot-wire profiles taken at the same
locations. Note the shifted scale of the absissa. ( See also fig 4, and table 3 )
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Figure 22a. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in tunnel coordinates.: In the figures
the stations are numbered from left to right starting with station 18 and station
12, respectively. Lines are used to show the hot-wire profiles taken at the
symmetric locations. Note the shifted scale of the absissa. ( See also fig 4, and
table 1)
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Figure 22b. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in tunnel coordinates.: In the figure
the stations are numbered from left to right starting with station 6. Lines are
used to show the hot-wire profiles taken at the symmetric locations. Note the
shifted scale of the absissa. ( Sec also fig 4, and table 1 )
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Figure 23. 'V component of the mean velocity vector measured with LDV technique
presented in tunnel coordinates.: The stations are numbered from top to bottom
starting with 0. Large symbols denote the data, small symbols denote the
uncertainty band.
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Figure 24.
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W component of the mean velocity vector measured with LDV technique
presented in tunnel coordinates.: The stations are numbered from top to bottom
starting with 0. Large symbols denote the data, small symbols denote the
uncertainty band. Lines are used to show the hot-wire profiles taken at the same
locations. Note the shifted scale of the ordinate. ( See also fig 4, and table 3 )
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Figure 25a. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in tunnel coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Lines are used to show the hot-wire profiles taken at the
symmetric locations. Note the shifted scale of the ordinate and the minus sign
of the velocity. ( See also fig 4, and table 1)
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Figure 25b. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in tunnel coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Lines are
used to show the hot-wire profiles taken at the symmetric locations. Note the
shifted scale of the ordinate and the minus sign of the velocity. ( See also fig 4,
and table 1)
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Figure 26. U component of the mean velocity vector measured with LDV technique
presented in free-stream coordinates.: The stations are numbered from left to
right starting with 0. Note the shifted scale of the absissa. ( See also fig 4, and
table 3)
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U component of the mean velocity vector measured with hot-wire technique

on the left-hand side of the wing presented in free-stream coordinates.: In the
figures the stations are numbered from left to right starting with station 18 and
station 12, respectively. Note the shifted scale of the absissa. ( See also fig 4, an<’
table 1)
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Figure 27b.

FIGURES

- L'/Uref in free—stream coordinates
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U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in free-stream coordinates.: In the
figure the stations are numbered from left to right starting with station 6. Note
the shifted scale of the absissa. ( See also fig 4, and table 1)
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Figure 28. W component of the mean velocity vector measured with LDV technique
presented in free-stream coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Note the
shifted scale of the ordinate. ( See also fig 4, and table 3 )
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Figure 29a. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in free-stream coordinates.: In the
figures the stations are numbered from top to bottom starting with station 18
and station 12, respectively. Note the shifted scale of the ordinate and the minus
sign of the velocity. ( See also fig 4, and table 1)
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Figure 29b.
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W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in free-stream coordinates.: In the
figure the stations are numbered from top to bottom starting with station 6.
Note the shifted scale of the ordinate and the minus sign of the velocity. ( See
also fig 4, and table 1)
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Figure 30. U component of the mean velocity vector measured with LDV technique
presented in maximum normal stress coordinates.: The stations are numbered
from left to right starting with 0. Note the shifted scale of the absissa. ( See also
fig 4, and table 3)
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Figure 3la. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in normal stress coordinates.: In the
figures the stations are numbered from left to right starting with station 18 and
station 12, respectively. Note the shifted scale of the absissa. ( See also fig 4, and
table 1)
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Figure 31b. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in normal stress coordinates.: In the
figure the stations are numbered from left to right starting with station 6. Note
the shifted scale of the absissa. ( See also fig 4, and table 1)
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W component of the mean velocity vector measured with LDV technique
presented in maximum normal stress coordinates.: In the figures the stations are
numbered from top to bottom starting with station 0 and station 4, respectively.
Note the shifted scale of the ordinate. ( See also fig 4, and table 3 )
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Figure 33a. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in normal stress coordinates.: In the
figures the stations are numbered from top to bottom starting with station 18
and station 12, respectively. Note the shifted scale of the ordinate and the minus
sign of the velocity. ( See also fig 4, and table 1)
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Figure 33b.
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W component of the mean velocity vector measured with hot-wire technique

on the left-hand side of the wing presented in normal stress coordinates.:

In the

figure the stations are numbered from top to bottom starting with station 6.
Note the shifted scale of the ordinate and the minus sign of the velocity. ( See

also fig 4, and table 1)
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Figure 34a. u’, fluctuating velocity component measured with LDV technique presented in
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 34b. v, fluctuating velocity component measured with LDV technique presented in
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 35a. v/, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in tunnel coordinates.: In the figures the
stations are numbered from top to bottom starting with station 18 and station
12, respectively. Lines are used to show the hot-wire profiles taken at the
symmetric locations. Note the shifted scale of the ordinate. ( See also fig 4, and
table 1)
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Figure 35b.
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u’, fluctuating velocity component measured with hot-wire technique on the

left-hand side of the wing presented in tunnel coordinates.:

In the figure the

stations are numbered from top to bottom starting with station 6. Lines are used
to show the hot-wire profiles taken at the symmetric locations. Note the shifted
scale of the ordinate. ( See also fig 4, and table 1)
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Figure 36a.
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v’, fluctuating velocity component measured with LDV technique presented in

tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Different
symbols, very near the wall and near the layer edge show the points vhere the
realizability conditions are not satisfied.
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Figure 36b. V', fluctuating velocity component measured with LDV technique presented in ®
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied.
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Figure 37a. w’ fluctuating velocity component measured with LDV technique presented in
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 37b. w’ fluctuating velocity component measured with LDV technique presented in
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 38a.
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w’, fluctuating velocity component measured with hot-wire technique on the

left-hand side of the wing presented in tunnel coordinates.:

In the figures the

stations are numbered from top to bottom starting with station 18 and station
12, respectively. Lines are used to show the hot-wire profiles taken at the
symmetric locations. Note the shifted scale of the ordinate. ( See also fig 4, and

table 1)
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Figure 38b. w’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in tunnel coordinates.: In the figure the
stations are numbered from top to bottom starting with station 6. Lines are used
to show the hot-wire profiles taken at the symmetric locations. Note the shifted
scale of the ordinate. ( See also fig 4, and table 1)
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Figure 39. v, fluctuating velocity component measured with LDV technique presented in
free-stream coordinates.: In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 40a.
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w’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in free-stream coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,

and table 1)
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Figure 40b. u’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in free-stream coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table 1)
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w’ fluctuating velocity component measured with LDV technique presented in
free-stream coordinates.: In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)

Figure 41.

FIGURES 227




Figure 4la.
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w’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in free-stream coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,

and table 1)
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Figure 41b. w’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in free-stream coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table 1)
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Figure 43. u’, fluctuating velocity component measured with LDV technique presented in
maximum normal stress coordinates.: In the fipures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 44a. u’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in normal stress coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,
and table 1)
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Figure 44b. u’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in normal stress coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table | )
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Figure 45.
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w’ fluctuating velocity component measured with LDV technique presented in
maximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 46a. w’, fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in normal stress coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,
and table 1)
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Figure 46b. w’, fluctuating velocity component measured with hot-wire technique on the

left-hand side of the wing presented in normal stress coordinates.: In the figure

the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table 1)
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Figure 47a. -uv, shear stress component measured with LDV technique presented in tunnel
coordinates.: The station numbers are shown in the figures. Large symbols

denote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,
very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 47b. ~uv, shear stress component measured with LDV technique presented in tunnel
coordinates.: The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,
very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 48a.

FIGURES

-uw, shear stress component measured with LDV technique presented in tunnel
coordinates.: The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines are used to
show the hot-wire profiles taken at the same locations. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 48b. -uw, shear stress component measured with LDV technique presented in tunnel
coordinates.: The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines are used to
show the hat-wire profiles taken at the same locations. Different symbols, very
near the wall and near the layer edge show the points where the realizability

conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 49b.
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-uw, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in tunnel coordinates.: In the figure the
stations are numbered from top to bottom starting with station 6. Lines are used
to show the hot-wire profiles taken at the symmetric locations. Note the shifted
scale of the ordinate and the minus sign of the stresses. ( See also fig 4, and table
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Figure S0a. -vW, shear stress component measured with LDV technique presented in tunnel

FIGURES

coordinates.: The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,
very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied.

242




Figure 50b.
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denote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,
very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied.
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Figure 51.
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v, shear stress component measured with LDV technique presented in
free-stream coordinates.: In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Different symbols, very
near the wall and near the layer edge show the points where the realizability

conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 52. -uw, shear stress component measured with LDV technique presented in

free-stream coordinates.:

FIGURES

In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Diferent symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. { See also fig 4, and table 3 )
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Figure 53.
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Figure 54a. -uw, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in free-stream coordinates.: In the figures the stations
are numbered from top to bottom starting with station 18 and station 12,
respectively. Note the shifted scale of the ordinate and the minus sign of the
stresses. ( See also fig 4, and table 1)
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Figure 54b. -UW, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in free-stream coordinates.: In the figures the
stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate and the minus sign of the stresses. ( See also fig 4,
and table 1)

FIGURES 248




.005 —— .005 —
L uv/Uref uv/Urz-ef ’ l
oy station# 0 station# 4
L oo '
0025 o .0025-
F o
r ro o
r x r
P r
0 X, R B . N
E x . XW
X .002
P X
- K *
X
c
0 X x * 0 ‘- *x *
TNl B i 5 |
oo [
> -
= .

- P b
0+ ¢ Nt it 0 % *
Cox x - . g Wy

L, S x .
] L4 N
‘.. * )OOOPX« ...
- L
0 = % Jalo 0 L )104,
- ")S(:S( o x
t b 4 ; 9 4 h XXM
-.002 -.00251E
in maximum-normal—stress coordinates
L
log(y/t) log(y/t)
-_005 LA-A—IM.M‘L—J—A—I—LA&M‘—-I—-L—L‘.M _005 t_‘_‘
-3 -2 -1 0 -3 -2 -1 0
Figure 55. -uv, shear stress component measured with LDV technique presented in

maximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 56. -uw, shear stress component measured with LDV technique presented in
maximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3 )
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Figure 57.
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-uw, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in normal stress coordinates.: In the figures the
stations are numbered from top to bottom starting with station 18 and station 12,
respectively. Note the shifted scale of the ordinate and the minus sign of the
stresses. ( See also fig 4, and table 1)

251




station# 6
in maximum-normal-stress coordinates

.002%-
F

e
}- uw /U2,

(=]

(=~

%

t
.
[ —4
=

T‘I"‘ﬁ'\"‘l’"‘!"‘\‘"]"'l‘"‘l‘“f"f"? LML A A SR SREN RN M S SERS Mt Sem s hane sl nasy mut een Sias sumt Hany Senn et

[ leat/y
=000 b s il sl
-3 -2 -4 0

Figure 57b. -uw, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in normal stress coordinates.: In the figures the
stations are numbered from top tc bottom starting with station 6. Note the
shifted scale of the ordinate and the minus sign of the stresses. ( See also fig 4,
and table 1)
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Figure 58. -vw, shear stress component measured with LDV technique presented in

maximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied.
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Figure 60b.
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Figure 60c.
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Figure 62a. Al, Townsend’s structural parameter computed using LDV data.: Station
numbers are shown in the figures. Bars denote the uncertainty bands.
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Figure 62b.
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Figure 62c.
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Figure 63a. Flow angle computed using LDV data 1n tunnel cooramates.: Station numbers
are shown in the figures. Lines are used to show thec hot-wire profiles taken at
the same locations. Bars denote the uncertainty bands.
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Figure 63b. Flow angle computed using LDV data in tunnel coordinates.: Station
numbers are shown in the figures. Lines are used to show the hot-wire profiles
taken at the same locations. Bars denote the uncertainty bands.
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Figure 63c.
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Flow angle computed using LDV data in tunnel coordinates.: Station numbers
are shown in the figures. Lines are used to show the hot-wire profiles taken at
the same locations. Bars denote the uncertainty bands.
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Figure 64a.
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Flow angle in tunnel coordinates computed using hot-wire data taken on the
lefti-hand side of the wing.: Lines are used to show the hot-wire profiles taken
at the symmetric locations. In the figures, stations are numbered from top to
bottom starting with station 18, and station 14, respectively. Note the minus
sign of the flow angle.
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Figure 64b.  Flow angle in tunnel coordinates computed using hot-wie data taken on the
left-hand side of the wing.: Lines are used to show the hot-wire profiles taken
at the symmetric locations. In the figures, stations are numbered from top to
bottom starting with station 10, and station 6, respectively. Note the minus sign
of the flow angle.
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Figure 64c. Flow angle in tunnel coordinates computed using hot-wire data taken on the
left-hand side of the wing.: In the figure, stations are numbered from tog -
bottom starting with station 2. Note the minus sign of the flow angle.
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Flow angle computed using LDV data in free-stream coordinates.:
numbers are shown in the figures. Bars denote the uncertainty bands.
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Flow angle computed using LDV data in free-stream coordinates.:
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Figure 66a.
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Flow angle in free-stream coordinates computed using hot-wire data taken on
the left-hand side of the wing.: In the figures, stations are numbered from top
to bottom starting with station 18, and station 14, respectively. Note the minus
sign of the flow angle.
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Figure 66b. Flow angle in free-stream coordinates computed using hot-wire data taken on
the left-hand side of the wing.: In the figures, stations are numbered from top
to bottom starting with station 10, and station 6, respectively. Note the minus

sign of the flow angle.
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Figure 66c. Flow angle in free-stream coordinates computed using hot-wire data taken on
the left-hand side of the wing.: In the figure, stations are numbered from top
to bottom starting with station 2. Note the minus sign of the flow angle.
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Figure 68a. Flow angle in maximum normal stress coordinates computed using hot-wire
data taken on the left-hand side of the wing.: In the figures, stations are
numbered from top to bottom starting with station 18, and station 14,
respectively. Note the minus sign of the flow angle.
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Figure 68b. Flow angle in maximum normal stress coordinates computed using hot-wire
data taken on the left-hand side of the wing.: In the figures, stations are
numbered from top to bottom starting with station 10, and station 6,
respectively. Note the minus sign of the flow angle.
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Figure 72b. v, fluctuating velocity component of LDV data in free-stream coordinates
normalized with the skin friction velocity.: Station numbers are shown in the

figure.
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Figure 73a.  w’, fluctuating velocity component of LDV data in free-stream coordinates
normalized with the skin friction velocity.: Station numbers are shown in the

figure.
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Figure 74a. -uv, shear stress of LDV data in free-stream coordinates normalized with the
square of the skin friction velocity.: Station numbers are shown in the figure.
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Figure 74b. -V, shear stress of LDV data in free-stream coordinates normalized with the
square of the skin friction velocity.: Station numbers are shown in the figure.
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Figure 75a. -Uw, shear stress of LDV data in free-stream coordinates normalized with the
square of the skin friction velocity.: Station numbers are shown in the figure.

FIGURES 298




2.5 —— > !
P UW/ g station# e‘
C . x 4
P £5
- 36
1.5 : ¢ o 7
1k
C x X
_ ‘ $Xx X
pm X+++ X
.5 : o X x +++
- Xx + EEEGGE +
- + 8 Bogduxy "
o e Ty
r[ + @G oo 0%, % +
-— [
L . :
-5 k . o +°5 l
L |
o ;
p 8 '
-1k . |
- |
I: X c} :
-15 r
7 fe |
'L. !
o |
-2 [L ’
’— H
|
E log(y/t) l
_25 " 1 1 P S U
-3 =2 -1 0

Figure 75b. -uw, shear stress of LDV data in free-stream coordinates normalized with the
square of the skin friction velocity.: Station numbers are shown in the figure.
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Figure 76a. ~VW, shear stress of LDV data in free-stream coordinates normalized with the
square of the skin friction velocity.: Station numbers are shown in the figure.
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Figure 76b. -Vw, shear stress of LDV data in free-stream coordinates normalized with the
square of the skin friction velocity.: Station numbers are shown in the figure.
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Figure 77a. x eddy viscosity computed using the LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Figure 78a. z eddy viscosity computed using the LDV data in free-stream
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coordinates.: Station numbers are shown in the figure.
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Figure 78b. z eddy viscosity computed using the LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Mixing length nondimensionalized with bound
using LDV data.:
numbers are shown in the figure.
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Mixing length nondomensionalized with boundary layer thickness computed
using LDV data.: Smooth curve denotes the L, = 0.41p/5 variation. Station

numbers are shown in the figure.
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Johnston’s polar plots of the present data.: The symbols show the data and

the lines show the suggested relation. The sations are numbered from top to

bottom starting with station 0.
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Figure 8la. Turbulent kinetic energy profiles obtained using LDV data.: Station numbers
are shown in the figure.
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Turbulent kinetic energy profiles obtained using LDV data.:
are shown in the figure.

Station numbers
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Figure 82a. Production of turbulent kinetic energy profiles obtained using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 82b. Production of turbulent kinetic energy profiles obtained using LDV data in
free-stream coordinates.: Station numbers ar= shown in the figure.
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Figure 83a. Convection of turbulent kinetic energy profiles obtained using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 83b. Convection of turbulent kinetic energy profiles obtained using LDV data in
free-stream coordinates.: Station numbers are shown in th figure.
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Figure 84a.
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Production of u2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 84b.  Production of u2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 85a. Production of v2 normal stress profiles computed using LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Figure 85b.  Production of V2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Production of w2 normal stress profiles computed using LDV data in

free-stream coordinates.: Station numbers are shown in the figure.
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Production of w2 normal stress profiles computed using LDV data in

free-stream coordinates.: Station numbers are shown in the figure.
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Production of -uv shear stress profiles computed using LDV data in free-stream
Station numbers are shown in the figure.
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Production of -uv shear stress profiles computed usine LDV data in free-stream

coordinates.: Station numbers are shown in the fig. - .
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Figure 88a. Production of -uw shear stress profiles computed using LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Production of -vw shear stress profiles computed using LDV data in free-stream
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Figure 89b. Production of -vw shear stress profiles computed using LDV data in free-stream 9o
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Figure 90a.  Convection of U2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Station numbers are shown in the figure.
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Figure 90c.  Convection of V2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 90e.
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Convection of w2 normal stress profiles computed using LDV data in

free-stream conrdinates.:

Station numbers are shown in the figure.
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Figure 90f.
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Convection of w2 normal stress profiles computed using LDV data in
free-streamn coordinates.:

Station numbers are shown in the figure.
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Figure 90g. Convection of -uv shear stress profiles computed using LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Figure 90;.
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Convection of -uw shear stress profiles computed using LDV data in free-stream

coordinates.:

Station numbers are shown in the figure.
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Figure 90k.
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Convection of -vw shear stress profiles computed using LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Convection of -vw shear stress profiles computed using LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Figure 99a. Pressure-driven data in the Law-of-the-Wall coordinate system of Coles.
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Figure 99b. Shear-driven data in the Law-of-the-Wall coordinate system of Coles.
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Figure 100a. Pressure-driven data in the Law-of-the-Wall coordinate system of Johnston.
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Figure 100b.
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Shear-driven data in the Law-of-the-Wall coordinate system of Johnston.
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Figure 102b. Shear-driven data in the Law-of-the-Wall coordinate system of
Pierce-Krommenhoek, Chandrashekhar-Swamy.
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Figure 104a. Pressure-driven data in the Law-of-the-Wall coordinate system of East-Hoxey.
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Figure 104b.
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Shear-driven data in the Law-of-the-Wall coordinate system of East-Hoxey.
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Figure 105ai.
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Figure 105aii. Shcar-driven data in the Law-of-the-Wall coordinate system of
Perry-Joubert.: Left-hand side of the equation 8 in Chapter V.

FIGURES

361




Figure 105bi.
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Figure 105bii. Shear-driven data in the Law-of-the-Wall coordinate system of
Perry-Joubert.: Right-hand side of the equation 8 in chapter V.
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Figure 106ai. Pressure-driven data in the Law-of-the-Wall coordinate system of
White-Lessmann-Christoph.: Left-hand side of the equation 11 in chapter
V. Axial component of the model calculated from the data.
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Figure 106aii. Shear-driven data in the Law-of-the-Wall coordinate system of
White-Lessmann-Christoph.: Left-hand side of the equation [] in chapter
V. Axial component of the model calculated from the data.
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Figure 106bii. Shear-driven data in the Law-of-the-Wall coordinate system of
White-Lessmann-Chrstoph.:  Right-hand side of the equation 11 in chapter
V. Axial component of the model computed with a relation.
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Figure 106cii. Shear-driven data in the Law-of-the-Wall coordinate system of
White-Lessmann-Christoph.: Left-hand side of equation 12 in chapter V.
Lateral component of the model calculated from the data.
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Figure 106dii. Shear-driven data in the Law-of-the-Wall coordinate system of
White-Lessmann-Christoph.: Right-hand side of equation 12 in chapter V.
Lateral component of the model computed with a relation.
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Figure 107ai. Pressure-driven data in the Law-of-the-Wall coordinate system of Van Den
Berg.: Left-hand side of the equation 12 in chapter V. Axial component of
the model calculated from the data.
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Figure 107aii. Shear-driven data in the Law-of-the-Wall coordinate system of Van Den
Berg.: Left-hand side of the equation 12 in chapter V. Axial component of
the model calculated from the data.
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Figure 107bi.  Pressure-driven data in the Law-of-the-Wall coordinate system of Van Den
Berg.: Right-hand side of the equation 12 in chapter V. Axial component
of the model calculated with a relation.
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Figure 107bii. Shear-driven data in the Law-of-the-Wall coordinate system of Van Den
Berg.: Right-hand side of the equation 12 in chapter V. Axial component
of the model calculated with a relation.
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Left-hand side of the equation 13 in chapter V. Lateral component

375




‘q sin(B,,—F)/u,

25
Dechow
o sTr
e SsT2
154 v s713
¢ ST4
® ST5
* STe
51 ¢ srv
-s.
~15 4
0
-6 4
-10 4
=18 4
-20 4 N
-25 " y
1 10 100 1000 10000

Figure 107cii.

Pressure-driven data in the Law-of-the-Wall coordinate system of Van Den

Berg.: Left-hand side of the equation 13 in chapter V. Lateral component
of the model calculated from the data.
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Figure 107ciii. Shear-driven data in the Law-of-the-Wall coordinate system of Van Den
Berg.: Left-hand side of the equation 13 in chapter V. Lateral component
of the model! calculated from the data.
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Figure 107di. Pressure-driven data in the Law-of-the-Wall coordinate system of Van Den
Berg.: Right-hand side of the equation 13 in chapter V. Lateral component
of the model calculated with a relation.
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Pressure-driven data in the Law-of-the-Wall coordinate system of Van Den
Berg.: Right-hand side of the equation 13 in chapter V. Lateral component
of the model calculated with a relation.
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Figure 107diii.
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Shear-driven data in the Law-oi-the-Waii coordinaie system of Van Den
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Figure 108a. Q+ range at y+ =70 for various law of the wall profiles using various data
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Figure 109a.
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Figure 110a. Present data in the Law-of-the-Wall coordinate systems of Coles ( left ) and
Johnston.: Bars represent the uncertainty bands.
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Figure 110b.
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Present data in the Law-of-the-Wall coordinate systems of Hornung-Joubert
( left ) and Pierce-Krommenhoek and Chandrashekhar-Swamy ( right ).: Bars
represent the uncertainty bands.
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Figure 110ei.
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Figure 110eii. Present data in the Law-of-the-Wall coordinate system of

White-Lessmann-Christoph. ( Axial component ): Right-hand side of
equation 10 of Chapter IV calculated from the data
Bars represent the uncertainty bands.
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Figure 110eiiii.  Present data in the Law-of-the-Wall coordinate  system of

White-Lessmann-Christoph. ( Lateral component ): Right-hand side of
equation 11 of Chapter IV calculated
Bars represent the uncertainty bands.
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Figure 110fu.
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Present data in the Law-of-the-Wall coordinate system of Van Den Berg. (
Axial component ): Right-hand side of equation 12 of Chapter IV calculated
from the data Bars represent the
uncertainty bands.
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Present data in the Law-of-the-Wall coordinate system of Van Den Berg. (
Lateral component ). Left-hand side of equation 13 of Chapter IV calculated
from the data Bars represent the
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Figure 110fiiii. Present data in the Law-of-the-Wall coordinate system of Van Den Berg. (
Lateral component ): Right-hand side of equation 13 of Chapter v
calculated from the data Bars represent
the uncertainty bands.
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Present data in Cebeci-Smith model.:
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Figure 112b.
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Present data in Cebeci-Smith model.:
figures. Bars show the uncertainty bands.

Figure 112c.
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Station numbers are given in the

Present data in Cebeci-Smith model.:
figures. Bars show the uncertainty bands.

Figure 112d.
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Station

Present data in Rotta’s model with anisotropy constant T=0.3.:

numbers are given in the figures. Bars show the uncertainty bands.

Figure 113a.
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Present data in Rotta’s model with anisotropy constant T=0.3.:
numbers are given in the figures. Bars show the uncertainty bands.
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Present data in Rotta’s model with anisotropy constant T=0.3
numbers are given in the figures. Bars show the uncertainty bands.
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Present data in Rotta’s model with anisotropy constant T=0.3
numbers are given in the figures. Bars show the uncertainty bands.

Figure 113d.

405

FIGURES




406

Station

001 1-01 N|O— g-01 1-01 2-01 ¢-01 ‘
T T T T T __%:____ T T T T T T —Q-JH T T 00

1/4& i ﬁ /4 o 1 b .

T

i J i o

L

*_

o#1s
OL.\EL: . UL\\EF

- 1#1s

001 1-01 2-0T ¢-01 1-01 2-01 g-0T
T 1 marrrvrr i i Hrrvr v 1770 1 LAR LR 1 —nrrrino i LI L] T omﬁtl

K £
v/ 1 v {001 -

—i

e
te—i

+£>0620
10625 ,£>0¢v
L0 — X0 OVW.»%D -

+£>0920
0625 . A>0bv
ovs. 4o

Present data in Rotta’s model with anisotropy constant T=0.5.
numbers are given in the figures. Bars show the uncertainty bands.

00t

et —— 0
Jﬁﬁ * N 4 S

o=
o]
£
o]
L

061

Figure 114a.
FIGURES




7
g e
.8
w
7]
001 (-0l 2 01 g 0l 1-01 z-01 ¢-01 .
TTrir1T 1 I mrrirT i | AR R md T 1 TTT 1 T 1 T | R I O D L ::__-_IT. OO M&
d\% ﬁ: — a\\ ﬁ - 1] .m
| {¥0 £E3
, T , T . . g2
© % . i) *W ﬁ : t.m
.t i {0 %
d‘ W nh _‘ ﬁ< ce* E S U BA_v.ﬂ ._. ._‘._‘1—, Q mm
A 4
) 4 ¢ { _+ oo
> ] 7] =S
1 c#is &f s . o
. - 191 R w
’ OL\\_:L‘ ] 1 A—‘ x!:.U.F\EL. - mm
S o0z £3
>
B
i
00! 01 2-01 g-01 (-0t 2-01 £-01 -
TEEET 7T T TTT 17T T LR LS LB T TTTT T 11 T TITI T 1 1 1 T L3 L A L | T O@.—I. ;mm
1 £ 1 A bardie=]
/ 1V {001~ &
s5¢
ih T é 406- M.Wu
o
sd i - LE
P Eﬁwwwww RS w@m%ﬁmwmnn qw 5 0 - n
* | b ! - @% log 82
£>03 ) =
... >0320 G\ m%am H >0Geo N\xam Dlm
0525 ,4>0bv 0525, 4>0¢v Jo001
ovs A0 >v.-%o ovs .40 o-"o
061

Figure 114b.
FIGURES




001

_IO— N.O_

g-01

1-01

2-01

¢-01

TrrTr T T U

/4

-

TWrerrrTr L

,1 fl

mirTr T i

L

mrerT i I

/4

mrrey

T

LRI

GH#1s

O.F\:—Ll

.

001

(-01 2-01

¢-01

1-01

2-0T

00

vo

80

el

91

02

g-01

ITTT T T 71 I

mrrreET 1 mrri

i
S

0625, {>0pv
ovs .43

Hryry rT T

/4

MITTTT

T

T

LARRELLE

GH#is

|

[ e
TEaL

0525 .+4>0Vv
ors. 40

!

B*

A
I

ﬁ
I

—e—t

0S1-
001 -
06—

06
001
0G1

Station

0.5.:

numbers are given in the figures. Bars show the uncertainty bands.

Present data in Rotta’s model with anisotropy constant T

Figure 114c.

408

FIGURES




001 (-0l

0]

1-01

2-01

g-01

TTTT T 17 L)

1/4

TITTTT77

L

T

rrrrT T

/4

T T ]

T

ST

_M:xﬂ._y_

1]

00

180

WoLHs

Py

i

I
I

gfis |

UF\E.P L

12’1

001 L 0l

2 0l

¢- 0l

1-01

201

o¢e

g-01

TTTT T 1771 T

TTTTTTT

T

T TTiTTT T T 71 T

|

TTrTT T 7 L

+£>0520
0625, 4>0bv
ovs , 40

s,

w

NNHmiw‘

g
L#s

> Yo

+&>0520
0S35.4>0bv
ovs.Ao

HItTrTT

T

T

LI

0G1 -
1001 -

’ e»ﬂ%ﬂMwmw%mwmm.

il

A
H

1

001

061

Station

=0.5.:
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Present data in Rotta’s model with anisotropy constant T=0.7.:
numbers are given in the figures. Bars show the uncertainty bands.
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Present data in Rotta’s model with anisotropy constant T=0.7.
numbers are given in the figures. Bars show the uncertainty bands.
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Present data in Rotta’s model with anisotropy constant T=10.7
numbers are given in the figures. Bars show the uncertainty bands.
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Present data in Johnson-King model.:
figures. Bars show the uncertainty bands.
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Figure 118a. Elsenaar-Boelsma data in Cebeci-Smith model ( left ) and in Rotta’s model
with anisotropy constant T= 0.3 ( right ).
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Figure 118b. Elsenaar-Boelsma data in Rotta’s model with anisotropy constant T=0.5 ( left
) and with anisotropy constant T=0.7 ( right ).
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Figure 118d. Dechow’s data in Cebeci-Smith model ( left ) and in Rotta’s model with
anisotropy constant T=0.3 ( right ).
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Figure 119a. Dechow’s data in Rotta’s model with anisotropy constant T=0.5 ( left ) and
with anisotropy constant T=0.7 ( right ).
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Figure 119b.
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0.3 ( right ).

Muller’s data in Cebeci-Smith model ( left ) and in Rotta’s model with

anisotropy constant T

Figure 120a.

FIGURES




[ o ® o o [
[~
o~
- A 4
yO1 g0l 201 101 001 g01 201 101 a0l g
TTT 17T mrrry T THTETT T 1 T rrrT o ppmrrry o mriyr T o nmurrry v wreryrr v 1 oo “l
+~A 1+~A 7 H
"0 *o .
R 594 *» | goss |70 -
o + v +4 9 H
% AT e €63 + - © &woqm o D €3 + S
5300 ¥ oom 2va o KRae A 2va o 480
- S 3 260 © ol 80 % 260 0 -
°v 126 v o ov 124 v
9] “
I . ivo 1 L% . v o 121 .m
D ] (=] -
o 0OoO + # s Y ogo s # s . 8
% O = v O 191 -
o, yu, | o, yur, | e
nl Yl £ .F\ + A"D: .P\ L . m
02 ]
5%
y01 e01 201 101 001 g01 201 101 001 M”
LRRAR R L nrrrTrr T TTHrrrT 7 BRI LR BLLANR R meirerT 1 AT T 7 omﬂl un'WO
L £ g
1 {001~ E
v 594 8§
» » 3
-.Mv. €54 + 7 + 0G- DOn. 2
Auianas ad e, Zea 2 4 8
I||D§ SO 10 pisie Wi e\ O O .m -
o . led v v « w.
11V O 11V D =
. {0s 4 &
° # 1s ° # s w4
i 4001 ..m_m
So-"o v-"p an
0G1 ES
)
(=]
a
B =
i3 T
v




v01 01 201 101 o0l g0l 201 101 001 )
IR WrrTrT T 7 UARRES N N AR I R D R AL B A | TTT T T T TITTT T T 71 TITT T 7 T 11 00
S A .
o e G9d * goa s |70
e O.%O €6 + a o l?’o €GH +
00 @ 2va o o"g 0 % o350 zva o 480
— 2Ll O +a3090% o0 4 2l O
126 v 3 v, ted v .
1iv 0 o % 1ivao 'l
# s .© ’ # s,
* 191
+
o} w o} m -
L/ o o 1/7L .
02
v01 g0l 201 101 001 ¢01 201 101 o0l
HarT T T mITrrTr v 0 "wirrre vy MIrTT T T AR HHTTT T i ry mrryre i Dm.ﬁ.i
£ £
+ +
41001 -
G994 » GOd »
£G4 + ged + 10G—
+ evg o + era o
43«&%#8“ 2e3 0 gﬁ@h 2220 o
e 126 v ® M .t ied v
1lv o 1iv o
406
# s # s
5 4001
o--Yo Pp_Yp
061
o ® o o L o o

Figure 120c. Muller’s data in Johnson-King ( left ) and in Patel’s ( right ) models.
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Anderson’s data in Cebeci-Smith model ( left ) and in Rotta’s model with
anisotropy constant T=0.3 ( right ).
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Anderson’s data in Johnson-King ( left ) and in Patel’s ( night ) models.
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Figure 122a. Lohmann’s data in Cebeci-Smith model ( left ) and in Rotta’s model with
0.3 ( right )

anisotropy constant T
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Figure 122c. Lohmann’s data in Rotta’s model with anisotropy constant T = 1.2 ( left ) and
with anisotropy constant T= 1.5 ( right ).
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0.7 ( left ) and in Patel’s ( night ) models.

pissonnette-Melior high Keynolds number data in Rotta’s model with

anisotropy constant T

Figure 124d.

FIGURES




Figure 125. Single hot-wire in the X, z plane at an angle of a with respect to the local
instantaneous velocity projection in the same plane.
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Figure 126. Schematic figure of UV system beams of the LDV set up.: Definition of the
angles and conceptual points used in the reduction.
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Figure 127.

FIGURES

Schematic figure of UW system beams of the LDV set up and: Definition of
the angles and conceptual points used in the reduction.
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Figure 128. Schematic figure of UW system beams of the LDV sct 1p and:  Definition of
the angles and conceptual points used in the reduction.
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Appendix A. DATA REDUCTION FORMULAE

A.1 HOT-WIRE DATA REDUCTION EQUATIONS

Fig 125 shows a single hot-wire in x, z plane at an angle of & with respect to the local instantaneous velocity

projection in the same plane. The effective velocity, which cools the wire may be written as

Up= N/ (Ujp c0s « — wsin a)? + hz(U,-m sin « + w cos a)?

where,

h = multiplication factor, since the flow tangential to the wire cools the wire less than the flow normal to it.

h used in this study was 0.13.

Instantaneous U, velocity may be written as U; = U, + uin.. Expanding the squares in the root and assuming
that absolute value of the sum of the turbulence quantities divided by U.» and multiplied with a factor is
always less than 1, makes it possible to use the binomial expansion. The result, after neglecting the third order

velocity fluctuations can be written as,

Uyr= U4 (1 + 1 (P2 +2P+ L 0?4+ S )
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where,

P=—2m . G=sin(u)(h?— 1)
Uim
= UL : A = cos’a + h?sin’a

F = sin’« + h? cos’a

Furthermore, U,y may be written as ,
Uejf= (Ueﬂ)m + Ue/]-
Time averaging of U,z gives (U y)m,

(Ve = Ui/ (1 + 5 PP+ £ 0Y) M)

in this equation the terms including P? and Q? may stilf be neglected, since they are much less than 1.0. This

leaves,
(Ut m = Ulm Y A

Subtraction of {Uylm (eq 1 ) from Uy gives uy

= U/ A (5 (2P + G/AQ)

which may be squared to yield,

2
: 1 G G 2
Uepr = ,an(T(4P2+47PQ+?Q ))
2
=Au,iJ+Gu,mw+%w2

To find u?, w?, uw at the same point, three successive measurements with different a angles were done, Firs:
two of these measurements were used to find the flow angle, and the mean velocity was measured after the

probe was aligned to this angle.
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A.2 CONFIGURATION OF LDV BEAMS

The UV system which nominally measures the U and V components of the mean velocity vector and
u?, 2, v terms of the Reynolds stress tensor was formed by intersecting the three beams of the system which
were accessed into the tunnel from the side window of the tunnel with a 90.61 cm focal length lens. The
design of the system is such that the beams travel the same distance from the focusing lens to the probe
volume. The conceptual points which are used later on to define the measurement direction and the bisector
direction and the perpendicular direction for each pair of beam are shown in Fig 126. Fig 126 also shows
the directions of the positively measured quantities due to shifting by Bragg celis,which are indicated by

arrows.

The UW system nominally measures the U,W components of the mean velocity and ul, w2, awcomponents
of the Reynolds stress tensor. The access to the tunnel is through the plexiglass floor of the tunnel and the
lens used has 26.54 cm focal length. Fig 127 shows the conceptual points and positive measurement

directions for each pair of beam.

Similarly, the VW system nominally measures the V, W components of the mean velocity and 2, wl, oW
components of the Reynolds stress tensor. This system uses the UV system’s V component measuring pair
of beams, the UW system’s W component measuring pair of beams and a third pair which is necessary to
extract the vw shear stress and which are focused by a 26.002 cm focal lengthed lens. Originally the VW
systern’s all beams were designed to be on the y, 2 plane, but during the reduction of the velocities and stresses
it was observed that very small error due to one beam of the V component measuring pair being out of plane
resulted in different results between UV, VW systems. To take into account this error, VW system equations
were rewritten by assuming that one of the V measuring pair of beams was out of plane. Fig 128 shows the

original design and V measuring beams with including this error.

The probe volume for each pair of beams form an ellipsoid and the dimensions of it can be computed using,

fol

/Y SRR i
d 1 cos¢p ' 2 sing

1
a’=? |U3—U

where,
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Jfo = focal length of the focusing lens

A = wave length of the laser

d = distance between the 1/e? intensity points of the beam at the fens

¢ = half of the angle between the two interse.ling beams ( Fig 18 ), (Durst, Melling, Whitelaw, 1981 ).

In reality, use of the equaticus prove to be difficult due to necessity to measure the beam diameter before

focusing.

A3 LDV DATA REDUCTION EQUATIONS

Once the configuration of the beams are well defined the mcasurement direction unit vectors can easily be
found. This also makes it easier to take into account the sign judgment of the measured quantities which
occur due to shifling of the beams. Unit vectors multiplied by the velocity vector Ui + Vj—’. + Wk give

equations for intantaneous measurements for each pair of beam. These equations are as follows,

UV system ( Fig 126 ) instantaneously measures;

(2-1) pair
U= ;ﬁm‘fo
(1-3) pair
Vi(sin { = y0) = Wil cos { + z,,.) _ A2 y
N2 = 25, sin { + 2 cos {2, sin{a/2) P
(2-3) pair
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a
20 tan( 55 ) + V(in L = Yren) = Wi €05 L+ 2pg,,) A2

. = H 2
\/2 ~ 25in {pgy + 2 €05 {2, + 4 tan’( _“2_1_ ) sin(es/2p

UW system ( Fig 127 )
(1-2) pair

Ujsinay + V{cosa; —1) A2 f

V2 —2cos a - sin(a/2) b

(3-1) pair

Vil — cos ay) ~ W,;sin a, A2 7

V2—2cosa, " sin(ey2) P
(2-3) pair
Usina) + V{ cos x; — cos ay) — W, sin _ A2 5
\/2 — 2 cos a; cos ay sin(ay/2) P
VW system ( Fig 128 )
1 pair
U, sin o, ( sin(err)) + V,(sin { = sin(é + {)) + W,(cos(d + {) — cos {) 212 P
= N D
J2—2cos ¢ + sinzul - sin2¢> sin(a;/2)
2 pair
) @y, A2

Vi sin( 2 ) = Wi cos( 2 )= sin(x,/2) o

3 pair

Appendix A. DATA REDUCTION FORMULAE 454




A2

W,cosT — V,-sinr=mfp

L .
Mean velocities are reduced from the first two equations of each system. After time averaging the equations
" -~

keep the same form. The first two letters, UV, UW, VW on the left-hand side of the following equations show

the optical systems used and Ul, V1, W1 denote the nominal mean quantities measured by these systems.

UV system
uvur=U
UV = V(sin{ — y,.,)— W(cos{ + z,,,)
N2 = 2, sin { + 2 cos {z,,,,
UW system
UWUL = Usinoa; + V(cos a; — 1)
V2~ 2cos &
UWW] = V(1 = cos &y) — W sin a,
2 —2cosay
VW system

U sin a( sin{err)) + V(sin { = sin(¢ + {)) + W(cos(¢d + {) — cos {)
\/2 —~2cos b+ sinza, — sin’¢

VWil =

. %2 )
VWWwl = Vsm(-—z—) - Wcos(—z-)

Eventhough these equations can be solved simultaneously by only taking 3 of these equations which include
3 unknowns, this would be assuming beforehand that in each traverse of the seperate systems the probe
volumes were coinciding and were exposed to the same velocity. To overcome this assumption the necessary
information to be able to solve each two equation was supplied. U velocity component for VW system was
taken as UV system’s U velocity component, thus V and W components from VW system could be computed.
These computed values were taken as the inputs to the UV and UW systems. Therefore UV system uses W
velocity computed by VW and UW system uses V velocity computed from VW system. This was necessitated
since the original design of the systems were done with the assumption that each system would measure the

mean velocities it was designed for. These equations written here were derived after the data was taken.
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After the reduction, it was seen that it was necessary to shift some of the UW system profiles up to have

consistent results. UV system was taken as the base for these shifts since it was much easier to locate the probe

volume on the wall with the naked eye. The maximum shifts necessary was observed to be 0.152 mm.

Reynolds stress components were computed with the same idea in mind, such that only necessary unknowns_
to solve the unknowns of each system were supplied from other systems. The instantaneous velocities in the
9 equations previously written were seperated into mean and fluctuating parts and the squares of the
equations were taken and Reynolds averaging was applied. After neglecting only values such as 0.2% of the
mainly interested quantity that is being considered in that particular equation by the assumption that all

fluctuations are on the same order of magnitude, the equations may be written as follows.

UV system
(2-1) pair
Uvy2 =u’
(1-3) pair
UVV2 = Ap? + A%
(2-3) pair
UVUV = Bju® + Byw? + Byiiv + Byiiw + Bgvw

where,
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. . 2
_ sin{ — 2 sin [new + Pnew )
'™ (2= 2 5in { + 205 [2,,,)
— 2(sin { cos { + sin £2p, = Vaew €05 § = YnowZnew)
1= (2 = 2w 10 [ T 2 €08 {Z,,)

o
DIV =2 ~ 2 5in {Vpg,, + 2 €OS {2, + 4lan2(_2L)

o
41an’(—=-)
Pl
! DIV
($In°C — 2 5in {Ppey + » new)
2= DIV
o
4( tan( —2‘— } sin { — tan(oy/2)Vpew)
By= pIv
o
— 4( tan( —2‘— ) cos { + tan(a;/2)2pe,)
B. = DIV
—2(sin { cos { + sin {2, = Ynew €05 & — PnewZnew)
Bs= DIV

UW system

(1-2) pair
UWU2 = Ap? + A
(1-3) pair
UWW2 = Bw® + Byjrw
(3-2) pair
UWUW = Cpu® + Cw? + Gyiv + Cyiw + Csow
where,
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VW system

Ist pair

2nd pair

3rd pair

where,

sinz(a 1)

A= T " Zcos(ay)
2sino)(cosa; — 1)
A (2—2cosaj)
sinz(acz)
B = (2 — 2 cos ay)
— 2sin ay(1 — cos ay)
B = (2—~2cos«ay)
DIV =2 —2cos a cos a)
sin(x;)
Q=g
sinz(az)
2=7pIv
2 sin &;( cos &} — €OS a3)
3= DIV
— 2sin a, sin ay
Ca= DIV
~2( sin ay( cos &) — cos &)
Cs= DIV

VWV2 = Ay? + A + Aw

VWW2 = B,w? + Bypw

VvWyw = Cpv? + Cw? + Cyw

Appendix A. DATA REDUCTION FORMULAE

458




(sin { — sin(¢ + [))?

A= .2 .2
(2 — 2 cos ¢ + sin“(a;) ~ sin”9)
_ 2sina sin{err)( sin { — sin(é + {))
2- (2—~2cos o+ sin‘\a,) - sin2d>)
_ 2(sin a) — sin(¢ + {))( cos(d + {) — cos {)
3=

(2 — 2 cos ¢ + sin’(a,) — sin’e)
By = cosz( _a;_z )
o

. %2
B3=-~2sm(-2—)cos(-2—)

G = cos’T"
Cy=—2sinTcosT

The left-hand sides of the equations may be used to indicate which quantity is being computed from which
system such as UVV2, 2 of the UV system measurements and VWVW, vw from VW system measurements.
They also show the quantity measured by the systems. In each system’s equations 1st and 2nd serve as input
to the third equation. Yet, since these Ist and 2nd equations involve unknowns in them which have to be
supplied from the solutions of the other systems, an iteration process was applied. It was observed that, a
constant value for each stress term was obtained after 6 iterations. In these iterative solutions, first yw was
computed assuming that iv= 0. This was put as input to UV system which further needed uw, which was
assumed to be zero in the first iteration. These computed v and ¥w values were used as inputs to compute
uw. The normal stresses from each of the three systems used were therefore found individually. Likewise
the U, V, W mean velocity components u?, v, w2, normal stress components are obtained two times, from

different systems and uv, uw, ¥w, are obtained once.

Appendix A. DATA REDUCTION FORMULAE 459




Appendix B. GRADIENT AND FINITE
TRANSIT TIME BROADENING

CORRECTIONS

B.1 GRADIENT BROADENING

The existency of velocity gradient in the probe volume deviates the measured flucuating and mean quantities
from the quantities that would be measured at the center of the probe volume ( George and Lumiey, 1973

).

The formulation given by George and Lumley ( 1973 ) assumes that only one velocity component is being
measured or the orientation of probe volume is such that it is exposed to only one velocity gradient which
is along the major axis of the ellipsoidal probe volume. Even though it was discussed by Durst, Melling and
Whitelaw ( 1981 ) that the correction in this direction for gradient broadening would be sufficient; it was

observed that the formulation was neglecting some of the important correction terms necessary such as U

oy
in UV system measurements.
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The equations for the gradient broadening were rewritten following the same assumptions they made except
that the velocity vector had gradients with in the probe volume. The formulation is as follows: The velocity

vector within the probe volume around the center of the ellipsoid may be approximated by,

I 1 4 v v
V="V-+ e Jodx + _0y lody + e lod2

or this may be further written as

Py - -

e e 14 v vV
V= Vo+‘§|o("""o)+_a}_|o(y“Yo)+Tz|o(Z‘Zo)

where xg , yo . 29 are the center of the ellipsoid and x, y, z are the coordinate axes which run along the axes

of the ellipsoid where major axes is in the y direction ( Fig 18 ).

The light intensity seen by the photomultiplier for example from a single particle passing from different zones
of the probe volume would differ due to the Gaussian distribution of the light intensity with in the probe
volume. This fact results in that in the case of say two particles haviny same velocity passing through the
probe volume at the same time, the particle which has a path closer to the center of the ellipsoid would have
a higher probability for the detection by the signal processing unit. The intensity distribution in the probe

volume can be written as

(x=x)" G-y (=32
201 203 203

I(x,y.2) _ 1
Leenter (21!)3/2(710‘203

1

exp[ -

where ¢, 03, 03 are the probe volume dimensions in the x, y, z directions respectively The space averaged

mean velocity now may be written as

+00 a+00 400

> I * 1]
Vir= Vi, ,)le_z_)

center

dxdyd:z

and the variance as
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cenrer

+~ 00 +o0 +00
- - by e I(x,y. 2
<[V"<V0>]2>=J f [V-< Vmem>]2-(]—x-y—)—dxdydz
o0 Yooe Y-—oo

Since the approximation for the velocity vector used is first order, the mean velocity is not effected by the

gradient broadening.

The integrations result in

Vmean = VO
The variance however is effected by the gradients,
- 2 - 2 - 2
. d 2 d 2 av . 2
vanancez(—a?)o i + (—6_) gy + (—a-z—; o3

The formula shows that if the velocity measured was only U which is in the direction of x, the broadening

of variance would be

2 2
) . au 2 1% 2 au 2
variance broadening=>( o )0 o)+ ( 3 )o o)+ (—37 )0 o3
Since LDV measures quantities perpendicular to the fringes, the formula derived was used to correct the

turbulence quantities measured by each systems 3 pair of beams.

To be able to make most use of the gradients that can be computed and at the same time to know which
terms are neglected; first of all the complete broadening correction terms were written and aflerwards, the
gradients different than in y direction were neglected. This was done by writing the nnit vector in the bisector,
in the measurement direction and in the direction perpendicular to these unit vectors for the 9 pair of beams

used and using the relation

dd -
T = Vo
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whei¢ ¢ stands for tne measured mean velocity by each pair and 7 for the unit vector in consideration. Once
threc gradient terms for each pair of beams were computed they were mulliplied with the necessary
dimensions which apply to the each direction in consideration to find the gradient broadenings in varianccs.

The unit vectors for each direction couid be written with the conceptual points defined before.

The probe volume dimensions, since there was not a prescribed formula to compute the focused beam
diameter accurately was defined by trving the available discussions and deciding on the beam diameter to

be the rost consistent one with in the data sets.

B.2 FINITE TRANSIT TIME BROADENING

CORRECTION

Finite transit time brodaening results in due to the finite size of the probe volume; and each particle need to
stay in the probe volume only the time to traverse it. The signal generated by the particles passing the probe
volume becomes uncorrelated to the signal first generated when all the particles pass through the volume.

This results in a broadening ( George and Lumley ).

Broadening correction described in Durst-Melling-Whitelaw 1981, assumes that the flow direction is along
the minor axis x1 of the probe volume and the broadening in the Doppler frequency of the signal accordingly

was given as

U

T V2o

In the present study this broadening was seen to be not enough to explain the broadening existed at the

boundary layer edge especially for the UW and VW systems’ u’ and w’ component data.
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The necessary corrections to be applied to the profiles were found after the probe volume dimensions for each
pair of beams were found. The correction suggested by George and Lumley was replaced by an empirical

formula in the

(U*+ V4 wii?

L - x (co:tant)
Vot c% + a%

form, since the transit time shortens with the other components of the velocity vector.

The constant multiplier in the broadening term was found by matching the fluctuating velocity and shear
stresses of hot-wire and LDV data at the last point of the hot-wire profiles. Once the constant was found 1t
was kept same further down in each profile. Since the HW measured u?, w, & stresses the constants for the
UW system data were easily found. The constant for the vw stress measured with the VW system was kept

same as the constant for u? of the UW system.
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Appendix C. TENSOR TRANSFORMATION

AND PARABOLA FITTING PROGRAMS

C.1 TENSOR TRANSFORMATION

The tensor transformation used to find the shear stresses in different coordinate systems in this study is the

one described in Frederick and Chang, 1972. The directic~ >osine matrix used to obtain the components

of the tensor in the free-stream and normal stress coordinates is given by

cos(x) 0 cos(n/2 + «)
a;= 0 0 0
cos(nf2 —a) O cos(a)
and the components of the tensor in these coordinates is found by
rr: = anaijnj

in which a positive rotation is in the counter-clockwise direction.

The program used is as follows:
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Tensor transformation
Asignment of the rotation angle

INPUT “FREE-STREAM ANGLE (positive for the RHS profiles) ", ALFA
Forming the direction cosine matrix

A(1,1)= COS(ALFA*PI)
A(1,2)=0!

A(1,3)= COS((90+ ALFA)*PI)
A(2,1)=0!

A(22)=1!

A(2,3)=0!

A(3,1)= COS((90-ALFA)*PI)
A(3,2)=0!

A(3,3)= COS(ALFA*PI)
T(1,1)= U2A(K)

Forming the initial tensor to be transformed

T(1,2) = UV(K)
T(1,3)= UW(K)
T(2,1)= UV(K)
T(2,2)=V2(K)
T(2,3)= VW(K)
T(3,1) = UW(K)
T(3,2) = VW(K)
T(3,3) = W2(K)

tensor transformation

FORI=1TO 3

FORJ=1TO 3

SUM=0!

FORL=1TO3

FORM=1TO3
SUM=SUM+A(L,L)*A(JM)*T(L M)
NEXT M

NEXTL

TT is the transformed tensor
TT(1JK)=SUM

NEXT J
NEXT I
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C.2 PARABOLA FITTING

Least squares parabola fitting routine used in several flow gradient and data smoothing computations is given

below. Program fits a parabola to S points in the y = @x’ + bx + ¢ form and computes the a,b and ¢

coefficients.

--

Least-squares parabola fitting program

V1=0:V2=0:V3=0:V4d=0:R1 =0:R2=0:R3=0
FORI=1TOS

Vi=V1+XPAP'n*

V2=V2+ XPAR(])®

V3=V3+ XPAR(I)

Va=Va+XPAR() A

R1=R1+YPAR()"XPAR(N?

R2=R2+YPAR,:,"XPAR()

R3=R3+YPAR(l)

NEXT I

IF V4=0 OR R3=0 THEN PRi:.T “THERE IS DIVISION WITH ZERO"

IF V4=0 OR R3=0 I'HLN GOTO ( RETURN STATEMENT LINE NUMBER )

CC= ((R3*V2-R2*V3)*(V1*V1" ~*V2)-(V1*R2-V2*R1)*
(V2*VA-V3I* V) ((VI*V3I-V2oV2, - 70 Vasy3)
-(V2*V4-V3*V3)*(VI*V4-VIV2an

BB=(R2*V]-R1*V2 CC*(V2*V] V3*VI)/(VI*V3-V2*V2)
AA=(R1-BB*V2-CC*V3)/V1l
RETURN
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Appendix D. DATA FOR PRESENT WORK

The data of mean velocity, stress and pressure obtained in the present study are presented in two 5.57, 360
KB diskettes. The first diskette of the two data diskettes contains the laser-Doppler-velocimeter data in the

LDV directory and the time mean static pressure coefficient data in the PRESSURE directory.

The LDV data, as explained in Chapter 1I, are obtained by the Swept Spectrum Analyzer and Burst
Spectrum Analyzers. The results of the uncertainty analysis which was explained in Chapter Il are also

presented as part of the data.

The files are named starting with * LDV “ to denote the data are obtained with LDV. The subsequent
numbers show the stations the data is taken. The extensions "TC", "FS”, “N§”, designate the different
coordinate systems in which the data is presented. TC, FS, NS stand for the Tunnel coordinates , the

Free-stream coordinates and for the Normal stress coordinates, respectively.

In the files, at the first 15 lines several paramsters deduced from the data and the parameters of the

measurement conditions are given. 16th line was left blank to separate the data from these parameters.

The data at each point of the profiles consist of the raw data and the derived quantites from the raw data.

First line for each y location point in the profile contains

y, U, V, W, U uncertainty, V uncertainty, W uncertainty, u?, v2, w?, uv, uw, ¥w, u’ uncertainty, v’ uncertainty,

w’ uncertainty, iv uncertainty, 4w uncertaint.. VW uncertainty
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y location in each profile is given in inches.

U, V, W, mean velocity components and the uncertainties on these quantities are given as

nondimensionalized with the reference velocities.

u?, v2, w2 uv, uw,vw Reynolds’ stresses and the uncertainties on the shear stresses only are

nondimensionalized with the square of the reference velocities.

Instead of defining the uncertainties for the normal stresses, the uncertainties for the fluctuating velocities are

given. The uncertainties for the normal stresses can be found by using

-— — 2 — 2
uncertainty of ul = [/ u? + u') +(\/ u? - u') ]2

The uncertainties of the fluctuating velocities are nondimensionalized with the reference velocities.

The second line of the data for the same y point contains the N, anisotropy constant, A;, Townsend's
Structural Parameter, and also the Flow angle, the Flow Gradient Angle and the Shear Stress Angle in
degrees; in the order they are mentioned. These definition and discussion on these parameters are presented

in Chapter 111 of the present study.

The directory 'PRESSURE’ contains the time mean pressure coefficient data taken with Scanivaive and an
inclined manometer. The 4 files in the directory are named as, “ON”, “WALL", "FAR", and "NOSE", to
denote the measurements on the wing, on the wall where the body sits, on a line at x/t=3.17 to see the
blockage effect of the body, and detailed measurements close to the nose of the body on the wall, respectively.

The extension “CP” is used to indicate that the data files are containing pressure data.

In the files, in the first 5 lines some information about the flow conditions that the measurements are carried
out are given. Next line is left emtpy. 7th line give the title of the parameters measured. Next lines contain
the data in x/t, y/t, z/t, Cp, order. The term 't" denote the maximum body thickness ( ¢ = 2.824 inches ).
The pressure coeflicients were computed using the C, = p — p,,s/po — presrelation, as described in the Chapter

11. The discussion about the pressure data may be found in the Chapter 111 of the present study.
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The data presented in the second diskette are of the hot wire measurements made on both sides and upstream

of the wing.

The files are named beginning either with “ LHS " or * RHS “ or ” UP “ to denote the location of the data
taken. ” LHS " denote the lefi-hand side of the wing, and " RHS " denote the right-hand side of the wing and
" UP ” denote the 0.75 chord upstream of the wing measurements. The subsequent numbers show the station
numbers where the data are taken. The left-hand side files are numbered in increasing order proceeding
upst-eam, and the right-hand side files are numbered in increasing order proceeding downstream. The 0.75
chord upstream profile numbers increase in the +z direction. The right-hand side hot wire measurements
were made at the same station locations of the Laser Doppler Velocimeter measurements. The same numbers
for the right-hand side and for the LDV files show the same station locations. The data for each group are
presented in the same named directories. The extensions “ TC *, " FS *, NS “, are used to designate the

coordinate system the data are presented in.

In the files first 6 lines give the location of the measurements and the flow conditions. Next 2 lines show the
title of the measured quantities. In the rest of the files, data are given. The data consist of the y location of
the measurement in inches, U and W components of the mean velocity vector nondimensionalized with the
daily reference velocity, the Flow Angle in degrees, and the «2, w? normal stresses and ww -(1)*kinematic
shear stress nondimensionalized with the square of the reference velocity. Detailed discussion on these

quantities may be found in the Chapter 111 of the present study.
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