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1.0 INTRODUCTION

1.1 NEED FOR EXPERIMENTAL DATA

The present study was directed towards experimentally investigating the characteristics of an

incompressible three-dimensional turbulent boundary layer ( 3-D TBL ) generated by a

wing-junction flow. The existence of a Law-of-the-Wall velocity profile was extensively studied with

the aid of some existing 3-D TBL data. The validity of the turbulence models for 3-D TBLs was

tested within the limits of the available data.

As pointed out by Bradshaw (1987), the study of the effect of the three-dimensionality of the flow 0

on the turbulence structure still necessitates further reliable data sets which include all terms of the

Reynolds stress tensor. Previous reviews on the available 3-D TBL data were made by several

authors, including Johnston (1976), Fernholz and Vagt (1982), Anderson and Eaton (1987), Van

Den Berg ( 1987 ).

The necessity and importance of the quantities to be measured and how the data sets would be

qualified to be useful was discussed in Van Den Berg ( 1987 ). Van Den Berg pointed out three
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important aspects: the reliability of the data, the necessity of sufficient data to make the calculations

possible, and the flow studied having application in real life. The reliability or consistency of data

could be verified by examining the Reynolds shear stresses outside the viscous sublayer but very

near the wall to see if they extrapolate to the skin friction value measured, by checking if the global

flow laws such as the momentum integral balance is satisfied or not, and by using different

experimental techniques. The second aspect questions the completeness of the data for

computations. Data sets which document the Reynolds number of the flow, the initial conditions

including the turbulence quantities along the initial line where the computations start, the pressure

distribution on the wall closely enough so that the pressure gradients can be computed and the

necessary boundary conditions for the computations, were seen as adequate. Since the objective

of the measurements is to check the validity of the empirical assumptions which are used in the

computational methods and since these empirical assumptions have only limited validity, the

experiments should be designed by keeping this in mind. This third aspects imposes the conditions

on the experiments that,

* the inital turbulence properties of the shear layer in experiment should be similar to those flows

encountered in engineering practice,

* Rea of the measurements should be greater than 5000,

* Mach number should be in the correct range,

* the pressure gradient parameter A = (bl/q) x (aplx) should be on the order of magnitude

encountered in the real life flows , and

614)-)) the flow development rate should be comparable with that of the flows used in practice.

In the rest of the Chapter, first the governing equations of the fluid flow for a Newtonian fluid will

be given, then the turbulence closure problem will be addressed and some general rules and

methods to develop these models will be briefly discussed. The available turbulence models used
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for the mathematically closure of the of equations, assumptions made for each model and the

quantities to be measured for the further development of these models are also going to be pointed

out.

1.2 REVIEW OF THE GOVERNING EQUATIONS

For a Newtonian viscous fluid with constant density and viscosity, the momentum equation in the

divergence form, neglecting the body forces, buoyancy, rotation and streamline curvature effects,

can be written as

1 apUi O(puiu) 1 p A a2 U!
at + -a~
T Xl  ] "P a li  P axl 

2

( Bradshaw, 1978 ) or the ensemble-averaged version is

au Ltq 1 02U1 02-17-. ,2 2a t -ax, 1  ax, aU 1U; (I)

The transport equations for the Reynolds stresses can be written by taking the x, component of the

instantaneous Navier-Stokes equation, and multiplying it with the u instantaneous velocity, and

adding the instantaneous Navier-Stokes equation written for xj component multiplied by the 14

instantaneous velocity, and then applying ensemble averaging to read as
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at 0 -- 11x1
convection production

+ -P1 (-y + u
p, 0,. ax!

redistribution

a2_a (2)
Fuuu) P ax!" ' ax.' +

ax, a x

turbulent diffusion pressure diffusion viscous diffusion

- 2v a au
ax, ax,

viscous dissipation

( Launder,Reece and Rodi, 1975; Schumann, 1977)

The turbulent kinetic energy ( TKE = u, u/2 ) equation can be obtained by multiplying the

instantaneous Navier-Stokes equation with the instantaneous velocity z4 and applying

ensemble-averaging to the resultant equation and then subtracting the kinetic energy of the mean

flow:

a _ a 1 -1+ u a
at- 2-ax UUl) + Uj (-iuiud _ (P- + uu-i~ - Vul( ax±

convection diffusion

Wlj ,x ax, (3)
production

2 ax axi ax1  axi
1 1 Ou

viscous dissipation

(Tennekes and Lumley, 1972)
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The dissipation (c) equation may be written by differentiating the equation of motion for 14 with

respect to x, and multiplying through by 2v )u After averaging the equation can be written as

ou0 2 ju. au a u ou k  u

a& + o (uk (.x ) 7 ( p
at k  _ ax axx lx 19x t 

)x ax
+ aX _ U 8u1 -- X O( )

I a5 ! X (U kkp au )2aXjj a , 4

I aux ui

2 x kX ax,3x axk
2 8 xk ) - ;- ))- •(~-

(Daly and Harlow, 1970)

1.3 REVIEW OF SOME TURBULENCE MODELS

The main problem in solving these equations lies in the modeling of turbulence. The exact 3D,

unsteady Navier-Stokes equations can not be solved yet due mainly to limited capacity and speed

of present computers which are necessary in taking into account the fine scales of the flows. Since

the Reynolds-averaged equations have more unknowns than the number of equations, the

approach to overcome the difficulty hai been to develop new equations for the unknowns in terms

o0. the other unknowns so that the problem can be mathematically closed.
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The methods of analyzing the turbulence for modeling was briefly given by Tennekes and Lumley

(1972). These methods include dimensional analysis, asymptotic invariance and local invariance.

Dimensional analysis was explained as useful in the cases where it is plausible to assume that there

are only a few independent variables and parameters which control the structure of the turbulence.

When the Reynolds number approaches infinity, the turbulent flows were described as almost

independent of viscosity, and the asymptotic behavior observed was shown as leading to similarity

in flows with Reynolds number being equal. The last method need- the assumption that turbulence

time scales are small enough to permit adjustment to gradually changing environment. Once this

condition is satisfied or assumed, it may be possible to accept that the turbulence is dynamically

similar everywhere if nondimensionalized with local length and time scales. Even though this

method seems very attractive in 3D flows this condition is rarely satisfied due to history effects.

The general rules of constructing models still seem to be unclear, as pointed out by many authors.

Some general rules were suggested by Lumley ( 1983 ). These may be summarized as

a) The models should have the same tensor structure as terms they replace, to make transformations

to other coordinate systems possible.

b) The symmetry in the various indices for t uj modeling should be ensured and, to satisfy the

incompressible continuity equation the moments formed with m-,, should Vanish.

c) The realizability conditions should not be violated. These conditions for the Reynolds stress

tensor were studied by Schumann (1977). The conditions

R", >! 0 ,Oop a 0 P

R2 < RRgf for a fl (5)
det(Rp) > 0

in which the summation convention is not used ensure that the kineti- energy of turbulence should

be greater than zero and the correlation coefficients should be less (,- equal to 1.
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The currently used models for turbulence closure were reviewed by several authors. (Rodi, 1982;

Lakshminarayana, 1986; Humphreys and Lindhout, 1988 ). According to Lakshminarayana (1986)

they are classified as:

a) Zero equation models, such as the algebraic eddy viscosity and mixing length models,

b) One equation models, such as the k model

c) Two equation models, such as the k-&

d) Algebraic Reynolds stress models

0
e) Reynolds stress models

f) Large eddy simulation

Also, the formulation of the various models and 11eir advantages and shortcomings were described

in that paper.

For detailed modeling and development of the models, several books and review papers may be 0

referred to: Launder and Spalding, 1972; Cebeci and Smith, 1974; Bradshaw, Cebeci and Whitelaw,

1981; Rodi, 1980, Launder, Reece and Rodi, 1975; Lakshminarayana, 1986; Humphreys and

Lindhout, 1988.

In the present study, the difficulties in terms of the measurements necessary for the modeling are

pointed out. The models are listed in order of increasing complexity.
0

a) A zero equation model relates the turbulent stresses to the mean quantities in the

-pui-i = p v( L1, j + L{, 1)

2,m S1  
(6)Vt = 2Lm /JSt
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form where

S -(.. + L.,i) and Lm = mixing length

( Lakshminarayana, 1986 )

The idea behind this model is that the turbulent shear stresses could be related to the mean flow

quantities in a similar fashion as in laminar or molecular stresses. But, since the eddy viscosity is

not a property of the fluid, but of the flow and also changes from point to point in the flow, it was

seen as not suitable for the closure of turbulence (Tennekes and Lumley, 1972 ). The necessary

assumption to derive equation ( 6 ) is that the turbulence energy produced at each point in the flow

is dissipated with the same rate, or in other words that the flow is in equilibrium neglecting history

effects. Another disadvantage of the model is observed when buoyancy, rotation or streamline

curvature are taken into account. For these effects, the model can only be devised in an entirely

empirical way ( Rodi, 1982 ). Most of the available computational schemes tend to use this model

(Humphreys and Lindhout, 1988 ) due to its programing simplicity and speed. However, the results

are inadequate or are only in qualitative agreement with Reynolds shear stress data ( Kline,

Cantwell and Lilley, 1982a; Kline, Cantwell and Lilley, 1982b; Marvin, 1983; Wilcox and Rubesin,

1980; Cebeci, 1977; Baldwin and Lomax, 1978; Visbal and Knight, 1984; Kirtley and

Lakshminarayana, 1985; Sugavanarr, 1985, Horstman and flung, 1979; Kussoy, Horstman and

Viegas, 1980 ).

The eddy viscosity was further developed by several researchers to take into account the differences

between the measured and predicted shear stresses. The anisotropic eddy viscosity of Rotta

( 1977 ) , Rhyming and Fannelop ( 1982 ), and lumphreys ( 1986) used were seen to be calculating

some flows rather well and some rather poorly ( Humphreys, 1986; Cousteix, 1982; Van Den

Berg, 1988 ).
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b) To remedy the lack of theoretical base that the eddy viscosity model can only be empirically

defined or its being only a result of phenomenological reasoning by analogy to laminar stress so that

the turbulent quantities are not used in the development, and difficulty in defining the mixing length

in some cases, the modeling of turbulent kinetic energy was introduced. Eq. (3) describes the

transport equation for the turbulent kinetic energy. Even though the TKE is the energy of the

turbulence, and it explains how the energy is distributed among various terms so that it gives more

insight to the understanding of turbulence, it still needs to be modeled or related to the shear stresses

to close the mathematical formulation. The modeling necessitates quantities like the pressure

fluctuations, triple correlations, or derivatives of the fluctuations to be measured and eventually

related to shear stresses themselves. Two of the models which stand out are briefly discussed below.

Bradshaw (1967) chose to use the formulation in which the dissipation and diffusion are empiricai

functions of y/6 and kinematic shear stress - iij, and the ratio of shear stress to kinetic energy is a

constant, where y is the direction of the largest gradient and 6 is the boundary layer thickness. The

functions were empirically defined with the use of the two-dimensional data on a flat plate. He

further solved this equation together with the momentum and continuity equations and previously

defined functions for the development of the shear stress.

Another approach to relate the shear stress to the turbulent kinetic energy was given by

Prandtl ( 1945 ) and Kolmogorov ( 1968)

Vt = c ,jkL

where L is the dissipation length scale and C is a constant. Dissipation, with dimensional reasoning

is usually modeled as

c 3/2
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and diffusion is modeled as a gradient of k. The representation of L length scale was seen as the

most defective part of the model and Rodi ( 1980 ), tried to extend it. The difficulty arises due to

defining L in complex flows.

c) Work towards overcoming the difficulty of defining an appropriate L directed researchers to write

an equation for the L length scale itself. But, since the transport of a length did not have any

physical meaning, the equation for the dissipation itself was used with the relation Cn k--2-. The c
L

equation was given as eq.(4). At high turbulent Reynolds numbers (Re, +), the equation could

be further simplified to read as,

Da[_u.' aui 2 A ap' iu] Oui 0u auk a 2 ui 2

Dt aXk E uo) P x x i xk ax ax I aXkaX]

where,

Ou 2

ak

Launder, Reece and Rodi, 1975)

The difficulty of modeling results from the lack of experimental data for the terms on the right-hand

side of the equation. Pressure fluctuations within a flow can not be measured sufficiently well with

the available experimental techniques. Simultaneous velocity fluctuation gradients and second

derivatives may perhaps be measured if difficult experimental techniques are applied, but they are

not yet available. The validation of the model therefore is done comparing the computed & with

the measured c from available data; and from theenergy balance. The assumptions applied makes

the model equation highly empirical in character. The discussion on the details of the modeling

can be found in ( Launder, Reece and Rodi, 1975; llanjalic and Launder, 1972 ).

Once the k and are computed, the shear stress in this model can be computed from relations
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ox axi 3

and

k 2

A thorough survey of the application of the model for free shear flows can be found in ( Launder, 0

Morse, Rodi and Spalding, 1972 ). Problems concerning the near wall character or the c, constant

were further addressed by Bernard ( 1986 ) and Jones, Launder ( 1972, 1973 ). The applicaticns and

limitations of the model were thoroughly discussed by Lakshminarayana ( 1986 ). The predictions

with this model for 3-D flows was found to be poor due to the pressure strain term, the assumption

of isotropy for e, the eddy viscosity, and the low Reynolds number formulation in the near-wall

vicinity. Still, the application of the model for wing-body junction flow gave better predictions than 0

the algebraic eddy viscosity formulation ( Gorski, Govindan and Lakshminarayana, 1985 ).

d) The k-t model depends on an isotropy assumption and that the turbulence can be represented

by one velocity scale l-. This seemed to be unsatisfactory for complex flows where the eddy

viscosity would depend on the stress ( Rodi, 1982 ). This is observed in 3-D boundary layer flows

and is an indication that the u stresses would develop separately. This necessitates that the

transport equation for the i7ij. given as eq.(2) to be included to the set of equations to be solved.

For thib reason, the redistribution, diffusion, viscous dissipation terms need to be expressed in terms

of the other unknowns. Due to the terms to be measured this does not seem to be a trivial problem

(Bradshaw, 1987 ). The model was called as "Algebraic Reynolds stress " to emphasize that, the

equations for the transport of shear stresses after the simplifications are algebraic expressions. As

described by Rodi, if the diffusion and convection terms could be related in the kinetic energy of

turbulence, then the transport equation !or the stresses would yield algebraic expressions. This
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was done by assuming the proportionality of 1i7 to k. This model was also called as an extension

to the k-c, model since it still uses the k and c equations in conjunction with this equation.

e) Further extension of the turbulence modeling of the Reynolds stress equations can be found in

Launder, Reece and Rodi ( 1975 ). The superiority of their model comes from using more

generalized equations for the pressure strain and diffusion terms. The study of Abid and Schmitt

( 1984 ) on a 3-D boundary layer under infinite swept wing conditions revealed that the flow

characteristics could be better predicted with increasing degree of complexity for the turbulence

closure. At station 7 of Van Den Berg and Elsenaar ( 1972 ) data used in that study, at the points

where the maximui stresses were observed, while 0 stress was overpredictcJ by 67%, 37%, 13%

with the algebraic eddy viscosity, k-&, and the algebraic Reynolds stress models respectively, the

models overpredicted the - v- kinematic stress as much as 130%, 86%, 44%.

1.4 OUTLINE OF THE PRESENT WORK

In the present study, a three-dimensional boundary layer ( 3D TBL ) formed due to a cylinder

protruding from a plate was studied. The pressure, skin-friction, mean velocity, fluctuating velocity

and Reynolds stresses were measured and used in the investigation of the existence of a

Law-of-the-Wall velocity profile for three-dimensional ( 3D ) boundary layer flows and in

examining the validity of some turbulence models in the prediction of the turbulence structure of

these types of flows. As summarized in the previous sections, the development of the turbulence

models still necessitates reliable, complete data sets of flows which are encountered in engineering

practice. This study was intended to satisfy all the conditions by suggested Van Den Berg ( 1987 )

and discussed in section 1.1 above. The test flow is encountered in many Jows of enzineering

interest, for example in the wing/body junction on aeroplanes and the ship appendage and hull

junction on submarines. The reliability of the data was guaranteed by taking the velocity and stress
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measurements with two different techniques, namely the laser-Doppler velocimetry and hot-wire

anemometry techniques. The boundary conditions and the characteristics of the approaching

boundary layer to the wing were established. Pressure data were taken at closely enough spaced

locations to obtain pressure gradients from the data. The flow studied had a Rea of =5936 on the

plate at 0.75 chord upstream of the body on the centerline of the tunnel. Another important aspect

of the present study is that it is the unique data set which documents the flow characteristics on a

line which is found by translating in the direction of the mean velocity vector component parallel

to the floor at a point in the boundary layer where u2 is maximum. Since most of the turbulent 5

kinetic energy of the flow is stored in the u2 normal stress, this study gives a chance to investigate

the effect of the turbulent kinetic energy of the flow on the flow characteristics. Compared to the

previous measurements of wing/body junction flows, the present work differs mainly due to the use

of both LDV and hot-wire techniques for the measurements and for the locations of the

measurements being directed to investigate the effect of the turbulent kinetic energy in the flow

development. The previous studies of Shabaka ( 1981, 1979 ) and Mc Mahon, Hubbarrt and

Kubendran ( 1982 ) dealt with constant thickness bodies with 6:1 and 3:2 elliptical noses,

respectively. Shabaka measured the double and triple velocity correlations at 3 different streamwise

planes and the fluctuating velocity and mean velocities at 8 streamwise planes. He studied the

complete balances for the turbulent kinetic energy and momentum equations. Mc Mahon, 0

Hubbarrt and Kubendran used horizontal and slanted hot wires supported on needles which

projected into the boundary layer from the flat plate that the body was on. The study included all

six Reynolds stresses in 2 streamwise planes. The same shaped symmetric body as used in the

present study, 3:2 elliptical nose/ NACA 0020 tail, body was tested by Merati, Mc Mahan and Yoo

( 1988 ), and by Dickinson ( 1986 ). In those studies Merati et al. used the same two hot-wire

probes as used by Mc Mahon et al., and measurements of all Reynolds stresses at 5 streamwise

planes were made. Dickinson used X configuration hot films and made the measurements of all

Reynolds stresses except the - iI at 7 streamwise planes. Those studies were directed mostly

towards understanding the nature of the wing/body junction flow globally and investigating the size

of the horse-shoe vortex formed around the body and the wake flow. In all these earlier studies,
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the prongs which held the hot-wire and hot-film sensors produced interference with the flow. The

main goal was to investigate flow features along the selected x-z path mentioned above, not a global

characterization as in earlier studies. Such a path resembles the one studied by Dechow and Felsch

( 1977a ) in front of their cylinder/flat plate junction flow, although their path was along a

free-stream streamline.

The experimental techniques and, the measurement results and associated uncertainties may be

found in Chapters 2 and 3, respectively. The discussion on the quantities which question the

existing assumptions on the structure of 3D boundary layers is the subject of chapter 4. Research

on the Law of the Wall for 3D boundary layers which includes comparison of the nine existing 3D

Laws of the Wall with nine data sets is discussed in Chapter 5. Comparison of the data of shear

stress magnitudes and directions with the predictions of the eddy-viscosity models reveals the

shortcomings of the models in 3D flows. The comparison of four different models with 8 existing

data sets is presented in Chapter 6. Chapter 7 is contains to the conclusions of this study. The

figures 9 to 58 present the data taken in this study. The flow characteristics of the present flow were

investigated with the help of figures 59 to 90. The figures 91 to 111 cover the analysis of the

Law-of-the-Wall research. Examination of the selected Algebraic eddy-viscosity models was carried

out with the aid of figures 112 to 124.
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2.0 EXPERIMENTAL TECHNIQUES
0

2.1 INTRODUCTION

The measurements in a 3-D turbulent boundary layer created by a wing-body junction flow

performed in this study include single hot-wire measurements at 39 locations and Laser-Doppler

Velocimeter measurements at 8 locations with two different data processing units. The wing used

was a 3 : 2 elliptical nose, NACA 0020 tail symmetric profile which had maximum thickness of 7.17

cm and chord length of 30 cm and heigth of 22.9 cm. The measurements were carried out at a

nominal speed of 27 m/sec and Reynolds number of the flow based on the momentum thickness

at 0.75 chord upstream of the body on the centerline of the tunnel was = 5936. The main objective S

of these measurements was to observe how the flow characteristics changed in a 3-D pressure-driven

boundary layer type flow along a line whose x-z direction is given by the U, W velocities where u'

normal stress is maximum. The measurement locations can be seen in ( Fig 1 ).

flot-wire measurements done were aimed to find this line and to compare with the LDV

measurements, besides revealing some other flow quantities. They were done at 18 locations on the

left side of the model, looking upstream ( Table I ). The location of the first profile was chosen
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with the information gathered from the oil-flow visualization pictures ( Fig 2 ). The pictures will

be discussed in Chapter III of the present study. The equations used for the hot wire data reduction

are derived ( Appendix I ) assuming that the velocity component perpendicular to the wall,

therefore, V mean velocity component and v' fluctuating velocity component are negligible.

Therefore, the point was chosen such that the governing equations of the hot-wire reduction

programs would not be violated throughout the determination process of the expected line but yet

the effect of the pressure on making the flow 3-D would be felt as much as possible. The most

downstream point was the first point. The next 17 points were found by finding the direction of

the maximum normal stress point obtained in each profile and translating in the direction of the

mean velocity component parallel to the wall at that location for 0.5 inches. At some locations near

the leading edge or ahead of the body where the effect of three dimensionality started diminishing,

the distance translated was different than 0.5 inches. The measurement locations were also away

from the region where the bimodal characteristic of the velocity field is seen ( Devenport and

Simpson, 1987a ). Another 12 profiles of hot-wire profiles 0.75 chord upstream of the body on a

crosswise line were taken to define the inlet boundary conditions of the flow ( Table 2 ).

Skin friction at the wall was obtained by Alinger ( 1990 ) using a laser interferometer technique at

the same conditions. The use of the technique supplies the wall friction independently which is

crucially important in the Law-of-the-Wall research in 3-D flows.

Time averaged surface pressures were obtained by a Scanivalve and a pressure transducer couple,

and flow visualization on the tunnel floor was done by using a mixture of TiO2, oleic acid, and

kerosene.

Purpose of the 3-D LDV measurements were to fird the flow characteristics. The experimental

data gathered includes the mean velocities and all six components of the Reynolds stress tensor.

The LDV measurements were done on the right-hand side of the body at the symmetric locations

of the previous hot-wire points but only at 8 points ( Table 3 ). To check the symmetry of the flow,

before LDV measurements, 7 more hot-wire profiles were taken ( Table 4 ). The gathered data
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from pressure measurements, surface oil-flow visualization patterns and from these hot-wire

measurements shows that the flow around the body is symmetric.

2.2 OIL-FLOW TECHNIQUE

The oil-flow technique was used to reveal the limiting streamline or surface skin friction line

structure on the surface. Self-adhesive black glossy plastic sheet was laid on the surface ( Frisk

Coverseal from Cambridge University, England ). A mixture of kerosine, TiO2 and oleic acid was

applied on this surface and several runs with different percentages of components were tested to

obtain the most clear picture. It was observed that a lesser amount of TiO2 resulted in lower

contrast but finer structure could be seen more clearly. The mixture used in this study is 20 ml of

TiO2, some amount of kerosene so that the total adds upto 55 ml and 9 ml of oleic acid. This was

different than the original ratio of 5 ml TiO2 , 15 ml of kerosine, 1 ml of oleic acid proposed by

Sutton ( 1985 ). Once the mixture was applied, the tunnel was run until there was not any visible

movement of the mixture, then the plastic sheet was taken out of the tunnel and further dried with

a hair dryer. To be able to make photocopies directly from the original sheet, painter's fixer was

used to fix and preserve the picture obtained.

0

2.3 SKIN-FRICTION INTERFEROMETER

The wall skin-friction magnitudes and directions used in this study were measured by K. Ailinger

( 1990 ) using the skin-friction interferometry technique described below.
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The technique relates the thinning rate of an oil film applied on the surface to the skin friction at

that point by using the lubrication theory for thin films. The thinning rate of oil wa- found with

the use of an interferometer using a 5 mW Helium-Neon laser and photodiodes ( Monson, Higuchi,

1981 ).

The laser beam directed with an angle close to the normal angle to the surface of the oil applied to

a body surface reflects back from that body surface and also from the surface of the oil. Once the

two reflected waves interfere with each other either constructively when they are in phase or

destructively when they are out of phase to form interference fringes, which is directly related to the

thickness of the oil, the variation of the intensity in time can be used to measure the thinning of the

oil in time. But, since the thinning of the oil film is a linear function of the shear stress acting on

it, this information could be used to find this stress. As discussed by Monson, the thinning rate and

thus the shear stress may be found easier if two beams with a known spacing in between them are

*O used to measure the thinning rates at two points on the oil surface.

Dow-Coming ( 50 centi-Stokes ) oil was laid on the floor with a razor blade and the useful data

were taken after it thinned down to 20-50 microns. The beams were directed with a spacing of 4.5

mm between them and they were at 1.5 to 2 beam spacing behind the film leading edge. The

direction of the stresses were found by measuring the stresses in 3 different selected directions, by

rotating the two incident beams so that they would focus on the defined directions on the oil. Each

of these measurements were repeated 3 times, and the direction and magnitude were found by

averaging these values. More detail on the sources of difficulties and solutions to them can be found

in Ailinger ( 1990).
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2.4 PRESSURE MEASUREMENTS

The pressure measurements were made with a J type Scanivalve and a conventional inclined

manometer. The locations of the measurements both on the body and the surface are shown

in. ( Fig 3 ). The pressure taps used were 1 rn in diameter.

The pressure coefficient was calculated using

(P- Pref)
(Po -PRe)

The reference dynamic head and the reference static pressure were obtained from the pitot static

tube ( United Sensor Probe, type PAC-8-KL ) located at 1.55 m downstream of the tunnel

entrance.

2.5 HOT-WIRE TECHNIQUE

The single hot-wire technique used in this study was described also in Devenport and Simpson,

( 1986 ). The technique is designed to measure U and W components of the mean velocity and

u2, w2, W components of the Reynolds' stress tensor with the assumption that V and v' are small

compared to the velocity magnitude in the x, z, i.e. in (U, W) plane ( Fig 4 ). For the flow studied,

this assumption restricts the use of the technique away from the wing-body junction, since either

flow ahead of the body separates and/or flows backwards and since the flow wraps around the wing

close to the body to form a horse-shoe vortex producing non-negligible V and V mean and

fluctuation velocity component. The reduction equations used are presented in Appendix I. The
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probe used was a boundary layer type probe ( TSI 1218T1.5 ). The tungsten wire of the probe was

4tim in diameter and 1.5mm in length.

The constant temperature anemometer bridge used was designed by Miller ( 1976 ) and modified

by Simpson et al. ( 1979 ). With an overheat ratio of 0.7, the frequency response of the hot-wire

was flat up to 12 kHz. The linearized output of the anemometer was fed into a universal waveform

analyzer ( DATA 6000, Data Precision Corporation, Analogic Corporation).

The summing amplifier and Hewlett-Packard power supply were used to adjust the hot-wirc

anemometer's linearized output voltage which changed 0 to 10 V to vary from -5 V to 5 V so that

the full range of the DATA 6000 could be used. The power supply's drift after a day of experiments

was always less than lmV.

The DATA 6000 was used to gather the 10000 velocity samples in 20 seconds and form a histogram

from it, dividing the range into 256 bins. These 256 values were transferred to the computer by the

A/D converter ( Data Translation Inc. ) to further compute the mean velocity and r.m.s. value.

Even though 10000 values could directly be transferred into the computer which would eliminate

the histogram formation step, this would increase the time of processing at least 10 times. The

computer used was an IBM-PC. The necessary cable connections to the probe which sits at the

end of a dogleg were done through the roof of the test section ( Fig 4 ).

Calibration of the wire was done using the previously described instrumentation and TSI calibrator

( model 1125 ) but by taking only 1000 samples of each velocity setting. Calibrations were carried

out daily, just before the experiments and calibration constants were found by a least-square line

fitting to the measured output voltages of the linearizer of the anemometer. To ensure that the

calibrations were performed at the running temperature of the experiments the tunnel was first

allowed to run for 15 minutes, and the calibrations were done just after the drift in the room settled

down. The temperature in the laboratory could be kept constant within +2' around the set

temperature with an air conditioner.
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Due to physical obstructions to reach some of the parts of the test section another probe holder

was designed. The orientation of the probe was found by a voltage divider to obtain resolution of

0.50 or less. The voltage divider was sitting on the probe holder ( Fig 5 ). First a look up table for

the voltages corresponding to the direction of the probe was prepared by setting the probe at known

directions and then reading the output voltages of the voltage divider. Later this table was used to

find the direction of the probe by finding the angle corresponding to the voltage read. The probe

could be oriented from outside of the tunnel with a tacheometer wire, which is used in the cars in

measuring the speed of the vehicle, worm gear and anti-backlash gear system. A pin connected to

an anti-backlash gear traveling on a 10 K circular resistance was used as the arm for the vo!tage

divider. The cable connections for the voltage divider were also attached to the holder and they

were extending to the outside of the tunnel for the voltage readings. The wire sitting in a dog-leg

holder was attached to the shaft of the anti-backlash gear.

2.6 LASER-DOPPLER VELOCIMETER (LDV)

TECHNIQUE

The LDV uses a Coherent Innova 90 argon-ion laser operated at 514.5 nm with a power output

of 1.5 W. The smoke necessary for the light scattering particles was generated by an aeresol 0

generator originally designed by Echols and Young ( 1963 ). The fluid used in the generator to

produce the smoke was dioctal phatalate. The smoke was injected into the flow either through the

air intake of the tunnel or at the entrance of the tunnel test section.

Three different optical measurement systems each composed of 3 beams were used to measure the

3 compone ts of the mean velocity vector and 6 Reynolds stresses. The optical systems were named
0

as UV, UW and VW systems to distinguish what are measured by each system. The UV system
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was designed to measure nominally the U and V components of the mean velocity vector and

u2, vY, 5Ti components of the Reynolds stress tensor. The UW system nominally measures the U

and W components of the mean velocity vector and u2, w2, ii7 components of the Reynolds stress

tensor. With the same thinking, VW system nominally measures the V and W components of the

mean velocity vector and v2, w2, iW components of the Reynolds stress tensor. The description

of the measurement systems and the derivation of the reduction equations used, can be found in

Appendix I. The each couple of the three beams in each optical system would define a probe

volume and the velocity component perpendicular to the bisector of these two beams could be

measured. First the measurements with the UV system then with the UW system and then with the

VW system were taken. By doing so, the mean velocity components and the normal stress

components were measured two times. Even though this was necessary to do so for the shear stress

measurements, it also increased the confidence to the data.

The signal processing with fast-sweep-rate sampling spectrum analysis used in this stady was

described by Simpson and Barr ( 1974, 1975 ) and Simpson and Chew ( 1979 ). The technique uses

a swept spectrum analyzer and peak detection and sample and hold electronics to obtain the

Doppler frequency and A/D converter and computer to store and process the gathered data. The

swept spectrum analyzer sweeps a certain range of frequencies chosen with a chosen band-width

at a rate of 1000 times per second. The location of the band-width within the range can be known

by the calibration of the spectrum analyzer with a known frequency. Within a given range, the

relation between the horizontal voltage output of the spectrum analyzer and the frequency is linear.

This calibration factor changes from range to range, since the sweep rate is constant. When the

bandwidth and the frequency of the input current from the photomultiplier tube to the swept

spectrum analyzer coincide, a peak is generated at the vertical voltage of the analyzer. This voltage

is then used to gate the peak detector circuit and the pulse generated by this circuit is fed into a

sample and hold device for the horizontal voltage. The sampled voltage is held until another peak

is detected. Once the sampled voltage value is converted into frequency by the calibration factor

to obtain the Doppler frequency, the velocity can be computed by multiplying it with the fringe
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spacing of the beams. In this study, two spectrum analyzers, HP8557A and ttP8558B, were used

simultaneously. The ranges of the analyzers were spanning between 0.01-350 MHz and 0.0-1500

MHz, respectively.

Another frequency analysis signal processing technique used in this study was Burst-spectrum

analysis. The technique uses a Burst Spectrum Analyzer (BSA type 57 N 10 ) developed by

DANTEC and a host computer for the processing of the data. The BSA extracts the Doppler

frequency by a hardwired Fast Fourier Transform developed by DANTEC. In order to do this the

BSA takes 8. 16, 32 or 64 samples with a chosen band-width and performs a Discrete Fourier

Transform (DFT) on them to find the frequency spectrum and hence the power spectrum. If the

ratio between the two largest maxima of the power spectrum is greater than 4, the burst is validated.

The BSA can be used to sample frequencies up to 80 MHz with high resolution due to the zooming

technique used, and it was designed to extract frequency information from only one sampled data

in time.
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3.0 EXPERIMENTAL RESULTS

3.1 INTRODUCTION

In this chapter, the data obtained with several experimental techniques described before will be

discussed. The coordinate systems used in the study, the pressure distribution resulting due to the

existence of the wing, the limiting streamline structure on the wall are going to be given. The

boundary conditions for the studied flow will be defined and it will be shown with the oil flow

technique, pressure, hot-wire measurement results that, the flow structure around the wing is

symmetric. Mean velocity, fluctuating velocity and shear stress data obtained, and the uncertainties

of these quantities will be studied.

The locations of the mean velocity and Reynolds stress measurements can be seen in Fig 1. The

hot-wire profile locations on the left-hand side of the wing looking upstream are tabulated in Table

1. Table 2 gives the 0.75 chord upstream measurement locations. The laser-Doppler-velocimeter

( LDV ) and hot wire ( HW ) measurement locations on the right-hand side of the wing are given

in Tables 3 and 4 respectively.
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3.2 COORDINATE AXFS

The axes used in this study are defined in Fig 6. TC stands for tunnel coordinates. In this

coordinate system, the x axis is parallel to the tunnel centerline pointing downstream as positive,

and, the y axis is perpendicular to the tunnel floor. In all axes, the y axis was identically defined.

The z axis in TC was defined to complete a right handed coordinate system. FS stands for

free-stream ',,rdinate ,ystem. Positive x axis in this coordinate system is in the direction of the

mean velocity at the boundary layer edge, parallel to the tunnel floor. The z axis is formed to define

a right handed coordinate system. NS denotes maximum u2 normal stress direction coordinate

system. It is defined such that the positive x axis is in the direction of the local mean velocity vector

component which is parallel to the tunnel floor at the profile point where the normal stress obtained

is maximum.

3.3 TUNNEL QUALIFICATIONS

The measurements were carried out in the Virginia Tech. low speed boundary layer tunnel, which

has been used in much previous work at Virginia Tech and at Southern Methodist University ( Fig

7 ). The air enters through the air filter and the blower increases the pressure, passes through a

honeycomb and 7 screens which are used to remove the swirl of the mean flow and the turbulence

in the flow- The flow accelerates through a 2-D four to one contraction nozzle before going into

the tunnel test section. The measurements were carried out at a nominal speed of 27 m/sec. Since

the open-circuit tunnel was especially designed to study two dimensional boundary layer separation,

the shape of it was configured to create an adverse pressure gradient to induce separa-uon. In the

present study, the tunnel roof was rcl 'ted with a Plexiglass roof which was reinforced with
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aluminum so that, when the model was removed a two dimensional boundary layer with zero

pressure gradient could be obtained. The test section is 0.91m wide and 8m long.

The detailed study of the tunnel characteristics can be found in Ahn ( 1986 ). That work was

directed to study the characteristics of two dimensional boundary layers subject to zero and

favorable pressure gradients with steady free stream and the development of the boundary layers in

unsteady flows in various Reynolds numbers. His data of power spectra, mean flow, and uz, v', Uv

data showed good agreement with the measurements of previous researchers. The free-stream

velocity along the axis of the tunnel is shown in ( Fig 8 ). At 27m/sec the turbulence intensity

observed in the tunnel was 0.2% and the potential core was uniform within 0.5% in the spanwise

and 1% in the vertical directions, respectively ( Devenport and Simpson, 1987).

3.4 BO UNDAR Y CONDITIONS

The inlet flow, is tripped by the 0.63 cm blunt leading edge of the tunnel floor to ensure that the

boundary layer forming is turbulent.

The two dimensionality of flow when the model is not present was mentioned before. The flow 0.8

chord length ahead of the body, as seen from the hot wire measurements made at the most

upstream, eighteenth hot wire station on the left-hand side, was again 2-D since the W component

of the mean velocity component and i_ shear stress component were fluctuating around 0.0.

Therefore, the flow may be computed by assuming the flow as a two dimensional turbulent

boundary layer on a flat plate approaching a cylindrical protuberance . The hot-wire measurement

results at 0.75 chord upstream of the wing are plotted in Fig 9. Locations of these profiles, boundary

layer thicknesses, displacement and momentum thicknesses calculated with trapezoidal rule, skin
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friction coefficients computed using the 2-D law of the wall and 6 point line fit to the logarithmic

regions of the U/U,e profiles are tabulated in Table 4.

The restriction of the flow in the spanwise direction due to the tunnel side walls (as will be clear

with the computed and measured pressure distributions and oil flow pictures) was negligible. S

A gap of 37 mm between the model and the tunnel roof was left to avoid the interaction of the roof

boundary layer and the model, so as not to generate a second horse-shoe vortex, which could

interact with the studied flow.

3.5 OIL-FLOW VISUALIZATION RESULTS

The oil flow visualization pictures of the flow studied were taken at 27 m/sec nominal reference

velocity.

The limiting streamline structure of the flow field developed ahead and around the body are shown

in Fig 2 and Fig 10. The effect of the lateral and streamwise pressure gradients on skewing the flow

field developed, is clearly seen from these figures. The separation line which forms due to the

adverse pressure gradient, the line of low shear where the mixture accumulates more due to the

lower skin friction , the fish tail shaped wake flow limiting streamline characteristics and the

separation of the flow on the wing very close to the floor are also clearly observable. Same type

of characteristics was also observed by Dickinson ( 1986 ) in his study of a wing-body junction flow

using a body same in shape with the body used in the present study. Some of the characteristic 5

lengths measured from these figures are presented in Fig 10.

It can be postulated from these figures that the spanwise vorticity in the 2-D turbulent boundary

layer transforms into streamwise vorticity which forms the horseshoe-vortex. Between the
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separation line and the body, existence of a low shear line suggests the existence of a counter

rotating flow with respect to the horseshoe vortex, which is in the + z direction. The reversal or

back flow close to the leading edge of the body is also observed. The primary separation line which

was observed to be at 0.47 body thickness (t) away from the leading edge continues to be at the

same perpendicular distance away from the body until it joins with the low shear line at 1.48 t

downstream of the leading edge. Following the body contour, the perpendicular distance between

the body and the low shear line which was observed as 0.28 t away at the leading edge, continues

to grow until the trailing edge is reached. At the trailing edge, the distance between the trailing edge

and the low shear line is observed as 1.99 t in the + z direction.

The figures presented also indicate that the flow is symmetric. This could be done by comparing

the major distances at several x/t stations. The low shear line locations away from the body

measured on both sides of the model show good agreement and are shown in Fig 10.

3.6 PRESSURE MEASUREMENTS

The perspective view of the measured Cp values are plotted in Fig 11. Positive Cp values

correspond to slower flow regions while the negative Cp values show faster flow regions than the

reference flow region. The measured pressure distributions on both sides of the reference plane are

plotted in ( Fig 12 ). The symbols indicate the negative z values; lines indicate the +z axes side

values. The pressure cofficients on both sides of the model show good agreement at every x/t

station. Along the centerline the flow decelerates towards a stagnation point on the leading edge

(Cp = + 1).

The lateral pressure gradients seen ahead of the wing at x/t = -2 are close to zero. The accelcration

of the flow around the nose part of the wing results in the sharp drop in the Cp and high positive
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lateral pressure gradients seen at x/t = 0.25, 0.5 and 0.75. In the tail part of the airfoil until x/t = 3.25,

the positive pressure gradients observed are milder. After this point the gradient changes si'A.

The streamwise pressure gradients at z/t = 0.5 are observed to be positive till x/t = -0.5, after this

station, the gradients not only changed sign but were higher in magnitude till x/t = 0.756. The lesser

positive gradients observed start after this station. The magnitude of the gradients away from the

body are lower than the near body values.

Overall, the Cp values on the flat plate where the wing is sitting on, show a gradual increase with

a peak at the leading edge when the flow is slowed down approaching to the wing At the sides,

when the flow is going around the wing, encountered higher velocities than the free stream result

in Cps below zero, and after x/t = 3.25, Cp values again start to increase at both sides of the wing

when the flow slows down.

The measured pressure values on both sides of the model, on the model, and 9 inches (z/t= 3.187)

away from the model at several x/t locations also show the symmetry of the flow. The

measurements at these locations were compared with results from a potential-flow code, which was

selected to have 100 source and sink panels for each side of the model ( Fig 13 ) and ( Fig 14 ).

The source density distribution code was written using the formulation presented in Berlin and

Smith ( 1979 ).

The potential-flow results and the data are observed to have differences. While the maximum 0

difference between the computed and measured Cp values at z/t = 3.187 is 0.04, the measured

quantities on both sides of the body show a maximum difference of 0.01. At this station, while the

max Cp read is 0.0 15, the minimum is -0.09. While the computed and measured values on the body

had a difference of 0.085, the measured pressures show perfect agreement. The contour plot of the

measured and computed values of Cp also displays the difference ( Fig 15 ). The differences on and

near the body may be attributed to the horse-shoe vortex and to the separation of the flow on the

model before the trailing edge. In a boundary layer code, if the pressure distibution around the
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body is prescribed from a solution of a potential-flow code, as pointed out by Miuller ( 1982a),

may effect the results of the computations. The best remedy to the problem that the difference

might cause in the boundary layer computations may be the use of the measured presure instead

of the computed pressure.

3.7 HOT-WIRE MEASUREMENTS

Hot-wire measurements were made on both sides of the wing. Right-hand side hot-wire

measurements were done at the same locations of the laser measurements, except at the most

upstream laser location where no hot-wire measurement was made, since the flow here was almost

2-D and the rest of the data were seem to be satisfactory for the purposes intended. The mean

velocities and turbulence quantities measured with the hot-wire technique on both sides of the wing

show good agreement throughout the layers ( figures 21-25, 35-38, 47-50 ). In the figures, the lines

show the results of t) ,aeasurements on the right-hand side of the wing and the symbols denote

the left-hand side hot-wire ( HW ) profiles.

First comparison of the data showed that the data taken on both sides of the wing had minor

differences near the wall. To see if the ±0.003 inches uncertainty in the probe location adjustment

at the first points of the profiles could be the reason for these differer.ces, the hot-wire profiles on

the right-hand side of the wing were shifted upwards at the most by 0.005 inches ( 0.127 mm ).

Further comparision resulted in better agreement except at one location which needed a shift of 0.01

inches. This location which corresponds to the fifth LDV location was therefore discarded. The

comparison of these six profiles with the corresponding location left-hand side profiles show that

the mean and turbulence quantities measured agree well, which in turn show that the flow is

symmetric.
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3.8 VELOCITY AND STRESS MEASUREMENTS

3.8.1 INTRODUCTION

After the measurements both with the hot-wire system and fast-sweep-rate sampling spectrum

analysis LDV techniques were completed, it was observed that some turbulence quantities reduced

from these two measurement techniques did not match in the inner layer and in the logarithmic

region of the profiles. These discrepancies were originally attributed to the gradient broadening in

the inner region. A simple formulation for the gradient broadening corrections suggested by George

and Lumley ( 1973 ) was applied. Yet, the results were seen to be unsatisfactory, since either the

normal stresses at a few points near the wall were less than zero, the probe volume dimensions were

too big to be acceptable, or the corrections were too small.

The next choice to explain these discrepancies was to examine the measurement electronics and

equipment. With this in mind, the photomultiplier tube and the acquisition cables were replaced;

the spectrum analysers were checked to see if they satisfied the manufacturer's standards; the smoke

level was changed; and even the collecting lens itself and its location were changed. The results

obtained showed that there was not any error due to these possibilities. Yet, since the source of the

discrepancy could not be located and since the experimenter was not satisfied with the existing data,

the whole acquisition system was replaced.

Instead of using swept spectrum analyzers, samplers and A/D converter, the BSA was used since

the software and hardware were readily available. The whole LDV measurements were repeated

as if there were no LDV data taken before.

Since the data acquisition system and the program were changed, for the last step of reducing the
0

data, the reduction program was also changed. This was done by developing an objective procedure
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to distinguish the data from the noise in the histograms instead of judging each histogram one by

one as done previously. This empirical procedure basically fits a parabola to each side of the peak

of the logarithm of the histogram values and finds the noise level with an iterative procedure ( Fig

16). In the parabola fit, first, all the data including the noise are used and the parabolas found are

checked if they are crossing the log(1) = 0 line. If the parabolas were crossing this line, the iteration

was stopped, otherwise the amount of the data used was reduced by discarding the data below some

percentage of the peak value. The percentage discarded was increased in each iteration until the

log(l) = 0 line was crossed by both parabolas. Once these crossing points were defined, the

maximum value within the 10 bins from each point within the crossing points was seen to be the

best way of assessing the noise level. The data taken underneath this noise level and the regions

outside of these two maximum points found was discarded. The reason to fit a parabola to each

side of the logarithm of the histogran values was that if the distribution were Gaussian, the

logarithm of it would be a parabola. Even though the distributions were not Gaussian, they were

close to it, and that was also the reason why two separate parabolas were fit to each side of the peak

of the histograms.

After the measurements with the BSA were completed it was seen that the stresses measured with

these 3 different techniques were different from each other. The discrepancy had increased. Yet,this

was seen to be due to judging on the noise level of the each histogram one by one for the data

taken with the swept spectrum analyzer technique. Once all the data taken with the swept spectrum

analyzer technique was re-reduced by using the new reduction program, it was observed that the

swept spectrum analyzer and BSA measurements' results were very close to each other , yet now

they were both different from the hot-wire technique results.

The next step in resolving the discrepancy was to recheck the hot-wire technique. Profiles taken

on both sides of the wing show that the system measured the same quantities at symmetric locations

within a reasonable range. Additional measurements were made using the same type of hot-wire

probe and same anemometer but using the non-linearized output of the anemometer as input to

the computer through an A/D convertc- nd using another reduction program for the calibration
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0

of the wire and sampling of the data to measure one of the hot-wire station's profiles again. The

measurements were taken by Fleming ( 1990 ). Since these new profiles overlapped for the mean

and turbulent quantities with the previously taken data, the reason of the dicrepancy could not be

attributed to the hot-wire technique ( Fig 17).

The final situation was that both the hot wire and LDV technique measurement results were

consistent in themselves , yet they were contradicting each other. The gradient broadening and

finite transit time broadening which are applied to LDV data were no longer for overcoming the

discrepancy but to subtract the effects of these from the LDV data. The gradient broadening

correction equations were rederived to take into account all the existing gradients that may

contribute to the broadening , instead of taking only one gradient along the major axis of the probe

volume as suggested by George and Lumley ( Fig 18 ). These equations may be found in Appendix

II. Even though the probe volume dimensions given in Fig 18 suggests that the focused beam

diameter can be computed if the focal length of the focusing lens and the unfocused beam diameter

is known, the measurement of the beam diameter with the definition of it as the points where the

intensity of the beam drops down to the l/e2 of the la,,, raises difficulty in measuring it in the

reality. The way the focused beam diameter is found will be discussed in the next section.

The difference between the hot wire and LDV results, especially for the u2 normal stress, can be

attributed to the hot wire interference with the wall. This should be adressed in a later study.

0

3.8.2 UNCERTAINTY ANALYSIS
0

The uncertainties in the measured quantities with the LDV technique were expected to be due to

the uncertainties in the angles between the intersecting beams, focused beam radii used, and how

the histogram edges (noise levels) were defined. S
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The uncertainty in the angles were estimated to be less than ± 2% and cutting the histograms from

different points of its skirts showed that the uncertainty in the mean quantity computed from the

histogram could vary as much as ± 0.5% and the turbulence quantity not more than + 4%.

The definition and assessment of the uncertainty in the focused beam radii was reached in the

following way. As a criteria to be used first, the result of the analysis of Rotta ( 1962 ) in

two-dimensional boundary layers about how the normal stresses very near the wall would vary was

chosen. The analysis shows that very near the wall while u2 and w2 vary as a cubic function of the

y distance, the v2 vary with the fourth power of the distance. A least-squares, cry2 + c Z 3 + c3 type

of function as suggested by Rotta was fitted to the 4 points of the u2 and w2 normal stresses starting

from the 2nd point of each profile. Further changing the beam radius standard deviation (the

effective beam radius) a for UV and UW system beam couples to recalculate the u2 and w2 stresses

and reapplying the function fit until the minimum total error between the measured and computed

values was found revealed the effective beam radius that could be used. This approach could not

be accepted as totally satisfactory, since the criteria defined by Rotta ( 1962 ) is effective only for y

values of y' = yujv < 7, since the first 4 points to which the criteria was applied were located

between y+ = 8 and y+ = 23 and, since the corrected data did not follow the 2-D flow characteristics

for the close Reynolds number based on momentum thickness data of Klebanoff ( 1955), ( Fig

19).

Another approach that was tested was based on subjective judgment on the measured quantities

so that using the same beam diameter for the two different LDV techniques would result in the

fairly close values used and the normal stresses at the first point of the profiles would be close to

zero but non-negative. Since the resultant diameters found with this approach were not highly

different from each other, this approach was used, but since the reasoning was not a result of a

rigorous theory, the uncertainty on the beam diameter was kept as 50 %. Finally, a the effective

beam radius, used for UV system was 0.078 mm and 0.009 mm for the UW system. As described

in Appendix 1 the VW system uses the same beams of the UV and UW systems and an additional

beam which has a radius of 0.0088 mm.
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The uncertainties in the mean and turbulence quantities were computed using the technique given

in ( Kline, McClintock, 1953; Holman, 1984 ) The technique can be described as follows: If R, the

result, is a function of xi, x2, x3, ..., x, independent measured quantities in the form of

R = R(xl , x2, ..... x,,)

and if the uncertainty in each of the independently measured quantities are wl, w..., w. with the

same odds then the uncertainty in the result can be found with using

OR 2 2 OR )2w 2 OR 2 2.1/

a 4> )Wl+(T O1 )w+(X

and using 0

OR R(xi + Axi) - (xi)

ax. Ax i

if the functional form is not explicit.

Once the uncertainty estimates for the beam radius, anles and histogram edge definition were

found, the uncertainty in the mean and turbulence quantities were computed using the same

program but running it 22 times consecutively by taking each disturbance as 0.1 of the

corresponding uncertainty value. This was due to each uncertainty, separately, in the beam

diameters, in the beam angles, cutting the histogram noise for each measured quantity could effect 0

the outcome of the each measured quantity. The program was first run by assuming all the beam

angles were uncertain with the uncertainty values estimated. Secondly the beam diameters were

assumed as 50 % smaller than the estimated values. The uncertainty in the each histogram was

changed separately for the nine quantities measured by the each LDV system; the ones taken with

the BSA and for the ones taken with swept spectrum analyzers. The uncertainty in each measured

quantity due to individual uncertainties was found by finding the difference between the computed

value without any uncertainty included, and dividing it with the uncertainty used in the
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computation for each individual uncertainty contributor; therefore using the approximate equation

for the derivatives. These uncertainty values computed were compared to the uncertainties

computed in another way which will be discussed shortly, and the bigger uncertainty value was

accepted as the uncertainty value in the associated quantity.

Final LDV data after the gradient broadening and finite transit time broadening corrections

(Appendix II) were carried out was found in the following way: since all mean velocity components

and normal stresses were measured four times, an averaging process was applied. The data before

the averaging at each station location can be found in Fig 20. The four profiles did not have equal

number of points. The averaging was done by taking the maximum of the number of points in each

four profiles and linearly interpolating the other 3 profiles in eachselves to find the corresponding

data to the locations of the selected profile. Once four values for each y location were obtained,

Chauvenet's criteria was applied to discard the data points which did not satisfy

maximum acceptable difference / standard deviation _< 1.4

The standard deviation for the shear stresses which were measured only two times were found by

using

maximum acceptable difference/standard deviation < 1.15

The acceptable points were then averaged to find the data value at that point. Shear stresses

presented as the data were computed using only the BSA data, since the stresses are the measured

quantities which are smallest in magnitude which makes them hard to measure and since the BSA

data were taken after the data with swept spectrum analyzer technique were taken. In author's

opinion since the two data sets were essentially same, the most recent set was chosen. The further

computed standard deviation with the acceptable data values were used to define the uncertainty

for the averaged data values using the equation

uncertainty in the quantity = 2 * standard deviation
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The data presented in Appendix IV also include these uncertainty analysis results. The uncertainties

of the mean velocity and Reynolds stress data, as will be discussed in the later chapters, were used

to find the uncertainties of the parameters which include these measured quantities. The nominal

values of the mean velocity and tress data unceraiintes qr given in Table 5.

In the folowing sections of this chapter the measured mean and fluctuating velocities, and the shear

stresses will be discussed. Even though in three-dimensional turbulent boundary layer research

mostly the data are presented in local free-stream coordinates, one of the main reasons for the

present measurements were to reveal the characteristics of the flow field on line where the u2 normal

stress is maximum. Therefore, to see if the presentation of the data in different coordinate systems

supplied more information, the quantities were presented in three different coordinate systems.

First the discussion in tunnel coordinates will be given. Then the observed differences in free-stream

and maximum-normal-stress coordinates will be comparatively discussed.

3.8.3 MEAN FLOW MEASUREMENT RESULTS

3.8.3.1 IN TUNNEL COORDINATES

In the tunnel coordinates, the U mean velocity profiles are plotted in log(y/t) v.s. U/U, f

coordinates, in which t is the maximum body thickness and Un1 is the reference velocity obtained

at the tunnel test section entrance. The abscissa for each profile is shifted by a decade, and station

numbering for the laser-Doppler-velocimeter technique (LDV) profiles starts by zero being the

zeroth station. The symbols are used to denote the measured quantities and smaller symbols are

used to show the uncertainty band at each measurement point. The solid lines on the LDV data,

and on the hot-wire (HW) data taken at the left-hand side of the model looking upstream, are the

data taken on the right-hand-siAe of t ,o - ll t h. e HW at te l
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at symmetric locations with respect to the tunnel axis of the left-hand-side 1HW data profiles. The

U mean velocity component in tunnel coordinates obtained with LDV are shown in ( Fig 21 ).

The observed deceleration of the flow up to station 2 is followed by an accelerating flow region.

Starting with station 3, the profiles get fuller. The logarithmic regions in the profiles are clearly

observed. The slopes of these regions all with respect to the slope of the zeroth station first show

an increase at the first location, a constancy at the second location, and continuous decrease till thl

sixth station, which in turn shows that the skin friction at the wall is increasing with the decreasing

slope. At the seventh location a slight increase with respect to the sixth station is observed.

The 18 HW profiles taken on the left-hand side of the wing were plotted in the same format, with

eighteenth profile being the most upstream profile ( Fig 22 ). The symmetric HW locations start

with the one corresponding to the fifteenth profile location, and the other profiles were taken at

every other profile location. Due to the systematic error of 0.010 inches made at the first

measurement point, the profile at fifth station location at the right-hand side was omitted. The

regions where the flow first experiences a deceleration and then an acceleration and then another

slivht deceleration are more clearly observable from these 18 HW profiles. The first 7 profiles,

starting from the eighteenth profile location which is the most upstream location and including the

eleventh station profile, form the first deceleration region. The maximum U velocity component

observed was - 0.915 U at the eleventh station. The next 9 profiles show an accelerating flow

region where the maximum U observed reaches to - 1.12 U,,4 at the third station. The next 2

profiles show slight deceleration. In all the profiles the existence of the logarithmic regions are

clearly observed.

The UIU,f profiles obtained with the HW and LDV techniques show good agreement, since the

measured quantities with two systems overlap within the uncertainty bands. The HW profiles on

both sides of the body also agree, which shows that the flow is symmetric around the wing.
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The V velocity component presented in V/U, o v.s. log(y/t) coordinates have the scale of the plots

as one tenth of the U and W components ( Fig 23 ). The results were obtained with the LDV

technique, and since the transformation to the freestream and normal stress coordinates were done

only by a rotation along the y axis, they will be presented only once.

The magnitude of the maximum observed at the first 5 stations show a gradual decrease, and

starting with the fifth station profile, the maximum observed increases. In these last three stations,

the maximum observed is at 0.56 inches away from the wall. In all the profiles approaching to the

boundary layer edge the magnitude observed decrease. This results in the hill-shaped profiles which

are clearer at the last 5 stations. Overall, the maximum V component measured was _0.022LU,o,

which is an order of magnitude smaller than the U component. This in turn shows that the

negligence of the V component in the HW reduction equations is acceptable.

The W component of the velocity profiles were plotted in WIU,,e vs. log(y/t) coordinate system

( Fig 24 ). All the measurements are presented as the top profile being the most upstream profile.

Both the LDV and the HW measurements on the left-hand side of the wing are shown with

symbols, and the solid lines are drawn to emphasize the HW measurements done on the right-hand

side of the wing. The HW measurements on the left-hand side were plotted in -W/ U,.L vs. log(y/t) 0

coordinates to be able to make the comparison easier ( Fig 25 ).

The development of the -W component measured is displayed more completely with the profiles l

taken on the left-hand side of the wing. The most upstream location profile shows that the

approaching flow at that location is 2-D in the mean. The first 3 profiles show that W component

are slightly effected by the body ahead. Starting with the fifteenth station profile, in the next 5

profiles the slowing down of the flow to the zero value at the wall occurs within 0.010 inches away

from the wall. The maximum velocity observed at the first location is at 0.155 inches away from

the wall, and the position of the maxima in the intermediate profiles gradually increases until this

location is reached. The logarithmic r ions in the profiles span a shorter distance in the more
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developed profiles, and the overlapped portions of the U and W profiles' logarithmic regions are

only at a couple of points in this coordinate system.

The comparison of the profiles taken on the fight-hand side, both with LDV and HW techniques,

show that at third and sixth station locations, the W component measured with HW was slightly

less in magnitude. 1tW measurements done on both sides show that except for the fifth station of

the left-hand side 11W profile location, they are in good agreement.

The free-stream direction was found separately from each profile, by taking the average of the last

three points in each profile. The transformations from tunnel coordinates to the free-stream

coordinates were done by using the same angles throughout the each profile.

3.8.3.2 IN FREE-STREAM COORDINA TES

The U velocity profiles in the freestream coordinates show the same kind of development as seen

in TC except at the seventh station ( Fig 26 ). The seventh station profile looks like the sixth

station profile, and it is not fuller than the sixth station profile as observed in tunnel coordinates.

Compared to the profiles in the tunnel coordinates, U profiles on the left-hand side of the wing are

observed to be less full, however the slopes of the logarithmic regions do not change ( Fig 27 ).

The W component shows the same features as in the tunnel coordinates ( Fig 28 ) . The profiles

taken with LDV technique develop until the fourth station is reached. The fourth and fifth station

profiles closely resemble each other; sixth and seventh station profiles show a decrease in the

maximum velocity observed. It is also clearly observable that the maxima of the profiles shift to a

higher y location in each successive location. The W component for the 11W measurements done

on the left-hand side of the body in the free-stream coordinates also show the same characteristics

previously discussed ( Fig 29 ). Clearly ",crvable logarithmic regions within the first 7 profiles

span throughout the inner and logarithmic regions of the U profiles, which may be attributed to the
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small velocities and initial development. Starting with the eleventh station location, the logarithmic

regions observed begin only at the end of the logarithmic regions for the U velocity and span into

the outer regions.

3.8.3.3 IN IAXIMUM-NORMAL-STRESS COORDINATES

The measurements done were originally designed to investigate the characteristics of the flow on a

line following the maximum normal stress direction. Transformation of quantities into the normal

stress coordinates was done using the mean flow direction at the maximum normal stress point in

each profile obtained from the HW measurements done on the left-hand side of the wing. The

angles used both for the LDV and ight-hand side HW profiles were the same, but the signs were

changed.

The U profiles within the first three stations (zeroth, 1st and 2nd) show a gradual decrease in

fullness and in the freestream velocity ( Fig 30 ). Starting from third station, the profiles becow~e

fuller, and free-stream velocity increases. The slope of the logarithmic region stays constant till the

third station location is reached. From the fourth station till the seventh, the last station, the slope

is observed to be constant. Compared to the LDV profiles in tunnel coordinates, the profiles

starting with station 3 are fuller, and also the slopes of the logarithmic regions become steeper. The

hot-wire profiles on the left-hand side are plotted in Fig 31.

The effect of the pressure gradient was seen to be least effective in the normal stress coordinate

system. This can also be observed from the W component profiles in this coordinate system ( Fig

32 ). Since the free-stream angle is always smaller than the maximum normal stress direction, the

W component at the boundary layer edge appears as positive. The near wall structure of the W

profiles shows that since the lateral pressure gradients in NS coordinates is smaller than in FS (

freestream ) coordinates or TC ( tunnel coordinates ), the W component is smaller with respect to

the other corresponding W components in the other coordinate systems. The existence of a
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logarithmic region in the profiles, even though it gets shorter proceeding downstream, is clearly

observable. When compared to the other coordinate system plots, the logarithmic regions in NS

system are observed to be longer. The logarithmic regions as also observed from the left-hand side

profiles show that until the fifth station for the HW profiles or sixth station of the LDV profiles

are reached they overlap in almost all the logarithmic regions of the U profiles plotted in this

coordinate system ( Fig 33 ).

3.8.4 FLUCTUATION VELOCITIES

3.8.4.1 IN TUNNEL COORDINATES

The characteristics of the u', v', and w' fluctuation velocities will also be discussed in 3 different

coordinate systems. In the tunnel coordinates in the first three stations, the u' profiles show

the same characteristics ( Fig 34 ). The magnitude increases very sharply within 0.010 to 0.014

inches from the zero value at the wall to 0.09 of the reference velocity. This region is followed by

a region where the magnitude drops to a value of 0.08 of the reference velocity. Starting from 0.22

- 0.25 inches away from the wall, the magnitude drops to a value of 0.005 of the reference velocity

at the boundary layer edge. In the third and fourth stations, this maximum very near the wall is

not observed. Instead, the u' rapidly rises to a value of 0.075 - 0.08 U,,f, then forms a plateau at

this value which is followed by a region until it reaches to - 0.005 of the reference velocity at the

edge of the layer. Starting with the fifth station, sixth and seventh stations show a maximum near

the wall, and even though the maximum occurs at the same y in the profiles, the magnitude

increases proceeding downstream. At the seventh station, the maximum reaches to 0.1 of the

reference velocity which is higher than the value observed in the first three profiles. The rapid rise

up to the maximum value observed in the fifth, sixth, and seventh stations is followed by a rapid

drop region to a plateau and this region is followed by a drop to the boundary layer edge value.
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Beginning with the third station profile, the maxima observed in the profiles drop successively till

the sixth station. Even though sixth and seventh stations have the maxima equivalent to the first

three stations, the magnitude observed for the plateau region values still show a decrease. At the

y location of 0.045 inches, the magnitude drop is - 21% of the zeroth location profile. The plateau

region was seen to be lying roughly between y/t = 0.01 - 0.1, which corresponds to the regions

where the logarithmic variation for the U/ Ur, was observed. In the fifth, sixth, and seventh stations,

the beginning of the plateau regions roughly match with the beginning of the logarithmic regions

in W/ U,,r profiles.

The 11W profiles taken at the locations of LDV profiles were shown with lines for comparison.

The 11W profiles near the wall and in most part of the logarithmic regions for the U/L',,,

underestimate the u' velocity. Within the first 4 stations where the comparison is possible, the

max mum difference between the LDV and 11W results was seen to be - 13% of the LDV value.

The difference between the measured values diminishes away from the wall. Even though it seems

that the HW values tend to be within the uncertainty band of LDV, it is believed that the HW

values are consistently less than the LDV values. In the last two profiles at the sixth and seventh

stations, the difference is more restricted to the near wall and the beginning of the logarithmic

regions, but still consistent. The maximum difference observed is on the order of - 20%.

The second set of LDV data were taken because of this discrepancy between the first set of LDV

and HW data. Since the second set of LDV data confirmed the results of the first LDV data and

since the repeated measurements of the HW technique also consistently showed this difference, the

difference betv.'een the measurements is believed to be true. This difference is attributed to the

interference of the wire with the wall, which needs to be further investigated.

The hot-wire profiles on the left-hand side in the three most upstream profiles show the rapid rise

of the u' fluctuating velocity and the transition to the formation of the flat plateau region ( Fig 34

). These profiles are the ones in which the effect of three-dimensionality is least felt. The formation

of the plateau region is due to the increase in the fluctuating velocity away from the wall and
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decrease of the fluctuating velocity near the wall. At station 13, u'/U,,, is nearly constant at 0.076

Oill the end of the log rgon for U/ U,,f. Further downstream within the next four profiles, an overall

reduction is observed. Starting with the eigth station profile which also corresponds to the station

where the maximum of the W/ U,,, profiles start shifting away from the wall, the fluctuating velocity

near the wall begins to increase while the fluctuating velocity which corresponds to the logarithmic

region of the W/ U,1f profiles continues to decrease. For y/t = 0.1 while u'/ U,,, is - 0.076 for station

13, it reduces 24% to 0.0575 at station 1. The u' velocity measured on the right-hand side of the

wing with the hot-wire was plotted with the full lines for comparison. All the stations except the

left-hand side fifth station location profile show that the inner and logarithmic regions of both sides

agree fairly well. The maximum difference observed at the fifth station was - 16% of the

maximum value at that station. The maximum difference for the points where y/t > 0.1 was at

station 13 and was computed as 16% of the maximum value at that station. The other stations

show good agreement with differences less than 10% of the maxima observed at those stations.

The v' velocity profiles show almost the same characteristics in the six profiles obtained ( Fig 36).

The magnitude of the v' fluctuation velocity reaches up to a value of 0.04 - 0.045 of the reference

velocity at a y location of - 0.035 inch and forms a plateau region which is followed by a region

starting from 0.35 inch where the magnitude drops down to a value of - 0.005 at the boundary

layer edge. At the sixth and seventh stations the plateau region is replaced by a short plateau and

a hill region where a maxima of the profiles can be defined. Still the maxima stays within 0.04

0.045 of the reference velocity range.

The w' fluctuating velocity is also presented in log(y/t) v.s. w'/U,1 coordinate system ( Fig 37 ).

Unlike the u' or v' in all the eight profiles observed with the LDV technique, w' profiles show

somewhat the same characteristics. The rise of the velocity to the maxima of the profiles within

y/t = - 0.01 - 0.02 is continued with a semi-log region which corresponds to the logarithmic region

of the U/U,,1 profiles and a region where the w' drops to its value at the boundary layer edge. The

maximum reached at the zeroth station seem to be slightly reduced to - 0.055 at the first station

from the value of - 0.058 of the reference velocity. Within the next six locations, the maximum
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observed increases to a value of - 0.066 U,.,. The hot-wire profiles at the locations of LDV show

a difference between the two measurement techniques, mostly at first, second and third stations.

Even though the fourth, sixth and seventh station profiles follow each other very closely, the

difference at the previous three locations is on the order of 25 ,- 40% at the points where maximum

differences occurred. At station 4 the difference is - 15%.

The hot-wire profiles taken on the left-hand side of the wing show a continuous increment in the

first seventeen profiles in the average value observed within the near wall and y/t = 0.01-0.1 region

which corresponds to the logarithmic region for the U/U, , profiles ( Fig 38 ). The increment in

w' velocity in the second station is on the order of - 25% of the -, 0.0475 Uo1 average value

estimated at the eighteenth, the most upstream location. The high scatter of the data within the

most upstream five profiles makes it hard to judge the profile shapes. Starting with the thirteenth

station profile, the formation of a semi-logarithmic region spanning to the end of the log region of

the U/U,l profiles, preceded by the quick rise near the wall, is seen. In the most downstream

location a slight drop of the average value within y/t = 0.01-0.1 with respect to the seventeenth

station profile is observed. The hot-wire profiles obtained on both sides of the body show good

agreement for all the profiles taken, which in turn shows that not only the mean velocity

components but also the turbulence structures on both sides of the body are in symmetry.

The u' and w' fluctuating velocities in the free-stream coordinates were found with a tensor

transformation which was applied to the Reynolds stress tensor, using the appropriate angles

obtained from each profile separately (Appendix III and Table 3 ). Both the LDV and HW

measurements of both fluctuating velocities seem to follow the quantities presented in tunnel

coordinates. This is due to the small free-stream angles encountered. The maximum free-stream

angle observed for the LDV measurements was at station 4 as 10.160 and for the left-hand side H-W

measurements it was 13.87' at station 8.
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3.8.4.2 IN FREE-STREAM COORDINATES

The presentation of u' fluctuating velocity measured with the LDV technique in the free-stream

coordinates follows the presentation in tunnel coordinates very closely except with minor differences

at two stations ( Fig 39 ). At station 4 slight decrease within y/t = - 0.01-0.1 range, and at station

5 very slight increase till y/t = 0.01 and small decrease within y/t= 0.01-0.1 range, are observed. The

order of increments and decrements are less than 0.005 in the vicinity of 7% of the observed

quantities in tunnel coordinates.

The 11W profiles on the left-hand side of the body show the same characteristics in the FS

coordinates as in TC for the first eight most upstream profiles ( Fig 40 ). In the next four profiles

the u' velocity is higher for y/t- 0.008 to 0.01 and lower within y/t= - 0.01-0.1. Even though the

increment near the wall is decreased in y direction from its initial value of 5% difference, the

decrement in the log region of the U/U,, reaches to a minimum around y/t = - 0.02 to the 5%

of the 0.062 at the seventh station. For w' profiles of LDV, the most significant difference is

observed near the wall before y/t= 0.01 where the FS values which are on the order of 16% of the

maximum - 0.062 smaller than TC values increase till they start following the quantities in

TC

( Fig 41 ). This was mostly significant at the sixth station. For the first eight profiles starting

from the most upstream, th: HW profiles do not show any significant change than the profiles in

TC ( Fig 42 ). Starting from tenth station, the near wall w' in FS coordinates is observed to be less

till y/t = 0.01 and seen to be higher till y/t = 0.04, with respect to the TC profiles. This difference

due to the presentation in different coordinate systems is seen to be practically non-existent at

station 3.
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3.8.4.3 IN MAXIMUM-NORMAL-STRESS COORDINATES

The fluctuating velocities in normal stress coordinates were found by applying the tensor

transformation to the Reynolds-stress tensor with the angles found in each left-hand side HW

profile. These angles were also used for the right-hand side HW and LDV profiles at the symmetric

locations with a sign change.

In the first two profiles, u' follows closely the values in TC ( Fig 43 ) Starting with the second

station profile, the coordinate transformation seems to be reducing the u' fluctuating velocity. In

the second station, except at the few points very close to the wall, above y/tf 0.005,an overall

reduction on the order of - 0.006 or 7% of the maximum 0.087 was observed. In the third station

profile, this reduction is on the order of - 0.004 and seems to be reducing to - 0.003 after

y/t = 0.1. The gradually achieved reduction of u' in the fourth station profile reaches to a maximum

of - 0.011 at y/t = 0.03 and reduces further in the profile till y/t= - 0.1 is reached. The reduction

after this point is - 0.005. The maximum in TC at this station was read as - 0.0755. The fifth

station profile points below y/t = - 0.01 were observed to have higher u' by as much as 0.006

which gradually reduced down to zero. Above y/t = - 0.01 overall reduction till the edge, within

the order of 0.008 below y/t = 0.1 and - 0.005 above y/t = - 0.1 is noticed. The u' at station 6

which are observed to be higher in NS coordinates than the TC near the wall below y/t = 0.002 at

station 6 gradually decrease to the values of the TC presentation at this y location. The difference

of 0.03 in the third point in the profile is reduced to 0.008 at the 6th point. Between y/t= 0.01-0.1, 0

NS values are seen to be smaller; the maximum difference measured is on the order of 0.004. Above

y/t - 0. 1, the differences further reduce. Except at the first three points in the profile, seventh station

profile presentation in NS follows closely the one in TC.

Tie 1hL 3 ,nost upstream IIW profiles of the left-hand side follow the presentation in TC closely

Fig 44 ). Starting with the thirteenth station profile, overall reduction in the u' is observed. In

station 13 starting from y/t = 0.007, the difference was - 0.003, - 4% of the maximum 0.08 in
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TC. The distinction between the two presentations become more clear starting with the zeroth

station profile. Except the points below y/t-- 0.006, u' in NS coordinates is observed to be lower

in the whole layer in the next four profiles including the zeroth station. The differences which

gradually increase till y/t_ 0.02 decrease towards the edge of the layers. The difference within the

y/t- 0.01-0.1 range is seen to be increasing proceeding downstream. At station 7 this process is

reversed. The difference in this range is on the order of - 0.006 at station 10, where the maximum

is - 0.073, and - 0.009 in st,,%on 8, where the maximum is - 0.072. In the next four profiles

starting with the sixth statio , the reduction in the difference between the presentations between

y/t = 0.0 1-0.1 is accompanied by the increased values below y/t= 0.01. Proceeding downstream,

both the increments and decrements gradually diminish. The increments near the wall is on the

order of 0.07 at station 6, where maximum is 0.076 and 0.005 at station 3 where the maximum is

- 0.082. The decrements at these stations are 0.003 and 0.002 succesively.

Contrary to what is observed for u', w' fluctuating velocity in NS coordinates show an increase in

most of the profiles almost in the whole layers ( Fig 45 ). For the LDV profiles in the first two

stations, the values follow closely the TC presentation with a maximum increment of 0.002. The

second station profile reaches to its peak at y/t= 0.01 with an increment of - 0.01, 17% of the

maximum value - 0.059. This positive difference reduces down to 0.005 at y/t= 0.1. Same

characteristics are also seen in the third station, but the increment is seen to be constant on the

order of 0.006, - 10% of the maximum - 0.061 in TC in between y/t- 0.01-0.08. Out in the

layer, the quantities are seen to be following each other closely. At fourth station w' shows a peak

at y/t- 0.02, on the order of 0.012, - 19% of the maximum 0.062 in TC which is gradually

achieved starting from y/t ~ 0.007. In the outer layer above y/tv- 0.3 where two presentations have

the same value, the w' in NS coordinates are observed to be slightly less than in TC. Within the

next three stations, near wall w' values below y/t= 0.01 are observed to be quite lower. The

differences which are observed to be 50% or more at some points are believed to be mostly due to

the uncertainties. Above y/t- 0.01 proceeding downstream, the higher values observed in NS
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decrease down to the TC values. The maximum difference at station 5 is on the order of - 0.011

and the average is - 0.003 in the y/t= 0.01-0.1 range.

The first four profiles of w' in NS follow closely the values observed in TC ( Fig 46 ). Starting with

the thirteenth profile w' in NS is seen to increase. thirteenth profile is observed to have increments

in the order of - 0.006, - 11% of the maximum 0.053 within y/t= 0.01-0.2 range. Twelfth and

eleventh station profiles do show same characteristics as the thirteenth station, in which the

increments are on the order of 0.004. Beginning with tenth station w' values reduce proceeding

downstream. At station 7 the maximum difference is on the order of 0.006, - 10% of the

maximum 0.062. The increments are mostly observed within y/t=0.01-0.1 range. Below this

range, w' in NS is lower as much as 0.004, and in the outer layer it was higher with the same

increment. Proceeding downstream starting with the third station, the two presentations of w'

follow each other closely except below y/t= 0.007, the NS values are seen to be higher by about

0.003.

3.8.5 REYNOLDS SHEAR-STRESSES
0

The - ij, - j, - i- kinematic Reynolds shear stresses will also be discussed in three coordinate

systems. - 0' and ' - v-W stresses were obtained only by LDV technique. The different symbols

at the points very close to the wall and at the outer edge show where the realizability conditions

are not satisfied. The points where these conditions were not satisfied will not be included in the

discussion. The quantities are discussed in terms of ( kinematic stress/L, o? ). Small symbols in

TC designates the uncertainty bands. The shear stress components at the wall in the x and z

coordinates of the TC are also going to be shown in the figures of these quantites. The stress

magnitude in the zeroth station was found using Clauser 2-D Law of the Wall, and at station I

Johnston's 3-D Law of the Wall was used. At other stations, shear stress magnitudes and directions

are taken from Ailinger's data ( 1990).
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3.8.5.1 IN TUNNEL COORDINATES

The - i kinematic stresses in TC in the first four most upstream profiles show the same form

( Fig 47 ). The negative stresses very near the wall were followed by a region where the stress

changes sign. This region was followed by a plateau region and a region where the stresses decrease

to zero value outside the boundary layers. At station 0, the plateau forms at - 0.00 17. This region

includes most of the logarithmic region of U(U, profile. At station I the minimum reached is

slightly less negative than zeroth station. The increase up to - 0.0009 was complete at y/t- 0.01,

and until y/t - 0.2, the stress is seen to be constant around this value. Minimum observed in the

second station is lower than the previous two profiles. The value measured at y/t- 0.01 is - 0.00 16

0 and at y/t- 0.08 is - 0.002. In the y/t- 0.01-0.1 region, the average is - 0.0019. Quantities

observed in the third station are lower than the zeroth station values. Plateau formed in the y/t-

0.01-0.1 is seen to be - 0.0015. In all of the profiles discussed, the very near wall stress was on

0 the order of - -0.0005. In the fourth station, the increase near the wall was followed by a constant

stress region on the order of 0.0012. In the fifth station, the increase near the wall and in the log

region is followed by a region where the stresses decrease until the layer edge. Station 6 shows same

form of a profile. Near wall values at station 7 show a maximum at y/t-0.01. The decrease in the

stresses until y/t_0.03 is further seen to be increasing until y/t_ 0.2. The stresses further decrease

to the zero value at the layer edge. No specific relation between the - 0 kinematic shear stress and

the mean velocity profiles could be observed.

Development of the - iiW kinematic shear stress in TC in all profiles observed to be restricted

within y/t less than 0.2 except at station 7 where a variation until y/t-0.5 is observed ( Fig 48 ).

Near wall characteristics were seen to be developing with the development of the W/L,., mean flow

component. In the zeroth station, - it decreased to -0.0014 near the wall at y/t- 0.006, and was

seen to be linearly increasing to the zero value outside the boundary layer. Starting with the first

station profile near the wall, - v- are observed to be positive. At first and second stations, the

gradient of - Ii7 above yit = 0.01 was observed to be less than the zeroth station. Near wall value
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at station 2 at ylt" 0.004 is - 0.0016. Starting with the zeroth profile proceeding downstream, a

decrease in region y/tn- 0.01- 0.1 was observed, which in the fourth profile shows a peak at y/t-

0.004, - -0.0011. The peak formed is seen to decay downstream of this station, while its location

in the profiles shifted up. Also, proceeding downstream starting with the fourth station, the

maximum observed near the wall gradually increases. At station 6, the maximum was as high as

- 0.0036. At station 7, the decrease in the - U-i up to - -0.0005 at y/t= 0.08 shows an increase

until y/t=- 0.2, which further decreases to a value of zero at the layer edge.

The HW profiles taken in the locations of the LDV profiles are seen to be following the LDV

profiles closely with slightly lower values in magnitude especially in the negative side up to station

4. The profiles at sixth and seventh stations agree in the whole layer.

The HW profiles obtained on the left-hand side of the body are plotted in log(y/t) v.s. - -F/bT<

coordinates to be able to compare with the HW profiles on the right-hand side, which are in the

i7 / U,,sup2 coordinates in the ordinate ( Fig 49 ). The kinematic stresses observed in the eighteenth

station are virtually zero, which shows in fact that the approaching boundary layer is

two-dimensional not only in the mean but also in the turbulence quantities, too. Within the next

7 profiles downstream, while - i v_ observed near the wall gradually decreases, the stress in each

profile in the y direction gradually increases to the zero value at the layer edge. Starting with the

tenth station, above y/t- 0.01 development of the positive stresses begin. Until station 6, while the

near wall stresses reduce slightly in the negative side, the increase of the peak at the positive side

and the following semi-logarithmically decrease to the zero value at the edge are continued. At 0

station 6 while the peak value reaches to its maximum of 0.001 at y/t- 0.03, the near wall value

further decreases. Starting with the sixth station profile, development of a region where the

reduction of the stresses after the maximum of the peak takes place is seen. The reduction of the

kinematic shear stresses reaches to a maximum near the wall at station 4 at a value of - -0.0019.

In the further downstream profiles, near-wall values gradually relax. The peak values observed on

the positive side gradually reduce starting with the sixth station, while the point in each profile

where the peak occurs gradually shifts up from y/t- 0.03 at sixth station to y/t- 0.06 at the first
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station. In the region where the reduction of the kinematic stresses are observed, the minimum

kinematic shear stresses observed are seen to be around y/t= 0.1 - 0.2. These points in the profiles

also indicate the end of the logarithmic region. Kinematic shear stresses further in the profiles

increase to zero value at the layer edge. The comparison between the both side profiles showed that

the - iiiv- stresses agree well with each other, which in turn verifies that the flow is not only

symmetric in the mean and fluctuating velocities but also in the stresses formed.

Among the kinematic Reynolds shear stresses measured, - ii is seen as the smallest in magnitude.

At all stations the range of the data is between 0.0006 to -0.0005 ( Fig 50 ). In the first station

except slight decrease near the wall, the stress profiles are seen to be fluctuating around the value

of zero. The slight decrease on the order of 0.0002 increased down to zero around y/t"- 0.006. First

station shows an decrease in the y/t0.04 to 0.08. Starting with the second station, the change in

the sign of - iW near the wall is observed. The kinematic stress at station 2 was seen to be gradually

decreasing, starting from the maximum of 0.0005 at the first point of the profile, till y/t= 0.01,

where it reached zero. The third station values are seen to be forming a flat region which spans

between y/t-0.02-0.09 at a value of 0.0004. Starting with the fourth station, - 7 profiles look

similar to those of - i. The stresses near the wall start decreasing from a positive maximum to

a negative minimum and then increase above zero and further in the profile decreases to zero value

at the layer edge. Also, the maximum reached near the wall at station 5 was followed by a decrease

at station 6 and further decrease in station 7. The peak in the negative side observed to be

maximum at station 7, and the maximum obtained at the outer region was seen to be increasing

until station 7. At station 7, the maximum was at the level of that of station 4.

3.8.5.2 IN FREE-STREAM COORDINATES

The presentation of - i i stresses in the FS coordinates, in general, follow the TC presentation due

to the small free-stream angles realized ( Fig 51 and Fig 52 ).
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The - i7 stresses in general were observed to be shifting down in all the stations ( Fig 53 ). The

decrements were more clearly distinguishable near the wall region and were seen to diminish

towards the layer edges. At zeroth and first stations, the shifting down is on the order of 0.00025

near the wall region until y/t= 0.1. Downstream, the decrements are seen to gradually decrease,

while second station decrements are - 0.0005. It is - 0.0006 in the third station. In both stations,

the decrements seem to be gradually increasing above y/tf 0.1. Beginning with the fourth station,

the decrease of the - iz kinematic stresses in FS with respect to the ones in TC starts to gradually

diminish in the following stations. In station 4, almost constant amount of decrease at each point

of the profile on the order of 0.0005 is seen to gradually increase above y/t: 0.1. This type of

difference is also observed at station 5. At station 6 and 7 the maximum difference between two

presentations are seen near the wall and are seen to decrease in the layer. Maximum difference at

station 7 was - 0.0003.

The presentation of the profiles taken on the left-hand side of the wing in FS coordinates show

distinguishable differences, starting with the sixteenth station profile ( Fig 54 ). Even though the

differences increase in the downstream direction until the tenth station, the increments were seen

to be decreasing in the y direction starting from the wall until the eleventh station. Starting with

the tenth profile proceeding downstream, the differences start to decrease. After station 6, the

differences were mostly seen near the wall below y/t:- 0.01. Between the eleventh and eigth

stations, the differences between y/t- 0.02-0.1 were seen to be higher than the near wall differences.

In all the profiles, the values in both coordinate systems near the outer edge above y/t= 0.3 follow

each other closely. While the difference observed at station 16 was on the order of 0.0001, it was

increased to - 0.0005 by station 11. Overall, the - i7W kinematic stresses in FS coordinates show

higher stresses in the negative side of the scale, although the shapes of the profiles are similar.

The effect of coordinate transformation on - i4W kinematic stress is felt starting with the second

station profile of the LDV profiles. Starting from y/t- 0.007 up to y/t ~ 0.2, the - iiW kinematic

stresses in the second station were seen to be shifted up as much as 0.0002. The increase in the third
S

station results in - iW kinematic stresses on the order of = 0.0005 in the range y/tz 0.02-0.2 which
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is a part where the log region of U/U,4 is seen. The increase near the wall is seen to be less. In the

following profiles, the same type of increase was observed, which, overall, results in more

distinguishable stresses away from zero. Starting with fourth station proceeding downstream, the

differences are observed to decrease.

3.8.5.3 IN MAAIMUM-NORMAL-STRESS COORDINATES

The distinguishable difference between two presentations of the - ii stresses in TC and NS

coordinates were observed at station 2. At this station, - i in NS coordinates is seen to shift down

on the order of 0.0002 in the whole layer below y/tz 0.5 ( Fig 55 ). The decrement at the fourth

station in NS coordinates with respect to the ones in TC was seen to be highest. In the folloving

stations the decrements reduce. The dccren..nts near the wall are seen to gradualby uicrea',e until

v tf 0.07. Th_2 difference which increase up to y/t f"-0.2 seen gradually decrease until (.'t 0.5. The

most observable differences are seen between y/t2- 0.02-0.15, which also corresponds to log region

The maximum difference at station 4 was on the order of 0.0005; by station 7 this was seen to drop

down to 0.0001.

The most observable differences between two coordinate system presentations occur for - u-

stresses. In all the stations, NS coordinate - stresses were seen to be lover than 'IC values

Fig 56 ). At thc zeroth station. maximum decrement was o.i the order of 0.0007 at v.,t- 0.0,8.

BY station 4, the maximum decrement reaches to 0.0015. In all the profiles,. the almost constant

decrement until v t_! 0.08 is sccn to decrease further in the profiles. and above v t = 0.4, the

ditfernce :;eors ncgli'ibic. lhe decrements observed decrease in downstrean stations. At station

4 and 5, a decrease in the decrement until y t2- 0.02 and further increase until v t" 0.07 are

observed. At station 6, the decremcnts near thr wall and in the outer region were higher than the

region b,'txcen > t- ) 0.02-0.07. At station 7, dilkrcnces were mostly below v t 0.02.
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For the -Iii measurements on the left-hand side of the wing, all the stresses including the eigth

station values are seen to be positive ( Fig 57 ). The increase in the -i-w stresses proceeding

downstream were seen to be reaching to their maxima in each profile around y/t= 0.1 until station

6. The maximum -F reached occurs in station 10, with a value of - 0.00 13. Further downstream

the maximum reached decreases. By station 1 the maximum reduced to 0.0005. Starting with the

seventh station profile near wall, values start to be observed as negative. At station 7, the point

where maximum is reached in the profile shifted down to y/t= 0.05. By station 1, the maximum

shifts up to yit: 0.07. The minimum reached near the wall at station 6 is on order of - -0.0013.

Above y/t= 0.1, st,.rting with station 9 till station 3, stresses above this height are almost zero. In

the further downstream profiles,stresses are below zero. In all the profiles, near wall values are seen

to be gradually increasing to the maximum value observed in the profiles, and, as expected, the

values at the layer edges are zero.

The observable differences between TC and NS coordinate system presentations of - m-, stresses

start with the zeroth station ( Fig 58 ). At station 0, the difference is seen as an increase above y;t

= 0.02. In station I the - ii in NS coordinates is observed to be higher between y/t- 0.02-0.2.

In station 2, the increase in - F-v on the order of 0.0009 between y/t: 0.01-0.2 is seen. In station

3, the increase seen is on the order of 0.0006. In the further downstream profiles, increased - vw

profiles result in more observable profiles away from zero. The differences between two

presentations decrease proceeding downstream. The range where the increase occured observed to

be in the same range as the previous stations. At station 4, the increase was on the order of ~

0.0006 while at station 7 it was only about - 0.0002.
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4.0 EXAMINATION OF THE FLOW

STRUCTURE

4.1 INTRODUCTION

The derived quantities are the computed values which appear in the form of relations of the

previously discussed measured quantites. These quantites appeared through the ongoing discussion

about the 3-D boundary-layer research, either from the forms of the equations used or by the

assumptions and approaches made for solving the governing equations. These quantities were,

N = anisotropy constant, AI = Townsend's constant, flow angle, velocity gradient angle, shear stress

angle, convection and production profiles for the stresses and kinetic energy of turbulence, eddy

viscosities, mixing length, and kinetic energy of turbulence.

Due to the encountered uncertainties in the iij and i-VI shear stresses, especially, the shear stress

angle, A,. Townsend's constant, and N. anisotropy constant quantities were seen necessary to be

smoothed. To be able to do this task, first the L and ii stress profiles were smoothed with a

least-squares parabola fitting to the 5 successive points in the profiles and computing the value at
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the third point location. For the first two points in the profile, the same parabola fitted for the first

5 points was used. The parabola fittings were done for the profiles in free-stream coordinates for

the computation of AI and shear stress values and in the three coordinate systems for the anisotropy

constant, N. The length scales of the flow studied; boundary layer thickness, displacement

thickness, and momentum thicknesses at each station were computed using the trapezoidal rule for

the integrations. The definition and the values for these lengths may be found in Table 6. The

boundary layer thickness is defined as the point in the layer where the velocity magnitude rcaches

to the 0.995 of the free-stream velocity magnitude. Free stream velocity magnitude was found by 0

taking the average of the last three points in the profiles at the layer edge.

4.2 N=ANISOTROPY CONSTANT

Anisotropy constant is defined as

VWo

( aulay

In the approach relating the shear stresses to the mean flow quantities, isotropic eddy viscosity

models make use of a single eddy viscosity value with the assumption that the transfer of

momentum by the fluctuating velocities in any direction in the flow can be related to the local mean

flow gradients in the coordinate system defined, by a single eddy viscosity term as in the laminar

flow with the use of the kinematic viscosity of the fluid. Yet, since the eddy viscosity is not a

property of the fluid but the flow, and turbulence in 3-D flows appears as not only a function of

the local variables, the assumption of isotropy of the eddy viscosity is questionable. The anisotropy

constant makes it possible to judge this issue clearly.
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With this in mind, the quantity N was plotted in three different coordinate systems to see even if

in a preferrred direction the assumption could be validated. If the assumption is validated the value

would be computed as 1. The shear stresses in different coordinate systems were computed with

a tensor transformation given in Appendix III. The gradients for the mean flow quantities were

computed with the same type of curve fitting to the profiles in each coordinate system.

Furthermore, not to be misguided with the uncertain quantities, the uncertainties were computed

and the values with uncertainty levels within + 1 are presented. The band of the values is also kept

as +2, since the assumption to be valuable the parameter N would be close to 1. The uicertainty

bands of the quantity are presented as bars. For the coordinate system other than TC, the

uncertainty values for individual stresses were kept same as ones in the TC. The uncertainty values

for the gradients are 10% of 0J/'Iy and 5% of the OLUIOy.

Overall, the N values are observed to be mostly less than 1 and sometimes negative, with no distinct

form of variation in the profiles ( Fig 59,60,61 ). In tunnel coordinates none of the zeroth station

values had less than + 1 of uncertainty. Also in all the coordinate systems, starting with station 2

the station where the W and iY profiles start to develop more points in the profies are seen. The

available data within the chosen uncertainty band are clustered within y/tn 0.01-0.3 region. The

data in TC ( Fig 59 ) were seen to be more scattered with respect to the data in FS ( Fig 60 ), and

data in NS coordinates ( Fig 61 ) were seen to be in a narrower N range than the data in FS

coordinates. While most of the data in TC is in between -0.5-1, it is seen to be within 0-1 in NS

coordinates. Even though the shapes of the profiles do not follow a trend, the data in NS

coordinates seem to be fluctuating in a band of 0.5-1 around the value of 1. Once the uncertainties

are included except at stations 1 and 7 where the values observed are closer to 0.5, the N anisotropy

constant is close to 1.0. It could be concluded with the data that N= I in such a 3-D TBL was

an exception, but not the rule. Data also clearly show that the eddy viscosity is not isotropic, but

rather close to being isotropic in a coordinate system defined in the mean flow direction in the

profile where the u2 stress is maximum.
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4.3 AI= TOWNSEND'S STRUCTURAL

PARAMETER

The structural parameter A,

A,=

(u2 + v 2 + w)

was used by Bradshaw in his 1967 paper in the formulation to relate the transport of the turbulent

kinetic energy to the Reynolds shear stresses. Later on, he solved the momentum, continuity and

turbulent kinetic energy equations, which formed a hyperbolic set of equations, for 2-D TBL. The

value for A,, as presented in that paper was A 1=0.l5= i7(2k), a constant. If this were a constant

in 3-D TBL, still the magnitude of the stress in a plane parallel to the wall could be related to the

TKE. Thus, the TKE transport equation could be used to represent the transport of the magnitude S

of the shear stress.

The magnitude of the shear stress parallel to the wall and the turbulent kinetic energy do not change

with the teii;cr transformation. Therefore, the quantity is presented only once in the tunnel

coordinates. With the known uncertainties of the individual stresses, the uncertainty of the A, was

computed. Since the quantity defined by Bradshaw was 0.15, the data in a band of 0-0.3 with the

uncertainty less than of + 0.15 were presented, and the rest was discarded. 0

Starting with the zeroth station, the form of the A, profiles show that the assumption of constancy

of A as 0.15 for the present 3-D data is questionable ( Fig 62 ). In the zeroth station, by taking

into account the uncertainty of the quantity in most of the layer, the assumption could be validated,

especially in the logarithmic and outer regions of U/U, re profile; but the actual values computed are

lower than 0.15, near the wall region and higher in the log and outer regions. At station 1, the values

are mostly less than 0.15 until the end of the log region. At station 2, if the uncertainty is included, 0
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the structural parameter AI again is observed to be - 0.15, in the whole region. In the stations

downstream beginning with the third station the structural parameter was seen to be -, 0.15 within

the logarithmic and outer regions of the profiles including uncertainty bands. In all the profiles, near

wall values were seen to be less than 0.15 including the uncertainty bands.

4.4 FLOW ANGLE

Mean flow angle which is

0W

FlowAngle = A rctan( -

was computed in three different coordinate systems. The uncertainty for the computed flow angles

were found using the individual uncertainties for W and U observed in tunnel coordinates, and these

individual uncertainties were kept the same for the other coordinate systems. The computed

uncertainty is denoted with bars for the LDV measrurements. The hot-wire values computed at

the same profile locations for the LDV profiles were plotted with lines. Even though the

transformation into coordinate systems other than TC only shifts the profiles by the transformation

angle used, the profiles are still discussed in three different coordinate yrtems to emphasize some

important aspects seen.

The profiles in TC starting with the zeroth, including the second station profiles, show a

semi-logarithmic variation almost in the whole layers ( Fig 63 ). The maximum angle reached very

nepr the wall was -21 ° in station 2. In station 3 and 4, near the wall flow is observed to be

collateral, but the uncertainties near the wall are much higher than the uncertainties observed in the

rest of the profiles. At station 3, the semi-logarithmic variation is seen to be starting at v/ t= 0.08;

at station 4 it is shifted up to y/tz 0.014. The minimum angle at station 4 is -, -37 0, but the
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uncertainty is ±25 0. In the further downstream locations, the near wall flow angle is seen to be

increasing, thus decreasing in magnitude, and the points in the profiles where the semi-log variations

start are observed as near to the points where the minimum flow angles are reached. This point in

the seventh station is at y/t= 0.03. The gradual decrease in the magnitude of the minimum flow

angle results in -13 0 observed at station 7. In all the profiles, the semi-log variation of the flow

angle is seen to end at y/t- 0.4, and the points above are observed to form a region where the angle

slowly decrease to the layer edge values.

Except at station 1, the flow angles computed for the hot-wire profiles at the same location of the

LDV profiles show the same form as the LDV profiles. At station 1, the flow angles seen as low

as -10 ° for the LDV values could not be observed for the HW values, which are down to -5 ° only.

The agreement for the other profiles is within the uncertainty limits.

The development of the flow angle is better observed with the computed values for the HW profiles

on the left-hand side of the wing. Since the flow angle is positive, it is plotted in log(y/t) vs -1*

( the flow angle ) for easier comparison with the right-hand side profiles which are plotted with

lines.

The first eight profiles including the eleventh station profile show semi-logarithmic variation in the

whole layer up LO y/t- 0.4, starting from the minimum flow angle observed near the wall ( Fig

64 ). In these profiles, the gradual decrease in the minimum observed proceeding downstream

results in - -33 ° at station 11. In the further downstream profiles, the starting point of the

semi-logarithmic variation starts shifting up, and the minimum observed in the profiles close to this

point starts decreasing in the magnitude. The minimum observed in tenth station was - -32 0 at

y/t- 0.004 and - 9 0 at y/t= 0.04 at the first station. The end of the log regions are observed to

be at y/t- 0.3 including the fourth station and further downstream profiles, which results in

shortened regions.
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The 11W profiles on both sides of the wing show reasonable agreement except at station 5. At this

station the right-hand side profiles show flow angles - 12 0 less at the first 4 points in the profile.

In the rest of the profile, the difference is -. 6 0. In the other profiles, the difference is less than

~ 6 0 at the few points of discrepancy. This agreement is further validation of the symmetry of the

flow around the body.

The presentation of the profiles in the FS coordinates shows the same type of variation in the layers

( Fig 65 ). The gradual decrease in the flow direction near the wall including the third station,

gradually increases in the further downstream stations. Starting with the fifth station, the location

in the layers where the minimum flow angle reached is observed as shifting up away from the wall.

For the HW profiles taken on the left-hand side of the body, the near-wall flow angle is observed

to be reducing until eleventh station ( Fig 66 ). The minimum at the eleventh station is -23 0. The

profiles in the further downstream show a gradual increase not only near the wall but in the whole

layers. The point! where the minimums are reached in the profiles start shifting up with the tenth

station profile, while the minimums themselves decrease in magnitude.

Most of the LDV and HlW profiles in NS coordinates were observed to be on the positive side of

the plots ( Fig 67 and Fig 68 ). This is due to the transformation applied. For the LDV profiles

except at station 3, the minimum of the profiles are seen to be very close to 00. All the previously

discussed characteristics of the flow angle profiles are also observed in this coordinate system,

without any specific difference.
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4.5 FLOW GRADIENT ANGLE

Flow gradient angle was computed using the gradients computed perpendicular to the wall and

Gradient Angle = Arctan( D/ay

relation. The gradients in the y direction were computed by fitting parabolas to the W and U

velocity component profiles in that particular coordinate system at each successive five points in the

profiles, and the derivatives were computed from the derivatives of the parabolas. The uncertainty

of the gradient angle was computed using the estimated uncertainties on the individual gradients

as 5% of the aU/y for 8LU/8y and 10% of O8I/y for aWf/y, and plotted as bars for each individual

point. The quantities were computed only for the LDV profiles, since the main reason was to

investigate if the gradient angle and shear stress angle were aligned with each other. The full stress

tensor was only measured with the LDV.

In the first three profiles, while the gradient angle gradually decreases to - -20 0 below y/t= 0.005,

it is seen to be increasing up to - 10 * above y/t- 0.02 ( Fig 69 ). The sudden increment between 0

the two heights is seen to be at the beginning of the log layer for Ul Uref Within these profiles the

very near wall and above y/t= 0.02 values are seen to be nearly constant. At station 4, while the

values below y/t = - 0.006 are nearly constant around - -30 0, the peak value reached is - 20 °

at y/t = - 0.02. Further values in the profile are seen to be decreasing down to a 0 value at the laver

edge. Starting with the fourth station profile, not only the away from wall values but also the near

wall values are seen to be changing with the distance. After forming a lower peak, the reducing

values very near the wall increase to form a peak on the positive side. Further in the profiles, the

values drop down to - 0 value near the layer edge. While the magnitude of the lower and higher

peaks increase in magnitude till station 6, at station 7, the lower peak is seen to be decreasing in

magnitude, and the higher peak is observed to continue to increase. Within these stations, also the
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locations where the peaks are observed are seen to be shifting up in the profiles proceeding

downstream.

Gradient angle in other coordinate systems show the same characteristics, since the only difference

in the presentations are due to the shifts resulting by the transformation. 'I he amount of shifts are

same as free-stream and maximum normal stress point flow angles in the other two coordinate

systems.

4.6 SHEAR STRESS ANGLE

Shear stress angle is the angle which the shear stress vector component in the x, z plane makes with

the x coordinate and is computed using

Stress angle = Arcian( -w )
UF

Since the transformations into different coordinate systems only shift the plots the same as the

rotation applied, the shear stress angle will only be discussed in the free-stream coordinates. The

uncertainty analysis on the angles was done using the individual uncertainties for the 5 and i-

calculated in tunnel coordinates. Results of the analysis of the quantity is plotted as bars in the

figures ( Fig 70 ). Exceptionally high uncertainties were mostly due to the uncertainties in the i'1

being on the order of i- measured. This uncertainty and scatter in the data makes the judgment

on the shape of the profiles difficult.

In the first two stations, the stress angle is seen to be fluctuating around - 50 zero.In station 1, the

increase up to - 22 0 till y/t" 0.02 is followed with a region where the stress angle decreased to

-22 ° at yit = 0.04.1n the outer layer or above y, > 250, the stress angle was seen to be zero. At

station 2, the increase near the wall below y, = 40 was seen to have decreased in the log layer and
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seen to be around 7 0 till the layer edge. At station 3, the stress angle reaches a peak of - 30' at

yit=0.02, which further reduces down to - 50 at y/t-0.2. The increase of the stress angles in the

whole layers continue proceeding downstream. At station 4, near wall values which reach a

maximum of - 730 at y/t=0.006, reduce to - 100 ai "'tz0.01. Further increase in the layer results

in higher stress angles on the order of - 30' in the whole layer. The station 5 profile shows

resemblance to the fourth station profile. The angles observed near the wall at station 6 show a

minimum at - 260 at y/t=0.005. The almost semi-log increase in the profile results in a peak of

- 400 at yit-0.04. The variations in the profile after this point are similar to the variations seen in

the previous two profiles. The seventh station profile shows a decrease in the stress angle in the

whole layer. While the minimum reached in the profile is at y/t=0.015 at a value of ~ - 230, the

maximum is at y/t=0.06 with a value of 27'. The further decrease in the profiles result in stress

angles - 00 at yit -0.3.

Comparison between shear stress and flow gradient angle reveals that the shear stress angle is

varying in the same form as the flow gradient angle in the layers, but is smaller in magnitude, i.e,

lagging behind the flow gradient angle. The lags are more distinguishable below y/t"0.01 in the

profiles. In the outer regions above yit =0.01 in the zeroth station the angles are seen to be

following each other. The difference generated at the first station is seen to be decreasing proceeding

downstream. At station 3 while the angles below y/t=0.0l are following each other closely at station

4, the outer region values are seen to be practically the same. Starting with station 5, the station 0

where the flow gradient angles show sharp changes, ihe stress angles are seen to be lagging more

than the other stations. The lag at station 7, at the outer region is seen to be - 200
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4.7 FLUCTUATION VELOCITIES AND SHEAR

STRESSES NORMALIZED WITH THE

SKIN-FRICTION VELOCITY

Fluctuation velocities and shear stresses measured were non-dimensionalized with ut and u4

respectively to see if the skin-friction velocity defined could be used as the parameter to collapse the

individual profiles into one profile. The skin friction velocity is defined as u, = Uo-J(Cf12) , where

U, is the layer edge velocity magnitude and C is the skin-friction coefficient.

The u' profiles in the overall were seen to be reducing in magnitude proceeding downstream. At the

sixth and seventh stations while the peaks near the wall reached were higher than the previous 2

stations, starting from y/tf 0.02 the profile values were again to be reducing proceeding downstream

( Fig 71 ).

The v' profilcs in the first and last four profiles were seen to be collapsed on tol of each other, but

the difference between two groups was noticeable ( Fig 72 ). Same kind of structure was also

observed for the w' profiles ( Fig 73 ).

While the first four station profiles of the - 0 stresses nondimensionalized with ue show no match

of the profiles, the last four station profiles show fair agreement in the whole layers ( Fig 74 ).

Except at station 2, the nondimensionalized profiles are seen to be decreasing in magnitude in the

whole layers proceeding downstream.

Within the first four profiles, - F[.IW above y/t" 0.01 are observed to be increasing in magnitude

in the downstream direction ( Fig 75 ). Starting with the fourth station profile, the process reversed,

and a decrease in the magnitude is seen. Due to the small magnitude of the - i/u4 values and the
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form of the profiles, it was hard to Judge on this quantity's profiles. While the first 4 profiles do

not collapse on each other, the next three profiles are seen to be following each other closely. The

last station is also seen to be not following these 3 profiles ( Fig 76 ). In general, the u, parameter

could not be observed as the necessary parameter to collapse the fluctuating velocities and Reynolds

stresses into one profile.

4.8 EDD Y VISCOSITIES IN X AND Z DIRECTIONS

TI he eddy viscosity in the mean flow direction at the outer edge of the laver is computed using

/(aU/ay)
Vxfs 6 e

and the measured shear stresses, density, external velocity and boundary layer thickness and

computed aLlUy, by fitting a parabola for each successive five points and taking the derivative of

this parabola at the third location point.

For the first 4 stations, the profiles start with small negative values on the order of - -0.000003

below yt:- 0.009 ( Fig 77 ). Above this height the x eddy viscosity was observed to be positive and

seen to be parabolically chaning with its apex at y/t= 0.001 and v, =- 0.000003 for the first four

stations. In the last four stations the apex is of the parabola is v, = -0.000005 at y/t -- 0.001. In all

the stations, the maximum i3 reached at y/t= 0.2 and is seen to be reducing further in the profiles.

Also the last 4 profiles below y/t=9.06 follow each other closely.

Thz eddy viscosity in the z direction of the FS coordinates is defined as

E A OT F RWlX)
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In the first three stations since the W profiles are just starting to develop, the scatter in the

computed profiles are high ( Fig 78 ). In the third station, even though the scatter is also high, the

values are seen to be positive above y/t- 0.01 and a semi-logarithmic variation till y/t". 0.07 is

observed. In the last four profiles except at station 7, the profiles above y/t- 0.02 were observed

to be on the positive side. At station 7, the change in the sign of DWlay results in negative values

to be computed besides the positive ones within the layer. Overall, the vf, profiles seemed to have

no specific form, and the changes in the NV/Oy and the small magnitude of the - i stress are

suspected to be the reasons for the scatter.

4.9 MIXING LENGTH

Mixing length is computed using

- 1/2
P [(-) + I

U 2 W 2 1/2 2 2 1/2
Ut-L- ) + --7- ) I U(- (- I

m- 6 =

and presented in L16 v.s. log(y/t) coordinates ( Fig 79 ).The mixing length values were observed

to be very close to zero very near the wall below y/t- 0.01.The variation suggested by many

researchers as L.16 = 0.41 "y/6 near the wall is plotted with the lines in the figures, using the

boundary layer thickness found for the zeroth station. This variation is observed within y/t-

0.02-0.07 of all the profiles. The suggested change as L,/6 = 0.09 in the outer region could not be

verified in most of the profiles. While the variation at station 0 the most upstream station is as

L,16 = 0.09 in the other profiles, the values were either continuously increasing till the layer edge

or leveling at values different than 0.09. Some other length scales of the flow may be found in Table

6.
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4.10 JOHNSTON POLAR PLOTS

The existence of a relation between the lateral and axial components of the mean flow field was

questioned by Johnston ( 1960 ). Johnston suggests the existence of two linearly varying regions

for the mean velocity component in free-stream coordinates plotted in a polar plot; one for the

inner region near the wall and one for the outer region. ( Even though the idea was popularized

by Johnston ( 1960 ), it was attributed to Gruschwitz (1935 ) by him. ) In the inner region

w_ uU =( where, C = tan(#,,)

and in the outer region

PV =-A(I -_)U where, A = 2Fs
Ue Ue

relations are supposed to hold. In his study Johnston ( 1960 ) found good agreement when he

compared his own data ( Johnston, 1957 ) of a two dimensional air jet forced to flow against a

perpendicular back wall, Gruschwitz's ( 1935 ) data of well-developed, collateral, turbulent

boundary layer becoming 3-D under the influence of a turning main flow, and the data of Kuethe,

et. al. ( 1949 ) on a yawed wing of elliptical planform.

Figure 80a, b show the polar plots of the present data and the suggested relations by Johnston.

From the figure it is seen that, even though the relation seems to hold for the zeroth station, in the

next four stations the location of the peak values are predicted at points closer to the wall in the

profiles, and the magnitude of the peak values are overestimated as much as 20%. While in the fifth

station the position of the peak in the profile was correctly predicted the magnitude was

underestimated. In the last two profiles neither the position nor the magnitude of the peaks were

correctly estimated. The peak value at station 6 was - 60% below the data. -
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4.11 TURBULENT KINETIC ENERGY

Turbulent kinetic energy is computed with the relation,

TKE = ±v +
2

The TKE profiles were nondimensionalized with the U,f. The equation which describes the

transport of the TKE was given in the Introduction chapter. To be able to follow the change in

the TKE within successive stations, the profiles at each four stations were plotted on top of each

other ( Fig 81).

The plots at the first four profiles show that the change in TKE is not significant in these stations.

In these profiles the increment near the wall up to y/t- 0.01 goes to a value of 0.00575 and is

followed by a region where it is seen to be constant around this value. Above y/t- 0.06 the decrease

until the layer edge is seen. In the next two profiles (4 and 5), the plateau region values are observed

to be lower, - 0.0053. Last two station profiles are observed to be higher near the wall, but lower

in the plateau region with respect to the previous two profiles. While the maximum reached in

station 6 is 0.0062 at y/t! 0.008, the maximum at station 7 at the same height is - 0.007. The

plateau region for both profiles seems to be starting at y/t= 0.03, and it is seen to be - 0.00475.

The profiles show that TKE in the successive locations in the studied flow do not change

significantly overall, which suggests that the production and dissipation at each location was on the

same order, and convection is negligible. This can further be seen from the convection and

production profiles obtained.
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4.12 PRODUCTION OF TKE

Production of TKE as given in the Introduction chapter is expressed with equation

1- ,Ui OU

S -j +a )

After expanding this equation, the derivatives with respect to x and z were neglected, since the data

taken did not give chance to compute these derivatives. The resultant equation which was used to

compute the profiles of TKE production terms reads as

_IF aU +-Wa W

Oy oy ay

Production profiles were plotted as TKE Production over U~f v.s. log(y/t) coordinate systems ( Fig

82 ). The mean velocity derivatives and shear and normal stresses were the values computed in the

FS coordinates.

All the profiles presented have the same form. Very near wall values in all the profiles are observed

to be negative, and a very sharp rise to a positive peak value below y/t- 0.01 is followed by a region

where the production decays down to the zero value at the layer edge. The negative values near the

wall are seen to be higher in magnitude than the positive peak values. The two positive peak values

were observed to be higher than the others, and they are seen to be at station 2 and station 7. While

the peak at station 2 is - 0.18, it is - 0.36 at station 7. In other stations peaks are observed to

be between 0.08-0.12.
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4.13 CONVECTION OF TKE

Convection term in the transport equation for TKE as given in the Introduction chapter

u. 1
J -L ( UIU)

was further simplified to read as

ay

and the plots of the profiles were done using this equation. Neglecting the derivatives other than

in the y direction was necessary since not enough data were gathered to compute these derivatives.

Likewise for the production terms, the convection terms are also seen to be significant below y/t-

0.01 ( Fig 83 ). In all the profiles, the maxima reached near the wall seem to have decayed below

this y point and are observed as close to zero. The only significant convection term observed above

this height is at station 7 and is - -0.006.In all the profiles above y/t - 0.01, the convection terms

are between -0.004 and 0.003 values.

The comparison between production and convection terms show that the convection terms are an

order of magnitude lower than the production terms.
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4.14 PRODUCTION AND CONVECTION OF

NORMAL AND SHEAR STRESSES

Production and convection terms of the governing equations for the transport of the normal and

shear stresses were given in the first chapter. The production term in the tensor form for the uuj

component (ij = 1,2,3) is given as -

au. C9 8Li.

and the convection term as

S(uuj)

The derivatives were computed in the manner previously described in several discussions. Since the

derivatives with respect to x and z could not be computed due to the way the measurements were

designed, the derivatives only in the y direction were considered. Due to this shortcoming, even

though the discussions will be restricted, especially for the convection terms, since the mean velocity

is a direct multiplier, it is believed that it may be useful for the stress production terms.

Within the profiles, u2 production is seen to be the highest ( Fig 84 ). Even though the production

very near the wall is seen to be negative, a sharp rise to a positive peak was completed before y/t
0

- 0.01. The peaks of the u2 production are seen to be of the same order of magnitude except at the

zeroth and second stations. At station 0, the production seems close to zero, and at station 2 the

production is higher than the other stations in the whole layer. The profiles after the peak is reached

are seen to be decaying to the zero production at the layer edge.
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The ordinate of the v2 production plots was chosen to be 40 times smaller than the u2 production

plots. This was due to the small magnitudes observed, which in general makes the production of

v2 insignificant ( Fig 85 ). The values in the profiles seem to be mostly negative except near the

wall. The scatter of the data is mostly due to the small scale of the plots. The production of v2 is

seen to be increasing in magnitude on the negative side proceeding downstream.

The w2 production is plotted with an absissa scale 4 times smaller than the u2 ( Fig 86 ). In the

first two profiles, while the production very near the wall seems positive and reaching to a peak,

the values above y/t- 0.01 are close to zero. Also in the next profile, while the production is - 0

above this height, near the wall the production is seen to be negative. In the next four profiles, while

the production is negative below y/t= 0.01, it is seen to be increasing in magnitude on the positive

side for stations 3, 4 and 5. Starting with station 6, the magnitude observed in the whole layer is

seen to be decreasing. In the seventh station, the production below y/t - 0.01 is again seen to be

positive and the values above this height is close to zero.

In all the profiles of i i production, the values are seen to be on the negative side ( Fig 87 ). In the

first four profiles the values near the wall form a negative peak at around y/t- 0.006 to 0.009. In

the next 4 profiles, values are observed to be reducing towards the wall. Further in the profiles,

production decays down to a zero value at the layer edge. In the first profile, the peak observed is

seen to be higher than the next three station peaks. The production of 0 in these four profiles near

the wall and in the whole layers except at station 2 were seen to be comparable in magritude to the

production of u2. In the second station, u2 production was higher. In the next four profiles, the

production was seen to be increasing in magnitude downstream. Also the production in these

profiles were seen to be comparable to the u2 production terms in the same locations.

Within the first four stations, i7W production profiles seen to be increasing in magnitude above y/t

= 0.01 ( Fig 88 ). Below this point, they were observed to be negative. The peaks formed at

stations 2 and 3 were seen to be located at y/t= 0.03. While in the next two stations the peaks

observed at same location are on the same order as seen in station 3, a decrease in the peak at
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station 6, is observed, and a decrease and a shift in the peak value and location is seen in station

7. The peak of seventh station profile is at 0.07. In the near wall region, while all the values of the

fourth station are positive, they are less than zero below y/t=0.015. At station 7, the values below

y/t= 0.04 are negative, and this is seen the case for station 6 below y/t= 0.02.

The jj production in the first four profiles were seen to be increasing in magnitude both below and

above y/t- 0.008 and proceeding downstream, in the whole layers ( Fig 89 ). The peak formed at

station 3 was located at y/t" 0.02. In the next four stations, the zero production height within the

layer was seen to be shifting up in the layers proceeding downstream. While the maximum reached

in the production near the wall increase within the first 3 locations, the last station shows a decrease

in the peak reached. While the minimums reached at station 4 and 5 are on the same order, it is

seen to be reducing in magnitude starting with station 6. 0

In all profiles obtained and for all the stresses, the convection terms computed were seen to be very

close to zero above y/tv 0.01. The abscissa of the scales of the convection term plots were at least

an order of magnitude smaller than the corresponding production plots ( Fig 90).

EXAMINATION OF THE FLOW STRUCTURE 75



5.0 LAW OF THE WALL CONCEPT

5.1 INTRODUCTION

The existence of the similarity "Law-of-the-Wall" velocity profile in the form of -L =J(/v) in two

dimensional turbulent boundary layers has been well established ( Schetz, 1984 ). The existence of

such a similarity "Law-of-the-Wall" reduces the time necessary for the boundary layer computation

codes to calculate the flows studied by reducing the domain of the calculations and gives the

necessary information between the mean velocity profile and the wall shear stress. Existence of such

a "Law-of-the-Wall" in three-dimensional boundary layers was investigated by several authors

(Coles, 1956; Johnston, 1960; Homung-Joubert 1963; Perry-Joubert, 1965; Pierce-Krommenhoek,

1968; Chandrashekhar-Swamy, 1975; East-Hoxey, 1969; White-Lessmann-Christoph, 1975; Van

Den Berg, 1979; Pierce-McAllister-Tenant, 1982).

Nine existing Law-of-the-Wall similarity profiles are compared here with nine different sets of 3-D

turbulent boundary layer data available to further investigate if such a law existed.The relations

chosen included Coles, Johnston, Homung-Joubert, Pierce-Krommenhoek, and

Chandrashekhar-Swamy, East-Hoxey, Perry-Joubert, White-Lessmann-Christoph, and Van Den
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Berg. The pressure-driven experimental data were of Anderson and Eaton ( 1987a, 1987b )

Dechow-Felsch ( 1977a, 1977b , Muller ( 1982b ), Femholz-Vagt ( 1981, 1978 ), Elsenaar-Boelsma

( 1972, 1974 ), and the present data. The shear driven data were taken from Bissonnette-Mellor (

1974 ) and Lohmann ( 1976 ). A summary of the flows included in this study, the techniques used

to measure the stress and mean velocity in the flow and the skin friction at the wall may bay be

found in Table 7. Before the comparison, all the data sets used were first expressed in free-stream

coordinates, and, U and W in this chapter denote the mean velocity components in the xr and
S

ZFs directions, respectively.

5.2 LA W-OF-THE- WALL RELA TION REVIEW

5.2.1 COLES RELATION

The equation proposed by Coles in 1956 had the form of

cos(.- fl) = nyu'
r uA - -- - +  (1)

in which he assumed that (i) the velocity vector throughout the layer could be written as a sun- of

near surface and wake vectors and (ii) the magnitude of the wake vector near the wall should be

small, so that the direction of the near surface velocity vector should have the direction of the shear

stress vector on the wall. He also presumed that the velocity vector component in the wall shear

stress vector direction versus y, would give the Law of the Wall.
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5.2.2 JOHNSTON RELATION

The second relation was proposed in 1960 by Johnston. His reasoning was based on his "triangular

model" ( U/q vs. W/q, which was popularized by Johnston but attributed by him to Gruschwitz

( 1935 ) ) which points to the existence of a region near the wall where the flow angle is constant

and the fact that the direction of the velocity vector in this region is coincident with the shear stress

vector. Furthermore, he assumed that the fictituous velocity component in the direction of the shear
U

stress direction defined as U obeyed the 2-D Law of the Wall of Clauser ( 1956 ), resulting
cos(#?.)

in a Law of the form of

U -AI n( "- ) +  B , (2)
u, Cos(#,, )

He compared his Law of the Wall with the measurements of Gruschwitz ( '.(35 ), Kuethe

(1949 ) and his own data ( Johnston, 1957 ) and found good agreement.

5.2.3 HORNUNG-JOUBERT RELATION

A third relation was proposed by Homung and Joubert. They wished to see if Clauser's ( 1956)

Law of the Wall for 2-D turbulent boundary layers applied to 3-D turbulent boundary layers. They

chose to nondimensionalize the magnitude of the velocity vector q with ut. Their relation reads

q YU~A2 In("- ) + B2 (3)

from which they had actually computed u, by fitting their measured velocity profiles with equation

(3). They made no comparison using other data sets.
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5.2." PIERCE-KROMMENHOEK AND

CHANDRASHEKHAR-SWAMY RELATIONS

The Pierce-Krommenhoek ( 1968 ) and Chandrashekhar-Swamy ( 1975 ) relations have the same

form for the treamwise velocity. The latter relation also has a Law of the Wall in the cross-wise

direction. The validity of the 2-D Law of the Wall was assumed with the nondimensionalizing

z,-3n-f'-.:ion velocity derived from the shear stress vector component in the streamwise direction.

For the streamwise velocity, they propose

_______ yu ( cos1/2(fiw)) S
U = A3 n( + B3  (4)

uc( Cos 1 (/)) V

The latter relation suggests

W = A 4 In( y u , ( s in l1/ 2( w) ) + B4  (5)

u,( sin 112( w) V

for the cross-wise velocity component.

The main feature which distinguishes these relations from the previous three is that, the very near

wall velocity vector direction is not assumed to be coincident with the wall shear stress vector

direction, although fl. is the direction of the shear stress vector at the wall with respect to the

streamwise axis. When there were available data for tt,, shear stress direction, this information was

used for the flw. Pierce and East ( 1972 ) and Kliensiek and Pierce ( 1973 ) state that their finite

difference solutions very near the wall did not predict any collateral velocity region, but that the

velocity vector changed direction down to the wall.

LAW OF TIlE WALL CONCEPT 79



5.2.5 EAST AND HOXEY RELATION

The relation proposed by East and Hoxey in 1969 can be defined as an effort to improve Johnston's

relation. They reasoned that since the U- in 2-D flows was a function of y+, the same relation in

3-D flows would hold, taking into account the vectorial nature of the local velocity. Their relation

reads

U - A6 ln(y + ) + B6  (6)
U,(cos(flo))

in which /3o is a modified version of P.. f0 is derived from Johnston's U,W polar plot. Johnston's

polar plot in the viscous sublayer or close to the wall represents the cross-flow as

Le - U tan(f#.) and in the outer region as = A( - ). The apex of the I profile where

these two relations meet can be found from the relation that (-s-) = KUe pex U,"

By using the trigonometric sine rule for the Johnston's triangular polar plot fl. could be written as,

flw = Arcsin{ (K/ Ue) y

To compute the angle y, East and Hoxey used the approximation that the whole polar plot could

be represented only with the outer region using

61 =J(I-4U-) dy

64 = J - (WI Ue) dy

-64I A-
6,1
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they found y as

y- Arctan(A)

To reduce scatter in K from their data, which could be computed from the equation for fl. above,

they nondimensionalized the friction velocity with U0 which was defined as the "working section

reference velocity". The computed K from their data which is used is 19.45.

The choice of one K and Uo resulted in different values for the fl. than the measured values. The

equation they used is

sin(y)
flo = Arcsin(Kusin) y (7)

The use of this angle instead of P. in Johnston's relation results in the East-Hoxey relation (eq.6).

5.2.6 PERRY-JOUBERT RELATION

The relation proposed by Perry and Joubert ( 1965 ) takes into account the effect of the pressure

gradient near the wall region. They assumed that the near wall region could be treated as an

equilibrium layer and that mixing length theory was valid. They further assumed that, the

maximum shear stress acts in the same direction as the maximum rate of strain, which in turn

assumes that the turbulence is isotropic. After algebraic manipulation of the momentum equations

near the wall, their final equation reads
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Y + ( 1/2
H {+ dw) d
UT UTd

0 (8)
)Y, + )2 y+2)l14d +

="- Y { 1- 2 cos 0( "- + constant

in which;

ap2 p2 1/2

U-= [( ) + (-) I = pressure gradient

0 = the angle between the pressure gradient vector and the wall shear stress vector.

H = arc length on Johnston's polar plot.

They compared their Law of the Wall formulation with the Hornung-Joubert data and found good

agreement.

5.2.7 WHITE-LESSMANN-CHRISTOPH RELATION

The relation proposed by White, Lessmann and Christoph ( 1975 ) also takes into account the effect

of the pressure gradient on the streamwise velocity component. It was part of an integral method

for the analysis of 3-D incompressible turbulent boundary layers. The key assumption in the

development of the relation is that the shear stress component in the local free-stream direction

could be written as a sum of the shear stress component at the wall in the local free-stream direction

and the pressure force in the direction of the local free stream direction. The relation between the

shear stress and velocity was established by the mixing length theory, yielding
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1--'O y8 p c2 OU 8(1(9
Tx ,,Txw + -h-- -y I (9)

The skin-friction velocity defined in the direction of the outer streamline is

U, Co 1/2wo Tw cos(fl')) 1/2
u cos"/N( ) = ( Wpfl )

Equation (9) was integrated in the y direction to obtain

1 (S-1)(So + 1)-[2(s-so)+ n[ (S + 1)(So - 1) ]  (10)

where,

S= (1 + ,y+)1/2

S, = (1 + 0.1108a) 12

p(uT cos12(fWO))3h1 ax

1

So was chosen such that in the zero pressure gradient limit U+ = -- ln(y+) +5.5 would be obtained.

To supply the necessary W(y) velocity profile for the integral method, the unilateral hodograph

proposed by Mager ( 1951 ) was used

y+ 2
w+ = U+C(l - --) (11)

where,

C = tan(#.)

fl. = angle between the resultant surface shear r. direction with the streamwise direction.
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h, = metric coefficient since the derivative is taken along the streamwise direction. They compared

the predictions of their Law of the Wall with the data of Kliensiek and Pierce ( 1970 ) and found

only fair agreement.

5.2.8 VAN DEN BERG RELATION

The relation proposed in 1975 by Van Den Berg was designed to take into account both pressure

gradient and inertial force effects. The relation was developed as a part of a calculation method for

3-D turbulent boundary layers. The relation assumes that mixing length theory holds outside the

viscous sublayer and the shear stress direction coincides with the direction of the maximum rate of

deformation in the region where the Law of the Wall is supposed to hold. The correction of the

logarithmic Law of the Wall for the shear stress variation due to inertial effects was done using the

log-law form in the equations of motion for thin layers.

Van Den Berg preferred to formulate his equations in a right-handed coordinate system in which

x lies in the direction of the wall shear stress, z is perpendicular to this direction lying on the floor

plane, and y is perpendicular to both directions. His final equations after algebraic manipulations

and simplifications are

U+~~ 2++

-i- [ ln(y ) + 1 2 ]+ B- (12)
K

u+ l + +lny))y
U=-f- [%x(y ) /z 2 ] 8(13)

in which,
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Sax- 3 azpu, pur

Pix = " Ux v au"z
-2 ax ;fz= "2 az

u+ = q cos(fl.,- )
U.r

U q = sin(#.w -

He compared his calculations from equations (12) and (13) with Van Den Berg and Elsenaar's -

measurements at two stations in terms of the flow angle ck relative to the wall shear stress angle

which can be written as

S
aZ(y+ + K B8) + #,( n(y+))2y+/K 2

0 = (14)

ln(y+) + KB7

and found good agreement within 8% up to y- = 400.

0

5.3 EXPERIMENTAL DATA

0

5.3.1 ANDERSON AND EATON FLOW

Anderson and Eaton at Stanford University studied flow around a wedge facing into the flow with

a 90 degrees included angle ( Fig 91 ). The approach 2-D turbulent boundary layer was subjected

to transverse streamwise pressure gradients which made it three dimensional. The freestream

velocity in the inlet section was 16 m/sec. Data taken include measurements at five different
S

locations which were on a free-stream streamline ( Fig 91 ). This flow was chosen such that a
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separation region near the wedge was avoided but yet it was representative of the highly skewing

effects on the development of the shear layer ( Fig 92 ).The flow showed highly anisotropic features.
- (i )/(aW/ajy)chne

The ratio of streamwise eddy viscosity to cross stream eddy viscosity N = changed

from 0.1 to 1.0 Also the structural parameter of Townsend

()+ (vv)
defined as A = p + + was lower and not a constant of about 0.15 as in 2-D boundary

(U 2 + V2 + W2)

layers.

5.3.2 FERNHOLZ AND VAGT FLOW

Fernholz and Vagt at the Technical University of Berlin studied 3-D flow created by a downstream

back plate on a cylinder with an elliptical nose at a nominal speed of 18 m/sec corresponding to

U. of 1.23 x 106 /m ( Fig 93). Data taken include mean velocities and six Reynolds stress tensorV

components along 3 generators of the cylinder at 24 locations. The streamwise pressure gradient

was dominant in the development, so that the effect of the lateral pressure gradient was only

observed in the downstream part of the test section. One important conclusion of this study was

that the mean-velocity profiles near the wall showed skewing all the way to the wall ( Fig 92 ). It

also seemed that the shear stress vector led the velocity gradient vector. As in Anderson's data,

Townsend's structural parameter AI was not a constant of 0.15.

5.3.3 MULLER FLOW

Muller studied an initially 2-D turbulent boundary layer on a flat plate subjected to lateral and

streamwise pressure gradients produced by turning vanes, which caused wall skin friction lines to

turn up to 50 degrees ( Fig 94 and Fig 92 ). The unit Reynolds number _L___ was 1.95 x 106 /m

throughout the measurements. Data included measurements of mean velocity and turbulent
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quantities at 21 locations. The data employed here include the measurements on a free-stream
0

streamline which is closest to the separation line.

He concluded that the shear stress vector direction led the velocity gradient vector direction; the

velocity continued to skew all the way to the wall. However, the structural parameter A, wasA

approximately 0.15 as proposed by Bradshaw.

5.3.4 DECHOW AND FELSCH FLOW

Dechow and Felsch studied the 3-D turbulent boundary layers in front of a cylinder standing on a

flat plate ( Fig 95 ). An initially 2-D turbulent boundary layer was subjected to the transverse and

streamwise pressure gradients which caused three dimensionality ( Fig 92 ).The data included mean

velocities and six Reynolds shear stress tensor components at 10 locations along a free-stream

streamline, 2 on another streamline and on the centerline of the tunnel. Data used in the current

investigation include 7 profiles which were upstream of the 3-D separation line. Their investigation

also pointed out that the flow was anisotropic and that the stress vector direction lagged the velocity

gradient vector.

5.3.5 ELSENAAR AND BOELSMA FLOW

Elsenaar and Boelsma studied an incompressible turbulent boundary layer on an infinite swept wing

in an adverse pressure gradient ( Fig 96 ). A quasi-two dimensional boundary layer as found on an

infinite swept wing was simulated on a flat plate, swept at an angle of 35 degrees. Measurements

were carried out at --- of 2.42 x 106 /m. Measurements included the mean flow and Reynolds
V

shear stress tensor components at 8 locations ( Fig 92 ).
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The anisotropic character of the 3-D turbulent boundary layers was also noted in these

measurements. The shear stress vector direction lagged behind the direction of the velocity gradient.

The parameter A, decreased from 0.15 to 0.11 moving downstream; a value of 0.08 was observed

in the wall region.

5.3.6 BISSONNETTE AND MELLOR FLOW

Bissonnette and Mellor studied 3-D turbulent boundary layers formed on a rotating cylinder with

a sudden circumferential strain ( Fig 97 ). Measurements of the shear driven boundary layers were

carried out at 8 stations with two different axial velocities. In the present study 4 stations were

selected where the skin friction coefficients are available ( Fig 92 ). The cylinder used had a diameter

of 5 inches and the Reynolds numbers based on the radius and the free-stream velocity were

4.16 x 10 and 7.95 x 101 for the low and the high Reynolds number cases, respectively. W was

kept constant throughout these measurements. It was observed by those authors that the mean rate

of strain vector assumed a constant direction equal to the wall shear stress vector, which meant that

the flow was collateral in the near wall region in a rotating frame of reference. It was also noted that

N was less than 1, which meant that the flow is anisotropic and shear stress vector direction is

lagging behind the velocity gradient vector direction.

5.3.7 LOHMANN FLOW

Lohmann studied the 3-D turbulent boundary layers formed on a rotating cylinder ( Fig 98 ). He

carried out the measurements at a free-stream velocity of 16.8 m/sec at a nominal Reynolds number

of 2.9 x 105 based on 25.4 cm diameter of the rotating body and free-stream velocity. Surface

velocity to freestream velocity W0/ U_ = 1.65. Data at 6 stations were used in the current analysis
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( Fig 92 ). This flow indicated that near the wall the flow was collateral and that Reynolds shear
S

stress vector direction was leading the mean velocity gradient vector direction.

5.4 RESULTS AND DISCUSSION

0

Data taken from the nine selected data sets were plotted in the nondimensional coordinates of nine

selected Law-of-the-Wall relations in order to investigate the applicability and the range of validity

of these relations ( Fig 99-107 ). The range of validity of these relations is summarized in Table 8.

Figure 108 shows the difference of maximum and minimum values for each relation for the different

sets of data at y- - 70, which is a point well out of the viscous sublayer and presumably within any

semi-logarithmic region. Inner ticks show the difference when the least fitting profiles were

excluded. This figure may alsc be interpreted as an evaluation of the method of skin friction

measurement or the accuracy of the measured skin friction. Also, to see if the slopes of the curves

predicted by each relation differed from one data set to the other, a plot of the scatter of the data

at y+ = 40 and at y+ = 100 is shown in Figure 109.

The less complicated relations which do not include the effect of the pressure gradient near the wall

are discussed separately for each flow.

All of the examined relations were seen to be equally applicable for the Elsenaar-Boelsma flow.

The semi-logarithmic region was well defined for all relations. Based on the scatter of the data at

y' = 70, the Hornung-Joubert relation was seen to be slightly better than the rest ( Fig 108 ), with

A2 =2.37 and B2=4.715. ( Fig 100 ) shows a Johnston relation plot for comparison. Van Den

Berg-Elsenaar had plotted the data in Clauser's 2-D Law-of-the-Wall coordinates with the velocity

magnitude and had found good agreement. It was observed from ( Fig 101 ) that if the profile at
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the first position was omitted, the y+ range for Homung-Joubert relation would extend up to

y- = 4 50 .

For Muller's data it was not easy to see the existence of a logarithmic region in the

Chandrashekhar-Swamy and Pierce-Krommenhoek relations at stations D42, E53 and F65. Scatter

of the Q- at different y+ values for Coles and Hornung-Joubert relations was around 10% of the

overall Q+ range of their relations. The Johnston relation was seen to be the most promissing for

this flow for 20< y* <200. None of the relations except Coles' relation was able to predict a

logarithmic region for station E53. Excluding this station, the Johnston relation ( Fig 100 ) may

be approximately fit with A I= 2.922 and B1 = 4.557. Muller ( 1982b ) plotted his data using the u,

that he computed using Spalding's formula with Coles' Law of the Wall constants vs. using u he

measured with the Preston tubes and found the difference to be about 10%.

In most of the stations the Femholz-Vagt flow, the turning angle of the flow was less than 150.

Since the distinction between the proposed relations depended on how they treated this angle, all

of the relations seemed to be performing equally well within 7.5% scatter among the profiles within

each non-dimensional coordinate. The distinction was clear at the station St 802 where the flow

angle was 22.5 degrees in turn. For this station Johnston's relation was able to include this station

within 6% scatter for 15<y 60 with A, = 3.514 and B1 = 1.367.

Fernholz-Vagt ( 1981 ) discussed the possibility of a Law-of-the-Wall with three different relations

Uincluding Hormung-Joubert, vs. y+, U/u, cos(pl) vs. y- cos(fl), and Van Den Berg's Law of the

Wall. They concluded that Hornung-Joubert relation was in much better agreement with the data

than the others. They also favored the validity of use of the Law of the Wall for 2-D boundary

layers in 3-D boundary layers.

For the Dechow-Felsch data, the flow skewed up to 50", which resulted in a good test case for the

relations. Even though the Coles and Johnston relations predict logarithmic regions, the profiles

diverge from each other starting from y- = 20, with 20% scatter for Coles and 9.5% for Johnston
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of the overall range of these plots, 20 y : 150. Pierce-Krommenhoek and Chandrashekhar-

Swamy relations predict a Law of the Wall for this flow except at station St 7. When this station

is excluded, these relations show a good semi-logarithmic fit within 4% of their overall range.

The lornung-Joubert relation shows a semi-logarithmic fit within 9% overall of the range

including St7, in contrast to 11.5% scatter of the Chandrashekhar- Swamy and

Pierce-Krommenhoek relations. Excluding station St 7 the latter relations produce a fit ( Fig 102 )

with A3 = 3.025 and B3 = 3.06. The Hornung-Joubert relation including St 7 fits the data with

A2 = 2.502 and B2= 4.167 5.21.

Due to the measurement techniques the Anderson flow did not have any data at less than y, = 55

which made it hard to investigate the range and applicability of the proposed relations. The flow

had turning angles up to 45 degrees. For this flow, Coles, lornung-Joubert, Pierce-Krommenhoek

and Chandrashekhar-Swamy relations showed 37.5%, 20%, 18% and 18% scatter of the data,

respectively, up to y' = 150. For the last station, S5, Coles' relation had almost zero slope. In this

severe test case, Johnston's relation with At = 2.91 and B = 3.357 seemed to be the only one

working up to y-=250 with scatter of 12.5%. Scatter up toy'= 150 was 7.5% ( Fig 100 ).

The East and Hoxey relation performs in an almost identical manner to Johnston's relation, but

with a few exceptions. Even though it collapses Miller's data set better than Johnston's relation,

it performs poorer for the other data sets. This may be due to the choice of K and L'0 constants.

In their analysis, East and Hoxey also mentioned that different choices of K resulted in better S

agreement for the subsets of their own data ( Fig 104 ).

The rest of the discussion in terms of the simple Law-of-the-Wall relations deals with the

shear-driven data in which the direction of the shear stress at the wall was used for f.,. For the

Bissonnette-Mellor low Reynolds number data, the Coles and Ilornung-Joubert relations did not

work since the slope of Coles' relation was negative, and Hornung-Joubert relation was resulting

in slopes close to zero, especially for the high Reynolds number data. Among the other proposed
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simple relations, Johnston's relation was superior. Plots of the data in Chandrashekhar-Swamy and

Pierce-Krommenhoek relation coordinates had scatter of 18.5%, in contrast to 11% of overall

range of Johnston's relation ( Fig 100 ). Within a y+ range of 45 <y+< 250, Johnston's relation

could be approximated with A = 1.78 and B, = 9.378.

For the high Reynolds number data of Bissonnette-Mellor, the Coles' relation showed

approximately zero lope, but the Hlornung-Joubert relation was able to capture the

semi-logarithmic region with a reasonable slope. The scatter of data was least in Johnston's relation

coordinates, 7% of the overall range ( Fig 100 ) with A, = 1.741 and B, = 7.554. The scatter in the

Pierce-Krommenhoek, Chandrashekhar- Swamy, and Homung-Joubert relations was 9%, 9%,

16.5,, respectively, in the overall range. Bissonnette-Mellor ( 1974 ) discussed the possibility of
U t 2 + (W0 - !2

a law of the wall in a coordinate system of + vs. y' in order to test the

applicability of Clauser's proposition for such a flow. Even though Clauser's law of the wall did

not fit the data, they still had shown existence of a Law of the Wall in such a coordinate system.

For Lohmann's data surprisingly none of the relations seemed to collapse the data. The

Ilomung-Joubert relation had approximately zero slope and scatter in Coles' coordinates was

-90%. Even though the remaining three simple relations merged the data into a Law of the Wall,

the slopes of the individual profiles were different. If stations St I and St were excluded,

Johnston's relation was able to collapse the data within 60 <y+< 150 ( Fig 100 ) and AI = 2.182

and B = 6.213. Lohmann ( 1976 ) plotted his velocity data relative to the moving wall W, divided

by friction velocity u, versus y* and found good agreement except ?t stations I and 2, where data

followed a the Law-of-the-Wall for 40 < y+ < 80 range only.

The Law of the Wall proposed by Chandrashekhar-Swamy for the W velocity component was

observed as not working for the pressure-driven data ( Fig 103 ). For the low Reynolds number

case, scatter was in 6.5% for the overall range and for the high Reynolds number case, scatter was

in 11.5% ( Fig 103 ).
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Predictions of the Law-of-the-Wall relations which also include the effect of the pressure gradient

near the wa' are discussed below. The White-Lessmarn-Christoph Law of the Wall was

investigated only for the pressure driven data since in the limit of zero pressure gradient it returned

back to the 2-D Law of the Wall. The W-L-C Law of the Wall employed the streamwise shear

stress component at the wall to obtain the skin-friction velocity used to nondim:nsionalize the

streamwise velocity component. The Q' defined in this manner was the same as the

Chandrashekhar-Swamy or Pierce-Krommenhoek laws of the wall. For the profiles in which ay+

was below (-1), it was not possible to compute the square-root terms in equation (10). This kind

of profiles were observed for Anderson's fourth and fifth stations and Dechow's sixth and seventh

stations, which were excluded from the comparison. For Dechow's data set Q+ vs.

logo( -L fr, cos(f3)/p ) variables performed better than Johnston's relation ( Fig 106 a).

The computed values for the streamwise velocity component from the derived W-L-C equation (10)

measured Q- seemed to overlap each other reasonably well, but only in a short y+ range for the

Dechow, Anderson, and Elsenaar-Boelsma flows. For Miller's data, computed values could not

resemble the wide range of Q- observed, and, for Femholz-Vagt data, the resemblance was in a very

short range of y + ( Table 9 ). W-L-C method for the shear driven data for the U component was

seen to be working as good as the Perry-Joubert or Johnston relations. Scatter of the data at

y- = 70 was 6.25 %, 3.9 %, 2.86 %, for Bissonnette-Mellor, low and high Reynolds number cases

and Lohmann flow respectively of the overall Q, range of 25.

The lateral flow component nondimensionalized with the same skin-friction velocity used for the S
Y

streamwise component versus logjn(- - /T. cos(/f,)/p ) plots 'iowed that the choice of these

variables did not produce a Law of the Wall for the crosswise velocity. The computed values for

the crosswise velocity in terms of the wall law variables versus ( ucos1/2(L))) were much higher

than the data ( Fig 106 c and d ).

The Perry-Jubert relation was also designed to take into account the effect of the pressure gradient.

The arc length H in the polar plot of Johnston, nondimensionalized with the skin-friction velocity,
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vs. y* could be tested separately for the shear-driven data. For the pressure-driven and shear-driven

data these variables were seen to be performing as well as Johnston's Law of the Wall. For

Dechow's data set, the performance was the same as the W-L-C relation which was also better than

Johnston's relation. The computed values with the use of, O,a, U, and y' were compared with the

Q- 1 values discussed above. In a limited y- range, a match of Q+ with the computed values

were observed ( Table 9 ). Also see ( Fig 105 a and b).

Van Den Berg chose the velocity component in the direction of the wall shear stress and the

component perpendicular to it in the x-z plane to be nondimensionalised with the u,. This equation

in the shear stress direction reads the same as Coles' Law of the Wall. The comparison was done

only for the pressure-driven data sets, since shear-driven flows cannot be described, as was the case

for Coles' Law of the Wall.

The comparison for the computed values vs. the variables U, and U; (equations 12 and 13 ) was

done for fl, = fl, = 0, since the extraction of these terms from the data necessitated either more

information or the neglect of some terms whose order of magnitude could not be determined. For

the Fernholz-Vagt data fP, and fl, were computed by neglecting the terms mentioned above, with

little effect on the computed U, and U.+.

For the Van Den Berg relation, it was observed from these comparisons that computed and

measured values overlapped within a limited y+ range for all data sets. For the Femholz-Vagt data,

the y- range of agreement between computed and measured was very short ( Table 9 ). Because

measured values of U; are small by definition, it is difficult to judge agreement with this relation.

The constant B7 was found to be ,-4.7 and B8 -0.15.

The Law-of-the-Wall search for the data presented in this study was plotted separately as all the

nine Law of the Walls for this particular data set ( Fig 110 ). This was made to see the effect of the

uncertainties in the data in judging the performance of the Law-of-the-Wall relations. The

uncertainty analysis was carried out by using the previously discussed analysis used in Chapter III
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and the uncertainties in each quantity. The data used was of the last 6 stations of the LDV data

where the skin friction values at the wall were measured.

For this data set, within the simple Law-of-the-Wall relations Chandrashekhar- Swamy and

Pierce-Krommenhoek relation seen to be working better than the others if all the profiles are

included. The logarithmic region within y = 40 to 300 was clearly observable.The constants A3

and B3 were read as, A 3 = 1.514, B3 = 8.98.(eq.4). Second best fit belongs to the Johnston relation.

This was observed when the least fitting third station profile was omitted. A,, B, were read as

A1 = 1.93, B, = 8.33. The free-stream component of the other relations were seen to be less

satisfactory. W component of Chandrashekhar-Swamy relation was seen as not working (Fig

110).

Amongst the relations which include the pressure correction terms, the Perry-Joubert relation

(left-hand side of eq. 8) was seen as superior. Due to higher uncertainties observed, it was less

superior to Pierce-Krommenhoek relation. The match of the left-hand side and right-hand side of

(eq.8) was within a short range ofy +, from 20 to 70. Due to the qy term in (eq.10) being less than

(-1) in all stations except station 2, the White- Lesmann-Christoph relation profiles could not be

fully plotted. Within the available points, only station 2 was observed to be matching the left and

right hand sides of (eq. 10) until y+ =2000, within the uncertainty bands. The computed W+ values

from data and Mager's formulation for defining the same quantity in terms of U+ were seen to be

not matching. The left-hand side of the Van Den Berg relation (eq. 12), which is same as of the

Coles relation and, the right-hand side of the same equation was seen to be not overlapping, except -

for station 7. For this station, an overlap region within y+ = 40 to 700 with B7 = 12.5, was observed.

The W+ component proposed in the last relation was seen as not working, since the both sides of

the (eq. 13) did not overlap for any profiles.

To compare the Law-of-the-Wall relations, the computed quantities at abscissa coordinates of 40,

70,100 and 250 of each relation at each station, were plotted separately ( Fig 111 ). The

uncertainties on the quantities were shown with bars. If the proposed relation is perfectly working,
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the data for each y', for all stations, should be computed as same.The W-L-C relation, since there

were not enough computed values, was not included into this plot.The Van Den Berg relation was

also excluded, since, it was same as the Coles relation, for the left-hand side of the U component

( eq. 12 ). From this plot it was seen that, the Pierce-Krommenhoek relation was superior to the

others. Eventhough Perry-Joubert relation was seen as working as good as the previous relation,

the uncertainty band was bigger; and the Johnston relation needed station 3 data to be excluded.

Overall, including all data sets, for the U component of the velocity, it was observed that the

Johnston and Perry-Joubert laws of the wall were superior to the others based on ( Fig 108, Fig

111 ). The functions which took into account the pressure gradient effect in the W-L-C,

Perry-Joubert, and Van Den Berg law of the wall relations were seen to perform well for some

profiles up to y+ = 1000, but overall the predictions agreed with data only over short ranges of y.

Between the Johnston and Perry-Joubert relations, Johnston's relation performs better in 6 of the

9 data sets used.

The W component of velocity could not be represented with any of the Laws-of-the-Wall

presented. Mager's method presented in the W-L-C scheme consistently estimated higher values

than the data, with up to 100 percent difference. The Van Den Berg relation resulted in much

different values than the data for y > 30, except for the Elsenaar-Boelsma's data in which the

prediction was good up to y = 200. The Chandrashekhar-Swamy relation produced very large

scatter of the data except for Bissonnette-Mellor data ( Fig 103 ). If there has to be a choice made

among these three methods, Mager's method might be suggested ( Fig 106 c and d).
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6.0 TURBULENCE MODELING

6.1 INTRODUCTION

This chapter describes the performance of selected turbulence models in simulating the shear stress

data.The data used were from the same data sets gathered for the investigation of the existence of

the Law-of-the-Wall velocity profile for three-dimensional boundary layers, except the

Femholz-Vagt data, since ii data were not available. Turbulence models selected were chosen

among the models which did not necessitate solving the governing equations. This restricts the

discussion to algebraic eddy viscosity models.

The comparison of the computed and experimental data was performed using two parameters .The

shear stress vector in the plane parallel to the floor with components of -UVFs and -VWis can be

expressed using complex numbers in the I T I e'- form, where I r = [(-uv)js + ( -vw):s]" 2 and a is

the shear stress angle. The ratio of the measured and computed shear stresses presented in the

complex form give two parameters:
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IIm- Magnitude ratio

am - ac = Direction angle difference

where m denotes the measured quantities and c stands for the computed values. If the model was

able to predict the magnitude and the direction of the measured shear stress vector data perfectly,

the ratio of magnitudes would be 1, and the difference between the shear stress directions would

be zero.

All the computations were carried out using the data in free-stream coordinates, and U and W in

this chapter denote the mean velocity components in the XFs and ZFS directions, respectively. Except

at the zeroth and first stations of the present data, the shear stresses at the wall were taken from the

data sets included in this study. At station 0, the wall stress was found using the Clauser 2-D Law

of the Wall, and at station 1, it was computed with Johnston's 3-D Law of the Wall. The required

mean flow quantities were also taken from the data, as if the solutions of the governing equations

were same as the data.The necessary maximum shear stress magnitudes in the layers for the

Johnson-King model at each station were taken as the maximum shear stress magnitudes which

satisfy the realizability conditions. Also since the comparison is done in free-stream coordinates,

the necessary experimental shear stresses which were expressed in a coordinate system other than

free-stream coordinates were transformed into the free-stream coordinates using the tensor

transformation in Appendix III. This was needed for the Dechow and Elsenaar-Boelsma data.
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6.2 SELECTED ALGEBRAIC TURBULENCE

MODELS

6.2.1 CEBECI-SMITH MODEL

The Cebeci-Smith model used in this study is the one described by Cebeci ( 1984 ). The model uses

two different eddy-viscosity definitions, one described for the inner region and one for the outer

region.

In the inner region, the eddy-viscosity is defined as

aU )2 212w 2 1/2

i = K2[

F= I -exp(-y+/A +) -0
+ YUI

V

u2 aW 2 1/2
TW "1 +

A+ =26 K= 0.4

in which I is the mixing length, and F= [1 - exp(yj/A )] is the van Driest damping function.

The outer region eddy-viscosity is given by

1 l= . 6 86 2ykUe
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6=1 (1- (U + W) 1/2

62= 1)dy I
6-1

Yk =[1 + 55ID

where y/,k is Klebanoff's intermittency correction, and 6 is the displacement thickness. The

boundary layer thickness 6 is defined as the point in the layer where (U 2 + W2)/ U,2 is 0.99. By using

a smoothing function, the eddy-viscosity distribution in the layer can be defined as:

Vt = Vt[ - exp( - vti/vto)]

and the shear stresses are found by using:

-Ws=vr-'[y , -VWFS-vt )y

6.2.2 ROTTA'S MODEL

The anisotropic eddy-viscosity model used is based on work by Rotta ( 1979 ). An analysis of the

pressure strain terms in the governing equations for the stresses led Rotta to an anisotropic

eddy-viscosity model ( Rotta, 1977 ). The model uses anisotropy constant T defined as

T vT) transverse

( T)streamwise

the ratio of the transverse eddy-viscosity to the streamwise eddy-viscosity in local free-stream

coordinates.

By assuming T constant in the layer, VT in the free-stream coordinates can be computed as
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( T -) ( W "U - 2 1 / 2

22 U ) OW ay
VT= F[(y-) + (-T-) +

and the stresses are related to the mean flow gradients with 4

Vt = Vto[1 - exp( - VT/Vto)]

-- FS = vt(axx 'U + aW
au aw

- FS = v,(ax.., "U + " W

where

U2 + TW2  W2 + TU 2  UW
xazz , a+W=(1 7) u2+W2 Ky

In this study, Vr defined by Rotta was used as the inner layer eddy-viscosity and the outer layer

eddy-viscosity was kept the same as the Cebeci-Smitb model. For the pressure-driven flow data,

three different anisotropy constants , T = 0.3, T = 0.5 and T = 0.7, were tested. For the shear-driven

data. since the use of the constant less than 1 increased the difference between the measured and

computed shear stress magnitude, T = 1.2 and T = 1.5 were also applied.

6.2.3 PATEL'S MODEL

The third model selected is the one equation (k) model of Wolfshtein ( 1969 ) as used by Chen and

Patel ( 1988 ) in the k - & turbulence model with the fully elliptic Reynolds-averaged Navier-Stokes

equations to compute the flow characteristics in the boundary layer or wake of axisymmetric

bodies. The eddy-viscosity in this model is defined as:
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Im = cv[I - exp( -Ry/A,)]

C1 = KCtf-3i4

Re = UrefLIv = Reynolds numbcr

Ry = Re,/k y = Turbulent Reynolds number

L= Body length , Au = 70 , c = 0.09 , =0.4 , k=TKE= u + V + W

and the stresses in cartesian coordinates could be computed using ( Stem, Yoo and Patel, 1988)

u;---j= -2vrS. + 2k;13

1i uj + uj,')

6=1 if i=j
=0 if i *j

After neglecting the derivatives other than those with respect to y, the stresses in this study are

computed using

-au awUVFS aV y VWFS=-V-y

The validity of the equations for the turbulence model as given was defined to be restricted to the

viscous sublayer, buffer layer, and a part of the fully turbulent layer.Therefore, the comparison with

the data is only meaningful below y = 150 ( Patel and Chen, 1987 ). Since the model length used

in some of the experiments did not exist, to be consistent within the analysis carried out, the body

length L was kept as 1 m for all the data sets.
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6.2.4 JOHNSON-KING MODEL •

Eddy viscosity model introduced by Johnson and King ( 1984 ) for 2-D flows subject to strong

pressure gradients and separation was extended to 3-D flows by Abid ( 1988 ). •

Instead of using the wall skin friction as the Cebeci-Smith model does , the model utilizes the

maximum shear stress in the layer to define the eddy viscosities and the Van Driest damping

function which is effective near the wall. The inner layer eddy viscosity, which has the same form

as Cebeci-Smith model, differs due to the use of the maximum shear stress in the layer. The model

is defined as follows:

T'M 1/2
ii= F21( --A"

( P

F= I - exp(-y (TM 
1 2

l =y

TM 2 2
p + VW )max

A+= 15

The outer eddy viscosity was also modified to take into account the effect of the maximum shear

stress in the outer layer. Outer layer eddy viscosity is defined as:

V1o a(0.0168)yk (V, - P)dy

where a is found when the relation

au ) 2 + W 2 1/2

max
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is satisfied at the location in the layer where the shear stress is maximum. Once a is found the shear

stresses are found using

- U MW
ay ,

where

v t = V10(1 - exp( -vt/vto))

Even though the maximum shear stress magnitude was found using an ordinary differential

equation derived from the T.K.E. equation, which is valid along a path where the shear stress is

maximum, in this study it was assumed that this equation could exactly compute the maximum

shear stress. The location of it in the layer which would be found once the governing equations are

solved was also assumed to be found accurately. Once these assumptions are made, the constant

multiplier a in the Vt, equation was found by Newton iteration and by using the experimental T
M

and mean flow gradients. For the Bissonnette-Mellor low and high Reynolds number data and at

first and seventh stations of the present data, a could not be computed, since the iteration did not

converge. At these stations a was kept as 1.

The necessary mean flow gradients to calculate computed shear stresses for each flow were found

by the same parabola fitting program used before.

6.3 RESULTS AND DISCUSSION

The comparison of the computed and measured stress magnitudes and angles for the present data

are presented using log(y/t) as the abscissa of the plots, to be in accordance with the presentations

of the other flow variables. However, to distinguish the different regions in the layers different
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symbols corresponding to inner, logarithmic and outer regions were used. Also the uncertainties in

the variables were found using the uncertainties in each experimental shear-stress and assuming that

the computed shear-stresses did not induce any uncertainty. These uncertainties are plotted as bars

at each point. The uncertainty of the magnitude ratio for this flow was also used to eliminate the

data points which had uncertainties too high to be acceptable. The data presented are the ones

which have uncertainties less than + 1 and which satisfy the realizability conditions ( Figs

112-117).

The Cebeci-Smith model at the zeroth station of the present data set seems to underpredict the

magnitude of the computed shear stresses ( Fig 112 ). Since this station closely resembles a 2-D

flow and since the model was developed using available 2-D data, the ratio of stresses should be 1.

These high shear stresses observed are attributed to the uncertainties, and the ratio of magnitudes

is 1 within the limits of the uncertainty in most of the log and outer regions. The direction difference

is zero at this station within the uncertainty limits. Even though station 1 plots show scatter, the

magnitude ratio was close to one and stress direction difference was again seen to be zero within

the uncertainty bands. Station 2 profiles show higher I T,, I within the inner region and part of the

log region. Although including the uncertainty bands the magnitude ratio is still 1.0, the values were

seen to be = 1.2 in the part of the log and outer regions. The direction difference at this station 0

was seen to be decreasing down to 0' at the log region starting from a value of =60° in the near

wall region. At station 3 even though the end of the log region and beginning of the outer region

magnitude ratio values are close to I including the uncertainty bands; overall, a decrease was

observed. Even though the uncertainty in the angle difference is increased, the quantity is close to

zero in the whole layer. Station 4 magnitude ratios resemble station 3 values. The inner layer and

part of the outer layer ratios were seen to be less than 1, however, most of the log region values

were I within the uncertainty bands. Angle difference at this station reaches to 100' near the wall

which decreases down to zero in the log region. The near wall values of the magnitude ratio at

station 5 are seen to be gradually increasing from a value of = 0.2 at the beginning of log region,

which was also observed at station 4. The end of the log region and outer region values were seen
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to be 1.0 within the uncertainty bands. The high angle difference observed at station 4 is seen to

be reduced to 260° near the wall by station 5. At station 6 the decrease of magnitude ratio near the

wall which started at station 3 is most visible. The low, near wall values reach a maximum at

y/t20.05 with a value of : 1.65. The outer region values were seen to be = 1.1. The angle difference

was seen to form a peak at y/t20.015 at a value of =60° and a lower peak at y/t"-0.08 at -25'.

Station 7 values show the same characteristics of sixth station. While the log region values are close

to =-0.9, outer region :alues of the magnitude ratio are around 1.1. The angle difference at this

station was reduced, and while the difference in the inner and log regions were =20', outer region

values were -- 200. Overall it was observed that the Cebeci-Smith model resulted in lower

magnitude ratios near the wall and higher magnitude ratios in the outer region, and the shear stress

direction difference was most noticable in the near wall and beginning of log regions.

Rotta's model with T = 0.3 seems to be mostly effective in raising appreciably tle magnitude ratios

in the log region, in the range yit"0.01-0.1, ( Fig 113 ). This effect is seen with the fi-st station,

however the effect at this station was small. At station 2, the log region values were seen to be

shifted up as much as 0.1, but the effect was reduced at the outer region. This is due to the use of

VT only in the inner region. Very near wall values were also less aflected than the log region values.

At station 3, the shift at y/t:-0.03 was =0.4, which gave a magnitude ratio of 1.5 at this location.

In the log layer, reduction of the computed shear stress magnitude results in values of more than

1. The stress vector direction difference at these two stations was also seen to oe bigger than zero

in the log and outer regions, opposite to values observed fo; the Cebeci-Smith model including the

uncertainties. The increment in the magnitude ratios for stations 4 and 5 was similar to the previous

two stations. While the maximum shift in the magnitude ratio at station 4 was f0.5, it was 20.7

at station 5. Even though the magnitude ratio for the outer region of station 4 was = 1.0, at both

stations while the near wall ratios were less than 1, the logarithmic regions had ratios on the order

of = 1.4-1.8. The outer region values of station 5 were reduced to the ratio of 1, but were higher than

Cebeci-Smith model results. At station 4, while the very near wall direction difference was =100',

it was seen to be =30' in the log and outer regions. At station 5, the difference was seen to be
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reduced to ---25' from -500 of near wall difference. The Cebeci-Smith model at these two stations

seemed to be predicting the stress vector direction in tie log and outer regions. In the upper part

of the log region and the lower part of outer region, the magnitude ratio increase at the next two

stations was also accompanied with a direction difference increase. While the increment at y/t0.03

was =0.7 for station 6, it was 20.4 at y/t-0. 1 for station 7. Station 6 magnitude difference was seen

to be "25' for the log and outer regions, and station 7 values were seen to be close to zero in the

whole layer.

Using different anisotropy constants, T = 0.5 and 0.7, to compute v-, results in the magnitude ratios

and direction differences which are in between the results found using Cebeci-Smith (T = 1) and

Rotta's models with T =0.3 ( Fig 114 and '15 ). For this data set, it was observed that using an

arisotropic eddy-viscosity amplified the existing differences of the measured and computed shear

stress magnitude and directions with the Cebeci-Smith model.

Discussion on Patel's model predictions are restricted until the beginning of logarithmic region since

the equations used were for this re&-'n. Quantities were plotted for y+ values less than 250. In all

the stations, Patel's model was seen to underpredict the magnitude ratios very near the wall, similar

to the Cebeci-Smith mode!

For the zeroth station, in the log region, while the magnitude ratio was = 1.0, the stress vector

direction difference was seen to be zero within the uncertainty bands ( Fig 116 ). At station 1, the

ratio seems to be underpredict. i, and even though the direction difference seems to be zero in the •

uncertainty bands, actual values were = 15' till y/t=0.03 and were seen to be = -25' at the last three

points. The magnitude ratio for the second station was again sL.;, to be 1.0 within the uncertainty

limits, and the direction difference except near the wall below y* < 40 is seen to be zero. The ratio

of magnitudes above y/t-0.03 for the 3rd station was =0.7-0.8, and, in the same region, the two

vectors were aligned. Station 4 values in the near wall and log regions were scattered between 0.5-0.8

with an average of =0.7 in the uncertainty band. While at the first two points the angle diff.-rence

was =, , the next point in near wall region had -100 ° of difference. This difference reduced to
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zero in the log region. The magnitude ratio at station 5 was again close to 1.0 in the log region, but

the direction difference was seen to be -_50' near the wall. The differences at the last 3 points were

again zero. The gradual reduction in the ratio observed in the next 2 profiles was accompanied by

less difference in the directions. While the ratio was =0.8 at station 6, it was =0.6 at station 7. The

angle difference at station 6 peaked at y/t0.02 at a value of 50". Station 7 values for the direction

difference was seen to be constant at =15 ° . In comparison to Cebeci-Smith or Rotta models,

Patel's model seems to underpredict the magnitude ratio in general, and the direction difference was

similar to the Cebeci-Smith model results.

Since, the maximum shear stress for the Johnson-King model was used to find the a parameter in

the outer eddy-viscosity definition such that the shear stress computed would be same as the

experimental value, one point in each of the magnitude ratio profiles is assured to be 1.0. In the

applicatien of the Johnson-King model, this maximum value is obtained from a solution of a

partial differential equation. As mentioned before, in this study it was taken from the data as if the

solution of this equation were same as the data.

At station 0, even though the very near wall and most of the outer region magnitude ratios are less

than 1.0, the log region values were seen to be "-1.0, and the direction difference at the same station

was zero in the most of the layer ( Fig 117 ). At station 1, the scatter of the data resulted in

divergence of the iteration procedure, so a was taken as 1.0. Data show that, within the uncertainty

bands, the magnitude ratio in the log region is close to 1.0. The direction difference was =I 0° in

the near wall and part of the log region and was = 15* in the outer region. Within the uncertainty

bands log region magnitude ratios of station 2 are = 1.0. Near wall and outer regions show

underestimated ratios. The log region and outer region directions of the two stress vectors were the

same, which was reached after a gradual decrease starting from a value of f100* near the wall.

Magnitude ratios of station 3 show the same hill shaped distribution as station 2, with a peak in the

log region at = 1.0 with underestimated values in the near wall and outer regions. Also, the direction

difference is seen to be zero within the urcertainty bands. For station 4, the values are scattered

within 0.7-1.0, closer to 0.9 in the average. The high direction difference on the order of = 100' near
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the wall decreases to zero in the logarithmic region. The same type of development was also

observed for station 5; high near wall values of direction differences were seen to be reduced to zero

in the log region at y/t=0.02. The magnitude ratios in the log region values of this station were

predicted correctly as 1.0 within the uncertainty bands. At station 6 the near wall values as seen in

most of the profiles were lower than 1.0; starting with y/t=0.03 the ratios were close to being 1.0

in the uncertainty bands. The difference in the directions of the computed and experimental stress

vector parallel to the wall were seen to be reaching to a peak at y/t-0.02 at a value of 500. Further

in the layer, the difference was gradually reduced and was zero within the bands in the log and outer

regions. At station 7, a was taken as 1.0. Starting from very near the wall, a gradual increase of the

magnitude ratios in the layer were seen. This direction difference, which was seen to be - 15' for

the near wall part of the log region, was lower than zero in the outer region.

Overall, the Cebeci-Smith model and the modification to it by using Rotta's anisotropy constant

were seen to overpredict the magnitude ratios and Patel's model was seen to underpredict. Even

though the Johnson-King model inherently includes the maximum stress to find the stress

distribution in the layers, it was observed that it underpredicted the magnitude ratios within the near

wall and outer regions. None of the models were able to predict the stress direction perfectly, and

except Rotta's model, which overpredicts the direction in most of the stations, they all seemed to

work equally well.

The same type of analysis were carried out for the other data sets and the results are presented as

y+ vs. the magnitude ratios and y+ vs. the angle difference for each data set in one figure.

Estimated shear stress magnitudes for the Elsenaar-Boelsma flow with the Cebeci-Smith model

decrease proceeding downstream ( Fig 118 ). While the first station values were on the order of 1.6,

by station 5 the ratios were seen to be scattered around 1.0. At station 10, the ratio was =0.6.

Mostly the data for this set above y+ = 2000 were too highly scattered to be able to judge on the

performance of the models. The difference of the computed and experimental data sets were seen

to be above zero approximately 10° starting with the fourth station values. Tenth station values
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were seen to be negative in y+ = 300 to 600. Use of an anisotropy constant T = 0.3 seems to be

effective starting with station 6 ( Fig 118 ). The magnitude ratio for stations 7 and 8 within

y'= SuO-2000 were seen to be =0.7-0.8 with a shift of -0. 1 with respect to the Cebeci-Smith model.

For station 9 and 10 , the increase in the ratio was 0.6 and 1.0, respectively, in the y = 500-1000

range. The stress vector direction difference was seen to be in the negative side for all the stations,

and the difference is seen to be increasing proceeding downstream. The next two applications of the

Rotta model with T = 0.5 and T = 0.7 give better results in terms of both the magnitude ratio and

the direction difference ( Fig 118). The T = 0.7 case was seen to be able to predict the stress vector

direction correctly except at station 10. Even though use of T = 0.5 results in lower magnitude ratios

for station 10 and ratios on the order of 1 for the other stations, both T= 0.5 and T = 0.7 anisotropy

constant were not able to resolve the decrease in the magnitude ratio proceeding downstream.

The Johnson-King model magnitude ratio results are seen to be scattered within 0.4 to 1.3. Even

though ratios of stations 5,6,7,8 within y = 300-900 are close to 1.0, station 4 ratios are seen to be

scattered within 0.8-1.2 range. Station 7 values are =0.8, and station 10 values are within 0.4-0.6

range. Direction differences are within 0° - 150 range for all stations ( Fig 118 ).

Patel's model at the points where it could be used are seen to be scattered within 0.8-1.2 except

station 10 values which are 0.6. The direction difference is also seen within the same range of

00 - 150.

First station magnitude ratios for the Dechow flow are observed to be predicted correctly with the

Cebeci-Smith model ( Fig 119 ). However, a further increase up to 1.2 by station 3, and then a

decrease down to 0.6 by station 7 is also observed. The direction difference for this flow is seen

much higher than zero, especially below y = 400 and for stations 5,6 and 7. Although other station

values of the direction difference are still higher than zero, they were below 100.

Application of Rotta's model with T = 0.3 shows its effect starting with station 4 ( Fig 119 ). The

next three station ratios increased by up to an amount of 0.2. While the ratio at y+ = 100 ranges
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from 1 to 1.6, at y+ = 300, it is seen in between 0.7 to 1.2. The angle difference is seen close to zero

for all stations except below y+ = 80. As seen before, the effect of using T= 0.5 and T= 0.7 resulted

in ratios and angle differences between Cebeci-Smith and Rotta T = 0.3 models ( Fig 119 ).

The Johnson-King model results in a decrease of the magnitudes within the first four stations in the

layer towards the outer region ( Fig 119 ). The fifth station values are seen close to 1.0; the sixth

and seventh station values were seen to be increasing in the layers. While the direction difference

is within = 100 for the first four stations, the next three station values showed higher misalignments,

reaching up to c--75' at station 7.

Patel's model is seen to predict low magnitude ratios for all the stations with similar direction

differences observed for Johnson-King model ( Fig 119 ). While the ratio for station 3 is =0.9, it

is =0.5 by station 7.

Magnitude ratios calculated using Muller's data set with the Cebeci-Smith model are seen to be

changing from 0.6 to 1.5 for station All ( Fig 120 ). For stations B21 and E53, the magnitude ratio

profiles are seen to be changing in the whole layers, more than fluctuating around a value. Last four

station values of the magnitude ratios are seen to be in the range of 0.6 to 0.8. Use of Rotta's model

with T = 0.3 does not result in considerable change for any of the station values except for station

F65 where an increase of =0.2 in the whole layer is observed ( Fig 120 ). The angle differences

computed with the Cebeci-Smith model are close to zero for all stations above y+= 200. Rotta's

model, however, resulted in differences within -25' and 100.

The Johnson-King model predicts the magnitude ratios and the stress angles for this flow in

between y = 400-800, except for station B21 where the values increase towards the edge of the layer

( Fig 120 ). However, below y = 400 the ratios are scattered within 0.7-1.1 range.

Patel's model results in magnitude ratios of =0.6 for the Al I,B21,D42 and F65 stat:ons. The third

and fifth station values were seen to be 0.8 and 1.0, respectively ( Fig 120 ). The stress angle

TURBULENCE MODELING III



difference except stations E53 and F65 were seen to be zero. For these stations the differences were

--10' and -10*, respectively.

Anderson's data set with the Cebeci-Smith model show a decrease in the calculated ratios

proceeding downstream above y+ = 200. ( Fig 121 ). While the ratio is =1.0-1.1 for his first station,

the ratio drops down to 0.5 by station 5. The direction differences increase for the first four stations

from =0° to =40°. At station 5, the values are in this range. However, use of Rotta's model with

T= 0.3 results in =0 ° differences ( Fig 121 ). The magnitude ratios also range between 0.8-1.1

except for station 5, where all the values of the profile are higher than 1.2. Even though use of

T= 0.5 or T= 0.7 reduces this station's ratios down to 0.8-1.1 range, the angle differences were

increased ( Fig 121 ).

Below y+ = 100, the Johnson-King model for this flow overpredicts the magnitude ratios. Except

at station 5, the ratios in the region y+ = 100-300 are scattered within a range of 0.9-1.1. Above this

value, while ratios of station 2,3,4 are close to 1.0, first station values decrease in the layer towards

the edge. Station 5 values show a lower peak at y+ = 250 with a value of 0.5. The stress angle

differences increase until station 4 up to a value of -40'. At station 5, the difference below y = 200

is observed to be = 100. Magnitude ratios computed using Patel's model, except at station 1, show

continuous decrease till y = 250. At station 1, values were in 0.8-0.9 range ( Fig 121 ).

For the shear-driven flows application of the models were seen to be less satisfactory than the

pressure-driven flows. For Lohmann's flow while the 2nd station magnitude ratios were close to

1.0, the downstream station values increase to -3 at station 9 ( Fig 122 ). Differences in the

directions of the stress vectors for stations 2 and 4 peak between y+ = 500-1000 are on the order

of 25* and -25", respectively.

Use of Rotta's model with T less than 1.0 not only increased the magnitude ratios but also increased

the direction differences. Therefore, T = 1.2 and 1.5 were also used. Even though reduced magnitude

ratios are observed, the station 2 values increase semi-logarithmically from a value of 0.4 to 1.5 in
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the layer, and station 9 values except below y+ = 200 are higher than 1. The station 2 values are close

to 1.0 with T= 1.5 ( Fig 122).

The Johnson-King model predictions for the shear stress magnitude of Lohmann flow are correct

below y* = 250. Above this point in the layers, the angle difference is similar to the Cebeci-Smith

model ( Fig 122 ).

Patel's model for this data set underpredicts the magnitude ratios, especially for station 2. The ratios

seen at this station were =0.4. The direction differences are within =0° to 100 ( Fig 122 ).

The same kind of flow structure is also observed for the low and high Reynolds number flows of

Bissonnette-Melor data. The scale of the magnitude plots were adjusted high enough to present the

values. For all the four stations above y' = 40, magnitude ratios values were higher than 2.0. The

direction difference was also seen to be above 100' for all the stations. The same as for Lohmann's

data, the use of anisotropy constants below 1.0 results in very high magnitude ratios ranging up to

20 ( Fig 123 and 124 ). The angle difference was also seen to be increased. The values close to zero

for Rotta's model with T = 0.3 below y = 100 are due to angle differences being more than 1800.

Even though calculations using T = 1.5 give some values close to 1.0 near the wall above y+ = 100

in the layers, most of the magnitude ratios are above 2.0. Angle differences are on the order of

100 ° or higher in most part of the layers.

The Cebeci-Smith model for the high Re number data result in ratios above 1.0 but below 4.0 (

Fig 124 ). For this case also, the direction differences were high, between 600 - 1000. Although

Rotta's model with T = 0.3 gives better direction differences on the order of 250 - 750, the

magnitude ratios reach up to 12.0. Rotta's model with T 1.5 results in magnitude ratios still above

1.0 for most of the stations, mostly on the order of 1.5 to 2.25. Direction differences are the same

as Cebeci-Smith model ( Fig 124). 0
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Below y+ = 40 for the low Re number case, the Johnson-King model was seen to be satisfactory in

predicting the magnitude ratios. Above this y+ value, ratios were seen to be very higher than I

( Fig 123 ).

Patel's model predictions in the range of y = 60-250 were seen to be scattered within 1.0-1.5 range,

with direction differences similar to Cebeci-Smith model predictions ( Fig 123 and 124 ).

For the high Re number case of the same data set, ratios found using Johnson-King model are close

to 1.0 ( Fig 124 ). Even though the values above this height are not as high as seen in the low Re

number case, they still are scattered between 1.0-3.5 ( Fig 123 ). Directions of the stresses predicted

were off by 60o - 100'.

The range of the computed magnitude ratios and angle differences at y = 200 for the flows studies

may be found at Table 10.

In all cases, the Cebeci-Smith model overpredicts for the almost 2-D stations but decreases in the

magnitude ratio proceeding downstream in the individual flows. The angle difference is in most of

the profiles in the positive side. For the shear-driven flows the ratios change between 0.5 to 10.0

and the angle differences are very high, especially for Bissonnette-Mellor flow.

Rotta's model with anisotropy constant T= 0.3 for the pressure-driven data predicts the angle

differences in a wider band, even though results in magnitude ratios closer to 1.0 and with lower

scatter of the data. The effect was mostly seen at the stations where the velocity gradients were

higher. This resulted in overestimated magnitude ratios for the most downstream stations such as

in Olcmen, Elsenaar-Boelsma and Anderson flows. The constants T = 0.5 and T = 0.7 result in

magnitude ratios and angle differences between the predicted values of the Cebeci-Smith model and

T = 1.0. The effect of the anisotropy constant T less than 1.0 on the shear-driven flow magnified

the difference in the measured and computed stresses, which resulted in overestimated magnitude
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ratios and angle differences. Even though T = 1.5 for this type of flows is seen to be reducing the

observed magnitude ratios, the ratios were still higher than 1.0 at most of the stations.

Patel's model for the pressure-driven flow, in the same y+ range was observed to predict magnitude

ratios lower than the Cebeci-Smith model values. The angle differences are the same as the

Cebeci-Smith model. For the shear-driven flow, the magnitude ratios calculated with this model

are closer to 1.0 than any other model examined.

The Johnson-King model in the form used in this study mostly underpredicts the magnitude ratios

in the almost 2-D flow stations of the pressure-driven flow data, especially in the outer region. For

the stations where 3-D flow is developed, the scatter of the magnitude ratios are around 1.0 and in

a narrower band than the Cebeci-Smith or any other model. For the shear-driven data except at the

two most downstream stations of Lohmann's data, the stresses are overpredicted. Also, as

mentioned before, a for the Bissonnette- Mellor data was kept as 1.0, since the equation to find the

o did not converge. The angle differences obtained with the Johnson-King model were not different

than Cebeci-Smith model.

In conclusion, none of the models predict the shear stress data well. Table 10 shows the range of

the angle differences and the magnitude ratios calculated by using different models, for different

flows at y+ = 200. If there must be a choice made among these models, it may be suggested basing

on ( Table 10 ) that, for the pressure-driven flows the Johnson-King model and for the shear-driven

cases Patel's model could be used.

T
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7.0 CONCLUSIONS

A three dimensional turbulent boundary layer generated by a 3 2 elliptical nose, NACA 0020 tail

cylinder protruding from a flat plate was experimentally studied. The experiments were conducted

in a low speed wind tunnel at a nominal reference velocity of 27 m/sec. In the test section, the

Reynolds number of the flow based on the momentum thickness at 0.75 chord upstream of the

body on the centerline of the tunnel was - 5936. Mean velocity and stress measurements were

carried out by using hot-wire anemometry and laser-Doppler-velocimetry techniques. Data

presented also include the static pressure measurements on the plate surrounding the wing and on

the wing and the skin friction magnitude and direction on the wall. The incoming boundary layer

was studied using the hot-wire technique. With the available data as input, the flow field can be

computed and therefore another benchmark case is thus presented.

The existence of differences between the quantities measured with the hot-wire and LDV

techniques, especially for the u' fluctuating velocity component near the wall and in the regions

corresponding to the logarithmic regions of the U/U,, profiles on the order of 10%, necessitated

that the data be validated. For this purpose, LDV measurements were repeated by using the Burst

Spectrum Analyzer and the same optical systems used in the measurements done with the Swept

Spectrum Analyzers. The existence of the difference between some measured quantities, especially
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of the normal stresses with the LDV and the hot-wire techniques was established. The difference

is attributed to the effect of the wall on the wire which needs to be studied further.

The data were further used to investigate the flow characteristics. The anisotropy constant N,

which is the ratio of the eddy viscosities in the z and x directions, is not unity as is frequently used

in turbulence closure models. Although in the normal stress coordinates, N is seen to be close to

1.0, it varies through the boundary layer and from station to station. Therefore, the concept of

isotropy or even the constancy of the ratio in a preferred direction is questionable.

The structural parameter A, as used by Bradshaw ( 1967 ) to relate the shear stresses to the TKE

of the flow, is not a constant of 0.15 in the whole layer. While in the outer region A, is close to

0.15 including the uncertainty band, it is less than 0.15 near the wall with no specific variations in

the profiles.

The comparison of shear stress and flow gradient angles magnitudes revealed that the shear stress

angle lags behind the flow gradient angle, especially in the inner region. In the outer region,

especially at the stations where the mean flow field had higher gradients, the lag was more

distinguishable. This also shows that the anisotropy of the near wall turbulence is greater than in

the outer regions.

The u, friction velocity could not be observed as the velocity scale of the turbulence structure since,

neither the fluctuating velocity nor the shear stress profiles could be correlated by normalizing with

this velocity.

While the mixing lengths computed from the data near the wall follow the suggested variation of

0.41 y, while they were different constants at each station's outer region.

The TKE profiles show that in the ,uccessive locations the TKE of the flow does not change

significantly. This suggests that the flow studied is close to an equilibrium flow in which the

production equals the dissipation at each station, and convection is negligible.
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Both the TKE and stress production terms are seen to be significant below the logarithmic regions

of the U/LU,, profiles.

The existence of a Law of the Wall for 3-D pressure and shear driven turbulent boundary layers

was also studied. For the axial component of the flows, among the 9 models chosen to be tested

with 9 different data sets Johnston's model was seen to be superior, since the scatter of the 6 data

sets in the log regions in this model's coordinate system was less than the other models' scatter.

For the lateral component of the flows, even though at some locations the Law of the Wall of

Mager was predicts 100 % larger than the data, it is seen to be working qualitatively better than the

other wall laws.

Among the 4 eddy-viscosity models tested, compared to the other models the Johnson-King model

was seen to predict the shear stress magnitudes and directions closer to the pressure-driven flow

data. For the shear-driven data Patel's model was seen to be superior. Even though the

comparison of the Algebraic eddy-viscosity models show that some models are working better than

the others this conclusion in terms of the turbulence modeling would be misguiding; since none of

the models are able to predict the data perfectly. The modeling of turbulence, as mentioned in the

Introduction chapter, necessitates many terms to be measured. Data sets including the triple

correlations of the fluctuating velocities, simultaneous fluctuating velocity gradients seem to be the

first step towards better understanding the nature of turbulence.
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Table 1. LEFT-ItAND-SIDE HOT-WIRE LOCATIONS.

Station File X Z Ure PFls fiNs
Number Name (inches) (inches) m/sec (degree) (degree)
18 LHS 18 -9.477 1.079 27.4 1.17 0.
17 LHS17 -6.478 1.125 27.49 -0.69 0.97
16 LHS16 -4.487 1.316 27.54 1.648 6.1
15 LHS15 -3.496 1.449 27.46 2.189 8.52
14 LHSI4 -2.759 1.586 27.51 2.144 11.66
13 LUISI3 -2.287 1.752 27.47 5.504 21.5
12 LlIS12 -1.804 1.88 27.46 6.53 14.84

11 LHS11 -1.328 2.035 27.53 9.01 18
10 LHSO -0.904 2.326 27.47 10.95 32.07
9 LHS9 -0.472 2.578 27.44 12.05 30.22
8 LHS8 0.194 2.724 27.44 13.87 30.86

7 LHS7 0.258 2.939 27.46 10.47 25.33
6 LHS6 0.726 3.117 27.5 9.48 20.82
5 LHS5 1.193 3.295 27.58 9.15 20.82
4 LHS4 1.674 3.432 27.53 7.34 15.89
3 LHS3 2.165 3,527 27.5 5.03 10.92
2 LHS2 2.66 3.6 27.49 5.03 8.39

1 LItS 1 3.655 3.678 27.62 4.3 4.48
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Table 2. 0.75 CHORD UPSTREAM HOT-WIRE PROFILE
LOCATIONS.

File Zrclt U,,I C x 10a 3x(mm) O(nmz) H = S'/0
Name

UPI 0 27.27 3.055 4.679 3.343 1.4

UP2 0.25 27.28 2.675 4.675 3.425 1.365

UP3 0.5 27.25 3.071 4.754 3.425 1.388

UP4 0.75 27.28 2.758 4.677 3.505 1.334

UP5 1. 27.3 3.032 4.698 3.438 1.367

UP6 1.25 27.3 3.045 4.747 3.495 1.358

UP7 1.5 27.23 2.916 4.664 3.452 1.351

UP8 1.75 27.33 3.302 4.776 3.527 1.354

UP9 2 27.29 2.996 4.651 3.486 1.334

UPIO 2.25 26.97 2.684 4.776 3.552 1.345

UPI1 2.5 27.06 2.737 4.7e,8 3.414 1.403

UPI2 2.75 27.02 3.536 4.832 3.570 1.353

UP14 3.25 26.89 3.031 4.875 3.465 1.407

UP16 3.75 26.9 3.087 4.744 3.563 1.332

UP18 4.25 26.93 3.061 4.779 3.532 1.353
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Table 3. LASER-DOPPLER VELOCIMETER LOCATIONS.

Station File X Z U,4 F fi PNs P.
Number Name (inches) (inches) m/sec (degree) (degree) (degree) m/sec

0 LDVO -4.487 -1.316 27.57 -1.684 -6.1 -3.816 1.152

1 LDV1 -3.496 -1.449 27.44 -2.288 -8.52 -17.712 0.864

2 LDV2 -2.287 -1.752 27.40 -5.576 -21.5 -21.724 0.865

3 LDV3 -1.328 -2.035 27.60 -8.774 -18 -39.823 0.957

4 LDV4 -0.472 -2.578 27.62 -10.163 -30.22 -26.337 1.105

5 LDV5 0.258 -2.939 27.59 -9.392 -25.326 -9.808 1.154

6 LDV6 1.193 -3.295 27.25 -6.509 -20.82 -4.692 1.162

7 LDV7 2.165 -3.527 27.29 -3.753 -10.92 -1.048 1.203
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Table 4. RIGHT-HAND-SIDE HOT-WIRE LOCATIONS.

Station File X Z U, f PFS Xs
Number Name (inches) (inches) m/sec (degree) (degree)

I RHSI -3.496 -1.449 26.99 -3.098 -8.52

2 RHS2 -2.287 -1.752 26.99 -3.858 -21.5
3 RHS3 -1.328 -2.035 27.00 -6.745 -18

4 RHS4 -0.472 -2.578 26.99 -9.249 -30.22
6 RHS6 1.193 -3.295 26.97 -5.421 -20.82
7 RHS7 2.165 -3.527 27.06 -4.615 -10.92
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Table 5. AVERAGED NOMINAL VALUES OF THE
UNCERTAINTIES AT

DIFFERENT REGIONS OF THE BOUNDARY LAYER.
Region U/U, V/ V,, WI W,,- u'/ r,.f v',/ w/ U, f
Near wall 0.063 0.007 0.033 0.063 0.013 0.027

Logarithmic 0.023 0.015 0.018 0.004 0.004 0.004

Outer 0.035 0.011 0.051 0.005 0.003 0.005

Near wall 0.004 0.004 0.002

Logarithmic 0.0004 0.0004 0.0003

Outer 0.00005 0.0002 0.0002

0

0

0
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Table 6. SEVERAL THICKNESSES COMPUTED USING
THE LDV DATA IN
FREE-STREAM COORDINATES.

Station 6 .5 .52 3 64
Number (cm) (mm) (mm) (mm) (mm)

0 3.921 6.521 6.518 4.627 0.107

1 3.899 6.676 6.66 4.683 0.82

2 3.996 6.626 6.57 4.628 1.183

3 3.424 5.941 5.802 4.184 1.732

4 3.885 5.323 5.165 3.984 1.802

5 4.1457 4.981 4.846 3.877 1.691

6 3.864 4.76 4.663 3.778 1.668

7 3.757 4.512 4.46 3.592 0.787

6 = Boundary Layer Thickness

, =f (1- -L- )dy = Displacement Thickness
J0 Ue

62 1 Ue )dy = Displacement Thickness

63 = f( - U ) - dy = Momentum Thickness

64 = -f6 - )dy = Lateral Displacement Thickness
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Table 7. SUMMARY OF EXPERIMENTAL DATA SETS.
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Table 8. SUMMARY OF SEMI-LOGARITHMIC y+ REGIONS OF FIVE
'LAW-OF-THE-WALL" RELATIONS.

Flows /Models Coles Johnston Hornung- Pierce- Chandrashekhar-
studied Joubert Krommenhoek Swamy

Elsenaar-
Boelsma 45-400 60-250 30-450 35-250 35-250
Muller 30-250 30-200 30-250 20-200 20-200

Femholz-
Vagt 15-150 15-100 15-100 15-100 15-100
Dechow-
Felsch 20-200 20-150 20-1-0 20-150 20-150
Anderson 60-200 60-200 60-200 60-200 60-200
Bissonnette-
Mellor Low Re 20-200 45-250 30-200 20-200 20-200

Bissonnette-
Mellor High Re - 20-250 - 25-250 25-250

Lohmann 60-250 40-150 40-150

Olcmen 40-500 40-200 40-400 40-250 40-250
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Table 9. OVERLAP N-4 + ZANGIS FOR THE LEFT-HAND
SIDE OF THE PROPOSED) MODELS FOR PRESSURE-
DRIVE N DATA SETS FOR THE AXIAL COMPONENT.

Flows /Models Perry- W-L-C van Den
studied Joubert Berg

Elsenaar- 40-500 30-200 30-200
Boelsma

Muller 6-150 4-60 4-40

Femholz- 10-100 15-30 15-30
Vagt_________ ________ _

Dechow- 7-20 7-60 7-20
Felsch _______

Anderson 60-100 60-100 60-80
Olcmen 20-100 20-40 30-40
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Table 10a. THE RANGES AND ABSOLUTE RANGES OF ANGLE DIFFERENCES
(a - c) in degrees CALCULATED WITH SEVERAL TURBULENCE
MODELS AT y + = 200.

Flows /Models Cebeci- Rotta Rotta Rotta
studied Smith 0.3 0.5 0.7

Elsenaar- 0'-12.8* -6.4'-3.2' -3.2'-6.40 0-6.4*
Boelsma 12.80 9.60 9.60 6.40

Dechow- 6.4'--+31.90 -9.6-*3.20 00-6.40 6.4°4-,22.3'
Felsch 31.90 12.80 6.40 22.30

Muller -3.24--+3.20 -31.9-3.2 *  -12.84-3.2 *  -9.60-3.20
6.40 35.10 16.00 12.80

Anderson 6.4'-31.9' -6.40-3.2* 00-16.0' 0'-*25.5*
31.90 9.60 16.00 25.50

Olcmen -31.90-25.50 -25.5°*35.10 -28.70*22.3* -31.9°- 12.80
57.40 60.60 51.10 44.70

Lohmann -3.20-6.4 *  -31.9°416.0 °  -12.80-9.60 -6.4°49.6'
9.60 47.90 22.30 16.00

Bissonnette- 83.0- 102.10 57.5'-95.70 67.0°- 102.10 76.60--*98.9'
Mellor low Re 102.10 95.70 102.10 98.90

Bissonnette- 57.5°470.20 31.90-41.5* 38.34-51.10 57.50--+73.40
Mellor high Re 70.20 41.50 51.10 73.40

Flows /Models Rotta Rotta Johnson- Patel
studied 1.2 1.5 King

Elsenaar- - - 3.204-12.8 °  0°-,12.80
Boelsma - - 12.80 12.80

Dechow- - - 6.4°--,31.90 3.20-+28.70
Felsch - - 31.90 28.70

Muller - - -6.40-3.2' -9.60-3.20
- - 9.60 12.80

Anderson - - 6.40°-35.10 6.40--135.1'
- - 35.10 35.10

Olcmen -35.14-25.50 -35.1 -,+0
_ _ 60.60 35.10

Lohmann -3.204-*6.4' -3.20*-6.40 -3.24-6.4' -3.20-+6.40
9.60 9.60 9.60 9.60

Bissonnette- 83.00-102.1' 83.0 0 -- 102.1' 76.60-102.10 79.84-102. 10
Mellor low Re 102.10 102.10 102.10 102.10

Bissonnette- 63.8'-73.4°  38.34-51.10 54.3--63.80 54.34-*67.0'
Mellor high Re 73.40 51.10 63.80 67.00
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Table 10b. THE RANGES AND ABSOLUTE RANGES OF MAGNITUDE RATIOS (
Zm/ Z-c ) CALCULATED WITH SEVERAL TURBULENCE MODELS AT

y += 200.

Flows /Models Cebeci- Rotta Rotta Rotta
studied Smith 0.3 0.5 0.7
Elsenaar- -0.38-0.81 -0.34-1.02 -0.3-0.98 -0.34-0.89
Bolesma 1.19 1.36 1.28 1.23
Dechow- -0.47--0.34 -0.26-0-0.3
Felsch 0.81 0.56 0.6 0.72
Muller -0.38-*0.02 -0.4--,0.21 -0.36-0.15 -0.38--,0.13

0.4 0.61 0.51 0.51
Anderson -0.34--*0.17 -0.26-0.64 -0.34-+0.47 -0.36--0.19

0.51 0.9 0.81 0.55
Olcmen -0.32--+0.4 -0.3--+0.85 -0.3--0.64 -0.3--0.34

0.72 1.15 0.94 0.64
Lohmann -0.51-0.51 0.51-6.47 0.17--+3.15 -0.17-1.53

1.02 6.47 3.15 1.7

Bissonnette- 1.91-*4.47 11.06- 19.15 5.74-, 12.98 3.4-8.51
Mellor low Re 4.47 19.15 12.98 8.51
Bissonnette- 0.51-.2.17 1.53-4.34 1.28-+3.57 0.77-*2.43
Mellor high Re 2.17 4.34 3.57 2.43
Flows /Models Rotta Rotta Johnson- Patel
studied 1.2 1.5 King

Elsenaar- - -0.55-0.38 -0.43-+0.06
Bolesma -_-_ 0.93 0.49

Dechow - -0.21-.0.13 -0.64-* -0.17
Felsch -_-_ 0.34 0.64

Muller -0.3-0.02 -0.43--, --0.21
- - 0.32 0.43

Anderson - -0.32--.0.09 -0.7- -0.26
-- _0.41 0.7

Olcmen -0.28--0.21 -0.43-+0
0.49 0.43

Lohmann -1.19--+0.68 -1.36--+ -0.17 0.09---0.17 -2.55-+ -0.94
1.87 1.36 0.17 2.55

Bissonnette- 2.34-5.96 1.49--+4.68 I.7--+3.4 0.85--+6.81
Mellor low Re 5.96 4.68 3.4 6.81
Bissonnette- 0.13-1.53 1.28-3.83 2.04--+3.83 -1.02--2.81
Mellor high Re 1.53 3.83 3.83 3.83
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Figure 1. Mean velocity, normal and shear stress measurement locations.: The scale of the 0
plot is in inches. & Left-hand side hot-wire locations, O right-hand side hot-wire
locations,0.75 chord upstream hot-wire locations,+ LDV locations.
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I Figure 2a. Oil flow visualization picture taken on the test wall surrounding the wing, at 27
m/sec nominal reference velocity.: The dots on both sides denote the velocity
and stress measurement locations.
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Figure 2b. Oil flow visualization picture taken on the test wall surrounding the wing, at 27 0
m/sec nominal reference velocity.
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Figure 3b. Positions of pressure tappings on the wing surface projected on to an XY plane. 0
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Figure 4. Hot-wire probe, in the tunnel.
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Figure 5. Probe holder designed to reach to measurement locations.
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Figure 6. Definition of the angles and the coordinate axes used in the present study.:
XC, YTC, zTr= Tunnel coordinates, xFs, yrs, zFs= Free-stream coordinates,
XNS, YNS, ZNs = Maximum normal stress coordinates.
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Figure 9a. U velocity component measured with the hot-wire technique at .75 chord length
( chord = 12 inches upstream of the body expressed in tunnel coordinates.
): The height in the profiles is nondimensionalized with t=2.824 inches
maximum body thickness. Profiles from left to right correspond to the stations
proceeding in + zrc direction. Note the shifted scale of the absissa. ( see also fig
4 and table 2)
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Figure 9b. U velocity component measured with the hot-wire technique at .75 chord length
upstream of the body continued
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Figure 9c. W velocity component measured with the hot-wire technique at .75 chord length
(chord = 12 inches upstream of the body expressed in tunnel coordinates.: The
height in the profiles is nondimensionalized with t = 2.824 inches maximum body
thickness. Profiles from top to bottom starting with the left-hand side figure
correspond to the stations proceeding in + ZTC direction. Note the shifted scale
of the ordinate. ( see also fig 4 and table 2)
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Figure 9d. u" fluctuation velocity component measured with the hot-wire technique at .75
chord length ( chord =12 inches upstream of the body expressed in tunnel
coordinates.: The height in the profiles is nondimensionalized with t = 2.824
inches maximum thickness. Profiles from top to bottom starting with the
left-hand side figure correspond to the stations proceeding in + Zrc direction. Note
the shifted scale of the ordinate. ( see also fig 4 and table 2 )
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Figure 9e. w' fluctuation velocity component measured with the hot-wire technique at .75
chord length ( chord = 12 inches upstream of the body expressed in tunnel
coordinates.: The height in the profiles is nondimensionalized with t = 2.824
inches maximum thickness. Profiles from top to bottom starting with the
left-hand side figure correspond to the stations proceeding in + ZTC direction. Note
the shifted scale of the ordinate. ( see also fig 4 and table 2 )
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Figure 9f. -7uTW shear stress component measured with the hot-wire technique at .75 chord
length ( chord = 12 inches thickness.: The height in the profiles is
nondimensionalized with t = 2.824 inches maximum thickness. Profiles from top
to bottom starting with the left-hand side figure correspond to the stations
proceeding in + zrc direction. Note the shifted scale of the ordinate. ( see also fig
4 and table 2)
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Figure 10. Characteristic dimensions visualized with the oil flow technique.: The
characteristic dimensions are nondimensionalized with the maximum body
thickness t = 2.824 inches.
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Figure 1I. Distribution of time-mean static pressure on the test wail surrounding the wing
at Reynolds number based on momentum thickness at 0.75 upstream of the body
on the centerline of the tunnel of 5936.
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Figure 12a. Distribution of time-mean static pressure on the wall surrounding the wing at
Reynolds number based on momentum thickness of 5'.36.: Lines indicate
+ z7Tc, points indicate - zT-c.
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P Figure 12b. Distribution of time-mean static pressure on the wall surrounding the wing at
Reynolds number based on momentum thickness of 5936 :Lines indicate
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Figure 16a. Scheamatic figure of the histogram noise level determining routine.: top:The
histogram with the noise.bottom:Parabola fitting to both sides of the peak of the
logarithm of the histogram values.
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Figure 16b. Scheamatic figure of the histogram noise level determining routine.: top:The
noise level of the histogratn..bottom:The histogra/nafter the noise is removed.
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Figure 16b. Comparison of U and W mean velocity components measured with hot-wire
technique using two different set of equipments and reduction programs.: At
station 7 on the right-hand side of the wing.
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Figure 17b. Comparison of u'and w' fluctuation velocity and-Sw-- shear stress components
measured with hot-wire technique using two different set of equipments and
reduction programs: At station 7 on the right-hand side of the wing.
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Figure 19. Comparison of station 0 u'fluctuation velocity LDV profile with Klebanoffis
two-dimensional turbulent boundary layer-data.: x LDV data, + Klebanoffs
data.
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Figure 20a. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20b. u',v',w' fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20c. -uV, -,-W shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20d. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzerrespectively. Station numbers are also shown in the
figures.
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Figure 20e. u',v',w' fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 201. -UM, -l,-VW" shear stress components measured with two different LDV

techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20g. U,V,W mean velocity components measured with two difflerent LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20h. u',v',w' fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.

F

FIGURES 17/8

I



.005 .005
Uv/Uei ST- W-/Uef STZ

x 2 UVB x 2 uda
+ 2 UVS + 2 UWS

.002 .002

++
X ~X+

0+ 0 1X++ +
++

XX + + X

X

y Xx+  +X
t- X(XxXxX x X

-.002 -.0025 x

X

log(y/t) log(y/t)
.005 L O . . . . . . . .005 . . ... . ... . ..
-3 -2 -1 0 -3 -2 -1

.005
- W/U2e

f t#

+ 2 VS

.002+

L+ + +

0 +-

-.0025L

log(y/t)-.005 1 .. .- , ,, ... .. .

-3 -2 -1 0

Figure 20i. -uv,-uw,-vw shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20j. U,V,W mean velocity components measured with two different LDV techniques
presented in tunnel coordinates.: UV, UW and VW show the LDV beam
system used to obtain the data. Extensions B and S denote the measurements
taken with Burst Spectrum Analyzer and fast sampling rate swept-spectrum
analyzer,respectively. Station numbers are also shown in the figures.
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Figure 20k. u Ivl,w' fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VWV show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzerrespectively. Station numbers are also shown in the
figures.

FIGURES 181



I

.0051 .005

++ 3 IVS + 3 UWS

.0021 .002

X
X+ X X -x X• *x+ + X +

X~ ++++ 7_
XXV* ++

-.002 -.002

log(y/t) log(y/t)
-.005 ... .. .... ... . .... 0 . ...' . . .. . ..

-3 -2 -1 0 -3 -2 -1 0

.005

7V-/U 2 f

+ 3 VWS

.002

+ +* 4~.+ +

-.005

log (y/t)

-.00f....,..... ....... ....

-3 -2 -1 0
Figure 201. -uv,-uw,- W shear stress components measured with two different LDV
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beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20m. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzerrespectively. Station numbers are also sh-". in the
figures.
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Figure 20n. u',v',w' fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20o. -u,-uW,-:- shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20p. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20q. u',v',w' fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20r. -uv,-uw,-vw shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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system used to obtain the data. Extensions B and S denote the measurements
taken with Burst Spectrum Analyzer and fast sampling rate swept-spectrum
analyzer,respectively. Station numbers are also shown in the figures.
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Figure 20t. u',v',w' fluctuation velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20u. -uv,-uw,-vw shear stress components measured with two different LDV

techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20w. U,V,W mean velocity components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20x. u',v',w' fluctuation velocity components measured with two different LDV

techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept-spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 20y. -u--, -uW, - shear stress components measured with two different LDV
techniques presented in tunnel coordinates.: UV, UW and VW show the LDV
beam system used to obtain the data. Extensions B and S denote the
measurements taken with Burst Spectrum Analyzer and fast sampling rate
swept spectrum analyzer,respectively. Station numbers are also shown in the
figures.
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Figure 2 1. U component of the mean velo'city vector measured with LDV technique
presented in tunnel coordinates.: The stations are numbered from left to ight
starting with 0. Large symbols denote the data, small symbols denote the
uncertainty band. Lines are used to show the hot-wire profiles taken at the same
locations. Note the shifted scale of the absissa. ( See also fig 4, and table 3)
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Figure 22a. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in tunnel coordinates.: In the figures
the stations are numbered from left to right starting with station 18 and station
12, respectively. Lines are used to show the hot-wire profiles taken at the
symmetric locations. Note the shifted scale of the absissa. ( See also fig 4, and
table I)

FIGURES 196



U/Uref in tunnel coordinates

station# 6

log(y/t)

3 -3 -3 -3 -3 -3 -2 -1 0

Figure 22b. U component of the mean velocity vector measured with hot-wire techniqueon the left-hand side of the wing presented in tunnel coordinates.: In the figure
the stations are numbered from left to right starting with station 6. Lines areused to show the hot-wire profiles taken at the symmetric locations. Note theshifted scale of the absissa. ( Set: also fig 4, and table 1)
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Figure 23. V component of the mean velocity vector measured with LDV technique
presented in tunnel coordinates.: The stations are numbered from top to bottom
starting with 0. Large symbols denote the data, small symbols denote the
uncertainty band.
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Figure 24. W component of the mean velocity vector measured with LDV technique
presented in tunnel coordinates.: The stations are numbered from top to bottom
starting with 0. Large symbols denote the data, small symbols denote the
uncertainty band. Lines are used to show the hot-wire profiles taken at the same
locations. Note the shifted scale of the ordinate. ( See also fig 4, and table 3)
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Figure 25a. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in tunnel coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Lines are used to show the hot-wire profiles taken at the
symmetric locations. Note the shifted scale of the ordinate and the minus sign
of the velocity. ( See also fig 4, and table 1)
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Figure 25b. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in tunnel coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Lines are
used to show the hot-wire profiles taken at the symmetric locations. Note the
shifted scale of the ordinate and the minus sign of the velocity. ( See also fig 4,
and table 1)
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Figure 26. U component of the mean velocity vector measured with LDV technique
presented in free-stream coordinates.: The stations are numbered from left to
right starting with 0. Note the shifted scale of the absissa. ( See also fig 4, and
table 3)
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Figure 27a. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in free-stream coordinates.: In the

figures the stations are numbered from left to right starting with station 18 and

station 12, respectively. Note the shifted scale of the absissa. ( See also fig 4, ane

table 1)
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Figure 27b. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in free-stream coordinates.: In the
figure the stations are numbered from left to right starting with station 6. Note
the shifted scale of the absissa. ( See also fig 4, and table 1)
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Figure 28. W component of the mean velocity vector measured with LDV technique
presented in free-stream coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Note the
shifted scale of the ordinate. ( See also fig 4, and table 3)

FIGURES 205



"5 .ref 5 -W/Uref

station# 18

0 F station# 12

0 < 0 '

01

o

in free-stream coordinates

lo.g(Y t log(y/L)

-2 -i 0 -3 -2 -1

Figure 29a. W component of the mean velocity vector measured with hot-wire technique
on the left-hand sid e wing presented in free-stream coordinates.: In the
figures the stations are numbered from top to bottom starting with station 18and station 12, respectively. Note the shifted scale of the ordinate and the minus

sign of the velocity. ( See also fig 4, and table 1)
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Figure 29b. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in free-stream coordinates.: In the
figure the stations are numbered from top to bottom starting with station 6.
Note the shifted scale of the ordinate and the minus sign of the velocity. ( See
also fig 4, and table I
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fig 4, and table 3 )
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Figure 31Ia. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in normal stress coordinates.: In the
figures the stations are numbered from left to right starting with station 18 and
station 12, respectively. Note the shifted scale of the absissa. ( See also fig 4, and
table 1)
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Figure 3lb. U component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in normal stress coordinates.: In the
figure the stations are numbered from left to right starting with station 6. Note
the shifted scale of the absissa. ( See also fig 4, and table 1)
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Figure 32. W component of the mean velocity vector measured with LDV technique
presented in maximum normal stress coordinates.: In the figures the stations are
numbered from top to bottom starting with station 0 and station 4, respectively.
Note the shifted scale of the ordinate. ( See also fig 4, and table 3)
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*Figure 33a. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in normal stress coordinates.: In the
figures the stations are numbered from top to bottom starting with station 18
and station 12, respectively. Note the shifted scale of the ordinate and the minus
sign of the velocity. ( See also fig 4, and table 1)
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Figure 33b. W component of the mean velocity vector measured with hot-wire technique
on the left-hand side of the wing presented in normal stress coordinates.: In the
figure the stations are numbered from top to bottom starting with station 6.
Note the shifted scale of the ordinate and the minus sign of the velocity. ( See
also fig 4, and table I )
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Figure 34a. u', fluctuating velocity component measured with LDV technique presented in
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 34b. u', fluctuating velocity component measured with LDV technique presented in P
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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*Figure 35a. u', fluctuating velocity component measured with hot-wire technique on theleft-hand side of the wing presented in tunnel coordinates.: In the figures thestations are numbered from top to bottom starting with station 18 and station12, respectively. Lines are used to show the hot-wire profiles taken at thesymmetric locations. Note the shifted scale of the ordinate. ( See also fig 4, and
table 1 )
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Figure 35b. u', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in tunnel coordinates.: In the figure the
stations are numbered from top to bottom starting with station 6. Lines are used
to show the hot-wire profiles taken at the symmetric locations. Note the shiftcd
scale of the ordinate. ( See also fig 4, and table I)
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Figure 36a. v', fluctuating velocity component measured with LDV technique presented in
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Different
symbols, very near the wall and near the layer edge show the points vhere the
realizability conditions are not satisfied.
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Figure 36b. v', fluctuating velocity component measured with LDV technique presented in 9
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied.
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Figure 37a. w' fluctuating velocity component measured with LDV technique presented in
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 37b. w' fluctuating velocity component measured with LDV technique presented in 9
tunnel coordinates.: The station numbers are shown in the figures. Large
symbols denote the data, small symbols denote the uncertainty band. Lines are
used to show the hot-wire profiles taken at the same locations. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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*Figure 38a. w', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in tunnel coordinates.: In the figures the
stations are numbered from !op to bottom starting with station 18 and station
12, respectively. Lines are used to show the hot-wire profiles taken at the
symmetric locations. Note the shifted scale of the ordinate. ( See also fig 4, and
table 1)
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Figure 38b. w', fluctuating velocity component measured with hot-wire technique on the 9
left-hand side of the wing presented in tunnel coordinates.: In the figure the
stations are numbered from top to bottom starting with station 6. Lines are used
to show the hot-wire profiles taken at the symmetric locations. Note the shifted
scale of the ordinate. ( See also fig 4, and table 1 )
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Figure 39. u', fluctuating velocity component measured with LDV technique presented in
free-stream coordinates.: In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 40a. u', fluctuating velocity component measured with hot-wire technique on the 0
left-hand side of the wing presented in free-stream coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,
and table 1)
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Figure 40b. u', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in free-stream coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table 1)
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Figure 41. w' fluctuating velocity component measured with LDV technique presented in
free-stream coordinates.: In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 41a. w', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in free-stream coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,
and table I)
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Figure 4lb. w', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in free-stream coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table 1 )
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* Figure 43. u', fluctuating velocity component measured with LDV technique presented in
maximum normal stress coordinates.: In the firures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 44a. u', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in normal stress coordinates.: In the figures
the stations are numbered from top to bottom starting with station 18 and
station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,
and table 1 )
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Figure 44b. u', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in normal stress coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table 1)
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Figure 45. w' fluctuating velocity component measured with LDV technique presented in 0
maximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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* Figure 46a. w', fluctuating velocity component measured with hot-wire technique on the

left-hand side of the wing presented in normal stress coordinates.: In the figures

the stations are numbered from top to bottom starting with station 18 and

station 12, respectively. Note the shifted scale of the ordinate. ( See also fig 4,

and table I )
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Figure 46b. w', fluctuating velocity component measured with hot-wire technique on the
left-hand side of the wing presented in normal stress coordinates.: In the figure
the stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate. ( See also fig 4, and table I)
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Figure 47a. 7 shear stress component measured with LDV technique presented in tunnel
coordinates.: The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,
very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 47b. -uv"-' shear stress component measured with LDV technique presented in tunnel 0
coordinates.: The station numbers are shown in the figures. Large symbolsdenote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,

very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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* Figure 48a. ..tiW shear stress component measured with LDV technique presented in tunnel
coordinates.: The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines are used to
show the hot-wire profiles taken at the same locations. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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* Figure 49a. -u-W, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in tunnel coordinates.: In the figures the stations are

numbered from top to bottom starting with station 18 and station 12,
respectively. Lines are used to show the hot-wire profiles taken at the symmetric
locations. Note the shifted scale of the ordinate and the minus sign of the
stresses. ( See also fig 4, and table 1)
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Figure 49b. -u- , shear stress component measured with hot-wire technique on the left-hand

stations are numbered from top to bottom starting with station 6. Lines are used
to show the hot-wire profiles taken at the symmetric locations. Note the shifted
scale of the ordinate and the minus sign of the stres. (See also fig 4, and table

1)
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Figure 50a. :V, shear stress component measured with LDV technique presented in tunnel
coordinates.; The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,
very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied.
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Figure 50b. -w, shear stress component measured with LDV technique presented in tunnel
coordinates.: The station numbers are shown in the figures. Large symbols
denote the data, small symbols denote the uncertainty band. Lines on the
ordinate show the component of the shear stress on the wall. Different symbols,
very near the wall and near the layer edge show the points where the realizability
conditions are not satisfied.
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Figure 51. -u-0, shear stress component measured with LDV technique presented in
free-stream coordinates.: In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 52. -u-, shear stress component measured with LDV technique presented in
free-stream coordinates.: In the figures the stations are numbered from top to
bottom starting with station 0 and station 4, respectively. Diferent symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied. ( See also fig 4, and table 3 )
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f igure 53. --W, shear stress component measured with LDV techruque presented in
free-strearr coordinates.: In the figures the stations arc numbered from top to
bottom starting with station 0 and station 4, respectively. Different symbols, very
near the wall and near the layer edge show the points where the realizability
conditions are not satisfied.
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Figure 54a. -TiW, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in free-stream coordinates.: In the figures the stations
are numbered from top to bottom starting with station 18 and station 12,
respectively. Note the shifted scale of the ordinate and the minus sign of the
stresses. ( See also fig 4, and table )

FI GURES 247

!S



.005

in free-stream coordinates

.0025

"0 1 station# 6

0 X)( OOoa

x
x

x
xx

xx
01

)SK~

0

-. 0050I

-.005.............a

-3 -2 -1 0

*Figure 54b. -uw, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in free-stream coordinates.: In the figures the
stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate and the minus sign of the stresses. ( See also fig 4,
and table I )
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Figure 55. -u-, shear stress component measured with LDV technique presented in
maximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 56. -u-, shear stress component measured with LDV technique presented inmaximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different

symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied. ( See also fig 4, and table 3)
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Figure 57. -u-w, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in normal stress coordinates.: In the figures the
stations are numbered from top to bottom starting with station 18 and station 12,
respectively. Note the shifted scale of the ordinate and the minus sign of the
stresses. ( See also fig 4, and table I )
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Figure 57b. -uiw, shear stress component measured with hot-wire technique on the left-hand
side of the wing presented in normal stress coordinates.: In the figures the
stations are numbered from top to bottom starting with station 6. Note the
shifted scale of the ordinate and the minus sign of the stresses. ( See also fig 4,
and table 1)
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Figure 58. -V, shear stress component measured with LDV technique presented in
maximum normal stress coordinates.: In the figures the stations are numbered
from top to bottom starting with station 0 and station 4, respectively. Different
symbols, very near the wall and near the layer edge show the points where the
realizability conditions are not satisfied.
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Figure 59a. N, anisotropy constant computed using LDV data in tunnel
coordinates.: Stations numbers are shown in the figures. Bars denote the
uncertainty bands.
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Figure 59c. N, anisotropy constant computed using LDV data in tunnel
coordinates.: Stations numbers are shown in the figures. Bars denote the
uncertainty bands.
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Figure 60a. N, anisotropy constant computed using LDV data in free-stream
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Figure 60b. N, anisotropy constant computed using LDV data in free-stream
coordinates.: Stations numbers are shown in the figures. Bars denote the
uncertainty bands.
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Figure 60c. N, anisotropy constant computed using LDV data in free-stream
coordinates.: Stations numbers are shown in the figures. Bars denote the
uncertainty bands.
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Figure 64a. Flow angle in tunnel coordinates computed using hot-wire data taken on the

left-hand side of the wing.: Lines are used to show the hot-wire profiles taken
at the symmetric locations. In the figures, stations are numbered from top to
bottom starting with station 18, and station 14, respectively. Note the minus
sign of the flow angle.
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Figure 64b Flow angle in tunnel coordinates computed using hot-wiie data taken on the
left-hand side of the wing.: Lines are used to show the hot-wire profiles taken
at the symmetric locations. In the figures, stations are numbered from top to
bottom starting with station 10, and station 6, respectively. Note the minus sign
of the flow angle.
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Figure 64c. Flow angle in tunnel coordinates computed using hot-wire data taken on the S
left-hand side of the wing.: In the figure, stations are numbered from top
bottom starting with station 2. Note the minus sign of the flow angle.
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Figure 65a. Flow angle computed using LDV data in free-stream coordinates.: Station
numbers are shown in the figures. Bars denote the uncertainty bands.
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Figure 65b. Flow angle computed using LDV data in free-stream coordinates.: Station
numbers are shown in the figures. Bars denote the uncertainty bands.
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Figure 65c. Flow angle computed using LDV data in free-stream coordinates.: Station
numbers are shown in the figures. Bars denote the uncertainty bands.
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Figure 66a. Flow angle in free-stream coordinates computed using hot-wire data taken on
the left-hand side of the wing.: In the figures, stations are numbered from top
to bottom starting with station 18, and station 14, respectively. Note the minus
sign of the flow angle.
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Figure 66b. Flow angle in free-stream coordinates computed using hot-wire data taken on
the left-hand side of the wing.: In the figures, stations are numbered from top
to bottom starting with station 10, and station 6, respectively. Note the minus
sign of the flow angle.
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Figure 66c. Flow angle in free-stream coordinates computed using hot-wire data taken on 0
the left-hand side of the wing.: In the figure, stations are numbered from top
to bottom starting with station 2. Note the minus sign of the flow angle.
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Figure 67b. Flow angle computed using LDV data in maximum normal stress
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Figure 67c. Flow angle computed using LDV data in maximum normal stress
coordinates.: Station numbers are shown in the figures. Bars denote the
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Figure 68a. Flow angle in maximum normal stress coordinates computed using hot-wire
data taken on the left-hand side of the wing.: In the figures, stations are
numbered from top to bottom starting with station 18, and station 14,
respectively. Note the minus sign of the flow angle.
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Figure 68b. Flow angle in maximum normal stress coordinates computed using hot-wire
data taken on the left-hand side of the wing.: In the figures, stations are
numbered from top to bottom starting with station 10, and station 6,
respectively. Note the minus sign of the flow angle.

FIGURES 282



45  -

"-(FLOW ANGLE)

30

L15 L

LI_ station# 2

-15

0

-15 '

-30

log(y/t)

-45 ..... . ......
-3 -2 -1 0

Figure 68c. Flow angle in maximum normal stress coordinates computed using hot-wire
data taken on the left-hand side of the wing.: In the figure, stations are
numbered from top to bottom starting with station 2. Note the minus sign of
the flow angle.
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Figure 69a. Flow gradient angle computed using LDV data in free-stream
coordinates.: Station numbers are shown in the figures. Bars denote the
uncertainty bands.

FIGURES 284



0W

N.

taZ'

>11

:0 0 C

Lfla
I I i I

o0

9C) 0

't O\1

CO

I I I I 0

0 0 0 0 0 0) 0 C0 0
I I I

CoO
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Figure 70c. Shear stress angle computed using LDV data in free-stream
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Figure 7la. u', fluctuating velocity component of LDV data in free-stream coordinates
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Figure 71b. u', fluctuating velocity component of LDV data in free-stream coordinates 0
normalized with the skin friction velocity.: Station numbers are shown in the
figure.
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Figure 72b. v', fluctuating velocity component of LDV data in free-stream coordinates 0
normalized with the skin friction velocity.: Station numbers are shown in the

figure.
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Figure 73a. w', fluctuating velocity component of LDV data in free-stream coordinates
normalized with the skin friction velocity.: Station numbers are shown in the
figure.
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Figure 73b. w', fluctuating velocity component of LDV data in free-stream coordinates
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Figure 74a. -iv-, shear stress of LDV data in free-stream coordinates normalized with the
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Figure 75a. -uw, shear stress of LDV data in free-stream coordinates normalized with the
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Figure 76a. - W, shear stress of LDV data i free-stream coordinates normalized with the
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Figure 76b. -W, shear stress of LDV data in free-stream coordinates normalized with the
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Figure 77a. x eddy viscosity computed using the LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Figure 77b. x eddy viscosity computed using the LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Figure 7 8a. z eddy viscosity computed using the LDV data in free-stream
coordinates.: Station numbers are shown in the figure.

FIGURES 304



0

1.40e- 0 4 tZFS/PUe 
6  station#

x 4

+5

1.20e-04 ><3 6

i .OOe-04

0] •

8.00e-05 C3 E

+0
x

6.00e-05 +
x + +

4.00e-05 + CIE] x
o + x

[++ o 0

2.00e-05 + x "
x

x 0

-H xxX x x [ 0

+ 0

-2.00e-05
+

-4.00e-05 (y/t)+

I I I 11 I I 1111 I I I I 
I

10-3 10 - 2 10 - ' 100

Figure 78b. z eddy viscosity computed using the LDV data in free-stream
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Figure 79a. Mixing length nondimensionalized with boundary layer thickness computed
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numbers are shown in the figure.
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Figure 79b. Mixing length nondomensionalized with boundary layer thickness computed
using LDV data.: Smooth curve denotes the L, = 0.4ly/6 variation. Station
numbers are shown in the figure.
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Figure 80a. Johnston's polar plots of the present data.: The symbols show the data and
the lines show the suggested relation. The sations are numbered from top to
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Figure 81Ia. Turbulent kinetic energy profiles obtained using LDV data.: Station numbers
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Figure 82a. Production of turbulent kinetic energy profiles obtained using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 83a. Convection of turbulent kinetic energy profiles obtained using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 84b. Production of u2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.

FIGURES 317

0



.02 
- . _1 v 2 production/U 3ref station#

x 0
L +

I.- 02
I- i[. 0 3

.01 +

x

*x 0h

+

L +

0 +

02log(y/t)
-. 02 ' .. . . .' . . . . . . .

-3 -2 -0

Figure 85a. Production of v2 normal stress profiles computed using LDV data in free-stream
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Figure 85b. Production of v2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 86b. Production of w2 normal stress profiles computed using LDV data in
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Figure 87a. Production of -u'v shear stress profiles computed using LDV data in free-stream
coordinates.: Station numbers are shown in the figure.
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Figure 89a. Production of -W shear stress profiles computed using LDV data in free-stream
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Figure 90a. Convection of u2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 90b. Convection of u2 normal stress profiles computed using LDV data in
free-stream coordinates.: Station numbers are shown in the figure.
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Figure 90g. Convection of -uv shear stress profiles computed using LDV data in free-stream
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Appendix A. DATA REDUCTION FORMULAE

A.l HOT-WIRE DATA REDUCTION EQUATIONS

Fig 125 shows a single hot-wire in x, z plane at an angle of a with respect to the local instantaneous velocity

projection in the same plane. The effective velocity, which cools the wire may be written as

Uff = /(U,. cosa - w sin a) 2 + h 2(U,, sin a + w cos a)2

where,

h = multiplication factor, since the flow tangential to the wire cools the wire less than the flow normal to it.

h used in this study was 0.13.

Instantaneous U, velocity may be written as Uj = U,, + u,. Expanding the squares in the root and assuming

that absolute value of the sum of the turbulence quantities divided by U, and multiplied with a factor is

always less than 1, makes it possible to use the binomial expansion. The resul., after neglecting the third order

velocity fluctuations can be written as,

* £ff = U,,m*, /(l+ -L(P' +42P + _LQ2+GQ)
2 A A
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where,

U = G= sin(2ct)(h 2 
- I)

Q = UWm  ; A = cos2 c+ h2 sin2a

F= sin 2a + h2 cos 2 a

Furthermore, U,( may be written as,

Ueff = (beVf- + Ueff

Time averaging of U, gives (U11),.

(UefjFm=Uim+k_.Ip 2 + _L Q2)()
2 A

in this equation the terms including P2 and Q2 may still be neglected, since they are much less than 1.0. This

leaves,

(Uetjm = U,ml/

Subtraction of (Uoff), (eq 1 ) from U.rf gives uf1i

uef = Uim*IA( + (2P + GIAQ))

which may be squared to yield,

2 1 2 G G 2 2
ue~ff = U, ..A( - (4P 2 + 4--PQ+A2- 2)

UfJ 4 A A

2 - 2 2
= Az4,, + GLnsw + G w

To find u2, w2 , w' at the same point, three successive measurements with different a angles were done. Firs.

two of these measurements were used to find the flow angle, and the mean velocity was measured after the

probe was aligned to this angle. 0
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A.2 CONFIGURA TION OF LDV BEAMS

The UV system which nominally measures the U and V components of the mean velocity vector and

u 2 , v2 , U terms of the Reynolds stress tensor was formed by intersecting the three beams of the system which

were accessed into the tunnel from the side window of the tunnel with a 90.61 cm focal length lens. The

design of the system is such that the beams travel the same distance from the focusing lens to the probe

volume. The conceptual points which are used later on to define the measurement direction and the bisector

direction and the perpendicular direction for each pair of beam are shown in Fig 126. Fig 126 also shows

the directions of the positively measured quantities due to shifting by Bragg cells,which are indicated by

arrows.

The UW system nominally measures the U,W components of the mean velocity and u2 , w2 , i'tcomponents

of the Reynolds stress tensor. The access to the tunnel is through the plexiglass floor of the tunnel and the

lens used has 26.54 cm focal length. Fig 127 shows the conceptual points and positive measurement

directions for each pair of beam.

Similarly, the VW system nominally measures the V, W components of the mean velocity and ;5, w 2 , W

components of the Reynolds stress tensor. This system uses the UV system's V component measuring pair

of beams, the UW system's W component measuring pair of beams and a third pair which is necessary to

extract the vw shear stress and which are focused by a 26.002 cm focal lengthed lens. Originally the VW

system's all beams were designed to be on the y, z plane, but during the reduction of the velocities and stresses

it was observed that very small error due to one beam of the V component measuring pair being out of plane

resulted in different results between UV, VW systems. To take into account this error, VW system equations

were rewritten by assuming that one of the V measuring pair of beams was out of plane. Fig 128 shows thc

original design and V measuring beams with including this error.

The probe volume for each pair of beams form an ellipsoid and the dimensions of it can be computed using,

I fo
A  

O" O

cosd Co1 0

where,
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fo = focal length of the focusing lens

A wave length of the laser

d =distance between the I /e2 intensity points of the beam at the lens

S= half of the angle between the two interseting beams ( Fig 18 ), (Durst, Melling, Whitelaw, 1981 ).

In reality, use of the equat .,is prove to be difficult due to necessity to measure the beam diameter before

focusing. 0

A.3 LD V DA TA REDUCTION EQUA TIONS

Once the configuration of the beams are well defined the measurement direction unit vectors can easily be

found. This also makes it easier to take into account the sign judgment of the measured quantities which

occur due to shifting of the beams. Unit vectors multiplied by the velocity vector U + Vj + Wk" give

equations for intantaneous measurements for each pair of beam. These equations are as follows,

UV system (Fig 126 ) instantaneously measures;

(2-1) pair

- sin(al/2) fD

(1-3) pair

Vi( sin C - Ynew) - WI( cos C + Z,,ew) A2

V 2 - 2yn,. sin -- 2 cos Cznew - sin(a 2/2)

(2-3) pair •
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2U, tan(--) + V,(sin C-Ynew)- Wi(cos + Znew) _ .2
2sin( /2fD

2 - 2 sin C'new + 2 cos Cze, + 4 tan2( -i-)

UW system (Fig 127)

(1-2) pair

U sin aI + ;,(cos 1 -1) 2/2

J2 - 2 cos sin(,l/2) fD

(3-1) pair

V( - cos a2) - W,. sin a 2  A/2

V/2 - 2 cos a 2  sin(a 2 ,'2 fD

(2-3) pair

U, sin a + Vi( cos a 1 - cos a 2) - W sin a 2 - ./2

-2 - 2 cos a 1 COS a 2  
sin(a 3/2) AD

VW system (Fig 128)

1 pair

Ui sin aI( sin(err)) + V( sin C - sin(O + C)) + W( cos(45 + C) - cos C) 2/2

N2 - 2 cos + sin 2a 1 -- sin 2 4- sin(al/2) AD

2 pair

Vsn(-2 a2 A12
a2 - W cos( L2 - /

Ssin( ) 2 sin(O,2/2) fD

3 pair
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w, cos r - vi sin r = sin(/2 fD 0

Mean velocities are reduced from the first two equations of each system. After time averaging the equations

keep the same form. The first two letters, UV, UW, VW on the left-hand side of the following equations show

the optical systems used and U1, VI, W1 denote the nominal mean quantities measured by these systems.

UV system

UvU1 = U

= V( sin C -Yew) -W( cos C + znew)

V2 - 2Ynew sin + 2 cos Cznew

UW system

- Usinc, + V(cos a, - 1)
/2 - 2 cos .t1

= V(1 -cos a2) - W sin a2V'2 - 2 COS -2

VW system

U sin a (sin(err)) + V( sin C - sin(4) + C)) + W( cos(4) + C) - cos C)

2 - 2 cos 4) + sin - sin 24

VWW1 = Vsin(-a-)- Wcos( a2
2 2(T

Eventhough these equations can be solved simultaneously by only taking 3 of these equations which include

3 unknowns, this would be assuming beforehand that in each traverse of the seperate systems the probe

volumes were coinciding and were exposed to the same velocity. To overcome this assumption the necessary

information to be able to solve each two equation was supplied. U velocity component for VW system was

taken as UV system's U velocity component, thus V and W components from VW system could be computed.

These computed values were taken as the inputs to the UV and UW systems. Therefore UV system uses W

velocity computed by VW and UW system uses V velocity computed from VW system. This was necessitated

since the original design of the systems were done with the assumption that each system would measure the

mean velocities it was designed for. These equations written here were derived after the data was taken. •

Appendix A. DATA REDUCTION FORMULAE 455



After the reduction, it was seen that it was necessary to shift some of the UW system profiles up to have

consistent results. UV system was taken as the base for these shifts since it was much easier to locate the probe

volume on the wall with the naked eye. The maximum shifts necessary was observed to be 0.152 mm.

Reynolds stress components were computed with the same idea in mind, such that only necessary unknowns

to solve the unknowns of each system were supplied from other systems. The instantaneous velocities in the

9 equations previously written were seperated into mean and fluctuating parts and the squares of the

equations were taken and Reynolds averaging was applied. After neglecting only values such as 0.2% of the

mainly interested quantity that is being considered in that particular equation by the assumption that all

fluctuations are on the same order of magnitude, the equations may be written as follows.

UV system

(2-1) pair

UVU2 =U

(1-3) pair

UVV2 =A 1,
2 + A 2iW

(2-3) pair

UVUV= Bju 2 + B2v
2 + B39' + B4iw + B5 W

where,
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0

( sin 2C - 2 sin n)'.ew + Ynew2

A1 = (2 - 2yew sin C + 2 cos CZnew)

- 2( sin C cos C + sin CZ,,. - Ynew cos - Yne.znew)
A 2 = (2 - 2ynew :'n -r 2 cos Cz,,,)

DI V = 2 - 2 sin Yew + 2 cos zn w + 4 tan .i-)

4 tan
2( I

Bl - DIV

( sin - 2 sin CYnew + Y 2new)

B2 - DIV

4( tan( 2 ) sin C - tan(o./ 2 )yew)

B3 -- 2 DIV

- 4( tan( cos C + tan(al/ 2)znew)
B4 2 DIV

B5  -2( sin C cos C + sin C7,ew - Ynew COS - Ynew 2 new)
DIV

UW system

(1-2) pair

UWU2 = Alu 2 + A2ri

(1-3) pair

UWW2 = B1w + B 2 W

(3-2) pair

UWUW=C u 2 + C 2w 2 + C 3  + C 4 w + Cqv

where,

A
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sin 2(a)(2 - 2 cos(a1 ))

2 sin ai( cos - 1)
A2  (2 - 2 cos a,)

sin 2(02)
B1  (2 - 2 cos 2)

- 2 sin 2(1 - COS a2)

B2 = (2 - 2 cos a 2 )

DIV = 2- 2 cos al cos a 2

DIV

sin2(a2)
2 DIV

2 sin a,( cos a, - cos a2)
C3 = DIV

- 2 sin a, sin 02

C4= DIV
-2( sin a2( cos al - cos a2))

C5 = DIV

VW system

1st pair

VWV2 = Ar 2 + A2u' + A 3V-

2nd pair

VWW2 = B2w 2 + B3ii

3rd pair

VWVW = C 2 + C2 3w

where,
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(sin C - sin(, + ))2

(2 - 2 cos 4 + sin2 (cc) - sin 42)

2 sin at sin(err)( sin r - sin(4 + C))
A 2 =

(2 - 2 cos 'k + sin(a 1) - sin 2$)

2( sin a I - sin(4' + C))( cos(4' + C) - cos C)
(2 - 2 cos + sin 2( 1 ) - sin 24)

2

2
B3 = - 2 sin( C )cos( 2 )

C, = sin 2

C 2 = COS20

C3 = - 2 sin Fcos F

The left-hand sides of the equations may be used to indicate which quantity is being computed from which

system such as UVV2, v2 of the UV system measurements and VWVW, i_ from VW system measurements.

They also show the quantity measured by the systems. In each system's equations 1st and 2nd serve as input

to the third equation. Yet, since these 1st and 2nd equations involve unknowns in them which have to be

supplied from the solutions of the other systems, an iteration process was applied. It was observed that, a

constant value for each stress term was obtained after 6 iterations. In these iterative solutions, first i_ was

computed assuming that W'-= 0. This was put as input to UV system which further needed ii', which was

assumed to be zero in the first iteration. These computed 0' and i- values were used as inputs to compute

iu-. The normal stresses from each of the three systems used were therefore found individually. Likewise

the U, V, W mean velocity components u2 , v, w2 , normal stress components are obtained two times, from

different systems and uv, uw, vw, are obtained once.

A
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Appendix B. GRADIENT AND FINITE

TRANSIT TIME BROADENING

CORRECTIONS

B.I GRADIENT BROADENING

The existency of velocity gradient in the probe volume deviates the measured flucuating and mean quantities

from the quantities that would be measured at the center of the probe volume (George and Lumley, 1973

The formulation given by George and Lumley ( 1973 ) assumes that only one velocity component is being

measured or the orientation of probe volume is such that it is exposed to only one velocity gradient which

is along the major axis of the ellipsoidal probe volume. Even though it was discussed by Durst, Melling and

Whitelaw ( 1981 ) that the correction in this direction for gradient broadening would be sufficient; it was
aU

observed that the formulation was neglecting some of the important correction terms necessary such as

in UV system measurements.

Appendix B. GRADIENT AND FINITE TRANSIT TIME BROADENING CORRECTIONS 460



0

The equations for the gradient broadening were rewritten following the same assumptions they made except

that the velocity vector had gradients with in the probe volume. The formulation is as follows: The velocity 9

vector within the probe volume around the center of the ellipsoid may be approximated by,

- + -LL' dx + y L - ody + -L- 0d 2

or this may be further written as

V = Vo + Io(- - X0) + JoY -yo) + 1o(Z - Zo) 0

where xo , yo , z0 are the center of the ellipsoid and x, y, z are the coordinate axes which run along the axes

of the ellipsoid where major axes is in the y direction ( Fig 18 ).

The light intensity seen by the photomultiplier for example from a single particle passing from different zones

of the probe volume would differ due to the Gaussian distribution of the light intensity with in the probe

volume. This fact results in that in the case of say two particles havin,' same velocity passing through the

probe volume at the same time, the particle which has a path closer to the center of the ellipsoid would have

a higher probability for the detection by the signal processing unit. The intensity distribution in the probe

volume can be written as

I(x Y, z) 1_ __ (x - Xo) 2  (v - yo) 2  (z -2) 20

'center (21r) 3 /2c1 2 3  2 2 2 2- l~a ep 2o-- 3

where al, a2, a3 are the probe volume dimensions in the x, y, z directions respectively The space averaged

mean velocity now may be written as

('a = 00C+00f +.0  J(x,y, Z)9
S(X,) Cer dxdydz

00 "- 00

and the variance as •
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2 > ff 400f #00 < ea>j2IXY,)dd

<[V -< vO>]2> V- V me > 2 center dxydz

M0 0 00

Since the approximation for the velocity vector used is first order, the mean velocity is not effected by the

gradient broadening.

The integrations result in

Vmean = -

The variance however is effected by the gradients,

02 2

variance=-( al + ay a2 d 4 - 02
ax )0  1 ( 7 0  a2+ ) 0 3

The formula shows that if the velocity measured was only U which is in the direction of x, the broadening

of variance would be

aU 2 2 U 2 2 U 2 2
variance broadening= ( - - ) a l + ( " y ) 

a 
+ (

1-U
) a

3
X0 ay0 2 z0

Since LDV measures quantities perpendicular to the fringes, the formula derived was used to corre't the

turbulence quantities measured by each systems 3 pair of beams.

To be able to make most use of the gradients that can be computed and at the same time to know which

terms are neglected; first of all the complete broadening correction terms were written and afterwards, the

gradients different than in y direction were neglected. This was done by writing the unit vector in the bisector,

in the measurement direction and in the direction perpendicular to these unit vectors for the 9 pair of beams

used and using the relation

an T
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whetc ) stands for tne measured mean velocity by each pair and n for the unit vector in consideration. Once

three gradient terms for each pair of beams were computed they were multiplied with the necessary

dimensions which apply to the each direction in consideration to find the gradient broadenings in variances.

The unit vectors for each direction could be written with the conceptual points defined before.

9
The probe volume dimensions, since there was not a prescribed formula to compute the focused beam

diameter accurately was defined by trying the available discussions and deciding on the beam diameter to

be the most consistent one with in the data sets.

0

B.2 FINITE TRANSIT TIME BROADENING

CORRECTION

S

Finite transit time brodaening results in due to the finite size of the probe volume; and each particle need to

stay in the probe volume only the time to trdverse it. The signal generated by the particles passing the probe

volume becomes uncorrelated to the signal first generated when all the particles pass through the volume. 9

This results in a broadening ( G.orge and Lumley ).

Broadening correction described in Durst-Melling-Whitelaw 1981, assumes that the flow direction is along

the ininor axis xl of the probe volume and the broadening in the Doppler frequency of the signal accordingly 0

was given as

U'

In the present study this broadening was seen to be not enough to explain the broadening existed at the

boundary layer edge especially for the UW and VW systems' u' and w' component data.
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The necessary corrections to be applied to the profiles were found after the probe volume dimensions for each

pair of beams were found. The correction suggested by George and Lumley was replaced by an empirical

formula in the

(U + VI+ W2 )I/2

p2 2 2
I + (2 + 4a

form, since the transit time shortens with the other components of the velocity vector.

The constant multiplier in the broadening term was found by matching the fluctuating velocity and shear

stresses of hot-wire and LDV data at the last point of the hot-wire profiles. Once the constant was found it

was kept same further down in each profile. Since the HW measured u2 , w2 , 9w-- stresses the constants for the

UW system data were easily found. The constant for the v stress measured with the VV system was kept

same as the constant for u2 of the UW system.
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Appendix C. TENSOR TRANSFORMATION

AND PARABOLA FITTING PROGRAMS

C.] TENSOR TRANSFORMATION

The tensor transformation used to find the shear stresses in different coordinate systems in this study is the

one described in Frederick and Chang, 1972. The directio- osine matrix used to obtain the components 0

of the tensor in the free-stream and normal stress coordinates is given by

cos(') 0 cos(/2 + a)

cos(ir/2 - a) 0 cos(,)

and the components of the tensor in these coordinates is found by

7'r = a0ajTj

in which a positive rotation is in the counter-clockwise direction.

The program used is as follows: 0
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Tensor transformation

Asignnient of the rotation angle

INPUT 'FREE-STREAM ANGLE (positive for the RHS profiles) ",ALFA

Forming the direction cosine matrix

A(l,1)= COS(ALFA*Pl)
A(1,2)= 0!
A(1,3)= COS((90 +ALFA) PI)
A(2,1)= 0!
A(2,2)= 1!
A(2,3) =0!

A3, 1) =COS((90-ALFA) *PI)
A(3,2) 0!
A(3,3) =COS(ALFA

4 PI)
T(l, 1)=U2(K)

Forming the initial tensor to be transformed

T(1,2) = UV(K)
T(1,3) = UW(K)

* T(2,1) = UV(K)
T(2,2) = V2(K)
T(2,3) = VW(K)
T3, 1) = UW(K)
T(3,2) = VW(K)
T(3,3) = W2(K)

tensor transformation

FOR I=1I TO 3
FORJ=1T03
SUM =0!
FOR L=1ITO03
FOR M=1ITO 3
SUM = SUM + A(I,L)*A(J,M)*T(L,M)
NEXT M
NEXT L

TT is the transformed tensor

p TT(lJ,K) =SUM
NEXT J
NEXT I
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C2 PARABOLA FITTING

Least squares parabola fitting routine used in several flow gradient and data smoothing computations is given

below. Program fits a parabola to 5 points in the y = aX
2 + bx + c form and computes the a,b and c

coefficients.

Least-squares parabola fitting program

VI =0:V20 :V30= :V4 =0:R1 = 0:R2 O:R3 0

FOR I1=I TO 5

VI = V1 + XPAPYV

V2 =V2 +XPA R() 3

V3 =V3 +XPAR(I) 
2

V4= V4+ XPAR(I)

RI = R1 + YPAR(1)*XPA P(D 2

R2= R2 +YPARi; -KPAR(i)0

R3 = R3 + YPAR(1)

NEXT I

IF V4=O0 OR R3=O0 THEN Pkl.:.T 'THERE IS DIVISION WITH ZERO*

IF V4=0 OR R3=0 'HL.N GOlO (RETURN STATEMENT LINE NUMBER)

CC = ((R3-V2-R2WV3)-(Vl '3 -,-V2)-(Vl*R2-V2*Rl )s
(V2rV4-V3*V31),QVl*V3-V2*V2:\ , :'.-.V4VA*'3)
-(V2WV4-V3V3)-(VI *V4-\V-V3'!)

BB =(R2-V1-Ri-! CCa ,tVI V3-V2))/(VI *V3-V2SV2)0

AA - (RI -BB*V'2-%-CC3)/Vl

RETURN
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Appendix D. DATA FOR PRESENT WORK

The data of mean velocity, stress and pressure obtained in the present study are presented in two 5.5', 360

KB diskettes. The first diskette of the two data diskettes contains the laser-Doppler-velocimeter data in the

LDV directory and the time mean static pressure coefficient data in the PRESSURE directory.

The LDV data, as explained in Chapter I!, are obtained by the Swept Spectrum Analyzer and Burst

Spectrum Analyzers. The results of the uncertainty analysis which was explained in Chapter III are also

presented as part of the data.

The files are named starting with ' LDV ' to denote the data are obtained with LDV. The subsequent

numbers show the stations the data is taken. The extensions "T', 'FS', °NS', designate the different

coordinate systems in which the data is presented. TC, FS, NS stand for the Tunnel coordinates , the

Free-stream coordinates and for the Normal stress coordinates, respectively.

In the files, at the first 15 lines several parameters deduced from the data and the parameters of the

measurement conditions are given. 16th line was left blank to separate the data from these parameters.

The data at each point of the profiles consist of the raw daia and the derived quantites from the raw data.

First line for each y location point in the profile contains

y, U, V, W, U uncertainty, V uncertainty, W uncertainty, u2, vE, .2, uv, uw, vw, u' uncertainty, v' uncertainty,

w' uncertainty, i7' uncertainty, '- uncertain!.. i uncertainty
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y location in each profile is given in inches.

U, V, W, mean velocity components and the uncertainties on these quantities are given as

nondimensionalized with the reference velocities.

u2, 0, w2, uv, uw, vw Reynolds' stresses and the uncertainties on the shear stresses only are

nondimensionalized with the square of the reference velocities.

Instead of defining the uncertainties for the normal stresses, the uncertainties for the fluctuating velocities are

given. The uncertainties for the normal stresses can be found by using

- 2 _ 2

uncertainty of u 2  [( u + u') + ( - u') ]/2

The uncertainties of the fluctuating velocities are nondimensionalized with the reference velocities.

The second line of the data for the same y point contains the N, anisotropy constant, A, Townsend's

Structural Parameter, and also the Flow angle, the Flow Gradient Angle and the Shear Stress Angle in

degrees; in the order they are mentioned. These definition and discussion on these parameters are presented

in Chapter III of the present study.

The directory 'PRESSURE' contains the time mean pressure coefficient data taken with Scanivalve and an

inclined manometer. The 4 files in the directory are named as, 'ON', 'WALL', *FAR', and 'NOSE', to

denote the measurements on the wing, on the wall where the body sits, on a line at x/t =3.17 to see the

blockage effect of the body, and detailed measurements close to the nose of the body on the wall, respectively.

The extension 'CP' is used to indicate that the data files are containing pressure data.

In the files, in the first 5 lines some information about the flow conditions that the measurements are carried

out are given. Next line is left emtpy. 7th line give the title of the parameters measured. Next lines contain

the data in x/t, y/t, z/t, Cp, order. The term 't" denote the maximum body thickness ( t = 2.824 inches ).

The pressure coofficients were computed using the C, = p - p,.flpo - p , relation, as described in the Chapter

II. The discussion about the pressure data may be found in the Chapter III of the present study.
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The data presented in the second diskette are of the hot wire measurements made on both sides and upstream

of the wing.

The files are named beginning either with " LHS ' or ' RHS ' or ' UP ' to denote the location of the data

taken. ' LHS ' denote the left-hand side of the wing, and ' RHS ' denote the right-hand side of the wing and

' UP ' denote the 0.75 chord upstream of the wing measurements. The subsequent numbers show the station

numbers where the data are taken. The left-hand side files are numbered in increasing order proceeding

upst-eam, and the right-hand side files are numbered in increasing order proceeding downstream. The 0.75

chord upstream profile numbers increase in the + z direction. The right-hand side hot wire measurements

were made at the same station locations of the Laser Doppler Velocimeter measurements. The same numbers

for the right-hand side and for the LDV files show the same station locations. The data for each group are

presented in the same named directories. The extensions ' TC ', ' FS ', ' NS ', are used to designate the

coordinate system the data are presented in.

In the files first 6 lines give the location of the measurements and the flow conditions. Next 2 lines show the

title of the measured quantities. In the rest of the files, data are given. The data consist of the y location of

the measurement in inches, U and W components of the mean velocity vector nondimensionalized with the

daily reference velocity, the Flow Angle in degrees, and the u2 , w2 normal stresses and Ww- -(1)*kinematic

shear stress nondimensionalized with the square of the reference velocity. Detailed discussion on these

quantities may be found in the Chapter III of the present study.
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