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1. INTRODUCTION

1.1  ORIGINAL AND ENHANCED SYSTEM AVAILABILITY MODELS

The System Availability Model was developed to provide an overall measure, or index, of
Omega system performance by combining performance measures from the following four sub-
models:

e Omega receiver system reliability/availability
Omega station reliability/availability

Omega signal coverage (spatial/temporal)
Omega user regional priority.

The model structure consists of a probabilistic definition of the system availability index (Psa)
in terms of probabilistic/deterministic structures for the above four sub-models. The initial
development of this model (Ref. 1) treated the first two elements above probabilistically, while
the third and fourth were analyzed using deterministic sub-models. In subsequent work (Ref. 2),
the model was enhanced to treat certain signal coverage parameters (signal amplitude and noise
level) as random variables.

Flexibility is built into the System Availability Model by allowing sub-models to be
“turned on and off” as desired. For example, in the first sub-model, the probability that the
receiver system is reliable/available can be set equal to one, thus eliminating any influence of
receiver system reliability on Psga. Similarly, the contribution of the fourth element above to Pga
can be eliminated by setting all regional priorities (weightings) equal. The system availability in-
dex, computed on a monthly basis, can be monitored as a continuing measure of system per-
formance. The index can also be used to compare the effects of system options, e.g., reductions
in radiated power at one or more stations.

The system availability index, Psa, was originally defined (Ref. 1) as the probability
that, at any time and at any point on the earth’s surface, an Omega user’s receiver is properly
functioning and three or more usable Omega signals are available to permit successful navigation,
position-fixing, or other use of the system. With this definition and the fact that receiver reliability/
availability is independent of station signal access, Pga may be expressed as:

Psa = Pr P
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where Pg is the probability that the receiver is reliable/available and Py is the probability that
three or more usable signals (in space) are available.

The phrases “any time” and “any point” in the above definition mean that the proba-
bility is computed over all spatial and temporal variables. In practice, the two-dimensional
spatial unit (cell) is taken to be about 10 deg. (latitude) by 10 deg. (longitude) in size. Since
coverage at a fixed UT hour is assumed constant over the days in a month, the appropriate tem-
poral variables are UT hour (1-24) and month. Although signal coverage is specified for only
four months (February, May, August, and November), the monthly change in signal coverage is
relatively small, so that interpolation of signal coverage parameters over months is permissible.
As a result, coverage information for all 12 months can be derived (Ref. 2). To be strictly com-
patible with the above definition, Pgpa is computed over all cells on the globe and over all hours
and months in a year. However, it is also useful to compute Psa for various ranges of the tem-
poral variables, e.g.:

e Fixed hour/month

e Fixed month/average over 24 UT hours

e Fixed month/maximize over 24 UT hours

e Fixed month/minimize over 24 UT hours

e Maximize or minimize over all months and hours.

The access probability, Py, is the probability that three or more usable Omega signals
are accessible at any point (or a given point) in time and space. The threshold of three signals
stems from conventional Omega usage and is not a limitation of the model which permits an
arbitrary minimum usable number of signals. In developing the model (Ref. 1), Py is written as
a sum of two-factor terms — the first factor known as the coverage element and the second fac-
tor called the network reliability factor. Most of Pga’s spatial and temporal dependence is con-
tained in the coverage elements (spatial dependence may also be found in the user regional
priority weightings). A separate month and year dependence for Pg, arises from the network re-
liability factors. Coverage elements define coverage in terms of the following signal properties:

e Signal-to-noise ratio (SNR) in a receiver’s “front-end” bandwidth

e Relative strength and phasing of signal modes comprising the total signal
e Ratio of long-path to short-path signal amplitude

e Path/terminator crossing angle.




Criteria imposed on the above signal properties to determine signal coverage are discussed in
Ref. 1. Network reliability factors define the probability that each station of the Omega trans-
mitting network is in a specific on-air/off-air condition. The station reliability sub-model in-
cludes three types of off-air conditions:

e Unscheduled off-air
e Scheduled off-air (excluding annual maintenance)

e Scheduled annual maintenance.

Recent-year station reliability data were used to determine average durations for the above off-
air conditions. From these data, network reliability factors are derived using operational con-
straints governing concurrent off-air conditions.

As mentioned above, the enhanced system availability model (Ref. 2) treats the received
signal amplitude and noise level as random variables. This means that these values are not pre-
cisely determined at a given point in space (latitude/longitude) and time (hour/month) but the
parameters of their statistical distribution (lognormal in form) are given by an augmented ver-
sion of the coverage database. Whereas the original database supplies fixed, deterministic val-
ues of signal amplitude and noise level for a given space/time point, the enhanced model treats
chese as mean values and requires additional standard deviation information from the database.
Thus, the coverage database is expanded to include algorithms for computing the signal ampli-
tude and noise level standard deviations. A much smaller database is needed to extract statisti-
cal data on station reliability.

Since Pga is expected to be a useful tool for evaluating and comparing system planning
options (e.g., reducing station power or eliminating stations), calculation of Pga has been im-
bedded in a workstation system known as Performance Assessment and Coverage Evaluation
(PACE). This system is designed for easy selection and display of scenario inputs, including
time (hours/months) and space (entire globe, specific region, or disjoint coilection of cells) and
provides a split-screen display for comparing system options. The system computes Pga as de-
fined above (globally, averaged over all times) or over restricted domains in space and time.
With respect to annual station maintenance/off-air periods, PACE provides an option of com-
puting (for a given month) Ps, including or excluding the station undergoing annual mainte-
nance. Strictly speaking, Psa does not apply to time periods less than one month (although it
may be restricted to a fixed hour for each day in the month), since the a priori scheduled and
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unscheduled off-air probabilities must be defined over a sufficiently long time interval (see
Appendix A of Ref. 1). However, for a number of important applications (such as transoceanic
aircraft flights), the period of time over which computation of Psj is required is short compared
to a typical annual maintenance off-air period. Thus, a monthly measure of Pgj4 is not indicative
of system performance for these applications. Consequently, options are included in PACE to
compute Pga (for a given month) under three conditions:

e The station assigned annual maintenance for the month is otf-air

e The station assigned annual maintenance for the month is not currently
off-air for annual maintenance but has specific unscheduled and scheduled
off-air probabilities

e  The station assigned annual maintenance for the month has a status which
is defined probabilistically.

PACE also contains options for computing Psa with probabilistic or deterministic defini-
tions of signal amplitude and noise level. For the machine on which the PACE workstation is
hosted, the probabilistic calculation is lengthy and better suited for off-line computations of Pga
at a single point in space and time. The deterministic calculation is rapid, however, so that
global/multiple-time computations are feasible for operational use of the workstation.

1.2 OBJECTIVE

The objective of this report is to explore the possibility of redefining the Omega System
Availability Model/Index in terms of position/navigation accuracy. This redefinition represents
a shift in the system performance criteria from maximizing signal “coverage” (number of
usable station signals availabie, independent of their relative contributions to position accuracy)
to maximizing position/navigation accuracy over time and space. This redefined index is also
consistent with performance measures for other systems (e.g., NAVSTAR GPS) which define
coverage in terms of relative position accuracy (dilution of precision).

The new index (henceforth referred to as Pgaa ) should preserve the probabilistic char-
acter of the original System Availability Index to provide a meaningful indicator of system per-
formance at the user level. This means that the specified position/navigation accuracy should be
consistent with the most widely representative Omega receiver/processor systems in current
use. To be useful to the system manager/operator, however, the index should be sufficiently
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sensitive to reflect substantial reductions/improvements in system accuracy over important
global regions. The feasibility of incorporating Psa4 into PACE should also be determined and,
if necessary, simpler measures of system accuracy should be proposed.

The various measures of navigation/position accuracy which appear in the literature are
often misunderstood and misused. These accuracy measures can be obtained from the position
error probability density function which is derived in the development of an analytic expression
for Psaa. The proper interpretation of these measures should be quantitatively described.

The technical discussion presented in Chapter 2 shows that Psaa can meet the above
goals. In addition, the new index does not require modification of the sub-models making up the
original System Availability Model, but it does require additional sub-models for phase errors
and navigation/positioning procedures. Thus, the expanded definition of Psa specifies not only
the probability that usable signals are accessible, but that, collectively, they provide a given posi-
tion/navigation accuracy.

1.3 APPROACH

Redefinition of the System Availability Index requires that additional sub-models be de-
veloped, not to improve the fidelity of the original model but to calculate the new quantities intro-
duced in the redefined index (Psaa ). Since Psaa defines position/navigation error, additional
sub-models are required for both signal phase error and position estimation. Phase errors ob-
served at Omega/VLF frequencies are characterized by random and bias components of similar
magnitude. Thus, both components must be included in the phase error sub-model. The transfor-
mation of received Omega signal phase to position is strongly dependent on receiver mechaniza-
tion. Error models involving this transformation frequently assume a hyperbolic mechanization
in which two or more phase differences are processed. Most Omega receiver/processors current-
ly employ a range-only mechanization using a navigation filter which processes multiple, redun-
dant phase measurements. Although receiver mechanization and navigation filter designs are
manufacturer-specific, the approach taken here is to adopt a simple model of position estimation
which is reasonably representative of current Omega receiver/processor implementations.

The two new sub-models identified above, together with the previous sub-models, consti-
tute the augmented system availability model which is used to develop the analytical form for
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Psaa . Since the position error density function is obtained in the process of deriving Psaa, the
development digresses somewhat to describe the error measures obtainable from this function.
This is useful in relating the develop:aent herein to other analyses of position error.

Because of the complex dependence of the model on the system quantities, an alternative
simple measure of position/navigation accuracy is also suggested. This method could be readily
incorporated into a future version of PACE, if the rigorous model for Psaa proves unwieldy.

1.4 REPORT OVERVIEW

Development of the augmented system availability model/algorithm is entirely contained
in Chapter 2. Previously developed sub-models, e.g., the station reliability/availability sub-
model, are reviewed, followed by development of the new sub-models. The analytical structure
of Psaa is then established and the forms of the probability functions are developed by applying
the sub-models. Resources (processing time/memory) required for calcuiation of Psaa are esti-
mated and a simplified accuracy measure for possible inclusion into PACE operation is briefly
described.

Chapter 3 provides a summary of the development, including general conclusions and
recommendations. Mathematical details of the phase error/position estimation error transfor-
mation are included in the Appendices.

1-6
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2. AN AUGMENTED SYSTEM AVAILABILITY MODEL
INCORPORATING POSITION/NAVIGATION ACCURACY

In this chapter, the original system availability model/algorithm is augmented to include
position/navigation accuracy. Previously developed sub-models of Omega receiver and station
reliability/availability sub-models, also needed for the augmented model, are reviewed in Sec-
tion 2.1. In Section 2.2, new sub-models are developed for phase error and the transformation
to position estimation error. The analytical structure of the redefined system availability index,
Psaa, is presented in Section 2.3 in terms of the position error probability distribution function
and probabilistic results from each of the sub-models. An estimate of the relative amount of
computational resource needed to calculate Pgaa Is contained in Section 2.4. This section also
describes a simplified measure of accuracy, as an alternative to Pgaa, which could be readily in-
corporated into the Performance Assessment and Coverage Evaluation (PACE) workstation.

2.1 PREVIOUSLY DEVELOPED SUB-MODELS USED IN THE AUGMENTED MOD.'L

For the augmented system availability model, the system availability index, Psas,
addresses the probability of obtaining a desired position/navigation accuracy. Clearly the even
that a given accuracy is obtained depends upon a series of other events, including proper opera-
tion of the user’s receiver, transmitting station(s) on-air, and accessibility of usable signals.
Models governing these events have been developed previously and their structure is reviewed
in the following subsections.

2.1.1 Receiver Reliability/Availability Sub-model

The probability that a receiver is functioning properly, Pg, can be expressed in terms of
the receiver’s MTBF (mean time between failure) and the MTTR (mean time to repair) as ex-
plained in the original system availability model (Ref. 1). The MTBF and MTTR are approxi-
mately the same for receivers in a given receiver class, e.g., civil aircraft, military marine, or
meteorological balloon systems. Although PR clearly depends on the receiver class, other sub-
models also depend on receiver class through the coverage elements (described in Sec-
tion 2.1.3) which are functions of the criteria for assigning coverage. One of the criteria




involves signal-to-noise ratio (SNR), which has a threshold specified as input but often linked to
receiver sensitivity and other parameters. Since these receiver parameters are roughly the same
for a given receiver class, the SNR criterion may be keyed to receiver class.

Applications of the augmented system availability model are generally not expected to
involve multiple receiver classes so that, throughout this report, the receiver reliability/availabil-
ity (PR) is assumed constant, independent of receiver class i. Moreover, since there is no mean-
ingful average reliability/availability figure to describe all receiver classes, Pr will be setto 1 for
most applications of this model. It is important to recognize, however, that the reliability/avail-
ability sub-model can be invoked at any time with little or no change to the other sub-models.

2.1.2  Station Reliability/Availability Sub-model

In the original system availability model (Ref. 1), station off-air events are treated as ran-
dom variables, both in terms of event onset time and duration. The station reliability/availability
sub-model defines two types of off-airs: unscheduled and scheduled. Unscheduled off-airs occur
as a result of unforeseen circumstances — usually equipment failures. At the beginning of a
month, the occurrence probability of an unscheduled off-air is essentially uniform over the
month although compilations of monthly total off-air statistics are available as a function of sta-
tion. Scheduled off-airs are planned conditions under which signal generation temporarily
ceases. An important class of these events is the annual maintenance off-air for each station. A
station’s annual maintenance occurs in a specific month, unique to that station, and generally in-
cludes routine maintenance/repair work. Since users are usually notified of these annual mainte-
nance periods well in advance, the occurrence time and duration of these events may be consid-
ered deterministic. Advance notice of other types of scheduled off-airs (a few days to two weeks)
is such that these events may be considered random to a user at the beginning of a month (basic
time interval over which off-air probabilities are defined). Despite its randomness, this type of
scheduled off-air differs from an unscheduled off-air in an important way, as noted below.

The station reliability sub-model defines certain relationships between unscheduled and
scheduled off-air events at the same or different stations based on intrinsic definitions and
operational practice. The occurrence of an unscheduled off-air at a station is independent of the
occurrence of an unscheduled or scheduled off-air event at any other station. However,
unscheduled and scheduled off-air events at the same station are exclusive, i.e., they cannot
occur at the same time. Because of Omega system operational/management policy, scheduled
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off-air events at different stations are interdependent in the sense that they are forbidden from
simultaneous occurrence.

For PACE, it is assumed that the unscheduled off-air probability is 0.001 for all stations
and months. Using the notation introduced in developing the system availability model (Ref. 1),
this requirement is expressed

P(TY) = 0001 ;i=12,..38

where T ! is the event that station i is in an unscheduled off-air condition. The scheduled off-air
(excluding annual maintenance) event probabilities are assumed to be station-specific but are
constant for each month over the year (all off-air probabilities are assumed independent of
year). These values are obtained by averaging observed scheduled off-air times (excluding annu-
al maintenance) over three recent years (data obtained from Ref. 3) for each station. Scheduled
off-air probabilities for annual maintenance are computed by averaging the off-air times for
each station’s maintenance month over three recent years (Ref. 3). The resulting data are shown
in Table 2.1-1. In this table, the first entry (for a given month/station combination) is the fixed
unscheduled off-air event probability, the second is the scheduled off-air (excluding annual
maintenance) event probability, and the third is the scheduled annual maintenance event proba-
bility. Note that the scheduled off-air (excluding annual maintenance) event probability is speci-
fied even for the months corresponding to a station’s annual maintenance. This is because a
scheduled off-air event (with a few days advance notice) may occur during the month, before or
after the annual maintenance period with approximately the same relative probability as during
the other months. Unscheduled off-air events at one or more stations may also occur, but sched-
uled events differ probabilistically in that they are never concurrent among all stations.

2.1.3 Signal Coveragé Sub-model

In descriptions of Omega signal usage, the word “coverage” is defined in terms of the
usability of a single signal for position/navigation. Although the usability is broken down into
categories (see below), the essential idea is that the signal phase must be an approximately lin-
ear, regularly varying, increasing function of distance from a transmitting station (for a fixed
time/time interval). In some past work (Ref. 4), the notion of coverage has been extended to
multiple station signals, e.g., by inclusion of geometric dilution of precision (GDOP) thresholds
under certain conditions (3-4 station signals in hyperbolic mode). In general, however, and in
this report, the word “coverage” refers to a single station signal.
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Table 2.1-1 Station Reliability/Availability Parameters for PACE*

A B C D E F G H

JAN .00100 | .00100 | .00100 | .00100 | .00100 | .00100 j .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00163 | .00030 | .00061 | .00005
: .00000 | .00000 | .00000 | .00000 | .00000 { .00000 | .00000 | .00000

FEB .00100 | .00100 | .00100 { .00100 | .00100 | .00100 | .00100 | .00100
.0026% | .00037 | .03604 | .00024 | .00163 | .00030 | .000A1 | .0000S
.00000 | .34569 | .00000 | .00000 { .00000 { .00000 | .00000 | .00000

MAR | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00163 | .00030 | .00061 | .00005
.00000 | .00000 | .00000 { .00000 | .00000 | .20511 | .00000 | .00000

APR .00100 | .00100 | .00100 | .00100 | .00100 { .00100 | .00100 | .00100
.00269 | .00037 | .03604 |} .00024 | .00163 | .00030 | .00061 | .00005
.00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000

MAY | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00163 | .00030 | .00061 | .00005
.00000 | .00000 | .00000 | .00000 | .00000 | .00000 ; .00000 | .00000

JUN .00100 | .00100 | .00100 | .00100 | .00100 | .00100 }{ .00100 | .00100

.00269 | .00037 | .03604 ) .00024 |} .00163 | .00030 | .00061 | .00005

.00000 | .00000 | .28628 | .00000 | .00000 | .00000 { .00000 | .00000

JUL .00100 | .00100 | .00100 | .00100 | .00100 | .00100 { .00100 | .00100
.00269 | .00037 | .03604 | .00024 } .00163 | .00030 | .00061 | .00005
.00000 | .00000 | .00000 | .07895 | .00000 | .00000 | .00000 | .00000

AUG 1} .00100 §{ .00100 | .00100 | .00100 | .00100 { .00100 | .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00163 | .00030 | .00061 | .00005
.11057 | .00000 | .00000 { .00000 | .00000 | .00000 | .00000 | .00000

SEP .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00163 | .00030 | .00061 | .00005
.00000 | .00000 | .00000 | .00000 | .61490 | .00000 | .00000 | .00000

oCT .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00153 | .00030 | .00061 | .00005
.00000 | .00000 | .00000 | .00000 | .G0000 | .00000 | .00000 | .3251S5

NOV | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00163 | .00030 | .00061 | .00005
- .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .01726 | .00000

DEC .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100 | .00100
.00269 | .00037 | .03604 | .00024 | .00163 | .00030 | .00061 | .00005
.00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000

* First entry is the unscheduled off-air event probability; second entry is the scheduled off-air
(excluding annual maintenance) event probability; third entry is the scheduled annual maintenance
off-air event probability.




The signal coverage database is generated in two stages. In the first stage, signal ampli-
tude and phase are computed (from theoretical models) for both the total (Mode-sum) signal
and its Mode 1 component. These two components are separately specified because the Mode 1
component is assumed to adequately represent the total signal for navigation purposes, although
the theoretically computed Mode-sum signal is actually received. The first-stage database con-
tains the signal amplitude for the short-path/long-path (shorter/longer of the two great-circle
paths between a transmitter and receiver) and phase for the short-path only. The amplitude for
the short- and long-paths is separately specified because most navigation models assume that
the received signal is propagated via the short-path whereas in some cases the long-path signal
may actually dominate the total received signal amplitude. The data are specified for:

e Signal frequencies of 10.2 and 13.6 kHz
e Each of the eight Omega stations

e Radial paths at bearing intervals of approximately 10 degrees from
each station

e Distance intervals of 500 km along each path
e Each of the 24 UT hours
e The months of February, May, August, and November.

In the second stage of the database generation, the signal parameters defined above are
interpolated from the station radial path-based grid to a coarser-scale matrix/cell arrangement
specified in Table 2.1-2. The noise data (median level and standard deviation) are extracted
from the WGL/NRL model/algorithm (Ref. 5) for the specified cells and times. Both the phase
deviation of the total signal phase from the Mode 1 phase and the dominant mode number are
computed from the data in the first-stage database to provide quantitative information on modal
interference. The path/terminator angle is also computed to test for conditions leading to a
possible cycle slip/jump.

In the original system availability model (Ref. 1), the signal amplitude from the Omega
signal coverage database and the noise level from the WGL/NRL noise model are treated as
deterministic quantities. As explained above, the enhanced version of the system availability
n.odel treats signal amplitude and noise level as random quantities. Specifically, signal ampli-
tude and noise level are assumed to be lognormally distributed (Ref. 2) with mean values
obtained, respectively, from the signal coverage database and the WGL/NRL model/algorithm.
Standard deviations for the signal amplitude distribution are available from an algorithm
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Table 2.1-2 Latitude/Longitude Dimensions of Cells in Grid Structure

for Signal Coverage Database (Matrix Format)

LATITUDE | LATITUDE | LONGITUDE NUMBER OF
RANGE" DIMENSION | DIMENSION | CELLS IN BOTH
OF CELL OF CELL HEMISPHERES
0° to 40° 10° 10° 288
40° to 60° 10° 15° 96
60° to 75° 15° 15° 48
75° to 90° 15° 60° 12
TOTAL NUMBER OF CELLS = 444

*Same for northemm and southern hemisphere

described in Ref. 2. Standard deviations for the noise level distribution are obtained from the
WGL/NRL model/algorithm mentioned above.

Data from the database/models described above do not solely determine coverage. Cov-
erage access criteria, supplied as defaults or user input, are applied to the data to determine the
usability of the given signal in the presence of the given noise. In the case of assumed determin-
istic coverage variables (e.g., path/terminator angle), application of an access criterion yields a
“yes” (presence of coverage) or a “no” (absence of coverage). For assumed random coverage
variables (e.g., noise level), the criterion furishes a limit for a probability distribution function
so that satisfaction of the criterion is determined in a probabilistic sense. Default coverage ac-
cess criteria are given as follows:

e Phase deviation (angle of phasor difference between Mode 1 signal and total
signal) must be less than 20 centicycles

¢ Dominant mode must be Mode 1

e Ratio of total long-path signal amplitude to total short-path signal amplitude
must be less than -3 dB

e Ratio of total short-path signal amplitude (assumed mean value) to median
noise level (assumed mean value) in a 100 Hz BW must be greater than
-20 dB

e Angle between the (great-circle) propagation path and the (great-circle) ter-
minator must be greater than 5 degrees.
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Signals which satisfy the deterministic coverage access criteria for a given scenario are said to
comprise the maximal coverage set. The maximal coverage set is so-named because all signals of
the set “cover” the point in question if the random quantities (signal amplitude and noise level)
simulitaneously satisfy the appropriate coverage access criterion. In the same sense, there is a
finite probability that the actual coverage set could be empty if all random quantities simulta-
neously failed to satisfy the appropriate access criteria.

2.1.4 User Regional Priority Sub-model

The user regional priority sub-model introduces another type of spatial dependence in
the system availability model. Through the use of relative weights, this sub-model specifies the
probability of Omega usage in different geographical regions. The sub-model then combines the
regionally-defined Pgp into an overall Pga using the weights. Care must be exercised in inter-
preting combined probabilities governing separate spatial cells. For example, Pga is not the
probability that signal coverage simultaneously exists in all cells on the globe; it is also not the
probability that coverage exists in at least one cell over the globe. Psa is the probability that a
user is in any particular cell on the globe at any time and that the particular cell exhibits cover-
age at that time. In practice, the time and space domains may be restricted, e.g., one or more
hours in a month and/or a certain region of the globe, but this restriction is properly handled by
normalization and does not affect the basic theory. Since Pga is targeted to the individual user,
the probability of his location in space and time is therefore important to the calculation. If a
given Omega user has no particular predisposition for any cell/time, the probabilities are all
equal (uniform weighting) and Pgy is proportional to the sum of the Ps4 components computed
at each cell and time. Most users do have geographical preferences/needs, however, so that the
probability of utilizing Omega in a given cell varies from cell to cell. Preferences in time are
much less common, although some user classes may exhibit more local daytime usage than lo-
cal nighttime.

The probability of utilizing Omega in each of the 444 global cells is specified by a cell
weighting matrix. For PACE applications, the weights associated with each cell are chosen as
integral values between 0 and 10. To represent utilization probabilities, a selected set of weights
is normalized over the globe. A region may be selected for evaluation of Psaa by assigning non-
zero weights to the appropriate cells and zero weights to all other cells. An example of cell
weighting for a portion of the globe is shown in Fig. 2.1-1.
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2.2 NEW SUB-MODELS FOR THE AUGMENTED MODEL

The sub-models reviewed in Section 2.1 are necessary in developing a system availability
model which addresses signal accessibility only. However, additional sub-models are necessary
for a system availability model incorporating position/navigation accuracy. Thus, calculation of
Pgaa involves not only signal detection probability but also error in the predicted phase and the
transformation of this phase error to position/navigation error. Sub-models governing phase er-
ror and position/navigation estimation are therefore addressed in the next two subsections.

2.2.1 Phase Error Sub-model

Since an Omega transmitting station radiates a single frequency signal at any given time,
the only useful navigation information which can be passed to the user (assumed synchronized
to the Omega pattern) is the signal phase. Most navigational filter algorithms assume a so-called
“nominal” model of VLF phase variation with distance. In this model, the ratio of cumulative
signal phase to distance from the transmitting station is fixed, i.e., independent of space, time,
or direction. Since this nominal model does not describe real phase variation, a correction,
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known as the propagation correction, or PPC, is applied to the phase measurement. The calcula-
tion of the PPC is based on a semi-empirical model of phase variation as a function of the elec-
tromagnetic characteristics of a signal path from transmitter to receiver.

Thus, by definition, the PPC and the nominal model together determine the predicted
phase for a given station, signal frequency, position, and time. The relationship is simply given
by

PREDICTED PHASE = NOMINAL PHASE - PPC (2.2-1)

In this relation, the nominal phase is the “dominant” term in the sense that it contains the cumu-
lative phase from the signal source, i.e., transmitting station. Measured in cycles of signal wave-
length (e.g., 10.2 kHz), the nominal phase is 100-500 for typical paths whereas the PPC is usual-
ly between -3.00 and +3.00, with a resolution of 0.01 cycle (a unit referred to as a centicycle).
The predicted phase has a typical diumal variation of 1-2 cycles, amounting to about 0.2-2% of
the nominal phase.

Since they are predicted quantities, the PPCs contain errors, known as prediction errors
which are given by (using Eq. 2.2-1)
PREDICTION ERROR = OBSERVED PHASE - PREDICTED PHASE

= OBSERVED PHASE + PPC - NOMINAL PHASE (2.2:2)

Two difficulties arise in determining the observed phase. The first is that a highly stable fre-
quency standard (e.g., a Cesium standard) must be used in connection with an Omega monitor
receiver which is synchronized to UTC (as are the Omega stations). Such standards are avail-
able at only a few Omega monitor sites throughout the world. Monitor sites associated with each
transmitting station may be conveniently used for this purpose, since they record a distant (re-
mote) signal phase with respect to the local station phase. For these monitor sites, the local sta-
tion is approximately one wavelength from the rivonitor, and thus, the cumulative phase is time-
invariant (signal does not interact with the ionosphere) and can be precisely measured. The sec-
ond difficulty is that the total cumulative phase cannot be measured with a single frequency
phase comparison system alone. In principle, direct measurement of cumulative phase is possi-
ble with a time-of-arrival measurement of the leading edge of the 1-second Omega pulse enve-
lope or phase measurement of two synchronized, transmitted tones, separated in frequency by
about 100 Hz. Since these methods are impractical, the usual procedure is to assume the nomi-
nal phase is correct to the nearest cycle. Although this may truncate the true prediction error, it
is generally assumed to be a correct procedure.
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Prediction error is composed of a bias and random component. The bias error compo-
nent is obtained by averaging the observed phase expressed by Eq. 2.2-2 for a given station sig-
nal/frequency/monitor/hour over a 2-4 week period. This averaging procedure is permissible be-
cause the PPCs are roughly constant over a 2-4 week time duration. The associated random
component is computed as the standard deviation of the prediction error over the same period.
For signals in the maximal coverage set, bias errors, both positive and negative, typically range
from 0 to more than 20 centicycles (cecs) at 10.2 kHz; random error standard deviations (al-
ways positive) for the same signals typically range from 3-10 cecs. For the shorter wavelength at
13.6 kHz, spatial displacements of the ionosphere will affect a greater fraction of the signal’s
spatial cycle, thus leading to larger centicycle errors at 13.6 kHz than 10.2 kHz. Although its
wavelength is intermediate in length, 11-1/3 kHz signals generally have larger prediction errors
than the other two frequencies because the database from which the PPC model coefficients
were computed was much smaller (Ref. 6). In general, prediction errors are larger for

e Mixed paths (paths containing both day and night segments)
e Nighttime paths

e Transequatorial paths

e  Westerly paths

e Longer paths (but shorter of the two great-circle paths).

Before artempting to model prediction errors probabilistically, the sources of these er-
rors must be investigated. In considering possible sources of error, noise is usually first pro-
posed as the cause of random (zero-mean) error. The relatively long processing times and nar-
row bandwidths common to Omega receivers, however, greatly reduce the impact of external at-
mospheric noise.

For example, consider a very marginal accessibility condition for a signal received in the
presence of noise: a signal-to-noise ratio (SNR) of -20 dB in a 100 Hz bandwidth using a typical
receiver on board an aircraft whose dynamics limit the designed receiver time constant to about
100 seconds. Since the duty cycle (fraction of time on-air) for an Omega signal is about 10%,
the effective integration time is approximately 10 seconds. Now, it can be shown that for a re-
ceiver with an exponential filter (generally true for phase lock loop-type receivers) having a time
constant of 1/, the noise equivalent bandwidth (Ref. 7) is a/4. Thus, for a time constant of
10 seconds, the effective bandwidth is 0.025 Hz. Since the noise referred to in the definition of
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SNR is noise power per unit bandwidth, the SNR increase realized in reducing the bandwidth
from 100 Hz to 0.025 Hz is

10 logyo (100/0.025) = 36.02 dB

Hence, the effective SNR at the receiver output is -20 + 36 = 16 dB. Furthermore, using a phasor
model of signal phase error due to noise (see Appendix A), the standard deviation of phase error
for a SNR of 16 dB is 1.8 centicycles. Even at the lowest threshold usually considered for phase
detection, a SNR of -30 dB in a 100 Hz bandwidth, the phase error for the above example is only
5.8 cecs. Since the great majority of usable signals have SNRs berter than -20 dB (100 Hz band-
width), the phase error due to random atmospheric noise is nearly always better than 2 cecs.

Except for the worst case noted above, the phase errors arising from SNR considerations
are significantly smaller than the observed day-to-day variation of signal phase recorded at
Omega signal monitors. Table 2.1-1 shows bias and random 10.2 kHz phase errors as a func-
tion of UT hour on the Norway — Liberia path (and reciprocal path) for the month of April
1988. The bias error is simply the average error of the (unflagged) daily measurements at a
fixed hour over the month. The random error is computed as the standard deviation of the daily
measurements at a fixed hour over the month. This table shows that, for most hours, the bias er-
ror substantially exceeds the random error in magnitude. The monthly average SNR (in dB;
100 Hz bandwidth) is also shown for each hour in Table 2.2-1. The daily SNR “measurement”
(at a given hour) is actually a receiver-computed estimate, based on the phase lock loop varia-
tion and a calibration curve. The computed phase error associated with the SNR is displayed in
the table for comparison with the day-to-day variation. This phase error is computed as the root-
sum-square of those phase error values associated with each day’s SNR reading. In all cases, the
day-to-day random phase variation exceeds that associated with the SNR. Table 2.2-2 displays,
for the La Reunion — Argentina reciprocal paths in April of 1988, the same type of phase error
information as Table 2.2-1. For these paths, it is noted that bias error is frequently smaller than
the corresponding random (day-to-day) phase error. The random day-to-day phase errors here
are also larger than the SNR-associated random error.

Tables 2.2-1 and 2.2-2 illustrate the principal components of phase error and the time
scales over which they are defined. The random phase error component associated with the
SNR is defined over a receiver time constant (typically, 1-5 minutes). Thus, for this component,
the phase error is due to VLF atmospheric noise (in a 100 Hz bandwidth) propagated to the re-
ceiver within a few minutes of the observation time. The fact that the day-to-day variation in
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phase is larger than the phase error implied by each day’s measured SNR suggests that the day-
to-day variation is not attributable to noise, even allowing for possible errors in the SNR calibra-
tion curve. Day-to-day variations in the signal phase are presumably due to day-to-day differ-
ences in the ionosphere which serves as an upper boundary for the signal propagation path. Al-
though the Omega signal wavelengths are long (approximately 30 km), and thus insensitive to
small changes in the ionosphere, the paths are also long (typically, 100 wavelengths), which
means they are subject to several different sources of variation, e.g., latitude-dependent magne-
tosphere-ionosphere interactions. These sources are presumably the same as those which give
rise to the signal amplitude variations studied in connection with the enhanced system availabil-
ity model (Ref. 2). As discussed above, the signal amplitude variations are assumed to be log-
normally distributed with mean given by the theoretical prediction (from the signal coverage da-
tabase). Thus, the “errors” (actual value — prediction) which result are symmetrically distrib-
uted (with respect to a logarithmically defined signal amplitude) about zero mean. Moreover,
since amplitude errors and phase errors are logarithmically related (Ref. 8), the day-to-day ran-
dom phase error (associated with the signal amplitude error) is expected to be normally distrib-
uted with a standard deviation determined by measurements. The phase bias error results from
prediction error, however, in contrast to the signal amplitude error model, for which the predic-
tion error is assumed to be zero. The phase bias error is therefore independent of the random
phase error since the prediction uncertainties are, for the most part, unrelated to the sources of
day-to-day variation. As with the standard deviation of the random error component, the phase
bias error is difficult to model and is best obtained from measurement. Thus, neglecting the rel-
atively small phase error component associated with the SNR, the phase error- are taken to be
normally distributed with mean given by the phase bias error (measured) and standard devi-
ation given by the random day-to-day variation (measured). In terms of a probability density
function, the phase errors are distributed according to

(6 ) e'(M—)z/za’z
pA¢ ¢ - 0¢‘/27

where 8¢ is the bias error and gy is the random error standard deviation.

(2.2-3)

Equation 2.2-3 describes the density function for a single station signal at a given loca-
tion and at a given time (month or half-month at a given hour). In the absence of a general mod-
el specifying the spatial dependence of phase error, the density function is strictly valid only at
monitor sites where é_¢' and o, are available from measurements. In the time domain,
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measurement of 6¢ and 0y for a given hour/month/monitor site during a year or set of years
presumably establishes the density function for the next year for the same hour/month/monitor
site. However, a recent study (Ref. 9) suggests that projection of the phase error statistics (6¢
and gy ) from year to year may have a large uncertainty.

Calculation of the probability density function for position accuracy (upon which Pgaa is
based) requires the joint phase error probability density function, i.e., an extension of Eq. 2.2-3
for multiple station signals (for a fixed frequency) at a given monitor site. The joint probability
density function is constructed from the individual probability density functions through a
known or assumed interdependence of signal phase errors. Since, in this case, the time and
space dependence of signal phase error sources is not adequately known, the interdependence
of multiple signal phase errors is also not known. Clearly, however, paths which are nearly iden-
tical will exhibit nearly identical phase errors. As the paths become more differentiated, the in-
terdependence weakens, leading to eventual path independence. At the station monitors, some
paths from remote stations have similar bearings, but large portions of the paths will not over-
lap. Thus, to a good approximation, signal phase errors (at the monitor sites) on multiple signals
may be considered independent and the joint phase error probability density function may be
written (for the signals in the maximal coverage set)
)

2.2-4)
(a)™2%5,04...0n (

Pag, A¢:.40,(001, 092 ..., 0Bm) =

where d¢; is the phase error for station signal i, 6¢; is the bias error for signal i, o; is the stan-
dard deviation of the day-to-day variation of the phase of signal i, and m is the number of signals
in the maximal coverage set. In practice, the phase error domain is limited to a few cycles (de-
pending on the monitor receiver information output to the recorder).

2.2.2 Position Estimation Model

Because the principal navigation users of Omega are from the air transportation commu-
nity, the position estimation model used for the system availability algorithm parallels (as far as
possible) the position estimation techniques mechanized for aircraft receiver systems. Although
aircraft Omega receiver mechanizations differ between manufacturers, a generic scheme is de-
scribed which is considered common to a large class of aircraft receivers. Some background is
presented to motivate this method. The generic scheme must be defined in order to show how
phase errors are converted to position errors in the normal course of navigation.
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Omega users and receivers have employed a number of schemes to convert phase mea-
surements to two-dimensional position on the surface of the earth. Before the advent of micro-
processor-based receivers, hyperbolic techniques (mostly for surface applications) were used in
which phase differences provided by the receiver identified charted lines-of-position (LOPs)
which are actually segments of hyperbolas defined on the surface of a sphere. The user’s posi-
tion is assumed known to within the resolution of a “lane” (distance interval corresponding to a
full cycle of phase difference) and navigation is performed by tracking the changing position
and noting any lane changes. This method was primarily used because it eliminated the need for
an expensive, on-board frequency standard and because most of the early users (marine craft)
moved sufficiently slowly so that multiple fixes occurred within a lane. Also, manual methods
are considerably less precise than analytical/numerical methods in estimating position when
more than two LOPs are present.

The great differences in air and marine vehicle motions lead to different navigation/posi-
tioning schemes for Omega receiver systems on the two kinds of platforms. One important dif-
ference is that the faster vehicle speed permits sensing the change in single-station phase using
a relatively inexpensive precision crystal oscillator. Thus, in a relatively short time, spatially-se-
parated measurements are made which can be treated as quasi-independent expressions for the
phase “arrival time” when the propagation path is at an essentially fixed global time. For exam-
ple, an aircraft traveling toward a station at 200 knots using a receiver with a 2-minute time con-
stant will effectively make two independent measurements during each 16 nautical mile lane.
Hence, three independent measurements are made in a period of 6 minutes, a time interval dur-
ing which the ionosphere over a typical path changes very little. Moreover, the distance between
measurement updates (approximately 7 n.m. for this example) is short compared to the curva-
ture of the earth so that a “flat-earth” approximation can be used. This property also permits li-
nearizing the range equations so that position updates can be rapidly and efficiently processed
from the phase measurements.

Thus, navigation of the airborne receiver can proceed from an initial known position by
processing phase change measurements from two or more stations using the linearized range
equations. A minimum of two station phase measurements is required because two unknown
quantities appear in the linearized range equations: position change along two orthogonal sur-
face coordinates (e.g., north/east or latitude/longitude). Accurate phase change measurements
are possible if the receiver’s internal clock on-board the aircraft is sufficiently stable within
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successive updates. A typical requirement is that the oscillator “drift” between successive
updates be less than one microsecond (approximately one centicycle at 10.2 kHz). For a two-
minute time constant receiver, this requirement translates into a stability of approximately 8
parts in 10, which is well within the capability of most modemn precision crystal oscillators. In
an operational airbore receiver, the initial position (e.g., coordinates of the point of departure)
is known but, once enroute, relatively few precision updates (obtained by external means) are
available. Thus, between precision updates, the position error may grow, but not monotonically,
since the phase errors have a complex (non-systematic) space/time dependence on the signal
paths. The clock/oscillator drift between precision updates is usually well-approximated as a lin-
ear function of time (drift rate constant) and thus systematically grows between precision up-
dates. For these and other reasons, most receiver implementations include the clock drift offset
as a state variable. In this case, a minimum of three station signals are required. These ideas are
quantified in the following development.

The phase change, A¢, between updates on a given station signal with respect to a re-
ceiver’s clock/oscillator is given

= 99 99 ]
Ap = — Ao+ — AT (2.2-5)

where « is the signal path length over the great circle between the transmitting station and the
receiver and AT is the time between updates. Since PPCs are added to the phase measurement
to remove space and time dependence (transformation to the nominal model), the first partial
derivative in Eq. 2.2-5 is given as

where Kk, is the frequency-dependent nominal wave number.* Since the clock drift between up-
dates is assumed linear, the second term partial derivative in Eq. 2.2-5 is

99

ar 7

where y is the constant clock drift rate. Thus, Eq. 2.2-5 becomes

Ap = ko Ax + yAT (2.2-6)

*For example, at 10.2 kHz, k, is about 0.034 cycle/km.
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Since A¢ is measured by the receiver and AT is just the elapsed time between updates, the un-
knowns in Eq. 2.2-6 are Ax and y.

The path length (« (radians)) on a spherical earth is obtained as the scalar product of
unit position vectors for the receiver (fr) and transmitter (ft) in a geocentric coordinate sys-
tem, i.e.,

fR : f’r = Cosx (2-2'7)

If the small change in fg between updates is denoted as Afg, then, to first order in Afg and A,
Eq. 2.2-7 implies (recall fr is fixed)

AfR ' IT = -sinx A (2.2-8)

Expanding Arg in local north and east coordinates (in the earth’s tangent plane at rg), i.e.,

fi, € are unit vectors along north and |

Afg = ANf + AE€ east, respectively. ANand AE are the J

distance changes between updates
along north and east, respectively.

and substituting in Eq. 2.2-8 can be shown to result in

cosf AN + sinf AE = -A«

where B is the local station bearing (with respect to geographic north). Substituting this form
for the change in signal path length (between updates) into Eq. 2.2-6 yields

A¢p = -k, (cos BAN + sin BAE) + yAT (2.2-9)

Equation 2.2-9 contains three unknowns ( AN, AE, and y) and thus three signal phase
measurements are required. When more than three signals are available, the redundant data are
used to provide increased position accuracy, since the errors on each signal path (to each moni-
tor) are assumed independent. For more than one signal, relations similar to Eq. 2.2-9 may be
written in matrix form, viz.

Ap = HAX' +v
where: Ag is a vector whose components, Ag;, i = 1,2,...,8, are the changes in phase for station

signal i (for a given frequency) between successive navigation updates, H is the measurement
matrix whose components are given by

Hiy = ko cosfi, Hia = ko sinBi, His = AT, i =1,2,....8,




Bi is the geographic bearing to the ith station, AX' is a 3-component vector in which (AX'); =
AN, (AX'), = AE, and (AX'); = y, the minus sign is absorbed in ko, and v is the zero-mean
measurement noise vector.

In most receiver systems, position change, and clock drift are estimated from redundant
phase data using a least squares method. For this technique, estimates of AN, AE, and y are
sought which minimize E(vTWv), where W is a symmetric weighting matrix which permits in-
ter-channel measurement noise coupling and E( ) indicates expectation over the noise statistics.
The resuiting estimates are given in terms of the measurements by

AX' = (HTWH)'HTWA¢ (2.2-10)

In conventional systems these position change and clock drift estimates are filtered in software
(e.g., a Kalman filter) to minimize the possibility of large, sudden excursions in position and
clock drift. Many systems also include algorithms to deselect signals which are expected to con-
tain dominant long-path or modal components. Thus, a reasonable working assumption is that
signals actually processed for navigation are those in the maximal coverage set.

The position change estimation sub-model required for the system availability calcula-
tion parallels the above description of Omega signal processing for a generic aircraft receiver
system. In particular, the least-squares position change/clock drift estimate (Eq. 2.2-10) based
on measured phase changes is used but other assumptions are necessary to make the probabilis-
tic model tractable. The principal assumptions for the sub-model are summarized as follows:

(1) The position change/clock drift corresponding to the measured phase change
is based on the least-squares estimate, Eq. 2.2-10

(2) The initial position is assumed correct so that errors incurred in the final po-
sition are due solely to phase change errors transformed through the position
change estimate

(3) Initially, the receiver clock offset (with respect to the Omega epoch) is zero
so that the receiver clock is precisely synchronized with Omega time at the
beginning of the update cycle

(4) No filtering or weighting of position estimates is performed.

Assumptions (2) - (4) are necessary to make the model scenario-independent. In a typi-
cal flight scenario, the known airport position is entered at departure and successive position up-
dates are computed based on Omega phase measurements and other information; uccasionally,
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precision updates are made enroute when, for example, the aircraft overflies a known, surveyed
position. Clearly, errors in position grow as the flight departs its initial position, although the er-
ror growth is not necessarily monotonic and is nearly always bounded. In a similar way, errors in
the estimated clock drift can accumulate following flight departure. Thus, the error at a given
update point along the flight route depends to a degree on the flight history (e.g., departure
time/location). To remove this scenario dependence, the initial position and clock synchroniza-
tion, at any point in the flight, are assumed to be correct. Similarly, filtering and weighting are
processes which depend on previous measurement/update states and thus, also have a flight his-
tory dependence. As a result, no filtering/weighting are assumed. Assumption (2) is clearly opti-
mistic in the sense that no errors are assumed to be carried over from the previous update cycle.
This assumption is partially compensated for by assumption (3) which specifies no filtering or
weighting. This means that successive position estimates (which incur error over only one up-
date cycle) tend to “jump” around the true position and noisy signals are weighted the same as
strong signals.

The phase change measured by the receiver (and modified by the PPC) may be separated
into two components, i.e.,

Ap = Aop + 09

where Ayp is the “true” phase change and d¢ is the phase change error. The least-squares esti-
mate expression, Eq. 2.2-10, is linear, so that insertion of the above expression (in vector form)
for A¢ into Eq. 2.2-10 yields (no weighting implies W is an identity matrix)

AX' = (HTWHY'HTW A,p + (HTWH)'HTW &8¢

The first term on the right-hand side of the above expression is the true position change since no
errors are involved and redundant LOPs pass through the single intersection point. Thus, the
second term is the position change/clock drift error, which may be written as

0X' = (HTWH)''HTW 8¢ (2.2-11)

This expression is used to transform the phase error probability density function to an interme-
diate probability density function over position error and clock drift error. This intermediate
density function is integrated over clock drift error to obtain the position error probability densi-
ty function (Appendix B).
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2.3 POSITION ERROR PROBABILITY FUNCTIONS

In this section the position error probability density function obtained from the signal
phase error model and position estimation model is briefly presented. Since the full derivation
of the density function is given in Appendix B, only a descriptive account is included in this sec-
tion. Conventional measures of position error which can be expressed in terms of the position
error density function are compared and interpreted. Finally, Pgaa is expressed in terms of the
position error distribution function.

2.3.1 Position Error Density Function

In Section 2.2.1, it is shown that the signal phase error at a given monitor site is de-
scribed by a joint normal distribution over the independent station signal paths (Eq. 2.2-4). The
signals contained in this joint distribution are those in the maximal coverage set. The position
estimation model (Section 2.2.2) dictates how phase change errors for two or more signals
(those in the maximal coverage set) are transformed to the two orthogonal components of posi-
tion error and the single component of clock drift error. Since the transformation is linear and
the phase errors are normally distributed, the position and clock drift errors are also normally
distributed as described by an intermediate density function (see Appendix B). To obtain the
position error density function, the intermediate density function is integrated over the clock
drift error.

Thus, the position error density function is a two-dimensional normal distribution of the

form
pAx(X) = 2_175 JAt O e - HOXTXTQEX-FX) (2.3-1)

where 0X is the position error vector containing the north and east components, Q is a 2x2
matrix which descrnibes how the position errors vary with direction (the determinant of Q indi-
cates the “spread” of the distribution), and 6X is the bias error vector with north and east com-
ponents. The quantities Q and 8X are functions of the phase error biases and standard devi-
ations, and station bearing angles for all station signals in the maximal coverage set. The dis-
tance scale is determined by the frequency-dependent nominal wavenumber, k,, normally ex-
pressed as centicycles/kilometer. The time scale is set by the time between updates.

Inspection of Eq. 2.3-1 shows that the position error density function is constant for
those 0N, OE for which

(6X ~ 8X)TQ(6X - 6X) = c (constant) (2.3-2)
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In terms of the two dimensions, 6N and JE , Eq. 2.3-2 represents conic sections centered about
the point 0E , 0N . If the eigenvalues of Q are all positive, Eq. 2.3-2 describes an ellipse. The el-
lipse is centered at (6E , 6N) and, in general appears rotated with respect to the north and east
error axes (see Fig. 2.3-1). As the constant ¢ in Eq. 2.3-2 is increased (decreased) the size of the
ellipse decreases (increases). The determinant or trace of Q inverse describes the relative
“peakedness” of the distribution, e.g., if det Q™! is small (large), then the distribution is relative-
ly peaked (flat). If the eigenvalues of Q differ significantly in magnitude, the ellipse will be elon-
gated in one direction with respect to the orthogonal direction. Appendix B contains additional
information concerning this density function.

2.3.2 Conventional Error Measures

The position error density function provides a useful basis for the discussion and com-
parison of conventional error measures since virtually all error measures can be derived from
this function. Different measures of error arise because particular applications evaluate alterna-
tives/tests based on specific quantitative features of the position error density function. Several
kinds of error measures commonly used in the analysis of navigation/positioning data are de-
fined and discussed below.
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Figure 2.3-1 Cross Section of General Position Error Density Function in Plane
Parallel to Earth’s Tangent Plane at an Arbitrary Location
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1. Fix bias error — the error obtained by averaging the coordinate errors (i.e.,
ON and OE in the density function, Eq. 2.3-1) for each position measure-
ment and comparing with the true position (the origin on an error plot). For
the density function the magnitude of the fix bias error is

J@N) + (3E)

In many systems, this component of the error is small, or assumed small, but
in Omega applications, the fix bias error is substantial, frequently larger
than the scatter about the mean (see measure (2) below). Note that this error
measure is a vector, i.e., specified by two coordinates. The point defined by
the coordinates (0N,dE ) is known as the fix bias point.

[In the descriptions which follow, the error measures are referenced to two positions: (1) the
true position (coordinate origin) and (2) the coordinates of the fix bias point.]
2. RMS error — a common error measure obtained as the square root of the
mean square error magnitude over the position measurements. When refer-

enced to the fix bias point, this measure is the same as the standard deviation,
i.e., (using the above notation)

\/ E ((6X - 35T (&X ; 5%))

This quantity is a measure of scatter about the mcan of the distribution and is
sometimes referred to as the “random” component of position error. When
referenced to the true position, this error measure is often called “dRMS.”
Multiples of this figure are frequently quoted, e.g., “the 2 dRMS error expe-
rienced by the receiver was ...,” especially when referring to accuracy crite-
ria. Note that this error measure is a scalar (specified by one quantity).

3. Mean radial error — an error measure sometimes defined as the average
“miss distance,” i.e., the error magnitude, averaged over all position error
measurements. This error measure is almost always referenced to the true
position. In terms of the notation used above, the mean radial error is

E[/W ]

and, hence is larger than the fix bias error and smaller than the RMS (about
the true position). This error measure is a scalar.

4. Most probable error — an error measure coinciding with the mode of the er-
ror distribution, i.e., that error corresponding to the coordinates of the peak
in the position error density function. This is the error which would be most
commonly observed among a large number of position measurements. Since
the position errors are normally distributed, the maximum of the error densi-
ty function occurs at the coordinates of the mean value, i.e., 0E, ON. Thus,
the most probable error corresponds to the fix bias error. This error measure
is also a vector, but is sometimes referred to by its magnitude.
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5. Circular error probable (CEP) — a two-dimensional error measure (original-
ly applied to targeting accuracy) which is the radius of a circle enclosing a
certain fraction (@) of the measurements. Historically, « was usually taken
as 1/2 and the circle center coincided with the true position. In terms of the
position error density function, the CEP is the radius of the cylinder which
encloses volume o under the density function surface (total volume is one).
A generalized CEP can be defined in which & can be any value between 0
and 1 and the cylinder centered about any point. Analytically, the general-
ized CEP is that value of r which satisfies

2r 1

o = I I p(r’, §)r’'dr’'dd (2.3-3)
00

where p(r’,0) is the polar form of the position error density function,
Eq. 2.3-1. From this definition, it is seen that the CEP varies with the posi-
tion of the cylinder center. In particular, the CEP is smallest when the cylin-
der center corresponds to the maximum of the position error density func-
tion, i.e., the fix bias point (or distribution mode). For « = 0.5 and reference
at the origin, the CEP corresponds to the median of the two-dimensional dis-
tribution in a radial sense, i.e., the cylinder divides the volume under the
probability density function in half. The CEP is a scalar, but the specification
of the generalized CEP requires 3 quantities, a and the two coordinates of
the cylinder center.

A difficulty which arises in quoting and interpreting errors is the presumed relationship
between the above error measures based on an assumed distribution of errors. For example, as-
suming a two-dimensional normal error density function having no bias error and circular cross
section (eigenvalues of Q equal in Eq. 2.3-1), the probability that the radial error is within:
(1) one standard deviation (or RMS; see errc: measure (2) above) of the true position is about
0.632; (2) two standard deviations of the true position is 0.982. However, these same numerical
results are often applied even when the error distribution is non-circular and has a significant
bias component.

As an example, consider a simple scenario (Fig. 2.3-2) in which the fix bias point is north
of the true position, the error distribution is symmetric with respect to north and east, and the
error density function has elliptical cross section. In this case, the matrix Q (see Eq. 2.3-1) is di-
agonal and has eigenvalues corresponding to the reciprocals of the north and east position error
variances (assumed in this example to be one and two n.m., respectively). Figure 2.3-2 shows an
elliptical contour resuiting from a slice (parallel to the local earth tangent plane) through the po-
sition error density function at a probability density magnitude of (1/4x) exp(- 0.5). Table 2.3-1
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Figure 2.3-2 Contour of Sample Position Error Density Function Showing Bias
Error and Unequal North and East Variances

Table 2.3-1 Probability that Radial Error is Within One and Two RMS Values
of the True Position for Several Values of Bias Error and North/
East Standard Deviation

A R
NOTRORA® | STANDARE | STANDATD | oRiSr | adthR RO SO | TOPBRNATYTAT
(n.m.) (n.m.) (n.m.) {G.an) (Ll 7 Q0T WITHIN CIRCLE
0 1 2 2.24 1 0.663
0 1 2 2.24 2 0.970
2 1 2 3 1 0.649
2 1 2 3 2 0.974
2 0.5 1 2.29 1 0.593
2 0.5 1 2.29 2 0.994
2 0.25 0.5 2.08 1 0.550
2 0.25 0.5 2.08 2 0.999

compares probabilities of errors within one and two RMS values of the true position for various
bias errors and north/east standard deviations. For a non-zero north bias error (6N), the RMS
value referenced to the true position is given by

RMS = /025+U%I+W

2-25




The first two entries in the table show the probabilities of errors within one and two RMS values
for no bias error but unequal standard deviations. The resulting probabilities differ by only a few
percent from the circular, non-bias error case mentioned above. In the succeeding three pairs of
entries the bias error is fixed at 2 n.m., but the standard deviations are successively halved. This
corresponds to successively greater departures from the circular, non-bias error case, since the
distribution becomes more peaked at a fixed offset from the true position. The table shows that
t e probability of error within one RMS value decreases as the distribution becomes sharper and
the probability of error within two RMS values increases to almost one. Thus, improper charac-
terization of the error distribution (e.g., by assuming no bias error and equal north and east ran-
dom error standard deviations) can lead to erroneous numerical relations between the radius (in
RMS units) of a circle about the true position and the probability of error within that circle.

2.3.3 Position Error Distribution Function and Definition of Pgps

If the position error density function (Eq. 2.3-1) is converted to polar form, as in
Eq. 2.3-3, and integrated over angle, the result is known as the radial error probability density

function, i.e.,
2

Pr(r) = I PagaN (OE(r,6), ON(r,8)r db
0

In this form, pr(r) dr gives the probability that the radial error is between r and r+dr. If this
quantity is integrated from 0 to the radial error threshold, Ry, the radial error distribution func-

tion (frequently called the position error distribution function) is obtained, i.e.,
Ry '

P(r s Ryp) = I PRr(r)dr (2.3-9)

0

The position error distribution function is the essential ingredient in the definition of the
augmented system availability index, Psaa, since it sets a probabilistic condition on achieving
navigation accuracy within pre-specified limits. If R is set too large, Pgaa values for most con-
ditions would be very close to 1, i.e., 0.99999..., and, hence, not well differentiated. Similarly, if
Rt is set too small, then the Pgaa values are also not well differentiated. More importantly, Rt
may not represent a “real” error threshold because of the simplifying assumptions made in the
position change estimation model. These assumptions are necessary to exclude any navigation-
al history (scenario) dependence from the model but the actual error depends to a degree on the
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navigational error. As a result, Rt should be selected, not in an absolute sense, but so as to per-
mit comparison of Psaa under various conditions.

To fully define Pgaa, the other probabilistic characteristics of the signals/signal recep-
tion, described by the remaining sub-models must be incorporated. First, define the event C as

C = event that, at any point in space and time, an Omega user experiences a
radial position error less than a threshold value, Rr.

Clearly, event C depends on the signals available/used at the given point in space and time. The
signals in the maximal coverage set, obtained from the coverage sub-model, serve as the pool of
available signals to be processed by the receiver. Of these available signals, the signal coverage
sub-model specifies probabilistic conditions under which the signal SNR is sufficiently high to
permit phase tracking. The m signals in the maximal coverage set are labeled by the indices 1y,
I2, ..., im, Where each index represents a different station signal (from the eight available. for
a given frequency). Define the event U for a given signal subset of the maximal coverage set as

Ui,;,...i = eventthatsignals iy, iz, ..., iy (s <m) are usable and all other signals

iljz.- . R
in the maximal coverage set are not usable.

Since the s signals are a subset of the maximal coverage set, a usable signal in this context means
that the corresponding station is on-air and the signal SNR is above the pre-specified threshold.

With the above definitions, the probability of experiencing an error less than Rt may be
calculated, assuming that the receiver processes any available set of three or more signals (with
SNR greater than threshold) in the maximal coverage set. Thus, it can be shown that

P(C) = > P(C Uy, 3) (2.3-5)
{s}

where the set {s} includes ail combinations of three or more station signal indices within the
maximal coverage set. By Bayes’ theorem, each term in Eq. 2.3-5 may be expressed as

P(C Ui;,..i, ) = P(C|Ui,..1, ) P(Ui,. 1, ) (2.3-6)
The first factor above on the right-hand side is just the position error distribution function,

Eq. 2.3-4, computed for station signals 1j, 12,...,15. To illustrate how the second factor is
computed, consider a simple example in which the maximal coverage set consists of signals
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from stations 1, 2, 3, 4. Of the four three-station subsets in this example, consider first the event
Upz3 . This event is expressed in terms of events defined in connection with the non-deterministic
signal coverage sub-model and the station reliability/availability sub-model. For SNR consider-
ations, the event A is defined so as to be consistent with the development in Ref. 2, i.e.,

A; = event that S;/N > THR ; A; = event that S;/N < THR

where S; is the signal level from station i, N is the noise level in a 100 Hz BW about the signal
frequency (at the given time and location), and THR is the pre-specified lower-bound SNR
threshold. From the <fation reliability sub-model, T-events are defined so as to be consistent
with Ref. 1, i.e.,

Ti

T; = event that station i is off-air (i = 1,2,...,8)

event that stadon iison-air (i = 1,2,...,8)

In terms of these events, the event U3 may be written (event product indicates intersection and
sum denotes union)
Uiz = AT1AT2A3T3(ATs + Ta)

Each of the first three pairs of factors in this expression indicates the event that the station is on-
air and the SNR is greater than the threshold value. The factor in parentheses expresses the
event that signal 4 is not available either because the SNR is below threshold (with the station
on-air) or the station is off-air. Carrying out the indicated multiplication (set intersection) yields
two events which are mutually exclusive. This simplifies the probability calculation, yielding

P(Uin) = P(AJAZAIAGTIT;T3Ts) + P(AIAAST ToT;T) (2.3-7)

The events {A;}, {A;} are caused by signal and noise propagation phenomena as well as receiver
characteristics, independent of the operational causes for the station off-air events (T-events).
Thus Eq. 2.3-7 becomes

P(Up3) = P(A1AA3A4) P(T ToT3Ty) + P(A1A2A3) P(T T,T;Ty) (2.3-8)

The first factors in the two terms on the right-hand side of this expression may be computed in
terms of the mean noise level, noise standard deviation, mean signal amplitude, and signal
amplitude standard deviation from the signal coverage sub-model, using anaiytical techniques
described in Ref. 2. The corresponding second factors may be computed using data from the
station reliability sub-model using algorithms indicated in Appendix A of Ref. 1. Expressions
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similar to Eq. 2.3-8 may be obtained for the other three three-signal event combinations and the
four-signal event combination, Uj234. These probabilities are inserted in Eq. 2.3-6, which, when
combined with the appropriate position error distribution function value, is used in Eq. 2.3-5 to
calculate P(C).

The above example traces the calculation of P(C) for a maximal coverage set of four sta-
tions. Calculations for larger maximal coverage sets proceed similarly, except that the number
of terms to be computed grows rapidly. For example, there are two terms in Eq. 2.3-8 for one
three-signal event. Counting all other signal combinations for the four-signal maximal coverage
set gives a total of nine terms (see Appendix B (Section B.4)). For a maximal coverage set of
five signals, the number of terms jumps to 51. The largest maximal coverage set of eight sta-
tions (extremely rare) yields 3489 such terms.

The causes of event C are assumed to be independent of the receiver reliability, since the
receiver is modeled to cease functioning randomly (with given parameters), not to introduce
phase errors. Thus, if P(C) is multiplied by the receiver reliability/availability, Pg, the result is
Psaa at a given location (cell) and time. The complete definition of Psa, is obtained by invok-
ing the user regional priority sub-model as explained in Section 2.1.4. This results in a weight-
ing of P(C) for each cell, depending on the relative importance of that cell to the user for Omega
navigation. The weighting, in general, depends on the particular user’s needs/experience, but, in
practice is common to large groups of users. The final result for Psaa is then given as

N
Psaa = Z wi P(C)) Pr

1=1
where N is the number of cells in the region (which may be the globe), {w;} is the normalized
ceil weighting set, and C; is the event that the position radial error is less than threshold Rt for
cell i. The resulting Pgan is for a fixed time, since, as noted in Section 2.1.4, user weightings
over time are usually not meaningful. When used as an index for system performance evalua-
tion, however, averages may be taken over hour/month as described in Ref. 2.

2.3.4 Summary of Psas Calculation

Because the calculation of Pgaa is complex and involves a number of sub-models, it
is useful to review the sequence in which the sub-models are invoked and the assumptions
required in their application. Figure 2.3-3 illustrates the steps involved in the Pgaa calculation.
In its current state, the phase error sub-model supplies bias and random (day-to-day standard
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Figure 2.3-3 Procedure for Calculating Pgaa Using System Availability Sub-models

deviation) phase error data only at Omega monitor sites, thus severely limiting the spatial appli-
cation of the model. Other sub-models, which may include a spatial dependence, are included,
however, to completely define a structure for calculating Psaa anywhere on the globe, when-
ever a satisfactory spatial model of phase error becomes available. The position change esti-
mation sub-model describes how the phase error probability distribution is transformed to a po-
sition error distribution using a method reasonably similar to that employed in the navigation
filters of conventional aircraft Omega receiver systems. The resuiting position error density
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function can be used to calculate conventional error measures (e.g., RMS error) or converted to
a radial error distribution function. The coverage sub-model is used in two ways: (1) the deter-
ministic portion of the sub-model establishes the maximal coverage set and (2) the non-deter-
ministic portion is used to compute the probability that the SNRs associated with a given signal
subset of the maximal coverage set exceed a designated threshold. Using the station reliability/
availability sub-model, station on-air/off-air probabilities are combined with the the correspond-
ing SNR threshold probabilities for the given signal subset to obtain the complete probability
that the signal subset is available. The resulting probabilities are combined with the radial error
distribution function (evaluated for the desired threshold error) for the appropriate signal sub-
set and summed over all subsets of the maximal coverage set. If desired, the receiver reliability/
availability sub-model can then be invoked to insert the receiver reliability factor which yields
Psaa for a given location and time. If phase error data is available on a global or regional basis
(e.g., by use of a model fit to monitor data), then the user regional priority sub-model is used to
obtain Psaa for the globe or region.

24 COMPUTATIONAL RESOURCE ESTIMATES AND AN
ALTERNATIVE ERROR MEASURE

Computational resources required for the calculation of Pgaa are expected to exceed
those for the non-deterministic computation of Psa (described in Ref. 2) primarily because addi-
tional sub-models involving additional calculations are required. Use of the phase error
sub-model entails reading a small database to extract the appropriate bias and random error
parameters. Transformation to the position error density function via the position change estima-
tion model involves finding eigenvalues of a relatively small matrix, trigonometric calculations,
and evaluating products of error functions. Integration of the position error density function over
polar angle to obtain the radial error distribution function, however, must be carried out numeri-
cally for non-zero bias error. The computation of SNR threshold probabilities and station on-air
probabilities is similar to that required for the non-deterministic Pga computation. This stage of
the calculation is the most time-consuming since numerical integrations must be performed for
each signal subset of the maximal coverage set. Remaining calculations are minor.

From the above considerations, it can be seen that incorporation of the Pgaa calculation
into an interactive workstation such as PACE depends on the feasibility of executing the non-
deterministic Psp calculation as a PACE option. Preliminary timing tests on the
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non-deterministic Ps4 computation, yield estimates of 0.7-2.0 minutes/cell on a PC/AT-type
machine (assuming 5 stations in the maximal coverage set). More recent work suggests that
these timing estimates may be optimistic by an order of magnitude. However, the deterministic
signal approximation, described in Appendix C of Ref. 2, would reduce computation time by at
least an order of magnitude if the approximation to the full random model (random signal, ran-
dom noise) is found to be valid. Since the augmented system availability model, in its current
state, is spatially restricted to the region in the immediate vicinity of each Omega monitor site,
calculation of Pga4 is intrinsically limited to one or a few cells on the globe. As a consequence
of the timing estimates and model limitations, the computation time for Pga4 is likely to be op-
erationally feasible (a few minutes/cell) if the deterministic signal approximation is found to be
valid.

If the deterministic signal approximation is judged to be invalid and Psas computation
time becomes prohibitive, a simple calculation could easily be included into the PACE worksta-
tion which would provide some guidance on the relative accuracy afforded by different station
configurations. The calculation would be derived from matrix Q first introduced in Eq. 2.3-1.
As noted in Section 2.3, the determinant or trace of Q inverse furnishes information on the
“spread” of the position error distribution. Specifically, the quantity

_ 1

- ydet Q
varies directly as the uncertainty of the position error density function; it is the product of the
standard deviations of position error along each axis when Q is diagonal. To be applicable at lo-
cations other than monitor sites, the quantity must be independent of phase error data (random
and bias component). This can be done by assuming the random component of phase errors
equal for all signals and no bias error. In this case the constant phase error standard deviation
(o ) and nominal wave number (k,) can be absorbed into S to yield the dimensionless quantity

s = (X g2
o
The quantity S’ is a function only of the bearing angles to each station whose corresponding sig-
nal is in the maximal coverage set. Defined in this way, S’ is a measure of the geometric dilu-
tion of precision (GDOP). GDOP is a dimensionless measure of the ratio of linear position error
to the uncertainty in the basic radionavigation signal resource, e.g., signal phase, time, or range.
Thus, given a phase error g , a measure of linear distance error may be obtained by multipiying
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S’ by o/k,. Note that S’ becomes larger whenever one or more angles subtended by a pair of
stations at the receiver becomes smaller. Although this quantity does not reflect phase bias
error, unequal random signal phase errors, and other factors, S’ does provide some indication
of relative accuracy between different locations and different signal coverage sets. In a similar
way, the quantity

V = JTr Q!

is a linear measure of error and, if the phase error standard deviations are assumed equal, the
dimensionless form
N ko \"
o

is obtained which depends only on the bearing angles to each station whose corresponding sig-
nal is in the maximal coverage set. V' is an error measure much like S’, except that V' corre-
sponds more closely to the conventional measure of GDOP than S’. In this sense, either mea-
sure could be used as a deterministic criterion for accepting signal subsets of the maximal cov-
erage set. The procedure would be similar to applying the signal coverage criteria, except that
the accuracy criterion would apply to multiple signals. The remaining part of the system avail-
ability calculation would proceed as described in Refs. 1 and 2.

The augmented system availability model has been developed in this chapter based on
the four sub-models used in the original system availability model and two new sub-models
dealing with phase error and position change estimation. Based on the current knowledge of the
spatial dependence of phase errors, the system availability index for navigation accuracy, Psaa,
can only be computed at monitor sites where phase error measurements are available. In the de-
velopment of an expression for Pgaa, the position error density function is derived and conven-
tional error measures derivable from this quantity are described and compared. Estimates of
the computational resources required for calculation of Pgap are given and discussed. Simple,
deterministic forms (similar to GDOP) are suggested as collective signal criteria should calcula-
tion of Psaa become operationally prohibitive.
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3. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

3.1 SUMMARY

This report presents the development of an augmented system availability model for
Omega which uses navigation accuracy as a system performance criterion/index. This criterion
is believed to represent the most appropriate basis for system performance assessment since it
focuses on the ultimate aim of navigation: accurate position tracking. The original (and en-
hanced) system availability model used signal coverage by three or more stations as the system
performance criterion. Signal coverage by three or more stations, however, is a necessary but
not a sufficient condition for navigation. Including navigation accuracy in the system availability
model is not only appropriate from a user viewpoint but also is a common performance criterion
for other radionavigation systems (see, e.g., Ref. 11).

To construct an augmented model of system availability, probabilistic sub-models of
Omega navigation accuracy are required in addition to those needed for signal coverage. The
signal phase error sub-model treats the major sources of phase error: PPC prediction (bias)
error and the day-to-day phase variation at a fixed hour (random error). Other sources of phase
error, such as the VLF atmospheric noise accompanying any given phase measurement, are
found to be minor. The spatial dependence of the phase error is not known, however, so that ran-
dom and bias error data are available only from certain monitor sites. The position change es-
timation sub-model uses a generic method for position tracking/estimation, similar in many re-
spects to algorithms used in modem navigation filters, to transform the phase error statistics to a
position error probability density function. As a digression, conventional error measures, such
as RMS or CEP, are compared in terms of this density function. The position error density func-
tion is converted into a radial error probability distribution function which serves as a basis for
Psaa since it includes a threshold radial error. The probability that the radial error is less than
the threshold value is computed assuming a given signal subset of the maximal coverage set is
available. Thus, the probability distribution function for a given signal subset is multiplied by
the joint probability that the SNR is above threshold for each signal in the subset, given that the
corresponding station is on-air. A second multiplication is made by the joint probability that the
stations corresponding to the signals in the maximal coverage set are on-air. Finally, Psaa fora
fixed location/cell is obtained by muitiplying the result by the receiver reliability/availability
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figure. Aluiuugh the available phase error data restricts the spatiai domain of the model, the
user regional priority sub-model can be used in principle to define Pga 4 for a region which may
include the entire globe. Pgaa may also be integrated/averaged over time or evaluated at a
single time (hour/month).

The computational resources required for the calculation of Pgaa are projected to be
somewhat in excess of those required to compute Pga for the non-deterministic case (Ref. 2).
The calculation stage requiring the most computation time is expected to be the numerical inte-
gration associated with the SNR threshold calculation. Due to the spatial limitations of the mod-
el, Psaa computation time is reduced compared to the global (444 cell) computations made in
the deterministic model. For the machine hosting the PACE workstation, however, the process-
ing time required for the full calculation of Psa4 is still expected to be too lengthy for operation-
al use. Processing time can be further reduced by enlisting the deterministic signal approxima-
tion (Ref. 2), if it is determined to be valid. If the approximation is found to be invalid and the
computation time is judged to be operationally unacceptable, simple alternative measures are
proposed which are similar to the GDOP for a range-only system. Although these alternative
measures are not probabilistic and do not consider phase bias error, variations in random error,
and other factors, they provide an indicator of relative position accuracy among different receiv-
er/multi-station configurations. If a threshold accuracy value is selected, the measures can be
used as deterministic criteria for acceptability of a signal subset much like the access criteria in
the signal coverage sub-model.

3.2 CONCLUSIONS

The development presented in this report demonstrates that an augmented system avail-
ability model can be formulated as a probabilistic model of Omega navigation accuracy. The de-
velopment draws upon previously developed sub-models to establish probability of signal “cov-
erage” and two new sub-models dealing with phase error statistics and the transformation from
phase error to position error.

In its current state of development, the phase error sub-model furnishes statistics of phase
bias and random error only at Omega monitor sites with stable (Cesium) frequency/clock refer-
ences synchronized to UTC. Monitor sites with an unsynchronized Cesium clock reference could
supply data on the random error component but not the bias error component. This restriction
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limits the spatial application of the mode! to the region surrounding each synchronized rionitor
site over which the phase errors are highly correlated. This means that neither a global model nor
an arbitrary regional model of Ps44 is possible, given the current state of knowledge of the spatial
dependence of Omega phase errors. If such a spatial model of phase errors is developed in the fu-
ture, however, it can be readily accommodated by the remaining model structure.

The position change estimation sub-model is found to be useful for this model and other
error analyses since its features are similar to those of algorithms used in conventional naviga-
tional filters. In terms of applicability to modern systems, this sub-model represents an improve-
ment over earlier analyses, which considered only fix errors incurred by processing phase dif-
ferences (hyperbolic mode).

As in the enhanced system availability model, the most time-consuming stage of the per-
formance index calculation is expected to be the calculation of the SNR threshold probabilities
for each signal subset of the maximal coverage set, since this calculation involves a numerical
integration over noise. A simplification of the non-deterministic coverage sub-modeli, known as
the deterministic signal approximation (Appendix C of Ref. 2) could be employed to greatly re-
duce Psas computation time if the approximation is determined to be valid. Since Psa, can
only be computed in the immediate vicinity of the 8-10 synchronized monitor sites, based on our
current understanding of the spatial dependence of signal phase errors, the calculation is re-
duced in scope (and, therefore, processing time) as compared to the full global calculations
made by the deterministic system availability model.

Alternatives to the rigorous calculation of Psaa presented in this report are simple
GDOP-type expressions which are functions of the bearing angles to each station whose signal
lies within the maximal coverage set. Although these simple forms ignore bias error and differ-
ences in random phase error on different paths, they have the advantage of permitting global or
arbitrary regional calculation. With an appropriate threshold “GDOP” selected, these forms
could be used as criteria to accept or reject signal subsets of the maximal coverage set in the cal-
culation of deterministic/non-deterministic Pga.

3.3 RECOMMENDATIONS

Based on the results and findings of this work, it is recommended that an algorithm for
the calculation of a composite Psaa be implemented (perhaps as an off-line feature of PACE)
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by computing and averaging (unweighted. ' weighted) Pgaa values at the 10 synchronized moni-
tor sites. Since these monitor sites (which are co-located with the Omega stations, in addition to
New Zealand and South Africa) are reasonably well distributed throughout the globe, the resuit-
ing Pgaa would provide a useful sampling of the global Pgaa to serve as a monthly index of sys-
tem performance. Because of its spatia! limitation, however, it could not be used to evaluate the
impact of options (such as station off-air/power reductions) on users in specific regions (e.g.,
the North Atlantic). The calculation of Pgaa is believed to be impractical, even as an off-line
PACE option, without use of the deterministic signal approximation. It is therefore recom-
mended that the validity of this approximation to the full calculation of SNR threshold probabil-
ities (involving numerical integration) be explored and tested.

In addition to the above, it is recommended that either or both of the simple GDOP-type
expressions be implemented as a PACE option. Because of their simplicity and expected ease of
integration of these forms into the PACE structure, negligible additional processing time is an-
ticipated for PACE operation. This option could be used with either the deterministic or non-
deterministic Pga computation options in PACE.




APPENDIX A
PHASE ERROR DUE TO RANDOM NOISE

Consider a system in which a very narrow bandwidth CW signal of amplitude S is de-
tected in the presence of noise. The vector sum of the interfering noise fields (in a given narrow
bandwidth) can be represented as a phasor with magnitude N and angle ¢ (see Fig. A-1). With-
out loss of generality, the signal phase can be taken to be zero. The received signal, which is the
vector sum of the signal and the noise has magnitude

/S? + N2 + 2SN cos ¢
and phase angle y. |
The signal-to-noise ratio (x, in dB) is expressed in terms of S and N by
x = 20logy (S/N) = walog. (S/N) (A-1)

where o = 20logpe = 8.68589.... From Fig. A-1, the altitude, A, of the indicated triangles
may be alternately expressed and equated to yield

Nsing = (S + Ncos¢) tany
RERTH

Phasor Picture:
Resuitant Waveform

|~ A
|
Noise, N —> :
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Signal, S Effective Noise Phase = ¢
Phase Error =

Figure A-1  Phasor Picture of Phase Error due to Noise




or

sin¢
(S/N) + cos¢

tany =

Using Eq. A-1 for (S/N), the following expression is obtained for the phase error:

¥ = arctan (—xﬁTS“i_>
e’* + cos¢

If the noise phase angle is assumed to be random, i.e., described by a probability density
function

1
Pe(d) = - 0<¢=<2n
JT

then the first moment of ¥ (i.e., the mean) may be expressed as
2

<y> = [w(cp) Po(9) dp =

0

which follows from symmetry considerations or the fact that 3 is an odd function of ¢ . Since
the mean vanishes, the second moment (variance) may be expressed as

2n 2
<v> = [vo @ -5 [arc tan(——'lﬂ—)] do

e’™ + cos¢
0 0
1 2 in ¢ 2
sin
= ; J {arctan(m)} do (A-2)
0

where the last equality follows because the integral is symmetric under the transformauon
¢ — ¢ + n. In terms of the variance, the standard deviation is given as

Oy = /<w2>

The integral in the definition of < y? >, Eq. A-2, cannot, in general, be expressed in closed
form so that numerical integration is required. For large SNR (given in dB by the quantity x),
a small angle approximation to the arctangent may be used to considerably simplify the
integration.




APPENDIX B

ANALYTICAL STRUCTURE OF THE AUGMENTED
SYSTEM AVAILABILITY MODEL

In this appendix, the sub-models making up the augmented system availability model are
used to develop the probabilistic form for the augmented system availability index, Psaa - In its
most general form this index gives the probability that an Omega user will experience an accu-
racy greater than a selected value at any location on the earth’s surface at any time. For most
applications, the time is either fixed or specified for some combination of hours and months. In
this development, the time will be assumed fixed.

Psanx is defined in terms of event D which is a function of the threshold radial error, Rt.
D(Rr) is defined as follows:

D(Rt) = event that a user navigating with Omega anywhere on the globe
experiences a radial position error not greater than Rry.

B.1 USER REGIONAL PRIORITY SUB-MODEL

The geographic preferences of the Omega user are brought in to the development by first
defining the spatial “universe” as the union of all events that a user is located in any two-
dimensional cell on the globe. Here, a “cell” is defined as that area (approximately 600 n.m. x
600 n.m.) over which Omega signal accessibility (the ability to use any given set of Omega sig-
nals) changes very little. Thus, the spatial universe is expressed as:*

U =Li+L+ ...+ Lay

where L; is the event that a user is located in cell i (444 such cells cover the globe). By definition
of the set universe, the probability of event D(RT) is given as

1=1 i=1

444 444
P(D(R7)) = P(D(RU?) = P(D(RT) > u) - P(Az D(RT)Li)

*In the following development with sets/events, sum indicates set union and product
indicates set intersection.




Now, the events D(R1)L;, D(RT)L;,... are mutually exclusive since the single user being con-
sidered can only be located in one of the cells. Thus,

444
PDRt)) = > PDR1)L)

i=1

Using Bayes’ Law, this expression may be written in terms of the conditional probability as

444 444
P(D(R7)) = 3 PDR7|L) P(L) = > PD(RD)PL)
i=1 i=1
where Di(Ry) is the event that an Omega user experiences a radial position error less than or
equal to Rt given that the user is located in cell i. P(L;), the probability that the user is located
in cell i, is usually written as w;, where {w;} is a normalized set of weights indicating Omega
user preference or experience.

Thus,
a4

444
P(E(R1)) = > wi P(Di(Ry) ;> owi=1 (B.1-1)

i=1

-

B.2 RECEIVER RELIABILITY/AVAILABILITY SUB-MODEL

To include the receiver reliability/availability model, two additional events ( Gj(Rt) and
F) are defined by the expression

DiR1) = Gi(RT) F

where G;i(Rr) is the event that the Omega signals accessible to cell i can be processed to achieve
a radial position error less than Rt and F is the event that the user’s Omega receiver functions
properly at the given fixed time. As before, the probability of event Di(Rt) may be written

P(DiR7)) = P(Gi(Rt)|F) P(F)

To determine P(F), assume that all users are grouped into n. receiver classes and define E; as
the event that the given user is in receiver class j. A receiver “class” is that group of receivers
which have approximately the same reliability and detection sensitivity characteristics. As above,
the universe of events E is the sum (union) E{ + E; + ... + E,_ and thus F may be written

F = FEi + E2+ ... + Ey) = FE; + FE; + ... + FE,,
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The events FE;, FE;, ... are all mutually exclusive since the single user being considered can
only be in ore class. Thus

N Ne ne
P(F) = P(D FE) = > P(FE) = > P(F|E) P(E)
j=1 i=1 j=1

The probability, P(E;), that the user has a receiver in receiver class j is
n.

u

where n; is the number of receivers in receiver class j and Ny is the total number of users in all
receiver classes, i.e.,

N
Nu = z nj
i=1

I'he conditional probability P(F/E)) is usually referred to as the receiver reliability figure for re-
ceiver class j and is often written Pg . Using a uniform failure interval and repair time model, it
can be shown that the reliability figure for a receiver in receiver class j is

MTTR;
Pr = ]

! MTBF;

where MTTR; is the mean time to repair figure for receiver class j and MTBF; is the mean time
between failures figure for receiver class j.

Thus,

Ne

1
P(F) = N 2. n; Pg,

v
and

PD(R7) = DOCRDIF) S o py ®21)
j=1 .

B.3 SIGNAL COVERAGE SUB-MODEL

The signal coverage sub-model is next invoked by first defining
CiR1) = Gi(Rp)|F
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where C;j(Rt) is the event that the Omega user experiences a radial error of less than or equal to
Rt in cell i given that the receiver functions properly. The signals that the user’s receiver might
possibly use in navigating with Omega in cell i at the given fixed time make up what is known as
the maximal coverage set. The actual signals in this set depend on the thresholds selected for the
access criteria applied to the coverage data. Typical access criteria are given as follows:

e Phase deviation (angle of phasor difference between Mode 1 signal and total

signal) must be less than 20 centicycles
¢ Dominant mode must be Mode 1

e  Ratio of total long-path signal amplitude to total short-path signal amplitude
must be less than -3 dB

e  Angle between the (great-circle) propagation path and the (great-circle) ter-
minator must be greater than 5°.
All signals in the maximal coverage set, i.e., those which satisfy the above access criteria at a
given cell and time (hour/month) are not necessarily usable by conventional receivers because
of the random variations in the signal amplitude and noise level. A signal is said to be usable if,
in addition to the above criteria, the following non-deterministic criterion is satisfied:
e Ratio of total short-path signal amplitude (assumed mean value) to median
noise level (assumed mean value) in a 100 Hz BW must be greater than
a certain threshold (typically, -20 dB).
The maximal coverage set is so-named because if all signals in the maximal coverage set hap-
pen to satisfy the non-deterministic criterion, then the usable subset of signals has its “maxi-
mal” value. On the other hand, it is possible (but not likely) that all signals in the maximal cov-
erage set could simuitaneously fail the non-deterministic criteria, meaning that no signals would
be usable.

Of the signals in the maximal coverage set, the universe, U", of usable signal combina-
tions are those subsets which contain at least three signals, i.e.,
UY = Vi, +V + o + Viicio

lyigie
+ Viisisic t Vigigigis + o« + Vi sic e

+ ...
+ Vijiis..ig,

where Vi;, i, is the event that signals labeled iy, 15, ...iq are usable in cell i at the given fixed
time. From their definition, the component events making up UY are mutually exclusive. Thus
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P(C(RT)) = P(C(RT)U") = P(C{RT)Viiyi, + CRT)Viisiy+..)
= P(CiR1)Viiy,) + P(C(RDVigi) + -

In terms of conditional probabilities, the above expression becomes

P(Ci(RT)) = P(CiRD)| Vi) P(Vijsis) + P(CIRT)| Viizia) P(Visizit)
+ o (B.3-1)

The event Ci(RT) |vi|iz-..iq describes the situation in which an Omega user in cell i navi-
gates with a radial error less than or equal to Rt using Omega signals iy, iy, ...iq - Calculation of
the associated event probability requires both the phase error and position change estimate sub-
models which will be deferred until Sections B.5 and B.6. The probability of the V-events is cal-
culated through use of the station reliability/availability sub-model as well as the signal cover-
age sub-model.

B.4 STATION RELIABILITY/AVAILABILITY SUB-MODEL

To show how the calculation of P(Vj;, i) proceeds, it is instructive to consider two sim-
ple examples before addressing the general case. The first example is the case in which the
maximal coverage set contains only 3 station signals. The second example considers a maximal
coverage set with 4 station signals. Both the station reliability/availability and signal coverage
sub-models are required for the calculations in these examples.

First,;define the events A; and A; as follows:

A; = event that .the SNR for signal i exceeds the threshold, a
A; = event that the SNR for signal i is less than a.

The A-events are governed by the random fluctuations of signal and noise levels and do not ac-
count for the uncertainty in generating the signal itself. The events which describe the on-air/
off-air status of the Omega stations are defined as follows:

T; = event that station i is on-air

T, = event that station i is off-air.

A maximal coverage set consisting of three station signals obviously contains only one
subset of three or more station signals (a minimum of three station signals is assumed necessary
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for Omega navigation). For convenience, the signals are labeled 1, 2, 3 (not necessarily corre-
sponding to the usual Omega station number/letter convention). The event that the three signais
are usable is given by

Vizz = (AiT1)(AT2)(AsT3)

The events in parentheses indicate that the station is on-air and the signal SNR is above thresh-
old. The probability of event Vi3 is written

P(Vi3) = P(A1AATToT3) = P(A1AA3)P(T T2T3) (B.4-1)
since the A-events and T-events are independent.

The events Aj, Ay, A3, however, are not independent since the noise level is common to
the SNR associated with the three signals in the Omega receiver. For lognormally distributed
signal amplitude and noise level, the result (derived in Ref. 2) is

+ ®

e‘(n‘mz/wNz
PlasAy = | Filn) Fa) Foo) . (B.42)

-

where
0s, \/2—

§; is the mean signal amplitude (from the coverage database) for signal i, os, is the standard de-

F(n) = (1/2) erfc (3’—(5-‘—'—’3) ,

viation of signal amplitude for signal i (from a special algorithm; see Ref. 2), il is the mean sig-
nal noise level and on the noise level standard deviation (both included with the coverage data-
base), and a is the SNR threshold. The function labeled “erfc” is the complimentary error func-
tion. These space/time-dependent parameters are specified for cell i at the given time.

The events Ty, T,, T3 are also not independent but for a more subtle reason. The off-air
event T may be separated into mutually exclusive components, viz.,

T =T+T

where:
T‘i' = event that station i is in an unscheduled off-air status
Tf =

event that station i is in a scheduled off-air status.
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An unscheduled off-air event at a given station is independent of unscheduled or scheduled off-
air events at other stations. However, Omega operational doctrine bars the simultaneous occur-
rence of scheduled off-airs at different stations, i.e.,

BT =0 ;ij=12.8 ;i=]j

This last relation leads to a dependence between events T; and T;. It is shown in Ref. 1 that

P(T\T;T3) = P(TiT2)(1- B(T3)) - P(T(1 - B(TH)(1 - (TY)) (B.4-3)

where:
P(TiT;) = P(TYP(T) - P(THP(T)

which also shows explicitly the non-independence of T; and T,. The individual off-air event
probabilities P(T}), P(T3) are obtained from historical station reliability figures as explained in
Ref. 1. Thus, Egs. B.4-2 and B.4-3 are used in Eq. B.4-1 to compute P(V23).

The second example considers a maximal coverage set of four station signals which con-
tains four three-signal subsets and one four-signal subset. If the stations are labeled 1, 2, 3, 4
(similar to the previous example), then the first event subset may be written

Vi = (AITiXAT2)(A3T3) (AT, + Ty)
where the last event in parentheses means that signal 4 is not usable because either the SNR for

that signal is below threshold (with the station on-air) or the station is off-air. The above expres-
sion for V23 may be written as the union of two mutually exclusive events:*

Viz = (A1A2A3A4)(T1ToT3Te) + (A1A2A3)(T1T2T3Ty)
Since the two events are mutually exclusive, the probability of event Vi3 is

P(Vizz) = P (A1A2A3AL)(T T2T3Ty) | + P[ (A1A2As)(T1T:T5Ty) |

and since the A-events and T-events are independent,

P(Vi23) = P(A1A2A3A4)P(T T:T3Ty) + P(AA2A3)P(T T2T3T,) (B.4-4)

*The events are mutually exclusive because T, intersects one event and T, the other event.




To calculate P(A;A3A3A4), note that the set universe (for A-events) is A4 + A4. Thus,
P(A1A2A3) = P(A1AA3(A4 + Ay))
= P(A1A243Aq) + P(A1A2A3A,)

Hence,
P(A1A2A3A5) = P(A1AA3) - P(A1A2A3A,) (B.4-5)

where P(A1A2A3Ay) is given by

+ o

e'(n‘")z/ 20y
PlAdsAA) = | Filn) Fan) Fo) Fulo So—a B9

-0

and all quantities were defined in connection with Eq. B.4-2. Similarly, P(T;T,T5T4) can be
written as

P(T\T;T3Tq) = P(T T;T3) - P(T T2T3Ty) (B.4-7)

where P(T;T2T3Ts) is computed from P(T;T,T3) using the recursion formula (Ref. 1)

P(TiT;T3Ts) = P(TyT:T3) (1-P(TY) - HTH)(1-K(TY)(1-P(T))(1-K(TPH) (B.4-8)

With the use of Egs. B.4-5, B.4-8, B.4-2, B.4-7, and B.4-3, P(V23) may be calculated by means
of Eq. B.4-4. In the same way the probabilities of the other usable 3-signal subset events,
P(V124), P(V134), P(V234), can be calculated. The final event probability to be computed in this
example is P(V1234), i.e., the probability that all signals in the maximal coverage set are usable.
Based on the previous procedure, the probability is given by

P(Vize) = P[ (AIT)(AT2)(AIT3)NALT) | = P[ (A1A2A3A4)(T T2T3Ty) |
= P(A1A2A3A4)P(T 1 T2T3Ty)

Thus, this probability is computed with the aid of Egs. B.4-6, B.4-8, and B.4-3.

For the general case of m signals in the maximal coverage set, the expression for the
probability of a usable signal subset event for an arbitrary number of signals is very complex.
To simplify the analytic form, an expression for the general event will be given in terms of a
sum (union) of mutually-exclusive events. Because of the exclusive event sum and the indepen-
dence of the A- and T-events, the probability of the general event is readily obtained as in the
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examples above. In order to obtain an expression for the event Vi ;, ;. that the signals iy, i, ...iq
are usable within a maximal coverage set composed of signals iy, iz, ig, ig+1, ---im , the events Z;,
Y;, and W are first defined, viz.,

Z =ATi; Y =ATi=T-Z; W=127Z,.7Z,

In terms of these (and previously defined) events, the event Vj;, ; Is expressed as

m m _ m m-1 m _ m
Vi =W [[ Yu+W X T [] Y+W X > T, T, [l Y

k=q+1 j=q+1 k=qg+1 hi=q+1 h=h+1 k=q+1
k=] k=jsk=j

m-r+1 m-r+2 m m
+ .. +W. z ' Z . z Ti“ Ti}z'“Ti).r n Yi,

=g+l h=ji+1l  |=jea+l k=q+1

k = juj2, e
m

+..+W ] T (B.4-9)

k=q+1

For purposes of determining computational requirements, it is instructive to determine the num-
ber of terms in the calculation of P(V) for various values of m (number of signals in the maxi-
mal coverage set). If a “term” is defined as the probability of an intersection of several events
(e.g., Z;, Y, as defined above), then for m=3 only one term needs to be computed. For m=4,

4 4
23+4—9

terms are necessary. In the case of § signals in the maximal coverage set, the number of terms to
be computed are
5 5 5

223+24+5=51

As can be seen, the number of terms rises rapidly with increasing m. The results are summa-
rized in Table B.4-1 for all possible values of m. The number of terms shown corresponds es-
sentially to the number of terms of Eq. B.3-1.
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Table B.4-1 Number of Terms Required for Calculation of P(V) for all
Subsets of the Maximal Coverage Set of m Signals, for
Various Values of m

NUMBER OF SIGNALS (m) NUMBER OF TERMS
IN THE REQUIRED FOR
MAXIMAL COVERAGE SET CALCULATION

51
233
939

3489

0 N O Wwn s W

B.5 PHASE ERROR SUB-MODEL

section.

Phase errors, which are the principal source of navigation/position error, are assumed to
be distributed according to a normal distribution with mean given by the phase bias, or predic-
tion, error and standard deviation given by the RMS of the day-to-day phase variation (for a giv-
en hour) about the phase bias error. The phase bias and random error components are a func-
tion of hour/month/path. Currently, no adequate model of phase error as a function of spatial
location exists so that the phase error components must be extracted from measurement data at
monitor sites. This limits the spatial applicability of the model to the immediate vicinity of the
monitor sites.

The phase error on paths from each of the transmitting stations to each of the monitor
sites generally subtend large relative angles and are thus assumed independent. For a given
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monitor site/time with m signals in the maximal coverage set, the joint phase error probability
density function has the form

8y, 06, ..., O m it (B.5-1)
PA¢:AG:.. Apl 0D1, 002, ..., Op) = i];ll __0;/7;— ,

where d¢; is the phase bias error and ¢ ; is the day-to-day variation for signal i. In general, 3¢;
and o ; are functions of time (hour/month). Equation B.5-1 may be written in the more compact
form

Pag(d¢) = de”,f, e ~1/2(0¢-38) U(6¢-39) (B.5-2)
(27)
where
Agy oy 5271
Ap = A.¢2 ; 0p = 6?2 ; 0 = ‘5,"’2 (B.5-2a)
A Sm 5.,
[ 1/0'12 0 0 0 0 )
0 /%2 0 0 0
U = 0 0 - . (B.5-2b)
L 0 0 C 1 /&sz

T indicates vector or matrix transpose; and det means determinant.

B.6 POSITION CHANGE ESTIMATION SUB-MODEL

To convert Omega signal phase measurements to spatial position, a generic procedure is
assumed which is believed similar to algorithms used in the navigation filters of most modern
airborne Omega receivers. The procedure is classified as a navigation technique (instead of a
position-fixing scheme) in which the previous position is known and the new position is incre-
mentally updated. For the procedure described by this sub-model, updates are assumed to be
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frequent enough (every few minutes) to track and identify lanes but also of sufficient spatial
separation to permit more-or-less independent update measurements. With an assumed initial
correct position and an oscillator/clock which has less than one microsecond drift between up-
dates, only two signals are needed. But operational receivers do not always have correct initial
position so that the clock offset calculation is needed and a minimum of three station signals is
required. The essential elements of this sub-model are as follows:

(1) A least-squares estimate of two-dimensional position is made based on three
or more phase measurements

(2) The phase measurements from which position is derived/estimated are un-
weighted

(3) The initial position is assumed correct so that error is introduced only in one
update cycle

(4) Neither the phase measurements or intermediate position estimates are fil-
tered

(5) The receiver clock/oscillator is assumed synchronized to “Omega time” at
the beginning of an update cycle so that error due to clock drift (offset) oc-
curs in one update cycle.

Elements (2), (3), and (4) above are necessary in order that the sub-model be free of history de-
pendence, i.e., the error at a point in space/time should not depend on how the navigator arrived
at the point. Although elements (3) and (5) are optimistic (compared to an operational receiver)
in the sense that there is no cumulative error, they are partially compensated by elements (2)
and (4) since the absence of signal weighting and filtering normally lead to increased errors.

In a state space formulation, the state variables are the two (north and east) components
of the position change (between updates) and the receiver’s clock/oscillator drift (due to fre-
quency offset) between updates. The measurement variables are the corresponding phase
changes between updates and the measurement process has its own noise/uncertainty. The posi-
tion changes are assumed small enough so that a flat-earth approximation is valid. Thus the
measurement equation is

Ap = HAX' +v (B.6-1)
where
2] [
Agp = : ; AX' =1 AE (B.6-1a)
. r
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and

ko cospy  kosinfy t

ko cospr  kosinfy t

H = ; Q< m (B.6-1b)

ko cosfy ko sinBy 7

In this formulation, q is the number of usable signals at the given point in space/time, m is the
number of signals in the maximal coverage set (also at the given space/time point), A¢; is the
phase change measurement for signal i, AN and AE are the north and east components, respec-
tively, of the position change, T is the clock drift rate (phase/unit time) during the update cvcle,
ko is the nominal wave number (in units of phase/distance), and r is the update time interval.
The station signals 1,2, ..., q are chosen for notational convenience and do not necessarily corre-
spond to the conventional station numbering scheme. The quantity I is assumed constant over
the update interval, thus implying a linear clock drift — certainly a safe assumption between
3-minute updates. The g-vector v is the zero-mean noise vector associated with the measurement
process.

The least squares estimate of AX' based on a redundant set of phase measurements is
that which minimizes the expected value of the sum of (unweighted) squares of the measure-
ment noise vector components, i.e., E(vIv). The resulting estimate is

AX' = (HTH) 'Hag (B.6-2)
where the superscript T indicates transpose.

The model characterized by Egs. B.6-1 and B.6-2 describes the relationship between
measured and estimated parameter (position, phase, etc.) changes occurring over an update
cycle. Since these relationships are linear, the corresponding errors in these quantities (e.g., po-
sition error, phase error) are similarly related. Thus,

6¢p = HOX' (B.6-3)
sx' = (HTH) HTép (B.6-4)

where d¢ and 0X’ are defined analogously to A¢ , AX' in Eq. B.6-1a. Note that the error in the
measurement noise vector v is assumed to be zero. Since expectation is a linear operator,
Egs. B.6-3 and B.6-4 provide relationships between the phase error and position/clock drift bias
errors, i.e.,
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¢ = HK’ (B6'5)
X' = (H'™H)'H'3p (B.6-6)

The joint probability density function for the phase errors (Eq. B.5-2) is a function of the
q phase errors, ¢, 8¢, , .., d¢q . To find the corresponding probability density function for
0X', a probability ransformation is required. However, such a transformation can only take
place between spaces of equal dimension. Thus, to effect the transformation, the 3-vector, AX,
must be supplemented by q-3 independent variables.

Fortunately, such a procedure is not required for linear transformations of normally dis-
tributed random variables. Even if the spaces on which the random variables are defined have
unequal dimension, it is known (Ref. 10) that a linear transformation of normally distributed
random variables yields transformed variables which are also normally distributed. For the case
considered here, this result means that the linear relation between phase errors and position/
clock drift errors (Eq. B.6-3 or Eq. B.6-4) trans: .ms the phase error normal distribution
(Eq. B.5-2) for q phase error variables to the following probability density function for position
and clock bias error:

Pax(0X’) = d(;;;;v e - (1/2(8X'3K')T W (6X'-8X') (B.6-7)
where
W = HTU H (B.6-8)

To obtain the probability density function over the position error variables alone, the
density function, Eq. B.6-7, must be integrated over the third component of dX', i.e., the clock
drift rate error, 0I'. The integration is facilitated by separating 4T from the other two compo-
nents of 6X’', i.e.,

ON
0X' = | 0E | = Jx0X + JpoI' (B.6-9)
or
where
: 10 0
Jx =10 1 s Jdr =10 (B.6-9a)
00 1
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and
sx = N (B.6-9b)
| OE '
Further defining
0X'-6X' = Jx0XMm + Jroly (B.6-10)
where
0Xm = 0X-0X ; Oy = or-4r (B.6-10a)

permits the argument (ARG) of the exponential in Eq. B.6-7 to be written

ARG = -(1/2)EXP = -(1/2)(0X’ - 8X')TW(6X’ - 3X) (B.6-11)

in a form such that
EXP = (Jx6Xm + JroTm)TW(Ix0Xy + JroTy)

Carrying out the indicated multiplication and noting that terms which are transposes of each
other are equal (since the terms themselves are scalars) yields

EXP = 0X[Lxx6Xm + 2 Lrx0XmOTy + L1r{0lm)? (B.6-12)
where

Lxx = JAWIx ; Lrx = JIWIx ; Lir = JIWir (B.6-12a)

Since dI'y is a scalar in the expression for EXP, an ordinary completion of the square tech-
nique may be used to isolate the dI'y dependence. Thus, adding and subtracting

(LrxdXm)* LrxoXy |
Lrr Lir

éxﬁ L[Ix Lrx 0Xm
Lir

= L7

from Eq. B.6-12 (note from Eq. B.6-12a that Lt is a scalar) yields

2
Lrr Lir L

EXP =




Recalling the definition of EXP (Eq. B.6-11) and inserting the above form into the argument of
the exponential in the density function (Eq. B.6-7) yields

LrxdX 2
Pax/(0X’) = "(;‘;;V (e ) apde. mey)
JT
where
T
Q = Lxx - L—F’I‘J—Iﬂ (B.6-13a)
IT

Integrating Eq. B.6-13 over all 0I'yy (- @ to + ) and using the normalization condition for a
single-variate normal density function yields the probability density function for position error

det W 1 T
8X) = / . - om e -(1/2)6X%, QsXu

1 det W o (1/2) 6K, Q6K (B.6-14)

only. viz

px 4 Ler

To establish the normalization of this density function, it is necessary to show only that

det W

= det Q (B.6-15)
Lrr

To prove this relationship, det W and det Q are separately analyzed. W, defined by Eq. B.6-8, is
a symmetric 3x3 matrix which may be written in the block matrix form

Wi Wn
W = (B.6-16)
(v ws)
where
Wi Wp Wi3
Wy = . W = (B.6-17
1 ( Wy Wa ) 1 ( Was )
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To find the determinant of a block matrix, a result from matrix theory (Ref. 13) is used which
states that

A DY)\ _ ’
det ( c B ) = det A det (B-CA D)

where A is an mxm matrix, B is nxn, C is nxm, and D is mxn. Applying this result to Eq. B.6-16
yields

det W = det Wi det (W33—W}iwf1wll)

or

det W Whwilwy
= det Wydet | 1-—— (B.6-18)
Wi3 ( Wi3

From Eq. B.6-13a, it is seen that det Q may be written

11T
det Q = det {Lxx (nz_L‘LX_I;F_K_L_FE ):l
Lir

where 1, is the 2x2 identity matrix. Since det (AB) = det A det B, where A and B are square ma-
trices, det Q is written

0T
det Q = det Lxx det (11 z_l‘_X_XI_]:‘Q(l“L’S ) (B.6-19)
T

To reduce this form further, another result from matrix theory (Ref. 13) is needed. This result
states that

det (1,- AB) = det (I, - BA)

where matrix A is nxm, matrix B is mxn, 1, is the nxn identity matrix, and 1, is the mxm iden-
tity matrix. Applying this result to Eq. B.6-19 yields

-11T
G @ = o Ly o (1L ) @620
IT
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From the definitions of matrices Jx and Jr (Eq. B.6-9a), it is easily shown by direct matrix mul-
tiplication that Lxx, Lrx, and L¢r, as defined in Eq. B.6-12, are expressed in terms of the com-
ponents of W as

Lxx = Wi 5 Lrx = Wi 5 Lir = Wi (B.6-21)

where Wi and Wy are defined by Eq. B.6-17. Substituting these results into the form for det Q
(Eq. B.6-20) yields a form identical to the right-hand side of Eq. B.6-18. Thus

det W det W
det Q = - =
Wi3 Lrr

and the normalization condition (Eq. B.6-15) is proved.

Hence, the position error density function (Eq. B.6-14) may be written (using the defini-
tion in Eq. B.6-10a)

pax(6X) = % Jdet Q e~ 1(6X-3XQ(6x-5X) (B.6-22)

From this position error density function, most measures of two-dimensional accuracy can be
derived.

B.7 RADIAL ERROR DISTRIBUTION FUNCTION AND FINAL EXPRESSION
FOR Pgsaa

The position error density function (Eq. B.6-22) is transformed to polar coordinates
(r,8) using the transformation
ON = rsin8; 6E = r cosf

The Jacobian of the transformation is just r so that Eq. B.6-22 becomes

Jdet Q e T{eXr0-8K)Q(oX(r.0)-3%)

r
0 = =
Pr,e(r, 6) P

Integrating over the polar angie 6 gives the radial error density function,
2

pr(r) = El;z_ Jdet Q J do e~ 10X(r.0)-3X)" Q(8X(r.6)-9X)

o
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‘ Now, if a threshold radial error, R, is selected, the radial error density function may be inte-

grated from r = 0 (the true position) to r = Rt to obtain the position error distribution function,

Rr
P(r < Ry) = J pr(r) dr
]
Ry 2
= dze th [ rdr I d6 e~ HoX(r.o1-IX)" Q(eX(r.)-IX) (B.7-1)
[o] [+]

This double integral, which effectively computes the “volume” of a cylinder under a Gaussian
surface (with symmetry axis different from the cylinder’s symmetry axis), cannot be evaluated
analytically in closed form. Besides R, the parameters implicit in Eq. B.7-1 are carried by Q
which is given by Eq. B.6-13a. Thus, Q carries the parameters ko , 01, 02, ..., 0g, f1, B2, -+, Bq -
Also, from Eq. B.6-6, 6X carries the phase bias errors 8@, , 0¢ , ..., 8¢ in addition to ko, f,
B2, --., Bq, and 1. For notational convenience, the q usable signals addressed in Section B.6 are
labeled 1,2, . . ., q without reference to the usual numbering of Omega stations. Thus, the distri-
bution function P defined by Eq. B.7-1 should be labeled with the set of signals iy, i, ..., ig. In
this sense, then, the first factor of each term in Eq. B.3-1 may be identified with a distribution
function given by Eq. B.7-1, i.e.,

P(CIRD Vi, ..i) = Piriy..id < R7)
Using Eq. B.3-1, P(Ci(Ry))may be expressed as

P(CiR7)) = §3 2 Piu ifrsRy P(Vil.iz,...,i.)

q= Iibib---r iq]n

where {il, i2, e ey iq}m is the set of all combinations of q signals where q ranges from 3 tom
(number of signals in the maximal coverage set). Now using the definition of Ci(Ry) (see Sec-
tion B.3) and Eq. B.2-1, it follows that

n m
P(D(R7)) = }}T '2:1 nPr > > Py ifrsR7) P(Vi.,s,,...,i.)

q=3 [ipia,-... igJm

B-19




With the use of Eq. B.1-1, the final expression for Psaas is given as

Psaa = P(D(Ry)) = Z ( > Z n; Pg, Z > Pii..ift s Ry) P(Vh,iz,...,iq)

= q 3 [ll 12, 9lq]m

(B.7-2)

To see the dependence of Psas on the various parameters, it is useful to review the pa-
rameters associated with each part of Eq. B.7-2. The normalized weights, w;, came from the cell
weighting matrix of the user regional priority sub-model. Since the model only applies to those
cells containing monitor sites with single-station phase data, most of the weights will be zero
(only about 10 w;-values will be non-zero). The quantity n; is the number of users in user class j
(j < n¢, the total number of user classes) and the total number of users is

N
j=1

PR, is the receiver reliability/availability figure for user class j. For PACE, the workstation
which implements the Pga calculation, only one user class (j = 1) is considered and Pg, = 1
so that

The probability, P(Vi, i), that only signals from stations iy, i3, ..., ig are usable (at a particular
time) in cell i, is computed from the event V;, ; , which is expressed in Eq. B.4-9 interms of a
union of mutually exclusive component events. The component event probabilities are com-
puted using the methods discussed in Section B.4 in terms of the scheduled and unscheduled
event probabilities (function of month and station signal), the mean and standard deviation of
the amplitudes for signals iy, iz, ..., ig (functions of month, hour, and cell), and the mean and
standard deviation of the noise level (also a function of month, hour, and cell). Finally, the dis-
tribution function Pij;, ;. (r < Ry)is given by Eq. B.7-1 which contains the threshold error, R,
the position bias error vector, X, which depends on the phase bias errors on signals iy, Iz, ..., Iq
(function of hour and month) for cell i, the free space wave number, k,, the receiver update
time interval, t, and the bearing angles to stations iy, iy, ..., iq, and matrix Q which depends on
the standard deviation of the day-to-day phase variation for signals iy, iz, ..., ig at the monitor
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site in cell i (function of hour and month), the bearing angles from cell i to stations iy, iz, ..., ig,
and the free space wave number, k, (function of frequency).

B.8 FURTHER ANALYSIS OF MATRIX Q

The position error density function is, like all normal probability density functions, speci-
fied by two quantities:

(1) The bias error vector 8X which specifies the displacement of the symmetry
axis of the distribution

(2) The matrix Q whose inverse describes the spread or peakedness of the distri-
bution.

In this section, attention will be focused on matrix Q (and its inverse) since measures of Q may
be expressed in a dimensionless form, assuming all phase error standard deviations are equal,
which permits relative comparison of error distribution “spread” under different conditions.
Toward this end, the determinant and inverse of Q! will be calculated.

The determinant of Q is most easily obtained from Eq. B.6-20, noting the definition of
Lit in Eq. B.6-21. Thus,
det W

det Q =
Wi3

(B.8-1)

where W is given by Eq. B.6-8. From the definition of H (Eq. B.6-1b) and U (Eq. B.5-2b), a sim-
ple matrix multiplication shows that

i=1 1 i=1 i=1 1}
Q9 cin A . 9 inlA. q in R
w=|igy Sk gy SR g yBR @8y
i=1 i i=1 G i=1 Gi

oI T ST o

i=1 Gi i=16°
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The determinant of W is evaluated by expansion of minors along the third row (working from
right to left). Thus

—
N

det W = Bi i "‘ﬂ' M, + tkoz °°Sﬂ‘ M;  (B.83)

The quantity M; is calculated in a straightforward way as follows:
M; = WiWe- Wi

9 9

K¢

[cos2 B sin? By - cos Bjsin B; cos Py sin ﬂk]
o;
=l k=19

9 g 1 :
= kgz > 7o cos B;sin B sm(ﬁk-ﬂj)

‘ _ %‘? i i L. -sjn(ﬂk + ﬁj) + sin(ﬁk—ﬁj)] sin(ﬂk-ﬁj)

j=1k=10"0" L

il
o |25
[\/].n
Me

7 sl + 4) sinfpe-5) + sin’(pe-5)|

The first term in the summand sums to zero since it is odd in the interchange of indices k and j,
i.e., for every term corresponding to (k, j), there is a negative term corresponding to (j, k) (terms
vanish for k=j). Thus

ks < 1 . 2
M), = = > sin® {Bx - B; (B-8-4)
l 2 1';1 kgloizokz (k ])
In a similar way, Mj is calculated to yield
_tkd & &1 :
) Mz = 2 jg'l é:l 020, ? s (’Bk-ﬂj> (cosﬂj—cosﬁk) (B-8-5)
and
ok &3 1 . : .
@ M= B8 5 S i (ep) (g -wes) 630
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Substituting Egs. B.8-4, B.8-5, and B.8-6 into Eq. B.8-3 yields

det W

q

Z Z Z i"z@ET"?_ [sm(ﬂk - B;) - sin B;(cos B - cos fx)

e i “ 0y

+ cos fi(sin Bj - sin ﬂk)]

4 9 9 4

(B.8-7)

The summand factor in brackets has the property that the sum of the arguments of the sines va-
nishes. In general, it can be shown that

sina + sinf + sin(- (a + B))

sina + sinf -sin(a + B)

4 sin(a/2)sin(8/2) sin(@*ﬂ)/z) (B.8-8)

Applying this result to Eq. B.8-7 yields

det W = 2 7%k i zq: i sin(Bx - B;)

i=1j=1k=1 Gi

sm(ﬂ‘ ﬂ’)sm(ﬁ : )sm(‘3 =)

20120k2

(B.8-9)

In this sum, terms which have any pair of indices equal vanish so that equal indices may be ex-
cluded from the sum. For any given triple of indices, say i’, j’, k’, there are six possible permu-
tations in which no two indices are equal. These permutations can be divided into cyclical per-
mutations and pairwise permutations as follows:

Unpermuted: (i’, ', k')

Cyclically permuted: (j', k', i'), (k’, i, j")

Pairwise permuted: (j’, i’, k'), (k’, j’, i'), (i, k', j').
The summand factor in brackets in Eq. B.8-9 is symmetric under cyclical permutations (positive
parity) and antisymmetric under pairwise permutation (negative parity). Thus, for a unique

combination (triple) of indices, the following six values of the summand in Eq. B.8-9 are ob-
tained:

Unpermuted: (i, j’, k') : B sin (ﬂk'-ﬂj')
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Cyclical: (j', k', i) : B sin (8 -5¢)
(k’,i',j) : Bsin ( ﬂ,r)
Pairwise: (j’, i’, k') :- B sin (B -By)

(i, k', i’ :-Bsin ﬂjl—ﬂk
(k', j', i') : = B sin ﬂi'—ﬁj'

\—/\/

where B is the summand factor in brackets in Eq. B.8-9. Thus, if the sum in Eq. B.8-9 is taken
over unique combinations of indices i, j, k, then the summand is composed of the six quantities
given above, i.e.,

2 B (sin(Be ~ By) + sin(By - fie) + sin(By - )

The arguments of the three sine terms sum to zero and thus the sum is equivalent to the form
given in Eq. B.8-8. The summand thus becomes, on removing primes from the indices,

8 sin (ﬁ" ﬁ’)smz(ﬁ‘ )sm (ﬁ’ ﬂ‘)

0;20;%0¢ 2

Writing the sum in Eq. B.8-9 over only unique-combinations of indices and using the above
form for the summand yields

? ql smzﬁ“ﬂ 5) sin%(BL) sin? (P2
det W = 16 k¢ > > Z . (2 )2 &)
i=1 j=i+1 k=j+1 Oi 0] Ok

Substituting this expression for det W into the equation for det Q (Eq. B.8-1) and noting, from
Eq. B.8-2, that

1
Wy =1 > —

iMe

the following form is obtained for det Q

16 k¢ -2 g-1 i st( ) SmZ( ﬂ!‘ﬁt) SmZ(ﬁrﬁ-)

2 2 z

i=1j=i+1 k=j+1

det Q = (B.8-10)

0 o,ak

Mo

A
0.1

»
—

i
It is seen that the square root of this quantity, which carries the dimensions of the density func-
tion (see Eq. B.6-22) has dimensions of (distance)™2, which is correct for a two-dimensional
density function defined over distance.
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For the case of three usable signals (q=3), only one combination (1,2,3) of indices occurs
and Eq. B.8-10 becomes

16 k& sin(82)sin2 B sin? Bty

det Q =

1 1 1 012022032
st —5+—3

4 (] g3

For four usable signals, the sum com;»:ses four terms, for q=5, ten terms are obtained, and, in
general, for q usable signals,

q

3

From the discussion above, it is seen that
/det Q‘l = ._1__
Jdet Q

has the dimensions of (radial distance error)2. It follows, then, that (det Q)™ is a linear measure
of error. Computation of this error measure requires a knowledge of phase errors on all usable
signals and bearing angles to all stations (from the receiver) transmitting usable signals. The
bearing angles (f;) are easily computed but the phase errors (0 ;) are known only at those moni-
tor sites which measure single station phase. Thus, it is useful to consider an error measure
(based on a highly idealized model) which is independent of phase error.

terms occur in the sum for det Q.

If all phase error standard deviations are assumed equal, i.e., -
oi =06 , i=12..4q
then det Q (Eq. B.8-10) becomes

wwa -2 (L) 8§ B 3 wr(Ah) (At A ) ar(5:5)
Q@ \9/ i=1 j=i+1 k=j+1 2 2

As discussed above, a linear error measure, S, is obtained as the inverse fourth root, i.e.,
ot |2 o q _B _ _a\|t
= 1 7 = Z Z Z sin? pk ﬁ) sin? Bi B sin2 pj Bi
(det Q) i=1 j=i+l k=j+l 2 2 2
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Finally, a dimensionless form, S', is obtained as follows:

g = KoS _ 9; qf qi i sinz(ﬂkz-ﬁj)sinz(ﬂi;ﬁk)sinz(ﬁj;ﬁi)]‘:

i=1 j=i+l k=j+1
(B.8-11)

This “GDOP-type” error contains only the bearing angles to the stations transmitting usable sig-
nals and, though based on a highly simplified model, S' may be used to compare the relative ac-
curacy of different usable signal sets at the same location or the same signal set at different lo-
cations.

The trace of Q! is obtained by first noting that, for the 2x2 matrix Q,
Tr Q
det Q

Since the trace is a linear operator, Tr Q may be expressed as the difference of two traces using
Eq. B.6-13a as an expression for Q, i.e.,

Tr Q! =

(B.8-12)

T
Tr Q = Tr Lxx - E‘—”Ln—"ri (B.8-13)

Using definitions given by Egs. B.6-17 and B.6-21, it is seen that
Wun Wp
= w =
Lxx I ( W5 Wg

2 WisW.
o = wa v = (5 Vol )

WipWys W5
Lr = Ws3
Thus, from Eq. B.8-13, Tr Q becomes
Wi + W3,
TrQ = Wi + Wy - (—-——)- (B.8-14)
W33

Now, substituting for the components of W, using Eq. B.8-2, yields

I 1
Wn+Wn =k —
i=1 Oi
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and

d 3 1 o
Wi+ WE = %3 Z z 0—17?7 (COSﬂiCOS,Bj + smﬂ,-smﬂj)
j

i

(1
—
—
]
—

q 2 q . — B,
TTQ =k > l2 . Z Z cosf, .ﬂz])

{l
)
=
o
M
Me

(B.8-15)

where det Q is given by Eq. B.8-10. Since the summand in the numerator of Eq. B.8-15 is sym-
metric under interchange of i and j, the sum may be written over unique combinations of i and j
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(with a factor of two). Using this fact and substituting for det Q from Eq. B.8-10 into Eq. B.8-15
yields

q-1 q  sin? (A-#,)

-1 8-
e G w o e O

4k° Z Z z aiza,’gl

i=1 j=i+l k=j+1

Note that this quantity has dimensions of (distance)? which is correct, since Q has dimensions of
(distance) 2.

For three usable signals (q=3), Eq. B.8-16 reduces to

sin? (ﬂiﬁ ) sin? (h-ﬂ:) sin? (ﬂ_xzﬁ)

Tr Q! 0,%,? 0;%,? 9,%,*
, in? (pl-h)sm (h—p;)sm, (ﬂx;ﬁs)
4ks o 70,%0,7
1 0 2 0 2 022

= + +
)
4ko sinz(#’-) sinz(-é‘—z'p’;) sinz(ﬁ‘—zﬁ) sinz(@) sj,ﬁ(@) sinz(é;_ﬁi)

When the bearing angle difference between a given station and any other station (in the usable
coverage set) is small (or near 2z ), then this error measure is more sensitive to bearing angle
difference changes than to the phase error variance on the given station signal.

A linear error measure is obtained by taking

V = ‘/Tr Q!

As in the case of error measure S, described above, V is a function of the phase errors, o ;, for
the usable signals i=1,2, ..., g, as well as the bearing angles, §;, i=1,2, ..., q. As discussed above,
the phase error standard deviations, ¢ j, are obtained only by measurement at monitor sites and
thus V is severely limited in spatial extent as an error measure. For this reason, a simplified
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model is assumed in which all phase error standard deviations are equal. In this case, V be-
comes, with the use of Eq. B.8-16,

T3 (82 v
g i=1 j=i+1
vV = (B.8-17)
2ko | 2 a7l q , _ ‘.
Z Z sin® (E"zi) sin? (é{—‘) sin? (ﬁ’—;@>
[ i=1 j=i+1 k=j+1 .
As in the case for det Q above, a dimensionless form is obtained by taking
vV = Ko v
o
Thus, using Eq. B.8-17, V' is given by
[ o3 112

2

sin? (—ﬁ*f’)
i=1 j=i+l

V'

| =

q-2

2

q-

> >

sin® ('B"ﬁ’) sin? ('8"9’) sin (%—B—)

11]1+1k]+1

This form is independent of phase error standard deviation and depends only on bearing angle
differences. Note that V' — « when §; — §; for any i,j=1,2, ..., q. This situation occurs when
the receiver lies on the baseline extension for two of the stations transmitting usable signals.
Since Q! is sometimes referred to as the covariance matrix, V’ is a measure of the rms of the
north and east error components.
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