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FOREWORD

As intelligent systems research begins to mature, it is becoming clear
that the power of such systems lies in their ability to self-direct
(autonomous control path generation), and self-improve (autonomous
acquisition and application of new knowledge). Recent progress in the
development of self-directed systems suggest that we may soon be
conducting engineering design and material science using systems (i.e.,
machines) which augment the process of scientific discovery -

conjecturing hypotheses, conducting experiments and discovering new
knowledge about the process of design and fabrication of materials.

Tantamount to the technological advances which will make such
systems feasible is an overriding economic impetus to improve our nation's
competitiveness in a growing and soon global marketplace. It is the
economic importance of global, international competitiveness which will
sustain the development of self-directed systems and the direction will be
simply that of continually improving product quality in less time and at
less cost.

As we begin to compete in a global marketplace, the essence of product
quality - improved design cycle time, life-cycle design, process
repeatability, process yield, etc. has become central to manufacturing and
therein intelligent systems research. It is for that reason that product
quality has been embodied in our definition of intelligent manufacturing -
systems which employ a product directed philosophy which when
manifested in a manufacturing system enable on-line or in-situ generation
of an improving product-process cycle.

SELF-DIRECTED SYSTEMS

In order to define further what is meant by 'intelligent systems', it is
necessary to distinguish them from conventional systems. Very simply,
conventional systems are typically a priori model driven, i.e., a
mathematical model of the process is created, applied to the process and
left undisturbed until product quality is determined unacceptable. Counter
to such a philosophy is the development of systems which exhibit 'in-situ'
adaptation, i.e., the systems are directly coupled to the product and
thereby emphasize and are directed in real-time by product quality.
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Intelligent systems are goal-driven in terms of product parameters of
interest rather than state-driven in terms of following some prescribed
model. The difference is expressed both in the modeling paradigm and the
independent variable. In a state space model, the process is defined as a
function of time (process time) irrespective of product. In a goal space
model, the process is defined as a function of events (goals) regarding the
product during processing. The distinction is one of adaptability.

A goal-driven system is adaptive and must be trained (off-line) by an
expert to watch for and respond in-situ (on-line in real-time) to the
occurrence of product goals during the process. A state-driven system is
not intended to adapt and instead is forced to act in accordance with an a
priori or off-line prescribed schedule of predetermined and time specific
process states.

In-situ generation of a process cycle means the system has the
autonomy to reason, i.e., make process-path decisions during the process.
Therein, a goal-driven system must be capable of coupling these decisions
(goals) together and creating its own processing path (from initial
conditions through to end-goal conditions) in response to varying product
parameters and process conditions.

A goal-driven system not only responds to when an event occurs but
also to the many different combinations of events occurring during a
process. Together, the capability to adapt and to reason about the
occurrence of events, regardless of when they occur, in what combination
or duration, establish the autonomy of a self-directed system. The benefit
of such autonomy is a more consistent product and very often reduced
processing time.

The technical advantage of self-directed over conventional systems is
the real-time generation of a processing path. As a result, the process
paths over time for the same identical process are usually slightly
different from each other but always tailored to achieving desired
product-quality goals. The economic advantage is usually a combination of
improved design cycle time and reduces life-cycle design costs when
applied to the design activity, and reduced processing time, improved
process repeatability, and process yield when applied to material
processing.

Steven R. LeClair, Maj, USAF
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PROCESSING NOISY INFORMATION USING NEURAL NETS

Chih Tsong Chen
Senior Electrical Engineer
Universal Technology Corporation
Dayton, Ohio
(513) 426-8530

ABSTRACT

A probability neural net (PNN) was developed which could be configured as a
classifier as well as an estimator. The ability of fast-learning makes PNN an ideal
Artificial Neural Net (ANN) for desktop systems implementation. A technique to form a
reduced-size PNN training set to reduce the complexity of the net for QPA application
was also discussed.

THE PROBABILITY NEURAL NET
INTRODUCTION

Artificial Neural Nets (ANN) models propose how the human brain might process
information. ANNs have been developed into a variety of configurations. Despite this
diversity. ANN paradigms that emerge from the basic characteristics of biological
neural systems have a great deal in common. The brain is characterized by the
massively parallel local processing and distributed organization of neurons. This study
follows this biological inspiration closely in seeking for useful functions to develop an
ANN for QPA autoclave application. Our effort in the development of a neural data
processor has resulted in a PNN system which can be summarized as follows: 1) It is a
statistical net which employs Bayesian approach to perform nonlinear decision
making, 2) It is parallel, and thus can process data rapidly, 3) it is distributed ,so that
PNN is robust, and can tolerate local failures. In addition, PNN is a fast-learning net
which requires only one-pass to extract all the information available in the teaching
set. This feature makes PNN an ideal low cost ANN which is superior to other nets for
many applications.

PNN is based on the estimation of probability density functions (PDFs) of an input
pattern for the various classes in the input space. The Bayesian strategy is used in the
PNN algorithm to compare the PDFs of the input pattern for all the pattern classes. The
input pattern is then assigned to the class in which the PDF of the input has the
maximum value. Mathematically, the Bayes strategy of classification is described by
the following rule: if fi(x) > fj(x) for all i<>j, then input pattern x belongs to i-th pattern
category. In the above statement fi(x) is the probability density function of the n-
dimensional input pattern x belonging to the i-th pattern category. Specifically, by
denoting the total number of the patterns in the i-th teaching pattern category as mi,

PDF can be described by the following equation[3]:
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fi(x) =- 1 1 "(x-xij)t(x xij)
\_1(Y) n mi  _ep 2a 2  )

(1)

where x represents the input pattern, xij is the j-th teaching pattern in the i-th pattern

category, and z a smoothing parameter. A parallel, distributed implementation for (1)
has been successfully developed, and its structure is sketched in Figure 1. Note that
this PNN unit can be easily connected to a MAXNET to form a classifier. It can also be
modified into an estimator. These two configurations are shown in Figures 2a and 2b,
respectively. When configured as an estimator, PNN utilizes PDFs as weight functions
for the input category. It then incorporates the observation with the information in the
teaching set to generate an estimation. In this sense the PNN estimator is analogous
to a Kalman filter.

Evaluation of PNN

In order to evaluate PNN the back propagation net (BPN) was also used for
comparison. There are two reasons for the use of a BPN: 1) BPN is one of the most
successful ANNs for a large variety of applications, 2) Both PNN and BPN depend on
mathematical logic rather than biological simulations in their search of solutions in the
solution space. The following three examples have been conducted on al0MHz IBM
PC clone to illustrate the use of PNN in a variety of applications.

Parity Detector

A BPN and a PNN were configured into two 4-bit parity detectors. A set of sixteen
teaching examples was forr-ned to train both nets. The a priori knowledge about the
optimal configuration of a BPN application is in general not available. However,this
information is made available to BPN so that the net contains four hidden units. Since
the BPN requires a recursive learning process, a number of 5000 iterations was
imposed to stop BPN from inefficient learning. Various values of 1< s <4 were used for
PNN. With this specification it has been discovered that while it took only a few
milliseconds to train a PNN, it required about 23 minutes for the BPN to complete a
learning process. In a typical trial of 10 runs the BPN has learned successfully in 6
runs, while the PNN suffered from no failure at all.

Thermocouple Data Processing

A data file from a typical QPA autoclave[ 2 ] run consists of several hundreds of
samples. OPA system operation requires real-time information related to the velocity
and the acceleration of temperature during the curing process. QPA is a self-directing
material processing system. Each process run is somehow different due to material
and layup variability. Therefore, the QPA information embedded in the QPA file affords
an unique opportunity for the training of PNN. Since every hidden unit in PNN
represents a teaching example, it is required to develop a technique which can be
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used to construct a reduced size of teaching set from the QPA file so that PNN can be
efficiently trained. In this study an unsupervised learning process was used to form a
reduced-size training set. Thermocouple readings were utilized to generate cluster
information in the classification space. In addition, a phase diagram (dT/dt vs. d2 T/dt2 )
the optimal cluster size utilized in the PNN algorithm smoothing parameter in (1). The
the teaching set. The rational for the formation oi teaching clusters assumes that the
patterns of the same class in the classification space are closer to each other than to
patterns of a different class.

A BPN with 30 hidden units was also implemented to process a QPA file which
consisted of 321 data points. It was soon concluded that BPN was not adequate for
thermocouple data processing. This was due to the fact that BPN required a time-
consuming recursive training procedure. In addition, BPN often failed to generate a
satisfactory solution. On the other hand the fast-learning PNN estimator needed only
one-pass to generate a satisfactory solution. It was estimated that PNN was faster than
BPN by a factor of at least 4 (104) in this application. Figure 3a depicts the
performance of the PNN estimator which was used to estimate the temperature
acceleration of the composite material. Figure 3b showed the result of a differentiator
for comparison. It is obvious that PNN has a better smoothing effect than than its
conventional counterpart. Recently, the number of teaching groups used in the PNN
for the estimation of temperature acceleration has been reduced from 1311] to 7. This
progress represents approximately a 50% reduction of hardware implementation for
the autoclave PNN system.

Thermopile Data Processing

Currently thermopiles have been used for the study of utilizing the "apparent thermal
diffusivity"[ 4] to infer the state of the QPA curing process. Preliminary results showed
that the dynamics of the apparent thermal diffusivity can be used to infer qualitatively
the release of reaction heat and the occurrence of accelerated reaction of the curing
laminate in the OPA system. In addition, thermopile is better than the dielectrometer in
the detection of complete cure. This is due to the fact that the apparent thermal
diffusivity is independent of temperature, while the loss factor from the dielectrometer
is affected by the laminate temperature. Due to the potential of the thermopile for the
improvement of the current QPA system, a feasibility study of PNN for thermopile data
processing has been initialized recently. A moving data window of size 6 was used to
form the input port of the PNN estimator. A preliminary conclusion for this study can be
summarized as follows: 1) Similar to the case of thermocouple data processing, PNN
can be trained rapidly to estimate the dynamics of the apparent thermal diffusivity,
therefore is useful for the detection of the reaction heat and accelerated reaction, 2)
Pnn is sensitive to the sudden change of the dynamics of the apparent thermal
diffusivity. An interpretation for the surge of apparent thermal diffusivity is currently
under study. The use of three thermocouple readings from different laminates as
inputs to a PNN might be able to avoid the degeneracy of information. This situation is
particularly true when all these three readings are close to one another. A progress in
this area might enable us to simplify the OPA data acquisition system and to enhance
its overall performance, which would represent a breakthrough of the QPA research.
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CONCLUSIONS
PNN's speed, accuracy, and flexible classification and estimation functionality make
PNN an ideal artificial net for QPA and other related applications. Except BPN, the
explicit structure of PNN. alleviates time-consuming trial-and-error procedure
construction. In general, the development of a ANN is very expensive, while its
delivery is inexpensive. The quick turn-around makes PNN an ideal tool which is more
cost-efficient than other nets.
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GRAPHICAL PROCESS KNOWLEDGE BASE DEVELOPMENT FOR OPAL

Paul W. Kennedy
Universal Technology Corporation
4031 Colonel Glenn Highway
Dayton, OH 45431-1600

INTRODUCTION

This paper describes work on a graphical knowledge base development tool for a
second generation Qualitative Process Automation Language (OPAL) environment.
The tool intendes to simplify knowledge base development within the new OPAL
environment. Specifically, it will ease the task of encoding process control knowledge
into the representational structures of a knowledge base.

The tool provides a knowledge base development environment superior to existing
text-based QPAL software environment. Its features include: an underlying knowledge
representation that is more flexible than QPAL, a graphical interface for quickly
establishing various relations between knowledge structures and forming an overall
picture of the process, and a syntax and completeness checker for detecting problems
with syntax, naming, and knowledge base completeness. Because the knowledge
base development tool uses a modified set of knowledge structures from QPAL, a new
QPAL environment must be created to accommodate them prior to any real
implementation.

KNOWLEDGE REPRESENTATION

A Limitation of OPAL

In the current version of OPAL, the Plan and Episode structures function as the primary
descriptors for the overall control strategy. Plans allow the process to be decomposed
into separate subtasks associated with the parent Schedule. Each subtask is a
separate instance of a plan which contains a list of Episodes. Episodes capture the
individual goals of the process and represent the lowest level of decomposition.
Together, plans and episodes form a process decomposition containing two levels of
control information. Plans separate conflicting process goals into nonconflicting,
independent segments. Episodes define process goals in terms of states and specify
the conditions needed to meet these goals.

The current version of QPAL is limited in its representational capability because the
plan and episode structures require the user to decompose the process into two
levels. Some processes may be too complex to represent in this manner. They may
require a decomposition containing multiple levels of subtasks. Still, other processes
which can be represented in the current version might be more easily represented and
more understandable if broken down into multiple subtask levels. A control structure
that is similar to plans and episodes, but allows a process to be decomposed into
multiple control levels could greatly increase the representational power of OPAL and
simplify knowledge base development.

1-6



NEW STRUCTURES

This section describes the modifications made to the existing OPAL knowledge
structures which form a representation for the knowledge base development tool and
the second generation OPAL environment. An alternative control structure is described
which will preserve the representational capabilities of the present OPAL control
structures and allow a process to be decomposed to any number of levels. A
modification in the State structure is suggested as a part of this change. In addition, the
Part structure is modified and renamed to assume additional roles in grouping
associated controllers, tasks, and states.

A Task structure introduces the primary descriptor for the overall process control
strategy. A task has start and end conditions specifying when the task begins and
when the task ends. It can be defined in either of two possible forms which are referred
to as high level and low level. A high level task allows a process to be decomposed
into separate subtasks. Therefore, the goal of a high level task is to attain the goals
represented within its subtasks. Of course, subtasks may also take on a high level form
giving way to additional levels of decomposition. An example task decomposition of an
airplane flight is shown in figure 1.

Low level tasks are the drivers of actions in the process. The goal of a low level task is
to achieve, prevent, or maintain a specific process state. Influence rules associated
with a low level task specify how the goal is to be achieved. They contain methods that
directly manipulate process controllers if a specified condition is true.

The association of influence rules with task structures represents another change to
the existing version of OPAL where influence rules or exciters and inhibitors are
associated with state structures. This modification is introduced to maintain a
consistent knowledge representation. Tasks are intended to describe goals and how
they are to be achieved. Therefore, influence rules must somehow be associated with
them since they specify controller methods for attaining a goal.

An object structure, introduced into the new representation, replaces the part structure
in the existing version of OPAL. The new name refers to process objects or the objects
undergoing change. Objects capture groupings of associated sensors, controllers,
tasks, and states. For example, the task, Prevent HeaterFailure, the state,
HeaterFailure, the controller, Heater, and the sensor, Temperature, might all be
associated with an object, autoclave, as shown in figure 2.

In summary, tasks and states are the basic building blocks needed to represent a
second generation OPAL process. State structures are the elemental descriptors of
process events. They describe when process goals are to be achieved. Tasks
describe what the goals of the process are and how they are to be achieved. Objects
capture logical groupings of sensors, controllers, tasks, and states which are important
to the semantics of the knowledge base.
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BENEFITS

The new task and state structures provide a more flexible and understandable
representational schema than their counterparts in the current version of OPAL. The
new task structure replaces the schedule, plan, and episode structures and its
recursive nature allows a process to be decomposed to any number of levels giving
the user greater representational power and flexibility.

KNOWLEDGE BASE DEVELOPMENT ENVIRCNMENT

Text Editor & Interpreter

In the existing OPAL software, knowledge bases are developed in a text-based editor
and then interpreted or compiled so that they can be executed by OPAL. Unfortunately,
the text editor and interpreter slows the development process because of the extra
burdens they place on the user. Entering knowledge structures in textual form is time
consuming. The user must adhere to the OPAL syntax and be sure to declare
structures before they are referenced by another structure. In addition, the user must
function as a programmer, editing and recompiling whenever a modification is made to
the knowledge base. This type of development environment can be quite cumbersome
and inefficient. A knowledge base development tool is needed which will relieve the
burdens of syntax and referencing off the shoulders of the user and in essence provide
a quicker way to enter knowledge base information.

GRAPHICAL KNOWLEDGE BASE DEVELOPMENT TOOL

A graphical knowledge base development tool was developed for a second
generation of the OPAL environment to provide a means for easier and more rapid
knowledge base development. Graphical description windows are used in
combination with textual windows containing record type fields to capture knowledge
base information. This information is organized using the new structures: tasks, states,
and objects, described previously and those structures that were left unchanged.

Graphical description windows provide a means of quickly representing specific
relationships between knowledge base structures. Each structure type is represented
as a different picture or icon and each relation type as a different line connection. A
picture is created when a new instance of a knowledge structure is declared. A new
connection can be formed when a relation must be established between two
knowledge structures. These pictures and connections, allow the user to produce a
meaningful and organized view of the process decomposition, process flow, and
sensor and controller relationships to process objects. The views are discussed in
more detai! next.
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The Process Description window captures the process decomposition and flow. Task
structures and subtask connections pictures may be created and manipulated to fully
represent a process decomposed into tasks and subtasks. A meaningful view of
process flow can be formed using the task, state, inform, abort, and explain pictures
and the relational connections: start condition, end condition, and trigger. A Process
Description window containing a view of process flow for an airplane flight is shown in
Figure 3.

Sensor and controller relationships to process objects are represented in the
Sensor/Controller Assignments window. It allows pictures of sensor and controller
objects and associated assignment connections to be created and manipulated.
Together, these can be used to form an organized view of process objects and their
assigned sensors and controllers.

The Process Description and Sensor/Controller Assignment windows also function as
a definition and querying tool. Each knowledge base structure can be further defined
by selecting the corresponding picture. The selection causes a textual window to be
opened which holds the details of the knowledge structure.

Textual windows contain record type fields for entering attribute values and statements
of knowledge structures. A text window for a state, for example, would include a field
for the state name, a field for the process object that the state is associated with, and a
field for the state conditions. Thus, to define a knowledge structure, the user must enter
the appropriate information into the fields of the corresponding text window. The
environment's syntax checker will insure that all fields are syntactically correct and
structure names are not duplicated.

The syntax checker finds and informs the user of problems with syntax, naming, and
knowledge base completeness. As the user enters information into the textual
windows, the system automatically detects syntax and naming problems. If a problem
is found, the user is informed immediately by an alert box and the cursor is placed in
the appropriate field. Since naming problems jeopardize the integrity of the knowledge
base, the syntax checker will be persistent in accepting only unique names. With other
syntax errors the user has the opportunity to either correct the problem or come back to
it later.

Upon request, a user can check knowledge base completenss. The check option finds
and highlights incomplete and invaid knowledge base structure definitions. When QPA
detects a problem, the system informs theuser through an alert box,opens a
corresponding text window, and the cursor is places the cursor in the field where the
error occurred.

BENEFITS

The graphical knowledge base development tool will prove to be a beneficial tool if
implemented in the next generation OPAL environment. The tool provides an
environment for quickly entering, and accessing knowledge base information. It frees
the user from problems with syntax, naming, and referencing which can be a burden in
a text-based development environment. In addition, the tool can potentially create
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executable knowledge structures without the need for a compilation step as in the
present OPAL environment. These capabilities would clearly improve knowledge base
development efficiency.

CONCLUSION
The benefits of the new representational structures, coupled with the graphical
development tool, go beyond simplifying knowledge base development in the next
generation of OPAL. The new task structures provide a more understandable and
flexible representation. The graphical development tool provides a user friendly,
picture-based environment which increases understandability, maintainability, and
efficiency.
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Figure 1. Example task decomposition of an airplane flight.
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SELF DIRECTED OPTIMIZATION

Thomas D. Sharp
University Of Cincinnati
8686 Long Lane
Cincinnati, OH 45231

INTRODUCTION
In order to remain competitive in today's markets a manufacturer needs to optimize all
of its manufacturing processes in order to improve quality and reduce cost. This
optimization is rarely done in the U.S.A. Manufacturing processes are left to run at
non-optimal levels producing inferior products at higher costs. One of the reasons why
manufacturing processes are not optimized is that there is a shortage of trained
experts in the different fields required. If the optimization of a manufacturing process
could be automated, then this would ease the problem of the shortage of trained
experts.

The objective of my work is to develop an automated system that will optimize a
manufacturing process with minimal interaction from human experts. I have combined
some of the ideas from Evolutionary Operation (EVOP), Statistical Process Control
(SPC), and Genichi Taguchi to develop an on-line automated optimization system that
will interface to QPAL. This system is a Self Directed Optimizer (SDO). SDO is meant
to be used during the manufacturing of a product to direct the process so that the
process will provide both product and knowledge at the same time.

SYSTEM OVERVIEW
SDO is a software package that will run on any Apple computer that supports
HyperCard. It is written in HyperTalk and is meant to be used with QPAL. The first
step a user would take to use this package would be to supply the system with a 1Ist of
process parameters and a list of measured response variables. The process
parameters are specified in terms of OPAL controller or variable names. For each
process parameter an initial value and an initial step size would also be specified
(more about these later). The user would then enter the cost function to be minimized;
this should approximate the cost of a individual part manufactured by the process.
The cost function is a polynomial. Each term of the polynomial can either be one of the
process parameters or one of the measured response variables. The exponent,
scaling factor, and a target value (if one exists) can be set for each term.

Next the user would set two other parameters; the number of repetitions to use in each
experiment and the size of the smallest difference between two trials that the system
will consider significant. These two parameters along with the scale factor for the
individual process parameters affect the rate at which the SDO system would find the
optimum conditions. Once this information is entered, the SDO system would be
instructed to start optimizing the process.

Each run of the process would be an experiment, with the SDO system directing the
experimentation. First the SDO system would design an experiment. Then the SDO
system would start a OPAL run with the proper settings for that experiment. When the
OPAL run is complete, the measured response variables, if specified in terms of OPAL
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sensor names, would be automatically read into the SDO system. If they are not QPAL
sensor names, the SDO system would prompt the user for their values. The SDO
system would then analyze the results of the experiments and use this information to
design the next experiment. This cycle would repeat until the user is satisfied that the
optimum level has been achieved.

These experiments would allow the system to explore a small area near the working
process and determine the direction to move the process in order to minimize the cost
function. The area explored is small enough so that the quality of the products
produced would not be significantly affected.

DETAILS OF OPERATION
The SDO system combines concepts from several sources. SDO is based on the
concept of Evolutionary Operations. Concepts from SPC and Genichi Taguchi are
also used. Evolutionary Operations and the other topics are briefly covered below.

Evolutionary Operation

Evolutionary operation is the basis for the automated optimization system I have
developed. Evolutionary Operation was developed by George Box in the early 1960's.
The main idea behind EVOP is that a process should be made to evolve towards the
optimum 'onditions. This evolution takes place during the manufacturing of product
and is ac,.omplished by continuously performing experiments on the process, thus
exploring the small area around the current working process. The results of this
exploration are then used to guide the setting of the process parameters so that an
improvement in the process is made.

The results of these experiments are not meant to be used only by the SDO system. A
complete history of all experiments is maintained so that it can be examined by
process operators and management in order to make further improvements.

Genichi Taguchi

Two of Genichi Taguchi's ideas are involved with SDO. The first is his quadratic loss
function. SDO's cost function supports terms with this form, where the loss is
proportional to the square of the distance the characteristic is from the its target value.

The second idea is Taguchi's approach to removing process variation. He removes
process variation by selecting the setting of the process parameters that reduce the
processes sensitivity to noise. This is done during the parameter design stage of his
process design philosophy. Reducing the sensitivity of a process to noise is one of the
goals of an SDO system. By using a term in the cost function that is of the form of
Taguchi's quadratic loss, SDO will automatically determine the setting of the
parameters that will reduce this sensitivity. SDO is performing Taguchi's parameter
design.
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Statistical Process Control

SPC techniques will be used to monitor the process and provide a signal to show
when the process is out-of-statistical-control. SPC will perform the role of maintaining
a level of quality once it is achieved. When an out-of-statistical-control signal is
generated the process will be stopped and the proper corrective action taken by the
operator in order to return the process to its minimum level of variation. Tools are
provided by the SDO system which will help the operator determine if the out-of-
control situation is caused by the SDO system or by some outside cause. ANOVA
tools will allow the operator to determine the significance of the changes made to the
different process parameters, then if a change to a parameter seems to be the cause of
the problem, then the step size for that parameter could be reduced.

The Optimization Algorithm

The optimization algorithm searches the space formed by the set of process
parameters entered by the user. An n-dimensional space forms with each of its axis
corresponding to a different one of the n process parameters identified by the user.
The space is broken into a set of points. Points are placed on a grid with the sides of
each grid equal to the step size for that parameter. For example, consider the system
in Figure 1, it has two control parameters: temperature and pressure. The space
formed would be a plane with one axis temperature and the other pressure. If the step
size of the temperature parameter is 5 degrees and the step size of the pressure
parameter is 10 psi there will be points place as depicted in Figure 1. The goal now is
to determine which of these point is the optimum point considering the cost function.

There are two factors that guide the experiment planing, the "working process" (Wp),
and the current direction of optimization (Cd). The "working process" is the point that
the process is currently operating at, this is the point from which every step of the
optimization starts. The current direction of optimization is the direction in the
parameter space that the optimum conditions are thought to lie in at the present time.
The first step in the optimization algorithm is to design an experiment to explore the
small area near the working process in the current direction, the experimental design
is shown in Figure 1. After the experiment has been performed the cost function is
evaluated at all of the experimental points. If the experiment involved any replicants
the average value of the cost function is then determined at each experimental point.
Next the algorithm determines the point with the maximum cost and the point with the
minimum cost. Several actions are then possible depending on whether or not the
difference between the maximum cost and the minimum cost is greater than some
predefined threshold of significance.

If the difference is significant, then the minimum cost point becomes the new working
process and the direction from the maximum to the minimum cost point is the direction
for the next experiment to explore. The next experimental design is shown in Figure
2.

If the difference is significant then the working process will be moved in the current
direction. This assumes that the last direction is still correct. It can be shown that this
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is normally the case and that the speed of optimization is improved by this action. The

next experimental design is shown in Figure 3.

RESULTS

The system has been tested with a simple model of a process to determine the effects
of noise and the other parameters on the rate at which it converges to the minimum
solution. The optimization algorithm was analyzed and an equation was determined
that predicted the expected rate at which the SDO system would converge on the
minimum value. This equation was tested against runs of the SDO system, the
equation predicted the actual results rather well. Based on the experimental and
analytical results, three SDO parameters where found to have an affect on the rate at
which the system converges. They are: the number of replicants used in each
experiment, the significance level and the step size for the process parameters. The
number of replicants used had a negative affect on the rate of convergence, that is as
the number of replicants increased the rate of convergence decreased, therefor one
replicant should be used. The best value for the significance level was determined to
be about one standard deviation of the response. And the step size should be set at
the largest value that can be used and still have the quality of the end product not
significantly affected.

SUMMARY
SDO's main benefit allows a process to be optimized with little interaction from
experts. The simulations to date show that this simple algorithm works as predicted
even with a large amount of noise present. The next step applies the SDO system to a
simulated composite curing process. This should indicate how the SDO system might
work under actual conditions.

FUTURE DIRECTION
There are several enhancements which are possible with the current SDO system.
First in the current system the step sizes for the process parameters can only be
adjusted by the operator. An automated means of adjusting these would make the
system even more independent of operator. Next, the speed of optimization might be
improved by incorporating Taguchi's two step optimization algorithm into the system.
Another useful feature for the system would be the ability to handle qualitative
changes in the process, the current system handles only quantitative changes. And
finally a discovery system could be created that would use the data collected by the
SDO system to make changes at the rule level of the OPAL knowledge base.

1-15



REFERENCES:

Box, George E. P., Draper, Norman R., Evolutionary Operation, New York, John Wiley
and Sons, 1969.

Clements, Richard R., Statistical Process Control and Beyond, Malabar, Florida,R.E.
Krieger Pub. Co., 1988.

Dehnad, Khowrow, Quality Control. Robust Design. and the Taguchi Method, Pacific
Grove, California, Wadsworth & Brooks/Cole,1989.

1-16



Temperature

30 40 6
SWp 2 Max

* 3. 4 o * ,

5 degrees Miin
0 0 0

~ Preasure
10 psi

Figure 1

Temperature
1 S 0 0

30 4o & 0

Preasure

Figure 2: if max - min > significance level

Temperature

Cd

* * 1 W p 2.

* * 3o 4o

Preasure

Figure 3: if max - min < signficance level

1-17



MANUFACTURING DATA: RELATIONSHIPS AND ANALYSIS

Patricia A. Evans
Universal Technology Corporation
Dayton, Ohio

and

The Ohio State University
Dept. of Industrial and Systems Engineering
Columbus, Ohio

ABSTRACT

The purpose of this work is to exploit the meaning behind manufacturing process data
relationships in further exploration of the material or process, using various data
analysis techniques. Semantic data relationships for the autoclave curing of
thermosetting epoxy matrix composites have been identified. Currently, analysis
techniques are being chosen and developed according to the goals of the data
analysis. These goals are:

1) to find additional relationships among the data, and

2) to analyze future processing runs.

A method for building a system to aid manufacturing or materials specialists in data
analysis is being established. This method is being used for prototype
implementation. Prototype results will determine the level of success of the work,
since it is here that we will discover whether or not identified relationships, selected
analysis techniques, and the construction method are adequate for fulfilling the goals
of the work.

THERE SEARCH ISSUE

This research is about the interpretation of manufacturing process data. The data
may come from sensors or from human input. The interpretation is to be done by
exploiting semantic data relationships when analyzing data.

PURPOSE

The purpose of this research is to assist materials or manufacturing specialists in
learning about new materials and processes. Anticipated results will fall into two
categories--the ability to find more relationships and the ability to analyze future
processing runs. This is to be done by automating assistance in analyzing data,
which may lead to the arousal or confirmation of specialists' suspicions about part
quality and process variables or suggestion of new processes. The ultimate goal is to
increase the possibility of making acceptable products efficiently and in a timely
manner.
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The process being used in this research is the autoclave curing of epoxy matrix
composites. We are interested in analyzing process data from this process because
of:

- the cost of manufacturing (we want to reduce this)

- the lack of expertise in processing (we want to increase this)

- the properties of the material (why composites are important)

- strength
- light weight
- anisotropy
- corrosion and damage tolerance
- reduced radar cross-section

THE RESEARCH

The approach to this research is to find relevant kinds of data for this process, find the
semantic relationships among these data, select appropriate analysis techniques and
explore ways to synthesize the analysis techniques, develop a system construction
procedure, and finally prototype analysis tool implementation. Inputs and outputs to
and from the anticipated tool are depicted in Figure 1.

SEMANTIC RELATIONSHIPS
The word "semantic" refers to "meaning". Consider the difference between syntax and
semantics. Briefly, "syntax" refers to a set of rules specifying how to put symbols
together. "Semantics" are the mapping from those syntactic structures to objects in a
domain. In other words, semantics are the meaning behind the syntax. For example,
when writing a computer program, the programmer knows that certain words,
numbers, spaces, etc. are used in a certain order. This is SYNTAX. SEMANTICS are
what the computer program means, what it is trying to do, what its context is.

What does this mean to you?

1040

A name for a tax form? A measurement? A year? We could go on. Unless we know
the context or unless we know associations between what the symbols mean and
other symbols and their meanings, we don't really know if any of the potential
meanings is the correct one. The syntax looks all right, but the semantics are missing.
Note the two graphs in Figure 2. These two graphs look like they might plot the same
process or an identical one. We might look at the graphs and decide that they display
related processes. But we don't know whether what happens in the first graph affects
what happens in the second graph. If the graphs are time and temperature graphs,
they could be showing a correlation between two parts being processed in the same

1-19



autoclave. One doesn't cause the other. The two graphs might also be showing an
autoclave cooling down and a part cooling down inside the autoclave. If this were the
case, one is causing the other. Knowing the context and relationships between data
tells us whether or not this is a causal relationship.

The first steps in the research were to identify relevant kinds of data to analyze for this
process, then identify the semantic relationships among these data. This was
completed by reviewing literature and interviewing knowledgeable people in the field.
The result is a database developed using HyperCard software on the Macintosh
computer. Figures 3 through 5 show examples of information stored about each kind
of data. These are "cards" of information about data; data relationships; and data
definitions. The database serves two purposes--to allow the user to browse and learn
about the data or the database or to seek certain kinds of information; and to use with
real data which will then be used in analysis. Figure 6 shows the data represented in
this database.

DATA ANALYSIS
Most people think of statistics when they think of data analysis. But we can look at
data in other ways. We can look for patterns, contradictions to expectation,
coincidences, or unexpected occurrences. In terms of semantics, we need to attach
something to our data analysis procedures which takes them beyond what traditional
statistics offers us. We need to take them past presentation of statistical results to what
those statistical (or other analyses) results mean, given context and relationships.

Currently, this research has progressed to selection of functions for an analysis tool. A
list of potential analysis functions was assembled then narrowed to include pattern
identification, trend identification, causal relationship identification, irregularity/
inconsistency identification, processing outcome prediction, and showing of the "big
picture" (e.g., processing steps, analyses, interpretation of analyses, conclusions).
There is more than one way to perform each of these functions and various means of
analyzing and displaying data to perform these functions are being explored.

To test the eventual analysis tool, data on the manufacture of A-10 aircraft leading
edges will be provided by the Advanced Composites Program Office at McClellan Air
Force Base. The data will be gathered in part using the Qualitative Process
Automation system being developed jointly by Universal Technology Corporation and
the United States Air Force.

CONCLUSION
Known relationships among data involved in the autoclave curing of epoxy matrix
composites have been compiled into a HyperCard database. Data analysis
techniques which will take advantage of these known relationships are currently being
explored, with the eventual goal of providing manufacturing or materials specialists
with a tool to assist them in learning more about this manufacturing process or the
material involved.
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APPLICATION OF OPA CONTROL TO END MILLING

B.K. Fussell
D.P. Gagne
University of New Hampshire
Mechanical Engineering Department
Durham, NH 03824

INTRODUCTION

One of the long range goals of machining control research is the development of a
totally adaptive machining center. Such a machining center would utilize computer
generated process operations to cut a part, and enable in-situ adaptation of those
operations to obtain desired part tolerance. Intelligent closed-loop control of the
machining operations is essential if an autonomous machining system is to be
developed which can realize near optimal yields and cost effective production, even
for lot sizes of one.

An autonomous system is desired because of the emphasis on quality for long
production runs and adaptability to handle small batch operations. Adaptive machine
control is essential to this overall system because of the large variations in the part/tool
cutting geometry, and material properties. These variations make it very difficult to
foresee and react to machining problems such as tool chipping, tool breakage, part
tolerance and chatter. Without this capability, machining centers require close
attention from skilled operators for diagnostics and machine adjustments. Especially
prone to machining problems are aircraft parts made of aluminum and high
temperature alloys. These parts typically require extensive contour milling, and as a
result, large changes in the part geometry can occur, leading to undesired cutting
conditions. These problems are intensified in flexible manufacturing systems (FMS)
where only a few parts are being produced and the experience of cutting a part or a
particular material is limited

QPA CONTROL OF END MILLING

Figure 1 shows the proposed QPA structure for a general machining operation. The
history of the part is the complete cutting routine, while the various episodes are
composed of the different tools used to make the cutting history. Examples here would
be end milling, face milling, boring and drilling operations. Under each episode are
the events that are desired (achieve) and those to be avoided(prevent). Since end
milling is the operation that is being evaluated, only one episode is considered, along
with its associated events of maximum feedrate,shank failure, tooth failure, tool wear
failure, tool deflection and chatter. The desired goal during this episode is to complete
the end milling cut in the shortest amount of time while avoiding the undesired events.
While a very fast cut is desired, both a good finish and part tolerance are also desired.
Since neither of these quantities can be measured directly by sensor, they are inferred
by the various prevent events. For example, to insure part tolerance, excessive
deflection of the tool is prevented by monitoring the cutting force perpendicular to the
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feed path, and reducing the feedrate if the force and hence the deflection becomes
excessive. Likewise, the surface finish can somewhat be inferred from the spindle
speed, feedrate, tool deflection and chatter state.

Utilization of these described events for control requires event detection, an influence
diagram, see Figure 2, and conflict ranking. Unfortunately, the event detection is not
straightforward because of indirect sensing and the lack of sensor availability. Indirect
sensing refers to the prediction of an event such as tooth failure or chatter through
sensory data not directly associated with the event. For example, tooth failure cannot
be predicted by a tooth failure sensor, it has to be inferred from the cutting force or
acoustic emissions. In a similar fashion, the onset of all the other prevent events must
be determined by indirect sensory data and detection algorithms. These algorithms
can be quite complex and involved and often times are limited in their application to
fairly simple cuts. None-the-less, one can develop a set of tools to predict the onset of
various events through use of the cutting force, spindle speed, feedrate and acoustic
emissions, etc. References [2-8] discuss various detection schemes.

The influences of the end milling process are shown in Figure 2. All of the controller
variables are encapsulated by rectangular boxes. Cutter runout, i.e.tool eccentricity, is
typically unwanted, but can only be minimized during set-up of the cutter in its tool
holder. The achieve events are parallelograms and the prevent events are double
ellipses. All other parameters influence these goals in a positive or negative manner.
For instance, if the feed per tooth is increased, then the surface finish is degregaded
and the cutting force is increased. The QPA control structure wants to achieve or
prevent events during machining, thus it uses the influence diagram to trace from an
event to a controller that can influence that particular evejit in the desired positive or
negative fashion. When conflicts arise, it is up to the expert to rank the events in order
of importance. For end milling, the following rank is suggested:

I. Shank failure
2. Tooth failure
3. Tool wear failure
4. Chatter
5. Tool deflection
6. Surface finish
7. Maximum feed rate

Control action is initiated when an event is occurring or when the desired event is not
being achieved. Typically, this action consists of increasing, decreasing or holding
constant the feedrate, spindle speed or depth of cut during each QPA sampling
interval. Data from the sensors, examples being cutting force, spindle speed, feedrate
and acoustic emission, is collected by the QPA system during each time interval and is
used to determine the state of each of the events. If unwanted events are detected,
then a planned control action is taken to eliminate that event. Action is also taken to
make sure the desired events such as maximum feedrate occurs.
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SIMULATION OF QPA CONTROL OF END MILLING QPA

Control of the end milling process was tested by simulation, using an experimentally
validated end milling model [1] (see Figure 3) that is capable of simulating workpiece
geometry changes, cutter deflection, and tooth and shank failure. In the simulations,
the x feedrate input command signal was determined by the QPA controller, based on
the x and y cutting force, the feedrates, and the spindle speed. QPA used this"sensed" information to determine if any prevent events were occurring, then through
the experts encoded knowledge, executed the appropriate control to lower the
feedrate. Once prevented, the OPA increased the feedrate or held it constant,
depending on the band limit around the particular event in question.

A simplified QPA control system is tested here to validate the concept of OPA being
applied to the end milling process. The only events that are considered are tooth and
shank failure, and tool deflection. Tool wear, chatter and surface finish events are
ignored because of the complexity in detection and because of the added OPA
complexity.

One simulation trial result is presented here. Table I lists the trial, the geometry
change associated with it, and the controller action. Figure 4 shows the workpiece
geometry for the cut. The simulation is run assuming the cutter is starting in an existing
cut. For this simulation, the QPA controller is trying to achieve maximum feedrate
while preventing tool shank failure, tooth failure and part out-of-tolerance. The tool
shank failure is associated with the total force on the end of the cutter. If this force
exceeds a certain limit,then the cutter is in danger of failure through bending. The
QPA response to this is to reduce the feedrate when the total force reaches a set limit.
The tooth failure occurs as a result of overloading an individual tooth edge on the end
mill. This overload condition can be detected by measuring the feedrate and the
spindle speed and calculating the feed per tooth in millimeters. If this value is above a
set limit, then the QPA reduces the feedrate so damage will not occur. Tolerance
conditions are determined from the cutting force perpendicular to the path of the end
mill. For this simulation run the cutter is moving in the x direction, so the tolerance is
determined solely by the y force. The limit for the y force is determined by the length,
diameter and material of the cutter,and the accepted deflection.

All of these prevent events have two process instances associated with them. The
maximum level indicates to the QPA that the feedrate needs to be reduced, while the
region between the minimum level and maximum level indicates that the feedrate
should be held. The hold region is necessary to keep the feedrate command signal
from oscillating from the on/off nature of the controller.

The results of the simulation trial are shown in Figure 5. In this run the axial depth is
doubled from 6.35 to 12.7 mm at approximately one second, and the radial depth of cut
is held constant at 6.35 mm. Before the axial depth change, the tooth failure prevent
mode is in effect, see plot (c).

This limits the feed per tooth and reduces the possibility of tooth failure. After the axial
depth change, the perpendicular force FFY, plot (b), is above its limit. This results in a
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lowering of the feedrate until FFY is inside the force band. The feedrate is now held
constant until the force FFY is below the minimum value. Once this occurs, none of the
prevent events are active and the feedrate is increased until FFY is once again within
the given limits. The feed per tooth, plot (c), is very similar in shape to the command
signal sent from the PC to the end milling system.

EXPERIMENTATION OF QPA ON A CNC MACHINING CENTER

The overall hardware configuration for OPA implementation and evaluation on a CNC
machine is shown in Figure 6. The CNC 3-axis machining center is a Fadal
VMC40,with a 15 HP AC spindle drive, a DC servo feed drive, and an automatic tool
changer. The slide tachometer signals (x and y slide velocity) and the x and y force
signals, are filtered by 10 Hz third-order butterworth filters to remove unwanted noise
and force oscillations, and to prevent aliasing. Once filtered,the signals are converted
to digital signals by the 386 PC computer using a 12 bit A/D and D/A data acquisition
board. The OPA software then uses this data to determine the controller outputs
necessary to maintain optimum cutting conditions. Final control of the CNC machine is
achieved by down loading the controller outputs, through the D/A board on the PC, to
the feed drive and spindle override circuits on the CNC.

The CNC tach signal is available from the electronics cabinet along with the feedrate
and spindle speed override potentiometers. This pot allows the operators to adjust the
rates in order to eliminate chatter and forced vibrations. Since the pots allow on-line
control, they can be used as the input path for the QPA controller output. Using the pot
as the override command is fairly safe for testing because it can only override the
command signal 0-150%of the programmed value.

Thus, if the programmed value has an upper limit that won't result in catastrophic
failure, and an upper limit is placed on the output voltage from the QPA controller v;
the D/A board, then safe feed rates should result at all times. The x and y cutting
forces are obtained with a Kistler model 9257A force dynamometer and charge
amplifier.

The QPA system described earlier in the paper is implemented on a 386 PC. The
code is written in Fortran and is based on the original OPA code developed at the Air
Force Materials Lab. Data is stored by the PC for future processing while the QPA
controller is active. The code allows for data sampling intervals down to 1 msec and
for controller outputs down to 2 msec. However, as more event detection algorithms
are added, the controller output interval time will increase. For the experimental run
discussed below, an interval of 0.01 sec. was used, with a 1 percent change in
feedrate per controller step. The results of one experimental run is discussed below.
For this run the OPA system is controlling the Fadal CNC machining center during an
end milling cut. The conditions of the cut are the same as in the simulation run, Table
1, except the deflection hold value is set to 280 N and the max value is set to 342 N.

The results of the experimental run are shown in Figure 7. Initially, the feedrate is
increased until one of the prevent events occurs. As in the simulation run, the first
limiting event is the tooth failure prevent mode, i.e.feed per tooth, plot (c). After the
axial depth change, the perpendicular force Fy, plot (b), is above its maximum limit of
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342 N. The feedrate is then reduced until Fy is within its acceptable band. The
experimental results are very similar to the simulation results and hence validate the
accuracy of the simulation models, and also show that QPA can effectively control the
cutting conditions during a simple end milling cut on CNC machining center.

CONCLUSIONS

Sirt ulation and experimental work show that QPA can be effective in adaptively
contrc!Iing the feedrate of the end milling process to produce the fastest possible cut
while preventing shank and tooth overloads, and maintaining part tolerance. Shank
failure is detected by the total cutting force, tooth overload by the feed per tooth, and
past out-of-tolerance by the cutting force perpendicular to the tool path. QPA
maintained the highest feedrate possible while preventing the undesired events
mentioned above.

QPA control cannot handle high feedrate, low spindle speed impacts of the cutter into
the workpiece. The feed drive dynamics of the system itself are not fast enough to
avoid tool or workpiece damage. The intent of OPA control is to manage the system
during cutting operations such that catastrophic conditions do not occur, and such that
an acceptable part is manufactured as quickly as possible.

Future work will include more sophisticated detection algorithms and more
complicated cutter operations.
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Trial Conditions

Radial Cut with Axial Depth Increase

AD: 6.35 to 12.7 mm RD: 6.35 mm

Cutter and Workpiece Data

4 Flute 38 deg. Helix, HHS, 12.7 mm Dia.,44.5 mm Length, Dry Cutting at
2000 rpm with a stiffness of 90,200 N/cm, workpiece is 2024-T8 Aluminum

Cutting Control Limits

Hold Value Max Value Event
y force (N) 445 578 deflection
Total force (N) 667 890 tool breakage
Feed per tooth (mm) .076 0.089 Tooth breakage

Table I. Geometry Workpiece and Model Details

2-6



OPA Slrueture for hrschinint

Fad MItinm Inneurc Iisvrpm

C-

c-w-
I--

-M -

a-

Figure 1. QPA Control Structure for End Milling Figure 2. End Milling Influence Diagram

C ~ -

Figure 3. End Milling Block Diagram

Figure 4. Simulated Cuts

2-7



0O40

16 IL L = M L z I.0ML Z i= U I

So&
cb .. ,

Fiur 5. Reut fo iuato ra

Exeiilt-Tsig St 0

" -iIIP n n C ptr

Fiure . es trolr Hrua ria

1000~~ 40-.

1000 301
________ 0.0

- - 25------

400' 150

200-
-7T o t -orce%,N) 0

0 2 4 6 8 10 6rsm (sc4b1
Tim~e (sec) Time (W.)

Figure 7. Results for Experimental Trial

2-8



QUALITATIVE CONTROL OF MOLECULAR BEAM EPITAXY

Oliver D. Patterson
Materials Laboratory
Wright-Patterson AFB, OH 45433

INTRODUCTION
Manufacturing capability throughout the 20th century has continuously improved.
Improvements have come both in the product and process. In the last forty years the
development of the computer has very successfully been applied to both these areas
of manufacturing.

One application of the computer has been to control manufacturing processes. The
task of controlling a process is both demanding and tedious for a human and therefore
more suitable for the computer. The use of open loop, time based supervisory control
was established early in the computer era. Operators remained to supervise the
computer but intervened only in extraordinary circumstances. The computer offered
consistency by performing exactly the same each time.

In the past ten years methods for storing expert knowledge in a computer have been
developed, particularly through research in the area of expert systems. This new
technology has made possible a more advanced type of computer control. In this new
method of control, labelled qualitative real time control, the computer generates a
process path on the fly using knowledge about the process, and information provided
by sensors. This new method of control enables specific information on the events of
the current run to be factored into the process plan. The advantage of qualitative real
time control comes from delaying decisions that are best made after certain
information is available, until after that information becomes available.

The In-house Manufacturing Research Group of the Air Force Materials Laboratory has
undertaken a program, entitled Qualitative Process Automation (QPA), to develop
qualitative real time process control for application to materials processing. 5 ,6
Development of OPA systems for a number of manufacturing processes is underway.
Success of any particular application is dependent on two factors:

1. Sufficient sensor input is available to monitor qualities,

2. Based on this input, the knowledge exists to determine how to influence these
qualities.

This paper discusses the application of QPA to the semiconductor growth process,
Molecular Beam Epitaxy, (MBE)which has been undertaken jointly with the Surface
Interactions Branch of Materials Laboratory. Progress so far demonstrates that the
knowledge base for QPA does not need to be complicated in order to be successful.
In the next section, MBE will be described. The Approach Section will introduce the
strategy for applying QPA to MBE and discuss the experimental results. The status of
the project is reviewed in the Current Work Section.
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THE APPLICATION

Molecular Beam Epitaxy is a high-precision technique for growing thin-film
semiconductor crystals which was developed in the late 1960s at Bell Laboratories by
Al Cho and John Arthur. 1 In MBE, a substrate of up to 3 inch diameter is suspended in
the center of a vacuum chamber, called the Growth Chamber, which is maintained in a
state of vacuum between 10- 9 and 10-11 Torr. The top view of an MBE system is
shown in Figure 1. Up to eight smaller ovens called Knudsen or Effusion Cells, adjoin
the Growth Chamber. Each Knudsen Cell consists of a crucible loaded with a
particular element such as Gallium (Ga), Arsenic (As), or Aluminum (Al) and a furnace
which is used to heat the element to a vaporization temperature. The crucibles are
screened off from the Growth Chamber by shutters. When a shutter is opened, a beam
of atoms or molecules from that Knudsen Cell is emitted toward the wafer. The
magnitude of the beam of atoms/molecules is called the flux and depends on the
temperature of the material in the crucible. Generally, multiple beams are on
concurrently. A proportion of the atoms/molecules bond epitaxially (coming from the
Latin word "epi" which means on and "taxi" which means of the same structure) thus a
crystal is grown.

MBE provides a great deal of control over the semiconductor material being grown
and therefore produces devices of superior quality to all other semiconductor growth
techniques. Very thin films down to a single monolayer (one layer of GaAs) can be
deposited. Growth occurs at a relatively low temperature (5800 C to 620 0 C for GaAs)
so bulk diffusion is minimal and doping profiles are not disturbed. In addition the
dislocation densities, interface abruptness, mobilities and minority carrier lifetimes of
MBE grown films are generally equal or superior to those grown by other state-of-the-
art epitaxial techniques.9

Conventional control of MBE is through the use of a process plan such as shown in
Figure 2a. The length of time to grow each material layer is predetermined based on
previous runs and calibration experiments run prior to the process run. Using this
method of process control, MBE produces good results. Using Qualitative Process
Control, we believe however, will produce even better results. A variety of factors can
contribute to the quality of the material grown by the MBE process depending on the
material being grown. A target type of material has been selected and for this
material the following factors are considered important:

1 ) Material Layer Thicknesses
2) Alloy Concentration
3) Dopant Concentration
4) Impurity Levels
5) Smoothness of Material Layer Interfaces
6) GaAs or AsGa Antisites (Ga occupies As location or vice versa)
7) Vacancies (Missing atom)
8) Dislocations (Missing line of atoms)
9) Oval Defects
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Improving Factors #1, Material Layer Thicknesses, and #5, Smoothness of Material
Layer Interfaces, is the current focus of research. The impact of improving these
factors is hard to predict because the level of achievement for these factors using
current techniques is hard to measure. One MBE researcher reported thickness
variations of up to 10%. A 10% thicker doped AIGaAs layer in a GaAs/AIGaAs
depletion mode HEMT results in significantly altered behavior from that desired,
beginning with a threshold voltage almost one volt lower.

In addition to improving the quality of material grown in MBE, time is also saved
because the recipe no longer required and calibration for preparing the recipe is no
longer necessary.

APPROACH

A 1st generation OPA controller, called the Alpha Controller, has been developed to
control the MBE process and positively affect qualities #1, Material Layer Thicknesses,
and #5, Smoothness of Material Layer Interfaces.8 This controller was written in
FORTH and runs on an IBM AT clone. The Alpha Controller uses one sensor and one
type of actuator. The sensor in use, the Reflective High Energy Electron Diffraction
(RHEED) sensor, provides excellent information about the state of the wafer surface,
but unfortunately produces a side effect: heavy carbon contamination of the material.
A controller using RHEED has no commercial value; the Alpha Controller was
developed for the purpose of establishing Qualitative Control of MBE, with the
intention of replacing RHEED with another sensor when it became available. A
method using Ellipsometry is currently under investigation and will be discussed in the
Current Work Section.

In the Alpha Controller, a portion of the RHEED sensor signal, called the Specular
Spot Intensity, is refined using software to provide two additional pieces of information:

"Count" - The number of monolayers grown

"Amplitude" - A measure of the roughness of the wafer surface.

"Count" corresponds to the number of oscillations of the Specular Spot Intensity, and
"Amplitude" corresponds to the amplitude of the Specular Spot Intensity. These
signals are evaluated by the knowledge base, which then determines the state of
growth. Based on the state and a description of the desired end product entered by
the user before the beginning of the growth run, the knowledge base decides on the
next setpoint of the Knudsen Cell shutters.

The Alpha Controller accomplishes real time control of the MBE machine with a small
knowledge base. The first principle is that shutter changes to grow the next material
layer are triggered when the previous material layer has been completed (ie. when
"Count" = desired number of monolayers). This principal of using RHEED to count the
material layers has previously been demonstrated by Sakamoto. 10 Sakamoto's
implementation was in hardware and therefore could not be expanded easily to
incorporate other real time feedback.
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The second principle is that a "healing" period is invoked, when "Amplitude" , which
corresponds to the surface roughness, exceeds a threshold. During the "healing"
period, all shutters are closed except the As shutter. As the name suggests, during
"healing" the wafer surface is resmoothed. The "healing" process continues until the
surface is sufficiently resmoothed.

The Alpha Controller was tested using a simulation of the MBE machine and RHEED
sensor. The Alpha Controller was then connected to the MBE machine and a series of
growth runs were performed. A number of modifications were made to the Controller
during these experiments. A snapshot of asynchronously sampled data for a growth
run in which the material specified in Figure 2b was grown is shown in Figure 3. The
first material layer was grown during period 1. Upon opening of the Ga and As
Shutters, the Spectral Spot Intensity began to oscillate. When "Count" reached five
(5), it was reset to zero (0) and growth of the next material layer commenced. The time
period over which the second material layer was grown is labelled Period 2. While on
the fourth monolayer, a "Healing" period was triggered, which ended when the
Spectral Spot Intensity exceeded a threshold value. The final monolayer of the
second material layer was grown and then the Al shutter was again turned off and
"Count" reset, signifying the beginning of growth of the third material layer.

CURRENT WORK
As MBE is a very new method of manufacturing, it is not surprising that knowledge
about the behavior of materials when grown under various MBE conditions is very
limited, or that sensor technology to monitor the growth is limited. These deficiencies
are being addressed by current research.

A novel methodology for monitoring the growth at a high sample rate using
Ellipsometry has been suggested by Poore which promises to provide the same
information as RHEED while not producing the same harmful effects. Special high
stiffness windows and custom-made mounting brackets for the ellipsometer have been
installed. Experimentation is ready to proceed pending the availability of the MBE
machine.

In the meantime, in order to integrate with some other research efforts in MBE, in
particular, that of Heyob and Hunt3 , the alpha controller code is being transferred over
to a new platform, LightSpeed C running on a Mac I1. C on the Macintosh II is an
easier to use and more powerful developing environment than Forth on the Z248.

Simultaneously with these two efforts, knowledge about the behavior of materials
when grown under various MBE conditions is being gathered with the objective of
learning about how to improve the seven other quality factors listed above through real
time control. Currie is applying a neural model to the study of the MBE process
whereas Kosel has developed a simulation of the MBE machine. 2 ,4 As new
knowledge becomes available it will be incorporated into the Macintosh version of the
Alpha Controller or perhaps a new controller based on the Qualitative Process
Automation Language (OPAL).7
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A OPAL knowledge base is under development as a cooperative effort with Universal
Technology Corporation. The Manufacturing Research Group would very much like to
control the MBE process using QPAL, as OPAL is a supported software product fo r.31
time process control that will facilitate transition of any technological improvement on
MBE to industry. Additionally, OPAL is well thought out and coded, making
development of the MBE knowledge base much easier. Inadequacies in the speed of
OPAL need to be addressed.

In the process of developing a Qualitative Controller for MBE, other areas for
improvement of MBE were discovered. Control of the fluxes is of tremendous
importance to the growth of quality materials. Heyob, Hunt and Garrett have studied
the response of the fluxes and have demonstrated that significant improvement can be
realized in the flux response during set point and load changes. In addition, certain
initialization and calibration operations must be performed prior to a growth run. This
entire setup procedure is currently being automated.

SUMMARY

Qualitative Process Control is being applied to the semiconductor growth process,
Molecular Beam Epitaxy. Two quality factors, #1, Material Layer Thicknesses, and #5,
Smoothness of Material Layer Interfaces, are targeted for improvement. Real time
control of these two factors has been demonstrated using RHEED. Use of RHEED has
harmful side effects and so development of an alternative real time sensor,
Ellipsometry, is on-going. Concurrently, the MBE process is being studied through a
simulator and a neural network with the objective of learning about how to improve
other qualities of the MBE product. In the meantime, the Qualitative MBE Controller is
being transferred to a new platform, Lightspeed C on the Mac II in order to integrate
with other work sponsored by the Manufacturing Research Group, in particular, a state
space based flux control system.
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Figure 1: Schematic diagram of the MBE system viewed from
the top. (Taken from Reference 1)

Material Thickness(monolavers) Shutters On Time(seconds)

GaAs 50 55

GaA1As 100 70

GaAs 50 55

Figure 2a: A Growth Recipe for Conventional Control of MBE

Material Thickness(monolayers)

GaAs 5

GaAIAs 5

GaAs 5

Figure 2b: A Growth Recipe for QPA Control of MBE
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MBE SELF-DIRECTED FLUX CONTROL

Jeff Heyob and Victor Hunt
University of Cincinndti
Mail Location 30
Cincinnati, OH 45221

The growth of compound semiconductors by molecular beam epitaxy (MBE) can be
facilitated by robust, self-directed control of the material fluxes. In the vacuum of the
MBE machine, vaporized chemical elements contained in the Knudsen cells are
diffused as fluxes to achieve focused crystalline growth on a substrate whose quality is
largely dependent on the control of the flux. These primary controlled variables (i.e.
the fluxes) are not directly observable; however, they are dependent and therefore
controllable through the manipulated temperature variables of the Knudsen Cells.
Effort is presently underway to implement outer loop flux control modules on the MBE
machine (Figure 1) in order to provide automated growth of compound
semiconductors with better performance (e.g. robustness, stability, repeatability, etc.)
than is currently provided by the system. These flux control modules are based on
Knudsen Cell temperature manipulation. An automated tuning of the Knudsen Cell
temperature inner control loop is used to achieve a critically tuned process response
that enables temperature setpoint changes with negligable error and quick settling
time. A feedforward temperature setpoint control scheme is enacted to inversely
cancel the transient flux disturbance which occurs upon shutter opening. The cascade
flux control module makes temperature setpoint adjustments inferred from the delayed
feedback of the RHEED (reflective high energy electron diffraction; scope and the
ellipsometer. These control modules form an outer loop QPA control structure and
provide a basis on which to build a self-directed control scheme. The efficiency of this
outer loop control structure is dependent on the soundness and completeness of our
system conceptualization.

Modern control theory conceptualizes a system by its n-dimensional state space,
where n would equal the order of the system transfer function for a minimal realization.
Self-directed control of a system allows autonomous generation of the processing path
through this state space towards the desired end goal or product based on a number
of planning and cost heuristics. This goal-driven nature of self-directed control is
distinguished from the traditional state-driven philosophy in that path generation is not
defined apriori as a function of time but must adapt insitu to events with respect to the
expert knowledge base of the system. Since the processing path of the system is not
known apriori, robust control of the system is very important because it provides for
optimal performance over every reachable point (and, therefore, over every
processing path) in the state space of the system. Robust control, based on a sound
and complete conceptualization of the system state space, is a necessary foundation
of self-directed control. A suitable compensation algorithm can then be determined for
every reachable point in the state space. However, any sound conceptualization (e.g.
semi-defined or qualitative) which is complete over the state space (as opposed to
completely defining the state space) will allow robust control at reduced efficiency.
Research is currently dedicated towards deriving a sound and complet3
conceptualization of the system state space. An empirical study of the MBE process
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and its component systems (e.g. flux control modules) and relationships (e.g.
temperature to flux) is needed to further our knowledge of, and derive a modelling
concept for, the state space of the system.

The MBE system utilizes Knudsen Cell furnaces to vaporize the various elemental
materials for flux vapor deposition on a substrate. The growth of a particular device
structure on a substrate requires precise control of the growth rate of each elemental
material on the substrate, which is directly dependent on the duration of evaporant
exposure to the substrate and the density of its flux impinging on the substrate. The
time duration of flux exposure is controlled simply by mechanical manipulation of a
shutter to obstruct the flux from impinging the substrate. The density of the flux is not
as simple to control. The most direct means presently available to monitor the density
of this beam is an ion gauge mounted in place of the substrate wafer. Replacing the
substrate with an ion gauge to facilitate closed-loop process control represents an
invasion to the process and thereby prevents insitu monitoring of the flux via an ion
gauge. Other methods for inferring flux density employ RHEED scope and
ellipsometer measurements. These methods are being explored for insitu growth
measurements, but their indication of flux density are less precise than the ion gauge
method and produce a composite measurement when multiple element fluxes are
present. In evidence of the ion gauge utility for monitoring flux density, current MBE
processes utilize a beam equivalent pressure (BEP) curve for each Knudsen Cell
elemental material. These BEP curves provide a mapping of ion gauge pressure
measurements of flux density to their corresponding Knudsen Cell temperatures for
each cell over its prescribed operating temperature range. Insitu use of these BEP
curves allows the MBE operator to prescribe a flux density by adjusting the setpoint
temperature of the Knudsen Cell. By generating the BEP curves for each Knudsen
Cell prior to the growth process, and then adjusting the flux density based on the BEP
curves, a feed-forward control may be implemented. The actual flux density produced
by this feed-forward scheme is dependent on the accuracy and repeatability of the
BEP curves and on the accuracy and repeatability (i.e. soundness and completeness)
of the Knudsen Cell temperature control that generates the flux.

To further the study of MBE flux control, the Knudsen Cells in the MBE system
presently employ Eurotherm 825 PID temperature controllers. The MBE system
manufacturer also provided a set of general purpose PID values to use over the
operating range of each Knudsen Cell. These PID values, however, were broadly
prescribed for PID control of a Knudsen Cell over its entire operating range. A topic of
continuing interest in PID controllers is the automatic tuning of the PID parameters that
results in a closed-loop system response with specified time-domain characteristics
such as overshoot and settling time. With broadly prescribed PID parameters, the
system performance (i.e. overshoot and settling time) varies widely with step changes
of the process setpoint over different portions of its total operating range. This
variation prevents any apriori assumptions about the system performance and the
target variable, Knudsen Cell flux density. In addition, the performance of each
Knudsen Cell temperature control loop was also observed to vary as the elemental
material mass was depleted. To compensate for detuning of the temperature control
loop as the material mass within each cell is consumed and to improve each control
loop's performance within a specific domain of each Knudsen Cell temperature range,
automatic tuning of the control loops was explored.
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Initial set-up of each Knudsen Cell at its target temperature is done apriori to the
growth process thereby allowing for the time consuming PID tuning period of its
temperature controller. However, not all devices grown with the MBE process require
only one static temperature for each Knudsen Cell involved. Some structures require
flux density gradients over time for one or more Knudsen Cells simultaneously.
Acquiring optimum flux density control and therefore optimum temperature control
would require additional control loop PID tuning as the process approaches the
boundaries of its tuning domain. The tuning domain is the specific temperature range
for which the control loop is tuned; operation beyond this range would be degraded.
To maintain specified performance as the process approaches a tuning domain
boundary, retuning would be required. The severity of this retuning regime would
increase as the size of each tuning domain decreased. However, the decreased size
of a tuning domain from the full range of the controlled process would improve the
tuning optimization and therefore improve the Knudsen Cell response within a narrow
tuning domain. Therefore higher tuning optimization necessitates narrow tuning
domains and therefore more occurrences of retuning.

A concept of apriori mapping of PID tuning parameters was devised to provide
optimized temperature control in narrow domains over the entire operating range of
each Knudsen Cell because traditional tuning techniques could not be applied insitu
to the MBE process. The disturbances necessarily applied to the control loop process
for traditional tuning techniques would degrade the MBE growth process; also, insitu
tuning would introduce these disturbances frequently. The PID mapping would isolate
the time consuming and process disturbing tuning routines for each Knudsen Cell from
the MBE growth process. Two methods of building the PID map were explored to
reduce the granularity of the tuning parameters. The first method involved the
generation of many narrow tuning domains of PID parameters. This basic and
practical implementation suggests (and the continuity and smoothness assumptions of
conventional system analysis allow) the sectioning of the state space into a discrete
table look-up method. Each axis of the state space can be broken into discrete
intervals or tuning domains (i.e. scaled to a unit vector) whose length is based on the
control scheme's sensitivity to that process variable. The assumption is that all points
within that interval can be adequately represented by one point. The MBE process
supervision would simply determine a Knudsen Cell setpoint and load in a new set of
PID parameters for the appropriate domain in a table look-up format. The resolution of
the tuning optimization would be limited to the granularity of the look-up table using
this method. Therefore, a large number of PID domains would be needed in the table,
necessitating automatic generation of these tuning parameters. Generation of the PID
map for the Knudsen Cells was explored using commercial automatic tuning PID
controllers and software based tuning algorithms. For a complete state space
conceptualization, the generation of the PID parameters was laboriously slow. The
second method involved the generation of a few narrow domains of PID parameters
equally spaced across the range of each Knudsen Cell. The MBE process supervision
would then determine a Knudsen Cell setpoint and load in a new set of PID
parameters by interpolating between two adjacent PID domains in the look-up table.
The resolution of the tuning optimization was maintained because of the continuity of
the tuning parameters and the apriori PID mapping time was reduced significantly. In
conclusion, empirical tuning of our self-directed control scheme over a complete,
discrete experiment set (obtained from either of the above methods) will allow robust,
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automated control over the entire state space. As noted before, this tabular form of our
state space is less efficient than a complete cunceptualization (e.g. a set of differential
equations) but it might be arrived at more readily.

Some limitations to Knudsen Cell control system response were still apparent using
the PID mapping concept. In the PID control scheme, the proportional, integral, and
derivative terms are defined to compensate a closed-loop system response to achieve
specified time-domain characteristics such as overshoot and settling time. The
proportional term, by its design, is a gain term that is proportional to the error in the
control loop. This term changes the control loop gain as a function of error from
setpoint, such as for different sizes of temperature setpoint step changes. The integral
term integrates the control loop error to achieve zero steady-state error by resetting the
controller's output. The derivative term provides an anticipation to the amount of
energy applied to a control loop to minimize overshoot. These PID parameters are
able to achieve specified time-domain characteristics by their combined interaction to
control the amount and rate of energy applied to the control system. In the context of
reaction curve tuning techniques (Figure 2), a set of tuning constants can be
experimentally determined to produce desired system response for a given set of
system conditions. If the system conditions change, the tuning constants will need
adjustment to maintain the desired system response. The MBE process was found to
produce widely varying system conditions and require the same system response.
These varying system conditions include not only the desired setpoint temperature for
each Knudsen Cell, but also the size and direction of the temperature step change to
achieve the desired setpoint. As an example, the step size of the reaction curve
should equal the actual step size required in the running process to insure optimum
PID tuning. The conditions may also include the rate in which to achieve the target
setpoint. Since the MBE process can consist of any number of possible flux
conditions, a iiapping of PID parameters for the associated Knudsen Cell would need
to be exhaustively complex. Thus the table look-up process must be multi-
dimensional to accommodate these additional flux conditions.

To meet the complex control tuning possibilities of each Knudsen Cell and to achieve
a more complete state space conceptualization, a more extensive mapping of the
Knudsen Cell process would be needed. This apriori mapping would actually be a
profile of the Knudsen Cell characteristics in terms of conventional tuning parameters
such as lag-time, maximum rate, critical gain and steady-state error mapped over the
cell's entire operating range (Figures 3 & 4). The behavior of each of these mapped
parameters would then be described by a set of differential equations, and these
equations form a subspace of the n-dimensional state space to describe suitable PID
parameters for all reachable conditions or states. The control algorithm would then
accept the initial and final Knudsen Cell setpoints of a MBE process demand and
generate the necessary PID parameters insitu for optimum execution of the process
change. This state space concept can be taken to the next level of self-directed flux
control to include the dynamic characteristics of the flux in the MBE growth chamber.
Flux research in the MBE process has been concentrated upon controlling an initial
flux density transient observed during Knudsen Cell shutter opening. The magnitude
of this flux transient is affected by Knudsen Cell temperature, elemental mass within
the cell, surface area of the elemental mass, and the shutter opening duty cycle.
Current BEP curves are generated by manually recording flux pressure as a function
of Knudsen Cell temperature. By the very nature of manually recorded data, these
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BEP curves are based on steady-state flux pressure. To be useful to self-directed
control, definition of the dynamic behavior of the flux upon initial shutter opening is
needed. This dynamic flux behavior would be extracted apriori to the MBE growth
process in the same manner as Knudsen Cell tuning parameters. Forming this flux
behavior into a differential equation as a function of time, cell temperature and shutter
state would describe yet another subspace of the system state space. A combination
of the Knudsen Cell state space and the BEP state space would yield an n-
dimensional flux state space suitable for self-directed MBE flux control. Using such a
state space concept would allow a MBE supervisory system to directly prescribe a flux
density necessary for a growth process. Through this state space model of the MBE
system, the prescribed flux would return the necessary PIDs and setpoint for the
Knudsen Cell controllers and time delays to shutter opening cycles.

The current development of these methods has produced significant improvement in
Knudsen Cell temperature stability and therefore flux stability. Improving the inner
control-loop performance of each Knudsen Cell in terms of overshoot and settling time
has afforded the MBE system the ability to prescribe more demanding temperature
versus flux relationships. Meeting these demands is a result of improved Eurotherm
818 controllers and noise reduction shielding which reduced system errors within the
inner control loops and improved the accuracy of measured parameters (Figure 5).
Combining accurate data efficiently in a n-dimensional state space is the next level of
improvement in the MBE system to yield performance that is reliable and repeatable.
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Figure 5. Eurotherm 818 versus 825, Noise and Stability
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SELF-IMPROVING CONTROL FOR MBE USING A NEURAL MODEL

Dr. Ken Currie
Tennessee Technological University
Cookeville, Tennessee

INTRODUCTION
Research is currently being conducted at Tennessee Technological University to
develop "intelligent", self-improving models to aid in the discovery of new knowledge
for self-directed control of a Molecular Beam Epitaxy (MBE) system. This will enable
in-situ (real-time) control path generation based on both product (material behavior)
and processing (control agent) feedback. A 'product-process' control philosophy
which emphasizes product quality is described together with a generic architecture for
discovery of product and process knowledge.

SELF-DIRECTED, SELF-IMPROVING PROCESS CONTROL
The emphasis of this paper is the added dimension of self-improving material
processing. If a process is self-directed, then the added feature of self-improvement is
both inherent in and limited to the flexibility of the knowledge representation used.
Inherent, because a self-directed control philosophy relates the process to the product
(i.e., by emphasizing product quality) and generates the relationship in-situ or in real-
time. Therefore, a self-improving process control system is simply the act of tuning the
relationship between the product and process. Limited, because self-directed control
is fundamentally rule (condition-action) based and, therefore, process self-
improvement is dependent on selecting a technique and a strategy which is both
effective and efficient in modifying rules. There are two important reasons for coupling
self-improving with self-directed process control. First, self improving will aid in the
creation of the knowledge base when the knowledge representation is unknown or
difficult to acquire. Secondly, ! 41 improving can help in detecting changes within the
process (aposteriori) that affect tne knowledge base and the control of quality without
the need for human intervention.

Without an accurate knowledge representation of the manufacturing system self-
directed control achieves very little in terms of process control. Through the use of
expert knowledge, analytical models of the physical system, and trial and error
experimentation the knowledge base for self-directed control can be encoded for most
manufacturing processes. However, some processes, particularly processes utilizing
emerging technologies, there is a very limited understanding of the interaction
between controlled variables and product quality. In this latter case the knowledge of
an expert is often more of a "gut feel" rather than expressed in terms of precise,
quantifiable process limits. Analytical models may exist in part but rarely do they
encompass the broad spectrum of simulating an entire process from start to finish.
Experimentation is the primary mode of knowledge acquisition, but even this form of
knowledge is questionable at times due to a lack of time to isolate the variables and
their interactions affecting the process. A self improving model will build the strengths
of the relationship between controlled variables and desired material properties so
that the time necessary for knowledge characterization of new materials and new
processes is minimized.
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In existing processes where the knowledge base is well established, new equipment
or new materials may require changes to the knowledge base. As experimentation is
conducted a self improving algorithm would quickly establish processing limitations
and goals with respect to the changes made to the system. In addition, a self
improving system would allow for quick responses to changes in the process
variability due to increases in either equipment or raw material fluctuations. Whereas
self-directed control has demonstrated a proficiency in handling in-process variability,
a self improving model would aid in adjusting the knowledge base for shifts in the
process parameters.

The task of this research is to develop an efficient methodology for synthesizing the
relationship between process parameters and ex-situ product characteristics. An
artificial neural model is being used to develop the recognition of patterns between
process and product characteristics.

SELF-IMPROVING NEURAL INTERFACE FOR MBE
The problem of pattern recognition as applied to MBE knowledge acquisition is one of
recognizing trends and response surfaces of multivariate input data, and predicting an
estimate of an output pattern of variables. In his book on adaptive pattern recognition,
Pao [1] classifies the subject into two basic methods. The first method is to classify
multivariate patterns as a member of a specific class of patterns. The second method
is to estimate output attribute values given a particular mapping of an input pattern.
The neural network interface for MBE will utilize both types of pattern recognition
methodologies, classifying pattern membership and attribute estimation, as illustrated
in Figures 1(a), (b), and (c). Figure 1(a) shows the input pattern as represented by a
multivariate vector of features which are passed through a filter. The function of the
filter will be to cluster or discriminate among a historical database of MBE runs with
processing parameters similar to the input pattern. The resultant output of the filter is a
class of patterns relatively similar to the new input pattern which is used to create a
transparent mapping for pattern recognition and estimation of the feature attribute
values (Figure 1(b)), or in this case an MBE recipe. By using a class of similar patterns
as the training set the construction of the transparent mapping and the accuracy of the
estimation of attribute values is significantly improved due to the reduced variability of
the input features. The final step (Figure 1(c)) is to use the transparent mapping
formed in Figure 1(b) to estimate the appropriate attribute values given a specific input
pattern vector.

CURRENT RESEARCH ISSUES
To filter the historical database of process parameters according to a template pattern
of the current process involved, the use of an auto-associative neural network is being
tested. Neural models under consideration are an adaptive Bidirectional Associative
Memory (BAM) and a competitive learning network. The performance of these
networks will be compared against a benchmark of a multivariate k-means cluster
algorithm using the Euclidean distance between existing MBE runs and the proposed
pattern.
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Using the filtered data as a training set, the target values for creating new knowledge
and rules to be used in the self-directed, in-situ process control architecture are
generated using a hetero-associative neural model. The two most common neural
models for this type of pattern recognition, where attribute values are returned as
opposed to a classification membership, are back propagation and functional link
networks. From previous research by Pao (2) and Currie(3) the functional link
network responds much faster than the corresponding, back propagation. The
research issue to be addressed is the construction of the functional link network in a
dynamic sense. The enhanced attributes of the functional link network must be stated
in advance, without knowing the impact on performance and reliability of results.

FUTURE RESEARCH DIRECTIONS

As the availability of MBE data allows for a detailed analysis of it is anticipated that
additional problems will arise. In the future, the issue of predicting product feedback
given a particular processing recipe will be addressed. Optimization of one or more
processing variables given constraints on the recipe, the product requirements, or
both. It is also planned to include a variety of different materials and device types.
Finally, the application of a self-improving architecture should have the ability to be
transferred to other material processes.

CONCLUSIONS
As intelligent material processing research begins to mature it is becoming clear that
the power of such systems lies in their ability to: first, self-direct a process in terms of
autonomous closed-loop control and second, self-improve in terms of "discovering"
new knowledge. The use of neural models to facilitate self-improving an existing
knowledge base may soon transform self-directed process control from a static, rule-
based control architecture into a dynamic, autonomous material processing system.
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QPA AND MODELS FOR COMPOSITE CURE AT MCDONNELL AIRCRAFT

Francis R. Muncaster
McDonnell Aircraft Co.
P.O. Box 516
Mail Code 0341200
St. Louise, MO 63166

For many years the chemical industry has used process controllers to adjust operating
conditions for changes in raw materials to achieve consistently high quality products.
Most of these controllers maintained state variables, temperature and pressure, at
predetermined values at critical stages of the process. Others control production rate,
assure the correct ratio of ingredients for product quality and protect operating
equipment. We are now applying that technology to autoclave curing of composites.
One major difference between the normal continuous process control systems and the
batch process control required of an autoclave is that the state variable set points for
the process control systems are often constant for long periods of time, whereas state
variable set points for an autoclave cure vary continually with time to meet the ever
changing needs of the curing system. Both systems use feedback control.

The trick to achieving autoclave cure control is sensing the state of the curing laminate
without jeopardizing laminate quality and then relating that measurement to the state
variable changes. The first part of the Air Force sponsored Advanced Composite
Processing Tochno!ogy Development program (Contract No. F33615-88-C-5455) is
that of selecting sensor systems which unobtrusively ascertain the laminate state. The
second part is to relate sensor measurements to autoclave state variable path in a
manner which assures high quality laminates. These two parts combined meet the
objective of the program, i.e. to generate a real time cure cycle from sensor
measurement of laminate physical parameters.

Six sensor systems have been chosen to monitor the laminates as they cure.
Thermocouples measure temperature at the laminate surface. Fiber optic devices are
embedded in the laminate to measure temperature and pressure. A
microdielectrometer measures dielectric properties at the surface. A fluorescence
optrode measures resin fluorescence of the curing resin at the laminate surface. An
ultrasonic device measures laminate response to pressure waves and the effect on the
pressure wave by the laminate. An eddy current sensor measures laminate thickness
as it changes with time. The sensors tell us directly laminate temperature, resin
pressure, that the resin is flowing, that the resin is solidifying, laminate thickness, and
that voids may be present at their respective locations. These devices were selected
such that there are at least two measurements of each property establishing automatic
backup values if some sensor fails to operate.

A second set of sensors measures the state of the autoclave. Thermocouples
measure autoclave temperature, and pressure transducers measure autoclave and
vacuum pressures. There is a sensor to measure the pressure difference between the
autoclave and a vacuum bag. Other sensors note the position of control actuators and
the mechanical state of the autoclave system. Over a hundred sensor measurements
are available to the cure control system.
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Even with all of these measurements, everything needed for cure control is not
available. Models may be needed to supply properties which defy direct
measurement such as resin saturation temperature and pressure. Models can
compute resin viscosity and degree of cure from thermocouple measured
temperatures and time. These serve as backup in case of sensor failure, but they are
available only for resin systems which have been thoroughly studied in the laboratory.
Figure 1, Cure Monitor Models, shows a list of property models included in our control
system. Sensors and models based on these sensors have one disadvantage. The
information is valid only at the point of measurement. Experience shows that different
portions of the same laminate may undergo vastly different cycles as determined by
tooling response to the autoclave environment. It is not always possible to locate
sensors at critical positions within the part layup space because they cannot be
embedded within the laminate space without adversely affecting mechanical
properties.

A second kind of model predicts temperature and resin state throughout the laminate
space from autoclave temperature and pressure and time. It provides backup for
laminate thermocouples and a basis for predicting temperature in places inaccessible
to sensors. The means of predicting the temperature of any point is the laminate is
illustrated in Figure 2, Part Temperature Field in Thickness Direction. First the
simulated temperature field (solid curve) is computed and compared to a sensor
measured temperature at a give location. Second, the simulated temperature field is
adjusted for the difference between the computed and measured temperature at the
laminate thermocouple location creating the adjusted temperature field (dashed
curve). And third, laminate properties are calculated for the adjusted temperature field
for use by the cure cycle generator.

This simulation is run in real time using autoclave conditions as boundary values for
the solution of finite element laminate models in real time. An autoclave clock time of
30 seconds may be simulated in less than 15 seconds. The computer waits the
remainder of the 30 second interval before starting the next iteration keeping the
model in synchronization with real time. Detailed layup information necessary for
these models resides in a data base so that the autoclave operator can specify the
load in terms of part name and then assign sensors to actual part locations.

There is a third model in this system. A simulation model of the autoclave response to
control directions predicts the expected autoclave state change in time. If this
expected state is different from the sensor measured state, then there is a malfunction
which must be considered by the cure path generator and perhaps called to the
attention of the operator. The second use of the e,"4 'clave simulator is to develop and
test the cure cycle control software thoroughly of-i ne to minimize autoclave testing
time.

The autoclave control system has three software components in addition to the
sensors and control actuators as shown in Figure 3, Intelligent Autoclave Control
System. They are the central autoclave system (GENISIS), the cure cycle monitor
(CURMON), and the cure path generator (CURGEN). GENISIS is the central
coordinator of the system calling upon CURMON to compute indirect measurements
from sensor input and select information for evaluation by the cure path generator and
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calling upon CURGEN to determine new actuator set points from information provided
by CURMON and its cycle generation knowledge base. These components run on
three separate personal computer systems. GENISIS runs on an industrially
hardened system; CURMON on an IBM PS/2 M80; and, CURGEN on an APPLE
MACINTOSH.

Stand alone autoclave control is effected through GENISIS which is used in day to day
operations. GENISIS receives signals from autoclave and part sensors,screens this
raw data for validity, logs it for future reference, presents it on a display tube for
operator edification, and issues instructions to the autoclave control system actuators.
The operator controls cure cycles through the GENISIS system.

In the qualitative process automation (QPA) scheme, the cure monitor and cure path
generator replace much of the operator intervention. In order for GENISIS to
communicate with the cure monitor and cure path generator, a subcomputer board
was added to the GENISIS hardware configuration. This electronics board formats
sensor measured values for the cure monitor, cure monitor generated values for the
cure path generator, and cure path generator output (autoclave set points) for
GENISIS. The communicator board handles the serial port protocols for the individual
computer systems allowing intelligent conversation between them.

The purpose of the cure monitor is two fold. First it reduces the hundred plus
autoclave sensor values to a few important ones for consideration by the cure
generator. Second it orchestrates the application of models to incoming data thereby
relieving the cure path generator of arithmetic computations leaving it to efficiently
apply the knowledge base in determining what to do next. Figure 4, Cure Monitor
Time Step Process, illustrates the activities of the cure monitor. Cure monitor begins
each iteration by reading the sensor and control system set points from GENISIS and
updating a history arrays which store the last several readings from each instrument.
Next it updates the measured parameter arrays by screening of averaging the history
array values. For example, if there are three thermocouples at a given location, they
are averaged to give a single temperature in the measured parameter array. Level I
models compute properties by location which may be compared with sensor
measurements at the same location. The simulation model computes the temperature
and property fields and stores them in the simulated parameter array and the
autoclave simulation model computes the expected autoclave state. After adjusting
the simulation property fields for the difference in measured and predicted
temperatures, the control parameter selector scans the available information for the
most important parameters which it passes back to GENISIS which in turn passes on
to CURGEN.

The cure generator applies rules to the screened data supplied by the cure monitor.
The basic premise of the cycle generation strategy is that higher temperatures reduce
cure time to achieve desired mechanical properties. Hence the autoclave set point is
as high as possible without sacrificing part quality at any given time. Autoclave
temperature is limited by mechanical operating limits, bag material melting point, resin
propensity to boil or exotherm, residual stress potential, etc. Autoclave pressure is
maintained at sufficient level for laminatc compaction and void prevention. Bag
pressure is maintained a levels which assure that all non-condensable gases are
removed from the system and that the resin remains below its bubble point. In
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accomplishing the goal of a fully cured part, the cure generator considers the
mechanical state of the autoclave system to assure safe operation.

There is a philosophy behind this control system. The control system generates the
best cycle it can from the information supplied by the operator on load initialization. If
the operator only lists the parts in the load, the system bases the cycle generation
solely on sensor measurements. This is a pure QPA system. However, if the operator
adds the prepreg name from which the laminates were made, the system runs the
simple models which predict viscosity and degree of cure as backup for sensor failure.
In addition, *.' the operator specifies part simulations, the system runs 1) the simple
models which backup individual sensors and 2) simulation models which predict the
degree of cure, viscosity and exotherm potential at points within the laminate beyond
sensor reach. These values are made available to the cycle generator. The additional
information available from models together with the real time control knowledge base
will provide a basis for further cure cycle optimization.

In summary the system described herein combines modeling and QPA techniques to
provide a robust autoclave control system. It will relieve the operator form the need to
watch every instrument every minute by calling his attention to important autoclave
status changes. At the same time OPA protects the curing laminates from a
detrimental autoclave environment. Using this system the autoclave should produce
high quality parts the first time, every time.
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OPA FOR COMPOSITES CURING AT
SACRAMENTO AIR LOGISTICS CENTERP

Richard B. Warnock
Materials Engineer
USAF Advanced Composites Program Office
SM-ALC/MMEP
McClellan Air Force Base, CA
(916) 643-3810

INTRODUCTION

Sacramento Air Logistics Center (SM-ALC), located at McClellan AFB, CA, is one of
five depot-level repair centers for the Air Force. Two of our major system program
manager assignments include the F-111 and the A-10 Thunderbolt II aircraft. The Air
Force Advanced Composites Program Office (ACPO) was assigned to SM-ALC in
1984. Our mission is to transition advanced composites technology from the Air Force
laboratories and prime contractors into Air Force Logistics Command (AFLC) and the
other major commands. One of the ways we are fulfilling this assignment is through
technology insertions; i.e. we develop a piece of hardware or software and use it to
increase the reliability and maintainability of a weapon system. Two of the hardware
insertions of interest are the advanced composite

- F-1 11 forward ventral strake
- A-10 wing leading edge.

Both of these structures were designed and tested by the ACPO. They are now flight-
certified and in production at SM-ALC.

Another major technology insertion effort is Qualitative Process Automation (QPA).
QPA is an artificial intelligence-based process control system to control the cure of
advanced composite structures. It was originally developed by a research team at
Wright Research and Development Center (ref 1). SM-ALC, through the ACPO,
became involved after a OPA industry review in June 1987. The ACPO, representing
advanced composite engineering, and SM-ALC's Industrial Products Division (MAN),
representing production, are committed to installing OPA on production autoclaves at
SM-ALC and using it to process flight-certified advanced composite structures

CONVENTIONAL CURE PROFILES VS OPA KNOWLEDGE BASE

Conventional cure profiles are designed so that resins meeting certain initial
requirements can be processed to meet or surpass the minimum cured laminate
property specifications. Process 'windows' are set up, based on historical physical
and mechanical data, through which materials of varying composition, B-staging, and
viscosities can pass and still make acceptable laminates. This cure profile may be
significantly different for structures containing the same resin but having different
geometries. A typical profile will look something like this:
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a. Apply 22" Hg vacuum minimum.
b. Ramp at 1 - 50 F to 250 +/- 50F.
c. Hold at 250 +/- 50 F for 45 minutes.
d. Apply 85 psig pressure 15 minutes into the hold. Vent vacuum when pressure

reaches 20 psig.
e. Ramp at 1 - 50F to 350 +/-50F.
f. Hold for 120 minutes.
g. Cool laminate to 140OF before releasing pressure.

One important fact to notice is that these profiles are firmly rooted in the
time/temperature domain. OPA does not work explicitly in the time domain. QPA looks
for states to occur that have been determined are important to the process (such as the
onset of flow or gelation). These states are defined based on real-time sensor data.
Since the state of the resin in real time is known, QPA does not have to rely on
historical data or models to predict what the state of the resin is at a given time and
temperature. It then uses these states to trigger events such as pressurization or the
end of cure.

FACILITIES

The Industrial Products Division (MAN) at SM-ALC has two autoclaves currently in use
and two that are in the process of being installed. The vessels possess the following
characteristics:

Baron Tennev Melco #1 Melco#2
Size 8'x 20' 10' x 24' 4' x 8' 8' x 30'
Temperature (OF) 650 450 800 800
Pressure (psi)205 110 300 300
No. TCs 20 12 48 24
Bag Pressure (psia) 0 -140 0 -15 0 - 300 0 - 300
Dielectric Sensors 6 - - -
Ultrasonic Sensors - 3 6

OPA has been installed on the Baron autoclave. However, persistent problems with
the heaters have resulted in considerable down-time over the last year. This has led
to very frustrating delays in the OPA program. The two new autoclaves (Melco #1 and
#2) are scheduled to be operational by June 1990. If the Baron has not become
operational by that time we may switch OPA over to one of the new Melco autoclaves.

QPA/CAPS ARCHITECTURE

The autoclaves at SM-ALC are presently controlled by the CAPS 310 system from
Applied Polymer Technology Inc (APT). This system represents the state-of-the-art for
conventional computer cure control. Data analysis and control decisions are made by
a Hewlett-Packard HP 1000 computer. The HP 1000 sends its control signals to
Barber-Colman PID controllers. We took advantage of the fact that this system was in
place to ease the data acquisition requirements of QPA.
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OPA runs a program called OPAL, developed by Universal Technology Corporation
(UTC). The OPA Macintosh Ix is connected via its serial port through a multiplexer
(mux) to the CAPS 310's HP 1000 (see Figure 1). During a OPA-controlled autoclave
run CAPS is actually running a conventional cure profile in the background. OPA
simply accesses the data the CAPS normally collects (autoclave temperature and
pressure, and part temperature(s) and bag pressure). The control signals are sent to
the PID controllers via command-override messages passed back through CAPS.

The architecture is flexible enough to handle different sensor systems at the same
time. The autoclave at WRDC has a Micromet dielectric system connected through the
mux to the Mac. There are two different sensor systems at SM-ALC: the Baron uses
an HP 4274A Multi-Frequency LCR meter to collect dielectriL data, while the new
Melco autoclaves have the APT ACM 106 ultrasonic sensors. APT and UTC have
devised a protocol to handle the passage of the diverse data that comes from these
instruments. This protocol will allow additional sensor systems to be connected in the
future without going through a major customized reprogramming effort that must be
contracted out.

SYSTEM SAFETY/EXCEPTIONS

A section of the knowledge base has been developed to deal with the safety aspects
of running an industrial autoclave. Based on my experience and that of the operators
at SM-ALC, we have tried to think of all the possible failures that could occur and what,
if any, action could be taken by the control system. This turns out to be a non-trivial
exercise. A human operator can see an event occur (such as the vessel pressurizing
above its setpoint) and take appropriate action (open the manual relief valve). The
knowledge base has to take into consideration the event that is occurring, how it
relates to the state of the cure at that time, and decide on proper control action. There
are some events that elicit three different responses depending on when the event
occurs during cure. One factor that is vitally important is that the OPA provide
consistent responses to unexpected events. Human operators may provide different
responses, depending on which operator is on duty, what day of the week it is, etc.

Some of the events that we detect and respond to are:

TC failure dielectric sensor failure
heater failure cooling failure
initial pressurization failure over pressurization
under pressurization exotherm

These responses may be simple messages posted to make the operator aware of the
event, they may be a control response, or they may abort the run in a controlled
manner.
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IMPLEMENTATION PLANS

QPA has been installed on the Baron autoclave and established communications
between OPA and the CAPS 310. The next order of business will be to test the safety,
alarm, and exception features of the knowledge base on an empty autoclave.
Situations will be created to emulate the desired event (or undesired event, as the
case may be) and check to see that QPA fires the correct control response.

A series of test laminates will be cured to test the adequacy of the cure portion of the
knowledge base. Much of this work has already been done by Ms Frances Abrams in
her lab at WRDC. A series of standard laminates will then be cured to establish that
OPA is giving us the desired mechanical properties. This testing will be used to certify
QPA for use on production advanced composite structures.

Two other challenges face us in the coming year. One is to devise a knowledge base
to handle multiple parts. The second challenge is to use a different sensor, namely the
ultrasonic sensors found on the new Melco autoclaves. Both of these challenges will
require much thought and hard work, but I expect that we shall soon be producing
multiple parts with multiple sensors in the production environment.
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'NEAR-OPTIMAL' CONTROL OF FORGING PROCESSES

James C. Malas
Materials Laboratory
Wright-Patterson AFB, OH 45433

INTRODUCTION

In designing material-forming processes for components made of complex materials,
the most important task is the selection of the controlling process parameters that will
ensure part quality as well as specific mechanical and physical characteristics. The
controlling process parameters are the sequence and number of material flow
operations, the heat-treating conditions, and the associated quality-assurance tests.
When designing forging processes, special features such as nonlinear irreversible
finite-de ormation flow must be considered. Simultaneously, the complex
interdependence of forging process parameters and their effect on the quality of the
finished part, the reliability, and the ability to inspect must be considered.

Another important goal in forging is to determine the optimum means for producing
defect-free parts on a repeatable basis. The optimization criteria depend on the
manufacturing goals and the product specifications; establishing the appropriate
criteria requires in-depth views - both global and local - of manufacturing processes
and material behavior. From an optimization viewpoint, manufacturing processes
require the determination of material flow mechanics to achieve proper process design
and to develop a rational strategy for process control.

Modeling of the forging process involves both mechanics and thermo-dynamics. The
process, as a rule, is inhomogeneous and transient over a large volume of workpiece
material, and the material flow process can be characterized as highly irreversible and
stochastic in nature. The mechanics of the forging process are well established, and
different analytical tools are available for analyzing most of the important steps of a
total forging process.

OPTIMIZATION TECHNIQUE

The material behavior of the workpiece will be the focus for optimizing an ALPID (ref.
3) finite-element simulation for a typical hot-forging process. ALPID is a rigid-
thermoviscoplastic finite-element program which is presently being used by many U.S.
forging companies to design near-net-shape forgings for the aerospace industry. The
importance of being able to characterize workpiece material properties under
processing conditions is shown in Figure 1. In this figure the inelastic constitutive
equation is the link between the equipment characteristics and the material system
being modeled. The mathematical device converts the power supplied by the forging
press to power dissipated by the workpiece material in the form of heat due to plastic
working and microstructure evolution. The connection between the material system
and the control system is made through a dynamic material model which describes the
metallurgical response of the workpiece material to thermc mechanical conditions of
the forging process. Through process simulation a control algorithm can be
developed for feedforward control of the equipment.
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The behavior of the workpiece during nonlinear forced dissipative plastic flow
determines how the forging process should be controlled and whether defects can be
avoided while producing the required geometries, micro-structures, and properties in
the finished product. As the workpiece material undergoes irreversible flow, it selects
a special trajectory, which is defined by the input (rate of application of external stimuli)
and the initial state of the material (prior thermomechanical history). The rate of
application of external variables determines the state of the system during hot working.

The stability of the system is defined by maps connecting a set of inputs and outputs
that describes the intrinsic workability of the workpiece in terms of its mechanical and
microstructural stability. Material-stability-preserving-maps are developed from
inelastic constitutive equations. The deforming body is said to be stable if a stable
power input results in an output (microstructure, geometry, and heat) having stable
characteristics in a Liapunov sense. (ref. 5)

By incorporating the stability information as nonholonomic constraints in ALPID, a
designer can create a process control strategy based upon a near-optimal intrinsic-
workability criterion. This approach to simulation optimization leads to realistic
numerical predictions of nonlinear, irreversible deformation processes

EXAMPLE: TITANIUM ALLOY DISK FORGING PROCESS

The approach of optimizing deformation processes by using material-stability-
preserving maps is demonstrated in the design of a Ti-6AI-2Sn-4Zr-2Mo disk forging
process (ref. 2). The closed-die isothermal forging of this disk was previously
analyzed using ALPID, with emphasis on the prediction of metal flow near the flash
(ref. 1). Because of symmetry, it is sufficient to analyze only one quarter of the cross
section of the forging. The predicted nodal-point velocity plots for 48, 68, and 72.1%
reductions in height are shown in Figure 2. The plots clearly show the transition in
metal flow from primarily upsetting deformation to die cavity filling to the final stage of
forming flash.

In the current study, the process design goal was to fill the die cavity completely and to
avoid the possibility of creating defects that are produced by critical states of stress in
the forging process. The state of stress is defined by the stress rate path, which is the
ratio of the mean hydrostatic stress to the effective stress. This stress ratio is a
fundamental quantity in plasticity theory because materials change shape according to
the applied effective stress-rate path. When this ratio is positive, a tensile state of
stress exists; when it is negative, a compressive state of stress exists. The magnitude
of the stress ratio represents the resultant loading condition of the deforming material.
The distributions of the stress rate path ratio for the disk simulation at 48, 68, and
72.1% reductions in height are shown in Figure 3. At 48% reduction (Figure 3a), the
center bore region of the disk has an approximate value of -1.0, and the outer rim
region has positive values that reach a maximum of +0.37.

The transition from compression to tension (neutral surface) is controlled by the die
radii. As the workpiece touches the outside die wall and continues to fill the die cavity,
the tensile state of stress reduces to a small region that is filling the inside die corner.
This situation presents a potential problem, namely, that of producing defects such as
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cracks in the finished forging. Therefore, enhanced metal flow and good intrinsic
workability of the workpiece are needed in this location at the final stages of die filling
in order to relax the stresses and thus avoid the possibility of defect formation.

The material-stability-preserving-map for Ti-6AI-2Sn-4Zr-2Mo with an initial
Widmanstatten microstructure is shown in Figure 4. From this processing map, the
optimum conditions for this material and application were determined to be a strain
rate of 0.003 per second and a temperature of 926 C (ref. 4). In optimizing the ALPID
simulation of the isothermal disk-forging process, the die velocity was changed to
maintain the desired effective strain rate with a 0.1% tolerance limit in Element No. 47,
which is positioned near the inside die corner (Figure 5) where final die filling is
critical.

The optimal die velocity as a function of stroke is shown in Figure 6, and a total
deformation time of 413.4 seconds would be required for this type of process control.
The time-varying die velocity results of this simulation would provide the enhanced
workability and metal flow required for the workpiece to flow around the die corner
radii, to fill the inside die corner, and to fill the die cavity completely.

It is currently feasible to preprogram large hydraulic forging presses for constant or
variable die velocity over a given load range. Feedback control systems can also be
installed for regulating the ram speed with respect to forging pressure or workpiece
temperature. Continuous ram speed control requires a combination of direct pumping
and accumulator drive systems in order to achieve the required real-time changes in
applied power during the forging process. The accumulator drive system provides a
higher penetration speed, but toward the end of the stroke, as the force required for
forging increases, the ram speed and load available at the ram decrease. The direct-
drive system delivers the maximum available load during the entire ram stroke and
thus provides the very high pressures required for final die filling. Therefore, the two
drive systems are complementary, with the result being improved controllability of the
forging process.

FUTURE RESEARCH

The future direction of this research will be in the development of robust, self directed
process control methods. Advanced control design techniques must be developed for
synthesizing desirable microstructures of difficult-to-process materials in a
reproducible way. Quantitative and qualitative methods need to be coupled together
for capturing both the physics of the process and the practical aspects of the process.
Quantitative process models are currently capable of accurately describing the
mechanics of the process and the particular flow and fracture phenomena of specific
materials. Qualitative Process Automation (QPA) techniques are currently capable of
S-,'nortin ranI-time control of material processes by coupling material-specific
knowledge with expert heuristics about the process. Robust, self directed process
control methods will have a significant impact on the producibility of advanced material
systems which are typically very difficult to process. Some important research issues
for further study are:
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the stochastic, nonlinear, nonhomogeneous nature associated with
manufacturing processes;

the development of qualitative and quantitative relationships among
workpiece/die geometry, material flow field during processing, and the
control system design; and

the development of scientific methodologies for analyzing, optimizing,
and controlling sequences of manufacturing processes.
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PROCESS ENTROPY CONTROL FOR REDUCED OUALITY LOSS

Patrick H. Garrett
University of Cincinnati
Electrical Engineering Dept.
Mail Location 30
Cincinnati, OH 45221

A mathematical basis for the guidance of advanced process control systems operating
in uncertain environments has been developed. The resulting structure involves two
levels ordered according to the principal of decreasing precision with increasing
intelligence. Within this structure entropy functions are derived to provide a unified
performance metric for both high accuracy inner feedback loops and the information
uncertainty of outer qualitative loops. With this method the goal of optimum process
automation is realizable as the mathematical programming solution that minimizes
total entropy. Progress in the realization of this approach is described in the following
narrative.

Control engineering benefits from a heritage of creative development by contributors
from both academic and industrial communities. Early mathematical solution of the
stability of closed-loop systems prompted widespread control implementations that
were expedited by insightful frequency-domain design methods. System-theoretic
modeling provided additional perspectives with electrical network interpretations that
facilitated the transformation from continuous-time analog to discrete-time digital
systems. State-space modern control methods then extended these analytical
capabilities to enable optimal control design by defining inner system states and their
transitions in an n-dimensional process space. Adaptive control advanced these
preceding stages by automating system identification and optimization procedures
online to achieve reduced uncertainty through additional control complexity. Present
initiatives in self-organizing intelligent control seek decision and disambiguation
capabilities for goal-oriented control purposes that subsume all of the previous stages
of control advancement.

The unifying purpose of all of the stages of control advancement is the disorder
reduction of processes of interest through identification and subsequent minimization
of the variability of their controlled variables, where advancement is characterized by
the accommodation of increasingly complex process representations with
correspondingly complex control structures. Progress necessary to meet recent
interest in advancing control system quality, however, requires comprehensive new
accountability and understanding of the variability of control parameters. This
development addresses that need first by the definition of quantitative error analysis
methods for digital control systems, and interprets these results in terms of statistical
quality identities to achieve a linkage between control system design and the new
quality technologies.

Advancement in digital control system quality is demonstrated by linking the apriori
accountability of example sensor-to-actuator inner control loop errors of Table 1 with
statistical quality identities which traditionally have been only aposteriori accessible.
Device and system elements are specified for a control loop that has been
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mathematically modeled to determine the total error ec associated with the controlled
variable. This error is interpreted in terms of statistical quality identities including the
quality loss function L and process performance index Cpk shown in Figure 1, and
defined by equations (1) and (2). For purposes of this illustration a 1% steady-state
error is assumed between the setpoint r and controlled-variable c. Principal findings
disclose an increasing controlled-variable quality loss for setpoints less than full scale
because of the relative increase in e c with decreasing process measurement values.
Tolerance design has been demonstrated to achieve a consistent improvement in this
ratio with a corresponding reduction in quality loss to that available at full scale for all
setpoint values. This analysis assumes inner-loop controller tuning optimization that
minimizes steady-state error and contributes to total error minimization, where major
error excursions constitute control instability.

Figure 2 illustrates an advanced qualitative process automation (OPA) outer control
loop description developed for insitu control decomposed into process episodes,
instances, and indicies. Episodes describe a linear sequence of events that occur
during a processing cycle divisible into process instances that are necessary to
accomplish events in terms of achieve and prevent goals. Process instances have a
sequential existence with defined start and end conditions, and provide closed-loop
control through process indices which link sensors and actuators to achieve event-
driven control. An insitu process representation enables better control by overcoming
the limitation of conventional control which has access only to process boundaries.
However, the data and knowledge bases which contain this information also possess
information exchange uncertainties which influence control performance. The
magnitude of the information exchange uncertainties may be defined by 0=E P logP <1
of equation (3) in terms of stochastic elements P evaluated from evidence theory, fuzzy
sets, or probability. Entropy defies disciplinary boundaries in its application, including
manufacturing processes, within which entropy offers a representation of uncertainty
whose minimization is axiomatic.

The reliability of control systems is concerned with the prediction of device failures
from mean time between failure (MTBF) data and the operating period of interest by
equation (4). Equation (5) then defines the unreliability for a single control channel,
where unreliability equals 1-reliability. The combination of control system error and
reliability on a mean-square error basis to form a parametric entropy metric provides a
means for reasoning about uncertainties and relating decisions to the physical
constraints of a process. This is provided by equation (6), and equation (7) describes
combined information and parametric entropies as an argument to enable such
reasoning. Utilizing the example sensor-to-actuator parameter uncertainty ec of
0.517% and an unreliability Q of 1% provides a channel parametric entropy Hp of
0.012 (1.12%). Beneficially, this additive property of entropy provides a quantitative
criterion for combining disparate uncertainties into a unified metric for insitu control
guidance. This also articulates a means for evaluating process constraints including
failures, transient uncertainties, and ambiguities with application of the dual-difference
fault-tolerant structure, shown in Figure 3, which utilizes these uncertainties for
validation and fault isolation purposes.
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With respect to information exchange, entropy provides a measure of the information
ex~cange uncertainty for sources including computer data and knowledge bases. The
pooling and organization of information is an important practical problem in the design
of intelligent systems. An important result of applying the entropy metric to
probabilistically defined information processing is that entropy minimization
corresponds to the focusing of information. For example, at a primitive level of
definition the conflict between two equiprobable alternative actions in a qualitative
control system yield an entropy value of 0.301 by equation (3), whereas four
equiprobable alternatives yield a value of 0.602. A single information source has a
limiting entropy value of zero because its exchange is certain. Figure 4 postulates the
structure of an entropy integrated manufacturing process that benefits from these
measures.

L = K[(r-c)2 + (e c ) 21 quality loss function (1)

Cpk = I c-lcl,ucl/3e c > 1 process performance index (2)

HI = -E Pj log Pj information entropy (3)

li = t / MTBFi failure rate (4)
M

Q = [1-exp(- E li)j 100% channel unreliability (5)

Hp [ec2 + Q2 ]0. 5 parametric entropy (6)

H = HI + Hp additive entropy (7)

Sensor 0.318%
Filter 0.250%
Amplifier 0.143%
Multiplexer 0.010%
Sample Hold 0.020%

A/D 0.071%
Sinc 0.083%
D/A 0.033%
Intersample 0.173%

ec RSS 0.517% 1s confidence

Table 1. Sensor-to-Actuator Error Budget

4-13



K K

QualityQul L=7.65K sq.%Loss!

L I L=1.26K sq. %

0 lcl c r ucl Icl c r uclI /\ \ / \
11.3% 19% 20% 27.7% 97.5% 99% 100% 100.5%

lc = 2.58% R I a= 0.517% R

E100% =0.517% FS 9 100% = 0.517% R100%

=0.517% FS e 10 0 % = 2.58% R

20%

L100% = K 9 [1%2 + 0.517% ] = K * 1.26 sq. %

L209 = K . [1%2 + 2.58%2] = K * 7.65 sq. %

C 199% - 97.5%1
CpKl0% = (3) (0.517%)

119% - 11.3%1 1
CP 0 ° = (3) (2.58%)

Figure 1. Controlled-Variable Uncertainty Interpreted by Statistical Quality Identities
Before Tolerance Design (setpoint r, controlled variable c, limits Icl-ucl)

4-14



11 12 * ' N

Information Uncertainty 0

H, 1 Pf jog P

L~eciionsOuter 
Loop

Decreasing Precision Qualitative Reasoning

Increasing Precision Inner Loop
T Measurement and Control

Parameter Uncertainty kU

HP = [ F-controlled +Qunreliabilily 1/2 roces
variableIni e

H=H1 +1 Hp Unified additiveSesr

1> H 2!0 entropy metric

Figure 2. Qualitative In situ Control Structure

4-15



Processing/ DHFRN rni~e:SgaAcquisition , Interpolation

Sensor Computer
Yi

Signal AVERAGESgnl
Processing/ Sig nal u p s,
Acquisition

Sensor Computer

Y2

Total Error Space 1FS
Area FS 

Window of Valid Performance
Area = T 2/4

D -Difference Validation Tjst
Area = 2(FS)T -T 2

Dashed lines represent Limi Testing

Figure 3. Dual-Difference Fault-Tolerant Structure

4-16



UU

'E.
00

Cu UD

U)U

cuC

0u

CDC

W r-

Ch 0

.0 .0 C

L) u J4-T7



AN INTRODUCTION TO QUALITATIVE PROCESS DISCOVERY

Jack Park
and

Dan Wood

ThinkAlong Software, Inc.
P.O. Box 359
Brownsville, California 95919 USA

INTRODUCTION

A discovery system capable of assisting materials engineers with the development of
process control protocols is under development at ThinkAlong Software. The system,
called QPD-Qualitative Process Discovery-has demonstrated its ability to generate
a control algorithm for polymer curing on an autoclave simulator. We briefly review
progress on the discovery project. The current research is performed as a visiting
scientist task by one of us (DJW) at Wright-Patterson Air Force Base, Ohio.

The progress supports the hypothesis that a discovery system which is endowed with
a knowledge base of elements of process models gleaned from the physical sciences
can be constructed and applied to an interesting task domain. The system, while
operating in a real or simulated process environment, can learn to control the
particular process it is tasked to control. At the same time, the discovery system learns
how to explain the process it is observing and controlling. Finally, the system may
discover something about the process (through its search and conjecture
mechanisms) which is not directly explainable by the prior knowledge provided.

Currem work derives from our earlier experience with a qualitative reasoning system
called QPA-Qualitative Process Automation-for closed-loop process control in real-
world, noisy environments. It also draws from our work with learning mechanisms for
applied artificial intelligence in the field of discovery and theory formation. We all know
that ovens and pressure cookers are utilized for curing-baking, if you like-chemical
compounds. We also know that autoclaves-large pressure cookers-can cure
chemical compounds such as polymers, with a control protocol derived solely from the
cure in progress. What we may not know, or understand fully, are the details of some of
the many processes involved in the cure and its proper protocol. A more complete
understanding will contribute to improved polymer-based products.

We describe here a discovery system as it has been applied to the polymer cure
domain. Thus, this paper begins with a brief review of that domain. We then follow
with an overview of the discovery system architecture, and conclude with a discussion
of early results.

CONDENSATION CURING POLYMERS

In a condensation polymerization (cure) process, pairs of individual, reactive
monomers become involved. Such pairs join to form the polymer at their reactive sites.
The term "condensation" derives from the by-products of this reaction, and such by-
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products, typically in the form of gas or vapors, form an interesting topic for theory
formation. A second by-product of the reaction is heat.

We can summarize what we know about condensation curing in a "proto-history,"
coined here to mean prototypical history, statement:

• the polymer starts in an unreacted period-no chemical reaction yet

* the polymer enters a reactive period-the chemical reaction occurs

• the polymer reaction ends when all possible bonds have been formed

This proto-history-a prototype for a typical polymer cure history-is the basis for the
cure protocol QPD built during the trials we discuss in below.

AN ARCHITECTURE FOR DISCOVERY

The Scholar's Companion (TSC), like KEE and other artificial intelligence
products used by other consultants, is a proprietary, commercial artificial intelligence
software/hardware product, currently under development at ThinkAlong Software. TSC
combines principles from several fields, pulling inspiration and design from the fields
of cognitive science, philosophy of science, artificial intelligence, computer science,
and nonlinear systems. The system currently runs on an Apple Macintosh II platform.

The system consists of a toolbox of coded "subcognitive" routines, which each handle
some fundamental aspect of the discovery process. Fundamental control of the
routines, however, is provided by the knowledge base.

Figure 1 illustrates the basic data flow in the engine of The Scholar's Companion
[Park and Wood, 1989]. The architecture supporting this data flow is a combined
spreading activation neural network and rule-based symbolic system. The spreading
activation neural network captures semantic relations while the symbolic system
supports the behaviors of the system.

The knowledge base is arguably the most important aspect of a discovery system,
given that the system requires an appropriate knowledge base upon which to base
further useful discoveries. QPD is a part of the TSC knowledge base. As Figure 1
illustrates, the knowledge base is the center of the TSC computational universe. The
system communicates with the outside "world" through sensors and "muscles."

In the research described here and reported in [Park and Wood, 19901, the primary
sensor/muscle system is an autoclave cure simulator. The QPD system coupled a
simple knowledge base on polymers with the simulator and conducted its own trials.
The basic algorithm of the prototype QPD system is:

Find a proto-history
Try it
Tune as necessary
Loop to Try it
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Exercising this algorithm, the trials resulted in a cure protocol in the form of a TSC
knowledge base entry. It is the result of that cure algorithm development we present
next.

RESULTS: A POLYMER CURE PROTOCOL

QPD started with a simple knowledge base entry similar to the polymer proto-history
discussed above. This entry described the four primary states a polymer may visit
during its cure cycle. With knowledge of these states as a form of expectations of what
a polymer cure should look like, QPD exercised the simulator. As the cure progressed,
expectation failures occurred when the next possible state is not the state the cure
cycle actually visits. QPD then mutates the protocol to account for (we say: explain)
the variation. The result is a cure cycle as illustrated in Figure 2, and a TSC
knowledge base entry capable of controlling the autoclave.

The cure resulting from QPD trials indicates that the system was able to detect and
deal with the exothermic reaction of the polymer. It is truncated with the polymer at
cure. temperature since that is the point at which the system determines the cure is
complete. This fact serves to illustrate that the cure protocol, as built by the prototype
QPD in its early trials, is by no means complete. Much work remains to be
accomplished before the system is complete; that work is underway currently, and the
QPD algorithm should be capable of achieving interesting results in marv process
control domains.
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Possible Roles for Neural-Nets In QPA Systems

Yoh-Han Pao
Case Western Reserve University
and
Al Ware, Inc
Cleveland, Ohio 44106

POSSIBLE ROLES FOR NEURAL-NETS IN QPA SYSTEMS

We suggest that there are at least three ways in which Neural-Net technology might be
used to advantage in Qualitative Process Automation (QPA) systems.

Such technology can be used

• for relating quantitative and qualitative entities in QPA,

" for monitoring the nature of the control process through exercise of predictive
estimation, or

• for management of experiential information.

With regards to the first role, we note that the QPA relies on qualitative use of accurate
quantitative from appropriately placed in-situ sensors. In the exercise of QPA,
transition is made from one control plan to another when certain conditions are
observed. These conditions are often expressed rather arbitrarily in terms of
quantized intervals in the range of sensor data, for example we might say that if 125 <
temperature < 250 and P1 < pressure < P2, then a certain state in "episode " x is
considered to have been attained and appropriate control rules are activated.

However experience indicates that it is difficult to specify and maintain such
quantization ranges correctly and consistently for a number of sensors simultaneously.
Nor is it easy to adjust those range quantization values adaptively.

It is not difficult to understand why this should be so. In Figure 1(a), we illustrate
circumstances where it is feasible to quantize sensor data ranges independently, even
though the antecedent of the control rule might take the form of a conjunctive
statement of the sensor data conditions. This is a form of sensor data fusion which
suffices in some cases, but is not generally useful. For example, for circumstances
shown in Figure 1(b), if the rule is to turn an activator to ON if the system state is within
the irregularly shaped figures, it might be difficult to describe the appropriate
conditions adequately in terms of independently specified quantized intervals. If the
intervals are taken sufficiently coarse, many errors will occur. On the other hand, if the
quantization is made sufficiently fine, then a confusingly large number of rules will
have to be developed, a rather unpleasant prospect.

Neural-net computing can be used to deal with the situation in the following way.
Instead of quantizing the ranges of sensor output values, we can proceed in a more
gestalt manner, by considering the state of the process as a point in sensor output
space. As shown in Figure 2, when using such a representation, many states might be
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different and yet be sufficiently similar so that any of those states would be sufficient
reason for activation of a qualitative control action, such as START-CURE (in the
curing of a composite in an autoclave) or END-CURE or START-COOL DOWN.

In such a representation, we have a more comprehensive view oi the relationship
between the various sensor outputs and we can visualize the progress of the process
as the system traverses sensor space. Not only are sensor data truly "fused" to
provide a useful and economical description of the system, but many such descriptions
are organized into clusters each with a prototype and a label. Any system state is
rapidly recognized as belonging to one of the clusters and it is therefore easy to think
of it as being in one of the states of OPA and appropriate control actions can be
activated.

In addition, such prototypes can be manipulated adaptively with the use of the
Learning Vector Quantization algorithm [1], so that inappropriate sensor data patterns
which would otherwise be included into a cluster can be avoided by moving the
prototype pattern away from those patterns which should be excluded.
The second role is that of using a supervised learning net for learning a network
representation of the process. As shown in Figure 3, this is achieved by training a net
which when presented with the sensor output vectors x(n-k), x..., x(n-1), x(n) is able to

predictively estimate the value of the vector x(n+l). This estimated value x(n+1) is very
important and very valuable because it can be used to monitor the nature of the
process, or to detect sensor failure, or to detect the onset of a great deal of noise.

We have shown that accurate predictive estimation is possible even for highly
nonlinear processes and even for conditions of deterministic chaotic nonlinear
dynamics [2]. It is known that the nonlinear dynamic system discussed by Feigenbaum
[3] and others can develop a variety of temporal behaviours depending on the value of
a system parameter I. As I increases in value, going from 0 to 1, the behaviour pattern
becomes increasingly more complex becoming chaotic (in a deterministic manner) as I
,E 1. Examples of such behaviour are exhibited in Figure 4 for different values of I.

Both the backpropagation net and the Functional-Link net [4] algorithms can be used
for prediction purposes. It is interesting that both nets do equally well for nonchaotic
motion, but in the chaotic region only the Functional-Link net is capable of predicting
several time intervals ahead. This is shown In Figure 5.

The third role is in the management of experience information. We advocate
organization of process control experience information into Episodal Associative
Memory.

Process control then becomes a matter of memory. Have we done such a thing
before? What did we do? How did it turn out? Should we do similar things in the
present case? What can we expect? What should we avoid?

4-23



The architecture of such a memory is illustrated in Figure 6. The idea is to represent
the experience of each process action as an episode. Episodes are self-organized
into clusters called Memory Organization Packages (MOPS). Themes associated with
each episode are learned with a supervised learning net. This is to say that every
episode in a certain MOP would activate a theme pattern more or less similar to that
one engendered by the prototype of that MOP.

Theme patterns are also self organized into Thematic Organization Packages (TOPS)
which in turn are associated with TOPS.

This structure allows us to store a large number of process control situations in terms
of a smaller number of groups of MOPS with means for easy reminding, but with no
loss of detail. As discussed elsewhere, a member of interesting functionalities
including cross-context reminding can be provided by this type of memory [5].

In summary, we believe that QPA is a useful a useful and powerful approach and
neural net computing can be used in the implementation of QPA.
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Use of Neural-Nets in QPA
Role 1: Relating Quantitative and Qualitative
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Figure 2. Sensor Data Fusion with Use of Self-Organized Clusters.

Use of Neural-Nets in QPA
Role 2: Monitoring the Nature of the Process Through Predictive Estimation
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FUTURE DIRECTIONS: SELF-DIRECTED CONTROL TECHNOLOGY

Major Steven R. LeClair, PhD, P.E.
Wright Research and Development Center
Materials Laboratory
Wright-Patterson Air Force Base, OH

INTRODUCTION

As "intelligent" systems research begins to mature it is becoming clear that their future
depends not only on their ability to self-direct a process, whether material processing,
resource scheduling, product design or = type of productive activity, but as well their
ability to self-improve in terms of "discovering" new knowledge. Current research
efforts in self-directed and/or self-improving material processing systems suggest we
may soon (perhaps less than a decade) be conducting material science by machine,
i.e. a material processing system to augment the process of scientific discovery -
conjecturing hypotheses, conducting experiments and discovering new knowledge
about a material or process.

Beyond the purely scientific interests associated with intelligent systems research is a
very 'economic' motivation - product quality. The pursuit of various product quality
initiatives (i.e. improved: process repeatability, process yield, material properties, etc.)
must remain central to intelligent systems research and therein embodied in the
definition of self-directed control: a philosophy and architecture which, when
manifested in a control system, enables on-line or in-situ generation of a "product-
directed" control-cycle.

FUTURE DIRECTIONS

The concept of self-directed and/or self-improving control is an active topic of pursuit
by researchers across government, industry and academia. Research directions are
many and varied involving 1) different materials and/or processes, 2) automation of
process knowledge development, 3) sensor technology, 4) sensed-data processing, 5)
process data relationships and analysis, 6) coupling of material processing with
design (simultaneous design of shape and material properties), 7) process
optimization, 8) process entropy control, 9) process discovery, and 10) coupling of
qualitative reasoning (heuristics) with neural networks and/or quantitative models.

Although most of the above directions are forward-looking in the sense of advanced
computer technology, two of them address the context of self-directed control. The first
is with regard to the relationship and integration of self-directed control with
conventional philosophies such as statistical process control. The second considers
the introduction of qualitative techniques to process control and therein the
development of more comprehensive and representative measures of overall control
system uncertainty. The system uncertainty is the sum of the system sensed-data
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processing error due to sensor A-D/D-A, filtering, amplification, bandwidth, and
sampling which is combined with the uncertainty or error associated with heuristic
inference (i.e. providing a good but not necessarily an optimal response to process
conditions).

In the interest of refining QPA and integrating self-control technology with its
environment, recent research has addressed the various input and output interfaces
for process control applications. One example is the reduction of process noise (which
all processes experience) through the use of neural network technology. In lieu of
simply averaging data over a defined time period the sensed-data from the process is
classified by a probability neural network which has proven through simulation
(against stored data from prior process runs) to improve the accuracy of the measured
data compared with the actual process data.

The man/machine interface is also being addressed in terms of developing a graphical
means of representing the process so that the control system can self-generate the
structure and in some cases the content (heuristics) of the knowledge base for
enabling self-directed control. The remaining interface is the output, i.e., the data
generated by each process run and the knowledge which is embedded regarding a
better understanding of the process. The associated research is to facilitate qualitative
and/or graphical analysis of the data and therein aid the process control engineer in
developing a new knowledge base or refining an existing one. A complementary effort
has been to develop a mapping of the output results, e.g., material properties of
interest, and the input process parameters using an artificial neural network. Such a
mapping would guide the process engineer in setting up the process to interpolate or
extrapolate as required to achieve new properties or to reliably attain previously
successful results.

Longer term the research objective of self-directed control technology is 'science by
machine' where coupled to the control system is a discovery system which is designed
to learn new knowledge. Such knowledge will not be attainable through conventional
data analysis or mapping techniques and thus the coupling of neural networks to rule-
based inferencing systems may effect a significant contribution. The use of neural
networks appear most useful in the area of associative memories for the construction
of newly discovered rules and inferencing techniques using a 'spreading-activation'
concept wherein reasoning such as analogy, abduction and generalization are
feasible.

Many new directions are being considered relative to material processing. The
breadth of applications is beginning to expand particularly in the area of new
processes where desired material shape and properties are a simultaneoua, result of
the process, e.g., laminated composites and other plastics forming processes.
Although a breakthrough is still uncertain, semiconductor growth processes appear to
be yet another material processing domain which will benefit from self-directed control
technology. Because the semiconductor device industry and the processes are both
very new and unique, self-directed control technology has been a welcome pursuit
and significant advances in quality are expected.
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From a general or overall material processing perspective there is more acceptance of
self-directed control technology for those material processes which do not have an
existing and well established control technology. An example is material removal, i.e.,
machining, where many years and millions of dollars have been invested in existing
machine tool controller architectures. Notwithstanding this history, a recent machine
tool industry initiative sponsored by the Air Force Manufacturing Technology
Directorate and in collaboration with the National Center for Manufacturing Sciences
may improve acceptance. Together these organizations are attempting to establish a
Next Generation Controller Architecture to enable a more rapid and organized
transition to self-directed control technology for the machine tool industry.

In contrast to the material processing applications, an equally significant new direction
is product design. Product design as a process is not new, yet it is an area soon to
undergo tremendous change as computer technology begins to address the scope
and depth of the process. The first step will be the coupling of product and process
design via feature-based design systems. These systems will be controlled similar to
the material processing applications via 'product-directed' feedback which will
simulate the processing (fabrication, inspection, etc.) of the product. The designer will
be guided much like the material processing agent (e.g., an autoclave) toward a
design which satisfies uJliJpl product objectives and goals. And much the same as
material processing, the control path will be generated using heuristics to both satisfy
near real-time performance and to capture that which can not be mathematically
modeled and optimized.

In my opinion, the most important future direction for self-directed control technology is
the coupling of process control with product design. Self-directed control technology
will be a necessary enabling technology to achieve this integration. The research
problem will be to develop a representation scheme which subsumes existing and
projected hardware and software and a language (e.g. PDES, NGCA, etc.) which
transcends industries, products, materials and processes.

The opportunities before the Manufacturing Research Group and its stable of
university and industrial researchers is to provide leadrship in demonstrating the
feasibility of this coupling. The opportunities before us are our participation together
with the Sacramento Air Logistic Center (SM-ALC) in the Next Generation Controller
Architecture project and to expand our involvement with the 4950th Test Wing in their
pursuits to become a showcase factory-of-the-future. Both of these efforts represent an
opportunity to couple our process control research with our product design research.

Also of consideration is the work sponsored by the Manufacturing Technology
Directorate to develop a Platform for the Automated Construction of Intelligent Systems
(PACIS) - a language for building integrated intelligent systems. The question is
what pieces of this work to employ in the short term which enable the demonstration of
'threaded-couplings' of process control and product design, i.e., at SM-ALC the
coupling of OPAL to feature-based design for composites and at the 4950th the
coupling of Rapid Design System (RDS) with self-directed control of end-mill
machining.

These are some of the directions and opportunities before us today. The challenge is
to adapt to what tomorrow may bring.
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