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The principal objectives of our research work (Grant Number AFOSR-87-0342) have been

two-fold. First, we have obtained the tine - dependent behavior of electron swarms in various

atomic and molecular gases using a novel numerical procedure that we recently developed. The

electrons injected in the gaseous source excite and ionize the atoms as well as molecules and, more

importantly, cause dissociation and vibrational excitation of the molecular species. Second, we

have calculated the cross sections and the rate,, f negative ion production via the process of

dissociative electron attachment to various light molecules. We have also investigated, in detail,

the role played by initial rovibrational excitatio- of the molecille in enhancing the rates of

production of negative ion beams. Since the processes of di-,sociative attachment and of

vibrational excitation are complementary in nature (both procc'ed via the formation of an

intermediate resonant anion state), we have also investigated the isotope effect for the vibrational

excitation of molecular hydrogen and its five isotopes. As part of this project we have discovered a

very useful scaling law for these excitation cross sections. Using this scaling property it is

possible to obtain the cross sections for vibrational excitation or deexcitation, by electron impact,

of heavier isotopes of 1-12 from the corresponding cross sections for molecular hydrogen.

During three years of our investigations we made the following specific advances:

(a) Time Dependent behavior of Electron Swarms in Various Gases.

With the ultimate aim of investigating the temporal evolution of the electron velocity

distribution as it attains its equilibrium in a hydrogen source, we have been devising stable

numerical algorithms and developing corresponding computer codes for obtaining the electron

velocity distribution in a general gaseous source. It should be remarked that the procedure which

we have developed 1'2 is general enough in that it can be easily adapted for obtaining velocity

distribution of positron swarms or ion swarms in a gas as long as the relevant collision cross

sections are available. In order to obtain the electron velocity distribution majority of previous

investigators have attempted to solve the Boltzmann equation either analytically or numerically.

Analytical solutions of the Boltnzmann equation have made use of simple model collision cross

sections which, though reasonable, are not necessarily very accurate. The use of actual cross
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sections, either experimentally observed or theoretically calculated, in the Boltzmann equation

forces one to apply numerical techniques for its solution. The procedure used most frequently in

the past is to expand the angular dependence of the distribution function as a power series in the

Legendre polynomials, truncate the series after a few (typically two) terms and solve the resulting

set of equation numerically. This expansion procedure has some inherent problems. For example,

for high values of E/N (the ratio of the applied electric field to the gas number density) a large

number of terms in the Legendre expansion may contribute to the distribution function. A large

number of terms in the Legendre expansion may also be necessary at low values of E/N for a gas

with relatively high inelastic cross sections. Inclusion of a large number of terms in the expansion

can make this procedure computationally expensive and sometimes numerically unstable.

Furthermore, no systematic study of the convergence behavior of the expansion techniques for an

arbitrary gas is available. We felt that i: is desirable to have alternative procedures, espccially the

ones which do not involve any expansion of the distribution function, for obtaining the electron

velocity distribution function in a gas mixture.

The starting point of our procedure is to realize that in the absence of collisions with the

ambient gas particles the electron swarm is accelerated constantly by the applied electric field E in

such a manner that in a time interval At the velocity of each electron is changed by an amount Av =

-eE/m. Thus the difference between f(v,t), the distribution function at time t, and f(v + Av,t +

At), the distribution function at the later time t+ At, must be due to collisions of electrons with gas

particles. (The frequency of electron-electron collisions is relatively small.) Thus one can write

t(v + Av, t+ At) = f(v,) + R(v,O At, (1)

where R(v,t) is the collision term containing all the relevant cross sections. The standard

Boltzmann equation is obtained by simply expanding the left hand-side of Eq. (1) to first order in

At and then taking the limit At - 0. fhus, for the purposes of obtaining the electron velocity

distribution function Eq. (1) is more fundamental than the standard Boltzmann equation and is

Cer,'tainly cor tadonally 'more con-venient than the Botnltmwi equation.

Now choosing the z axis to be along the applied electric field E, the electrons have a
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constant acceleratior along the z direction and zero acceleration in the transverse direction. Thus,

in Cartesian coordinates Eq. (1) is rewritten as

vx, vy, v, - (eE/m)At,t + At] = f(v,, v, vz, t + R(v,t)At -  (2)

Because of the axial symmetry along vz, f is stored in a two-dimensional array only as a function

of vz and vx with the, step size Av given by Av = (eE/m)At The ternporil evohation of the

distribution function then involves, in part, a shifting of the array contanng f along v at each time

interval At This shifting of the array essentially achieves the same effect as the acceleration of the

electrons due to the applied electric field without accumulating any round eff error. This shifting

procedure in itself greatly improves the numerical stability in obtaining the electron distribution

function as compared to the alternative approach of evaluating derivatives numerically in the

traditional solution of the Boltzmann equation. A criterion for numerical stability is that, for each

value of lv, the time step At should be chosen small enough such that the distribution function is

larger than the corresponding collision term R(v,t)At that is,

f(v,r) > R(v,OAt for all v. (3)

By meeting this criterion one can avoid generating physically-meaningless negative values of the

electron velocity distribution function. Interestingly, the standard Courant-Lewy-Friedrichs

condition, namely, that the step sizes Av and At must satisfy the inequality:

(eE/m)At_< Av, (4)

which is a necessary condition for the numerical stability of a partial differential equation is not

necessary ia our case.

A step-by-step procedure for attaining the equilibrium velocity distribution on the computer

is, then, as follows:

Step 1. Start with a given distribution function at time t which is stored in a two-dimensional array

f(vxVz). It could either be an analytical function (for example, a Maxwellian or a

Druyvesteyar or a delta function) representing the distribution function at the starting time t

= 0 or be a numerically generated function at some earlier time to.
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Step 2. Compute the collision terms R(v,.,v,) for each value of v, and v. Multiply the collision

terms by At and add to the distribution function from which they were obtained [see Eq.

(2)].

Step 3. Shift the resulting array along the v, index [f(v,,vz) - f(vx , v, + Av)] to obtain the new

distribution function at the later time t + At.

Step 4. Calculate various swarm parameters corresponding to the later time t+ Atusing the new

distribution :unction. Repeat from step 1 unless the swarm parameters stop changing in

time which indicates that the equilibrium has been reached.

We have used this procedure for obtaining the average energy, drift velocity and ionization

rate for electron-neon1 and electron-argon 2 systems for various values of E/N. The equilibrium

values of various swarm parameters for electrons in gaseous neon for a few different values of E/N

are given in Table I below.
TABLE I

E/N Ionization rate Drift velocity Average energy
(in Td) (in 107 s-1 ) (in 107 cm s-1) (in eV)

141 3.0074 3.1110 15.298
190 4.7470 3.8049 17.176
237 6.7463 4.4547 19.012
283 9.1608 5.0139 20.962
353 12.979 5.8074 23.787
424 17.113 6.5471 26.657
495 21.437 7.2327 29.573
566 26.013 7.8715 32.610

This unique procedure, that we have described above for obtaining the electron eziergy

distribution in a gas, is computationally stable and analyti :ally exact. In particular, this procedure

provides a detailed time evolution of various swarm parameters, such as the average electron

energy or the rate of ionization of ambient gas particles by electron impact etc., whose final

equilibriium values can be experimentally determined. These final equilibrium values depend only

on the ratio of the applied electric field to the gas number density. E/N. and ore independent of the
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initial electron energy distribution function. Receaidy, we also used our innovative procedure for

3obtaining the positron velocity distribution function in various rare gases

The ultimate aim of our investigations is to calculate, in the future, the electron energy

distribution in a realistic mixture of atomic and molecular hydrogen using all the theoretical tools

that we have been developing and numerically testing for noble gases. For this purpose we will be

requiring a critical compilation4 of data pertaining to cross section for elementary processes in

atomic and molecular hydrogen. In the case of noble gases, however, we have discovered that the

transient behavior of any swarm parameter as it evolves to its final equilibrium value depends on

the initial conditions even though the final equilibrium value that the parameter attains is

independent of the initial conditions. 7 ',- -ave further discovered that this transient behavior of any

swarm parameter, A(t), can be accurately fitted by a sum of two exponentially decaying factors as

follows:
A(t) = c, exp a tl t0 + C2 exp (-ct t) . (5)

The decay constants cc, and o2 are determined by the applied electric field. We have noted that a

single exponential function does notprovide a good fit. This observation indicates that perhaps the

initial electron swarm could be regarded as consisting of two components with each component

having its own decay time to reach equilibrium independently. Figure 1 shows the temporal

evolution of various swarm parameters for electrons in gaseous neon, for E/N =- 566 Td., for two

different initial conditions. In this figure, 'diamonds' represent the actually calculated points while

the solid lines are the two-exponential fits based on the above relation. The fitting is indeed

superb. Note that the decay constants c and m2 are the same for all swarm parameters for a given

set of initial conditions.

At the present moment we are attempting to generalize our computer code to include (i)

anisotropic scattering of electrons by target gas atoms via differential cross sections, (ii) a mixture

of gases since a realistic calculation of electron swarm parameters in a aydrogen source must

include a mixture of atomic and molecular hvdrogen. and (iii) electron swarms subjected to time -

dependent electric fields.

q!
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(b) Nonlocal effects in dissociative electron attachment to H2 and its isotopes.

The production of negative ions via the process of dissociative electron attachment to

molecular hydrogen (and its isotopes), e- + H2 - H + H', is known to occur when the incoming

electron and the neutral target molecule form an intermediate resonant anion state, which has the

ability of decaying by autodetaching the electron. The motion of the nuclei in this resonant state is

governed by a wave function (R) which satisfies an integrodifferential equation involving a

complex, nonlocal potential. In solving this equation one can make use of a local approximation in

which one assumes that the set of vibrational levels which are accessible for a given incident

electron energy can be regarded as complete. While this approximation may yield acceptable

values for the cross sections well above threshold, it is expected to be less accurate near threshold

where there are fewer energetically open vibrational channels. During the present investigations

we solved the full nonlocal integrodifferential equation for the nuclear wave function 4(R) near

threshold using a newly developed technique which involves matrix inversion. This investigation

has allowed us to compare the resulting nonlocal attachment cross sections with those that utilize

the nuclear wave function 4(R) which is obtained using the local approximation to the full

integrodifferential equation. Besides providing an assessment of the effect of the local

approximation on the electron attachment cross sections, the present calculations will also provide

cross sections for H' production which are more accurate than previously calculated 5. The nuclear

wave function (R) satisfies the following integrodifferential equation:

[TN(R) + V'(R) - EI (R) = -V(E-Ej,, R)Xvj,(R) - fdR'K(R,R') (R')
(6)

with the kernel K(R, R') given by
V*(P, ' V (c R)

K(RR') = lXvj(R')Xvj(R) n dofdsVEERV(.+R)V~j0 (7)

where TN is the kinetic energy of the nuclei, V- is the effective potential energy in which they move

in the resonant state and E is the total energy of the interacting system. The quantity V(e, R) is

, tcrrdc to as the intertution matrix element, it represents the i.uupiigM betwveen the 'discrctcn
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* continuum states. This coupling leads to an energy shift of the resonance (the principal part

integral on the right hand side of (7)) and provides a width to the resonance (the imaginary part on

the right hand side of (7)) which determines the lifetime of the resonance.

In Figure 2 the nonlocal cross section for attachment to H2 in the J = 0, v = 0 level is

compared to its local counterpart. It can be seen that the difference between the two cross sections

at a given energy is small, on the order of 10 percent near threshold where the difference is largest.

That the nonlocal cross section is larger than the local one reflects the fact that in the local

calculation, all vibrational channels are considered to be open, whether or not they are actually

energetically accessible. The two cross section curves evidently do not merge into each other even

at higher energies because, in the present calculations, excitation of the continuum levels

(corresponding to H + H + e) was not taken into account.

The most significant difference between the local and nonlocal cross sections is the

conspicuous step structure in the nonlocal cross section in the energy range below about 4.5 eV.

This step structure could not be clearly seen in the available experimental data6 since the energy

resolution of the apparatus used was of the order of 0.1 eV. These steps occur at energies for

which a new vibrational channel opens up. Thus, for example, the first step in the cross section

for attachment to H2 in v = 0, J = 0 level at about 3.83 eV corresponds to the opening of the v = 10

channel, while the last is at 4.39 eV, where the v = 13 level becomes energetically accessible. It

might be tempting to attribute the loss of attachment flux at these steps merely to diversion into the

newly opened vibrational channel, but Figure 3 shows that this is an oversimplification. The

opening of a new vibrational level is accompanied by upward jumps in the cross sections for the

vibrational excitation of previously open channels. The magnitude of the upward jumps becomes

smaller as we consider levels farther removed in energy from the newly opened level. The jumps

are such that the sum of all discontinuities, including both in the dissociative attachment and in the

vibrational excitation cross sections, is indeed zero. The disappearance of the step strt .ire in the
local treatent ic -, ,.,s.-ng sic Ue ' -  . .

lctrtn n. r since ,clocal approxination entails replacing the quantity E -

Evj in the denominator on the right hand side of Eq. (7) by the incident electron energy and
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-12-

assuming that the set of vibrational levels over which one sums can be regarded as complete;

naturally, in such an approximation all sensitivity to the number of open channels is washed out.

Finally, Figure 4 shows the peak total attachment cross sections for various rotationless

levels of H2 and HD against electron energy on a logarithmic plot. We have discovered a tight

upper bound on the attachment cross sections in terms of the incident electron energy c =
2k2/2me. The dot-dashed curve on the top represents 1/k2 , which is seen to provide an upper

bound to the attachment cross sections for all six isotopes of H2 for all values of the incident

electron energies considered. This is consistent with an observation of Gauyacq7 that the

dissociative attachment cross section is of the form

(TDA(k) = - Pdet(k)

k2

where Pdct (k), representing the probability that the electron does not autodetach in the resonant

state, is less than unity. In fact, 1/k2 provides a tighter upper bound than it/k 2. Details of these

investigations will soon be appearing 8 in Physical Review A.

(c) Isotope effect in vibrational excitation of molecular hydrogen.

The process of vibrational excitation is closely related to the process of dissociative

attachment in that it, too, proceeds via an intermediate resonant anion state. Using the nonlocal

equation described above, we have also obtained cross sections for vibrational excitation of

molecular hydrogen via the 2Eu+ resonance for electron energies up to 5 eV. Our objective in

studying vibrational excitation has been twofold: to compare, as with dissociative attachment, the

nonlocal cross sections with those obtained using the local approximation and also to examine the

dependence of the cross sections on the nuclear mass (that is, the isotope effect).

Figure 5 shows, as a typical example, cross sections for excitation from the ground level

(vi = 0) to the vf =4 level using both the local and the nonlocal formulations of the theory. The

nonlocal effects are seen to be small here, although differences of up to a factor of two are seen for

excitation of the highest vibrational levels. The prominent feature here, however, is the well-

defined structure in the cross sections which, we emphasize, is by no means a nonlocal effect,
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being present in the local cross section as well. This structure is seen only for electron energies

below the threshold for dissociative attachment and, for excitation from the ground level, is entirely

absent for vf < 3, becoming more pronounced with increasing vf. This behavior is in qualitative

agreement with experimental observations9 , as well as in quantitative agreement with theoretical

results reported by other authors10 . We attribute the peaks in the cross sections to the existence of

singularities in the scattering amplitude in the complex energy plane. These singularities are

associated with the bound vibrati,aal levels of the resonant anion potential energy, and coincide

with them (in energy) in the limit as the level width tends to zero. We have confirmed that as the

width is made smaller, the peaks in the cross section become sharper and occur at values of the

electron energy which approach those at which an anion bound state could be excited. The same

structure is also seen in excitation from higher vibrational levels, and it occurs there for lower

values of vf, appearing in the superelastic cross sections by vi = 2. The exact reason for the

behavior of the structure as a function of vf is, at present, under investigation.

We have also obtained cross sections for excitation from various initial levels to higher

vibrational levels for all heavier isotopes of hydrogen, namely, for HD, D2, HT, DT, and T2. As

part of our research endeavors we have discovered a very useful scaling law for these excitation

cross sections. Using this scaling property it is possible to obtain the cross sections for vibrational

excitation or deexcitation, by electron impact, of heavier isotopes of H2 from the corresponding

cross sections for molecular hydrogen. Now, using separately the potential curves of linear

harmonic oscillators as well as of Morse oscillators to mimic the actual potential curves of the

neutral molecule H2 and its resonant state H2-, we have derived analytically that, in the impulse

limit of a resonance, an arbitrary vibrational excitation cross section ;(v, - vf) is proportioral to

M "Ivi - vf 1/2 where M is the reduced nuclear mass. [The relative masses of the isotopes H2 , HD,

D2 , HT, DT, or T2 are 1.00, 1.33, 1.50, 2.00, 2.40 and 3.00, respectively.] That this scaling law

isbycd quitc , vc ,, by vibrational exi.tatiul wIUbb beutionb (calculated using the actuaipotentiai

curves of H,) and H2 ) can be seen in Figure 6 where the quantity

S
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x(vi-v) r Mx1I - vf/2
aH1 (vi - 0) [MHJ (8)

(with X = H2, HD, D2 , HT, DT, and T2) is shown, for vi = 2 and incident electron energy c = 5

eV, as a function of vf. Our calculated excitation cross sections are in quite good agreement with

this scaling behavior for all values of vi and vf up to and including 5. This is because the resonant

state under present consideration, namely the 2,+ state of H2
=, has a relatively large width (or

small lifetime) and, therefore, can be construed as the impulse limit of the resonance. It is rather

remarkable, as seen in Figure 6, that the above isotope scaling law for vibrational excitation cross

sections of molecular hydrogen is anplicable for cross section values varying over several orders of

magnitude! We intend to write the details of these investigations soon in the form of a paper for

publication in a refereed journal.

Finally, an updated list of all the publications and presentations carried out under the tenure

of the present Grant is provided in the appendices A and B.
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A novel algorithm for calculating the time evolution of the electron energy
distribution function in gaseous discharges

P. J. Drallos and J. M. Wadehra
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

(Received 12 November 1987; accepted for publication 22 January 1988)

We are presenting a novel numerical technique for obtaining the time evolution of the electron
velocity and electron energy distribution functions in the presence of a uniform electric field.
Using this technique, the various swarm parameters can be evolved for sufficiently long times
so that equilibrium can be reached without incurring any numerical instabilities. Results are
presented for electron swarms in gaseous neon for various values of E/N.

In nearly all aspects of gaseous electronics, the electron where a = - (cE/mn) is the acceleration of the electrons of
energy distribution is of fundamental importance. Knowl- mass in due to the electric field E, and R (v,t) is the collision
edge ofthe electron energy distribution finction (EEDF) is term containing all of the relevant cross sections. Now we
usually gained through its relation with the electron velocity multiply both sides of Eq. ( I ) by a finite time interval At and
distribution function (EVDF) which is a solution of the then addf(v,t) to each side which yields,
Boltzmann equation for a given set of collision cross see- / )
tions. The Boltzmann equation can be solved analytically for f(v,t) + At I+Av.V, f(vt) =f(v,t) +R(v,t)At,
an EEDF for only a few simple cases.' In practice, however, (2)
numerical methods have to be used for its solution. In tradi-
tional techniques for solving the Boltzmann equation, the with Av = aAt The terms on the left-hand side of Eq. (2)
distribution function is expanded in the Legendre polynomi- can be combined to yield the final result,
als---either a two-term expansion or a multiterm expan- f(v + Av,t + At) =f(v,t) + R(v,t)At. (3)
sion-and the resulting set of equations are solved numeri- Equation (3) describes the time evolution of the EVDF
cally for the equilibrium EEDF after making some and can thus be used to obtain the time evolution of the
simplifying approximations for the collision cross sections. EEDF and the various electron swarm parameters. Note

However, these expansioa techniques do have sonic in- that Eq. (3) is entirely equivalent to Eq. ( 1 ) and is perhaps
herent drawbacks.' For example, the two-term expansion even more fundamental than Eq. ( 1), as Eq. (3) is a neces-
method breaks down for high values of E/N but works well sary step that one must go through in a textbook derivation
for iow E/N values. The EEDF under high EIN situations of the Boltzmann equation. ' In such a derivation, one wouid
can, in principle, be obtained by taking more ;erms in the normally expand the left-hand side of Eq. (3) to first order
Legendre expansion of the Boltzmann equation. It is not in At, then take the limit At-0 to obtain the Boltzmann
always clear when the multiterm expansion is to be preferred equation [ Eq. ( 1 ) 1. In the velocity space, the collision term
over the two term, norjust how many terms in the expansion R(v,t) in Eq. (3) is difficult to evaluate in Cartesian coordi-
of the EEDF are to be included. The convergence behavior nates, but straightforward in spherical coordinates since the
of a multiterm expansion, especially for high values of E/N, collision cross sections depend only on the electron impact
is also not completely understood. Furthermore, the cross speed v. Thus, it might seem that spherical coordinates
sections, which are adjusted to reproduce the experimental would be the natural choice for evaluation of Eq. (3). In
swarm parameters in a two-term expansion, do not yield the their calculations, Kitamori, Tagashira, and Sakai4 used
same EEDF or the corresponding swarm parameters when spherical coordinates to evaluate the term a.V,f(v,t) of Eq.
tised with a multiterm expansion and vice versa. It would be ( 1 ). This involves derivatives off wth respect to v and 0
desirable, then, to have a procedure forobtaining the equilib- (polar coordinates in velocity space) which must be evaluat-
rium EEDF and equilibrium EVDF that does not involve ed numerically. This procedure leads to strong numerical
Legendre- expansion of the distribution function. Here we instabilities in the EVDF and is computationally expensive.
have utilized a finite-difference scheme, previously used by On the other hand, as we will now show,
Tagashira and co-workers,3' ' in which no expan'ion of the f(v + Av,t + At) of Eq. (3) is extremely easy to evaluate in
EVDF in spherical harmonics is needed and the time evolu- Cartesian coordinates. The acceleration of electrons along E
tion of dhe EVDF io its equilibrium value is obtained expli- (which we choose to be along the z direction) is constant,
citly. Thus, the question of how many terms should be taken and is zero in the transverse directions. Thus, in Cartesian
in the expansion of the EVDF, which is the solution of the coordinates, Eq. (3) is written as
Boltzmann equation, is completely avoided.

In this communication ve present a novel algorithm for f [ v ,vy,. - (cE/m) At,t + At
_i..a.Inn t. n ClwUA0 i ofi EVDF numlcricivTs+O-1 t, , ,. ts~ .. UitU11II 2 I u lrcaly, tits ----J V ,,V,,l,) + R (v,t) At. (4)

is accomplished by beginning with the Boltzmann equation Equation (4) is very well suited forevaluation on a com-
which can be written as puter. Since there is axial symmetry along v,,f need only be

Of(vt ) + a.VJ(v,t) = R (v,t), (1) stored as a fumction ofv, and v. (or vy) in such a way that the
43t velocity increments Av satisfy Av = (eE/m)At. Evaluation
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FIG I Thetimeevolution of various electron swarm parameters in gaseous FIG. 3. The time evolution for various electron swarm parameters in gase-
neon for E/N=- 144 Td. ous neont for E/N - 566 Td.

off in Eq. (4) then merely involves, in part, a shifting of the The resulting array is then shifted along the v, index
arrayf(v0,v, ) along v, at each time interval At. This shifting [Au0 IV.) -ftv0 ,v0 + Au) I and it becomes the new distribu-
procedure accomplishes all the acceleration effects of the tion functions at the later time t+ At. This procedure is re-
electrons due to the electric field without incurring the relat- peated while various swarm paramseters are calculated front
ed problems of numerical instabilities wvhich arise mainly each new distributioni function corresponding to a new time
from the evaluation ofderivativcs. The evaluation of the col- t + At. Equilibrium is obtained when the ssvarn parameters
lision term" in Eq. (4) involves an integral over the polar cea1se to change in time.
angle 0 (in the velocity space) and requires a knowledge of We have used this method to olotaits the time evolutioit
the distribution function at various values ofv and 0, that is, of various electron swarm pa:aineters for the electrois-neon
at various v-0 grid points in the velocity space.This integra- system for various values of E IN. In all of our calculations
tion can be carried out, even thoughifis known only as a we assumed an initial Maxwellias veioctty distribution at
function ofv, and v,by simply interpolatingf(v,v.) to get t=0 and a gas density N of 3.54XI10±1 cm-1 or
fAv,0. 1.32X 10- 3amagat (I Torr at 273 K). Thievelocity steps Au

Thus, the novel algorithsm for evaluating the time evolu- ranged from 2.2 x 10' to 3.4 X 107 cns/s aisd the time steps At
lion of the EVDF is as follows: Startinig from a distribution ranged front 0.064 to 0.032 ins as E/Nwvas varied from 144 to
function at sonie tim (a Maxwvellian at t = 0, forexample) 566 Td. We point out thtat, in practice, At may be chosen to
which isstorcd in a two-dimensional arrayA i.,,v, ) such that
Au = (eE/nt)At, the collision terms R(v,1 u0 ) for each v,
and v. are calculated. These collision ternms are then multi- E/N.566Td
plied by At and added to the distribution function fromt MIAL MAXWELLAN EVDF
which they were obtained in accordance with Eq. (4).

EM = 283 Td
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FIG 2 The timr evolution for %ariouseLmiron swarm parameters in gase- FIG. 4 The intial MNijaeli,,in and finali equilibrium elesiron velocity is,-

ous neon for E/N= 283 Td. tribution function in neon for E/N =566 Td.
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beap-oper fraction ofmAu/eEand only this fraction ofeach Figure 4 shows the initial and final EVDF for the case
element of the EVDF is shifted per tiine step. Such a proce- E/N = 566 Td.
dure is observed to enhance the numerical stability. Another The FORTRAN 77 code which we used was less than 400
criterion for choosing At is that the term R (v,t)Atof Eq. (4) lines in length and required about 500 CPU seconds to reach
be smaller than f'(v,t) for all values of v. Figures 1-3 display equilibrium forE/N =566 Td on an Amdahl 470/V6 main-
the calculated time-dependent behavior of various electron frame computer.
swarm parameters in gaseous neon for three different values The support of the U.S. Air Force Office of Scientific
of E/N. The relevant collision cross sections were taken Research through Grant No. AFOSR-87-0342 is gratefully
from Ref. 4. The equilibrium values of these swarm param- acknowledged.
eters are in very good agreement with those calculated by
Kitamori, Tagashira, and Sakai." We have also noted that
the final equilibrium values of the swarm parameters are
unaffected by the average energy value of the initial velocity L C. Pitchford, Technical Report No. AFWAL-TR-85-2016 (1985)
distribution, although the transient behavior may be some- 1L. C. Pitchford, S V O'Neil, and J R Rumble, Jr, Phys Rev. A 23, 294
what different. For example, an overshoot in the drift veloc- (1981).

itl. Tagashira, Y. Sakai, and S Sakamoto, J. Phys D 10, 1051 (1977).
ity is observed if the initial average energy of the distribution 'K. Kitamorin II. Tagashira, and Y. Sakai, J. Phys D 11, 283 (1978)
function is less than the final equilibrium value of the energy. 'K. ltuang, SatnstcaleAfchanics (Wilcy, New York, 1963), p 57.
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Formation of ground and excited states of antihydrogen

Sultana N. Nahar and J. M. Wadehra
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

(Received 20 November 1987)

Differential and integrated cross sections for the formation of antihydrogen by the impact of
intcrmediate-energy (20-500 keV) antiprotons oi positronium are calculated using the first Born
approximation. The calculations are carried out for the formation of antihydrogen in ground and
various excited electronic states (it = 1-3) when positronium, the target atom, is in the ground state,
and for the formation of antihydrogen in the ground state when the positronium is in various excit-
ed electronic states (n = 1-2). The I/n ) behavior for the capture cross sections is used to calculate
the total (that is, all states added together) integrated cross sections. The cross sections for the for-
mation ofantihydrogen presented here are obtained from those for the formation of positronium by
the impact of positrons on hydrogen atoms by using charge invariance and the principle of detailed
balance.

I. INTRODUCTION Furthermore, the cross sections for the formation ot H by
the impact of protons on Ps are related, by the principle

Because of the recent availability of an antiproton of detailed balance, to the cress sections for the forma-
beam at the Low-Energy Antiproton Ring (LEAR) facili- tion of Ps by the impact of positrons otn hydrogen.
ty at Organisation Europ6enne pour la Recherche Hence one call write
Nucl~aire (CERN), experiments for the formation of one k 2

of the simplest atoms of antimatter, namely, antihydro- ui=a(p +Ps-H +e '-"- u, . (4)
gei (H), are being proposed and planned.' 4 One reason ,,
for the strong interest in the formation of antihydrogen is
its relative stability compared to other exotic atoms such ap, is the cross section for tte process

as muonium, protonium, positronium, etc., which nmakes e++H(nn)-Ps( ls)+p , (5a)
it more suitable for carrying out experiments with antihy-
drogen for various diagnostic purposes. In the present or for the process
work the cross sections are calculated for the formation e H( Is)_Ps(nlm4p .(5b)

of H by positron (e ) capture during the collisions of
intermediate-energy (20-500 keV) antiprotonts () with fk, and hkf are the relative momenta of the positron (in
positronium (I's) using the first Born approximation the initial channel) and the positronium (in the final cha)-
(FBA). Schematically the processes are nel) of Eqs. (5). In the present work, the values of op, for

p+Ps( ls)--H(nlm)+e - (1) the processes of Eqs. (5) for various sets of in are calcu-
lated first, and then Eq. (4) is used to obtain the values of

where im = ls0, 2so, 2 Po, 2 p±i, 3s O, 3Po, 3 P±1, 3d0 , the cross sections (ce) for the formation of arlihydrogen
3d±,, and 3d, 2, and which are now labeled cr,,,.

The coordinate system used for calculating ap, of Eqs.
p+Ps(nhtn)-(ls)+e-, (2) (5) is shown in Fig. 1. It is clear from Fig. 1 that r, (rf)

where in = Iso, 2so, 2po, and 2p±,. The I/n 3 behavior and R, (Rf) are the internal coordinate and the coordi-
for the capture cross sections in the Born approximation nate of the center of mass of the bound system in the mi-
is used to estimate the differential and integrated cross
section for the formation of higher excited states of
antihydrogen starting front the ground state of Ps as welle
as for the formation of ground state of PI starting from
the higher excited states of Ps.

I1. TIIEORY it M - mJ.L \mt,+,,

Following earlier works,2' 3 the cross sections (u ) for _ if
the formation of H by the impact of T on Ps of Eqs. (1)
and (2) are, by charge invariance, the same as those for /,
0h, fnr,_n,, nr tdmh . 'H4 by the impac of pro..s ,. ., ,r
(p) on positronium, that is, * p

Rp

ai=a(T-+Ps-T1+e- )=u(p+Ps- l1+e ) . (3) FIG. I. The coordinate system for the processes of Eqs. (5).
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tial (final) channel, respectively. R locates the incoming where 01(r,) and 6f(r-) are the bound-state wave func-
positron with respect to the proton. Atomic units are tions of H and Ps, respectively. The initial and the final
used throughout this paper unless specified otherwise. interaction potentials V, and Vf are
To obtain the impact energy of the positron for the pro-
cesses of Eqs. (5) corresponding to an impact energy of V,= V(R)- V(rf) , (I la)
the antiproton for the processes of Eqs. (I) and (2), con- = V(R )-V(r, , (I b)
servation of momentum is used. Let E =k /2mt be the

laboratory impact energy of the antiproton of mass mn where V(x)= l/x. The integrated cross section is given
with respect to the positronium at rest. Then the wave by
number kf of the positronium with respect to the station- dci
ary antiproton is = 27r ° I sinOdO . (12)

kf = in ,,k /vip ,(6) .I aIs
S(6) Substituting V, and Vf from Eqs. (II) in the T-matrix

where in , is the mass of the positronium. Hence, in the elements, we get

frame of a stationary antiproton, the energy of the posi- ( of I V(R) I 4 ) - ( VOrf 1  j,)
tronium is k2/(2mi). The wave number k' of the posi-
tron, of Eqs. (5), is obtained from the cons .. ation of en- =N, +N 2 (prioi form) , (13a)

ergy, namely, T = ( Of I/(R) I V, ) - ( Of I V(r, ) 1,

k f2/(2v, J=k/(2v1 )- 1 +e, , (7)I =NI+N3 (post form) . (13b)

where c, and cfare the (positive) binding energies of II
and Ps, respectively. If in is the mass of ai electron (or a These 'I-matrix terms, N1, N2, and N 3, can be evaluated
positron), then v, =m (n +(nP)/(2m +ny' is the re- easily for the cases when only the spherically symmetric
duced mass of the system (e ' +11) in the initial channel states are involved. Such cases, for example, are the for-
and v! = 2mm/,1(2m +inp) is the reduced mass of the mation of Ps(ls) from different s states of 11 of Eq. ,5a) or

system (Ps+p) in tli, final hannel of Eqs. (5). In the first the formation of different s states of Ps from Ills) of Eq.

Born approximation, the differential cross section for the (5b). Complexity arises when the initial or the final

processes (5) is related to the T-iatrix element as bound-state wasc functions in Eqs. (5) are not spherically
symmetric as in the case of formation of Ps in the p or d

du v k 1  1, (8) state or when tie target II is in an excited p state. The
dl- (2- k complexity due to the nonspherical wave functions can be

reduced by expressing the angular dependence of the
where wave functions in terms of derivatives of an exponential

factor exp(i A-r), where the value of the parameter A is
(g 1 V[ , b) us the prior form , (9a) eventually set to zero. In particular, for the processes

f V t) in the post form . (9b) (5a) we introduce a function X,(r) as follows:

X,(nlm,r)=p(nhn,r)exp(i A-r) , (14)

t', and Of are the wave functions for ',he system (e -,H) where p(nhn,r) represents R,, the radial part of the
in the initial channel aiid the system (Ps,p) in the final wave fumnction of hydrogen, multiplied by the constants of
channel, respectively; that is, Y1, the angular part of the wave function. Then the

complete bound-state wave functions c,.(r), of Eq. (10),
$,=exp(ik .R, )0,(r) can be obtained by merely taking the appropriate deriva-

and (10) lives of X,(r) with respect to either A, or AY or 1, and
then setting A=0. As an example, for the 3do state of

Of =exp(ik,.R/)of (rf), hydrogen, the wave function is

5 1/2(3o.01

d(3d°'r)=R3 2 (r) ',2

2A [Yj4 (3dr)/r2]--X,(3d°,r)/3 o , (I5)

A
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where, using the explicit form of R32, mation of various excited states of Ps from IH(ls) of Eq.

(5b). In this case the factor exp(i A-r) is introduced in
p(3do,r)=- 7-r 2 exp(-r/3) . (16) the final bound-state wave function of(r) rather than in

27V6- the initial bound-state wave function ,b(r). Thus after

This kind of trick has been used earlier by Sil el al.6 in calculating tile cross sections for the processes of Eqs. (5),

calculations of charge-transfer cross sections. tile corresponding cross sections for the formation of an-

Let Q1 and Qf be the momentum-transfer vectors in tihydrogen are obtained using Eq. (4).

the initial and final channel, respectively, i.e., It was predicted by Oppenheimer 7 that the cross sec-
tion for capture into any us excited hydrogenic state at

Q,=[nP/(m +P f)]k,-k,, Qi=kj/2-k, 7 high incident energies falls as I/it . Later, Omidvar8

and let p be the reduced mass of the final aton, positroni- showed that the cross section for the capture into s, p,

um of the processes (5). Then the parts of the T-matrix and d states as well as the sum of the cross sections over

elements for the proecEses k5a), upon replacing 0,(r) by lin states falls as I/n 3 in the first Born approximation.

,,(nli,r) of Eq. (14), can be written as There is also an experimental evidence of the cross sec-
tion for electron capture into excited states falling as

N, =(2-,)3'f6f (Q -t)(t)O ( -t-Q, - A)d 3t , (18a) l/ 3 in collisions of high-energy fluorine ions with ar-
I I Qfgon. 9 Hence using the I/ni dependence of the capture

NQ (7. I cross sections of Eq. (1) for the formation of I1n excited
2/1 2 1(Qf)p(-QA , I states (n >_ 4), the total cross section could be written as

N 3 = --(2r)'1/2 (Qf.)J (t)p (-t-Q,- A)d 3t , (I8c) (1 = U1 +U 2 ±O3 n 13+ 11

where the overtilde represents the Fourier transform of 1 + I n + 2

the respective function. For example, the Fourier trains-3
form J(t) of a function f(r) is defined as + + ' . , (23)

J(t)-(2-W 
3'/2fd 3rexr,( -t.r)f(r) .

where
Substituting the explicit forms for the potential V, and
the wave functions $, and Of, the term N, incurs an in-
tegral of the form

I,=(19) o=a2  - +a 2  ¢ , , (24)
f (t-)2+p

2 (t-B)
2+b 2 t2+z2 (

which, upon using the Feynmai, identity, can be reduced +o id,, - 3d,. 2d 2

to a one-dimensional integral as3  and i = 3. The value of the sei ies within the large square

[ 2 dx -brackets of Eq. (23) is 2.0805 for n =3. In the case of
df =IT )20) H(ls) formation from various states of Ps, of Eq. (2), the

= Jo E[F2+(-E +-z)']  
I / rule is used for positronium states n > 3. Hence us-

where E 2=x( I -x)(P-B) 2+xp 2 4-( I -x)b 2  and iig n =2 the value of the series within the large square
F=(P-B)x +B. N2 can be written in a pure analytic brackets of Eq. (23) is 1.616.
fashion. The term N3 involves integral of the foi m

II1. RESULTS AND DISCUSSIONS

[(t-P)2+p
2 12 2+z 2  The present work on charge-transfer processes has

been carried out using both the prior and the post forms
which caii be done analytically to obtain of the interaction. The difference in the values of the

1 T 1 (22) cross sections using these two forms of the interaction

p p 2-( +z)2 (that is, the post-prior discrepancy) is quite small (a few
parts in a thousand). Hence only the prior form of the re-

Integral 13 of Eq. (21) easily follows from integral I, of suits is presented. The n - - behavior for the capture
Eq. (19) by setting P=B and p =b. P, B, p, b, and z of cross sections is used for antihydrogen formation in states
Eqs. (19) and (21) are, of course, related to Q,,Qf and the n ' 4 from Ps(lr) (see Eq. (1)] and for H( Is) formation
parameter A of Eqs. (18a) aiid (18c), In the case of p- from Ps in states n 3 (see Eq. (2)]. The differential cross
and d-state wave functions, N1 , N 2, and N 3 will involve sections (DCS's) for the formation of antihydrogen in all
derivatives wit resc! to !he Cartesia, componertz Uf states tgiound and al possible excited states added to-
A. Note that since 0,,,, is a complex conjugate of gether) by the impact of antiprotons oil positroumum in

,, I,,,, and I T I 2 is use( to calculate the cross section, ground state are shown in Fig. 2 and those for the forma-
the cross sections with both the wave functions (b,, t ,) tion of anthydrogen in the ground state from all possible

are the sam,'. This technique of using the derivatives of states of positrotium are showin in Fig. 3. From Figs, 2
the factor exp(i A-r) for representing the angular depen- and 3 we see that the nature of the DCS curves in these

deuce of the wave functions can also be used for the for- two cases are very similar. DCS curves in Fig. 2 show
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that following the forward peak there is a very shallow Ps in individual states Iso, 2so , 2Po, 2pi, as well as in all
minimum at lower energies that deepens with increasing possible states, using the i - behavior, are numerically
antiproton impact energies while its position stays at presented in Table It and are shown in Fig. 5. All the
roughly the same angle (-24"). At larger scattering an- curves for integrated cross sections in Figs. 4 and 5 decay
gles, the values of DCS's fall smoothly at all energies. very smoothly with increasing j impact energies. From
Similar is the case with the curves of Fig. 3, except that Table I and Fig. 4 we see that formation of the p and d
the minima in the DCS values at lower impact energies states of antihydrogen dominates over the formation of
are more pronounced than those of Fig. 2. The minima any other state at lower antiproton impact energy ( < 50
in the DCS curves arise from the opposite nature (attrac- keV). Iowever, at higher impact energies the formation
tive versus repulsive) of antiproton-positron and of lH(Is) dominates over the formation of all other states.
antiproton-electron interactions; essentially the NI and InI case of formation of H( Is) from various states of Ps, as
the N 2 parts of the T-matrix element [Eq. (13)] cancel one seen in Table II and Fig. 5, the formation from 's(ls)
another. The integrated cross sections for the formation dominates significantly over formation from any other
of antihydrogen in individual states Iso, 2so, 2po, 2pi ,  state of positronium almost at all energies considered.
3s,, 3 Po, 3p,, 3d,, 3d 1, 3d2 , as well as in all possible The use of 1/it behavior of the capture cross sections
states, using the it -3 behavior, from PstIs), are numneri- for the entire range of antiproton impact energies to cal-
cally presented in Table I and are shown in Fig. 4. The culate the cross sections for states it 4 for processes of
integrated cross sections for the formation of H( Is) from Eq. (I) and for states n > 3 for piocesses of Eq. (2) is

ic

+ Phls-- H(Al) + e"' I + Ps(Al) - Hhlsl + e"

10'- icf
ic?100

20 , o"E EQ 30y 'k1,*V
30 ,o e0 k-V

4O0 k*V !500 keY

(50

100 k*V M 10, 2

12 to' 0 0 iO

0 S0 r6o 90O 120 10 to

Scatterno Anole (dea) Scattering Angle (dog)

FIG 2. The differential cross sections for the formation of FIG. 3. The differential cross sections for the formation of
anti ydrogen in all possible states by the inpact of antiprotons antnhydrogen in the ground state by tie impact of anttproions
on Pl's), Eq, 1). The DCS curves between 200 and 500 keV on all possible states of positroniun, Eq. (2) The DCS curves
correspond to sequential increase of Impact energy at aii Iter- between 200 and 500 kcV correspond to sequential increase of
val of 25 keV. impact energy at aii interval of 25 keV.
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found to be quite reasonable. For example, the valuc of formation phasc shifts obtained by elaborate variational
the ratio (it + 1 )3 a,,+1 /113 u, which ideally should be I if calculations. Later, Darewych) calculated the cross sec-
the I A behavior is valid, is 1.54 at 20 keY and 1.07 at tions ror the formation of 1! in states IsO, 2s0 , 2p (all tn,
500 keY for the process of Eq. (1) when it = 2. The same and 3s fromt IS) at low antiproton impact energies uis-
ratio for the process of Eq. (2) is 1.26 at 20 keV and 1.02 ing the first Born approximation (FBA). Since the FBIA
at 500 keY for it = 1. These numbers suggest that the use is not a good approximation for scattering calculations at
of 11113 rule holds relatively more accurately at higher low projectile energies, the present work is carried out in
impact energies tihan at lower impact energies. anl intermediate range of impact energies. However, for

In the earlier works, Neuman el al.1 have carried out a coroputational checking purposes, cross sections at a few
laser-enhanced electron-ion -capture calculation to evalu- lowv impact energics were calculated and it was observed
ate the rate of total recombination for antihydrogen for- that both Ref. 3 and the present work agree veiy wsell for
mation. Humberston et al.2 presented the values of cross the formation of Ri in s states, wvhile the values of the
sections for the formation of MT Is) fromt Ps~s) at lower cross sections for 2 p- (all tin) state formation in the
impact energies using the s-, p-, and d-wvave positronium- present work are much larger than those of Ref. 3. As a

TABLE! The values of tlie integrated cross sections (un for the formation of fil in ground and various esxiied states as welas In

alt possible %tales by the impact of T on Ps(Is) in the incident-energy range of E 20500 kcV. The notation alb] for the values of
the cross sections means a X I0 .

all (0 1' cm2) at various U energies, E (keVI
States E =20 30__ 40 so 75 100 1_25___ 150

ISO 0.104811] 0.4640 0.2302 0.1242 034251-1)] 0.1208 -I1 0 5025[ - 2] 0.2352[ - 2]
2s, 0.2780 0.1109 0.53721-1] 0.28371) 0.7344( -- 2] 0.24381-2] 0.9624[- 3) 0 4315[ -3]J
2po 0.9554 02794 0.9847 -I] 0 3994[ -I] 0.6384 -2] 0.1516 -2) 0.4643[1-3] 0.16971-3]
2p, 0.4057 0.1001 0.3150 -I] 0.11761-I] 0.1643 -2] 0.3593[ -3] 0.1040[- 3) 0.36461-41
3s5  0.1149 0.4015[1- 1] 0.18621-1) 0.96481-2] 0.2439[- 2] 0 7973[ -3 ] 0.3112[-3) 0.13831-3]
3pO 0,3173 0.1009 0.3674[ - 1) 0.15111-1] 0.24291 -2] 0.5741 - 31 0.1747[- 31 0.6345[1-4]
3p, 0.1264 0,3439 -I] 0.11241) 0.42701-2] 0.60421-3] 0.13211-31 0.3813[ -41 0.1333[ --4]
3d0  0.9331 -I] 0.2305 -I] 0.6651[ -2] 0.2241[ -21 0,2451[-3) 0.43591-4] 0.10611 -4] 0.3211[ - 5
3d) 0.59821--I] 0.13231-I] 0.3564[1-21 0.11441-21 0 11571-3] 019611-41 0.4613[1-5] 0.13601-5)
3d2  0.18861-I1] 0.33401-2] 079961-3] 0.2379[ - 3] 0,21491-4) 0 3417 - 51 0 77091 -6] 0.22061 -6]

All 0.5039[1)] 0.1608[1] 0.6393 0,2957 0,6499[ - I] 0.2035[ - 1] 0.78731 - 2] 0 3514f1-21

E =175 200 -_225 250 275 -- 300 325 - 350

ISO 0.12041-21 0.6611J -31 0.3843[- 3) 0.23401-3) 0,1483[ -31 0,97101-4] 065461-4] 045251-4]
2so 0.2131(-3) 0.1136 -3) 0.64381-4] 0.38371-4] 0.23851-4] 0.15371-4] 0.1021[- 41 0,6969[ -5)
2po 0.7069[ -4] 032561-4] 0.1624[1-41 08637-51 0.4848f - 5] 0.2847-5] 0.1737[1-5] 0.1096[- 5)
2

pi 0.1471[ -4] 0.6604[1-5] 0.3225[ -5] 0.1686[ -51 0.93241-6] 0.5405[1-6] 0.32621 -6] 0 20381 -6]
3s(, 0.6786[1-4] 0.35981 -4] 0.20301 -4] 0.12061-4] 0.7478[-5) 0.4808[- 5) 0.31891-5] 0.21731-5]
3po 026291-4] 0.1205 -4] 0.5984 -5] 0.31721-5] 0 17751-5] 0.10391-5] 0.6325[ -6] 0.39811-6]
3p 0.53601-5] 0,23991-5] 0.11691-5) 0.6096[1-6] 0.33641- 6] 0.19)461 -6] 0.1173[ -6] 0.73151-7]
3d0  0.1141[ -5] 0.4583[1-6] 0.20301 -6] 0.9738[1-7] 0.49901 -7] 0.27041-7] 0.1537[ -7] 0.9112[1-8]
3di 0.47291- 6] 0.1864f -6] 0.81111 -7] 0.3822f1-7] 0.1923[-7) 0.1023[ -7] 0.57021- 8] 0.33091 - 8]
3.2 0.74951-7] 0.29011 -7] 0.12441 -7] 0.57911-81 0.2884[1-8] 0.15201-8] 0 84081 -9] 0 48461 -9]

All 0.1740 -2] 0.9323[1-3] 0.5317[1- 3] 0.3190[ -3] 0.1997[ -3] 0.12951 -3] 0.86561 -4] 0.59411-4)

E =373 400 425 -450 475 __ _500

Is0 0.31981--4] 0.2304[1-4] 0,1690 -4] 0.1259[1-4] 0 9512j- 5] 0.72801-51
2s, 0.4369[1-5] 0.3473[1-5] 0.2524[1-5] 0,1864[ -5] 0.1398[.--5 0.1062[1-5]
2po 0.7121[ -6] 0.4746[1-6] 0.3236 - 6] 0.2251[ -6] 0. 1595f -6) 0.11491-61
2PI 0.13121-6] 0.86771 -7] 0.58741 -7] 0.40601-7] 0,28601 -7] 0.2049[1-7]
3so 0.15171-5] 0.1081[ -5] 0.78441-6] 0.57901-6] 0.4338[1-6] 0.32941-6]
Jik 0.25811-6] 0.17161 -6] 0.11681-6] 0.81121 -7) 0,57381 -7] 0.41271 -7]J
3p, 0.47031-7] 0.3106 -7] 0,2100[--71 0 14501-7] 0.1020 - 7] 0.7301[1-8]
3d, 0.5604 - 8] 0,35601-8] 0.23281-81 0.1562[ -81 0.1074[ -- 8) 0.7534[1-9]
3d, 0.1989 -8] 0.1233[ -8] 0.78601-9] 0.5133[1-91 0.34261-9] 0.2332[1-91
3d2  0.2896[1-9] 0.17861-9] 0.1132[1-9] 0.7361[1-10) 0.4893[1-10] 0.33191- 10]

All _0.4173f1-4] 0.2991[ -4] 0.21841-4] 0.1620[1-41 0.12191 - 4] 0.9303[1- 5] 1
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P j+ PS1slls-fHlnd) + a' j+ Pn) -03) ils+ J

10l l0,

1: 10 ...... l

EC 3

2p0 ........

10o 10' 2

... .. .
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Antiproton Impact Energy (keV) An tiprot on impact Energy (keV)

FIG. 4 The integrated cross sections for the formiation of an- FIG. 5. The integrated cross sections for the formnation of an-
tibydrogen in various s, p, and d states (summned over in quail- kibydrogen in thc ground %tate by the impaict of anipirotons on
tumn numbers) by thie impact of antiprotons on Ps~ls), IEq. (1). po troniun in various s and p status (summkned over ;n quantumi
The solid curve corresponds to the total integrated u.e., sumn of iiumbers), Eq (2). The solid curve corresponds to the total in-
all possible n1 states of antibydrogen) cross sections. tegrated (i.e., surn of all possible id1 states of positromni) cross

sections.

TABLE 11. The values of the integrated cross sections (un) for the formnationi of HWIs by the impact
of j5 on ground and various excited states as ssell as oil all possible states of Ps in the incideiit-energy
range of E 20-500 keV. Tlte notatioii alb] for the values of the cross secionis mneans ax Xi10.

Ps staste
all (10" cm 2)

E (keV) ISO 2s, 2
po 2p, All

20 0.104811) 0.1054 0.3934-1 0.10201-11 0.1315[l]
30 0.4640 0.52351-I] 0.1659 -I] 0.4220[ -21 0.5890
40 0.2302 0.2757 -I] 0.7753[ -2] 0.1877[1-2] 0.2933
50 0.1242 0.1539 -I] 0.3896[1-2) 0.8978[1-31 0.1583
75 0.3425! -1] 0.44081-2] 0.88891-3] 0.1854(-3) 0,43411-I1]

100 0 1208[ -1] 0.1572(-2) 0.26221-3] 0.50931-4] 0,15211-1)]
125 0.5025[ -2] 0.6545[ -3] 0.9291[ -41 0.1711-4] 0.62881-2]
I50 0.23521-2] 0.3054[-3] 0.3773[ -4] 0.6665[ -5] 029281-2]
175 0.12041 -2] 0 1555[ -31 0,17021-4) 0.29071-5] 0 1492[ -21
200 0.6611-3) 0.8490[ -41 0.8342[ -5] D.1387[ -51 0.8163[ -3]
225 0.38431-3] 0.4903[1-4) 0.43751-5] 0,7106[ -6] 047291-3]
250 0.2340[1-31 0.29671-4] 0 2427[1-5] 0.38641--6] 0.28721 -3]
275 0.1483[ -31 0.18671-4) 0.1411- 5] 0.2208[1-6] 01814[-31
300 0.97101 -4] 0.1216[ -4] 0 8544[- 6) 0.13161 -6] 0.11861-3]
325 0 6546f -4] 0 8146[ -51 0.5355[1-6] 0.81321-7] 0 7975 -4]
M5 n 45?9[ -41 0 55991- 51 0.34591-61 0.5187 -71 0,55031-41
375 0 31981 -4] 0,3936'1- 5] 0.2295j1-6] 0.34011 -7]i 0.38821-4]'
400 0.2304! -4] 0.28231-51 0.1558[ -6] 0.22851-7] 0.2793( --4]
425 0.16901 -4] 0.2060 - 5] 0.10811-61 015691-7] 0.2046[1-4])
450 0.1259[1-41 0.1528[ -5) 0.7639[ -7]) 0.1099[1-71 0.1522[ -4)
475 0 9512[1-5] 0,11501 -51 0.54921-7] 0.78291- 8] 0.1149[ -4]

-500 0.72801-51 0.8768 -6L04010f1-71 05668-1 s 0 8781 - 5]
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check on the present computer code, thc cross sectionsi 0  keV) antiprotons on positroniumi, in ground and in vani-
for the formation of H, by the process of electron capture ous excited states.
during proton-hydrogen collisions, in state.% Is and 2p ACKNOWLEDGMENT
were reproduced.
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Approximate Green's Functions in Electron
(Positron)- Atom Collisions

The role of approximate Green's functions in electron (positron)-atom collisions
is discussed. It is explicitly demonstrated that the scattering amplitude in various
approximation methods. like the Massey-Mohr. simplified second Born. plane
wave (adiabatic as well as nonadiabatic). Glauber (with and without the Wallace
correction), eikonal Born series (including unitarization) and Schwinger variational
principle, is obtained by mere approximations of the relevant Green's function.
Some of the shortcomings of different methods are pointed out. It is shown that
the Schwinger variational method with suitable choice of trial wave function yields
practically the same values of the differential and integrated cross sections for the
elastic scattering as well as the total collisional scattering for the e-H system as
obtained by the use of the unitarized eikonal Born series method.

Key Words: electron-atom scattering. positron-atom scattering, Green's functions,
approximate methods

It is well known that an exact evaluation of the electron (positron)-
atom scattering amplitude is not possible at present. A number of
approximate methods starting from the Lippmann-Schwinger in-
tegral equation have been developed for an evaluation of the direct
scattering amplitude.' In this paper we will explicitly demonstrate
that most of these approximate methods for evaluating the scat-
tering amplitude employ different approximate forms of the Green's
function. We will also compare somewhat in detail the numerical
results of the elastic and total scattering of electrons and positrons
by a hydrogen atom obtained recently by Byron et al. 2 using the
unitarized eikonal Born series (UEBS) method and by Khare and
co-workers34 using the Schwinger variational (SV) principle.
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The exact direct scattering amplitude for the e --atom scattering
from the initial target state i to the final state f is given by'

ff'(kfk,) = -2" (kf,.fjU (G U)-"-lk,i). f (1)

with
P

fsp
= 2 'q.

n-i

Here k, and kI, are initial and final momenta of the projectile and
U is the reduced interaction energy, that is, U = (2mha) V where
V is the actual total Coulomb interaction between the projectile
(electron or positron) and the target atom. G is the free Green's
function of the noninteracting projectile and target. The Green's
function G' is given by

1 q,rn)(_q,m[
G = S + dq (2)

where Iq) and Im) are the intermediate states of the projectile and
target, respectively, and k2 = k2, - 2(E,,, - E,), E, and E, being
the intermediate and initial target state energies. (We will use
atomic units, that is, h = 1, m = 1 and e = 1 unless stated explicitly
otherwise). The nth term of series (1), f,, is referred to as the
nth Born term and f8p is the pth Born approximation for the
scattering amplitude. The nonconvergence of the Born series for
rearrangement collisions, including the exchange effects, was ex-
plicitly demonstrated by Aaron et al.5 We may remark that the
investigations of Rosenberg 6 strongly suggest that the Born series
for the direct scattering amplitude for the e=-atom system may
also not converge. Furthermore, the evaluation of f8 ,, for n > 1,
is extremely difficult due to the presence of the operator (Go +
L) " -1. The first Born term, f', which does not contain G , is
easy to evaluate. However, it completely neglects the effects due
to distortions of the wave iunctions of the projectile and the target.
The Green's function contains these effects through the interme-
diate states 1q) and im). Different approximations, which have been
developed to obtain ff'(kf,k,) using an integral equation approach,
treat the Green's function in different approximate ways.

V- at ,,LU i J csLia the A- IV I L L L Ja A S1
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second Born term fsz given by

fB2 (kfk,) = -2r- (kf.fIUGJ ULk,,i). (3)

An exact evaluation, either analytical or numerical, of f 2 is an
involved problem. So far only Ermolaeve and Walters7 have suc-
ceeded in this task. Their numerical method has been discussed
briefly by WaltersA

The first attempt for an approximate analytical evaluation of J'82
was made by Massey and Mohr. 9 They replaced k2 by k, in (2)
for all values of m. Then using the closure relation one obtains
the Green's function G1(I1,R'; x.x') = (R.xIGoIR',x', in the
Massey-Mohr approximation given by

GO'M(R.R'; x.x') = G,(R,R') 8(x - x'), (4)

where R and x are the coordinates of the projectile (electron or
positron) and the bound state electrons of the target, respectively.
Go is the free particle Green's function of the projectile only and
is given, in operator form, by

G(.)I, f _q) (qJ dq (5)P kl - q2 + if

Use of (4) and (5) in (3) yields an integral expression for f6 which
does not contain intermediate target states Im) and the integration
over x' becomes trivial due to the presence of the delta function
S(x - x'). Thus, in the Massey-Mohr approximation we have

f- 2M(kfki) = (fjfl (x)Ji) (6)

where fB2(x) is the second Born scattering term for the scattering
of the projectile by a target, in which the bound electrons are
frozen at the position x, and is given by

fa2(x) = -2"rr (kIUGUIk). (7)

It is evident from (6) and (7) that the Massey-Mohr approxi-
mation completely neglects the effects due to the distortion of the
target wave function. Since this approximation assumes the exci-
tation energies to be zero,; i t nst that for the eastic cattern
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the imaginary part of the second Born term. Im f,92 ,. diverges in
the forward direction and. for e z atom elastic scattering, the real
part in the forward direction, Re fB2I,(O), asymptotically goes as
k,- 2 instead of k,- . the correct dependence.'10 A similar divergence
in the forward direction is also observed for s-s excitation, for the
e : atom system, which arises due to the absence of the interme-
diate p states in the evaluation of the second Barn term. To a
certain extent these discrepancies are removed by taking k2~ =

k,- 2A with A as the mean excitation energy. In an average sense
the signature of the intermediate target states are carried to f82
through A. The choice of Al is not unique. Ermolaeve and Walters7 -
have discussed the various options. To obtain better values of the
differential cross sections. particularly for the case with momentum
transfer IKI large in which the higher Born terms play an important
role. a few low lying excited states should be explicitly included
in the summation of Eq. (2). Based on these ideas Halt and
Moiseiwitsch10 proposed to include in Eq. (2) a finite number of
low lying target states exactly and the rest by summing up through
closure. The simplified second Born approximation (SSBA) of
Halt and LMoiseiwitsch, thus obtained, has been one of the most
popular ways for evaluating the second Born term.

An approximation just opposite to that of Massey and Mohr
was attempted by Khare and Shobha" when they evaluated fjn in
the plane wave approximation. They took q2 = k1, in (2). Thus
G'-(R.R'; x,x') reduced to G;,(x,x').b(R - R'), where G+1
the target Green's function, is given, in operator form, by

=8' S m (8)

The prime excludes the final and initial states from the summation;
hence, these states do not contribute to the polarization of the
target wave functions. Use of (8) in (3) yields as the second Born
term in the plane wave approximation.

fB2,(kf~k,) = 2r 2 (kf I UIki) (9)

where

U"P S (fI LIM) (MiIl"i) (0
ap S k2, - k?10
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It is evident that (9) completelv neglects the effects due to the dis-
tortion of the projectile wave function but includes those due to the
distortion of the target wave function. Since the projectile is being
represented by a plane wave in (9). this approximation is referred
to as the plane wave approximation. Up serves as the interaction
potential between the projectile and the distorted (polarized) tar-
get. Note that since (10) does not depend upon the velocity of the
projectile the polarization potential U, is adiabatic. The approx-
imate Green's function, including nonadiabatic effects up to the
first order in the interaction, can be obtained by taking q2 = -

and using

1 I t V1 + k-k2, + V2 k2. - k,2 - MV + k 2) .." 'k2 -,kk' (k2,- k2)- 1

in (2). We note that (V1 + k,) when operating on a plane wave
yields zero. On using this approximate Green's function in Eq. (3)
we obtain

f (kf,k) = -21r 2 (kflU.p + Unaplk,) (12)

where the nonadiabatic potential U,,,p in its Hermitian form is given
by1

2

U,,p(R) = SI VR (fUlLm). VR (m]lii)
(k2 - k,)2  (13)

It is easy to show12 that for elastic scattering the asymptotic form
of the dynamic interaction potential is given by

(Otd  , - 6R1)

Uap(R) + Un.p(R) = - " (14)

where ad and aq are dipole and quadrupole polarizabilities and 3,
is the dipole nonadiabatic coefficient of the target, a result obtained
earlier by Kleinman et al.'3 using a different approach. Although
the plane wave approximation has been successful in explaining
the differential cross sections for the elastic scattering of fast elec-
trons by light targets like hytrnan 12 andi hel;lm14 atom . .s wel
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as hydrogen molecules.'5 it suffers from the defect that fB2, is
purely real. Thus, although this approximation can be used to
obtain the total elastic scattering cross section by integrating
(fB1 + f'2,)2 over all solid angles, it cannot be used to obtain the
total collisional cross section (elastic plus inelastic) which is related
to the imaginary part of the forward scattering amplitude via the
optical theorem. Furthermore, even at very high energies fBI +

f8 2, does not approach f8, for any value of the momentum trans-
fer IKI. In 1959 Glauber 16 employed the eikonal approximation17

of potential scattering theory to discuss the many-particle scatter-
ing process. To obtain the eikonal wave function for the projectile
one introduces a new variable p defined by p = k, - q in (5) and
approximately writes

1 1 p2
I (15)

k2 - q2 + i " 2k'p + iE (2k,'p + iE) (1

If we put only the first term of (15) in (5) we get the linearized
Green's function of the projectile leading to the eikonal wave
function. However, the inclusion of the second term gives the
leading Wallace phase correction.'8 Use of the linearized Green's
function in (1) yields the scattering amplitude in the Glauber ap-
proximation, given by

fG(kf,k) = (flfE(x)Ii) (16)

where fE(x) is the scattering amplitude in the eikonal approxi-
mation for the scattering of a particle by a target atom in which
the bound electrons are frozen at x. Similarities between (11) and
(15) as well as between (6) and (16) are to be noted. If we include
the leading Wallace phase correction,fE(x) changes to fEw(x) given
by

19

fEw(X) =

k. fdzb exp(iK.b) {exp[i(k,-IXo(b,x) + k,"3x,(b,x))] - 1}. (17)
2,;ri

K is, as above, the momentum transfer. The eikonal phase Xo(b,x)
is of first order and the leading Wallace phase correction XI(b,x)
is19 of second order in the interaction potential U. Of course, one
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gets f.(x) on dropping the term containing X,. We note that the
Glauber approximation with or without the Wallace correction com-
pletely neglects the effect due to the distortion of the target wave
function. fG as well as fw. defined by

fw(kf,k,) = (fjfEw(x)ji), (18)

suffer from the same discrepancies as noticed earlier for ft2.. The
scattering amplitudes fa andfly can each be expanded. in a manner
analogous to the Born series, in powers of U to yield the Glauber
series and the Wallace series, respectively. f'a and ft,, will refer
to terms of order n in the Glauber and in the Wallace series,
respectively. However, whereas the Glauber series terms are al-
ternately real and imaginary, the terms of the Wallace series are
complex (for n > 1). Furthermore, at large momentum transfers.
the terms of the Wallace series are nearly equal to the correspond-
ing terms of the Born series. Byron et al. 9 took advantage of the
above property and proposed a unitarized eikonal Born amplitude
given by

fUEBS = fw - f' 2 + fB2 (19)

where fw2 is the second term of the Wallace series. However,
difficulties arise in the evaluation of the Wallace terms .w, (with
n a: 4) of the e!-atom scattering amplitude. This led Byron et al.2
to redefine the unitarized eikonal Born series in the following
manner:

fUEBS = fw - !V + j'm, (20)

where fw is again obtained from (18) except for the difference
that in the evaluation of few(x) the phase term exp[ik: 3XI(bx)] is
replaced by 1 + ik, 3 X,(b,x). We note that the eikonal Born series
as well as the unitarized eikonal Born series include the Jffect due
to the distortion of the target wave function only up to the second
order in the interaction potential through fIn, which is usually
evaluated following the procedure of Holt and Moiseiwitsch.10

Recently Byron et al.2 utilized the UEBS method to obtain the
cross sections for the elastic and inelastic scattering of electrons
and positrons by atomic hydrogen at intermediate and high ener-
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gies. At about the same time Khare and Prakash3 utilized the
Schwinger variational method to investigate the e=-H scattering.
We now explicitly demonstrate that the scattering amplitude in the
Schwinger variational approach follows by approximating the Green's
function in Eq. (1). On splitting the infinite sum in Eq. (1) at n
= p. the scattering amplitude can be written in the following
alternate form:

ff'(kf,k,) = fp - 2-2 (kjfIU(G oU)P (GJU) -Ik,,i), (21)

in which fBp is the pth Born approximation for the scattering am-
plitude. The Green's function appears explicitly in the infinite sums
of Eqs. (1) and (21). Now we make the approximation of truncating
these two infinite sums to finite sums of m terms each and replacing
the Green's function G' in the surviving m terms by a multiple
CG' of the Green's function, with the complex multiplying factor
C to be determined later. On using this approximation for the
Green's function in Eqs. (1) and (21), we get two approximate
expressions for the scattering amplitude which we label as f, and
f2, respectively. These are

fl = CfB,.

and

f2 = fB, + C(:fp,,n -/8,}.

The multiplying factor C is now determined by simply equating f,
and f2, as they would have been the same if the Green's function
was not approximated. This procedure yields

C = (22)fB8. + fsp - fF-A

On substituting this expression for C in either f, or in f 2 above,
we obtain for the scattering amplitude

If I = f.fap (23)L.,P' fBm + fBp - f8,-"
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The same en'russion for the scattering amplitude is obtained 3 if
one takes incoming and outgoing scattvred wvaves correct to (p -

l)th and (n - 1)th order in the interaction potential in the Schwin-
ger 'variatio)nal principle. Khare and Prakash 3 took m =p =2,
replaced fs, by fc. and noting that fq3(O) is zero in the closure
approximation for e=-H scattering,-20 found

_ (81  + f72) (24)

for the scattering amplitude in the forward direction. Tbe use of
(24) along with the optical theorem gave slightly different values
of the total cross sections Qr for electron and positron scattering
at lower impart energies even when exchange was excluded. On
the other hand the UEBS method of Byron e: 71. gave differeat
values of Qre ) only when exchange was included. In Table I we
show the two sets of values which are in good agreement with each
other, particularly for positron scatttering where exchange does not
play any role. For the electron case the difference between the
two sets of values seems to arice mainly due to the exchange con-
tribution. Such an agreement -s not surprising because "f2 (O)] and
fUE~s(G) agree with one another asymptotically up to the order of
k,-3. A comparison ot the theoretical values of the cress sections
for the electrons with the adopted cross sections of de Heer et

TABL.E I

Total collisional cross sections (in AD) for the scuttenng of elcctrons and
positrom, by a hydrogen atom

E(eV) SY' MtEL H

100 6.7/ 6.82 7,04 6.84 6.85
200 4.18 4.18 4.23 t, 18 4.18
300 293 2.93 2.10 307 306
400 2.43 2.43 2.45 2.44 2.43
500 2.03 2.03 - -

&SV are the results of Khare and Prakash (Ref. 3) who employed the Schwinger
variational method. Eq. (23). with mn = p = 2.

tbUEBS are the results of Byron et al. (Refs. 2 and 19) who employed the urn-
tarized cikonal Born series method.

cH are the adopted cross sections of de Herr -r al. (Ref. 21).



al..21 presented in Table I. shows that the agreement between them
is quite satisfactory. It may be noted that de Heer et al. used
theoretical as well as experimental cross sections for elastic and
inelastic processes from various different sources to obtain the total
collisional cross sections.

For a better comparison of the two methods-the Schwinger
variational and the UEBS-one should compare the values of the
differential cross sections rather than the total collisional cross
sections. However, at nonzero scattering angles /83(0) is not zero
and no tractable method is so far available for obtaining Im BA3(0),
which falls as k,- 3. Hence Khare and Latal took m = 2 and p = 1
in (23), replaced Ref8 3(0) by /03(0) and neglected Im f 8 3(0). Thus
they obtained [fzl(0)j which agrees with fUEBs(O) asymptotically
only up to the order of k,- 2. Furthermore. Khare and Lata obtained
the exchange contribution through the Ochkur approximation
whereas Byron et al. obtained the exchange contribution through
a more sophisticated method. Tables II and III compare the two
sets of cross sections for the elastic sca:rzfing of e- by hydrogen
atoms in the energy region of 100 to 4W eV. At the highest impact
energy, that is, 400 eV, the agreement betweae the two sets is very
good. The maximum difference is only 3.6%. However, with the
decrease of the impact energy the difference between the two sets
of cross sections increases. At 100 eV the maximum difference is
about 25%. Such behavior is expected because the scattering am-
plitudes obtained by the two methods agree with one another only
up through terms of order k,- 2. In general the differences between
the two sets of values are relatively larger at higher scattering
angles and both sets of values are smaller than the experimental
values of Williams12 and van Wingerden et al.23 At larger angles
though, IUEBS(O) yields closer agreement with the experimental
data of Williams.22 However, we note that Byron et al. have com-
mented that so far no theoretical method has given excellent agree-
ment with the experimental data of Williams at large scattering
angles. According to Kingston and Walters,24 the data of Williams
are consistently larger at larger angles. Perhaps the same could be
said for the data of van Wingerden et al.

In summary, various approximate forms of the Green's functions
have been shown to give rise to practically all the theoretical meth-
ods used for investigations of scattering of fast projectiles. In their
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latest method Byron et al. have put emphasis on the unitarization
whereas Khare and Prakash based their method on the Schwinger
variational principle. Both of these methods seem to be attractive
and their application to different processes for heavier elements
and the comparison of the resulting cross sections will be of future
interest.
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Exact time-dependent evolution of electron-velocity distribution functions
in a gas using the Boltzmann equation
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A numerical technique, starting from the Boltzmann equation, for obtaining the timc-dependent
behavior of the electron-velocity distribution function in a gas is presented. A unique feature of this
technique is that, unlike previously used procedures, it does not make use of any expansion of the
distribution function. This allows the full anisotropy of the distribution function to be included in
the solution. Furthermore, the problem associated with multiterm-expansion techniques of choos-
ing a sufficient number of terms for convergence is completely avoided. The distribution function
obtained by the present method is exact and, in principle, contains all of the expansion terms of the
previous procedures. Details of the algorithm, including stability conditions, treatment of the boun-
daries, and evaluation of tile collision integrals, are presented. This technique has been applied for
obtaining the time-dependent behavior of electron swarms in gaseous argon and neon for various
values of E/N (the ratio of the applied uniform dc field to the gas density), and the corresponding
results are presented.

I. INTRODUCTION distribution function have involved expansion, usually in
the Legendre polynomials, of the distribution function as

The electron-velocity distribution function (EVDF) is follows:
fundamentally important in virtually all aspects of gase-
ous electronics. The EVDF provides a statistical descrip- f(v, t)= ( f(v,t)P(O). (3)
tion of the motion of all of the electrons in an electron n=o
swarm. The motion of the electrons in the swarm is
affected by externally applied electric and magnetic fields, Often, only the first two terms n the expansion, contain-
and by collisions of the electrons with the particles of the ing fo and f, are retained, and the time derivative of tite
ambient gas. These external forces and collisions cause distribution function in the eoltzmanu equation is set to
time-dependent changes in the EVDF. Stating this pro- zero to correspond to the equilibrium situation. The re-
cess mathematically, let f(v,t) represent the electron- stilting coupled time-independent equations can then be

velocity distribution function at a velocity v, and at a solved for fo and f1 using standard numerical methods.
particular time t. Then, at some later time t +At, the The two-term expansion method, however, breaks down

EVDF call be described very simply by under situations of large E/N (the ratio of the applied
uniform dc electric field to the gas density) or for cases in

f(v+Av,t +At)=f(v,t)+R(v,t)At . (1) which tile inelastic scattering cross sections are compara-
ble in magnitude to the elastic cross sections. The

here, Av =aAt, with a as the acceleration of the electrotns shortcomings of the two-term expansion can, in principle,
due to the externally applied forces. R (v,t)At is the col- be overcome by retaining more terms in the Legendre ex-
lision term which represents the net change in f(v,t) pansion of the distribution function. These multiterm
during the time increment At due to all possible collision methods, however, have their own drawbacks. As more
processes between the electrons and the gas particles, terms in the expansion are kept, the computational com-
Now, if we expand Eq. (1) to first order in At, and then plexity increases rapidly. Furthermore, cross sections
take the limit as At goes to zero, the spatially indepen- which have been adjusted to reproduce experimental
dent Boltzmann equation is immediately obtained: swarm parameters in a two-term expansion calculation

do not yield the same EVDF or the corresponding swarm
+a.Vof(v,t)=R(v,t) . (2) parameters when used in a multiterm expansion calcula-tion and vice versa. Clearly, it would be desirable to have

It is thus clear that the physical content of the a procedure, as described below, which can provide the
Boltzmann equation (2) is entirely equivalent to that of equilibrium EVDF without involving any expansion of
the difference equation (1). Knowledge of the EVDF is the distribution function. Such a procedure, which in-
usually gained by solution of the Boltzmann equation corporates a finite-difference technique, was developed by
and, to this end, many techniques for its solution have Tagashira and co-workers. 2 In their procedure, the dis-
been developed, tribution function was expanded to second order in time

Traditionally, the techniques used for solving the using a standard Taylor series. The various time deriva-
Boltzmann equation for an equilibrium electron-velocity tives of f(v,t) were evaluated by direct substitution from
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the Boltzmann equation, namely, numerical boundaries, and techniques for implementing
the conditions of numerical stability. We will also

f(vt +At)=f(v,t)+ At +O((At) 2 ) present results of the application of this procedure to
at electron swarms in argon and in neon for various values

=f(v,t)+[-a.VJ(v,t)+R(v,t)]At of E/N.
In the present solution, the following finite-difference

+O((At)2 ). (4) equation in Cartesian coordinates for the electron-
Tagashira and co-workers chose to evaluate the distribu- velocity distribution function is evaluated

tion function of Eq. (4) in spherical coordinates in the ve- f(vxvy,v z +Av,,t +At)
locity space, that is, f was stored as a v-0 array, simply
because the evaluation of the collision term R (v,t) is =f(v.,vy,vz,t)+R(u,vy,v2 ,t)At - (5)
most convenient in spherical coordinates. Evaluation of
the a-V, term then involved derivatives of f with respect Equation (5) can be obtained directly from Eq. (1), which
to v and 0. These derivatives, which had to be taken nu- is equivalent, in its physical content, to the Boltzmann
merically by a finite-difference procedure, are prone to in- equation (2). Until the collision terms R (v,t) are known,
stability. It was in order to alleviate this instability that however, Eq. (5) is of little practical use. So, before
Tagashira and co-workers had to retain some of the proceeding any further, we will explicitly define the col-
terms proportional to (At) 2 in the Ta~lor-series expansion lision terms R (v,t) and outline procedures for their eval-
of Eq. (4). In a previous paper, 3 we briefly described a uation.

finite-difference algorithm for determining the exact
time-dependent behavior of electron-velocity distribution II. COLLISION TERMS
functions. A unique feature of our algorithm is that it
does not require numerical evaluation of any derivatives, In order to derive a very general expression for the col-
nor does it make use of any term expansions of t - distri- lision term we will assume an ambient gas of constant
bution function in terms of Legendre functions. The density interacting with a spatially homogeneous swarm
present paper will provide details of the procedure, such of projectiles of arbitrasry mass (for example, either elec-
as the explicit form and evaluation of the collision in- trons, positrons, protons, or ions) A general expression
tegrals, conditions of numerical stability, treatment of the for the collision term in Eq. (5) can be written4

I

R (v,t)= , (N/V2)f o2dvop f Isinldf 2vda vf (v,,t)u,(v,,,p)8(v -gp(vp, ,))-Nvf (v,t)orr(v) (6)
P0 

0

where ap(vp,) is the differential scattering cross section the convenience, with respect to either z or v. These two
for the pth (p =elastic, excitation, ionization, etc.) col- possible specifications of v, lead to the following relation-
lision process, and aT(V) is the integrated total cross sec- ships among various angles:
tion for all collision processes. The function gp(vpM,) is v=v(v,0) , (9a)
deftiued by the equation

V = g'OP, 0) , (7)

which relates, via the energy-conserving 8 function, the 3

initial speed vp to the final speed v for the pth collision = -

process. The integral terms in Eq. (6) represent the rate 7 d/ V
at which the projectile particles are scattered into a VP
velocity-space-volume element d 3V located about v due to P
the pth scattering process and will be denoted by
R +(v,t). The last term in Eq. (6) represents the rate at
which the projectile particles are scattered out of d3v I
about v due to all possible collision processes, and will be
denoted by R-(v,t). Thus I

R(v,t)= - R + (v t )-RT(vt) "
- VxZ

.... o*.,, .tt fl ~tf.A t t vgUS. .Vn llt', L.,ILALt.ll3 AUi 4,,.4. ' V) / i I

are defined in Fig. l and by the following relations: (VxZ)x ,

d 3v=v 2dvsiriO)dOd4 , (8a)

d 3v, 2dvsin(Op(dOpd,= 2dvsin(0)d~da (8b) FIG. I Geometry used in the derivation of the collision
terms. v the v. denote the final and initial velocities, respective-

so that the direction of v, can be specified, depending on ly, and 0 is the scattering angle.
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cos(O)=sin(O)sin(')cos(a)+cos(O)cos( ,), (9b) about (v,0), then has two parts:
io lvO + ,00

vp~vP(VP,O,)=v,(oP,O,0,a) ,(9c) R ".,,O) ion,(uO

and finally, =N f (:L (v , f

f(vpt)= f(v,Op,t)=f(v,O,,a,t) . (9d) E

In order to evaluate Eq. (6) the function g,(v,, 0) must be + N A "°- °,o,(v2,0)sintdti'Y2rf (v,,tOd a ,

specified for various collision processes. For elastic col- I-A o

lisions (p =e, straightforward kinematics yields (12b)

v =v~q(,)=gt(v,,), (10a) where v =(2 /mn+v 2/A)i /  and v 2 =[2 /in-+V2 /(1

-A)] 2 . These two terms correspond to two "ifferent
where q(0) is the following function: ionization events in which electrons of initial speeds v,

q(0)=[(l-Pt2 )1/2 +1cos0]/(l+t1) . (lob) and v2 ionize gas particles. One of tile two electrons
[having energy ratio A/(I-A)] resulting from each of

Here, pi is the ratio of the mass m of the projectile and these two ionization events has speed v.
the mass M of the gas particle, that is, p -- AM. For the In evaluating Eqs. (6) or (12), proper account must be
case in which the projectile is either an electron or a post- taken of the vector nature of v and vp. Although tile dis-
iron (li << 1), q(0) call be simplified to tribution function is symmetric about the axis parallel to

q(,= [1i(I -cos,)] . (lOc) the electric field (the z axis), the polar axis of the integrals
over a solid angle (0,a) is tilted with respect to z and

For inelastic collisions (p =i) the energy-conserving ex- cannot take advantage of the symmetry.
pression for g, is The surface over which tile distribution function in the

elastic part of Eq. (12a) is evaluated for angular integra-
v =(v,2-2g/mn)'/=g,(v,) , 011) tion is represented graphically in Fig. 2. Note that, be-

wich does not depend on the angle t,. g is the energy cause v. depends on 0, the surface is not a perfect sphere
loss associated with the inelastic process. Performing the but an "egg-shaped" surface with azimuthal symmetry
radial vr integrations to eliminate the Dirac B functions about v. More specifically, such a surface is realized by
in Eq. (6), one is left with a two-dimensional angular in- the tracing of the tip of a vector whose length increases
tegral over 0 and a. Because of tie 8 function, v, in the continuously as the polar angle is ve-ied from one pole
integrand, which includes the distribution function f and (0=0) to the other pole (,i='), but the length of the

the collision cross section o, is replaced by v/q(i ) (for vector remains fixed as the azimuthal angle a is varied.
the elastic part) or by (02

+ /,)i/2 (for tie ielastic for a given b, from 0 to 217. The deviation of this surface

part). For brevity in writing and in accordance with Eqs. from a perfect sphere is related, from Eq. (10), to the

(10) and (II), we replace, in the resulting angular in- mass ratio ,u. If the projectile particles are electrons or

tegrals, v/q(o) and (vW+2 /m)' / 2 with v, and v, re- positrons the surface is very nearly a sphere, and very lit-

spectively, so that the fiuial expression for the colhsion tie difference was found on simply replacing v, by v in Eq.

term looks like (12a). However, in order to keep the analysis more gen-
eral and not limit the distribution functions to only those

R (v,t)=  N fo: ar(v,t0Isirn[d bf 0 2 f (v,,Od a

+ IN 'V'u(v)sin.lot 7 E V D) Fl'  Symmetry

X f2 7f(v,,t)da-Nuf(v,t)UT(V) .F

(12a)

So far, the collision integral is valid for any type of pro-
jectile except that the term corresponding to the ioniza-
tion process has to be treated slightly differently when the
projectile is an electron. When ionization is considered.
the final energy of both the incident electron and tile free
electron that is produced via the ionization process must
be properly accounted for. To this end, an electron-
energy partition ratio A/(1 -A) is used, which denotes
the ratio of the available energy that goes to each of the
two electrons (labeled I and 2 helow). The integral that FIG. 2. Surface over which the elastic component of the col-
represents tile rate at which electrons scatter due to the lision term is evaluated. 0 is the polar angle about z, and 0 is
ionization process, into the velocity space element d 3v the polar angle about v.
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of electrons or positrons, we will not make any assump- daries and beyond) remained essentially Maxwellian at all
tions about the relative masses of the gas molecules and later times. Based otn the shape of the distribution fune-
the projectiles. Nevertheless, Eq. (12a) remains valid in tion near but inside the boundary, we extrapolated the
all possible cases including the ones in which the projec- distribution function using the simple recursion relation
tile particles are more massive, such as protons or ions, f(v +2Av)=[f 2(v +Av)/f()]C, where C is a constant
for which the distortion and tilt of the surface would be- that depends on Av. This recursion relation follows from
come very important. the assumed Maxwellian form of the distribution function

Often, the differential scattering cross sections are not near the boundary. The case C = corresponds to the
sufficiently available to cover all angles and energies for logarithmic approximation for extrapolation used by pre-
each scattering process in the system of interest. InI- vious investigators.2 Several tests were made, by chang-
tegrated cross sections, however, call usually be found ing the boundaries, showing that the high-velocity tail of
and may be the only alternative. In this case, or in the the numerically obtained distribution function conformed
cases in which the scattering is not strongly dependent on to this Maxwellian behavior, and that deviation was less
angle, we may make the approximation of isotropic than 1%.
scattering (a does not depend on a'). For isotropic elastic
scattering we replace the differential elastic scattering III. METIIOD OF SOLUTION
cross section ,(v,,,) with a,(vV)/41r, where ',(v,) is
tile integrated elastic scattering cross section. Doing this, For the situation in which the external force on the

the elastic part of Eq. (12) call be rewritten as projectiles (of charge q) is provided by a uniform dc elec-
tric field aligned in tile z direction, the constant

R-+(v,t)=4 fol,(v)sin a fo f(v,,aa . A"L=(qE/m)Atand Eq.()canberewrittenas

f1v,,v,v. +(qE/m )At,t +At)
(i3)

If we assume isotropic inelastic scattering, then the f(v v +

differential scattering cross section for the ith scattering Equation (I5) is well suited for evaluation on a comput-
process a,(t,,(,,) can be replaced by a,(v,)/4r, where er. Since there is axial symmetry around the z axis, f
a,(i, ) is the integrated cross section for the ith inelastic need only be stored as a function os" vz and v, (or v. ) In
process. Also, since v, does not depend on the scattering such a way that the velocity increments Ai, satisfy the re-
angle, the surface of integration is spherical with a con- lation Av =(qE/m)At. Evaluation off in Eq. (15) then
stant radius I,,, and the terms containing u, call be taken merely involves a shifting of the tNvo-dimcnsional array
outside of the angular integral. We call then write f(v,,v,) along v, at each time interval At, and then add-

ing to each array element tile corresponding collisionA+ N 2  ,.0 "2
R,' (v,t)-, va,(v, osingd'0f 2f (v,,tOd a (14a) term R (v,,vz,t)At. This shifting procedure accomplishes

4t fa all the acceleration effects of tl.e projectiles due to tile

Nv 2  0, 2, electric field and is inhei ently immune to round-off error.
-4 U,(v )f sinOdO,,' f(v,,t)do, (14b) Carrying out this procedure will require knowledge of fie

4-,,v 0 Jfcollision integrals for each v, and v. at time t. Evalua-

Nv2  r . tion of these integrals was described in Sec. II, and in-
-- or ,(o (v,,O,t)smOdO, (140 volves an integral over the polar angle 0 (in velocity

V space) and thus requires a knowledge of the distribution

Iu going from Eq. (14a) to (14b) we have made use of the function at various values of v and 0. This integration
fact that the integral is independent of the choice of polar call be carried out, even though f is known only as ,a
axis and we have chosen the z axis (which is the axis of function of v, and v,, by simply interpolating f(V,V.) to
symmetry for the EVDF) as the polar axis, so that the 0 get f(V,0).
integration becomes trivial [see Eq. (8b)]. The algorithm for obtaining the time evolution of the

Another problem that must be considered in the evalu- velocity distribution function is as follows.
ation of Eq. (12a) is that f is stored in a rectangular array (i) Store an initial distribution function (for instance, a
(hi the x-z plane) and has rectangular boundaries, but the Maxwelhan at I =0) in a two-dimensonal array f(v,,v,)
surfaces of integration in the R + terms are nonrectangu- such that Av =(qE/m)At.
lar and sometimes lie outside of the region in which f is (ii) From the existing distribution function, evaluate
known. To handle this problem, an extrapolation pro- the collision terms R (vo,v2 ) for each v, and v,.
cedure has to be devised. Regrettably, extrapolations are (iii) Multiply each if the collision terms by At and add
a risky business, and one call only hope that the relevant to the corresponding distribution function array element
numerical errors will be small. What we did was to set [f(v,,v,)-,f(v,,v)+R (v,,v,)At].
up tile initial (t =0) Maxwellian distribution of projec- (iv) Shift the resulting array along the v, index
tiles (electrons in our actual calculations) so that the [f(v.,v.)-- -f(v,,v,+Av,)] to obtain a new distribution
values of the distribution function near the boundaries function which corresponds to time t + At.
were less than 10- 5 of the peak value so that the bound- (v) Go to step (ii).
ary contributions would fe small. Then we assumed that The procedure outlined in steps (ii)-(v) are repeated
the behavior in the high-velocity regions (near the boun- while various swarm parameters are calculated from the
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distribution function obtained in step (iv) for each time S1 - ftv.260

cycle. Equilibrium is obtained when the swarm paramc- M
tcrs cease to change in time.

IV. STABILITY CONDITIONS

In any numerical solution to a differential equation, W-60
stability is always a major consideration. The procedure -f(v.tt 1)(-)- 1fv
of shifting the array elements along the v, index accom- n

plishes all of the acceleration effects due to the electric
field aind avoids the need to evaluate any derivatives nu- &VntAv"

merically. This procedure in itself greatly enhances the T h
numerical stability of the calculation; however, it is not in
itself sufficient. One of the conditions of stability is a re-
statement of the so-called Courant-Friedrichs-Lewys
(CFL) ccaition and is simply

(aAt)/Av_< I , (16)

where a =qE/,n is, in this case, the acceleration of the i(V-V)

projectiles due to the electric field E. Since f is stored so
that its velocity increments satisfy Av =(qE/m)At, Eq. FIG. 3 Sclieniatic representation of the acceleration pro-
(16) is always minimall) satisfied as an equality. The cal- cedure described in Eq (19), sh wing the iniplementtion of the
culation can satisfy Eq. (16) more strongly by choosing a Courant-Friedrichs-Lewy stability condition

smaller time increment At', which is a proper fraction of
At such that velocities in order to still be satisfied for high velocities.

At'=At/n, Av'=Av/n , (17) If the adiabatic condition, Eq. (20), is not met, an obvious
consequence is that, if an array element of the collision

while leaving a and At' unchanged. Then Eq (5) can be term is negative, the correspondiig array element of the
rewritten resulting distribution function will become negative,

f(v + Av, t + At')=f(v + Av - Av', t) yielding an unphysical result.

+R (v+Av - Av',t)At' V. RESULTS AND DISCUSSION

Sf(v + Av( I - I/n), t) The algorithm described in Sec. III was used to obtain
the transient behavior of the EVDF and of various

+R(v+Av(l-l/n),t)At' . (18) electron-swarm parameters for electrons in gaseous neon

A consequence of using a time step At' smaller than and gaseous argon. The swarm parameters under investi-

At =Aun/(qE) is that the right-hand side of Eq. (18) gation were Vd, (c), and R, which are the drift velocity,

calls for values of f and R from velocity-space locations average energy of the electrons, and the ionization rate of

which are not explicitly stored in the array. We can ap- the gas atoms, respectively. The time dependence of

proximate Eq. (18) into a usable form with some simple these quantities was calculated from the normalized ve-

linear interpolation of the f and R arrays front their locity distribution function, which was obtained at each

stored values to obtain time step. The normalized distribution function F(v,0b,t)
is defined as follows:

f(v+Av,t +At') F( -,t)= f(V, ,t) (21)

= [(n - I )/n][f(v+Av, t)+R (v+Av, t)At'] A (t)

+(l/n)[f(v,t)+R(v,t)At'] . (19) where

The above procedure for rigorously implementing the A (t)=27, foVdoff(v, ,t)sino dP (22)

CFL stability condition is represented graphically in Fig.
3. and

Another condition for the numerical stability requires A (0)=1 . (23)

tion f be larger than the corresponding array elements of The vaious electron-swarm parameters are defined as
the collision term. Restating algebraically, follows:

f(v,t)/[R(v,t)At]>l. (20) =), (24)

This condition can be met by selecting At such that Eq.
(20) is satisfied for all v Experience has shown that the where a,o,,v) is the ionization cross section of the atoms
ratio in Eq. (20) must be of an order of 102 or 10 for low by electron impact:
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Vd= 21rfv2dv f ov sO OF(v ,,t)sin id b , (25) 100 °° ('rON

and 
E/ 566 Td

(c ) = 2r V2 d ?Iv 2F v, tO,t,) s n;6d O (26, 80 [ . ...

By using a normalized distribution function, the total (ms/
number of electrons in the distribution function is kept
constant; this situation is analogous to a steady-state 60
Townsend (SST) experiment. A pulsed Townsend (PT) I

experiment can be simulated by using an unnormalized
time-evolved distribution function, since in such an ex-
periment the number of electrons does not stay constant. 40 <> (eV)
In a PT calculation, the final equilibrium values of the
swarm parameters, obtained from the unnormalized final
equilibrium distribution function, will depend on the ini-
tial conditions. On the other hand, the equilibrium 20 °[ 7.- I'1O sec1)
values of the swarm parameters in an SST calculation are
independent of the initial conditions. For this reason, we -
have chosen to present only the normalized SST results
for various swarm parameters. In each case a Maxwelli- 0
an velocity distribution of electrons was assumed at time 0 1 2 3 4 5

t = 0 and a gas density N of 3.54 X 1016 cm 3 (1.32 X 10-' TIME (nsec)

amagat or, equivalently, I Torr at 273 K) was used. Iso- FIG. 4. Time dependence of various electron-swarm parame.
tro p ic sc a tte rin g w a s a ssu m e d in a ll c a se s . F I G .i . u s n c o T do l ec t a rco r r e -

The convergence of the swarm parameters to their final ters in gaseous ,e on for a/N 566 Td. The data correspond-
equilibrium values occurs more quickly as the value of ag to the solid curves and the dashed curves have l til aver-
E/N becomes larger. For cases in which the E/N sa!ues age electron energy of44 and 20eV, respectively
are small, the time required to reach equilibrium can be-
come large, forcing the calculation to consume more the case in which E/N =35 I'd, an overshoot of the drift
computing time. In cases of small E/N and when only velocity is present and slight undershoots of both the
the final equilibrium values of various swarm parameters average energy and ionization rate can also be seen. The
are of interest, the time-independent two-term expansion undetshoots are not seen in the 72-Td data; however, a
methods may be computationally more efficient (although
the time dependence will be lost). In cases of large E/N,
however, convergence is fast enough so that the time- TIME (osec)
dependent 'calculations described in this paper become 5 10 15 20 25 30

practical with very modest computing resources

A. Electrons in neon

For neon, the velocity s! eps Av ranged from 2.05X 107
to 3.40X 107 ema/sec, and the time steps At ranged from 15 tV(cm psec')
0.1 to 0.02 nsec as the E/N ratio was varied from 35 to
566 Td. The relevant scattering cross sections used in the _
calculations were taken from Ref. 2. Figure 4 displays
the calculated time-dependent behavior of the electron- o ---- ------- -----
swarm parameters for E/N=566 Td and with initial
average energies of 44 and 20 eV. From this figure, it is <C>(eV)
evident that, although the final equilibrium values of the I

swarm parameters are unaffected by the average energy 7

value of the initial velocity distribution function, the 5 ,(10 sec'

transient behavior may be considerably different. For ex- -"- /e
ample, an overshoot in the drift velocity is observed if the
initial average energv of the EVDF is less than the final V
equilibrium value, but the overshoot does not appear if 0 5 10 1-5
the initial average energy is somewhat higher than thL TIME (nsec)
final value.

Figure 5 displays the time-dependent behavior of the FIG. 5 Time dependence of various electron-swarti parame-
electron-swarm parameters in gaseous neon with E/N ra- ters in gaseous neon for E/N =-72 Td (solid curves) and 35 I'd
tios of 35 and 72 Td. The initial value of () for the (dashed curves). The upper and lower time scales correspond to
cases of 35 and 72 Td are 12 and 16 eV, respectively. For the 35- and 72-d data, respectively.
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80 1 , 1 1 1 1 1 1 I
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FIG. 7 Time dependence of various electron-swarm parame-FIG 6. Equilhbrum values of various electron-swarm param- ters in gaseous argon for E/N =565 Td (solid curves) and 283

eters in gaseous neon. The solid circles, open circles, and trian- Td (dashed curves)

gles are, respectively, the equilibrium values of (c), R,, and Id

from the calculations of Kitamori et al. (Ref. 2). "re dashed
lines for the values of E/N below 35 Td correspond to extrppo- were adapted front Sakai et a/. Io by assuming a constant
lated values of various parameters. energy loss of II 5 eV for all excitation processes.

Figures 7 and 8 disptay the time-dependent behavior of
the electron-swarm parameters for E/N ratios rangtng
from 72 to 565 Td. For a given value of E/N, the veloci-

slight overshoot of the drift velocity is present. Whether ty step Av and time step At in the present case are com-
or not these undershoots or overshoots occur depends on parable to those of the neon case. In each of these
the initial value of the average energy of the swarm com- figures, overshoots in the drift velocities are observed and
pared to that of the final equilibrium value. Recently ob- they are most dramatic when the initial average energy is
served 6,7 current overshoots in Ar-Hg and Ne-Hg
discharges, and ionization rate overshoots in N2
discharges, are presumably related to the initial condi- 12
tions of the electron-energy distribution function. eIARGON E/N 72 Td

The final equilibrium values of the electron-swarm pa- 10
rameters as a function of E/N are depicted in Fig. 6, and 1
are in very F ' agreement with the values calculated by % (cm psec1)
Kitamori, Tiagashira, and Sakai.2  The zero-field 8
(E/N =0) values of various parameters can be extrapo- <c>(eV)
lated from the curve of Fig. 6. These values are 6

Vd-0.0cm/sec, R,-*0.0 sec - ', ()--8.7 eV .

The varja:ion in slope of the drift velocity, particularly 4
near the lower E/N values, suggests that the electron R (psec 1)
mobility in neon, which is related to 8Vd/8(E/N), is R'(_se___)\
slightly dependent upon E /N. 1 _._____ ..--_ .......

B. Electrons in argon 0 5 10 15 20 25 30

The cross sections for the elastic scattering of electrons TIME (nsec)

with argon were taken from Massey and Burhop, s and
the ionization cross sections were from Rapp and FIG. 8. Time dependence of various electron-swarm paraine-
Englander-Golden. 9 The total excitation cross sections ters iii gaseous argon for E/N=72 rd.
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30 . . .chosen closer to the equilibrium values as the E/N ratios
were reduced. In fact, the overshoot can be enhanced ore'/ARGON completely eliminated at any E/N ratio by merely adjust-

ing the value of the initial average energy.
Some preliminary analysis of the transient behavior of

the presently calculated electron-swarm parameters (for
both neon and argon) suggests that their time-dependent
behavior can be accurately fitted by a sum of two ex-

15 ponentials. In fact, exponential behavior of the time
dependence of various swarm parameters can be analyti-
cally justified, it- 1 especially for low values of E/IN, by
assuming a constant collision frequency which leads to a

<e> (eV) very simplified collision term.
10 The equilibrium values of the electron-swarm parame-

ters in argon, plotted as a function of E/N, are shown in
Fig. 9. As was done in the case of neon, the zero-field
values of various swarm parameters can be obtained by

S R1(pasec-1 ) extrapolation from this figure; this extrapolation pro-
5 Rcedure yields the following values:
R(10

7
Sec-1) Vd-O.O cm/see, R,-0.0 sec-', (e--5.2 eV

/ The equilibrium values in Fig. 9 can be compared with
0 ------ the values calculated by Sakai et al. 10 In their paper,

0 100 200 300 400 500 600 various expressions used to define the drift velocity Vd
L-IN (Td) were different from the expression used in the piesent cal-

FIG. 9. Equiibrium values ofvarious election-swarm para- culations [Eq (25)]. Thus meaningful comparisons could

eters in gaseous argon. The solid circles and the open circles not be made for that parameter. The expressions for R,
are, respectively, the equilibrium values of () and R, from the and (e) used in the SST condition calculations of Ref. 10

SST calculations ofSakai et al (Ref. iO). were equivalent to the expressions used in the present pa-
per so that comparisons among these parameters are
feasible. Figure 9 shows that the agreement between the

closest to the final equilibrium average energy. That the two calculations is excellent.
size of the overshoot seems to vary inversely with the The unnormalized equilibrium EVDF in argon is
E/N ratio is merely an artifact resulting from the fact shown for two different values of E/N in Fig. 10. In both
that the initial average energy values just happened to be cases the initial distribution function (at t =0) is a spheri-

e-/ARGON

(a) (b)

FIG. 1. Equilibrium velocity distribution function of electrons in argon for (a) E/N =35 Td and (b) E/N =424 Td.
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cally symmetric Maxwellian with (e)=5 eV for function, and in this respect the solution is exact. The
E/N=35 Td and (c)=30 eV for E/N=424 Td. At need for numerical evaluation of derivatives has been
equilibrium, the distribution function retants much of its completely eliminated, which allows for a much more
spherical symmetry for low E/N. For large values of stable solution. The computational algorithm itself only
E/IN, however, the equilibrium EVDF becomes highly involves summing and shifting of various array clem is,
asymmetric, suggesting that the effect of the electric field which can be done without incurring any round-off error;
on the distribution function dominates over the effects of this fact enhances the stability of the numerical pro-
collisions. This clearly indicates that the two-term ex- cedure. Because of the simplicity of the procedure, the
pansion procedure, which retains only first-order devia- calzulation can be periormed with very modest comput-
tions from spherical symmetry, for obtaining the equilib- ing resources. " his is especially true in cases of high-
rium EVDF, would be valid only for small values of E/N values for which convergence to equilibrium is
E/N The present procedure for obtaining the EVDF is much faster than for low E/N.
vali., for any value of E/N, small or large. Although the calculations that are presented in this pa-

The "valley" near the origin (v =0) of the distribution per are for electron swarms in a pure gas, like neon or ar-
function, which becomes very pronounced for large gon, subjected to a constant electric field, other more
values of E/N, is probably due to the fact that very-low- complicated situations can be very easily adapted to the
energy electrons have a very small collision probability present procedure. For instance, the present algorithm
and are quickly accelerated by the electric field to a could be easily adapted to the case in which the electron
higher velocity where they become more likely to have swarm interacts with a gas mixture. Other situations of
collisions. On the other hand, the "upstream" electrons interest include the cases in which the projectile particles
are not as efficiently accelerated into the origin (where are more massive than electrons such as muons, protons,
they would replace those that have been accelerated out), and heavy ions. Furthermore, the present procedure can
because their velocities are already large enough so that easily accommodate the case in which the external clec-
they are inhibited by collisions. ?ric field varies with time, such as an rf field. These other

applications of the present procedure are under current
VI. CONCLUSIONS investigation.

A very simple numerical algorithm has been described ACKNOWLEDGMENTS
which obtains the time-dependent behavior of an
electron-velocity distribution function in a gas. Aside It is a pleasure to thank Professor A. Garscadden for
from its simplicity, the algorithm has many unique and introducing us to this research problem and Professor Ii.
valuable features. Unlike many other methods of solu- If. Denman for valuable conversations. The support of
tion of the Boltzmann equation, the present method does the U S. Air Force Office of Scientific Research through
not make use of any term expansions of the distribution Grant No. AFOSR-87-0342 is gratefully acknowledged.
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Two-center Harmonic Oscillator Matrix Elements of
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Abstract

The matrix elements of various analytical functions f(X), X being the internuclear separation, are
required for the description of transition probabilities and other molecular properties. These matrix ele-
metits can be conveniently estimated by assuming vibrational wave functions of two relatively displaced
linear harmonic oscillators of arbitrary frequencies to represent the vibrational levels of two electronic
states of a molecule. Using this assumption. analytical expressions for the matrix elements of an arbitrary
analytical function f(X) are obtained. Useful recursion relations among these matrix elements are derived
and an elegant graphical representation of the recursion relations is obtained. These graphical representa-
tions arc utilized to obtain new more general recursion relations among matrix elements of the arbitrary
function f(X).

I. Introduction

In describing various physical properties, like the oscillator strengths, the transition
rates etc., of a molecule, the matrix elements of various functions of the internuclear
separation X appear naturally in the formulation. A part of these matrix elements is
normally to be evaluated between vibrational wave functions belonging to two differ-
ent electronic states of the molecule. For small vibrational quantum numbers it is rea-
sonably accurate to replace the actual potential curves of the relevant electronic states
by those of linear harmonic oscillators. For the cases of large vibrational quantum
numbers, where the effects of anharmonicity are relatively significant, one could use
a Morse-type potential to represent the potential curves. If one were then to use the
standard perturbative techniques, with the linear harmonic potential as the zeroth
order approximation, the harmonic oscillator matrix elements of various functions of
X would appear in the correction terms. In a recent paper II1 we obtained closed form
expressions and recursion relations among two-center harmonic oscillator matrix ele-
ments of some definite functions of X. The two linear harmonic oscillators (LHO)
were assumed to have arbitrary frequencies and equilibrium positions. The functions
of X considered earlier (I] were the exponential, Gaussian, and powers of X. In the
present paper we will generalize the earlier results to include any arbitrary analytical
function f(X) which could be expanded as a power series in X.

The use of linear harmonic oscillator wave functions in obtaining the Franck-Condnn
overlap integral dates back [2) to 1930; however, there has been some recent interest
[3-51 in obtaining analytical expressions as well as recursion relations among the

V 1990 John Wiley & Sons, Inc. CCC 0020-7608/90060797-13S04 00
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two-center harmonic oscillator integrals of arbitrary functions of X because of their
possible applications in molecular physics and vibrational spectroscopy. Two impor-
tant conclusions reached previously [I] will be of interest in the present discussion.
First. the two-center LtO matrix elements of X-dependent functions like the exFonen-
tial texp(-aX) and the Gaussian [exp(-3X 2) could be obtained from the corre-
sponding Franck-Condon overlap integrals by a simple scaling procedure Second,
the two-center 1.1to matrix elements of powers of X (the Franck-Condon overlap inte-
gral is a special case of these corresponding to X0) satisfy four- or five-term recursion
relations which can be utilized for rapid evaluation of various matrix elements. We
will show below that the two-center 1.tO matrix elements of an arbitrary analytical
functionf(X) also satisfy some simple recursion relations and, furthermore, these re-
cursion relations can be represented in an elegant graphical manner The graphical
representation of these generalized recursion relations will be used as an aid in ob-
taining new general recursion relations which are also valid for any analytical func-
tion of X.

II. Arbitrary Function f(X)

In the present notation (X I m) is the wave function of the mth level of the harmonic
oscillator associated with the potential V, = / v

2/ 2, and ((X In)) is the wave func-
tion of the nth level of the harmonic oscillator associated with the potential
V2 = uow2(X - X0)

2/2. Xo is the separation between the two oscillators and. for con-
venience, define cwo = h/(pX2). The wave functions (XIm> and ((XIn)> of the two
harmonic oscillators are written :n terms of standard Hermite polynomials H1, and H,
Note the analogy of the present single and double ket notation (for example. Jill and
In))) with the standard single and double prime notation which is used to distinguish
between the vibrational eigenfunctions belonging to the two different electronic states
of a molecule. For convenience, define a = [2w,/(o, + W2)1"

2 . b = [20/(w, +
and c = [(ao, + o2)/2wo " 2 Using the LifO wave functions, the matrix element of the
arbitrary function f(X) can be written as

(mif(X)Ii)) J (2,.')-"2 exp [ , ,. H f (x)-- t \ o oJ L 2o0X J H, L \woI XoJj
4 ,en(X - H ) [ 2('wA"Xx )"'exp[ - ]H ,,,x x

(2i . 7 x p1  2wX0  W [~Oo X0 J

N, - 12fdu

where, in the last step, the integration variable has been changed from X to dimen-

sionless u as

u [((u, + w2)/(2wo) .X/Xo = c X/X
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and

N_= ,w) ( + &)2)2 'm~t' ni']" 2 CXP{-w 1(2 [2w0(w1j 4+ cj}

= (ab/(2'*m ni!)]"' exp(-(ahc/2)2
)

Applying the recursion relation for Hermite polynomials, Eq. (A 1), to either H(au()
or Hj[b(ut - c)] in Eq. (1) yields, respectively,

2ac(mIXf(X)In)) = [2(mn + l)j"'X0(tn + lIf(X)In))
+ (21n)"2X,(in - I If(X )In)) (2a)

and

2bc(mI(X - Xo)f(X)nX) = [2(n + l)]"Xo(,If(X)Fn + W)

+ (2,i)"X 0(nzif(X)lIi - I )) (2b)
Using, in the integrands of Eqs. (2),

14 exp[-(u, - y)2] =-l/2(ddu) exp[ -(u - y)'] + y exp[ -(u - y)2]

with y = b 2c12. then performing integration by parts and the necessary derivatives
[using Eq. (A.2)], we obtain two independent recursion relations for the matnx ele-
ments off(X):

Xo(ml Idf(X)/dXln)) = (2(mi -- 1)]112 (c/a)(m + lIf(X)In))
+ (2m)i0(c/a) (I _ 02)M (_ - If(X)In))

- (2n)"'bc(mnf(X)In - 1)) - b 2C2(Mjf(X )n)) (3)
and

Xo(rnIdf(X)/dXIni)) = (2(n +- l)V'N(c/b)(nIlf(X)In 4- 1))

+ (2n) 12 (c/b) (I - b*)(mjf(X)fn - 1))

- (2m) 1
2 ac(m - I If(X)In)) + a 2C2(rnlf(X )In)). (4)

Equations (3) and (4) are independent and can be combined to obtain two additional
recursion relations [which are not independent from (3) and (4)]. These four relations
are generalizations of the recursion relations for two-center Lito Franck-Condon over-
lap integrals obtained previously by Ansbacher [61 and Manneback [7). The relations
of Ansbacher and Manneback are obtained by setting f(X) = constant in (3) and
(4) above.

An arbitrary analytical function f(X) can always be expanded in a Taylor senes,
so that

M() = (5)

where f(4(0) denotes the Ith derivative of f(X) evaluated at X = 0. Operating on
Eq. (5) with (mlj from the lett and In)) from the right, a simple expression for the ma-
trix element of f(X) in terms of the matr- -lements of X' is obtained:
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(ml (X~n Z = - (miX'In)). (6)

1- 0 I

On using the closed form expression for the matnx elements of X, given by Eq. (A.3),
the matnx elements off(X) can finally be written as

I t F,. l V t1 [ 1,2
r"fP L r 2 "m!tn! 1(mlf (X)In)) = >Zf (0), 2-,,

o (c) P -0 I.o m - p)!(n - q)!j
a1-0 tp-, (2c)'c(a Pb" -t)-P-U ( ib'c

x 2 / (m - pin - q)). (7)

p!q!(I- p - #

The notation Fa, b refers to the smaller of a and b. The overlap integral
(m - pin - q)) can be easily obtained from Eq. (A.4).

II1. Graphical Representation

Two different kinds of recursion relations are obtained above for the matrix
elements off(X). One type of recursion relation relates a single matrix element
(mif(X)In)) (m and n refer to the vibrational quantum numbers of the two oscilla-
tors) to a linear combination of matrix elements off(X). Equations (2a) and (2b) em-
body such recursion relations. In the other kind of recursion relation, which are ot
interest to us here, a single matrix element of df(X)/dX is expressed as a linear com-
bination of matrix elements of f(X). Equations (3) and (4), which are eAamples of
this kind of recursion relation, can be further generalized by writing the arbitrary
function f(X) as the !th derivative of another arbitrary analytical function g(X), that
is,f (X) = 8(X):

Xo(mtig"')(X)In)) = [2(m f- l)]"(c/a) (m + lg('(X)In))

+ (2m)"
2
(c/a)(! - a2) (m - lIg"(X)In))

- (2n)f'bc(mIg'((X)In - 1)) - b2c2 (nfg'(X)In)) (8)

and

Xo(mIg'"(X)In)) = [2(n + l)]J'(c/b)(m~g(l(X)In + 1))

+ (2n)'(c/b)(l - bZ) (mIg('(X)In - 1))

- (2m)"'ac(n - llg (X)In))+a2 c(n;g"(X)In)). (9)

Generalized recursion relations (8) and (9) are shown graphically in Fig. la and b,
respectively. Each solid circle in this figure represents a matrix element (depending
upon m, n, and ) in the recursion relation. Here, I is the order of derivative of g(X)
with respect to X. A similar graphical representation of the recursion relations for the
Franck-Condon overlap integrals [which are obtained by setting g'°(X) = constant)
was presented by Manneback [7]. Note that in Eqs. (8) and (9) matrix elements of
different orders of derivative of g(X) are mixed and, therefore, in reality the various
terms in these relations represent matrix elements of different functions of X. A re-
cursion relation that does not mix matrix elements of different derivatives of a func-
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n n

(a) (b)

t I

(C) (d)

Figure I Ile recursion relations of Eqs (8). (9), (11). (12), and (10) are represented
graphically in a, b, c. d. and c. respectively m and n are the vibrational quantum numbers
of the two linear hartmonic oscillators, and Iis the order of derivative of the arbitrary func-
tion g(X) with respect to X Each solid circle represents a single mains element appearing in

the recursion relation,

lion of X, making it truly valid for matrix elements of any analytical function of X. is
easily obtained by combining Fig. la and b and eliminating points labelled I in the
figures. The resulting five-term recursion relatio)n is represented graphically in
Fig. le, and it corresponds to the following equation:

(2)tabc(mjg"o(X)jf)) = b -{[(m + 1))"(m + ljg50 (X)I,i))

. I in_

-a { [(n + l)jO(mjgO(X)jn + 1))
+ (n)"'(mjg('"(X)jn - Iffl . (10)
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In this relation, both of the indices (m and n) of the matrix elements vary. The rela-
tion (10) is also a generalization of the so-called "diamond" relation [8] for one-center
1.to matrix elements of arbitrary functions. We note, in passing, that relation (10) is
also obtained by combining Eqs. (2a) and (2b).

Sometimes one needs [9] to have a recursion relation, such as relation (2), in
which only one of the indices (either m or n) vanes and the other index remains con-
stant. To derive alternate recursion relations of this kind, we first obtain Fig. Ic and d
by combining Fig. la and b and eliminating the points labelled 2 and 3, respectively.
The two relations obtained in this manner are merely alternative forms of the recur-
sion relations (8) and (9) and do not contain any information that is not already in (8)
and (9). The algebraic expressions for these alternative recursion relations corre-
sponding to Fig. Ic and d are, respectively,

Xo(mjg"(X)ln))= [2(m + l)]'0 ac(m + llg I(X)ln)) - a2c2(mig "(X)ln))
+ [2(n + l)] 1 (c/b)(I - a-)(mjg (X)jn + I))

- (2n)Ii 2(c/b)(mjg('(X)[n - 1)) (1)

and

Xo(mg*""(X)jn)) - [2(n + l)]"2 bc(mjg('(X)n + 1)) + b'c'(mlg (g)ln))

+ [2(m + )]0"'(c/a)(l - b 2)(m + Ilg()tn))

- (2m)" 2(c/a)(m - ljg(I)(X)[n)). (12)

Next the points labelled 1, 2. 3, and 4 of Fig. Ic are eliminated using point 2 of
Fig. lb successively. Figure 2 depicts this elimination procedure. The resulting fig-

t• im

2gure The grapi iai did ued for dclaezvg tie l"etuiviu l:idiuol 3 n,,
ments of the arbitrary function g(X) The shaded portion encompasses the matrix elements

that appear in the denved recursion relation
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ure. which is in the form of a triangle lying completely in the n-1 plane with mn fixed,
represents a nine-term recursion relation in which the matrix elements of different
orders of derivative are still mixed. The resulting algebraic expression for ihis rela-
tion is

-b'("1C2(,~g1*2)n))+ b3(X0/C) (2n)l12(nIgUi ''In _ I))-

b3(Xo/c) 2(it - l)112(inIg'"n +li 1i)) +

2(l - a 2) n(n - I )V2(nIg cin - 2)) - a'bc(2n)'(rnIg("In - I)) +

{-a'b 2c' - 2(2n + 1) + 2ab(,nt + it + l)}(ingIn)) -

a 4 c[2(n + l)]",2(?nIg"In + 1)) +

2(l - a2) [(nt + 2) (it + 01 )I(inlg In + 2)) = 0. (13)

The same procedure of eliminating four tertns of Fig. Id using a single point of
Fig. Ia repeatedly can be used again to obtain the following riineterm recursion rela-
tion with it fixed and in and I varying:

+ a(X 0 )(inIgU+
2'in)) + a3(Xo/c) (2,n)"(in - lIgU

1 'i)

a3'(X 0 )[2(mI + l)]"2(in + lIIg'1. n))

2(0 - b2) [~inm -I)]",
2(in - 21g In)) + ab'c(2nz)f 2(in - lI g"In)) +

{-a~b'c- - Mi2n + 1) + 2a~b2(, + 11 + l)}(ntIg'i1n)) +

ab'c[2(,n + l)"(n+ lIg"'In)) +

201 - b2) [(in + 2) (in + I)"(n+ 21g"'In)) = 0. (14)

IV. Special Cases

Trhe above general results can be presented in simplified forms for some important
special cases,

Case I

For w (u, = co but X0  A 0 [a =b =I and c = w/olji the most general mia-
trix element can be written as

(inIf(X )In)) = E f (0 ) (L O 2PU +0 L(,t - ) it - q !

X (i"P1H__(c2 (in - pin - q))
p' q1(U - p -#

with

k, (mn - k)! (it - k)! ~ k~c~)c)~I (

The recursion relations of Eqs. (8) and (9) become

- 2i)"'c(iniig"(X)iii 1 )) - c2 (ing"'(X)in)) (16a)
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and

Xo(mjgI' 21(X)In)) = (2(n + I)]'"c(njjg('1(X)tn + 1))

- (2,n)"c~m - jlg(O(X)ln)) + c"(rnig"(X)in)). (16b)

The recursion relations of Eqs. (13) and (14) become

+(X c)'mjg"')n))+ (X0/c) (2n)"'(mjg1' 1Ijn - 1)) -

(X0/c)t2(n + l)]II
2(mjg(*I)jn + 1)) - c(2n)"I(mjg("jn - 1)) +

(2(m - n) _ c2} (M~g(9,z1)) - c{2(n + I)]U(nig 11 n + N' = 0 (17a)

and
+(XC)2Mjg'2'n))+ (Xo/c) (2m)"'(m - llglIjn)) -

(X0/c)(2(m + 1))"'(m + llg(II)jn)) + c(2m)"(m - 11g(Oln)) +

{2(n - ni) - c2}(mig1'ln)) + c{2(rn + 1))"(m + ljg10Jn)) = 0. (17b)

Case 2

When cul is not equal to (02 but X0 = 0 (that is, (Xo/c)2 = 2h{A(j+ c02)) and
c = 0], the two-center harmonic oscillator matrix element of the arbitrary function
M() becomes,

(ml!(X)I~) ~fa)() V2 r-.11 r .I-pl
1-0 2±(o+ )) P.O q-0

2P';m! n! V2 apbo m pIn q))

with
(m I ) =N_ I(2ab)*(b 2 

- 1)7-)(a2

(18)
Only those terms in the triple sum [over 1, p, and q] for which (I - p - q) is an even
integer contribute to the sum. Also only those terms in the k sum for which (n - k)
and (m - k) are even integers contribute to the overlap integral (m I n)). The recur-
sion relations of Eqs. (8) and (9) reduce to

a(X0/c) (mjg 1'1(X)Ii:)) = 2(m + t)]"2(m + ljg"f(X)jn))

+ (2m)"12( I - a2)(on - I Ig~(X)jn))
- (2n)"'ab(nzfg10(X)In - 1)) (19a)

and

b(X0c)(jg"'(Xjei) =[2(n + I)I"(mjg'1(X)In + 1))
+ (2n)"'(1 - b2)(mlg 1 (X)In - 1))

- (2m)"'ab(m - lhg '(X)oz)) 019b)
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The recursion relations of Eqs (13) and (14) reduce to
~ b(X/c(ilg'V1in)+b~X,')(, 2(u111g,11111 - 1))-

2(0 - a,2) [,(n -I)'(ig'a- 2)~bX/)[(i+I)'(ng 1 1 +I

{-2(2n + 1) + 2a'b 2(Oi + n + 4-}(~gi)

2(0 - a 2) [(1, + 2) (n + I )]I2(Injg,1,n + 2)) =0 (20a)

and

+a2 (X,/cZ(z~gU "In)) -I- aVOX0 c) (2:n)' n - lig' U-In)) -

a '(K/) [2(in + 1 )]1,2(n, + I gdl I In)) +
2(0 - b2) [n(in - 0)11(Piz - 21gljn)) +

{-2(2n + 1) + 2a~b (in 4- nz + )(injg"'In)) +
2(0 - b2)U[in + 2) (I: + l)]"2(Pn + 21g Ini)) = 0 (20b)

Case 3

In the case in which w, ) w as well as X0 = 0 the two wave functions (XI in)
and ((Xj Ia)) belong to the sane Lio, and the single-center matrix element of the arbi-
trary functiorifX) simplifies to

(MlfIPO ) = :Sf" () f,p

2P ,in! n 1,2 (21)
(, ! #- p)l q1 q t, pq

where the Kronecker delta represents tlie overlap integral (in - p In - q)) Analyti-
cal expressions for single-center hiarnmonic oscillator matrix elements for a few defi-
nite functions of X have been obtained previously 1101. The reduction of Eq. (2 1) to
those expressions has provided a useful check on the present work The recursion re-
lations (8) and (9) also simplify to the following three-termi relations:

(XO/c) (?ng(" (X)In)) = [2(in + I )j" 2(in + I g"(X )In)
- (2n)''2(nIg IX In - W) (22a)

and

(X0/C) (mjg 1 1 "()In)) = [2(in + I )I''(ozg')(X )In + )

_- (21n)" 2(in - hig" 1
0n) (22b)

The recursion relations (13) and (14) siinDlifv to ihe followinp foiir-icrm relations

+(X~c,(~g, I))+ (X 0 )(2n) 2(,njg"~'"In - )

(X0/c) [2(n + I)"(l''j:+ 1)) + 2(m~ - iz) (nig(In,)) =0 (23a)
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and
S+ (Xolc)2(inl, 21i)) + (Xl,') (2,n)":(mn - I Ig *'jn")l) -

(A'0/c)[(2(in + I]'"(in + lig"'"'n)) + 2(-in + ,)(,,lg"i1i)) = 0. 123b)

Case 4

Consider the case in which all three w,. w. and Xo, are nonzeio such that , 0 WO
and b > (oo/w 2). It follows from Eq. (7), on taking the limit b" > (wo/w 2), that

(nilf/(X)tn)) - (in I n)) .f.(b -,x/2) . (24)

Note that this scaling property is valid for any arbitrary analytical function f

V. Discussion and Conclusions

In this paper we have derived a closed form expression. Eq. (7). for the matrix cle-
nient of an arbitrarv analytical functionf(X) between the vibrational states belonging
to two distinctly separated linear harmonic oscillators of different frequencies. We
have explicitly verified that for the cases where f(X) is a definite specified function
like an exponential. a Gaussian or powers of X, the expression (7) reduces to the pre-
viously derived analytical expressions [I. Il1 It essentially provides a useful check
on the correctness of the prsent work. For the case of diatomic molecules, various
matrix elements obtained above by using one-dinensional harmonic oscillators could
be used in a straightforward manner. For the cases of polyatoic molecules, on the
other hand, one will have more degrees of freedom and it would be necessary to use
two or more dimensional oscillators. Even in such cases, as long as the relevant func-
tionsf are separable in Cartesian coordinates, the matrx elements off can be evalu-
ated using the techniques presented above. In particular, for a function f which is
separable in Cartesian coordinates x. y, and :, a general matmx element off will be-
come a product of three one-dimensional matrix elements, one each for v, ', and :.
The recursion relations outlined above will, then, be valid for any one of these one-
dimensional matrix elements.

A number of recursion relations IEqs (2), (8)-(14)) among the matrix elements of
the arbitrary function f(X) and its derivatives are presented. It should be noted that
relation (10) can be used for obtaining the matrix element (nilf(X)ln)) for any in and
n from a knowledge of merely two numbers (Of(X)10)) and (0f(X)l)) (or
(0Jf(X)l0)) and (If(X)I0))). Indeed the numerical merit of this procedure is that one
needs to evaluate only the two lowest-order (and, therefore, the simplest) matrix ele-
ments using the time-consuming summation form (7) One can then utilize the recur-
sion relations for rapid evaluation of any higher-order matrix element (nif(X)In)).
Furthermore, the relations (2), (8), (9), (11), and (12) can be used judiciously for
quickly obtaining the matrix elements of other functions of X once the complete ma-
trix (mlf(X)ln)) has been determined for a certain definite function f The recursion
relations (2), (13). and (14) are useful in cmimimmf, wh-re o'ne eed a recurs:,n re!a-
tlion in which one of the vibrational quantum numbers, either in or n, stays fixed.
Such situations arise, for example, in investigations of vibrational spectroscopy 191.
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As an application of the recursion relations derived in this paper. we have calcu-
lated 191 the resonant vibrational excitation (%,, -. v,) of molecules Li, and N, by in-
pact of low energy electrons. In the resonance model, the projectile electron forms an
intermediate autodetaching molecular anion state which decays into a vibrationally
excited molecule after the detachment of the electron. In the sinple model that we
used 191, the potential curves of the neutral molecule and of the intermediate resonant
anion state were replaced by those of two one-dimensional harmonic oscillators of ar-
bitrary frequencies and equilibrium separations. The vibrational excitation amplitude.
then, involved matrix elements of the resonance width function between vibrational
wave functions of the two oscillators. Using the results obtained in the present paper,
we obtained recursion relations among vibrational excitation amplitudes such that
when the amplitudes for the transitions (0 - 0) and (0 - I) were known, then exci-
tation amplitude for any other transition, inelastic or superelastic, were easily ob-
tained by simple use of recursion relations. This simple model, involving the
recursion relations among the linear harmonic oscillator matrix elements, was able to
account successfully the experimentally observed 1131 spectacular peaks in the cross
sections for vibrational excitation of N2 by low-energy electron impact.

Finally, we comment briefly on the possible usefulness of the present results. As
mentioned in the Introduction, the matrix elements of various functions of inter-
nuclear separation X are relevant in the discussions of molecular spectroscopy. For
the cases of those diatomic molecules whose potential curves are accurately known.
these matrix elements could be computed numerically using the actual potential
curves. However, for those molecules for which the potential curves are not accu-
rately known-this includes many diatomic molecules and the majority of poly-
atomic molecules-the replacement of actual potential curves by those of linear
harmonic oscillators or Morse oscillators is a reasonable approximation 114]. Two-
center linear harmonic oscillator matrix elements can then reasonably approximate
the required matrix elements for low-lying vibrational levels and can provide impor-
tant correction terms for high-lying vibrational levels. It is appropriate to remark that
if one were to obtain the anharmonic correction terms for the linear harmonic oscilla-
tor by simply expanding the rotationless Morse potential, the integration coordinate
in the matrix elements of the correction terms would be radial rather than Cartesian,
and the limits of integration would be from zero to infinity. In that case, the matrix
elements (mIX'In)) would not be explicitly given by Eqs. (A.3) and (A.4), even
though the recursion relations of Eqs. (2)-(4) and (8)-(14) will still be vald. Use of
analytical harmonic oscillator matrix elements along with the recursion relations, as
outlined in this paper. has the computational advantage, especially for polyatomic
molecules, over the direct numerical evaluation of these matrix elements in terms of
little memory and time requirements. Furthermore, analytical results can be applied
in ways that are simply inaccessible to numerical solutions since analytical results.
unlike the numerical solutions, explicitly show the dependence of matrix elements on
various parameters like the mass, frequency, etc., of the oscillator, As a specific
example, the numerical observation of Fraser 1151 and of Nicholl, and larmamn !16
that the matrix elements (miXIn)) for the first positive system of N2 satisfy, under
certain conditions,
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(mIX'],n)) (m[IX'],))

could be easily explained as a special case of the scaling law depicted analytically in
Eq. (24) above.
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Appendix

Some of the useful relations that we have used in this paper are appended here for
convenience. Two standard relations among Hermite polynomirls re

2xH(x) = H , (x) + 2nH..r(x) (A 1)

and

d H(x)/r = 2nH.,(x). (A.2)

The two-center matrix elements of powers of X using harmonic oscillator wave
functions are (1]

x ,I ..11 r.j-' [! 2 n 11/2(o.lX'!,i)) = >2 >2 L
(2c) o ... [im - p)! (n - #)
a 'b (- i) -t'-9H _p-q "ib 'c

pXq!(l - p - q)! ,n - pjIi - q)) (A 3)

with the overlap integral given by [1, 121

,. 4 im! n!

(mtn)) = N,~ .0 (m - k)! (n - k)! k!(2ab)5(l -

(a 2bc 1 I abc (A"] )H×k- 21,2 (A .4)
As before, the notation ,x, y' means the smaller of x and y The constants a, b, and
c have been defined earlier ii termb of w, w2, and wo.
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Rovibrationally enhinced dissociative electron attachment to Molecular lithium
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We have investigated the role played by initial rovibrational excitation of 1.i2 oil the cross sections
and rates for dissociative electron attachment to thle molecule. For a given internal energy, tile vi-
brational excitation enhances the attachment cross section more than tht. rotational excitation. The
attachment cross sections and the attachment rates reach their maximum values when the process
of dissociative attachmient to rovibrationally excited molecules is still endoergic and, furtlietimore,
these quantities stay close to their maximnum values even when the process changes fronm being eii-
doergic to exoergic. The tipjer bounds oii the cross sections and the rates for dissociative electron
attachment to Li2 are 12.8 A and 1. 25) X1-T cisi's-'. At a fixed electron temperature, tile [tietie
energy of the negative ion formed by this process increases as the vibratioinal quantum number of
the initial nieutral molecule increases; the maximum kinietic energy of the Li -ion formed by attach-
nment to the vt= 12 level of Li2 is 0. 153 eV

I. INTRODU~T1ON vides similarities betweca hie~ electronic configurations of
the two molecules. For example, the lowest electronic

It has been amply demronst rated, both theoretically as states of the negative molecular ions with configuratioits
well as experimentally, 2 that the cross sections for IF- ( I or )2( Ic u, )'(2o, )2(2o,,) for 1.12  and 0Ioe9 )2( I, ) for
formation via the process of dissociative electron attach- II, 1'ave similar symmetry, namely, 21, . However,
meist to niolecular hydrogen are significantly enthaiicedl if compared to the Itydrogent molecule, tile lithim mole-
the molecule H-2 is initially rovibrationally excited. In or- cule possesses a large polarizability and a wveak bond
der to assess the analogous degree of enhancement for strength which niakes the grounid state of L12 - a trtue
other molecular systems, wve have presetntly investigated bound state. In the case of FIZ, onl tlte other hand, the
in detail the effect of initial rovibrational excitation ott 21- + state is a true bounsd state ontly for internuclear sepa-
the rate of production of Li -via the process of dissocia- rationts R larger thani 2.9 amt atid is ait autodlacltiig
tive electroin attachmntt to diatonic lithtiunm mtolecules. state for smaller values of R. Thte first excited state of the
hInvestigationts of electroit attacehmnent to lithtiumi msole- negative ntolectilar tons with symmetry 2Y aitd
cuties are especially appropriate at this limte due to several contfigurationis ( I or )2( Icy.., )2(2a 9 )(2ue,. )2 for Lizg axtd
reasons. First, recetnt experimental observations' reveal ( o. g)( lug U 2 for Hl, - is partly Feshibach aiAd partly shape
that tile rate of Li- formta~tion by the intpact of thtermtal resonance in ntature for both. This stale is tlte essenstial
electronts ott highly vibrationally excited Li 2  is chiannsel for dissociative attachtmenit of low-ettergy cec-
(21 I)X 10-8 cut s - 1. Otte of the principal antris of the trolts to lithtiunt mtolecules. The process of dissociative
preseint work is to coitfirns thtis experimnttal observatiotn electroin attachtmentt to msolecular lithiiunm, thltei, is:
of attachmnttt rate by explie,: calculations as wvell as to +L]( 9 - 9provide detailed cross sections for electront attachimenit to e + L Y( 'X~)_ Li, ( A 2Y5 -- Li + Li~
Li 2. Secontd, the Li- ionts could possibly play, itt the fu-
ture, thle same roles as have beeni played by If- iotns for 11. CALCUL.ATIONS
necutral beant formtation. Third, since lithium dimers are
iSOvaletit with 1F12, ait inivestigation of the depetndentce of Fortuntately, a tnumnber of accurate calculations5 of
the electroni attaclineit to Li 2 ott the initial rovibratiottal thle poteittial curves of tite X 11 state of Li2 anid the

g
excitationt of the miolecule would be sintilar to the previ- A 2Y+ state of Li 2  are available. The psotential curves
Otis detailed study4i ott H2. that we utilize iii the presentt wvork were obtatined) by ait

Similarities between Li2 amid H-2 Suggest that theoretical ab inttio calctulationut sitng optintized cottfiguration-
method3 tised successfully in the past for obtainting tite interactiotn (Cl) wave funictiotns built froms orthtotormal
cross sectiotns and rates of electron attachmntt to 1-12 Canl Slater-type orbitals (STO's). Because of its tnature (ntame-
be emtployed for anmalogous itivestigationis for Li 2. Itt par- ly Feshbatch) thme 21+ resoiance of L12 - ts expected to
ticular, the process of dissociative electroti attachntt to have a siisal width and a long lifetime. Potenttial curves
Li, is understood to proceed through time formtationt of an of the electronic states of tLi. and I i. rehw.anut toinmp :
ittermsediate resonsant aition state Li2  which, ott dissom- tacltmetit process are shtown itt Fig I. The ,I 2y , ehec-

atin, ead toLi.The fact that both tlte lithtium dinser trottic state of Li 2  exhibits, due to its uoeahnn-
ooecules amid the hydrogeni molecules are isovaletit pro- ture, a comsplex poteimlial-etiergy ctirve whose real part

41 3607 @1990 The Amcricait Physical Society
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FIG. I. The potential curves of Li2(X 'X) and L 2 (A 21+). FIG. 2. The width of the A 2X+ state of Li 2-

V-(R), along with the potential curve of the X 17+ state 0.0143k (R).
of Li 2, is shown. Tile potential minima of the X and the In the traditional resonance theory, within the local
A curves are at 5.05 and 5.91 a.t., respectively. The two approximation, the radial nuclear wave function (R) of
curves cross at R =R, =6.51 a.u. aid, therefore, the pos- the resonant anion state satisfies 2

sibility of autodetachment of the resonant molecular
anion exists only for internuclear separations smaller 12 d 2  fZ2J,(J'+l) )V (R)
than R s, the so-called stabilization radius. The width (or, L 2M dR 2  2MR 2

equivalently, the lifetime) I(R) of this resonance is relat-
ed to the imaginary part of the complex potential-energy -,,r(R)-E '(R)=J -VR) ,s(R) , (1)
curve of the A 21+ state of Li,-. In the present autode-
tachment processy9X -_ + e-, the lowest contribut- where ,sj(R) is the nuclear wave function of the initial
ing partial wave is an s wave and, thus, by Wigner's rovibrational state of tle neutral molecule and M is the
threshold law 0 the width of this state is given by reduced mass of the nuclei. E is the total energy of the
F(R)=ck(R), where k(R) is the wave number of the system and its conservation in the initial chaninel (dcec-
electron emitted at internuclear separation R and c i a tron plus molecule) and the final channel (atom plus nega-
constant. This constant c is obtained as follows. The an- live iol) provides an expression foi the threshold for dis-
todetachment widtih F is related, by Fern's golden rule, sociative election attachment (DA) to the molecule that
to the matrix element V(R) coupling the disciete reso- is rovibrationally excited to a particular level,
nant state with tile continuum state of the electron-
molecule system." Tile wave function of the discrete ID -NA --E, if E, <D- NEA,

A . state was estimated by smoothly extrapolating the th 0, otherwise. (2)
fully optimized exponents of the CI wave functions from
the variationally stable region (R >R_) into the autode- Here D is tile dissociation energy of the lithniu molecule
taching region (R <R,). The continuum state was ap- (1.0372 eV), NEA is the electron affinity of the lithium
proximated by extrapolation of a series of wave functions aton (0.6182 eV) and E, is the excitation energy of the
constructed by adding an electron, in a series of diffuse initial rovibrational level of the molecule.
STO's, to the unperturbed ground-state wave function for Tile nuclear wave flction 4(R) is obtained by numeri-
Li,(X Y4+). The coupling matrix element V(R) was then cally solving Eq. (I) subject to the boundary contlions9
cakuLtead b) ubing ticzc two wave functions. A coiipar- (R =0)=0
ison of the width calculated by using the golden rule with
the threshold law expression, given above, yielded g(R ,oo)_,KRhtI)(KR)
c=0.0143 a.u. The width of the A 21+ state of Li2 - as
a function of the internuclear separation R is shown in Here hi2K 2/2M is the relative kinetic energy of the ion-
Fig. 2 and is given, in atomic units, by F(R) atom pair after dissociative electron attachment and h,"
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is the spherical Hankel function of the first kind.
If, after the formation of the temporary resonant state,

the nuclei separate to R > R, without autodetachnent
having occurred, the detachment of the election becomes o° "

energetically impossible and dissociative attachment can
result. Thus for R <R,, the envelope of ,,(R)

2 
de- 6

creases with R because of the possibility of autodetach- 10'o2
-. ";

ment and it is the asymptotic (R -oo) value of Ig(R) 2

which determines the probability of dissociative electron
attachment to the molecule. In fact, the integrated cross "
section for dissociative attachment of an electron with ,0..

energy h 2k,2/2ti to the molecule is given by' 2 (assuming
momentum-normalized functions) z

K"6 eE 0 Lto (v, J) - L+
DA " 4 - 1 (R)12 . (3) -(0,0)Av/kRg-.~ (12- 

J (0.22)

-- (10o)
In order to convert the attachment cross sections into 10-8

attachment rates one needs the energy distribution of
electrons. In the present work we take this distribution
to be Maxwellian, namely,

027 0j 06 07
exp) I-- 2J (4) iiectron FEnergy (cV)

FIG. 3 The cros sections for dissociative attachment of
where the aveiage energy E is related to tie electron tein- low-energy electrons to molecular lithium in various rovibra-
perature Tvia E=3kB T/2. The attaclment rate k (E) is ional (v,J)levels
merely a convolution of (2E/m)/ 2 ui)a(E), that is,

k(P)= [ I "E2ODA(E)f(E)dE . (5) is increased by a ,actor of 6 8 if this internal energy is

purely vibrational (from v =0 to 1) and by a factor of 2.5
if the internal energy is purely rotational (from J =0 to
22). Table I provides the energetics as well as the peak

1II. RESULTS AND DISCUSSION cross sections for dissociative electron attachment to the

In the present work we have calculated the cross sec- ground electronic state of molecular lithium in various

tions and the rates for dissociative electron attachment to
molecular lithium when tile molecule is either in one of TABLF I Internal rovibratioal energy (E1 ), threshold for
tie vibrational levels v =0 to 12, all rotationless, or in dissociative attachment (E') and peak attachment cross sec-
one of the rotational levels J =0 to 25, all with v =0. tion for various rovibrational levels of the ground dee-
Figure 3 shows the cross sections, as a function of the ii- tronic state of Li2 Asterisk denotes exoergic.
cident electron energy, for election attachment to Li 2 In A
various (v,J) levels. Besides the lowest level (0,0), the v J E,. (eV) ErA (eV) oy'ak (A 

2
)

other two levels shown in Fig. 3 (1,0) and (0,22) have ap- 0 0 00 04190 0.368
proximately the same internal energy. The attachment 1 0 004292 0.3761 2 50
cross sections exhibit a rapid increase at the threshold, 2 0 008514 03339 396
attaining a peak value cpa,, followed by a uniform de- 3 0 0.1267 0.2923 3.69
crease as the energy of the incident electron increases. 4 0 0.1676 0.2514 452
This almost vertical onset of the cross section is attribut- 5 0 02078 0.2112 4.02
ed to the attractive nature of the potential curve of the 6 0 0.2472 0.1718 9.26
resonant anion statei13 The attachment rate is essentially 7 0 0.2860 0.1330 12.8
determined by the peak attachment cross section. The 8 0 03240 00950 128
results in Fig. 3 clearly show that the attachment cross 9 0 0.3612 0.0578 8.94
section is enhanced if the molecular lithium is initially to- 0 03976 0.0214 103
vibrationally excited. A part of the enhancement of the II 0 0.0,333 * 9.43
cross section occurs due to tile lowering of the threshold 0 I 000017 04188 0.369
!er attachment as ...... .. , ovibiaimunaily csciled. f) 0.0000 0.4165 0.312
Furthermore, for a fixed internal energy, vibrational exci- 0 5 0.00249 04165 0.389
tation of the molecule is more effective in enhancing the 0 10 0.00910 0.4099 0.450
cross section than rotational excitation. For example, 0 20 0.03461 0.3844 0 809
when the molecule is initially provided with an internal 0 22 0.04164 03774 0.930

0 25 005338 0.3656 1.16energy of 0.04 eV, then thle peak attachment cross section -______ -____ ___
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rovibrational levels. It is interesting that, unlike molecu-
lar hydrogen, the peak attachment cross section here '",

does not increase uniformly as the internal vibrational ell-
ergy is increased. Whether this is due to the local nature .1.

of our present ,:alculations or to tile nature of tile poten- 1O' ""

tial curves of tile lithium molecule remains to be ascer-
tained in the future. However, to maintain numerical "-
consistency of our calculations the following equality was
satisfied, as a check, to within a few parts in 10' for all .
values of tile incident electron energy and for all rovibra- 'l
tional levels of the molecule,

z2K im (R) f Ir(R)g(R)I2dR I
M R 0 - (v, J) -(o. o)

(0,22)

=2foIm[g*V(R),,j(R)1dR . (6) 10-12

This relationship is obtained by multiplying Eq. (I) by
.*(R), subtracting the resulting equation from its coin-

plex conjugate and then integrating over R from 0 to oo.
Unlike the case of molecular hydrogen, the width of

the resonance responsible for attachment to Li 2 is quite L.
small (or, equivalently, the lifetime is large) so that the 0-( kT /2) (V)

resonance model is very reasonable. Tile enlhancement of

the attachtment cross section is directly related to tie in- FIG. 4 Rates of disso.ative electron attachrneiit to Li, i
crement of the range of ilteruuclear separations, due to ,anoius rovibrational (v,J) levels Is a fuliiinon of tle eleLtroii
internal rovibrational excitation, over which the electron temperaiture. I he levels (1.0j and (0,22) have appromitel, the
can be captured. Tlis range is increased due to all ill- same excitation energy
creased vibrational amplitude during vibrational excita-
tion and centrifugal stretching during rotational excita-
tion. Tile probability of an electron capture, to form the with the recent experimental observations of the rate of
resonant anion state, is maximum at all internuclear sepa- attachment of thermal electrons to molecular lithium.
ration at which the energy difference between the poten- A quantity which often is of interest to experimental-
tial curves of Li 2 and Lij - is equal to the energy of tile in- ists and is iseftl for plasna diagiostic purposes is tile el-
cident electron. This internuclear separation is referred
to the capture radius, R. As the nuclei separate from R, s
to R, tlle autodetachment of the electron from the anion 2I v - 2
state, leaving behind a rovibrationally excited neutral""
molecule, is a distinct possibility. Dissociative attach- S I

ment, of course, results when tite internuclear separation 66 6
• !

far exceeds the stabilization radius R,. For Li 2 molecules 04- • . 9
ill levels v 

> 
7 with J =0 the range of intermolecular sep- 10

arations over which the electron could be captured in- . . .

eludes R. The energetic thceshold for dissociative elec- 02
tron attachment to Li 2 is nonzero for vibrational levels
v < 10. If the molecule is initially in vibrational levels
v ? 11, tile attachment process is exoergic. "" '!

Figure 4 shows the effect of initial vibrational versus • .• "• *

rotational excitation of the molecule on the rate of elec- " .

troll attachment as a function of electron temperature. -. ;

As seen in this figure, the initial vibrational excitation to
the v I U =0) level enhances the attachment rate more
dramatically thtan the initial rotational excitation to the
J =22 (v =0) !evel which has roughly the same internal
energy. The rate of electron attachlment to Li2 in various
vibrational levels is shown ii Fig. 5. We note tile il- 2 3 4 5

teresting feature that the attachment rate saturates at tile -( kBTe/2) (eV)
value 1.25XI0 - 8 cm 3 s - t which is reached when the
molecule Li2 is initially in vibrational levels v 8-12. FIG. S. Rates of dissociative electron attachment to Liz in
Furthermore, this rate is achieved for electrons with au various vibrational levels as a function of the electron tempera-
average energy of -0.2 eV. These results are consistent ture.
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ergy of the negative ion formed during the process of dis- 0 16'
sociative electron attachment. The energy of this ion de-
pends on the energy of the incident electron E, as well as _ _ _ 12
on the excitation energy E of the initial rovibrational 014

level of tihe molecule. InI case of a hiononuclear diatomicII
molecule like Li 2 tIle atomic anion carries one-half of the
relative kinetic energy of the ion-atom pair. Tile kinetic 02
energy of thfe anion is

E-=(E,-D +N,, +Eq ) . (7) 010

Assuming a Maxwellian distribution of energies for the
electrons, the average kinetic energy of the negative ions " 008-
is given by

(E-)= E-mDA(E)f(E)dE/f ODA(E V(E)dE 006

0042

Figure 6 shows, as a function of the electron temperature, _ _ _

the average energy of the Li- ions formed by dissociative - -:

electron attachment to Li 2 in various vibrational levels. 002
Since the attachment process becomes exoergic when the _
molecule is iiitially in vibrational levels v 

> 
1 I, the rela- 0 I 2 3 4 5

tive kinetic energy of tile ion-atom pair, then, is more P- (3 kBiTcn) (eV)
than the energy of the incident electron and therefore the FIG 6 Average energy of Li ions formed b dissociative
average energy of Li- ions formed by dissociative elec- electron attachment to Li2 in various vibiational levels as a
trol attachment to molecular lithium continues to in- funetion of electron temperature.
crease as the internal vibrational energy increases.
Among the vibrational levels that we have investigated
(v -0- 12) the maximum kinetic energy of the Li- ions is
0 153 eV. tation of Li2 on the cross sections foi formation of LiIn an actual plasma, though, the energy distribution of would be worthwhile ii the ftiture.
electrons is non-Maxwellian and only a detailed soltion
of the Boltzmann equation 14 
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Particle Beam Production via Dissociative Electron Attachment to Molecules

J.M. Wadehra

Department of Physics, Wayne State University, Detroit, Michigan 48202

ABSTRACt

Formation of beams of negative ions by the process of dissociative electron attachment to a molecule
AB (e- + AB - A + B-) is investigated. It is demonstrated that the initial rovibrational excitation of the
molecule AB plays a significant role in enhancing the rate of production of negative ions. A simple
physical picture, involving the formation of a transient resonant state of the molecular anion, is used to
explain this enhancement,

1. INTRODUCTION

Production of high intensity neutral particle beams by neutralization of negative ion beams is now well
established 1. The negative ion beams are accelerated to high energies and then neutralized by electron
detachment. One efficient way of producing beams of negative ions is by the process of dissociative
electron attachment to molecules. Schematically, this process for attachment to a molecule AB is: e- + AB
- A + B-. It has been extensively demonstrated, both experimentally 2 as well as theoretically 3, that the
cross sections and the rates of production of negative ions by this process are dependent upon the initial
rovibrational level of the attaching molecule. In the cases of molecular hydrogen and molecular lithium,
the rates of production of negative ions H- (as well as D- and T-) and Li- by dissociative electron
attachment to H2 (and its five isotopes) and Li2, respectively, are known to be strongly dependent upon
the amount of internal rovibrational energy of the neutral molecule. For example, the rates for negative ion
beam production via electron attachment to molecular hydrogen (and its isotopes) are enhanced4 by orders
of magnitude if H2 is initially vibrationally pumped. In the present paper only zhe results of our
investigations on the effect of initial rovibrational excitation on the cross sections and rates of dissociative
electron attachment to molecular hydrogen and its five isotopes will be discussed.

2. THE RESONANCE MODEL

A traditional way of describing the physics of the process of dissociative electron attachment to a
molecule AB is5 via the formation of a temporary compound state of the electron-molecule system. In this
molecular anion state AB- (also called the resonance state) the electron can autodetach with a finite lifetime
(related to the width, F, of the resonance), leaving behind a vibrationally excited neutral molecule. On the
other hand, if the lifetime of the resonance is long enough, the anion AB- can dissociate into A + B-,
corresponding to the process of dissociative electron attachment.

A possible scenario of the resonance model is depicted in Figure 1. Shown schematicaliy in this
Figure are the potential curves of the neutral molecule AB (labelled Vo) and of the resonant state AB-
(labelled V-). The two potential curves cross at an internuclear separation R = Rs such that, for R ; Rs,
the 2utedetachment of dhe elctrasa;,crc-~c1 ., -o -- Ad -d rh. --- n --- ^ a -61. tb.-4
state. Rs is referred to as the stabilization radius. Before electron capture, the nuclei are rovibrating
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V V(R) A+B

Vo(R )  A+B

,(vf, J f)

R R R

INTERNUCLEAR SEPARATION R

Figure 1. A schematic representation of the processes of dissociative electron attachment and vibrational
excitation of a molecule AB via resonance formation.

in the level (vi,Ji) under the influence of the potential Vo(R). After electron capture, the nuclei of the anion
move under the influence of V'(R). The probability of electron capture to form the resonant molecular
anion state depends on the internuclear separation and this probability is maximum at an internuclear
separauon (labelled Rc in the Figure and referred to as the capture radius) at which the energy separation
between the two potential curves is equal to the energy of the incident electron. If the potential curve V- is
repulsive in nature, the nuclei in the anion state begin to separate such that the electronic potential energy is
converted into nuclear kinetic energy. Now if the autodetachment of the electron occurs at some specific
internuclear separation, labelled R in the Figure, the neutral molecule is left in a rovibrationally excited
le' ' due to the gain in the nuclear dnetic energy (indicated by a vertical dotted line in the Figure). The
exact rovibrationally exced level (vfJf) achieved by the molecule depends on the gain in the kinetic
energy of the nuclei as well as on the relevant selection rules. Depending upon the lifetime of the
resonance the nuclei in the anion state may separate to an interuclear separation larger than Rs beyond
which the autodetachment of the electron is energetically not possible and dissociative attachment may
occur resulting in the formation of a stable negative ion.

3. RESULTS AND DISCUSSION

The relative masses of the six isotopes H2, HI, HT, D2, DT and T2 are 1.00, 1.33, 1.50, 2.00, 2.40
and 3.00, respectively. We have done fully quantum mechanical calculations of cross sections and rates of
dissociative electron attachment to these six isotopes. In particular, we have investigated6 the effect of
initial rovibrational excitation in enhancing the rate of negative ion production. The qualitative behavior of
the attachment cross sections is the same for all isotopes, namely, a sharp threshold peak followed by a
-apid .ccz.asc or, increabing te impac eiecton energy. The numerical results are provided in I able 1
which summarizes three enhancement factors:

(a) For a given rovibrational level, the factor R, by which the peak attachment cross section cpeak
is altered on replacing H2 by one of 1 s isotopes X,
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RI = a ff, v = 0, J = 0)/apA(X', v = 0, J = 0).

(b) For a given isotope X, the factor R, by which the peak attachment cross section apak is
altered on exciting the molecule vibrationally from v = 0 to v = 1,

Rv = (Ypeak(X", v = 1, J = 0)/Opeak(X-, v = 0, J = 0).

(c) For a given isotope X, the factor Rj by which the peak attachment cross section C1pcak is altered
on exciting the molecule rotationally from J = 0 to J = 10,

RJ = apeak(X', v = 0, J = 10)/apek(X', v = 0, J = 0).

The cross sections for electron attachment to various isotopes of molecular hydrogen are shown, as a
function of electron energy, in Figure 2. For each isotope three cross sections are shown in this Figure.
The first set of six curves provides the cross sections for electron attachment to the six isotopes in the
lowest rovibrational levels, namely, (v,J) = (0,0). The next set of six curves in Figure 2 shows the cross
sections for attachment to the vibrationaiy excited isotopes in the levels (1,0). The third set of six curves
depicts cross sections for attachment to rotationally (0,J) excited molecular isotopes; the value of rotatonal
quantum number J is chosen, for each isotope, in such a manner that the rotational excitation energy is
roughly equal to the vibrational excitation energy of the (1,0) level. For each of the isotopes, the
rovibrational excitation is seen to enhance the attachment cross section. Furthermore, vibrational excitation
is more effective in enhancing the cross section than rotational excitation. The fundamental reason for the
enhancement of the electron attachment cross sections is an increase in the range of internuclear separations
over which the electron can be captured for anion formation once the molecule is internally excited. This
increase in range occurs due to an increased vibrational amplitude during vibrational excitation and due to
centrifugal stretching during rotational excitation.

Table 1. Various factors indicating the enhancement of the peak cross section for attachment to
rovibrationally excited H2 and its isotopes.

Isotope Rt Rv  Rj

H2  1.0 33.8 15.9

HD 10.3 39.4 11.8

HT 29.6 42.1 10.5

D2 527 48.9 8.04

DT 4064 54.2 6.89

Tj 65217 60.9 5.72

Various enhancement factors, R!, R, and RT, depend upon the mass (M) of the isotope and
empirically it is determined that the mass dependences of these factors are:

RI - exp (- constant .M1/ 2) (la)
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Rv M17/32  
(Ib)

Rj M- 1/2 .  
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7  
0)J =

3 .13 6 .

Electron Energy (eV)
Figure 2. Cross sections for dissociative electron attachment to rovibratnonally excited H2 and its isotopes.

The change in the peak attachment cross section on isotope substitution, namely RI, is referred to asthe isotope effect. The isotope effect is most dramatic for lighter molecules like hydrogen because of thegreater relative change in the reduced mass of the nuclei on isotope substitution. The effect could be
completely understood in terms of a semiclassical analysis7'8. In such an analysis the cross section fordissociative electron attachment, 0DA, can be written as a product of two factors:

=DA = )cap S.
The first factor, 0cap, is interpreted as the cross section for the formation of the resonant anion stateby the capture of the incident electron. The second factor, S, is interpreted as the probability that theseparation of the nuclei in the anion state increases from the capture radius PR" to the stabilization radius R5

SPIE Vol 1061 Micro wave and Partcle Beamn Sources and Directed Energy Concepts (19891 / 525

E9- --.--- n



without electron autodetachment to assure the process of dissociative electron attachment to occur. The
factor S is referred to as the survival probability and, in the semiclassical analysis, is given by:

dR
v(R) dRS = ex -7 (R")

, (2)

where E(R) is the width of the resonant state and v(R) is the speed with which the nuclei are moving apart
at the internuclear separation R. Now, in the semiclassical expression, Eq. (2), the survival probability S
is a strongly mass-dependent quantity. It can roughly be approximated by exp (- Pr/ti) where t, the time
taken by nuclei to separate from the capture radius R. to the stabilization radius Rs, is directly proportional,
by simple kinematical considerations, to M12 . Thus nuclei of heavier isotopes, taking a longer time than
nuclei of H2 to separate out to Rs , experience stiffer competition from the process of electron
autodciachment which reduces the probability of dissociative attachment.

As an example of the isotope effect one should note, using the values of R, in Table 1, that the value
of the ratio

In ap.k (T) / y (H2 ]
In [op,. (1Do / Ov,.ak (Ho] (3)

is ln(65217) / ln(527) = 1.7688. The values of the peak attachment cross sections are obtained by fully
quantum mechanical calculations. Now, if the isotope effect of the semiclassical Eq. (la) is valid, this
ratio should be

M/2 M2
T, Fi, F3- I

M 2 - MV,2  F
D, H, (4)

whose value is 1.7673. The two values are quite close, any difference being due to the mass dependence
of the vibrational frequencies of the various isotopes.

For the purpose of having a particle beam with high energy deposition characteristics, one looks for
beam particles as massive as possible. To investigate the production of massive negative ions we have
obtained the factors by which the cross sections (and, therefore, the rates) for the production of Li- from
Li2 as well as of CI" from HCI are enhanced on vibrationally exciting the neutral molecules. These
enhancement factors are approximately 8 for Li- production 9 and 40 for C[" production 10'3 1 when the
molecules Li2 and HCI are initially excited fror,, the v = 0 to the v = I level. The corresponding
enhancement factor for H- production from H2 is calculated to be approximately 34. Furthermore, the
maximum rate of Li- production from Li2 is calculated9 (as well as observed 12) to be about 10-8 cm3 s-1,
which is same as the rate of production6 of H- from H2. This is not surprising since Li2 is isovalent with
H2 .

,4. FUT URE PO5SSIILITIES

Calculations of the rate of negative ion production require a knowledge of the electron energy
distribution in the ion source. In our previous calculations4'6 a simple Maxwellian distribution for electron
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energies was assumed. Using this electron energy distribution the maximum possible rate for dissociative
electron attachment to H2 was calculated to be about 10.8 cm3 s"1. Using the same distribution function
the maximum kinetic energy carried by the negative ion H- formed by dissociative electron attachment to
H2 was estimated to be less than 0.5 eV. We have recently developed13 a novel procedure for obtaining
the time-dependent behavior of the electron swarms in a gas mixture. This numerically stable algorithm
generates an exact, time-dependent solution of the Boltzmann equation for charged particle swarms in a
dilute gas and uniform electric field and, thereby, provides a temporal evolution of the electron energy
distribution in the gas. We have already tested this procedure for generating the time-dependent behavior
of various parameters like the average electron energy, average drift velocity, ionization rate etc. for
electron swarms in gaseous neon and argon. We are currently utilizing the same numerical procedure for
obtaining the time-dependent behavior of parameters used for diagnostics purposes in a source containing
a mixture of atomic and molecular hydrogen.
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I

ISOTOPE EFFECT IN VIBRATIONAL EXCITATION OF H2 BY LOW ENERGY
ELECTRON IMPACT

D. E. Atems and I. M. Wadehra
Department of Physics and Astronomy

Wayne State University, Detroit. Michigan 48202

ABSTRACT

Cross sections for the vibrational excitation of molecular hydrogen and its five
heavier isotopes by the impact of low energy electrons are calculated ung both the
local and the nonlocal versions of the resonance model. It is demonstrated that, for a
given incident electron energy, the cross sections for the vibratiouil excitation of
heavier isotopes can be obtained from those of molecular hydrogen by a smile scaling
procedure. It is seen that the scaling law holds for cross sections with values ranging
over eight orders of magnitude.

The vibrational excitaton of a molecule (such as H2 ) occurs via the formation
of an itermediate resonant state (H ") which can either autodetach the temporarily
bound electron (and, then. leaves behind a vibrationally excited molecule) or can
dissociate into H + If (that is, leads to dissociative electron attachment).
Schematically, these two complenentary processes ame:

e + 112 (v, J) - H2" (2 -- or 2 g) -
.-H + H'.

The nuclear wave function 4 of the resonant state, in the most general theoretical
description, sausfies i a integrodifferenual equation with nonlocal potentials:

IT. () + V (R) -El (i) - -VWE -"E,. R) x, (1F)

(I)

Here X, are the vibrational bound state wave functions of the neutral molecule. TN is
the nuclear kinetic energy operator and V(R) is the potential curve of the resonant
anion state. The sum on the right hand side includes all energetically open channels
The matrix elements V(c,R) couple the discrete resonant state with the background
continuum; this coupling leads to an energy-shift of the resonance (the principal par
integral on the right hand side) and provides a wtdth to the resonance (the imaginary
part on the right hand side) which determines the lifetime of the resonance. The total
cross section for vibrational excitation, in atomc units, is' (assuming momentum
normalized continuum functions),

4

av - V') = L6 m 'er i-' rr(v - V) 22.

V 1990 American Institutt of' Physics 121
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126 Isotope Effect in Vibrational Excitation

threshold. In any case the nonlocal effects are found to be small. All the excitation
cross sections satisfy a useful isotope scaling law such that the vibrational excitauon
cross sections for the heavier isotopes of molecular hydrogen can be obtined, within
a factor of two, from the corresponding cross sections for H2.

The support of the U.S. Air Force Office of Scientfic Research through Grunt
Number AFOSR - 87 - 0342 is gratefully acknowledged.
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"Relativistic approach for e scattering from argon",
Bull. Am. Phys. Soc. 3, 935 (1988)

presented at the 1988 annual meeting of the Division of Atomic, Molecular and Optical Physics,

Baltimore, Maryland, April 18-20, 1988.

OX33 Relativistic proach for ee ScatterIn% from

Aro.SULAU N M~~i~, u-orl. Stt state U7, an=)
P--TU ADEHR, Vayne State U.* .Dit erentlal and

integrated cross sTect ns and various polarization

935

Monday Afternoon

parameterr, such as polarizarion (P) or the the Sherman
function (S) and paramaters T and U, for electron and
positron scattering from argon are calculated using the
relativistic Dirac equation. It contains the spin-orbit
interaction. The real part of the projectile-target
interaction is represented by a model potential that
includes static potential (repulsive) and the Buckingham
type model polarization potential (attractive) for the
positron scattering and static potential (attractive),
the same polarization potential (attractive) and electron
exchange potential for electron scattering from argon.
The phase shifts with large angular momenta ft are
calculated by using the Born approxination The
polarization parameter P for electron scattering Is found
to be in good agreement with the available calculated and
measured values. A few different models of the absorp-
tion potential for the inelastic processes are used to
calculate the elastic differential and Integrated as well
as the total integrated cross sections for positron scat-
tering from argon. It Is noticed that even though the
calculated total integrated cross sections agree reason-
ably well with the measired values, the differential
cross section curves show features different from those
measured for the positron scattering from argon.
* Support of AFOSR is gratefully acknowledged,
'S.N. Nahar and J.H. iadehra, Phys. Rev. A 35, 2051(1987).



"Formation of ground and excited states of antihydrogen",
Bull. Am. Phys. Soc. 3, 991 (1988)

presented at the 1988 annual meeting of the Division of Atomic, Molecular and Optical Physics,
Baltimore, Maryland, April 18-20, 1988.

EX 5 Foration of l on and excited states of

antihd~jenState U., ana
)711.WA lHRA, Vayn. State U.* --Oiiferential and

integrated cross sectiO -or the formation of

antihYdrogen by the impact of intermediate energy,

(20 - 500 keV) antiprotons on przironiu are calculattO,

using the first Born approximation. The calculations are

carried out for the formation of antihydrogen 
in ground

and %arious excited electronic states (n - 1-3) vhen
positroniUm, -he target atom, is 

in the ,;round state, and

for the formation of antihydrogen in ihe ground state

vhn the positronium is in various excited 
electronic

states (n - 1-2). The 1/n
3 
behavior for the capture

cross sections is used to calculate the total (that is,

991
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all states added together) integrated cross sections.

The cross sections for the formation of antihydrogen

presented here are obtained from those for the formation

of positronium by the impact of positrons on hydrogen

atoms by using the charge invariance and the principle of

detailed balance.

*Support of AFOSR is gratefully acknovledge.



"An exact numerical solution of the time dependent Boltzmann equation",
Bull. Am. Phys. Soc. 34, 295 (1989)

presented at the 41st Annual Gaseous Electronics Conference, Minneapolis, Minnesota, October
18-21, 1988.

E-2An Fxaet Numricl Solution of the Time Denendent
)t7 uatinA * P.J. DRALLOS and J.H. WADEHRA. 

-i Physics Wayne State Univ.- An exact. time dependent

nuperical solution of the Boltzmann equation for charged
particle swarms in a dilute gas and uniform electric
field is presented in detail. The method 'ncorporates
the full anisotropy of both the velocity eLstribution
function and the collision cross sections as it does not
involve any term expansions. An exact analysis of the
collision terms is described and conditions for numerical
stability of the solution are discussed. Results are
presented for electron and positron swarms in gaseous
Neon and Argon and in some model gases at various values
of E/I.

*This work was supported by the Air Force Office of
Scientific Research through Grant No. AFOSR-87-0342.
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"Energetics of negative ion formation via dissociative attachment of e + Liii',
Bull. Am. Phys. Soc. 34, 1401 (1989)

presented at the 1989 annual meeting of the Division of Atomic, Molecular and Optical Physics,
Windsor, Ontario, May 17-19, 1989.

l'C6 Fnreii of Nevative. Ion Formation via lpi!castive
Attachment of e + IAH* I. IL Michels, ITR and J. M.Wadebra.

Wa zeSae .- The formation of H- and UA by dissociative
attachment (DA) of e + H2 and c + U12 , respectively. is now well
characterized both experimentally and theoretically. The role of UH
(or CsH), which could be farmed from seeding an alkali into a
hydrogen plasma. is presently not well understood, but the addition of

01
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an alkali arpears to enhance the H- production rate. 'This observation
is interesting in light of the study by Gauyacq, et al 1, which indicates
that charge transfer and collisional detachment processes should
reduce H- production in Na seeded plasmas. We have analyzed the
electron attachment to LiH in term of calculated potential energy
curves. In agreemient with previous atudies, we find that the ground
state of LIH- is thermodynamically bound relative to IIH + e, with a
calculated electron affinity of - 0.3 eV. The first excited state of
UH', which asymnptotically correlates; to Li- + H, exhibits repulsive
behavior in the region 3.0 -5 R !; 6.0 A. Based on these preliminary
studies, DA of e + IIH will yield Li- ions for low-energy collisions
H- tons are not formed by DA of e + LiH but moy be formed by
energetically allowed electron capture into high vibrational states of
LiHt which lie above the Li + H1- asymptotic limit.

*Supported in part by AFOSR under Contract F49620-88-C4)019 and
Grant AFOSR-87.0342.
I1. P. Gauyacq, et at, Phys. Rev. A, . 2284 (1988)



"High-field time-dependent positron v,:icity distribution functions",
Bull. Am. Pnys. Soc. 34, 409 (1989)

presented at the 1989 annual meeting of the Division of Atomic, Molecular and Optical Physics,
Windsor, Ontario, May 17-19, 1989.

FX46 , gh-Field Tie-eend-nt Poitron Velocity

DiArributon Function. P.J. DRALLOS tri J.H. VADEHRA.
WAtn St to.U.*--It has been reported ' that for a neon

gas density N - I amsgat, the positron swarm parameter

Z,, varies only at very low fields (up to E - 5 V/cm)

a - then becomes almost independent of E (up to E - 50

V/cm) with a value of about 6.3. In the present calcula-

tions, a numerical technique for evaluating the exact

time-dependent behavior of elect'on velocity distribution

functions has been adapted to the case of positron

swams in gaseous neon. In these calculations an F/H of

0.9 Td (E - 240 V/cm end N - I amagat) was used. With

this technique, the time dependence of the average

energy, annihilation rate, and Z were obtained. The

equilibrium value for Zeff underffiese conditions was
about 6.3. This result extends the range of electric

field, for which Zeff is a constant to E - 240 V/cm.
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1636
DOq 9 FnUet,cq of Nevv -v Ner,,,ve Ios, of Clus.tersc'. H H

icxhels. tJTR and J M Wadchia. Wayn Sw The ormation of Hj(Lr)
by daisciative attachment (DA) of e + If2(UL2) is thought to be the dominant
volume process in discharge type negative tont soureso The role of
Lt,,,H,(Csiln) molecules, which could be formed from seeding an alkai into a
hydrogen ptlasmta. as presently not well uniderstood. but the addition of an alli
such us Cs appears to enhance the H- production rate This observation it
interesting in light of the study by Gaayaeq. el allI. which toidicaica that charge
transfer and collisional detachment processes should reduce If- production in Na
seededlplatmut. In order to enainte the structure and stability of li,H, clusters
and their uctons. ob inn calculatisoni were earned out fee several opecies as the
MP2 evel of theory The hais set chosen was the Gaussian 6-310 triple split.
valence set, augmented by dl-polarutLo functions for La and p-polatsuaon for H1
and diffuse function to better deseabe the negative ion charge distibutionit Our
studies to date indicate that several Lsim(,, (and by analogy. Csmll) clusters are
thsermodlynaitcally stable. in particular, the LU21-2 Species, as a C2v struticure-
may be an impotant component of alkali-hydrogen mixtures This speciet can
distoctaissety attach ian electron to form U211 + H- for Ecati Z 20eV The L.ll
(C2v) Species should Also exhibit DA to form Li3 + H-. but the concenstion of
this molecite will be lower tha that of the more stable U2112 cluster
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