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The principal objectives of our research work (Grant Number AFOSR-87-0342) have been
two-fold. First, we have obtained the time - dependent behavior of electron swarms in various
atomic and molecular gases using a novel numerical procedure that we recently developed. The
electrons injected in the gaseous source excite and ionize the atoms as well as molecules and, more
importantly, cause dissociation and vibrational excitation of the molecular species. Second, we
have calculated the cross sections and the rates >f negative ion production via the process of
dissociative electron attachment to various light molecules. We have also investigated, in detail,
the role played by initial rovibrational excitatios: o the molecnie in enhancing the rates of
production of negative ion beams. Since the processes of di.sociative attachment and of
vibrational excitation are complementary in nature (both proceed via the formation of an
intermediate resonant anion state), we have also investigated the isotope effect for the vibrational
excitation of molecular hydrogen and its five isotopes. As part of this project we have discovered a
very useful scaling law for these excitation cross sections. Using this scaling property it is
possible to obtain the cross sections for vibrational excitation or deexcitation, by electron impact,
of heavier isotopes of H, from the corresponding cross sections for molecular hydrogen.

During three years of our investigations we made the following specific advances:

(a) Time Dependent behavior of Electron Swarms in Various Gases.

With the ultimate aim of investigating the temporal evolution of the electron velocity
distribution as it attains its equilibrium in a hydrogen source, we have been devising stable
nunije.rig:al algorithms and developing corresponding computer codes for obtaining the electron
velocity di.'sm'bution in a general gaseous source. It should be remarked that the procedure which
we have developedl'2 is general enough (n that it can be easily adapted for obtaining velocity
distribution of positron swarms or ion swarms in a gas as long as the relevant collision cross
sections are available. In order to obtaih the electron velocity distribution majority of previous
investigators have attempted to solve the Boltzmann equation either analytically or numerically.
Analytical solutions of the Boltzmann equation have made use of simple model collision cross

sections which, though reasonable, are not necessarily very accurate. The use of actual cross
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sections, either experimentally observed or theoretically calculated, in the Boltzmann equation
forces one to apply numerical techniques for its solution. The procedure used most frequently in
the past is to expand the angular dependence of the distribution function as a power series in the
Legendre polynomials, truncate the series after a few (typically two) terms and solve the resulting
set of equation numerically. This expansion procedure has some inherent problems. For example,
for high values of E/N (the ratio of the applied electric field to the gas number density) a large
number of terms in the Legendre expansion may contribute to the distribution function. A large
number of terms in the Legendre expansion may also be necessary at low values of E/N for a gas
with relatively high inelastic cross sections. Inclusion of a large number of terms in the expansion
can make this procedure computationally expensive and sometimes numerically unstable.
Furthermore, no systematic study of the convergence behavior of the expansion techniques for an
arbitrary gas is available. We felt that it is desirable to have alternative procedures, especially the
ones which do not involve any expansion of the distribution function, for obtaining the electron
velocity distribution function in a gas mixture.

The starting point of our procedure is to realize that in the absence of collisions with the
ambient gas particles the electron swarm is accelerated constantly by the applied electric field E in
such a manner that in a time interval At the velocity of each electron is changed by an amount Av =
-eE/m. Thus the difference between f(v,?), the disiribution function at time ¢, and f(v + Av,t +
Af), the distribution function at the later time ¢+ A¢, must be due to collisions of electrons with gas
particles. (The frequency of electron-electron collisions is relatively small.) Thus one can write

fiv + Av, t+ Af) = Rv,1) + R(v,5) At, 4y
where R(v,1) is the collision term containing all the relevant cross sections. The standard
Boltzmann equation is obtained by simply expanding the left hand-side of Eq. (1) to first order in
Atand then taking the limit At — 0. Chus, for the purposes of obtainirg the electron velocity
distribution function Eq. (1) is more fundamental than the standard Boltzmann equation and is
certainly computationally more convenient than the Boltamann equation.

Now choosing the z axis to be along the applied electric field E, the electrons have a
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coastant acceleratior along the z direction and zero acceleration in the transverse direction. Thus,
in Cartesian coordinates Eq. (1) is rewritten as

flvy, Vys ¥, - (eE/m)AsL + Af] = f{vy, vy, v, ) + R(v,HAL 2
Because of the axial symmetry along v,, f is stored in a two-dimersional array only as a function
of v, and v, with the step size Av given by Av = (eE/m)At. The temporal evoiution of the
distribution function then involves, in part, a shifting of the array contaning f along v, at each time
interval At. This shifting of the array essendally achieves the same effect as the acceleration of the
electrons due to the applied electric field without accumulating any round-cff error. This shifting
procedure in itself greatly improves the numerical stability in obtaining the electron distribution
function as compared to the alternative approach of evaluating derivatives numerically in the
traditional solution of the Boltzmann equation. A criterion for numerical stability is that, for each
value of Ivl, the time step At should be chosen smali enough such that the distribution function is
larger than the corresponding collision term R{v,0A¢, that is,

f(v,s) > R(v,HAt forallv. 3)

By meeting this criterion one can avoid generating physically-meaningless negative values of the
electron velocity distiibution function. Interestingly, the standard Courant-Lewy-Friedrichs
condition, namely, that the step sizes Av and At must satisfy the inequality:

(eE/m)At € Av, 4
which is a necessary condition for the numerical stability of a partial differential equation is not
necessary in our case.

A step-by-step procedure for attaining the equilibrium velocity distribution on the compuier
is, then, as follows:
Step 1. Start with a given distribution function at time t which is stored in a two-dimensional array
f(vx,vz). It could either be an analytical function (for example, a Maxwellian or a
Druyvesteyar: or a delta function) representing the distribution function at the starting time ¢

= U or be a numerically generated function at some earlier time .
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Step 2. Compute the collision terms R(vy,v,) for each value of vy and v,. Multiply the collision
terms by At and add to the distribution function from which they were obtained {see Eq.
).

Step 3. Shift the resulting array along the v,, index [f(vy,v;) — f(vx, V + Av)] to obtain the new
distribution function at the later time ¢+ At.

Step 4. Calculate various swarm parameters corresponding to the later time ¢ + At using the new
distribution .unction. Repeat from step 1 unless the swarm parameters stop changing in
time which indicates that the equilibrium has been reached.

We have used this procedure for obtaining the average energy, drift velocity and ionizanou
rate for electron-neon! and elcctron-argon2 systems for various values of E/N. The equilibrium

values of various swarm parameters for electrons in gaseous ncon for a few different values of E/N

are given in Table I below.

TABLEI
E/N Ionization rate Drift velocity Average energy
(in Td) (in 107 5°1) (in 107 cms°1) (ineV)
141 3.0074 3.1110 15.298
190 4.7470 3.8049 17.176
237 6.7463 4.4547 19.012
283 9.1608 5.0139 20.962
353 12.979 5.8074 23,787
424 17.113 6.5471 26.657
495 21.437 7.2327 29.573
566 26.013 7.8715 32.610

"This unique procedure, that we have described above for obtaining the electron energy
distribution in a gas, is computationally stable and analyti :ally exact. In particular, this procedure
provides a detailed time evolution of various swarm parameters, such as the average electron
energy or the rate of ionization of umbient gas particles by electron impact etc., whose final
equilibrinm values can be experimentally determined. These final equilibrium values depend only

on the ratio of the applied 2lectric field to the gas number deusity. E/N. and are independent of the
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initial electron energy distribution function. Receatly, we also used our innovative procedure for
obtaining the positron velocity distribution function in various rare gaSes3.

The ultimate aim of our investigations is to caiculate, in the future, the electron energy
distribution in a realistic mixture of atomic and molecular hydrogen using all the theoretical tools
that we have been developing and numerically testing for noble gases. For this purpose we will be
requiring a critical compilation4 of data pertaining to cross section for elementary processes in
atomic and molecular hydrogen. In the case of noble gases, however, we have discovered that the
transient behavior of any swarm parameter as it evolves to its final equilibrium value depends on
the initial conditions even though the final equilibrium value that the parameter attains is
independent of the initial conditions. "= ~ave further discovered that this transient behavior of any
swarm parameter, A(t), can be accurately fitted by a sum of two exponentially decaying factors as
follows:

A =cexp(-a, ) +cyexp(-0oyt). 5)
The decay constants & and o are determined by the applied electric field. We have noted that a
single exponential function does not provide a good fit. This observation indicates that perhaps the
initial electron swarm could be regarded as consisting of two components with each component
having its own decay time to reach equilibrium independently. Figure 1 shows the temporal
evolution of various swarm parameters for electrons in gaseous neon, for E/N = 566 Td., for two
different initial conditions. In this figure, 'diamonds’ represent the actually calculated points while
the solid lines are the two-exponential fits based on the above relation. The fitting is indeed
superb. Note that the decay constants o; and o) are the same for all swarm parameters for a given
set of initial conditions.

At the present moment we are attempting to generalize our computer code to include (i)
anisotropic scattering of electrons by target gas atoms via differential cross sections, (ii) a mixture
of gases since a realistic calculation of electron swarm parameters in a nydrogen source must
include a mixture of atomic and molecular hydrogen. and (iii) electron swarms subjected to time -

dependent electric fields.
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(b) Nonlocal effects in dissociative electron attachment to H. 5 and its isotopes.

The production of negative ions via the process of dissociative electron attachment te
molecular hydrogen (and its isotopes), e” + Hy — H + H", is known to occur when the incoming
electron and the neutral target molecule form an intermediate resonant anion state, which has the
ability of decaying by autodetaching the electron. The motion of the nuclei in this resonant state is
governed by a wave function E(R) which satisfies an integrodifferential equation involving a
complex, nonlocal potential. In solving this equation one can make use of a local approximation in
which one assumes that the set of vibrational levels which are accessible for a given incident
electron energy can be regarded as complete. While this approximation may yield acceptable
values for the cross sections well above threshold, it is expected to be less accurate near threshold
where there are fewer energetically open vibrational channels. During the present investigations
we solved the full nonlocal integrodifferential equation for the nuclear wave function E(R) near
threshold using a newly developed technique which involves matrix inversion. This investigation
has allowed us to compare the resulting nonlocal attachment cross sections with those that utilize
the nuclear wave function §(R) which is obtained using the local approximation to the full
integrodifferential equation. Besides providing an assessment of the effect of the local
approximation on the electron attachment cross sections, the present calculations will also provide
cross sections for H™ production which are more accurate than previously calculated”. The nuclear
wave function E(R) satisfies the following integrodifferential equation:

[(Tn®) + V'R) - EJER) = -V(E-E, ;, R) %,,5,R) - de'K(R,R')ﬁ(R') ©
(

with the kernel K(R, R') given by
V¥ (e,R)YV (e, R)

K(R,R") = EXVJ(R')XVJ(R)n-ILhiOJ de——5 e+m
v,J 0 Y (7)

where T} is the kinetic energy of the nuclei, V™ is the effective potential energy in which they move

in the resonant state and E is the total energy of the interacting system. The quantity V(g, R) is

tuferred 1 as thie inieraction matrix element, it represeuts thie wupling between the discreic and
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continuum states. This coupling leads to an energy shift of the resonance (the principal part
integral on the right hand side of (7)) and provides a width to the resonance (the imaginary part on
the right hand side of (7)) which determines the lifetime of the resonance.

In Figure 2 the nonlocal cross section for attachment to Hy in the J = 0, v = 0 level is
compared to its local counterpart. It can be seen that the difference between the two cross sections
at a given energy is small, on the order of 10 percent near threshold where the difference is largest.
That the nonlocal cross section is larger than the local one reflects the fact that in the local
calculation, all vibrational channels are considered to be open, whether or not they are actually
energetically accessible. The two cross section curves evidently do not merge into each other even
at higher energies because, in the present calculations, excitation of the continuum levels
(corresponding to H + H + ¢) was not taken into account.

The most significant difference between the local and nonlocal cross sections is the
conspicuous step structure in the nonlocal cross section in the energy range below about 4.5 eV.
This step structure could not be clearly seen in the available experimental data® since the energy
resolution of the apparatus used was of the order of 0.1 eV. These steps occur at energies for
which a new vibrational channel opens up. Thus, for example, the first step in the cross section
for attachment to Hy in v =0, J = 0 level at about 3.83 ¢V corresponds to the opening of the v = 10
channel, while the last is at 4.39 eV, where the v = 13 level becomes energetically accessible. It
might be tempting to attribute the loss of attachment flux at these steps merely to diversion into the
newly opened vibrational channel, but Figure 3 shows that this is an oversimplification. The
opening of a new vibrational level is accompanied by upward jumps in the cross sections for the
vibrational excitation of previously open channels. The magnitude of the upward jumps becomes
smaller as we consider levels farther removed in energy from the newly opened level. The jumps
are such that che sum of all discontinuities, including both in the dissociative attachment and in the
vibrational excitation cross sections, is indeed zero. The disappearance of the step strt. ire in the

local treatment is n

ot very surpri

since the local approkimation enuiis replacing the quanuty £ -

4
Eyy in the denominator on the right hand side of Eq. (7) by the incident electron energy and
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assumning that the set of vibrational levels over which one sums can be regarded as complete;
naturally, in such an approximation all sensitivity to the number of open channels is washed out.

Finally, Figure 4 shows the peak total attachment cross sections for various rotationless
levels of H, and HD against electron energy on a logarithmic plot. We have discovered a tight
upper bound on the attachment cross sections in terms of the incident electron energy € =
ﬁ2k2/2mc. The dot-dashed curve on the top represents 1/k2, which is seen to provide an upper
bound to the attachment cross sections for all six isotopes of Hj for all values of the incident
electron energies considered. This is consistent with an observation of Gauyacq7 that the

dissociative attachment cross section is of the form

Opa (x) = % Pye (k) »

where Pyq, (k), representing the probability that the electron does not autodetach in the resonant
state, is less than unity. In fact, 1k provides a tighter upper bound than /k2. Details of these
investigations will soon be appearing8 in Physical Review A.

(c) Isotope effect in vibrational excitation of molecular hydrogen.

The process of vibrational excitation is closely related to the process of dissociative
attachment in that it, too, proceeds via an intermediate resonant anion state. Using the nonlocal
equation described above, we have also obtained cross sections for vibrational excitation of
molecular hydrogen via the 2):u+ resonance for electron energies up to 5 eV. Our objective in
studying vibrational excitation has been twofold: to compare, as with dissociative attachment, the
nonlocal cross sections with those obtained using the local approximation and also to examine the
dependence of the cross sections on the nuclear mass (that is, the isotope effect).

Figure 5 shows, as a typical example, cross sections for excitation from the ground level
(v; = 0) to the v, = 4 level using both the local and the nonlocal formulations of the theory. The
nonlocal effects are seen to be small here, although differences of up to a factor of two are seen for
excitation of the highest vibrational levels. The prominent feature here, however, is the well-

defined structure in the cross sections which, we emphasize, is by no means a nonlocal effect,
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being present in the local cross section as well, This structure is seen only for electron energies
betow the threshold for dissociative attachment and, for excitation from the ground level, is entirely
absent for v¢ < 3, becoming more pronounced with increasing vg. This behavior is in qualitative

agreement with experimental observations’

, as well as in quantitative agreement with theoretical
results reported by other authors!0. We auribute the peaks in the cross sections to the existence of
singularities in the scattering amplitude in the complex energy plane. These singularities are
associated witl: the bound vibraticaal levels of the resonant anion potential energy, and coincide
with them (in energy) in the limit as the level width tends to zero. We have confirmed that as the
width is made smaller, the peaks in the cross section become sharper and occur at values of the
electron energy which approach those at which an anion bound state could be excited. The same
structure is also seen in excitation from higher vibrational levels, and it occurs there for lower
values of vy, appearing in the superelastic cross sections by v; = 2. The exact reason for the
behavior of the structure as a function of vy is, at present, under investigation.

We have also obtained cross sections for excitation from various initial levels to higher
vibrational levels for all heavier isotopes of hydrogen, namely, for HD, D4, HT, DT, and T,. As
part of our research endeavors we have discovered a very useful scaling law for these excitation
cross sections. Using this scaling propexty it is possible to obtain the cross sections for vibrational
excitation or deexcitation, by electron impact, of heavier isotopes of H, from the corresponding
cross sections for molecular hydrogen. Now, using separately the potential curves of linear
harmonic oscillators as well as of Morse oscillators to mimic the actual potential curves of the
neutral molecule H, and its resonant state Hy, we have derived analytically that, in the impulse
limit of a resonance, an arbitrary vibrational excitation cross section a(v, — vy) is proportioral to
M - Hvi-vEiz where M is the reduced nuclear mass. [The relative masses of the isotopes Hy, HD,
Dy, HT, DT, or T, are 1.00, 1.33, 1.50, 2.00, 2.40 and 3.00, respectively.] That this scaling law

beyed quitc well by vibrational eacitation cioss sections (calcuiated using the actuai potentiai
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Figure 6. Relative cross sections for vibrational excitation of various isotopes of Hy.
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(with X = H,, HD, Dy, HT, DT, and T5) is shown, for v; = 2 and incident electron energy e = 5

eV, as a function of v;. Our calculated excitation cross sections are in quite good agrecment with
this scaling behavior for all values of v, and v up to and including 5. This is because the resonant
state under present consideration, namely the 22u+ state of Hy", has a relatively large width (cr
small lifetime) and, therefore, can be construed as the impulse limit of the resonance. It is rather
remarkable, as seen in Figure 6, that the above isotope scaling law for vibrational excitation cross
sections of molecular hydrogen is anplicable for cross section values varying over several orders of
magnitude! We intend to write the details of these investigations soon in the form of a paper for
publication in a refereed journal.

Finally, an updated list of all the publications and presentatons carried out under the tenure

of the present Grant is provided in the appendices A and B.
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gas on the temporal behavior of experimentally measurable electron swarm parameters.
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A novel algorithm for calculating the time evolution of the electron energy
distribution function in gaseous discharges

P. J. Drallos and J. M. Wadehra

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

(Received 12 November 1987; accepted for publication 22 January 1988)

We are presenting a novel numerical technique for obtaining the time evolution of the electron
velocity and electron energy distribution functions in the presence of a uniform electric field.
Using this technique, the various swarm parameters can be evolved for sufficiently long times
so that equilibrium can be reached without incurring any numerical instabilities. Results are
presented for electron swarms in gaseous neon for various values of E/N.

In nearly all aspects of gaseous electronics, the electron
energy distribution is of fundamental importance. Knowl-
edge of the electron energy distribution function (EEDF) is
usually gained through its relation with the electron velocity
distribution function (EVDF) which is a solution of the
Boltzmann equation for a given set of collision cross sec-
tions. The Boltzmann equation can be solved analytically for
an EEDF for only a few simple cases.! In practice, however,
numerical methods have to be used for its solution. In tradi-
tional techniques for solving the Boltzmann equation, the
distribution function is expanded in the Legendre polynomi-
als—either a two-term expansion or a multiterm expan-
sion—and the resalting set of equations are solved numeri-
cally for the equilibrinm EEDF after making some
simplifying approximations for the collision cross sections.

However, these expansioa techniques do have sonse in-
herent drawbacks.? For example, the two-term expansion
method breaks down for high values of £ /N but works well
for iow E /N values. The EEDF under high E /N situations
can, in principle, be obtained by taking more {erms in the
Legendre expansion of the Boltzmann equation. It is not
always clear when the muititerm expansion is to be preferred
over the two term, nor just how many terms in the expansion
of the EEDF are to be included. The convergence behavior
of a multiterm expansion, especially for high values of E /N,
is also not completely understood. Furthermore, the cross
sections, which are adjusted to reproduce the experimental
swarm parameters in a two-term expansion, do not yield the
same EEDF or the corresponding swarm parameters when
used with a multiterm expansion and vice versa, It would be
desirable, then, to have a procedure for obtaining the equilib-
rium EEDF and equilibrium EVDF that does not involve
Legendre expansion of the distribution function. Here we
have utilized a finite-difference scheme, previously used by
Tagashira and co-workers,> in which no expant on of the
EVDF in sphencal harmonics is needed and the time evolu-
tion of he EVDF to its equilibrium value is obtained expli-
citly. Thus, the question of how many terms should be taken
in the expansion of the EVDF, which is the solution of the
Boltzmann equation, is cempletely avoided.

In this communication we present a novel algorithm for
chtaining the time evolution of the EVDF numericaily. This
is accomplished by beginning with the Boltzmann equation
which can be written as
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wherea = — (eE/m) is the acceleration of the electrons of
mass m due to the clectric field E, and R(v,¢) is the collision
term containing all of the relevant cross sections. Now we
multiply both sides of Eq. (1) by a finite time interval Ar and
then add f{v,?) to cach side which yields,

fve) + (At (,% + Av'Vv)f(v,t) =f(vt) + R(v,t)Al,

2)
with Av = aAr The terms on the left-hand side of Eq. (2)
can be combined to yield the final result,
S+ Avyt + Aty = f(v,t) 4 R(v.2)AL (3)
Equation (3) describes the time evolution of the EVDF
and can thus be used to obtain the time evolution of the
EEDF and the various electron swarm parameters. Note
that Eq. (3) is entirely equivalent to Eq. (1) and is perhaps
even more fundamental than Eq. (1), as Eq. (3) is a neces-
sary step that one must go through in a textbook derivation
of the Boltzmann equation.® In such a derivation, one wouid
normally expand the left-hand side of Eq. (3) to first order
in Az, then take the limit Ar—0 to obtain the Boltzmann
equation [Eq.(1)]. In the velocity space, the collision term
R{v,1) in Eq. (3) is difficult to evaluate in Cartesian coordi-
nates, but straightforward in spherical coordinates since the
collision cross sections depend only on the electron impact
speed v. Thus, it might seem that spherical coordinates
would be the natural choice for evaluation of Eq. (3). In
their calculations, Kitamori, Tagashira, and Sakai* used
spherical coordinates to evaluate the term a'V,f{(v,r) of Eq.
(1). This involves derivatives of f with respect to v and ¢
(polar coordinates in velocity space) which must be evaluat-
ed numericaily. This procedure leads to strong numerical
instabilities in the EVDF and is computationally expensive.
On the other hand, as we will now show,
S(v 4 Av,t 4 At) of Eq.(3) is extremely easy to evaluate in
Cartesian coordinates. The acceleration of electrons along E
(which we choose to be along the z direction) is constant,
and 1s zero in the transverse directions. Thus, in Cartesian
coordinates, Eq. (3) is written as

S{vov,v, = (eE/m)Ant + At}
= JU0,,0,1) + R(V,1) AL )

Equation (4) is very well suited for evaluation on a com-
puter. Since there is axial symmetry along v,, fnced only be
stored asa function of v, and v, (orv, ) insuchaway that the
velocity increments Av satisfy Av = (eE /m)At. Evaluation

®© 1988 Amencan Institute of Physics 5601
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FIG 1 Thetimeevolution of vatious electron swarm parameters in gaseous
neon for E/N = 144 Td,

of fin Eq. (4) then merely involves, in part, a shifting of the
array f(v,,v, ) along v, at each time interval At. This shifting
procedure accomplishes all the acceleration effects of the
electrons due to the electric field without incurring the relat-
ed problems of numerical instabilities which arise mainly
from the evaluation of derivatives. The evaluation of the col-
lision term* in Eq. (4) involves an integral over the polar
angle @ (in the velocity space) and requires a knowledge of
the distribution function at various values of v and 8, that is,
at various v-8 grid points in the velocity space.This integra-
tion can be carried out, even though f'is known only as a
function of v, and v,, by simply interpolating f(v,,v, ) to get
S(,0}.

Thus, the novel algorithm for evaluating the time evolu-
tion of the EVDF is as follows: Starting from a distribution
function at some time 7 (a Maxwellian at ¢ = 0, for cxample)
which is stored in a two-dimensional array f{v,.,v, ) such that
Av = (ecE /m)At, the collision terms R(v,v,) for each v,
and v, are calculated. These collision terms are then multi-
plied by A¢ and added to the distribution function from
which they were obtained in accordance with Eq. (4).

EMN=283Td
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FIG 2 The time evolution for various electron swarm parameters in gase-
ous neon for E/N =283 Td.
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FIG. 3. The time evolution for vanous electron swarm parameters i gase-
ous neon for E/N = 566 Td.

The resulting array is then shifted along the v, index
[/t,,0,) = f(v,,v, + Av) ] and it becomes the new distribu-
tion function at the later time ¢ + At. This procedure is re-
peated while various swarm parameters are calculated from
each new distribution function corresponding to a new time
t -+ At. Equilibnium is obtained when the swarm parameters
cease to change in time.

We have used this method to ovtain the time evolution
of various electron swarm pa-ameters for the clectron-neon
system for various values of E /N. In all of our calculations
we assumed an inittal Maxwellian veiocity distribution at
t=0 and a gas density N of 3.54x10*' em™> or
1.32X 10~ *amagat (1 Torrat 273 K). The velocity steps Av
ranged from 2.2 X 10" to 3.4 X 10" cm/s and the time steps At
ranged from 0.064 t00.032 ns as £ 7 N was varied from 144 to
566 Td. We pont out that, in practice, Az may be chosen to

E/N2566 Td
NITIAL MAXWELLIAN EVDF

FIG. 4 Theimtial Maswelban and final equihbrivm electron veocty - 1s-
tribution function in neon for E/N = 566 Td.
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be aproper fraction of mAuv/eE and only this fraction of cach
element of the EVDF is shifted per tiine step. Such a proce-
dure is observed to enhance the numerical stability. Another
criterion for choosing At is that the term R(v,r) Arof Eq. (4)
be smaller than " (v,¢) for all values of v. Figures 1-3 display
the calculated time-dependent behavior of various electron
swarm parameters in gaseous neon for three different values
of E/N. The relevant collision cross sections were taken
from Ref. 4. The equilibrium values of these swarm param-
eters are in very good agreement with those calculated by
Kitamori, Tagashira, and Sakai.* We have also noted that
the final equilibrium values of the swarm parameters are
unaffected by the average energy value of the initial velocity
distribution, although the transient behavior may be some-
what different. For example, an overshoot in the drift veloc-
ity is observed if the initial average energy of the distribution
function is less than the final equilibrium value of the energy.

Figure 4 shows the initial and final EVDF for the case
E/N=566Td.

The FORTRAN 77 code which we used was less than 400
lines in length and required about 500 CPU seconds to reach
equilibrium for E /N = 566 Td on an Amdahl 470/V 6 main-
frame computer.
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Formation of ground and excited states of antihydroegen

Sultana N. Nahar and J. M. Wadehra
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202
(Received 20 November 1987)

Differential and integrated cross sections for the formation of antihydrogen by the impact of
intermediate-cnergy (20-500 keV) antiprotons on positronium are calculated using the first Born
approximation. The calculations are carried out for the formation of antihydrogen in ground and
various excited electronic states (n = 1-3) when positronium, the target atom, is in the ground state,
and for the formation of antihydrogen in the ground state when the positronium is in various excit-
ed electronic states (1 =1-2). The 1/n* behavior for the capture cross sections 1s used to calculate
the total {that is, all states added together) integrated cross sections. The cross sections for the for-
mation of antihydrogen presented here are obtained from those for the formation of positronium by
the impact of positrons on hydrogen atoms by using charge invariance and the principle of detailed

balance.

1. INTRODUCTION

Because of the recent availability of an antiproton
beam at the Low-Energy Antiproton Ring (LEAR) facili-
ty at Organisation Européenne pour la Recherche
Nucléaire (CERN), experiments for the formation of one
of the simplest atoms of antimatter, namely, antihydro-
gen (H), are being proposed and planned.!"¥ One reason
for the strong interest in the formation of antihydrogen is
its relative stability compared to other eaotic atoms such
a$ muonium, protonium, positronium, etc., which makes
it more suitable for carrying out experiments with antihy-
drogen for various diagnostic purposes. In the present
work the cross sections are calculated for the formation
of H by positron (e*) capture during the collisions of
intermediate-energy (20-500 keV) antiprotons () with
positronium (Ps) using the first Born approximation
(FBA). Schematically the processes are

3]

where nlm =15y, 259, 2pg, 2Py 350» 3Po» 3P11r 3dos
3d,y, and 3d 45, and

F+Pstis)—Hinimy+e~,

F+Pstnim)—=H(1s) e, )

where nim =154, 259, 2pg, and 2p4,. The 1/n3 behavior
for the capture cross sectioas in the Born approximation
1s used to estimate the differential and integrated cross
section for the formation of higher excited states of
antihydrogen starting from the ground state of Ps as well
as for the formation of ground state of H starting from
the higher excited states of Ps.

IL THEORY

Following carlier works,** the cross sections (o) for

the formation of IT by the impact of 5 on Ps of Egs. ()
and {2) are, by charge invanance, the same as those for

the formatinn of hydiogen (HY by the impaet of protons
{p) on positronium, that s,
o=0(p+Ps—H+e )=0(p+Ps—Htet). Q)
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Furthermore, the cross sections for the formation of H by
the impact of protons on Ps are related, by the principle
of detailed balance, to the cress sections for the forma-
tion of Ps by the impact of positrons on hydrogen.
Hence one can write

k2
aﬁ=a(p+l’s—»H+e*)=-l-{-'z—aps. @
op, is the cross section for the process
et - Hinlm)—Ps(1s)+p , (5a)
or for the process
e ¥+ H(1s)—Pstnim)+p . (5b)

7ik, and 7k are the relative momenta of the positron (in
the initial channel) and the positronium (in the final chan-
nel) of Eqgs. (5). In the present work, the values of o, for
the processes of Egs. (5) for various sets of nlm are calcu-
lated first, and then Eq. (4) is uscd to obtain the values of
the cross sections (o) for the formation of aniihydrogen
which are now labeled o, -

The coordinate system used for calculating op of Eqs.
{5) is shown in Fig. 1. Tt is clear from Fig. | that r, (r)
and R, (R} are the internal coordinate and the coordi-
nate of the center of mass of the bound system in the -

FIG. 1. The coordinate system for the processes of Egs. (5).
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tial (final) channel, respectively. R locates the incoming
positron with respect to the proton. Atomic units are
used throughout this paper unless specified otherwise.
To obtain the impact energy of the positron for the pro-
cesses of Eqs. (5) corresponding to an impact energy of
the antiproton for the processes of Eqs. (1) and (2}, con-
servation of momentum is used, Let £ =k;/2mp be the
laboratory impact energy of the antiproton of mass m,
with respect to the positronium at rest. Then the wave
number k of the positronium with respect 1o the station-
ary antiproton is

kp=mpks/m, 6

where myp, is the mass of the positronium. Hence, in the
frame of a stationary antiproton, the energy of the posi-
tronium is k}/(Zm po)- The wave number k of the posi-
tron, of Egs. (5), is obtawmned from the conse. .ation of cn-
ergy, namely,

K} /2v )=k} /2vy) =€ p+e, m

where €, and €, are the (positive) binding energies of H
and Ps, respectively. If m is the mass of an electron {or a
positron), then v, =m(m +m,)/(2m +m,} 1s the re-
duced mass of the system (¢ * +H) in the matial channel
and v, =2m m/(2m+m,) is the reduced mass of the
system (Ps+p) i the final channel of Eqs. (5). In the first
Born approximation, the differential cross section for the
processes (5) is related to the T-matrix element as

do_ ke g

a0 " Gap k' ®
where

(g1 ¥, |¢,) m the prior form , (9a)

T= (dp | Vplty) in the post form . 9b)

¢, and xJJf are the wave functions for the system (e ¥, H)
in the initial channel aud the system (Ps,p) in the final
channel, respectively; that is,

¥, =explik;-R,)$,(r;)
and (10)
z[;,:exp(ik/-R/kﬁ/(r/) »

12
5 2
&(3dy, 1)= R 33(r) lT(S_; ! {3cos*0—1)

22 1
=p(3dy,r) iy )

4

2
= l—;‘-’;[exp(i A-1)o(3da.r}/r*]—expli A-vipl3d, /3 l
z

2
= }.. 1—‘;—;[,\’,(3do,r)/r2]--,\’,(3d(,,r)/3
¢ 4

A=0
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where ¢;(r,) and &,(r/) are the bound-state wave func-
tions of H and Ps, respectively. The initial and the final |
teraction potentials ¥, and ¥ are

V,=V(R)=~V(r),
V,=V(R)=V(r,),

(lia)
(11b)
where V(x)=1/x. The integrated cross section s given

by

sinddg . (12)

=ido
0=21’rf0 l;;-(-l-

Substituting ¥, and ¥, from Eqs. (1D m the T-matrix
elements, we get

Oy [ VRV )=y [ VArp) [ 0,)

=N, +N, (priot form), (13a)
T = (¥, V(R”'/':>—(¢'fl Vir) )
=N,+Ny (post form). (13b)

These T-matnix terms, Ny, N,, and Ny, can be evaluated”
easily for the cases when only the spherically symmetric
states are involved. Such cases, for example, are the for-
mation of Ps(ls) from different s states of 1 of Eq. (5a) or
the formation of different s states of Ps from I(ls) of Eq.
(5b). Cowmpleanty arises when the mstial or the final
bound-state wasve functions 1 Egs. (5) are not spherically
symmetric as in the case of formation of Ps in the p or d
state or when the target H is in an excited p state. The
complexity due to the nonspherical wave functions can be
reduced by expressing the angular dependence of the
wave functions in terms of derivatives of an exponential
factor exp{t A-r), where the value of the parameter A 1S
eventually set to zero. In particular, for the processes
(5a) we introduce a function X,(r) as follows:

X (nlm,ry=p(nlm,rlexpi A-r), (14)

where p(nlm,r) represents R, the radial part of the
wave function of hydrogen, multiplied by the constants of
Y}, the angular part of the wave function. Then the
complete bound-state wave functions ¢;(r), of Eq. (10),
can be obtained by merely taking the appropriate dertva-
tives of X;(r) with respect to either A, or A, or A, and
then setting A=0. As an example, for the 3d, state of
hydrogen, the wave function is

A=0

) (15)
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- where, using the explicit form of Ry,,

1
p(3d0,r)=-57—‘/-6-—;rzexp(-—r/3) . (16)

This kind of trick has been used earlier by Sil et al.% in
calculations of charge-transfer cross sections.

Let Q; and Q, be the momentum-transfer vectors in
the initial and final channel, respectively, 1.e.,

Q,=[m, Am +mpk, ~k,, Q=k,/2—k, (17N

and Jet u2 Le the reduced mass of the final atom positroni-
um of the processes (5). Then the parts of the T-matnx
elements for the processes (5a), upon replacing $,(r) by
X,(nim, 1) of Eq. (14), can be written as

Ny=2P2 [ E1Q, — B (1) ~t—Q,— A’ , (18a)

Ny=—{27P (18b)

97 i on
-2;[‘-&1/- ¢ HQ Pl —Q, ~ A}

N3=—-(277)“/25}(Q/)fﬁ(t)ﬁ(~—t—Q,— A, (18c)
where the overtilde represents the Fourier transform of

the respective function. For example, the Fourier trans-
form J{t) of a function f (r) s defined as

]‘(t)::(er)‘3’Zfd3rcxp(—zt-r)f(r) .

Substituting the explicit forms for the potential ¥, and
the wave functions 4, and ¢, the term N, incurs an in-
tegral of the form

1 1

Iy "f & z 202 12, 2

—PP4p? (t=BP+b? Pz

which, upon using the Feynman identity, can be reduced
to 2 one-dimensional integral as®

! dx
Ji=gt | ——————— {20)
! 0 E[F*4(E +2)%)
where  El=x(1—x}P—BP+xp?+(1-x)b? and
F=(P—B)x +B. N, can be written in a pure analytic
fashion. The term N; involves mtegral of the form

a3 1
= 21
f P)2+p2]2 t +Z

which can be done analytically to obtamn

, U9

S S S

13 s p[Pz.*.(p.*.z)z] . (22)
Integral 1, of Eq. (21) easily follows from mtegral I; of
Eq. (19) by setting P=B and p =b. P, B, p, b, and z of
Egs. (19) and (21) are, of coursc, related to Q,,Q, and the
parameter A of Eqs. {18a) and (18¢c). In the case of p-
and d-state wave functions, Ny, N,, and N; will involve
derivatives with respect to the Cartesiag componcits of
A. Note that since ¢, is a complex conjugate of
Gutmrand | T % is used to calculate the cross section,
the cross sections with both the wave functions (6, ;,,)
are the same~. This technique of using the derivatives of
the factor expli A-r) for representing the angular depen-
dence of the wave functions can also be used for the for-

mation of various excited states of Ps from H(1s) of Eq.
(5b). In this case the factor exp(i A-r) is introduced in
the final bound-state wave function ¢,(r) rather than in
the initial bound-state wave function ¢,(r). Thus after
calculating the cross sections for the processes of Egs. (5),
the corresponding cross sections for the formation of an-
tihydrogen are obtained using Eq. (4).

It was predicted by Oppu:hcimz.r that the cross sec-
tion for capture into any ns excited hydrogemc state at
high incident energies falls as 1/a* Later, Omidvar®
showed that the cross scction for the capture mto s, p,
and d states as well as the sum of the cross sections over
Im states falls as 1/n* in the first Born approximation.
There is also an experimental evidence of the cross sec-
tion for electron capture into excited states falling as
l/n in coilisions of high- cnergy fluorine 1ons with ar-
gon.” Hence using the 1/n> dependence of the capture
cross sections of Eq. (1) for the formation of H m excited
states (n > 4), the total cross section could be written as

3 3
Cr=0,+0;+03]1+ -,;{-':l— —’Ty:i
n !
;’IE %""l, (23)
where

AL AT
(73=02,0+02p0+202,,l R (24)
O3=03 +03, +20,, +03y +205 < 203,

and # =3. The value of the seties withm the large square
brackets of Eq. (23) is 2.0805 for » =3. In the case of
H(ls) formation from various states of Ps, of Eq. (2), the
1/n° rule is used for positronium states n > 3. Hence us-
ing n =2 the value of the series within the large square
brackets of Eq. 23} is 1.616.

II1. RESULTS AND DISCUSSIONS

The present work on charge-transfer processes has
been carried out using both the prior and the post forms
of the interaction. The difference in the values of the
cross sections using these two forms of the interaction
(that is, the post-prior discrepancy) is quite small (a few
parts in a thousand). Hence only the prior form of the re-
sults is presented. The n~? behavior for the capture
cross sections is used for antihydrogen formation in states
n >4 from Ps(ls) [see Eq. (1)) and for H(ls) formation
from Ps in states 1 > 3 [see Eq. (2)]. The differential cross
sections (DCS’s) for the formation of antihydrogen in all
states {ground and alt possible excited states added to-
gether) by the impact of antiprotons on positrontum in
ground state are shown in Fig. 2 and those for the forma-
tion of antthydrogen n the ground state from all possible
states of positronium are shown in Fig. 3. From Figs. 2
and 3 we see that the nature of the DCS curves 1 these
two cases are very stmilar. DCS curves m Fig. 2 show
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that following the forward peak there is a very shallow
minimum at lower energies that deepens with increasing
antiproton impact energies while its position stays at
roughly the same angle (~24°). At larger scattering an-
gles, the values of DCS's fall smoothly at all energies.
Similar is the case with the curves of Fig. 3, except that
the mimima in the DCS values at lower impact energies
are more pronounced than those of Fig. 2. The minima
m the DCS curves arise from the opposite nature (attrac-
tive versus repulsive) of antiproton-positron and
antiproton-electron interactions; essentially the N, and
the N, parts of the T-matrix element [Eq. {13)] cancel one
another. The integrated cross sections for the formation
of antihydrogen in individual states 1so, 259, 2pg, 2Py,
3sg, 3pg, 3py, 3dg, 3dy, 3d,, as well as m all possible
states, using the n =3 behavior, from Ps(ls), are numeri-
cally presented in Table I and ace shown in Fig. 4. The
integrated cross sections for the formation of H(1s) from

10’ E T T T T T E
p+ Palte)-> HiAN + ¢ 3
10 B E
10 .
]
10" 3
B 0%V
g -
2 30 kev ]
=] .
‘g‘ 40k |
b 50%eV =
3] -4
w N
3 75kevV o
2 3
(&) p
= 100 KoV
g, — ]
510 - 125%eV 3
2 E
= 150 kev 1
¢ { 75 keV
10 ! 200V
! .
-1 :
10 , :
y e e—
10!
500 kav 3
10‘ | BV Sy " R A [P i
0 30 80 80 120 150 180

Scattering Angle (deg)

FIG 2. The differential cross sections for the formation of
antthydrogen i all possible states by the impact of antiprotons
on Pstls), Eq. (1. The DCS curves between 200 and 500 keV
correspond to sequential mncrease of tmpact energy at an inter-
val of 25 keV.

Ps in individual states 1sg, 254, 2pg, 2py, as well as in all -
possible states, using the n ~> behavior, are numerically
presented in Table II and are shown in Fig. 5. All the
curves for integrated cross sections in Figs. 4 and 5 decay
very smoothly with increasing p impact energies. From
Table I and Fig. 4 we sec that formation of the p and d
states of antihydrogen dominates over the formation of
any other state at tower antiproton impact energy (<50
keV). However, at higher impact energies the formation
of H(1s) dominates over the formation of all other states.
In case of formation of H(1s) from various states of Ps, as
scen in Table II and Fig. 5, the formation from Ps(ls)
dominates significantly over formation from any other
state of positronium almost at all energies considered.
The use of 1/n* behavior of the capture cross sections
for the entire range of antiproton impact energies to cal-
culate the cross sections for states n >4 for processes of
Eq. (1) and for states n >3 for piocesses of Eq. (2) is

10 ¢ T : r : T
p+ PstAll > Filte) + "

[IERETIT

. rrennl

20 keV

BTN | BTt

30 kev

T

Differentiel Cross Section (107" em?se™)

10° - B
1 y 150 xev
10« B {] 175 ke¥
1
.
10° .|
10° 3
16'".1 i il smi) PUNYN SPRPRTErarE | P
30 60 90 120 150 180
Scaitering Angle (deg)

FIG. 3. The differential cross scctions for the formation of
antihydrogen n the ground state by the impact of anuprotons
on all possible states of positronium, Eq. {2 The DCS curves
between 200 and 500 keV correspond to sequential merease of
mmpact cnergy at an interval of 25 keV.
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found to be quite reasonable. For example, the value of
the ratio (n +1)%0,,, ,/n’a,,, which ideally should be 1 if
the 1/n* behavior is valid, is 1.54 at 20 keV and 1.07 at
500 keV for the process of Eq. (1) when 1 =2, The same
ratio for the process of Eq. (2) is 1.26 at 20 keV and 1.02
at 500 keV for n =1. These numbers suggest that the use
of 1/n* rule holds relatively more accurately at higher
impact cnergies than at lower impact energies.

In the earlier works, Neuman et al.! have carried out a
laser-enhanced electron-ion—capture calculation to evalu-
ate the rate of total recombination for antihydrogen for-
mation. Humberston et al.? presented the values of cross
sections for the formation of H(1s) from Ps(ls) at lower
impact energies using the s-, p-, and d-wave positronium-

formation phase shifts obtained by elaborate variational
calculations. Later, Darewych® calenlated the cross sec-
tions for the formation of T in states Lsg, 25, 2p (all m},
and 3sq from Ps(1s) at low antiproton impact energies us-
ing the first Born approximation (FBA). Since the FBA
is not a good approximation for scattering calculations at
low projectile energics, the present work 1s carried out 1n
an mtermediate range of impact cnergics. However, for
coraputational cheching purposes, cross sections at a few
low impact energies were calculated and it was observed
that both Ref. 3 and the present work agree very well for
the formation of IT in s states, while the values of the
cross sections for 2p- (all m) state formation in the
present work are much larger than those of Ref. 3. Asa

AL 04173(—4] 02991 ~4] 02184[~4] 0.1620[-4] 0.1219[—4]  0.9303(- 5} _

TABLEI The values of the integrated cross sections (vg) for the formation of H i ground and various excited states as well as in

all possible states by the impact of 7 on Ps(1s) in the incident-energy range of E =20-500 heV. The notaton afb] for the values of
the cross sections means a X 10%

o (1071 em?) at varous j energies, E (keV)

States  E=20 30 40 50 75 100 125 150
s, 0.1048[1]  0.4630 0.2302 0.1242 03425[ 1]  0.1208{—~1] 05025[-2) 0.2352[-2)
2%, 02780 0.1109 0.5372[—1]  02837{—1]  0.7344[-2]  02438[—2]  09624[—3] 04315[ 3]
2p,  0.9554 02794 0.9847[ 1] 03994[—1)  0.6384[—2]  0.1516[~2]  0.4643[—3] 0.1697 ~ 3]
2, 04057 0.1001 03150[—1] 0.1176[ =1}  0.1643[—2]  03593(=3]  0.1040[—3] 0.3646] —3]
3, 0.1149 04015[~1] 0.1862[ =1} 0.9648[—-2]  0.2439[~2]  07973[=3]  0.3112{~3] 0.1383[-3]
3, 0373 0.1009 03674 —1]  0151[-1]  0.2429[~2]  05741[-3]  0.1747[=3] 0.6345[—4]
3, 01264 0.3439[~1]  0.3124[—1] 04270[-2]  0.6042[—3]  0.I321{~3]  03813[-4] 0.1333[—4)

3d,  09331(—1] 02305[—1] 0.6651[—2] 0.2241{=2] 02451[—3)  04359[—4]  0.1061[~4] 0.3211{—5]
3d,  05982{—1] 0.1323[—1] 0.3564[—2] 0.1144[—2] O01157[~3]  O1961[~4]  04613{=5] 0.1360[-35)
3d,  0.1886[—1] 03340[-2] 07996[—3] 0.2379[~3]  02149[~4]  038417[-5] 07709 -6] 0.2206[ - 6]

Al 0.5039[1]  0.1608{1]  0.6393 0.2957 0.6499[—1]  02035[-1]  0.7873{- 2] 03514[-2]

E =175 200 225 250 275 300 325 350

Iso  0.1204[~2] 0.6613{—3) 03843(—3] 0.2340[—3]  0.1483[~3]  09710[—4]  06546[~4] 04525[—4]
25, 02131[=3] 0.1136[~3] 0.6438[—4] 0.3837[—4]  02385[—4])  0.1537{—4]  0.1021[-4] 0.6969] —5]
2pe  0.7069[—4] 03256[ 4] 0.1624f~4] 08637(-5] 04848 —5]  0.2847[—5]  0.1737[=5]  0.1096] - 5]
2, 0.1471[—4] 0.6604[-5] 0.3225[~5) 0.1686[—5}]  09324[—6]  0.5405[—6]  0.3262[—6] 0 2038[ —6]
35, 0.6786[—4] 03598[—4] 0.2030{—4] 0.1206[—4]  0.7478[-5]  0.4808[—5]  0.3189f—5] 0.2173[~5]
3pp  02629[—4) 0.1205{--4] 0.5984[—5} 0.3172[=5] 01775[—5]  0.1039[~5]  0.6325(—6] 0.3981{—0]
3, 0.5360[—5) 02399[—5] O.1169[—5] 0.6096[—6]  0.3364[~6]  0.1936[-6]  0.1173{ =6} 0.7315[~7]
3d,  O.0141{~5}] 0.4583[—6] 0.2030[—6] 0.9738[—7}]  0.4990[—7]  02704(~7]  0.1537[-7] 0.9112[ ~8)
3d,  04729[—-6] 0.18641—6] O08111[~7] 0.3822[-7] 01923 -7]  0.1023[~7] 0.5702{-8] 0.3309] - 8}
35, 07495[—=7] 02901[—7] 0.1244[ ~7] 0.5791{—8]  0.2884[—8]  0.1520[ 8]  08408[~9] 0 4846[ —9]

Al 0.1740[—2] 0.9323[—3]) 0S317[- 3] 0.3190[=3]  0.1997[—3}  0.1295[~3]  0.8656[—4] 0.5941[ ~4]

E =375 400 425 450 475 500

s, 0.3198[-4] 02304[~4] 0.1690[~4] 0.1259[—4]  09512{~5]  0.7280[ 5]
25,  04869[=5] 0.3473[—5] 02524[~5] 0.1864[~5)  0.1398[~5)  0.1062[ 5]
2y O7121[—6] 04746[=6] 0.3236[—6] 0.2251[~6}  0.1595[~6]  0.1149[—6]
P, 0.1312[—6] 08677[-~7] 05874[—7] 0.4060[=7] 02860[—7}  0.2049[—7]
35,  OI517[=5] 0.1081[~5] 0.7844{—6] 0.5790[~6]  04338[—6]  0.3294[ 6]
3po U2SBI{—06] 017H6[~6] 0.1168[—6] O8112{-7} 05738—7) 0.4127{~7]
3py 04703[-7] 03106{—7] 02100{--7] 01450{=7]  01020{—7]  0.7301[ 8]
3dy  0.5604{—8] 0.3560[—8] 02328(~8} 0.1562[~8]  0.1074[—8]  0.7534[-9]
3d,  0.1989[-8] 0.1233[—8] 0.7860[—9] 0.5133{~9]  0.3426[~9]  0.2332[—9]
3d,  0.2896{~9] 0.1786[ -9} 0.1132[=~9] 0.7361[~10] 0.4893[~10] 0.3319{~10]
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FIG.4 The integrated cross sections for the formation of an-
tihydrogen 1 various s, p, and d states (summed over m quan-
tum numbers) by the impact of antiprotons on Ps(ls), Eq. (1).
The solid curve corresponds to the total mtegrated (t.e., sum of
all possible n! states of antihydrogen) cross sections.
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FIG. 5. The integrated cross sections for the formation of an-
iihydrogen n the ground state by the impact of antiprotons on
po tronum in vartous s and p states (summed over m quantum
numbers), Eq (2). The solid curve corresponds to the total m-
tegrated (i.e., sum of all possible nl states of positronsum) cross
sections.

TABLE IL The values of the mtegrated cross sections (o) for the formation of H(1s) by the impact
of 5 on ground and various cxcited states as well as on all possible states of Ps in the incident-encrgy
range of E =20-500 keV. The notation afb] for the values of the cross sections means a X 10°

Ps state
ag (107" em?)
E (keV) 15y 25y 2po 2py All
20 0.1048{1}) 0.1054 0.3934{ - 1) 0.1020{ - 1} 0.1315[1}
30 0.4640 0.5235{ — 1} 0.1659[ - 1) 0.4220[ ~2] 0.5890
40 0.2302 0.2757[ -1} 0.7753[ -2} 0.1877{-2] 0.2933
50 0.1242 0.1539{-1] 0.3896{ —2} 0.8978[ -3} 0.1583
75 0.3425[ -1} 0.4408{ -2} 0.8889[ — 3] 0.1854{ - 3) 0.4341{-1]
100 01208 ~1} 0.1572[ -2) 0.2622] - 3) 0.5093{ —4) 0.1521[~1}
125 0.5025{ -2) 0.6545[ 3] 0.9291[ - 4] 0.1711[ -4} 0.6288{ ~2)
150 0.2352{-2) 0.3054{ -3} 0.3773{ -4} 0.6665[ - 5) 02928{ -2])
175 0.1204[ -2} 0 1555{-3] 0.1702{ —4) 0.2907{ - 5) 01492( -2}
200 0.6611[ -3} 0.8490[ ~4) 0.8342[ - 5) 2.1387[ - 5) 0.8163{ — 3}
225 0.3843[ - 3] 0.4903( -4} 0.4375( -5} 0.7106 -6} 04729[ ~3]
250 0.2340{ - 3] 0.2967{ -4} 02427 —5) 0.3864[ --6) 0.2872[ -3}
275 0.1483[ -3} 0.1867[ —4) 0.1411[ -5} 0.2208[ - 6] 01814 ~3]
300 0.9710] —4} 0.1216 - 4] 0 8544[ - 6} 0.1316] 6} 0.1186{ ~3]
325 0 6546{ —4] 0 8146{ - 5] 0.5355{ ~ 6] 0.8132[--7} 07975[ ~4}
150 04575 ~41 0 5599f — 5} 0.34591 -~ 6] 0.51871 71 0.5503[ ~4}
375 03198[ -4} 0.3936{ - 5) 0.2295( - 6} 0.3401[{ -7} 0.3882{ ~4)
400 0.2304{ 4] 0.2823{ —5] 0.1558] ~ 6} 0.2285{ -7} 0.2793{ --4]
425 0.1690f —4] 0.2060{ — 5] 0.1081] - 6) 01569 —7] 0.2046[ -4}
450 0.1259] —4] 0.1528[ - 5) 0.7639] - 7} 0.1099{ ~7} 0.1522 - 4]
475 09512[ -5} 0.1150f -5] 0.5492{ -7} 0.7829[ - 8} 0.1149[ -4)
500 07280 5] 0.8768{-6]  04010{—7] ~ 05668(-8] _ 08781{~5]
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check on the present computer code, the cross sections'®
for the formation of H, by the process of clectron capture
during proton-hydrogen collisions, in states Is and 2p
were reproduced.

In conclusion, we have presented a simple first Born
calculation of cross sections for the formation of antihy-
drogen, by the impact of intermediate-energy (20-500
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keV) antiprotons on positronium, in ground and in vari-
ous excited states.
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Approximate Green's Functions in Electron
(Positron)-Atom Collisions

The role of approximate Green's functions in electron (positron)—-atom collisions
15 discussed. [t 1s explicitly demonstrated that the scattenng amplitude in various
approximation methods. like the Massey-Mohr. simplified second Born. plane
wave (adiabatic as well as nonadiabatic), Glauber (with and without the Wallace
correction), eikonal Born sertes (including unitarization) and Schwinger variational
pnnciple. is obtained by mere approximations of the relevant Green's function.
Some of the shortcomings of different methods are pointed out. it is shown that
the Schwinger vanational method with suitable choice of tnal wave function yields
practically the same values of the differential and integrated cross sections for the
elastic scattening as well as the total collisional scattering for the e =-H system as
obtained by the use of the unitarized eikonal Born series method.

Key Words: electron—-atom scatiering, positron—atom scattering, Green's functions,
approximate methods

It is well known that an exact evaluation of the electron (positron)-
atom scattering amplitude is not possible at present. A number of
approximate methods starting from the Lippmann-Schwinger in-
tegral equation have been developed for an evaluation of the direct
scattering amplitude.! In this paper we will explicitly demonstrate
that most of these approximate methods for evaluating the scat-
tering amplitude employ different approximate forms of the Green's
function. We will also compare somewhat in detail the numerical
results of the elastic and total scattering of electrons and positrons
by a hydrogen atom obtained recently by Byron et al.* using the
unitarized eikonal Born series (UEBS) method and by Khare and
co-workers® using the Schwinger variational (SV) principle.
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The exact direct scattering amplitude for the e *-atom scattering
from the initial target state i to the final state f is given by!

fiikpk) = =2m2 (K. iUE(Go uy'- ‘Ik..o—Zfan (1)
with

2 -
p = th?n'
n=1
Here k, and k, are initial and final momenta of the projectile and
U is the reduced interaction energy, thatis, U = (2m/h%) V where
V is the actual total Coulomb interaction between the projectile
(electron or positron) and the target atom. Gy is the free Green's
function of the noninteracting projectile and target. The Green's
function G is given by

kaqmﬂqml dq @)

2 - qg* + e

where |q) and |m) are the intermediate states of the projectile and
target, respectively, and k2 = k? - 2(E,, — E;), E,, and E, being
the intermediate and initial target state energies. (We will use
atomic units, thatis, £ = 1,m = 1 ande = 1 unless stated explicitly
otherwise). The nth term of series (1), fg,, is referred to as the
nth Born term and fj, is the pth Born approximation for the
scattering amplitude. The nonconvergence of the Born series for
rearrangement collisions, including the exchange effects, was ex-
plicitly demonstrated by Aaron et al.> We may remark that the
investigations of Rosenberg® strongly suggest that the Born series
for the direct scattering amplitude for the e=-atom system may
also not converge. Furthermore, the evaluation of far forn>1,
is extremely difficult due to the presence of the operator (G, +
U)r-*. The first Born term, fg,, which does not contain G§, is
easy to evaluate. However, it completely neglects the effects due
to distortions of the wave tunctions of the projectile and the target.
The Green’s function contains these effects through the interme-
diate states |q) and jm). Different approximations, which have been
developed to obtain f/(k,k,) using an integral equation approach,
treat the Green’s function in different approximate ways.
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second Born term f5, given by
732 (kf.k,) = "217: (k/-f‘UG(). L/Ikni)- (3)

An exact evaluation. either analytical or numerical, of fg, is an
involved problem. So far only Ermolaeve and Walters? have suc-
ceeded in this task. Their numerical method has been discussed
briefly by Walters.3

The first attempt for an approximate analytical evaluation of fg,
was made by Massey and Mohr.® They replaced k2 by k2 in (2)
for all values of m. Then using the closure relation one obtains
the Green's function G§(R.R"; x.x') = (RX|G3[R' X'} in the
Massey—Mohr approximation given by

Giu(RR": x.x') = Gg(R.R") 8(x - x'), (4)

where R and x are the coordinates of the projectile (electron or
positron) and the bound state electrons of the target, respectively.
G, is the free particle Green’s function of the projectile only and
is given, in operator form, by

. @) (q|
Gop = f P-g+rd ©)

Use of (4) and (5) in (3) yields an integral expression for fg, which
does not contain intermediate target states |m) and the integration
over x’ becomes trivial due to the presence of the delta function
d(x — x'). Thus, in the Massey—Mohr approximation we have

Foalrk) = (flFa0lD (6)

where fg,(x) is the second Born scattering term for the scattering
of the projectile by a target, in which the bound electrons are
frozen at the position x, and is given by

faa(x) = =27 (k|UG§,Ulk,). ™

It is evident from (6) and (7) that the Massey—Mohr approxi-
mation completely neglects the effects due to the distortion of the
target wave function. Since this approximation assumes the exci-

tation energies to be zero, it turns out! that for the elastic scattering

v vadgs
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the imaginary part of the second Born term. Im fg,,,. diverges in
the forward direction and. for e =-atom elastic scattering. the real
part in the forward direction, Re fg,,,(0), asymptotically goes as
k,~*instead of k,~ . the correct dependence. !® A similar divergence
in the forward direction is also observed for s-s excitation, for the
¢ =-atom system, which arises due to the absence of the interme-
diate p states in the evaluation of the second Born term. To a
certain extent these discrepancies are removed by taking k2 =
k? — 24 with A as the mean excitation energy. In an average sense
the signature of the intermediate target states are carried to fg,
through A. The choice of A is not unique. Ermolaeve and Walters”-®
have discussed the various options. To obtain better values of the
differential cross sections, particularly for the case with momentum
transfer |K| large in which the higher Born terms play an important
role, a few low lying excited states should be explicitly included
in the summation of Eq. (2). Based on these ideas Holt and
Moiseiwitsch!® proposed to include in Eq. (2) a finite number of
low lying target states exactly and the rest by summing up through
closure. The simplified second Born approximation (SSBA) of
Holt and Moiseiwitsch, thus obtained, has been one of the most
popular ways for evaluating the second Born term.

An approximation just opposite to that of Massey and Mohr
was attempted by Khare and Shobha!! when they evaluated fg, in
the plane wave approximation. They took g* = k? in (2). Thus
G5 (R,R’; x,x') reduced to G§,(x.x')8(R — R’), where Gg,,
the target Green’s function, is given, in operator form, by

Gi = §' ®)

The prime excludes the final and initial states from the summation;
hence, these states do not contribute to the polarization of the
target wave functions. Use of (8) in (3) yields as the second Born
term in the plane wave approximation.

}BZp(kf‘kt) = -2n? (k/'Uaplki) (9)
where
{ ) (m|Uli)
Uy =S’ ﬂ_‘;.lz"’%’.:%"_"_ (10)
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It is evident that (9) completely neglects the effects due to the dis-
tortion of the projectile wave function but includes those due to the
distortion of the target wave functior. Since the projectile is being
represented by a plane wave in (9). this approximation is referred
to as the plane wave approximation. U,, serves as the interactinrn
potential between the projectile and the distorted (polarized) tar-
get. Note that since (10) does not depend upon the velocity of the
projectile the polarization potential U,, is adiabatic. The approx-
imate Green's function, including nonadiabatic effects up to the

first order in the interaction. can be obtained by taking g* = - V3
and using
1 1 1 V: + k?

Bv: Bkt (heR) Bk &-kr D
in (2). We note that (V2 + k2) when operating on a plane wave

yields zero. On using this approximate Green's function in Eq. (3)
we obtain

Fao(kp ki) = =22 (k|U,, + Un, k) (12)

where the nonadiabatic potential U, in its Hermitian form s given
bylz

Un®) = §' 12! 'Zl’z:)_' Z%f’””"”. (13)

It is easy to show!? that for elastic scattering the asymptotic form
of the dynamic interaction potential is given by

-6
UnlR) + Upg() = = & - P B g

where o, and «, are dipole and quadrupole polarizabilities and B,
is the dipole nonadiabatic coefficient of the target, a result obtained
earlier by Kleinman er al.!? using a different approach. Although
the plane wave approximation has been successful in explaining
the differential cross sections for the elastic scattering of fast elec-
trons by light targets like hvdrogen!? and helium!* atoms as well
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as hydrogen molecules.'® it suffers from the defect that fgzp is
purely real. Thus, although this approximation can be used to
obtain the total elastic scattering cross section by integrating
(For + fB..,,) over all solid angles. it cannot be used to obtain the
total collisional cross section (elastic plus inelastic) which is related
to the imaginary part of the forward scattering amplitude via the
optical theorem. Furthermore. even at very high energies for +
faz,, does not approach fa1 for any value of the momentum trans-
fer |[K]. In 1959 Glauber'® emploved the eikonal approxiination!’
of potential scattering theory to discuss the many-particle scatter-
ing process. To obtain the eikonal wave function for the projectile
one introduces a new variable p defined by p = k, — qin (5) and
approximately writes

1 _ 1 . p?
2 - gt +ie 2kep +ie  (2kep + i€)*

(15)

If we put only the first term of (15) in (5) we get the linearized
Green's function of the projectile leading to the eikonal wave
function. However, the inclusion of the second term gives the
leading Wallace phase correction.'® Use of the linearized Green’s
function in (1) yields the scattering amplitude in the Glauber ap-
proximation, given by

fa(kpk) = (flfe(x)li) (16)

where fg(x) is the scattering amplitude in the eikonal approxi-
mation for the scattering of a particle by a target atom in which
the bound electrons are frozen at x. Similarities between (11) and
(15) as well as between (6) and (16) are to be noted. If we include
the leading Wallace phase correction. fg(x) changes to feu{x) given
byl9

few(x) =
5"‘.,}",- f d*b exp(iK-b) {exp[i(k, 'xo(b,x) + & *x,(Bx))]-1}. (17)

K is, as above, the momentum transfer. The eikonal phase xo(b.x)
is of first order and the leading Wallace phase correction x;(b,x)
is'? of second order in the interaction potential U. Of course, one
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gets fg(x) on dropping the term containing x,. We note that the
Glauber approximation with or without the Wallace correction com-
pletely neglects the effect due to the distortion of the target wave
function. fs as well as f,,. defined by

fw(k/-kf) = (flfew(x)l). (18)

suffer from the same discrepancies as noticed earlier for ]}m,. The
scattering amplitudes f; and f, can each be expanded. in a manner
analogous to the Born series. in powers of U to yield the Glauber
series and the Wallace series. respectively. fg, and fy, will refer
to terms of order n in the Glauber and in the Wallace series,
respectively. However, whereas the Glauber series terms are al-
ternately real and imaginary, the terms of the Wallace series are
complex (for n > 1). Furthermore, at large momentum transfers.
the terms of the Wallace series are nearly equal to the correspond-
ing terms of the Born series. Byron et al.'® took advantage of the
above property and proposed a unitarized eikonal Born amplitude
given by

fuess = fw = fwz + faz (19)

where fy, is the second term of the Wallace series. However,
difficulties arise in the evaluation of the Wallace terms f,,, (with
n = 4) of the e=-atom scattering amplitude. This led Byron et al.?
to redefine the unitarized eikonal Born series in the following
manner:

fuess = fw = fun + forr (20)

where f is again obtained from (18) except for the difference
that in the evaluation of fzy(x) the phase term exp[ik, *x,(b.x)] is
replaced by 1 + ik, >x,(b,x). We note that the eikonal Born series
as well as the unitarized eikonal Born series include the :ffect due
to the distortion of the target wave function only up to the second
order in the interaction potential through fg,, which is usually
evaluated following the procedure of Holt and Moiseiwitsch.!©
Recently Byron et al.? utilized the UEBS method to obtain the
cross sections for the elastic and inelastic scattering of electrons
and positrons, by atomic hydrogen at intermediate and high ener-
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gles. At about the same time Khare and Prakash’® utilized the
Schwinger variational method to investigate the e=-H scattering.
We now explicitly demonstrate that the scattering amplitude in the
Schwinger variational approach follows by approximating the Green'’s
function in Eq. (1). On splitting the infinite sum in Eq. (1) at n
= p. the scattering amplitude can be written in the following
alternate form:

fikek) = fo, = 25° (ke fIU(GE U 2 (Gy U~ k. (21)

in which fp, is the pth Born approximation for the scattering am-
plitude. The Green's function appears explicitly in the infinite sums
of Egs. (1) and (21). Now we make the approximation of truncating
these two infinite sums to finite sums of m terms each and replacing
the Green’s function G in the surviving m terms by a multiple
CG3 of the Green's function, with the complex multiplying factor
C 10 be determined later. On using this approximation for the
Green's function in Egs. (1) and (21), we get two approximate
exprassions for the scattering amplitude which we label as f, and
f>, respectively. These are

fl = Cme

and
fr = fop + Ufsgem — fapth-

The muitiplying factor C is now determined by simply equating f,
and f,, as they would have been the same if the Green's function
was not approximated. This procedure yields

pr
me + pr - fﬂm.

On substituting this expression for C in either f, or in f, above,
we obtain for the scattering amplitude

mepr

fom *+ fop — fap*——m.

C =

(22)

[(f,.] =

Jpm

(23)

62




The same expression for the scattering amplitude 1s obtained® if
one takes incoming and outgoing scattered waves correct to (p ~
1)th and (n — 1)th order in the interaction potential in the Schwin-
ger variational principle. Khare and Prakash® took m = p = 2,

replaced fg, by fci. and noting that f5,(0) is zere in the closure
approximation for e =-H scattering.*® found

« e+ f 82)°
(fr] = 7Bt (24
for + 2 = Jou
for the scattering amplitude in the forward direction. The use of
(24) along with the optical theorem gave slightly different values
of the total cross sections Q for electron and positron scattering
at lower impact energies even when exchange was excluded. On
the other hand the UEBS method of Byron e /.2 gave different
values of Q(e =) only when exchange was included. In Table [ we
show the two sets of values which are in good agreement with each
other, particularly for posivron scattering where exchange does not
play any role. For the electron case the difference between the
two sets of values seems to arise mainly duv to the exchange con-
tribution. Such an agreement is not surprising because {f,,(0)] and
fuess(0) agree with one another asymptotically up to the oruer of
k3. A comparison of the theoretical values of the cress sections
for the electrons with the adopted cross sections of de Heer er

TABLE ]

Total eoilisional cross sections (in a2) for the scattening of electrons 2nd
positrons by a hydrogen atom

E(eV) s+ UERG® He
e” e” ¢~ e’ [

100 6.7) 6.82 7.04 6.84 6.85
200 4.18 4.18 4.23 2,18 4.18

300 293 2.93 110 307 306
400 2.43 2.43 2.45 2.4 2.43

500 2.02 2.03 - - -

1SV are the results of Khare and Prakash (Ref. 3) who employed the Schwinger
vanational method, Eq. 23). withm = p = 2.

*UEBS are the results of Byron er al. {Refs. 2 and 19) who employed the un:-
tarized eikonal Born series method.

H are the adopted cross sections of de Heer #1 al. (Ref. 21).
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al..*' presented in Table I. shows that the agreement between them
is quite satisfactory. It may be noted that de Heer er al. used
theoretical as well as experimental cross sections for elastic and
inelastic processes from various different sources to obtan the totai
collisional cross sections.

For a better comparison of the two methods—the Schwinger
variational and the UEBS—one should compare the values of the
differential cross sections rather than the total collisional cross
sections. However, at nonzero scattering angles fy;(6) is not zero
and no tractable method is so far available for obtaining Im fp,(8).
which falls as k,-°. Hence Khare and Lata* took m = 2andp = 1
in (23), replaced Refg3(8) by f53(8) and neglected Im fg3(0). Thus
they obtained [f,;(8)] which agrees with fyzps(6) asymptotically
only up to the order of ;2. Furthermore, Khare and Lata obtained
the exchange contribution through the Ochkur approximation
whereas Byron et al. obtained the exchange contribution through
a more sophisticated method. Tables II and III compare the two
sets of cross sections for the elastic scatt:ving of €= by hydrogen
atoms in the energy region of 100 to 400 eV. At the highest impact
energy. that is, 400 eV, the agreement betwren the two sets is very
good. The maximum difference is only 3.6%. However, with the
decrease of the impact energy the difference between the two sets
of cross sections increases. At 100 eV the maximum difference is
about 25%. Such behavior is expected because the scattering am-
plitudes obtained by the two methods agree with one another only
up through terms of order k,”%. In general the differences between
the two sets of values are relatively larger at higher scattering
angles and both sets of values are smaller than the experimentat
values of Williams® and van Wingerden er al.> At larger angles
though, Iyeps(0) vields closer agreement with the experimental
data of Williams.?* However, we note that Byron er al. have com-
mented that so far no theoretical method has given excellent agree-
ment with the experimiental data of Williams at large scattering
angles. According to Kingston and Walters,** the data of Williams
are consistently larger at larger angles. Perhaps the same could be
said for the data of van Wingerden et al.

In summary, various approximate forms of the Green'’s functions
have been shown to give rise to practically ail the theoretical meth-
ods used for investigations of scattering of fast projectiles. In their
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latest method Byron et al. have put emphasis on the unitarization
whereas Khare and Prakash based their method on the Schwinger
variational principle. Both of these methods seem to be attractive
and their application to different processes for heavier elements

and the comparison of the resulting cross sections will be of future
interest.
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Exact time-dependent evolution of electron-velocity distribution functions
in a gas using the Boltzmann equation
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A numerical technique, starting from the Boltzmann equation, for obtaming the time-dependent
behavior of the electron-velocity distsibution function in a gas is presented. A unique feature of this
technique is that, unlike previously used procedures, it does not make use of any expansion of the
distribution function. This allows the full anisotropy of the distribution function to be included in
the solution. Furthermore, the problem associated with multiterm-expansion techniques of choos-
ing a sufficient number of terms for convergence is completely avoided. The distribution function
obtained by the present method is exact and, in principle, contains all of the expansion terms of the
previous procedures. Details of the algorithm, including stability conditions, treatment of the boun-
daries, and cvaluation of the collision integrals, are presented. This technique has been applied for
obtaining the time-dependent behavior of electron swarms in gaseous argon and neon for various
values of E /N (the ratio of the applied uniform dc field to the gas density), and the corresponding

results are presented.

L. INTRODUCTION

The electron-velocity distribution function (EVDF) is
fundamentally important in virtually all aspects of gase-
ous clectronics. The EVDF provides a statistical descrip-
tion of the motion of all of the electrons in an electron
swarm. The motion of the electrons in the swarm is
affected by externally apphied electric and magnetic fields,
and by collisions of the electrons with the particles of the
ambient gas. These external forces and collisions cause
time-dependent changes m the EVDF. Stating this pro-
cess mathematically, let f{v,t) represent the electron-
velocity distribution function at a velocity v, and at a
particular time . Then, at some later tume 7 + A1, the
EVDF can be described very simply by

Sv+Av, e +AD=f(v,)+R(v,0)At . hH

Here, Av=aA¢, with a as the acceleration of the electrons
due to the externally applied forces. R (v,t)At is the col-
lision term which represents the net change i f(v,1)
during the time increment Af due to all possible collision
processes between the electrons and the gas particles.
Now, if we expand Eq. (1) to first order in At, and then
take the limit as Ar goes to zero, the spatially indepen-
dent Boltzmann equation 1s immediately obtained:

-aig—fﬁ+a-vuf<v,n=mv,n . 2)

It is thus clear that the physical content of the
Boltzmann equation (2) is entirely equivalent to that of
the difference equation (1). Knowledge of the EVDF is
usually gained by solution of the Boltzmann equation
and, to this end, many techniques for its solution have
been developed.

Traditionally, the techniques used for solving the
Boltzmann equation for an equilibrium electron-velocity
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distribution function have involved expansion, usually in
the Legendre polynomials, of the distribution functiorn as
follows:

=3 £ulu,0P,(0) . 3

n=0

Often, only the first two terms 1 the expanston, contamn-
ing f, and [, are retained, and the time derivative of the
distribution function in the Boltzmann equation is set to
zero to correspond to the equilibrium situation. The re-
sulting coupled time-independent equations can then be
solved for f, and f, using standard numerical methods.
The two-term expansion method, however, breaks down'
under sttuations of large E/N (the ratio of the applicd
uniform dc clectric field to the gas density) or for cases in
which the inelastic scattering cross sections are compara-
ble i magnitude to the elastic cross sections. The
shortcomings of the two-term expansion can, 1n principle,
be overcome by retaining more terms in the Legendre ex-
pansion of the distribution function. These multiterm
methods, however, have their own drawbacks. As more
terms in the expansion are kept, the computational com-
plexity increases rapidly. Furthermore, cross sections
which have been adjusted to reproduce experimental
swarm parameters in a two-term expansion calculation
do not yield the same EVDF or the corresponding swarm
parameters when used in a multiterm expansion calcula-
tion and vice versa. Clearly, it would be desirable to have
a procedure, as described below, which can provide the
equilibrium EVDF without involving any expansion of
the distnibution function, Such a procedure, which in-
corporates a finite-difference technigue, was developed by
Tagashira and co-workers.? In their procedure, the dis-
tribution function was expanded to second order in time
using a standard Taylor series. The various time deriva-
tives of f(v,t) were evaluated by direct substitution from
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the Boltzmann equation, namely,
St +80= w0+ LD 5 o(am)

= fv,0)+[—a-V, f(v,0)+ R (v,0)]At
+0((AN?) . @)

Tagashira and co-workers chose to evaluate the distribu-
tion function of Eq. (4) in spherical coordinates in the ve-
locity space, that is, f was stored as a v-@ array, simply
because the evaluation of the collision term R(v,t) is
most convenient in spherical coordinates. Evaluation of
the a-V, term then involved derivatives of f with respect
to v and 0. These derivatives, which had to be taken nu-
merically by a finite-difference procedure, are prone to in-
stability. It was in order to alleviate this instability that
Tagashira and co-workers had to retain some of the
terms proportional to (At)? in the Taylor-series expansion
of Eq. (4). In a previous paper,® we briefly described a
finite-difference algorithm for determining the exact
time-dependent behavior of electron-velocity distribution
functions. A unique feature of our algorithm is that it
does not require numerical evaluation of any derivatives,
nor does it make use of any term expansions of 1 » distri-
bution function in terms of Legendre functions. The
present paper will provide details of the procedure, such
as the explicit form and evaluation of the collision in-

tegrals, conditions of numerical stability, treatment of the
]

R(v,0)= %(N/vz)fowvﬁdvp fo”simpd.pfo“daupf(vp,r>ap<up,,p>8(u —8, (0, YN = Nuf (v, 1) ()

where 0,(v,,¥) is the differential scattering cross section
for the pth (p =elastic, excitation, ionization, etc.) col-
lision process, and o p(v) is the integrated total cross sec-
tion for all collision processes. The function g,(v,,¥) is
defined by the equation

v =g,(u,,¢), 7)

which relates, via the energy-conserving & function, the
initial speed v, to the final speed v for the pth collision
process. The integrat terms in Eq. (6) represent the rate
at which the projectile particles are scattered into a
velocity-space-volume element d°v located about v due to
the pth scattering process and will be denoted by
R *(v,t). The last term in Eq. (6) represents the rate at
which the projectile particles are scattered out of d’v
about v due to all possible collision processes, and will be
denoted by Ry (v,t). Thus

Rv,0=F R v,)=RF(v,0) .
4

H . reber wralse 1 Ambn 2o TT [7A)
tial velocit 1 CiCHIChts in LG, Wy

GCity-Space vosimic &

are defined in Fig. 1 and by the following relations:

The differe,

"
et
1

dlv=v%sir’9)d0d¢ , (8a)
d*, =v}du,sin(6,)d0,dé,=vldu,sin(p)dpde,  (8b)

so that the direction of v, can be specified, depending on
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numerical boundaries, and techniques for implementing
the conditions of numerical stability. We will also
present results of the application of this procedure to
electron swarms in argon and in neon for various values
of E/N.

In the present solution, the following finite-difference
equation in Cartesian coordinates for the electron-
velocity distribution function is evaluated

S ogyv,,0,+Av,, 1 +AL)
= vy, 0),0, 1)+ R (05,00, 088 . (5)

Equation (5) can be obtained directly from Eq. (1), which
is equivalent, in its physical content, to the Boltzmann
equation (2). Until the collision terms R (v,7) are known,
however, Eq. (5) is of little practical use. So, before
proceeding any further, we will explicitly define the col-
lision terms R (v, ) and outline procedures for their eval-
uation.

11. COLLISION TERMS

In order to derive a very general expression for the col-
liston term we will assume an ambient gas of constant
density interacting with a spatially homogenecous swarm
of projectiles of arbitrary mass (for example, either elec-
trons, posttrons, protons, or tons} A general expression
for the collision term in Ea. (5) can be written®*

(6)

i
the convenience, with respect to either z or v. These two
possible specifications of v, lead to the following relation-
ships among various angles:

v=v(y,0), (9a)

g2
! N
/ S~ —" \\ I
A A A \\ !
(VXZ)xV \J

FIG. 1 Geometry used in the derivation of the colliston
terms. v the v, denote the final and mitial velocities, respective-
1y, and ¢ 1s the scattering angle.
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cos{ 0, )=sin(0)sin()cos(a)+cos(O)cos(¢) , (9b)

v, =V, (0,,0,)=v,(0,,0,h,a) (9¢)
and finally,

SV 0= 1(0,,0,,0)=f(v,,0,$,a,1) . 9d)

In order to evaluate Eq. (6) the function g,{v,, ) must be
specified for various collision processes. For elastic col-
lisions (p =e), straightforward kinematics yiclds

v =0,q(Y)=g (v, ), (10a)
where g (¢) is the following function:
gW=[(1=p)"" 2+ cosp)/(1+p) (10b)

Here, p is the ratio of the mass m of the projectile and
the mass M of the gas particle, that is, y =m /M. For the
case in which the projectile is cither an electron or a posi-
tron (11 <<1), ¢ (1) can be simplified to

g{y)={1—pu(1=cosy}} .

For nelasiic collisions (p =i) the encrgy-conserving ex-
pression for g, 15

v=(p}—=26/m)=g,(0,) , (n

(10¢c)

which does not depend on the angle ¢. £ 1s the energy
loss associated with the snelastic process. Performing the
radial v, mtegrations to eliminate the Dirac & functions
in Eq. (6), onc 1s left with a two-dumensional angular in-
tegral over ¥ and a. Because of the & function, v, n the
integrand, which mcludes the distribution function f and
the colliston cross section o, 1s replaced by v/g{y) tfor
the elastic part) or by (v*-+2&/m)" (for the melastic
part). For brevity in writing and 1n accordance with Eqs.
(10; and (11), we replace, 1 the resuiting angular in-
tegrals, v/g{y) and {(2*++2¢£/m)'? with v, and v, re-
spectively, so that the final expression for the collision
term Jooks like

4
_ 7 Vg . 2z
Rv,t)= Nfo Fa,(ue,w;s.mpdgafo fiv,0da
n vlz .
+ ;Nf0 —-0, (v, Plsing dy

><foz"f(v,,nda—zvuf(v,z)a,(v) .
(12a)

So far, the collision integral 1s valid for any type of pro-
jectile except that the term corresponding to the ioniza-
tion process has to be treated slightly differently when the
projectile is an electron. When ionization is considered,
the final energy of both the incident electron and the free
electron that is produced via the ionization process must
be properly accounted for. To this end, an electron-
energy partition ratio A/(1—A) is used, which denotes
the ratio of the available energy that goes to each of the
two electrons (labeled 1 and ? below). The integral that
represents the rate at which electrons scatter due to the
lomzation process, wto the velocity space clement d’v
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about (v,0), then has two parts:
R{zn,n(v,(?)'*‘R,:,,,z(v,O)

2

N v . 2
=2 o’—v!-am(v,,w)sun,bdzp fo flvptida
N 7

JENp L
I—-A Yo

v2 2z
-.—:-aw"(vz,lp)smt]zdl,!/fo flvytida,

(12b)

where v, =(2¢/m +v*/0)"? and v,=[2&/m +v2/(1
—A)}% These two terms correspoad o two cifferent
ionization events in which electrons of inutial speeds v,
and v, ionize gas particles. One of the two electrons
[having energy ratio A/(1=A)] resulting from each of
these two ionization events has speed v.

In evaluating Egs. (6) or (12), proper account must be
taken of the vector nature of v and v,. Although the dis-
tribution function is symmetric about the axis parallel to
the electric field (the z axis), the polar axis of the integrals
over a solid angle (¢,a) is tilted with respect to z and
cannot take advantage of the symmetry.

The surface over which the distribution function i the
elastic part of Eq. (12a) is evaluated for angular integra-
tion is represented graphically in Fig. 2. Note that, be-
cause v, depends on ¢, the surface is not a perfect sphere
but an “egg-shaped” surface with azimuthal symmetry
about v. More specifically, such a surface is realized by
the tracing of the tip of a vector whose length increases
continuously as the polar angle is ve-ied from one pole
(=0} to the other pole {(y=m), but the length of the
vector remains fixed as the azimuthal angle a is varied,
for a given ¢, from 0 to 2. The dewviation of this surface
from a perfect sphere is related, from Eq. (10}, to the
mass ratio . If the projectile particles are electrons or
positrons the surface is very nearly a sphere, and very lit-
tle difference was found on simply replacing v, by v in Eq.
(12a). However, in order to keep the analysis more gen-
eral and not hmit the distribution functions to only those

nN>

EVDF Symmetry

<

FIG. 2. Surface over which the elastic component of the col-
liston term s evaluated. 0 1s the polar angle about z, and ¢ 15
the polar angle about v.
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of electrons or positrons, we will not make any assump-
tions about the relative masses of the gas molecules and
the projectiles. Nevertheless, Eq. (12a) remains valid in
all possible cascs including the ones in which the projec-
tile particles are more massive, such as protons or ions,
for which the distortion and tilt of the surface would be-
come very important.

Often, the differential scattering cross sections are not
sufficiently available to cover all angles and energics for
cach scattering process in the system of interest. In-
tegrated cross sections, however, can usually be found
and may be the only alternative. In this case, or in the
cases in which the scattering is not strongly dependent on
angle, we may make the approaimation of isotropic
scattering (o does not depend on ). For isotropic elastic
scattering we replace the differential clastic scattering
cross section o (v, with o.(v,)/4n, where o.{v,) is
the integrated elastic scattering cross section. Doing this,
the elastic part of Eq. (12) can be rewritten as

N . 22
R:(v,t)=sz—3fo"u:a,(ve )smwdd:fo v, tida .

(13)

If we assume isotropic inelastic scattering, then the
differential scattering cross section for the ith scattering
process o,(v,¥) can be replaced by o,(v,)/4m, where
0,(v,) 1s the integrated cross section for the 1th inclastic
process. Also, since v, does not depend on the scattering
angle, the surface of integration is spherical with a con-
stant radius v,, and the terms containing ¢, can be taken
outside of the angular integral. We can then write

v

Nv}

4+ . (4 b4
R, (v,t)——ma‘(v,)fo smx,fldd/fo fiv,da  (14a)

Nv? . 2
=T-‘_'va,(v‘)f0’51110,(10‘ fo flv,0dg, (14b)

Np? - .
=—2—;0,(0,)fof(v,,o,,t)smO,dO, . (14¢)

In going from Eq. (14a) to (14b) we have made use of the
fact that the integral is independent of the choice of polar
axis and we have chosen the z axis (which is the axis of
symmetry for the EVDF) as the polar axis, so that the ¢,
integration becomes trivial [see Eq. (8b)].

Another problem that must be considered in the evalu-
ation of Eq. (12a) is that f is stored in a rectangular array
(in the a-z plane) and has rectangular boundaries, but the
surfaces of integration in the R * terms are nonrectangu-
lar and sometimes lic outside of the region in which f is
known. To handle this problem, an extrapolation pro-
cedure has to be devised. Regrettably, extrapolations are
a risky bustitess, and one can only hope that the relevant
numerical errors will be small. What we did was to set
up the initial (1 =0) Maxwellian distribution of projec-
tiles (electrons in our actual calculations) so that the
values of the distribution function near the boundaries
were less than 107 of the peak value so that the bound-
ary contributions would be small. Then we assumed that
the behavior in the high-velocity regions (near the boun-
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daries and beyond) remained essentially Maxwellian at all
later times. Based on the shape of the distribution func-
tion near but inside the boundary, we extrapolated the
distribution function using the simple recursion relation
[(v 4280 =[fYv + Av)/f (1)]C, where C is a constant
that depends on Av. This recursion relation follows from
the assumed Maxwellian form of the distribution function
near the boundary. The case C =1 corresponds to the
logarithmic approximation for extrapolation used by pre-
vious investigators.? Several tests were made, by chang-
ing the boundarics, showing that the lugh-velocity tail of
the numerically obtained distribution function conformed
to this Maxwellian behavior, and that deviation was less
than 1%.

111, METHOD OF SOLUTION

For the situation in which the external force on the
projectiles (of charge ¢) is provided by a uniform dc¢ elec-
tric field aligned in the z direction, the constant
Ar,=(gE/m)At, and Eq. (5) can be rewritten as

Slog,v,,v,+(gE/mALL +At)
=f(v,,u) v, )+ R0 v, v, AL . (15)

Equation (15) is well suited for evaluation on a comput-
er. Smce there is axial symmetry around the z axis, f
need only be stored as a function of v, and v, {or v, )
such a way that the velocity increments Av satisfy the re-
lation Av =(gE /m)jAt. Evaluation of /' m Eq. (15) then
merely involves a shifing of the two-dimensional array
S(v,u;) along v, at each time mterval At, and then add-
g to each array element the corresponding collision
term R (v,,v,,0)At. This shifting procedure accomphishes
all the acceleration effects of the projectiles due to the
electric field and 1s inhetently tnmune to round-off error.
Carrying out this procedure will require knowledge of the
collision mtegrals for each v, and v, at time r. Evalua-
tion of these integrals was described in Sec. II, and -
volves an integral over the polar angle 8 (n velocity
space) and thus requires a knowledge of the distribution
function at various values of v and 0. This integration
can be carried out, even though f i1s known only as a
function of v, and v,, by sumply interpolating f (v,,v,) to
get f(v,0).

The algorithm for obtamning the time evolution of the
velocity distribution function 1s as follows,

(i) Store an initial distribution function (for instance, 4
Maxwellian at 1 =0) in a two-dimensional array f(v,,0,)
such that Av =(qE /m)At.

(i) From the existing distribution function, evaluate
the collision terms R (v,,v, ) for each v, and v,.

(iti) Multiply each of the collision terms by At and add
to the corresponding distribution function array element
[/ (ve,v,)— f o ,0, )+ R (v, v,)AL].

(iv) Shift the resulting array along the v, index
[f(ve,v,)— f v ,u,+ Av,)] to obtain a new distribution
function which corresponds to time f + At,

(v} Go to step (ii).

The procedure outlined n steps (i)—(v) are repeated
while various swarm parameters are calculated from the
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distribution function obtained in step (iv) for cach time
cycle. Equilibrium is obtained when the swarm parame-
ters ccase to change in time.

1V. STABILITY CONDITIONS

In any numerical solution to a differential equation,
stability is always a major consideration. The procedure
of shifting the array elements along the v, index accom-
plishes all of the acceleration effects due to the clectric
field and avoids the need to evaluate any derivatives nu-
merically. This procedure in itself greatly enhances the
numerical stability of the calculation; however, it is not in
itself sufficient. One of the conditions of stability is a re-
statement of the so-called Courant-Friedrichs-Lewy?
(CFL) ccnaition and is simply

(aAn/b&vsl, (16)

where a =qgE /m is, in this case, the acceleration of the
projectiles due to the electric ficld E. Since f is stored so
that its velocity increments satisfy Av =(qE/m)At, Eq.
(16) is always minimally satisfied as an equality. The cal-
culation can satisfy Eq. (16) more strongly by choosing a
smaller time increment Ar’, which is a proper fraction of
At such that

At'=A1/n, AV'=Av/n, (17)

while leaving @ and Av unchanged. Then Eq (5) can be
rewritten

Sv+Av, i +A)=fv+Av—Av',1)
+R{v+Av—Av', )AL
= flv+Av(l—1/n),1)
+R(v+Avii—1/n)1)At" . (18)

A consequence of using a time step At’ smaller than
At =Auvm /(gE) 1s that the right-hand side of Eq. (18)
calls for values of f and R from velocity-space locations
which are not explicitly stored in the array. We can ap-
proximate Eq. (I8) into a usable form with some simple
lincar interpolation of the f and R arrays from their
stored values to obtain

Sv+Av,t +AL)
= [(n =1/l f(v+Av, 1)+ R{vEAv, )AL’}
+(1 /) fv,)+R{v, A1) . (19)

The above procedure for rigorously implementing the
CFL stability condition 1s represented graphically in Fig.
3.

Another condition for the numerical stability requires
that each of the array elements of the distribution func-
tion f be larger than the corresponding array elements of
the collision term. Restating algebraically,

SO/IR(v,DAL]> 1. (20)

This condition can be met by selecting At such that Eq.
(20) 1s satisfied for all v Experience has shown that the
ratio in Eq. (20) must be of an order of 10% or 10* for low
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FIG. 3 Schematic representation of the acceleration pro-
cedure described in Eq (19), shwing the imiplementation of the
Courant-Friedrichs-Lewy stability condition

velocities in order to sull be satisfied for high velocities.
If the adiabatic condition, Eq. (20), is not met, an obvious
consequence is that, if an array element of the collision
term is negative, the corresponding array element of the
resulting distribution function will become negative,
yielding an unphysical result.

V. RESULTS AND DISCUSSION

The algorithm described 1n Sec. I was used to obtain
the transient behavior of the EVDF and of various
electron-swarm parameters for electrons in gascous neon
and gaseous argon. The swarm parameters under investi-
gation were V,, (), and R,, which are the drift velocity,
average energy of the electrons, and the 1onization rate of
the gas atoms, respectively. The time dependence of
these quantities was calculated from the normalized ve-
locity distribution function, which was obtained at each
time step. The normalized distribution function F(v,1/,1)
is defined as follows:

Flo,g,n=L000 @D
A(r)
where
=27 [ v [ "f (v, 0, 0si 2
AW=27 [ “vdv [ 7f (0, 05ing d (22)
and
A0)=1 . (23)

The vastous electron-swarm parameters are defined as
follows:

R,=27N fo"'uzdu fo”uam,,(wm, Gsingdy,  (24)

where g,5,¢) is the ionization cross section of the atoms
by electron impact:
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© 4 % .
Vd=2frfo vdv fo v cosYF (v, i, t)sing dy (25)
and
@ r Vet .
(e)=21rfo vidy fo tmuiF (v, Osinddy . (26

By using a normalized distribution function, the total
number of electrons in the distribution function 1s kept
constant; this situation is analogous to a steady-state
Townsend (SST) experiment. A pulsed Townsend (PT)
experiment can be simulated by using an unnormalized
time-cvolved distribution function, since in such an ex-
periment the number of electrons does not stay constant.
In a PT calculation, the final equilibrium values of the
swarm parameters, obtained from the unnormalized final
equilibrium distribution function, will depend on the ini-
tial conditions. On the other hand, the equilibrium
values of the swarm parameters in an SST calculation are
independent of the initial conditions. For this reason, we
have chosen to present only the normalized SST results
for various swarm parameters. In each case a Maxwelli-
an velocity distribution of electrons was assumed at time
t=0and a gas density ¥ of 3.54 X 10" cm~2(1.32X 10}
amagat or, equivalently, 1 Torr at 273 K) was used. Iso-
tropic scattering was assumed in all cases.

The convergence of the swarm parameters to their final
equilibrium values occurs more quickly as the value of
E /N becomes larger. For cases in which the E/N values
are small, the time required to reach equilibrium can be-
come large, forcing the calculation to consume more
computing time. In cases of small E/N and when only
the final equilibrium values of various swarm parameters
are of interest, the time-independent two-term expansion
methods may be computationally more efficient (alihough
the time dependence will be lost). In cases of large E /N,
however, convergence is fast enough so that the time-
dependent ‘calculations described in this paper become
practical with very modest computing resources

A. Electrons in ncon

For neon, the velocity steps Av ranged from 2.05X 10
to 3.40% 107 cm/sec, and the time steps At ranged from
0.1 to 0.02 nsec as the E/N ratio was varied from 35 to
566 Td. The relevant scattering cross sections used in the
calculations were taken from Ref. 2. Figure 4 displays
the calculated time-dependent behavior of the electron-
swarm parameters for E/N =566 Td and with initial
average energics of 44 and 20 ¢V. From this figure, it is
evident that, although the final equilibrium values of the
swarm parameters are unaffected by the average energy
value of the initial velocity distribution function, the
transient behavior may be considerably different. For ex-
ample, an overshoot in the drift velocity is observed if the
initial average energy of the EVDF is less than the final
equilibrium value, but the overshoot does not appear if
the initial average energy is somewhat higher than the
final value.

Figure 5 displays the time-dependent behavior of the
electron-swarm parameters in gaseous neon with E /N ra-
tios of 35 and 72 Td. The imtial value of {&) for the
cases of 35 and 72 Td are 12 and 16 eV, respectively. For
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FIG. 4. Time dependence of vartous electron-swarm parame-
ters in gaseous neon for E/N =566 Td, The data correspond-
Ing to the solid curves and the dashed curves have initial aver-
age electron energy of 44 and 20 ¢V, respectively

the case in which E /N =35 Td. an overshoot of the dnift
velocity is present and shght undershoots of both the
average energy and ionization rate can also be seen. The
undetshoots are not scen 1 the 72-Td data; however, a

TIME (nsec)
5 10 15 20 25 30
i 1 1] 4

20k e’/ NEON
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5
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FIG. 5 Tmme dependence of various clectron-swarm parame-
ters in gaseous neon for E/N =72 Td {solut curves) and 35 Td
(dashed curves). The upper and lower time scales correspond to
the 35- and 72-Td data, respectively.
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FIG 6. Equiltbrium values of various electron-swarm param-
eters n gaseous neon. The solid circles, open circles, and tran-
gles are, respectively, the equilibrium vatues of {¢), R,, and ¥
from the calculations of Kitamori et al. (Ref. 2). The dashed
lines for the values of £ /N below 35 Td correspond to extrapo-
lated values of various parameters.

slight overshoot of the drift velocity is present. Whether
or not these undershoots or overshoots occur depends on
the initial value of the average energy of the swarm com-
pared to that of the final equilibrium value. Recently ob-
served®” current overshoots in Ar-Hg and Ne-Hg
discharges, and ionization rate overshoots in N,
discharges, are presumably related to the initial condi-
tions of the electron-energy distribution function.

The final equilibrium values of the electron-swarm pa-
rameters as a function of E /N are depicted mn Fig. 6, and
are in very £ agreement with the values calculated by
Kitamori, Tugashira, and Sakai.? The zero-field
(E /N =0) values of various parameters can be extrapo-
lated from the curve of Fig. 6. These values are

V;4~0.0cm/sec, R,—0.0sec™!, (e)—8.7eV.

The vanation in slope of the drift velocity, particularly
near the lower E/N values, suggests that the electron
mobility in neon, which 1s related to 9V, /3(E/N), is
shightly dependent upon E/N.

B. Electrons in argon

The cross sections for the elastic scattering of =lectrons
with argon were taken from Massey and Burhop,? and
the ionization cross scctions were from Rapp and
Englander-Golden.” The total excitation cross sections
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FIG. 7 Tmme dependence of vartous electron-swarm parame-
ters 1n gascous argon for E /N =565 Td (solid curves) and 283
Td (dashed curves)

were adapted from Sakai et «/.' by assuming a constant
energy loss of 11 5 eV for all excitation processes.

Figures 7 and 8 display the time-dependent behavior of
the electron-swarm parameters for E/N ratios ranging
from 72 to 565 Td. For a gtven value of E /N, the veloct-
ty step Av and tume step Ar mn the present case are com-
parable to those of the neon case. In each of these
figures, overshoots 1n the drift velocities are observed and
they are most dramatic when the imtial average energy s

12 T T T T T
e /ARGON  E/N=72Td
0t -
vy (em psec™)
ol
<> (eV)
6 (’ 1
4 +
R, (psec™)

AN G

o 2, 1. L A L
[¢] 5 10 S 20 25 30

TIME (nsec)

FIG. 8. Time dependence of various electron-swarm parame-
ters in gascous argon for £ /N=72Td.
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FIG. 9. Equilibrium values of various electron-swarm param-
eters in gaseous argon. The solid circles and the open circles
are, respectively, the equilibrum values of (e} and R, from the
SST calculations of Sakai e 27 (Ref. i0).

closest to the final equilibrium average energy. That the
size of the overshoot seems to vary inversely with the
E /N ratio is merely an artifact resuiting from the fact
that the initial average energy values just happened to be

chosen closer to the equilibrium values as the E /N ratios
were reduced. In fact, the overshoot can be enhanced or
completely eliminated at any E /N ratio by merely adjust-
ing the value of the initial average energy.

Some preliminary analysis of the transient behavior of
the presently calculated electron-swarm parameters (for
both neon and argon) suggests that their time-dependent
behavior can be accurately fitted by a sum of two ex-
ponentials. In fact, exponential behavior of the time
dependence of various swarm parameters can be analyti-
cally justified,'™'? especially for low values of E/N, by
assuming a constant collision frequency which leads to a
very simplified collision term.

The equilibrium values of the electron-swarm parame-
ters in argon, plotted as a function of E /N, are shown in
Fig. 9. As was done in the case of neo, the zero-field
values of various swarm parameters can be obtained by
extrapolation from this figure; this extrapolation pro-
cedure yields the following values:

V;—0.0 cm/sec, R,—0.0sec™!, (e)=5.2¢eV.

The equlibrium values in Fig. 9 can be compared with
the values calculated by Sakai et al.'® In their paper,
various expressions used to define the drift velocity V,
were different from the expression used in the present cal-
culations [Eq (25)]. Thus meaningful comparisons could
not be made for that parameter. The expressicns for R,
and {c) used in the SST condition calculations of Ref. 10
were equivalent to the expressions used in the present pa-
per so that comparisons among these parameters are
feasible. Figure 9 shows that the agreement between the
two calculations is excellent.

The unnormalized equilibrium EVDF in argon is
shown for two different values of E /N in Fig. 10. In both
cases the 1nitial distribution function (at 1 =0) is a spheri-

€"/ARGON

S
\‘\ R
R
S
NS
W

DA
SN

(b)

FIG. 10. Equhbrium velocity distribution {unction of electrons 1n argon for (a) E/N =35 Td and (b) E/N =424 Td.
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cally symmetric Maxwellian with (e)=5 eV for
E/N=35Td and (e)=30 eV for /N =424 Td. At
equilibrium, the distribution function retains much of its
spherical symmetry for low E/N. For large values of
E /N, however, the equlibrium EVDF becomes highly
asymmetric, suggesting that the effect of the clectric field
on the distribution function dominates over the effects of
collisions. This clearly indicates that the two-term ex-
pansion procedure, which retains only first-order devia-
tions from spherical symmetry, for obtaining the equilib-
rium EVDF, would be valid only for small values of
E/N The present procedure for obtaining the EVDF is
vali¢. tor any value of E /N, small or large.

The *“valley” near the origin (v =0} of the distribution
function, which becomes very pronounced for large
values of E/N, is probably due to the fact that very-low-
energy electrons have a very small collision probability
and are quickly accelerated by the electric field to a
higher velocity where they become more likely to have
collisions. On the other hand, the “upstream” electrons
are not as efficiently accelerated into the origin (where
they would replace those that have been accelerated out),
because their velocities are already large enough so that
they are inhibited by collisions.

VI. CONCLUSIONS

A very simple numerical algorithm has been described
which obtains the time-dependent behavior of an
electron-velocity distrsbuuion function i a gas. Aside
from 1its simplicity, the algorithm has many umque and
valuable features. Unlike many other methods of solu-
tion of the Boltzmann equation, the present method does
not make use of any term expansions of the distribution

function, and in this respect the solution is exact. The
need for numerical evaluation of derivatives has been
completely elimmnated, which allows for a much more
stable solution. The computational algorithm itself only
involves summing and shifung of various array cleme ts,
which can be done without incurring any round-off error;
this fact enhances the stability of the numerical pro-
cedure. Because of the simplicity of the procedure, tne
calculation can be periormed with very modest comput-
mg resources. 1hus is especially true i cases of high-
E/N values for which convergence to equilibrium is
much faster than for low E/N.

Although the calculations that are presented in this pa-
per are for electron swarms in a pure gas, like neon or ar-
gon, subjected to a constant ¢lectric field, other more
complicated situations can be very easily adapted to the
present procedure. For instance, the present algorithm
could be easily adapted to the case in which the electron
swarm interacts with a gas mixture. Other situations of
interest include the cases in which the projectile particles
are more massive than electrons such as muons, protons,
and heavy ions. Furthermore, the present procedure can
easily accommodate the case in which the external elec-
tric field varies with time, such as an rf field. These other
applications of the present procedure are under current
investigation.
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Analytical Expressions and Recursion Relations of
Two-center Harmonic Oscillator Matrix Elements of
Arbitrary Functions
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Abstract

The matnix clements of vanous analytical functions f(X), X being the internuclear separation, are
required for the descnption of transition probabilities and other molecular properties. These matnx ele-

ments can be conventently d by g vib | wave functions of two relatively displaced
linear harmonic oscillators of arbitrary freq to rep the vib 1 levels of two electromic
states of a molecule. Using this ption, analytical exp for the matnix elements of an arbutrary

lytical fi f(X) are ob d. Useful i 1 among these matnx elements are denved
and an clegant graphical representation of the fations 15 ob d. These graphical representa-

tions are utilized to obtain new more general recursion relations among matnx elements of the arbitrary
function f(X).

L. Introduction

In describing various physical properties, like the oscillator strengths, the transition
rates etc., of a molecule, the matrix elements of various functions of the internuclear
separation X appear naturally in the formulation. A part of these matrix elements is
normally to be evaluated between vibrational wave functions belonging to two differ-
ent electronic states of the molecule. For small vibrational quantum numbers it is rea-
sonably accurate to replace the actual potential curves of the relevant electronic states
by those of linear harmonic oscillators. For the cases of large vibrational quantum
numbers, where the effects of anharmonicity are relatively significant, one could use
a Morse-type potential to represent the potential curves. If one were then to use the
standard perturbative techniques, with the linear harmonic potential as the zeroth
order approximation, the harmonic oscillator matrix elements of varous functions of
X would appear in the correction terms. In a recent paper {1] we obtained closed form
expressions and recursion relations among two-center harmonic oscillator matrix ele-
ments of some definire functions of X. The two linear harmonic oscillators (LHO)
were assumed to have arbitrary frequencies and equilibrium positions. The functions
of X considered earlier [1] were the exponential, Gaussian, and powers of X. In the
present paper we will generalize the earlier resuits to include any arbitrary analytical
function f(X) which could be expanded as a power series in X.

The use of linear harmonic oscillator wave functions in obtaining the Franck-Condon
overlap ntegral dates back [2] te 1930; however, there has been some recent interest
[3-5] i obtaining analytical expressions as well as recursion relations among the

© 1990 John Wiley & Sons, Inc. CCC 0020-7608/90/060797-13$04 00




798 DRALLOS AND WADEHRA

two-center harmomc oscillator integrals of arbitrary functions of X because of thewr
possible applications in molecular physics and vibrational spectroscopy. Two mpor-
tant conclusions reached previously [1] will be of interest in the present discussion.
First, the two-center LHO matrix clements of X-dependent functions like the exponen-
tial [exp(—aX)] and the Gaussian [exp(—8X?)) could be obtaned from the corre-
sponding Franck-Condon overlap integrals by a simple scaling procedure Second,
the two-center LHO matrix clements of powers of X (the Franck-Condon overlap nte-
gral is a special case of these corresponding to X% satisfy four- or five-term recursion
relations which can be utilized for rapid evaluation of vanous matnx clements. We
will show below that the two-center LHO matrix elements of an arbitrary analytical
function f(X) also satisfy some simple recursion relations and, furthermore. these re-
cursion relations can be represented 1n an clegant graphical manner The graphical
representation of these gencrahized recursion relattons will be used as an aid in ob-
taining new general recursion relations which are also valid for any analytical func-
tion of X.

II. Arbitrary Function f(X)

In the present notation (X | m) is the wave function of the mth level of the harmonic
oscillator associated with the potential V, = g /2, and {{X|n)) 15 the wave func-
tion of the nth level of the harmonic oscillator assocrated with the potential
V, = pofX — Xo)*/2. X, is the scparation between the two oscillators and. for con-
venience, define w, = fi/(uX3). The wave functions (X|m) and {(X}n)) of the two
harmonic oscillators are written :n terms of standard Hermite polynomials H,, and H,
Note the analogy of the present single and double ket notation (for example, jm) and
[n})) with the standard single and double prime notation which is used to distnguish
between the vibrational eigenfunctions belonging to the two different electronic states
of a molecule. For convenience, define a = [2w,/(w, + wy)]"? b = [2w,/(w, + wy)]'"*
and ¢ = {(w, + auz)/Zoao]"2 Ustng the LHO wave functions, the matnx element of the
arbitrary function f(X) can be written as

» 3 2 12y

mlf(Xn)) = J:xdx{(zmmu)ﬂlz(ﬂ—:)i;-'-,\;g) cxp[— %]H,{(%i) j{\—o}}fﬁ\')
14 2 {123 3
o n-12f @ _wX - Xp) w0} X~ Xy
Aol el =57 | (2) 54
=N, 7" f du
. be\?
% f{X@w)] exp| = |u - > H (aw)H [be = ¢)]. (1)

where. 1n the last step, the integration vanable has been changed from X to dimen-
sionless u as

u = [ + 0}/ Qu)]'? X/Xy = ¢ X/X,
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and
N, = (o) o, + 02" " 'm' n']™"? exp{—w,@,/[20g(w, + o]}
= [ab/(2""m! n!)]"? exp{—(ahc/2)*}
Applying the recursron relation for Hermute polynomals, Eq. (A 1), to either H (au)
or H |bu = ¢)] in Eq. (1) yields, respectively,
2acimXf(X)ln)) = [20m + D]"Xlm + 1 fX)ln))
+ 2m)" X olm ~ 1 f(X)n)) (2a)
and

2belmi(X = X (O = [2(n + D13 omlfX)ln + 1))
+ )X (mlf Xl = 1) (2b)
Using, n the integrands of Egs. (2),

uexpl—(u ~ y¥'] = ~1/2(d/du) exp{[~(u - y)*] + y exp[~(u — y)]

with y = b%c/2, then performing integration by parts and the necessary derivatives

{using Eq. (A.2)), we obtain two independent recursion relations for the matnx ele-
ments of f(X):

Xo{m{df(X)/dXIn)) = [2(m + 1)]"*(c/a)(m + 1|fX)|n))
+ 2m)"™c/a)(1 = a®){m = YFX)nh)
= Q2n)"be(mlf(X)In = 1)) = bcHmlfOy ()

and

Xolmldf (X)/dXIn)) = [2(n + 1)]"(c/b) (mlfX)|n + 1)
+ (21)"%c/b) (1 = b)) {m|f(X)|n — 1))
~ @m)acm = 1|f0OI) + a’cXmlf(X)m). (4

Equations (3) and (4) are independent and can be combined to obtain two additional
recurston relations [which are not independent from (3) and (4)]. These four relations
are generalizations of the recursion relations for two-center LHo Franck-Condon over-
lap integrals obtaned previously by Ansbacher (6} and Manneback [7]. The relations
of Ansbacher and Manneback are obtained by setuing f(X) = constant 1 (3) and
(4) above.

An arbitrary analytical function f(X) can always be expanded in a Taylor senes,
50 that

® ()
s =3 5% b
0 H

where f™(0) denotes the ith derivative of f(X) evaluated at X = 0. Operating on
Eq. (5) with {m] trom the lett and |r)) from the right, a stmple expression for the ma-
trix element of £(X) i terms of the matr ~lements of X' 1s obtained:

Lm~*——“~‘ Kl
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z ),
oM = 3 2y, ©
{=0

On using the closed form expression for the matnx elements of X', given by Eq. (A.3),
the matnx elements of £(X) can finally be written as

b t [ Tai=pl p+q "
(mlfXHny =3 f(n(o)ﬁ S z’ [ 2! ! }
1=0

2 S 5 |m=pln - g
—pm b?
2l —p-q! (m = pln = q). (N

The notation {a.b] refers to the smaller of a and b. The overlap integral
(m = p|n = g)) can be easily obtained from Eq. (A.4).

III. Graphical Representation

Two different kinds of recursion relations arc obtained above for the matrix
elements of £(X). One type of recursion relation relates a single matrix element
(mlXf(X)|n)) (m and n refer to the vibrational quantum numbers of the two oscilla-
tors) to a linear combination of matrix elements of £(X). Equations (2a) and (2b) em-
body such recursion relations. In the other kind of recursion relation, which are of
interest to us here, a single matrix element of df(X)/dX is expressed as a linear com-
bination of matrix elements of f(X). Equations (3) and (4), which are eaamples of
this kind of recursion relation, can be further generalized by wnting the arbitrary
function f(X) as the Ith derivative of another arbitrary analytical function g(X), that
5, f(X) = g9

Xmlg P X)m)y = [2(m + D)"(c/a) (m + 1gX)|n))
+ (2m)"c/a) (1 = a®)(m = 1]g"(X)|n))
~ 2n)"bc(mlg®X)n = 1) = bicHmig" X)) (8)
and
X(mlg™ ) m)y = [2(n + 1)]"*(c/b) (mlg“(X)|n + 1))
+ (2n)(c/b) (1 = b)) (mlg®X)|n — 1)
- (2m)%ac(m — Hg™(X)In))+a’c*mlg“X)|n)) . 9)
Generalized recursion relations (8) and (9) are shown graphically in Fig. la and b,
respectively. Each solid circle in this figure represents a matrix element (depending
upon m, n, and /) in the recursion relation. Here, [ is the order of derivative of g(X)
with respect to X. A similar graphical representation of the recursion relations for the
Franck-Condon overlap integrals [which are obtained by setting g(X) = constant]
was presented by Manneback (7). Note that in Eqs. (8) and (9) matrix elements of
different orders of denvative of g(X) are mixed and, therefore, i reality the various

terms 1n these relations represent matnx elements of different functions of X. A re-
cursion relation that does not mix matrix elements of different derivatives of a func-
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Figure 1 The recursion relations of Eqs (8),(9), (11). (12), and (10) are represented

graphically 1n a, b, ¢. d. and ¢, respectively m and n are the vibrational quantum numbers

of the two hnear harmonic oscillators, and { 1s the order of denvatve of the arbitrary func-

tion g(X) with respect to X Each solid circle represents a single matnx element appeaning in
the recursion relation,

ton of X, making it truly valid for matrix elements of any analytical function of X, 15
easily obtained by combining Fig. 1a and b and eliminating ponts labelled 1 m the
figures. The resulting five-term recursion relation 1s represented graphically 1n
Fig. le, and it corresponds to the following equation:

(2)"abe(mlg (X)) = b + {{im + 1] m + g (X))

N resnt

1.4h A+
G m — 1y KN}

- a-{{(n + N]¥mlg"X)n + 1))
+ ()" mlgX)|n ~ DM (10
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In this relation, both of the indices (m and n) of the matnix elements vary. The rela-
tion (10) is also a generalization of the so-called “diamond” relation 8] for one-center
LHO matnx elements of arbitrary functions. We note, n passing, that relation (10) is
also obtained by combining Eqs. (2a) and (2b).

Sometimes one needs [9] to have a recursion relation, such as relation (2), in
which only one of the indices (either m or n) varies and the other index remains con-
stant. To derive alternate recurston relations of this kind, we first obtain Fig. 1c and d
by combiming Fig. la and b and eliminating the points labelled 2 and 3, respectively.
The two relations obtained in this manner are merely alterrative forms of the recur-
ston relations (8) and (9) and do not contain any information that is not already 1 (8)
and (9). The algebraic expressions for these alternative recursion relations corre-
sponding to Fig. 1c and d are, respectively,

Xelmlg " "Xy = [2(m + D]ac(m + g (X)) ~— a’cXmig"(X)|n))
+{2(n + 1])"(c/b)(1 = @) {mlg"(Xn + 1))
= (2n)"(c/b) (mig “X)ln = 1)) an
and
Xolmig PO = [2(n + 1))belmlg™X)n + 1) + bic¥mlg(X)|n))
+ (2(m + D)"™(c/a)(1 = %) (m + 1g"™(X)|n))
= (2m)"(c/a)(m — 1|g“X)|n)) . (12)

Next the ponts labelled 1, 2, 3, and 4 of Fig. Ic are eliminated using point 2 of
Fig. 1b successively. Figure 2 depicts this elimination procedure. The resulung fig-

g
a

figure 2 The grapincal aid used for detiviny the secursion teiauon (i3) for matian -
ments of the arbitrary function g(X) The shaded portion encompasses the matnx elements
that appear 1n the denved recursion relation
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ure. which 1s 1n the form of a tnangle lying completely n the #-1 plane wath m fixed.
represents a nine-term recurston relation in which the matnix elements of different
orders of derivauve are sull mixed. The resulting algebraic expression for this rela-

ton 1s
=X,/ ) mlg Iy + b (X c) 2n)Fomig Vi — 1)) -
b¥Xe/) 200 ~ DI mijg" e + 1)) +
201 = ) [nln = D} ¥mlgn = 20y = a*ben)mlgn - 1) +
{=a'b’c’ = 22n + 1) + 2a%*(m + n + 1)} (mlg“lm) -
a*bef2(n + 1] nigUin + 1)) +
200 = @) + 2)(n + DI*mlgVn + 2)) =0,

(13)

The same procedure of eltminating four terms of Fig. 1d using a single point of
Fig. 1a repeatedly can be used again to obtain the followtng nine- term recursion rela-

uon with » fixed and m and [ varying:
+a* X/ mlg " V) + a’(Xo/c) (2m)Hom — Vg Vn)) ~
a’Xo/)[2m + 1] m + Ug™ V) +
21 = bY)[mim = D)"¥m = 2g“n)) + ab c@m)(m - 1g“n) +
{=a*b'c? = 22m + 1) + 2a°b*m + n + D}mlgn) +
ab’c{20m + 1]"%m + gy +
21 = 63 [m + 2)(m + D] + 2g"In) = 0,

IV. Special Cases

(14)

The above general results can be presented in stmphfied forms for some important

special cases.

Case 1

Forw, =w, =wbut X, # 0 [a=b =1 and ¢* = w/w,] the most general ma-

trix element can be written as

x tm i [mi=pl p+q 1
ooy = 3 £9%0) (?Z) T [ 2 min! )']
i=0 & 1

0 g0 |m=plin-g

Lﬂm@(;n - ‘H - q»
Pt =p-qgt P !
with
Tmonl (Y]
m.on:
i) = Now 2 T TR

The recursion relations of Eqs. (8) and (9) become

zk( _C)fn‘k)(c)(m—k)

V hla T YA = T20s - D120 b 1oVl
¢ o X i) 12 [t I I A A G

o . ’

= 2" %mig "X = 1)y = Xmlg (X )nd)

(15)

(16a)




804 DRALLOS AND WADEHRA

and
Xomlg V0| = [2(n + 1)) c(mfg "X)ln + 1)
- 2m)"%e(m = g X)) + HmlgXOY) . (16b)
The recursion relations of Egs. (13) and (14) become
+(Xo/c)mlg " P|m) + (Xo/c) (2n)*emlg" VI = 1)) =
X/ [2(n + DI ¥mlg"Vln + 1)) = c(2n)"*mlg®In = 1) +
{20m = n) = Y mlg"nyy - f2(n + D] Hemlg"In + 1NV =0 (173)
and
+(Xo/c) mlg“ ) + (Xofc) @m)"*(m = 1)g" |} ~
Ko/) (20m + D} Hm + 1g“ m) + c(2m)*Hm ~ 1lgn)) +
{2(n = m) = Y migm) + {2(m + D]'Hm + Ug ) = 0. (17b)

Case 2

When w, is not equal to , but X, = 0 [that 15, (Xo/c)’ = 2fi/{u(w, + w,)} and
¢ = 0], the two-center harmonic oscillator matrix element of the arbitrary function
f(X) becomes,

& h 2 fmil (ni=p]
(m|f(X)InY) = ’%f 0) (m) ;-:o q%
27" 9m!n! " a’b® |
X [(m—p)!(n—q)!] p!q!(l_p—q),<m pln = q»
2

with
LAY min! ok -
=N, - 2ab)(b? = I\ T )@* - INT).
ol = oy S (mz—k>'(";k>'k!(a)( & - 0lF)

(18)

Only those terms in the tnple sum [over [, p, and q] for which (/ = p — ¢) 1s an even
nteger contribute to the sum. Also only those terms in the k sum for which (n = k)
and (m ~ k) are even integers contribute to the overlap integral (m|n)). The recur-
sion relations of Egs. (8) and (9) reduce to

a(Xo/c) {mlg ™ X)) = [2(m + 1)"3m + 1|g(X)in))
+ 2m)"*( = a®)(m — 1g"X)in)
— 2n)"ab(m|g™X)n — 1)) (19a)
and
b(Xo/c) {mig“ X))y = [2(n + 1)]"Hmig"(X)in + 1))
+ )"t ~ b)) {mlg"(X)n ~ 1)
~ (2m)"ab(m — g X)|n)) . (19b)
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The recursion relations of Eqs (13) and (14) reduce to
+h3Xo /¥ mlg TPy + B, ) 2 Hmlg " e = 1)) -
BAUXo/A [2n + H]Hmlg " Vn + 1Y) +
200 = adntn = D) Xl = 2)) +
{=202n + 1) + 2a°p°0n + n + V}mlg“n)) +
200 = a>H{(n + 2+ D} 0mjg™n + 2 =0 (20a)

and
+a* (Xo/ )V mlg " ) + @’ Xo/c) Qm) Hom — g Vinyy -
@’ Xo/) [20m + 1] m + 1g" Vny) +
21 = ) mim = D)*m = 2"y +
{=22m + 1) + 2a°b*(m + n + D}mijg"|ny) +
21 = b)Y [(m + 2 tm + D}¥m + 2g%) = 0 (20b)
Case 3

In the case n which w, = w, = w as well as X, = 0 the two wave functions (X|m)
and {{X | n)) belong to the same LHO, and the single-center matnx element of the arbi-
trary function f(X) sumplifies to

& g ()
(m|f(X)]n))=%)f (0><4,Ta,> %, ?-‘

P*a i
« 2 mtn Smp ng . 20
(m = p)l(n = g} . (l -p = (I)
g ——)
5

where the Kronecker delta represents the overlap ntegral (m — pln — ¢)) Analyu-
cal expressions for single-center harmomc oscillator matnix elements for a few defi-
mte functions of X bave been obtamned previously {10]. The reduction of Eq. (21) to
those expressions has provided a useful check on the present work The recursion re-
lattons (8) and (9) also sumplify to the following three-term relations:

(Xo/C) mlg VX0 = [20m + D} m + 10g (X))
= (2n)" Hmlg (X )n = 1) (22a)
and
(Xo/ <) Gnlg ™ O = 201 + 1] mig (X )in + 1)
= 2m)"*m — g™ X)) (22b)

The recursion relations (13) and (14) simphfy to the following four-term relations

+(Xo/ ) mlg " Iy + (Xo/) 2 g "n = 1)) —
X/ 201 + D) Hmlg™ I + 1) + 20m = n){mlgIny) = 0 (23a)
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and

F(Xo/c g ) + (Xo/e) Qo) Hm — Hg" Yy —
(Xo/)[20m + 1)) 20m + 1" ")) + 2(=m + n)(mlg"in)) = 0. {23b)

Case 4

Consider the case 1n which all three w,. w,., and X, are nonzeto such that w,, wx > w,
and b* > (wy/w,). It follows from Eq. (7), on taking the limut b° > (wo/w,). that

| f (X)) == (m|m) - [(6°Xo/2) . (24)

Note that this scaling property 1s valid for any arbitrary analytical function f

V. Discussion and Conclusions

In this paper we have denved a closed form expression, Eq. (7). for the matnix ele-
ment of an arburary analytical function f(X) between the vibranonal states belonging
to two distinctly scparated lincar harmonic oscillators of different frequencies. We
have explicitly verified that for the cases where f(X) ts a defimte specified function
like an exponential, a Gaussian or powers of X, the expression (7) reduces to the pre-
viously derived analytical expressions [, 11] It essentially provides a useful check
on the correctness of the pr.seat work. For the case of diatonnc molecules. various
matrix elements obtained above by using one-dimenstonal harmontc oscillators could
be used in a straightforward manner. For the cases of polyatomic molecules, on the
other hand, onc will have more degrees of freedom and 1t would be necessary to use
two or more dimensionat oscillators. Even in such cases, as long as the relevant func-
tions f are separable in Cartesian coordinates, the matrix clements of f can be evalu-
ated using the techmiques presented above. In particular, for a function f which 18
separable 1n Cartesian coordmnates x. y, and =, a general matnx element of f will be-
come a product of three one-dimensional matrix elements, one each for x, v, and z.
The recursion relations outlined above will, then, be valid for any one of these one-
dimensional matrix elements.

A number of recursion relations [Eqs (2), (8)~(14)] among the matnix clements of
the arbitrary function f(X') and its denivattves are presented. It should be noted that
relation (10) can be used for obtaiming the matnx clement {m|f(X)|n)) for any m and
n from a knowledge of merely two numbers (0} f(X)|0)) and (0] f(X){1)) (or
01£(X)10)) and (1] £(X)|0))). Indeed the numenical ment of this procedure 1s that one
needs to evaluate only the two lowest-order (and. thercfore, the simplest) matrix ele-
ments using the time-consurmng summation form (7) One can then utlize the recur-
ston relations for rapid evaluation of any higher-order matrix element (| f(X)n)).
Furthermore, the relations (2), (8), (9). (11), and (12) can be used judiciously for
quickly obtamning the matrix elements of other functions of X once the complete ma-
tx {m{f(X)|n)) has been determined for a certain definite function f The recursion
relations (2), (13). and (14) are useful in sunahon< where one neads a recursion rela.
tion mn which one of the vibrational quantum numbers, ewther » or n, stays fixed.
Such situations anse, for example, in investigations of vibrational spectroscopy {9].
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As an application of the recursion relations derived in this paper, we have calcu-
lated {9] the resonant vibrational excitation (v, — v) of molecules L1, and N, by im-
pact of low energy electrons. In the resonance modet, the projectile electron fornis an
intermediate autodetaching molecular amon state which decays into a vibrationally
excited molecule after the detachment of the electron. In the simple model that we
used [9], the potential curves of the neutral molecule and of the intermediate resonant
amon state were replaced by those of two one-dunensional harmonic oscillators of ar-
bitrary frequencies and equilibrium separations. The vibrational excitation amplitude.
then. involved matrix elements of the resonance width function between vibrational
wave functions of the two oscillators. Using the results obtained 1n the present paper,
we obtatned recursion refations among vibrational excitation amplitudes such that
when the amplitudes for the transitions (0 — 0) and (0 — 1) were known, then exci-
tation amplitude for any other transition, nelastic or superelastic, were casily ob-
tained by simple use of recursion relations. This simple model, involving the
recurston relations among the linear harmonic oscillator matrix elements, was able to
account successfully the expenmentally observed [13] spectacular peaks n the cross
sections for vibrational excitation of N, by low-energy electron impact.

Finally, we comment briefly on the possible usefulness of the present results. As
mentioned n the Introduction, the matrix elements of various functions of nter-
nuclear separation X are relevant in the discussions of molecular spectroscopy. For
the cases of those diatomic molecules whose potential curves are accurately known,
these matrix clements could be computed numenically using the actual potential
curves. However, for those molecules for which the potential curves are not accu-
rately known —this includes many diatomic molecules and the majonty of poly-
atomic molecules —the replacement of actuai potennial curves by those of linear
harmonic oscillators or Morse osciliators 1s a rcasonable approximation (14]. Two-
center lincar harmonic oscitlator matrix elements can then reasonably approximate
the required matrix elements for low-lying vibrational levels and can provide impor-
tant correction terms for hugh-lying vibrational levels. It 1s appropriate to remark that
if one were to obtain the anharmonic correction terms for the hnear harmomc oscilla-
tor by simply expanding the rotationless Morse potential, the mtegration coordinate
in the matrix elements of the correction terms would be radial rather than Cartes:an,
and the hmuts of integration would be from zero to nfinty. In that case, the matnx
elements {m|X‘|n}) would not be explicitly given by Eqs. (A.3) and (A.4), even
though the recursion refations of Eqs. (2)~(4) and (8)~(14) will stll be vahd. Use of
analytical harmonic oscillator matrix elements along with the recursion relations, as
outlined in this paper, has the computational advantage, especially for polyatomic
molecules, over the direct numerical evaluation of these matrix elements i terms of
litte memory and time requirements. Furthermore, analytical results can be applied
in ways that are sumply inaccessible to numencal solutions since analytical results.
unlike the numerical solutions, explicitly show the dependence of matrix elements on
various parameters like the mass, frequency, etc., of the oscillator. As a specific
example, the numerical observation of Fraser {151 and of Nicholls and Jarmain {16}

that the matrix elements (m[X'|n)) for the first positive system of N, satisfy, under
certain conditions,
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(X3 _ (X 'ln))
(mx'n))  (mlX°Ind)

could be eastly explained as a special case of the scaling law depicted analytically i
Eq. (24) above.
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Appendix

Some of the useful relations that we have used in this paper arc appended here for
convenience. Two standard relations among Hermite polynomizls cre

2H(X) = H,.,(x) + 2nH,. (%) (A
and
dH (x)/dx = 2nH,_,(x). (A.2)

The two-center matrix clements of powers of X using harmonic oscillator wave
functions are {1}

iy =% 3 -

Qo S o [en=p)n— g

2
apbq( _i)l—p-vﬂl-p_q(lb._c)

XU' LY rn.l:‘[n [ 2p¢qm!n, ]1/2

2
PP (m=pln—q) (A3)
witn the overlap integral given by {1, 12}
rM ’l1 I gt
= AN m.n 51 = pya-bn
{mln)) = N,, :f& s y— k)!k!(Zab)(l b%)

- a’be abc ]
X (1 = a m”"“[' 21 - b’)"’]H"'“[?.(l - a’)‘“} (A4

As before, the notation {x, y] means the smaller of x and y The constants a, b, and
¢ have been defined earlicr n terms of w,, w,, and w,.
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We have investigated the role played by initial rovibrational excitation of L1, on the cross sections
and rates for disscciative electron attachment to the molecule. For a given mternal energy, the vi-
brational excitation enhances the attachment cross section more than the rotational excitation. The
attachment cross sections and the attachment rates reach their maximum values when the process
of dissociative attachment to rovibrationally excited molecules is still endoergic and, furthermore,
these quantities stay close to thetr maxymum values even when the process changes from being en-

doergic to exoergic. The upper bounds on the cr

oss sections and the rates for dissociative electron

attachment to Li; are 12.8 A" and 1.25X 10" % cm*s™". At a fixed electron temperature, the Linetic
energy of the negative ion formed by this process increases as the vibrational quantum number of
the imtial neutral molecule increases; the maximum Kinetic energy of the Li ™ 10n formed by attach-

ment to the v =12 level of Li 15 0.153 ¢V

I. INTRODUCTION

It has been amply demonstrated, both theoretically' as
well as cxpcrimt‘:mz’dly,2 that the cross sections for 11~
formation via the process of dissociative clectron attach-
ment to molecular hydrogen are significantly enhanced if
the molecule H, is imtially rovibrationally excited. In or-
der to assess the analogous degree of enhancement for
other molecular systems, we have presently mvestigated
m detail the effect of imtial rovibrational excitation on
the rate of production of Li~ via the process of dissocia-
tive electron attachment to diatomic Iithium molecules.
Investigations of electron attachment to lithium mole-
cules are especially appropriate at this time due to several
reasons. First, recent experimental observations’ reveal
that the rate of L1~ formation by the impact of thermal
electrons on Ighly vibrationally excited Li, s
{24 DX107% em¥s "', One of the principal aims of the
present work 1s to confirm this experimental observation
of attachment rate by explic.t calculations as well as to
provide detailed cross sections for electron attachment to
Li;. Second, the Li™ ions could possibly play, in the fu-
ture, the same roles as have been played by H™ ions for
neutral beam formation. Third, since lithium dimers are
isovalent with H,, an investigation of the dependence of
the electron attachment to L1, on the mitial rovibrational
excitation of the molecule would be similar to the previ-
ous detaled study® on H,.

Similarities between Li, and H; suggest that theoretical
methods used successfully in the past for obtaming the
cross sections and rates of electron attachment to H, can
be employed for analogous investigations for Liy. In par-
ticular, the process of dissociative electron attachment to
Ly, is understood to proceed through the formation of an
ntermediate resonant anton state L1, which, on dissoci-
ation, leads to Li™. The fact that both the fithium dimer
molecules and the hydrogen molecules are isovalent pro-

41

vides similarities betweca *be electromic configurations of
the two molecules. For example, the lowest electronic
states of the negative molecular 1ons with configurations
(1o, )(10,)%20,)(20,) for L1,” and g,)(lo,) for
H, bave simidar symmetry, namely, X, . However,
compared to the hydrogen molecule, the hthium mole-
cule possesses a large polanizability and a weak bond
strength which makes the ground state of Li,~ a true
bound state. In the case of H, ™, on the other hand, the
22: state 15 a true bound state only for internuclear sepa-
rations R larger than 2.9 a. and is an autodetaching
state for smaller values of R. The first excited state of the
negative molecular 1ons with symmetry 22; and
configurations (1o )10, (20,020, for L1,” and
(lag)lo, )2 for H, ~ 15 partly Feshbach and partly shape
resonance 1n nature for both. Thus state 15 the essential
channel for dissociative attachment of low-energy elec-
trons to lithium molecules. The process of dissociative
electron attachment to molecular hthium, then, 1s:

e +Lp(X 'S0 )—Liy (473} )-»LitLi™ .

II. CALCULATIONS

Fortunately, a number of accurate calculations® ° of
the potential curves of the X 'Z] state of L1, and the
A2} state of Li are available. The potential curves
that we utilize 1 the present work were obtamed® by an
ab wmutio calculation ustg optimized configuration-
interaction (Cl) wave functions built from orthonormal
Slater-type orbitals (STO's). Because of 1ts nature (name-
ly Feshbach) the 22: resonance of Li,” 1s expected to
have a smail width and a long lifetime. Potential curves
of the electronic states of Li, and T4,
tachment process are shown i Fig 1. The A 223’ elec-
tronic state of Li, exhibits, due to its autodetaching na-
ture. a complex potential-cnergy curve whose real part

relovant tn the at.
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FIG. 1. The potential curves of Liy(X '2.”)and Li,” (4 12]).

¥~(R), along with the potential curve of the X 'Z;} state
of Liy, is shown. The potential minima of the X and the
A curves are at 5.05 and 5.91 a.u,, respectively. The two
curves cross at R =R;=6.51 a.u. aud, therefore, the pos-
sibility of autodetachment of the resonant molecular
anion exists only for internuclear separations smaller
than Ry, the so-called stabilization radius. The width (or,
equivalently, the lifetime) T(R) of this resonance is relat-
ed to the imaginary part of the complex potential-energy
curve of the A 237 state of Li,™. In the present autode-
tachment process *E; 2} +¢~, the lowest contribut-
ing partial wave is an s wave and, thus, by Wigner's
threshold faw!® the width of this state is given by
L(R)=ck(R), where k(R) 15 the wave number of the
electron emitted at internuclear separation R and ¢ 13 a
constant. This constant ¢ 1s obtained as follows. The au-
todetachment width I' is related, by Ferm:'s golden rule,
to the matrix element V(R) coupling the disciete reso-
nant state with the continuum state of the electron-
molecule system.!! The wave function of the discrete
A 22; state was estimated by smoothly extrapolating the
fully optimized exponents of the CI wave functions from
the variationally stable region (R Z R,) into the autode-
taching region (R <R,). The continuum state was ap-
proximated by extrapolation of a series of wave functions
constructed by adding an electron, in a series of diffuse
STO’s, to the unperturbed ground-state wave function for
Li(X '2;). The coupling matrix element V(R) was then
calvulated by using these two wave functions. A compar-
1son of the width calculated by using the golden rule with
the threshold law cxpression, given above, yiclded
¢=0.0143 a.u. The width of the 4 22; state of Li; ™ as
a function of the internuclear separation R 1s shown in
Fig. 2 and 1s given, in atomic umts, by I'(R)
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FIG. 2. The width of the A 2% state of L1,”

=0.0143k(R).

In the traditional resonance theory, within the local
approximation, the radial nuclear wave function £(R) of
the resonant anion state satisfies'2
AU +1)

IMR?

fit d?

TTE FVO(R)

—LUP(R)=E |&#R)=~V(R), ,(R), (1)

where &, ; (R) is the nuclear wave function of the mitial
()

rovibrational state of the neutral molecule and M 1s the
reduced mass of the nuclei. K 1s the total energy of the
system and its conservation i the mitial channel (elec-
tron plus molecule) and the final channel (atom plus nega-
tive 10n) provides an expression for the threshold for dis-
sociative electron attachment (DA) to the molecule that
is rovibrationally excited to a particular level,

D—=Ngp—FE,; fE y<D—Ngy,

El)A .
0, otherwise.

th (2)
Here D is the dissoctation energy of the Iithum molecule
(1.0372 eV), N, is the electron affimty of the lithium
atom (0.6182 e¢V) and E,; 1s the excitation energy of the
initial rovibrational level of the molecule.

The nuclear wave tunction £(R) 1s obtamed by numeri-
cally solving Eq. (1) subject to the boundary conditions

&R =0)=0,
&R —>0) - KRIJIMEKR) .

Here %*K2/2M is the relative kinetic energy of the ton-

atom pair after dissociative electron attachment and A;"
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1s the spherical Hankel function of the first kind.

If, after the formation of the temporary resonant state,
the nuclei separate to R > R, without autodetachment
having occurred, the detachment of the electron becomes
energetically impossible and dissociative attachment can
result. Thus for R <R, the envelope of J&(R)I? de-
creases with R because of the possibility of autodetach-
ment and it is the asymptotic (R - ) value of |E(R)?
which determines the probability of dissociative electron
attachment to the inolecule. In fact, the integrated cross
section for dissociative attachment of an electron with
energy #%%k2/2m to the molecule 1s given by'? (assuming
momentum-normalized functions)

m K . 2
opa=dryr g fim ISR ©

In order to convert the attachment cross sections into
attachment rates one needs the energy distribution of
electrons. In the present work we take this distribution
to be Maxwellian, namely,

1/2
21E

24E*

SEy=

2

, @)
2E

where the avetage energy E 15 related to the electron tem-
perature T via E =3k, T /2. The attachment rate k (E) is

merely a convolution of QE /m)! g, ( E), that is,
12
KE)1= |2 | [TEVop B (E)dE . (5)
m 0 ~

1II. RESULTS AND DISCUSSION

In the present work we have calculated the cross sec-
tions and the rates for dissocrative clectron attachment to
molecular lithium when the molecule is either in one of
the vibrational levels v =0 to 12, all rotationless, or m
one of the rotational levels J =0 to 25, all with v =0.
Figure 3 shows the cross sections, as a function of the -
cident electron energy, for election attachment to L1, n
various {v,J) levels. Besides the lowest level (0,0), the
other two levels shown 1 Fig. 3 (1,0) and (0,22) have ap-
proximately the same internal energy. The attachment
cross sections exhibit a rapid increase at the threshold,
attamning a peak value o, followed by a umform de-
crease as the energy of the incident electron increases.
This almost vertical onset of the cross section 15 attribut-
ed to the attractive nature of the potential curve of the
resonant anion state.”” The attachment rate 15 essentially
determined by the peak attachment cross section. The
results in Fig. 3 clearly show that the attachment cross
section is enhanced 1If the molecular lithium 1s nitially ro-
vibrationally excited. A part of the enhancement of the
cross section occurs due to the lowering of the threshold
for attachment a5 the molcculk b rovibiationaily eacited.
Furthermore, for a fixed internal energy, vibrational excs-
tation of the molecule 1s more effective in enhancing the
cross section than rotational excitation. For example,
when the molecule is nitially provided with an internal
energy of 0.04 eV, then the peak attachment cross section

Attachment Cross Section (umts of 302)
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FIG. 3 The cross sections for dissociative attachment of
low-energy electrons to molecular hithium 1 vanious rovibra-
tional (v,J) levels

is increased by a iactor of 6 8 if this mternal energy 1s
purely vibrational (from v =0 to 1) and by a factor of 2.5
if the internal energy 15 purely rotational (from J =0 to
22). Table I provides the energetics as well as the peak
cross sections for dissociative electron attachment to the
ground electronic state of molecular lithium n various

TABLE 1
dissociative attachment (EQM and peak attachment cross scc-
tion {0,.,) for various rovibrational levels of the ground elec-

Internal rovibrational energy (E,;), threshold for

tromc state of L1, Asterisk denotes exoergic.

v J E, V) 204 (eV) Opeas (AD)
0 0 00 04190 0.368
1 0 004292 0.3761 250
2 0 008514 03339 39
3 0 0.1267 0.2923 3.69
4 0 0.1676 0.2514 452
5 0 02078 0.2112 4,02
6 0 0.2472 0.1718 9.26
7 0 0.2860 0.1330 12.8
8 0 03240 00950 128
9 ¢ 0.3612 0.0578 8.94
. 0 03976 0.0214 103
1 0 0.4333 * 9.43
0 i 000017 04188 0.369
4] 2 0.0005G 0.4153 0.372
0 5 0.00249 04165 0.389
0 10 0.00910 0.4099 0.450
0 20 0.03461 0.3844 0809
0 2 0.04164 03774 0.930
0 2 005338 0.3656 1.16
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rovibrational levels. It is interesting that, unlike molecu-
lar hydrogen, the peak attachment cross section here
does not mcrease uniformly as the internal vibrational en-
ergy 18 mereased. Whether this is due to the local nature
of our present calculations or to the nature of the poten-
tial curves of the lithium molecule remains to be ascer-
tained in the future. However, to maintain numerical
consistency of our calculations the following equality was
satisfied, as a check, to within a few parts in 10* for all
values of the incident electron energy and for all rovibra-
tional levels of the molecule,

#i2K PR 2
iz d
= hm &R [ TPRIER)AR

=2f0w1m[§tV(R)gv‘,'(R)]dR . (6

This relationship 15 obtained by muluplymng Eq. (1) by
£*(R), subtracting the resulting equation from its com-
plex conjugate and then integrating over R from 0 to o,

Unlike the case of molecular hydrogen, the width of
the resonance responsible for attachment to Li, is quite
small (or, equivalently, the lifetime 15 large) so that the
resonance model is very reasonable. The enhancement of
the attachment cross section is directly related to the in-
crement of the range of internuclear separations, due to
mnternal rovibrational excitation, over which the electron
can be captured. This range is increased due to an in-
creased vibrational amphtude during vibrational excita-
tion and centrifugal stretching during rotational excita-
tion. The probability of an clectron capture, to form the
resonant anion state, 1S maxunum at an internuclear sepa-
ration at which the energy difference between the poten-
tial curves of L1, and L1, ™ is equal to the energy of the in-
cident electron. This internuclear separation 15 referred
to the capture radius, R,.. As the nuclei separate from R
to R, the autodetachment of the electron from the anion
state, leaving behind a rovibrationally excited necutral
molecule, is a distinct possibility. Dissociative attach-
ment, of course, results when the internuclear separation
far exceeds the stabilization radius R;. For Li, molecules
in levels v 2 7 with J =0 the range of intermolecular sep-
arations over which the electron could be captured in-
cludes R;. The energetic threshold for dissociative elec-
tron attachment to Li, 1s nonzero for vibrational levels
v <10. If the molecule is initially in vibrational levels
v 2 11, the attachment process is exoergic.

Figure 4 shows the effect of initial vibrational versus
rotational excitation of the molecule on the rate of elec-
tron attachment as a function of electron temperature.
As seen in this figure, the initial vibrational excitation to
the v =1 (J =0) level enhances the attachment rate more
dramatically than the initial rotational excitation to the
J =22 (v =0) level which has roughly the same internal
energy. The rate of clectron attachment to Li, in various
vibrational levels is shown 1n Fig. 5. We note the n-
teresting feature that the attachment rate saturates at the
value 1.25X107% ¢cm3s™! which 1s reached when the
molecule Li, is initially in vibrational levels v~8-12.
Furthermore, this rate is achieved for electrons with an
average energy of ~0.2 eV. These results are consistent
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with the recent experimental observations® of the rate of
attachment of thermal electrons to molecular hithm.

A quantity which often 1s of interest to experimental-
1sts and 1s useful for plasma diagnostic purposes 1s tie en-
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ergy of the negative ion formed during the process of dis-
sociative electron attachment. The energy of this ion de-
pends on the energy of the incident electron E, as well as
on the excitation energy E,; of the initial rovibrational
level of the molecule. In case of a homonuclear diatomic
molecule like Li, the atomic anion carries one-half of the
relative kinetic energy of the ion-atom pair. The kinetic
energy of the anion is

E™=ME,~D+Ng +E,) . %)

Assuming a Maxwellian distribution of energies for the
clectrons, the average kinetic energy of the negative ions
is given by

<1=‘*)=fo""E"amw)f(E)dE/fo“ammf(E)dE .
@®)

Figure 6 shows, as a function of the electron temperature,
the average energy of the L1~ ions formed by dissociative
electron attachment to Li, m various vibrational levels.
Since the attachment process becomes exoergic when the
molecule is initially i vibrational levels v > 11, the rela-
tive kinetic energy of the 1on-atom pair, then, is more
than the energy of the incident electron and therefore the
average energy of Li™ ions formed by dissociative elec-
tron attachment to molecular lithinm continues to in-
crease as the internal vibrational energy increases.
Among the vibrational levels that we have investigated
(v ~0~12) the maximum kinetic energy of the Li ™ ions is
0153 eV.

In an actual plasma, though, the energy distribution of
clectrons 1s non-Maxwellian and only a detailed solution
of the Boltzmann cquation' mcluding all possible col-
liston mechanisms of electrons provides the real distribu-
tion If available, this real energy distribution of elec-
trons should be used for calculating the attachment rates
and the average energy of the negative 1on.

We conclude by noting that the limited experimental
information® on the rates of dissociative electron attach-
ment to molecular hithium that is currently available 1s
consistent with our theoretical results. Detailed experi-
ments investigating the effect of imtial rovibrational exci-
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FIG 6 Average energy of Li  1ons formed by dissociative
electron attachment to L1, 1 vanous vibiational levels as a
function of electron temperature.

tation of Li, on the cross sections for formation of Li~
would be worthwhile n the future.
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Particle Beam Production via Dissociative Electron Attachment to Melecules
J.M. Wadehra

Department of Physics, Wayne State University, Detroit, Michigan 48202

ABSTRACT

Formation of beams of negative ions by the process of dissociative electron attachment to a molecule
AB (e" + AB — A + B-) is investigated. It is demonstrated that the initial rovibrational excitation of the
molecule AB plays a significant role in enhancing the rate of production of negative ions. A simple

physical picture, involving the formation of a transient resonant state of the molecular anion, is used to
explain this enhancement,

'y

1. INTRODUCTION

Production of high intensity neutral particle beams by neutralization of negative ion beams is now well
established!. The negative ion beams are accelerated to high energies and then neutralized by electron
detachment. One efficient way of producing beams of negative ions is by the process of dissociative
electron attachment to molecules. Schematically, this process for attachment to a molecule AB is: e~ + AB
—- A + B", It has been extensively demonstrated, both expc:rimemally2 as well as theoretically3, that the
cross sections and the rates of production of negative ions by this process are dependent upon the initial
rovibrational level of the attaching molecule. In the cases of molecular hydrogen and molecular lithium,
the rates of production of negative ions H- (as well as D~ and T-) and Li- by dissociative electron
attachment to Hy (and its five isotopes) and Li,, respectively, are known to be strongly dependent upon
the amount of internal rovibrational energy of the neutral molecule. For example, the rates for negative jon
beam production via electron attachment to molecular hydrogen (and its isotopes) are enhanced® by orders
of magnitude if H is initially vibrationally pumped. In the present paper only the results of our
investigations on the effect of initial rovibrational excitation on the cross sections and rates of dissociative
electron attachment to molecular hydrogen and its five isotopes will be discussed.

2. THE RESONANCE MODEL

A traditional way of describing the physics of the process of dissociative electron attachment to a

molecule AB is’ via the formation of a temporary compound state of the electron-molecule system. In this
molecular anion state AB~ (also called the resonance state) the electron can autodetach with a finite lifetime
(related to the width, [, of the resonance), leaving behind a vibrationally excited neutral molecule. On the
other hand, if the lifetime of the resonance is long enough, the anion AB- can dissociate into A + B-,
corresponding to the process of dissociative electron attachment.

. A possible scenario of the resonance model is depicted in Figure 1. Shown schematicaliy in this
Figure are the potential curves of the neutral molecule AB (labelled V) and of the resonant state AB-

(labelled V-). The two potential curves cross at an internuclear separation R = R, such that, for R 2 Ry,

the antndatanhmant AF tha al in innlles ovme setnd and tha macannnan st snin o ctahla haind
el MisLARAW AV EIAAIWELE WA WLV VIWWMAVEL 1D \(Il\/lb\duhw’ vt llv“lu\‘w i WV AVWOVIMMIIWY U LD LW W oY VUM

state. Ry is referred to as the stabilization radius. Before electron capture, the nuclei are rovibrating
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Figure 1. A schematic representation of the processes of dissociative electron attachment and vibrational
excitation of a molecule AR via resonance formation.

in the level (v;.J;) under the influence of the potential Vo(R). After electron capture, the nuclei of the anion

move under the influence of V*(R). The probability of electron capture to form the resonant molecular
anion state depends on the internuclear separation and this probability is maximum at an internuclear
separation (labelled R, in the Figure and referved to as the capture radius) at which the energy separation
between the two potential curves is equal to the energy of the incident clectron. If the potential curve V- is
repulsive in nawire, the nuclei in the anion state begin to separate such that the electronic potential energy is
converted into nuclear kinetic energy. Now if the autodetachment of the electron occurs at some specific
internuclear separation, labelled R in the Figure, the neutral molecule is left in a rovibrationally excited

ler . due to the gain it the nuclear kinetic energy (indicated by a vertical dotted line in the Figure). The
exact rovibrationally excited level (vgJp) achieved by the molecule depends on the gain in the kinetic
energy of the nuclei as well as on the relevant selection rules. Depending upon the lifetime of the
resonance the nuclei in the anion state may separate to an intemuclear separation larger than Rg beyond

which the autodetachment of the electron is energetically not possible and dissociative attachment may
occur resulting in the formauon of a stable negative jon.

3. RESULTS AND DISCUSSION

The relative masses of the six isotopes Hy, HD, HT, D, DT and T, are 1.00, 1.33, 1.50, 2.00, 2.40
and 3.00, respectively. We have done fully quantum mechanical calculations of cross sections and rates of

dissociative electron attachment to these six isotopes. In particular, we have invesdgatcd6 the effect of
initial rovibrational excitation in enhancing the rate of negative ion production. The qualitative behavior of
the attachment cross sections is the same for all isotopes , namely, a sharp threshold peak followed by a

rarmid dancanma mae faa

rapid decicas of increasing ic impact eiecron energy. The numericai resuits are provided 1n 1able 1
which summarizes three enhancement factors:

(a) Fora given rovibrational level, the factor Ry by which the peak attachment cross section Gpexy
is altered on replacing H, by one of i:s isotopes X,
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Ry = Opeqk(H, v =0, J = 0f0peq(X", v =0, = 0).

(b) For a given isotope X, the factor R, by which the peak attachment cross section Gy, is
altered on exciting the molecule vibrationally fromv=0tov= 1,

Ry = Opeg(X", v = 1, I = 0)/Gpeqk(X, v = 0,1 = 0).

(c) Fora given isotope X, the factor Ry by which the peak attachment cross section 6y, is altered
on exciting the molecule rotationally fromJ=0toJ = 10,

Ry =0peai(X7, v =0, J = 10)/0pear(X7, v =0, = 0).
" The cross sections for electron attachment to various isotopes of molecular hydrogen are shown, as a
function of electron energy, in Figure 2. For each isotope three cross sections are shown 1n this Figure.
The first set of six curves provides the cross sections for electron attachment to the six isotopes 1n the
lowest rovibrational levels, namely, (v,J) = (0,0). The next set of six curves in Figure 2 shows the cross
sections for attachment to the vibrationaily excited isotopes in the levels (1,0). The third set of six curves
depicts cross sections for attachment to rotationally (0,J) excited molecular isotopes; the value of rotanonal
quantum number J is chosen, for each isotope, in such a manner that the rotational excitation energy is
roughly equal to the vibrational excitation energy of the (1,0) level. For each of the isotopes, the
rovibrational excitation is seen to enhance the attachment cross section. Furthermore, vibrational excitation
is more effective in enhancing the cross section than rotaticnal excitation. The fundamental reason for the
enhancement of the electron attachment cross sections is an increase in the range of internuclear separations
over which the electron can be captured for anion formation once the molecule is internally excited. This
increase in range occurs due to an increased vibrational amplitude during vibrational excitation and due to
centrifugal stretching during rotational excitation.

Table 1. Various factors indicating the enhancement of the peak cross section for attachment 10
rovibrationally excited H, and its isotopes.

Isotope Ry Ry Ry
H, 1.0 33.8 15.9
HD 10.3 39.4 11.8
HT 29.6 42.1 10.5
D, 527 48.9 8.04
DT 4064 54.2 6.89
T, 65217 60.9 5.72

Various enhancement factors, Ry, Ry, and Ry, depend upon the mass (M) of the isotope and
empurically 1t is determined that the mass dependences of these factors are:

Ry o< exp (- constant M7 (1a)
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R, =« M 17/32 (1b)

Ry = M2 (lc)
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Figure 2. Cross sections for dissociative electron attachment to rovibrat:onally excited Hj and its isotopes.

_The change in the peak attachment cross section on isotope substitution, namely Ry, is referred to as
the isotope effect. The Isotope effect is most dramatic for lighter molecules like hydrogen because of the
greater relative change in the reduced mass of the nuclei on isotope substitution. The effect could be
completely understood in terms of a semiclassical analysis7'8. In such an analysis the cross section for
dissociative electron attachment, oy, can be written as a product of two factors:

The fir . OpA = Ocgp S. :

e first factor, Ocap: 18 Interpreted as the cross section for the formation of the resonant anion state
by’the capture of the incident electron. The second factor, S, is interpreted as the probability that the
separation of the nuclei in the anion state increases from the capture radius R, to the stabilization radius R

SPIE Vol 1061 Microwave and Particle Beam Sources and Directed Energy Concepis (1989) / 525

| r———n ———, A Sy e 1o




e amtted

without electron autodetachment to assure the process of dissociative electron attachment to occur. The
factor § is referred to as the survival probability and, in the semiclassical analysis, is given by:

R,
'R) dR
S=ex 'f —-ﬁ——-\;(—R—)
R : 2

where I['(R) is the width of the resonant state and v(R) is the speed with which the nuclei are moving apart
at the internuclear separation R. Now, in the semiclassical expression, Eq. (2), the survival probability S
is a strongly mass-dependent quantity. It can roughly be approximated by exp (- I't/fi) where 1, the time
taken by nuclei to separate from the capture radius R, to the stabilization radius Ry, is directly proportional,

by simple kinematical considerations, to M2, Thus nuclei of heavier isotopes, taking a longer time than
"nuclei of H, to separate out to R, experience stiffer competition from the process of electron
autodziachment which reduces the probability of dissociative attachment.

As an example of the isotope effect one should note, using the values of Ry in Table 1, that the value
of the ratio
In '-Gpcak (Tﬂ /opcak (HQ)]
In fcpcak (D?) /Gpcak (Hﬁ—l 3)
is In(65217) / In(527) = 1.7688. The values of the peak attachment cross sections are obtained by fully

quantum mechanical calculations. Now, if the isotope effect of the semiclassical Eq. (1a) is valid, this
ratio should be

1 1

ol 1
Mp; - My “

whose value is 1.7673. The two values are quite close, any difference being due to the mass dependence
of the vibrational frequencies of the various isotopes.

For the purpose of having a particle beam with high energy deposttion characteristics, one looks for
beam particles as massive as possible. To investigate the production of massive negative 10ns we have

obtained the factors by which the cross sections (and, therefore, the rates) for the production of Li- from
Lij as well as of Cl" from HCl are enhanced on vibrationally exciting the neutral molecules. These

enhancement factors are approximately 8 for Li- production’ and 40 for CI- groductionlo'11 when the
molecules Li and HCI are initially excited fror.. the v=0to the v= 1 level. The corresponding

enhancement factor for H- production from Hj is calculated to be approximately 34, Furthermore, the
maximum rate of Li- production from Li, is calculated” (as well as observed!?) to be about 10-8 cm3 571,

which is same as the rate of production6 of H" from H,. This is not surprising since Li; is isovalent with
Hj.

P A vam T m e S ww o T

4, FUTURE POSSIBILITIES

Calculations of the rate of negative ion production require a knowledge of the electron energy
distribution in the ion source. In our previous calculations*® a simple Maxwellian distribution for electron
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energies was assumed . Using this electron energy distribution the maximum possible rate for dissociative
electron attachment to H, was calculated to be about 108 cm® 51, Using the same distribution function
the maximum kinetic energy carried by the negative ion H™ formed by dissociative electron attachment to

H, was estimated to be less than 0.5 V. We have recently develope:d13 a novel procedure for obtaining
the ime-dependent behavior of the electron swarms in a gas mixture. This numerically stable algorithm
generates an exact, time-dependent solution of the Boltzmann equation for charged particle swarms in a
dilute gas and uniform electric field and, thereby, provides a temporal evolution of the electron energy
distribution in the gas. We have already tested this procedure for generating the time-dependent behavior
of various parameters like the average clectron energy, average drift velocity, ionization rate etc. for
electron swarms in gaseous neon and argon. We are currently utilizing the same numerical procedure for
obtaining the time-dependent behavior of parameters used for diagnostics purposes in a source containing
a mixture of atomic and molecular hydrogen.
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ISOTOPE EFFECT IN VIBRATIONAL EXCITATION OF H, BY LOW ENERGY
ELECTRON IMPACT

D. E. Atems and J. M. Wadehra
Depantment of Physics and Astronomy
Wayne State University, Detroit, Michigan 48202

ABSTRACT

Cyoss sections for the vibratnonal excitaton of molecular hydrogen and its five
heavier isotopes by the impact of low energy electrons are calculated using both the
local and the nonlocal versions of the resonance model. It is demonstrated that, for a
given incident electron energy, the cross sections for the vibrational excitation of
heavier isotopes can be obtained from those of molecular hydrogen by a simple scaling

ure. It1s seen that the scaling law holds for cross sections with values ranging
over eight orders of magmtude.

The vibratonal excitanon of a molecule (such as Hj ) occurs via the formanon
of an intermediate resonant state (H,™ ) which can either autodetach the temporanly
bound electron (and, then, leaves behund a vibrauonally excited molecule) or can

dissociate into H + H™ (that 1s, leads to dissociative clectron attachment).
Schemaucally, these two complementary processes are:

e +Hjp(vg, Jg)
¢ +Hy(v,, ) = Hy (25, or25%) {

H+H".
The nuclear wave function £ of the resonant state, 1n the most general theoreucat
descnption, sausfies! a integrodifferental equation with nonfocal potentals:

[TN®) +V ®) -EIE ® =- VE-E,. R 1, ®)

. VeRIVER) oo %
&L @@ {pfe LR aves 0ve-s. 0 ) @,

(b
Here %, are the vibrational bound state wave functions of the neutral molecule, Ty is

the nuclear kinetic encrgy operator and V{R) is the potental curve of the resonant
anion state. The sum on the nght hand side includes all energetically open channels
The matnx elements V(e,R) couple the discrete resonant state wath the background
continuum; this coupling leads 1o an energy-shift of the resonance (the principal part
integral on the right hand side) and provides a width to the resonance (the imaginary
part on the right hand side) which determunes the hifetime of the resonance. The total

cross section for vibrational excitation, 1n atomuc units, is* (assuming momentum
nemmalized contnuum functions),

4
OV = v') = 16’; k JdE'rr(v - V)2
© 1990 American Institute of Physics 121
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126 Isotope Effect in Vibrational Excitation

threshold. In any case the noniocal effects are found to be smail. All the excianon
cross sections sausfy a useful isotope scaling law such that the wibrationai excitauon
cross sections for the heavier 1sotopes of molecular hydrogen can be obtained, within
a factor of two, from the corresponding cross sections for H.
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"Relativistic approach for e scattering from argon”,

presented at the 1988 annu

Bull. Am. Phys. Soc. 33, 935 (1988)

al meeting of the Division of Atomic, Molecular and Optical Physics,

Baltimore, Maryland, April 18-20, 1988.

.

tivistic Approach for e* Scattering from
Ao RUelehKRA W HAHAR, Georgia State State U., and J.
. ADEHRA, Vayne State” U.* == Differential  and

Argon. S
integrated
935

cross  sections and various polarization

Monday Afternoon

parameterzs, such as polarjzarion (P) or the the Sherman
function (S) and paraseters T and U, for electron and
positron scattering from argon are calculated using the
relativistic Dirac equation. 1t contains the spin-otbit
interaction. The real part of the projectile-~target
interaction §s represented by a model potentfal that
includes static potential (repulsive) and the Buckinghan
type wpodel polarization potential (attractive) for the
positron scattering and static potential (attractive),
the same polarization potential (attractive) and electron
exchange potential for electron scattering from argon.
The phase shifts wvith large angular wromenta f¢ are
culculated by using the Born  approximation The
polarization parazeter P for electron scattering is tound
to be in good agreement vith the available calculated and
measured values. A fev different rmodels of the absorp-
tion potential for the inelastic processes are used to
calculate the elastic differential and integrated as vell
as the total integrated cross sections for positron scat-
tering from argon. It {s noticed that even though the
calculated total integrated cross sections agree reason-~
ably vell with the wmeasired values, the differential
cross section curves shov features different from those
peasured for the positron scattering from argon.

* Support of AFOSR is gratefully acknovledged.

1S.N. Nahar and J.M. Vadehra, Phys. Rev. A 35, 2051(1987).

.



"Formation of ground and exci
ted states of antih "
esoned at the 1998 Bull. Am. Phys. Soc. 33, 991 (1988)n ihydrogen,
annual meeting of the Division of Atomic, Molecular and Optical Physi
Baltimore, Maryland, April 18-20, 1988. prical Physics

states of

EX5 FPoraation of ound and excited
antihydrogen. EuLfANA . NAHRR, Geor Ta State U., and
L He HRA, Vayne State U, % = g!!terentia and

integrated  Cress Sections for the formation of
antihydrogen by the impact of {ntermediate  energy:
(20 - 500 keV) antiprotons on pr3icronium are cnlculatga
using the first Born approximation. The calculations are
carried out for the fornation of antihydrogen in ground
and various excited electronic states (n = 1-3) vhen
positronium, the target atom, is in the 1jround state, and
for the formation of antikydrogen in <he ground state
vhen the positroniua is in various excited electronic

states (n = 1-2). The 1/n? behavior for the capture
cross sections is used to calculate the total (that is,

991
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all states added together) integrated croas sections.

The creoss sections for the formation of antihydrogen

presented here are obtained ¢roo those for the formation

gio po:ixroxiun hby hthe impact of positrons on hydrogen
ne by using the charge invariance and t i

detailed balance. he principle of

*Support of AFOSR is gratefully acknovledge.
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"An exact numerical solution of the time dependent Boltzmann equation",
Bull. Am. Phys. Soc. 34, 295 (1989)
presented at the 41st Annual Gaseous Elecgonics ngference, Minneapolis, Minnesota, October
18-21, 1988.
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,* P.J. DRALLOS and J.M. WADEHRA, Degt.
25 _Physics, Hayne State Unlv, -- An exact, time dependent
nuserical solution of the Boltzzann equation for charged
particle swarms in a dilute gas and uniform electric
fleld is presented in detail. The method ‘ncorporates
the full anisotropy of both the velocity ¢istribution
function and the collision cross sections as it does not
involve any term expansions. An exact analysis of the
collision terms is described and conditions for numerical
stability of the solution are discussed. Results are
presented for electron and positron swarms in gaseous
Neon ana Argon and i{n some model gases at various values

of E/N.

*Ihis vork was supported by the Air Force Office of
Scientific Research through Grant No. AFOSR-87-0342,
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"Energetics of negative ion formation via dissociative attachment of e + LiH",
Bull. Am. Phys. Soc. 34, 1401 (1989)
presented at the 1989 annual meeting of the Division of Atomic, Molecular and Optical Physics,
Windsor, Ontario, May 17-19, 1989.

2:00
vt . cone .
iH*, H. H. Michels, LITRC, and J. M.Weadchra,
Wayne State U, The formation of H" and Li* by dissocianve
anachment (DA) of ¢ + Hj and e + Liy, respectively, is now well
cl both experimentally and theoretically. The role of LiH
(or CsH), which could be formed from secding 20 alkali into a
hydrogen plasma, 18 preseatly not well understood, but the addition of

01
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an elkals appears to enhance the H" production rate, This observation

is interesting in light of the study by Gauyacq, ¢t all, which indicates
that charge transfer and collisional detachment processes should
reduce H™ production in Na sceded plasmas. We have analyzed the
clectron attachment to LiH in terms of calculated potential energy
curves. In agreement with previous studies, we find that the ground
state of LiH" is thermodynamically bound relative to LiH + ¢, with a
calcuiated electron affinity of ~ 0.3 eV. The first excited state of
LiH" which asymptotically cormrelaies to Li~ + H, exhibits repulsive
behavior in the region 3.0 SR < 6.0 A. Based on these prehminary
studies, DA of ¢ + LiH will yicld Li~ ions for low-energy collisions

H- 10ns are not formed by DA of ¢ + LiH but may be formed by

energetically allowed electron capture into high vibrational states of
LiH which he above the Li + H asymptotic lunit.

*Supported in part by AFOSR under Contract F49620-88-C-0019 and
Grant AFOSR-87-0342.
13, P, Gauyacq, ct al, Phys. Rev. A, 38, 2284 (1988)
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"High-field time-dependent positron vulocity distribution functions”,

Bull. Am. Pnys. Soc. 34, 409 (1989)

presented at the 1989 annual meeting of the Division of Atomic, Molecular and Optical Physics,

Windsor, Ontario, May 17-19, 1989.
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Lo U.*--It has been reported '~ that for a neon
zas density N = 1 ansgat, the positron swarm paraseter
Ze £ varies only at very low fields (up to E = 5 V/ca)
nnﬁ then becomes almost independent of E (up to E = 50
V/cn) with a value of about 6,3. In the present calcula-
tions, a numerical technique for evaluating the exact
tine-dependent behavior of electron velocity distribution
functions” has been adapted to the case of positron
swarus in gasecus neon. In these calculations an F/N of
0.9 Td (E = 240 V/ca and N = 1 anagat) vas used. With
this technique, the time dopendence of the average
energy, annihilation rate, and Zopg VOTO obtained. The
equilibriua value for Z g, under Eﬁane conditions vas
about 6.3. This result extends the range of electric
f1s1d, for which zoff is a constant to E « 240 V/cnm.

*The support of the AFOSR iz gratefully acknovledged.
1. P.S. Grover, J. Phys. B 10, 2269 (1977)
2. X.V. Sinha and P.S. Grover, Phys. Rev. A 35, 3309

(1987).
3. P.J. Drallos and J.M. Wadehra., J. Appl. Phys. 63, 5601

(1988)
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“Energetics of ncutral and negative ions of Lip,Hy clusters”,

Bull. Am. Phys. Soc. 35, 1177 (1990)
Monterey, California, May 21-23, 1990.
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DB9  Encrgencs of Neuta) and Negauve fons of L Hy, Clusters*. H H

Michels, UTRC. and J] M Wadehra, Wayng Statg U,+- The formaton of H-(Li™)
by dissociauve auachment (DA) of ¢ « Hy(Lij) 18 thought o be the dominant
volume process in discharge typs negauve ton sources The role of
L Hn(CsmHp) molecules. which could be formed from seeding an alkah into 2
hydrogen plasma, 1s p ly not well und, d, but the add! of an alkah
such as Cs appears to enhance the H™ producucn rate  This obscrvauon 1s
wnteresing in light of the study by Gauyacq, et all, which indicates that charge
transfer and col! ] should reduce H- producuon in Na
seeded pl In crdet to the and stability of LiyHy, ¢lusters
and thetr anions, ab iano cakulations were carmed out for several species at the
MP2 level of theory  The basis set chosen was the Gaussian 6-311G tnple split-
valence set, d by d-pot. ion { for Lt and p-polanzanon for H
and dsffuse to better be the neg 10n charge distnibutions  Qur
studies o date Indicate that several Ly Hi, (and by anzlogy, Csy,Hy) clustess are
thermodynamically sable. In parucular, the LigHj specics, as a C,,, structure,
may be an 1mportant component of alkali-hydrogen mixtures This species can
d Iy auach an ¢l to form LigH + H™ for o 220¢V The LinH
(Cyy) species should also exhibit DA to form Lis + H-, but the concentration of
this molecule will be lower than that of the more stble LipHy cluster

*Sypported wn part by AFOSR under Contract F49620-89.C-0019 and Grant
AFOSR-87-0342
1y P Gauyacq. et al Phys Rev A, 18, 2284 (1988)
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