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ROTATIONAL ELASTIC DYNAMICS

by

J. Baillieul and M. Levi

Aerospace and Department of Mathematics

Mechanical Engineering Boston University

Boston University Boston, MA 02215

Boston, MA 02215

Abstract

The combined dynamical effects of elasticity and a rotating reference frame are ex-

plored for structures in a zero gravity environment. A simple yet general approach to

modeling is presented, and this approach is applied to analyze in detail the dynamics of

a specific prototypical structure. Energy dissipation is included and its effects are studied

in detail in a model problem. Bifurcations and stability are analyzed as well.
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1. Introduction

There is now a fairly general awareness among aerospace engineers that the dynamics

of the complex spacecraft currently in production and on the drawing boards will be

greatly influenced by continuum mechanical effects such as elasticity. Indeed as the designs

being contemplated increase in size and complexity ([13]) the dynamic effects of flexible

members become more important, and recognizing this, many researchers over the last

decade have focused their efforts on obtaining new methods for the design, analysis, and

control of flexible mechanisms. Space does not permit (nor would it be in keeping with

the main purpose of this report) to survey the vast literature on flexible space structures:

the interested reader can get some idea of research activity in this area by referring to any

one of a number of collections of papers and conference proceedings, such as [13] or the

more recent volume [11].

The purpose of this report is to describe recent research which has been aimed at

developing a mathematical theory of the rotational dynamics of complex mechanical sys-

tems which include articulated and elastic components. Our objective in this research has

been to carry out a study of the global qualitative dynamics of such systems in sufficient

depth as to allow predictions regarding the stability and asymptotic behavior of spacecraft

due to a variety of energy dissipation mechanisms such as viscoelastic material damping

of vibrations of elastic parts. We believe that historical evidence points to the value of

developing a fairly complete global asymptotic stability theory of this type since there

are numerous examples of missions in space which did not achieve their stated objectives

because certain long term mechanical effects were never adequately taken into account in

the mission planning. Explrczc:!, the first suL,.cssfully latunched American ratellite, p-o-

vides the best known example of such untoward behavior. Upon achieving earth orbit,

the pencil-shaped satellite was supposed to rotate about its major axis of inertia. Before
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it had completed one orbital revolution, however, radio signals indicated that a tumbling

motion had developed and was increasing in amplitude.

While explanations of Explorer's errant behavior have been offered by a number of

researchers (see e.g. references to this problem in [71), we are aware of no attemps to obtain

a rigorous mathematical analysis of such occurences, with the exception of [3], where some

of the results of the present report were announced. We also mention a recent paper [8]

which deals with a somewhat different, although related aspect of a similar problem and

several more recent efforts reported in [11] which develop results similar to those described

in Section 5 below.

Our report is organized as follows. In Section 2 we derive equations describing the

rotational dynamics of complex structures. These include the general effects of inertial

forces created by rotation of the reference frame. Section 3 focuses on a general theoretical

framework for Lagrangian mechanics with damping. In Section 4, a simple structure

consisting of a rigid body with an elastic beam appendage is studied, and we present

what we believe is the simplest reasonable continuum mechanical model of such a system

undergoing three degree of freedom rotations. The asymptotic steady state dynamics for

this system are studied in Section 5, and in Section 6 we present a detailed analysis of

the qualitative dynamics of a closely related model having only one rotational degree of

freedom. A second part of the report treats "Equilibrium Mechanics of Rotating Systems,"

dealing principally with rotating kinematic chains.
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2. The rotational dynamics of complex structures.

In this section we will derive equations of motion for a class of structures consisting

of elastic, fluid or rigid components. While these equations are completely general, they

are most useful in describing any structure whose configuration is conveniently specified

by the position of the structure with respect to a moving coordinate frame together with

the position of that frame in space, i.e. relative to some fixed inertial system.

Figure 2.1: The body frame is translated and

rotated with reipect to the inertial frame.

We fix an orthonormal basis forming an inertial frame ("space frame"), and choose a

"body" coordinate system designated by a set of orthonormal vectors g1,g2,g. Choice

of the gj's will depend on the particular problem at hand, and it affects the simplicity

of resulting equations. In section 4, where we treat an example of a rigid body with an

elastic appendage, we affix the body frame gi to the rigid body, although other choices are

possible [6].

The position and orientation of the body frame (with respect to the chosen inertial

frame) may be described at each time t by an element of the special Euclidean group,
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SE(3, R), represented by a 4x4 matrix

X(t) = Y(M0Vi)

(see figure 2.1), where Y(t) E SO(3) is an orthogonal matrix describing the orientation of

the body frame and y E R 3 is the position of the origin of that frame in space. (cf. [5]).

Therefore, if a point P is given by the vector u in the body frame and by vector U in

the space frame, then u and U are related via

fT = Xi,,

where
whr (1) and fi =()

The positions of various elements of our flexible structure relative to the body frame

will be described by a vector function u(z, t) = u(z, Z2, z3 , t) denoting the position at time

t of each particle whose "unperturbed" position is at z. Here "unperturbed" can mean

either initial or undeformed, depending on one's choice. In section 4, z will denote the

neutral position of a particle of the flexible structure.

In summary, we consider systems whose configuration space is given by

{q} = {(Y, u,y)} = SE(3) x C = SO(3) x R3 x C, where C = {u(.,t)} is a suitably defined

function space whose elements are functions u(z) describing the configuration of the body

relative to the body frame.

We describe now the kinematics of the system and give an expression for the kinetic

energy. The evolution of the matrix X(t) E SE(3) can be described by a differential

equation

X2i) = (~~li

0 0

where fl(t) is the skew-symmetric matrix

I W3 0 -W"1

-W2 W 0



of angular velocities wi about the corresponding body axes gi, i 1, 2, 3.

The inertial coordinates U(z, t) of a point P are reJated to its body coordinates u(z, t)

via

O(Zt) = Xf&(zt)

and the corresponding velocities are given by

d -wt U= =i+Xi

= (Y(lu + Ut) +i

where ut denotes the partial derivative with respect to t.

The kinetic energy of the body is then given by

T(q,)= J IIY(4) 1+ ) +ll 2dm, (2.1)

where B denotes the point set comprising the body (at time t) described in the body

coordinate system, and dm is the mass distribution in this coordinate system.

The kinetic energy of almost any rotating structure will be of this form, as it does not

depend on the constitutive relations governing the structure itself. More refined dynam-

ical models, as treated in subsequent sections, will embody structural information in the

expression for potential energy

V(q) = V(YY)

(which we assume to be independent of 4). Without specifying the form of V at this point,

we prove the main theorem of this section.

Theorem 2.1. Let A be defined by

A(t) = n+ Ut)UT)adm,
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where M. = (M - MT) denotes the anti-symmetric part of a matrix M. Equations of

motion of any system whose configuration space is {q} = {(Yu,y)} = SO(3) x C x R 3 as

above are given by

A~t) + [n(t),A(t)] -/B (yTyuT)gdm = T - (Y-Vy). (2.2)

Utt + 2u + 1 u + 2fut + YT i = p _ 6V (2.3)
6u

SOV (2.4)y(jj2U + 1 u + 211u, + ut,) + jd,= f - O 24

k=Yn (2.4)'

where Vy is the matriz of partial derivatives e- , and LVY is the Frechet derivative of V

with respect to u.

In the skew-symmetric matriz

T=r 3  0 -1)

7-i is the net nonconservative torque applied to the system about the body azis gi, F = F(z)

is the distributed nonconservative force density acting on the particle positioned at u(z,t)

czpressed in ie body coordinate system, and f is the net nonconservative exogenous force.

Remark: In subsequent sections nonconservative forces will arise due to viscoelastic

damping.

Before giving the proof, we rewrite these equations so as to provide a clearer picture

of the physical situation. Let w = (w 1 ,w 2 ,w3 )T be the angular velocity of the body frame

ezpressed in that frame; w is related to the angular velocity matrix fl = Y- as follows:

fj 0 -W3 2 W (I
W3 0 - )W (W 2  .

-w 2  W1 0 W3
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Den:te by S the operator taking a skew-symmnetric matrix 11 into vector w :SI= w. One

easily verifies the following:

Lemma 2. 1. Given any pair A, B of skew-symmetric 3 x 3 matrices and any pair

s, v of S-vectori, the following identities hold

(i) S([A, BI) = S(A) x S(B)

(ii) S(uVT - vu T) = V X is

(iii) Au = 5(A) x us

Applying the operator S to equation (2.2) and using Lemma 2.1 on equations (2.2)-(2.4)

we obtain

Corollary 2.1 Equations of motion (2.2)4(2.4) are equivalent to

it(t) + w(t) x a(t) -f Lij:u(z, t) x Y 1 'P(t)dm = S(T - (Y -Vy)a) (2.5)

tttt +w Wx (w xis) + c, xis + 2w x ist + Y-'j = F - 6.K (2.6).5u
JY~ x wxuD xu+2 t+ut ~m V (2.7)

where a is defined by

a(t) l B ux (itt + w x u)dm.

Written in this way equations (2.5)-(2.7) give =n explicit description of the inertial

forces on the mechanical system viewed in the moving body frame. Intro-lucing the deriva-

tion D = d4 (-) + w x (.), we obtain yet another rendering of these equations.

Corollary 2.2 Equation of motion (2.2)-4) are equivalent to

I is x (D 2 U + Y'1)dm, = S(T - (Y-'Vy)a) (.)
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tV
D 2 u+Y-'l=F- -- (2.6)'

.5u

(Y U dB OV (2.7)'(YD2u + #)dm = f - (.)

The motions of any complex structure undergoing free or forced rotation are described

by equations (2.5)-(2.7). This formulation is thus fairly general, and it can incorporate

external forces and torques (due, for example, to gravitational and magnetic fields) and

interns' for-t.e (due, say, to actuation of joints or the constitutive properties of the mate-

rial). In the next section 3 we will incorporate dissipative effects in this formulation, and in

section 4, we shall develop a complete dynamical model of a system where the constitutive

relations are those of a simple damped beam.

Proof of theorem 2.1: The proof will be given in two parts: First, the treatment

of the inclusion Y E SO(3) as the holonomic constraint onto SO(3) as a submanifold

of GL(3), with an appropriate modification of the Lagrange equations (Lemma 2.2), and

second, the utilization of the left-invariance of (the rigid path of) kinetic energy to simplify

the resulting equations (Lemma 2.4).

We would like to write the equations of motion of the structure in the Lagrangian

form

d T oT _8V

at a4 aq Oq

An appropriate modification of the Lagrange equatiois is needed, however, to account for

the fact that Y is constrained to the submanifold SO(3) C Gl(3). Such a modification

is unnecessary if the Lagrangian equations are expressed in terms of a local coordinate

system on the constraint manifold-cf. [1], page 77. This approach ignores the symmetry

in our system of equations, however. The following Lemmas 2.2 and 2.4 are key to our

proof of Theorem 2.1
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Lemma 2.2 Any eztremal q(t) of the action f L(q, 4)dt with q constrained to a sub-

manifold Mo of a Riemannian manifold M satisfiea the differential equation

where wrq is the normal projection from TqM onto TqMo.

We omit a straightforward proof. Corresponding to the three components of q

(Y, u, y) we obtain three components for the equations of motion:

PY ( d&T 49T OV\ _ 28Ia -0 (2.8)

d ST 6T 6V (2.9)

dt K 6u 6u'
d OT OT OV (2.10)

= - 2.o
where Py is the orthogonal projection from TyGI(3) onto TySO(3) in the trace norm

(A,B) =tr ATEB. Here AT A are the derivatives with respect to the standard Rie-

mannian structure on TGL(3); they can be represented as matrices of partial derivatives:

OT = (8X), and T - ( "T ) 6T denotes the Frechet derivative of T with respect to the

distributed parameter u. The expression for the projection Fy is provided by

Lemma 2.3. For any Y E SO(3) and A C TyGI(3)

PyA = Y(Y-A)., (2.11)

where = _(X _ XT)

is the anti-symmetric part of X.

Proof. This follows from decomposing the Lie algebra of gl(3) as the orthogonal

direct sum of symmetric and skew symmetric matrices. (gl(3) = so(3) E so(3)'.)
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Lemma 2.4 Suppose T is a left-invariant function on TGl(n), i.e. suppose there is

a function K defined on gl(n) (= the Lie algebra of GI(n) = space of real n x n matrices)

such that T(Y,Y) = K(fO) where fl = Y-Y. Then for (Y,Yk) E TSO(n)

Py( d OTi T Y(dM+[(0M]
\dt jy 8Yf dM+L

where M and is the derivative of K with respect to f) evaluated at f =- Y 1 k.

Remark. There is an orthogonal direct sum decomposition: gl(n) = so(n) @ ao(n) L ,

where jo(n) = the Lie algebra of n x n skew-symmetric metrices, and where orthogonality

is defined in terms of the trace form inner product [A, B] = tr ABT defined on gl(n). If the

function K appearing in the statement of Lemma 2.4 can be decomposed as K = K 1 + K 2

where Ki depends only on the i-th component (i = 1,2) in this orthogonal direct sum,

then M = K'(f), where by K' we mean the derivative of K 1 with respect to the natural

differentiable structure on so(n) defined in terms of the Killing form.

Proo. and OT may be thought of as elements in the cotangent bundle T*Gl(n).

Making the usual identifications, the standard Riemannian structure on Gl(n) may be

prescribed explictly in terms of the trace form, and we may write , and OK all as

n x n matrices
d 8T =( -)T r d (~ t 8 ) _fT 8K ]

dt ak I[dt &I &

OT = - (Y1)TflT 8 K

For (YY) E T SO(n), we have (y-1)T = Y and fIT = -fl, and the result follows from

Lemma 2.3. I

The proof of Theorem 2.1 proceeds as follows. Using left-invariance of the first term in

the expression for kinetic energy (cf. (2.1))

T = 1 f 11flU + ut112 + 2(flu + ut,Y- 1 j) + IIiII2 din,

12



we obtain equation (2.2) as a consequence of Lemma 2.4. The remaining equations (2.3)

and (2.4) follow by direct computation from equation (2.9) and (2.10). We omit the details.

13



3. Lagrangian Mechanics with Damping

A major advantage of Lagrangian versus Newtonian mechanics is the invariance of

Lagrange's equations with respect to coordinate changes; it is this invariance that facilitates

significantly the derivation of our equations of a motion. It is thus desirable to have the

extension to the dissipative case. Such a modification is described in [9], [12]; we reproduce

it here in a slightly more general form.

Let D(q, 4) be the so-called dissipation function defined as follows:

4D4 = rate of dissipation of energy per second.

(One can think of Dq as the generalized dissipation force, and 4 =velocity. The above

simply says: velocity • force = power).

Let L(q, 4) be the Lagrangian of the system. The equations governing the system are

d - Lq + D4 = 0. (3.1)

Remark 3.1. If D is quadratic in 4 (as will be the case in the application presented

in the next section), then

1. 1
D= 4D 4 = (rate of dissipation).

Equations (3.1) are consistent with the definition of D, as shown by

Theorem 3.1. If E(q, 4) is the total energy of the system, then

d E(q, 4) =-D.

Proof. E is given by the Legendre transform* in q of L:

E OL
E=q.--L.

Usually E is expressed as a function of q, p = , we keep 4 rather than p here.

14



Differentiation by time gives

O L +4d OL 4-L4=-D;

we used equation (3.1) in the last step.

Equation (3.1) has the same invariance property as the conservative Lagrange equa-

tions.

Theorem 3.24[12] The dissipative Lagrangian sys tern (3.1) is invari ant under the

change of variables q =q(Q). More precisely, if q(t) satisfies (3.1), then Q(t) satisfies

equations of the same form:

d 'O-Q+ ,= ,(3.1)t

where f4Q, 0) = L(q(Q), q'(Q)O) and V(Q,Q0) = D(q(Q), q'(Q)O).

Proof: A simple calculation shows:

-,C _£Q + Do= qI(Q)T d L4 - Lq + D4 )

dt TI



4. A Rotating Rigid Body with a Beam Attachment

Consider the spacecraft depicted in Figure 4.1. The key features of this structure are

a rigid body to which a flexible cantilevered beam-like appendage of length t is attached.

Figure 4.1: A rigid body with cantilevered beam attachment.

As we have mentioned in section 2, we affix the moving frame to the rigid body.

More specifically, we place the origin of the frame at the point of attachment of the beam

and align the Z3 =_ z-axis along the undeflected beam. Viewing this cantilevered beam as

essentially a one-dimensional object, we describe the elastic deformations u(z3, t) - u(z, t)

with respect to the coordinate axes (zI,z 2,z 3 ) =_ (z,y,z) depicted in Figure 4.1. More

precisely, u(z, t) is the position of the particle whose neutral position is at (0, 0, z). The

decomposition of the system into the rigid part and the elastic beam corresponds to the

decomposition of kinetic energy (2.1) into the sum of rotational and translational energies

of the rigid part and the energy of the beam. (Note that u(.,t) restricted to the rigid

16



component is just the identity mapping for all t.) We have

T 1 wTJW + mbiTyfl + 1mbiIyII 2

2 2

+ {jY(Ou + u,) + il 2dz

where S((I) = w, Z is the center of mass of the rigid body in the body frame, mb is the

mass of the rigid body, we have scaled the linear mass density of the beam to be one, and

the inertia tensor with respect to the body frame is given by

I. I. n I,.

I-= I Y IY .

where I. is the moment of inertia with respect to the z-axis, etc. (cf. [1]).

Since the beam is clamped at the origin of the (z, y, z)-coordinate system and free at

its other end, the following boundary conditions are assumed:

U,(Ot) = -(0, t) = 0 2 ,(l,t) = '(1, t) = 0, i = 1,2,az 492 z3

and u3 (O, t) 0)=O. These boundary conditions are standard in the theory of

clamped-free beams. Here u.,,. u, are the deflections: u = (u1,u 2 ,z + u3). Note that u3

is not the z-coordinate of u.

The equations of motion for our rotating satellite are obtained by incorporating (2.5)-

(2.7) into the formalism of Lagrangian mechanics, as discussed in the previous section.

Thus we look for extremals of the Lagrangian L = T - V with kinetic energy T given

above and potential V given by the strain energy

V(u) = ,1 [ 1(u')2 + I.2(U'')2 + A3 (U3) 2]dz, '= (4.2)

17



where only quadratic terms were retained and the material is assumed to obey a linear

Hooke's law. Here pL (respectively p2) gives the bending elasticity within the zz-plane (yz-

plane respectively), and A3 is the Hooke's constant giving the beam's stretching elasticity.

Unless the beam is abnormally thick, A3 >> Pl, PU2. The dissipation function is given by

D(,,,) = Mj k(,ill)2 + k 2 (,&1) 2 + ks(ti3)2 dZ, (4.3
20i - (4.3)

where , 2 can be thought of as the rates of change of appropriate curvatures, while

a4 is the rate of change of the contraction coefficient u'. The ki's are positive constants

reflecting the rates of energy dissipation due to deformation of material in the beam.

Remark 4.1. It might seem at a first glance that the first two terms in the integral

(4.2) should be replaced by a quadratic form (in O4,u")

a(u",)2 + 2btu4u + c(u11)2;

however, by properly turning the body coordinate system around the z-axis, we can di-

agonalize this form. In Figure 4.2, the z-axis is chosen along the direction in which the

beam bends most easily (pl < A2); consequently, the beam offers the stiffest resistance to

bending within the yz-plane.

V

Figure 4.2: A beam with elastic coefficients 1&1 < A2.

18



Remark 4.2. We must point out that the beam was assumed to be of uniform

crossection. Expression (4.2) would have to be modified to include the beams with variable

crossections like the ones show in Figure 4.3.

Figure 4.3: Beams with variable croaaection.

The modification is in fact quite simple: one would only have to replace the first terms in

(4.2) by a quadratic form with z-dependent coefficients. In the case of a helical beam we

would take the matrix

Scosa sina

where R(z) is a rotation matrix -sin a cos a by z-dependent angle a = const - z

Remark 4.3. To incorporate torsional deformations of the beam, we introduce the

torsion angle a(z; t), which is the angle formed between the z-axis and the projection onto

the zy-plane of the segment rigidly connected to the beam so that in the unperturbed

position of the beam it is attached at (0, 0, z)T and is parallel to the z-axis. Thus the

variable a(z; t) describes a normal bundle of the beam. Potential energy of the beam is

given by

V = 2 f (< R-1 IRy",v" > +p3(1 +A4(a')dz,

where A = diag(pA,p2), p4 is the torsional elasticity coefficient, and v = (u1 , u2).
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A slightly more subtle remark regarding our model with potential energy defined

by (4.2) is that it does not involve potential terms incorporating tensile forces into the

model. Our model is thus somewhat different from what one would obtain using a so-

called "geometrically exact" beam theory. It is perhaps surprising that the rotational

equilibria described in the next section seem to differ little from what one would expect

in the case of a geometrically exact model. We refer the reader to the recent paper [36]

for a more complete discussion of the effects of constitutive restrictions on the qualitative

dynamics of rotating systems.

The following theorem is a straightforward consequence of the results presented in the

previous two sections.

Theorem 4.1. Given the system depicted in Figure 4.1 and described above with

kinetic energy (4.1), potential energy (4.2) and dissipation funciton (4.S), the equations of

motion are given by

Da + (mba + ju) x Y-1 = 0 (4.4)

D 2 u + uC + k0% + Y-li = 0 (4.5)

mb(Y + Y ) + YD2u dz = 0 (4.6)

where the quantities in these equations are given as follows. D( ) = ( ) + W x (), a(t) =

Iw(t) + I u x (Du)dz, I is the inertia tensor in the body frame defined above, mb is the

mass of the rigid body component, Y = YS-(w) (with S(.) is as defined as in Lemma

2.1), and 0 is the differential operator defined by 8 = (8,8z,-8), tA = diag(Al , A2 ,i 3)

and k = diag(kl,k 2,k3 ).
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Equations (4.4)-(4.6) are equivalent to

L, + W x IW + J ux [utt + ,; x u + 2w x ut + w x (w x u) + Y-'i]dz (4.7)

+mbcx x y-1 = 0

u~t+ xu+2wxut+wx(Wxu)+ au + kau+Y- = 0, (4.8)

my + Y(j udz + m-) = c' + c"t, (4.9)

where mb denotes the mass of the rigid body component, and m denotes the total mass

of the body-beam system. Since the mass density of the beam has been normalized to be

1, we find m = I + Mb. (4.7) can be further rewritten, using (4.8), as

Ia, + W x I, - j u x [s&0u + co&]dz + mbc x Y- 1 y = 0. (4.7)'

One easily checks that the total angular momentum f(y+Yu) x '(y+Yu)dm is conserved,
dt +ud

either using Noether's theorem or by direct computation.

Remark 4.4. If the center of mass of the system is at rest with respect to the space

frame, we may assume that c' = c" = 0.

We indicate the physical meaning of the terms in the equations (4.7)- (4.9). The

sum of the first two terms in (4.7) is interpreted as the rate of change of the rigid body's

angular momentum. The second term in the brackets gives the inertial force on the beam

due to the body's angular acceleration, the third term is the Coriolis force, the fourth

is the centrifugal force and the last term is the D'Alembert force. Thus equation (4.7)

expresses the conervation of the total angular momentum in space expressed in the body's

coordinate system. Equation (4.8) is just Newton's law for the beam expressed in the non-

inertial body frame (the D'Alembert principle)-it accounts for various inertial forces.
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Equation (4.9) expresses the conservation of the linear momentum of the whole system. It

is important at this point to make the following remark.

Remark 4.5 There is an apparent paradox associated with eq. (4.7)': one might expect

to be able to express the integral term in terms of u and its derivatives at z = 0, since the

body feels the beam only through the attachment point. As it turns out, this expectation is

not met. In formulating our continuum mechanical model of the beam, we have neglected

certain effects such as torsional deformations. The implicit rigidity in our model leads to

this nonlocal character in the equation.
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5. Asymptotic Dynamics of a Rotating Elastic Structure

In this section we begin an analysis of the asymptotic behavior of the body-beam

structure described in the preceding section. For finite dimensional dissipative mechanical

systems, LaSalle's invariance principle [10] can be used to show that states asymptotically

approach a minimal invariant subset of the zero set of the dissipation function discussed

in Section 3. In Section 6, it is shown that this type of analysis may be extended to

certain infinite dimensional systems with features in common with our body-beam model

described by equations (4.4)-(4.6). While we do not prove that all solutions to (4.4)-(4.6)

tend to the zero set of the dissipation function D as defined by equation (4.3), we do offer

a more or less complete characterization of the set of asymptotic equilibrium states (by

which we mean the set of solutions to (4.4)-(4.6) for which the equality D = 0 also holds).

We prove, in particular, that in asymptotic steady state the beam displacement function

u(. , .) does not depend on t. Moreover, it is shown that asymptotic equilibrium angular

velocities are constant vectors parallel to the principal axes of the steady state inertia

tensor. This means that the motion of the system is a pure rotation with no precession.

This is the content of the following theorem.

Theorem 5.1: Rr!ct!it equilibrium solutfions of (4.7)'(4.9) (by which we mean solu-

tions which also satisfy D = 0 with D as defined in (4.3)) have the following properties:

(i) there is no dependence on the time variable t in the beam function: u(z,t) = ,,o(z);

(ii) the angular velocity w is a constant woo;

(iii) the equilibrium angular momentum i a constant, a. = Jow.., with the equilib-

rium inertia tensor of the combined body-beam jystem given by

Too= 1+10 uTF - uuTdz - m(CTCmE - CmC T ) (5.1)
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where E = the identity matrix and Cm = -L(m + f{ udz) is the center of mass of

the body-beam jystem (ezpressed in the body frame).

(iv) equilibrium rotat:)n are aligned with a principal axis of the equilibrium inertia

tensor, and thui

., = = ,,,,= (5.2)

Proof: To prove (i), note that for equilibria, f ki(iL') 2 + k2 (Ii') 2 + ks(lif )2 dz = 0.

Hence it" = = 3 _ 0 and the result follows as a consequence of the boundary

conditions.

Using the time-independence of u, we show that corresponding values of w are con-

stant. Since ut =0 , equation (4.8) may be rewritten

Ci x u+ W x (W x u) +/ia" + Y-I = 0.

Differentiating with respect to z at z = 0 and using the boundary condition O" = 6 =

0 at t = 0, we obtain
1

C× X × X (W Xk) +pAu.(O)- 0

Denoting the last term by (cI, c 2 , c 3 )T, rewrite this as

4- W 3C2\( 2 + WW3 = -cij. (5.3)

Multiplying the first two components by wl and w2 respectively and adding we obtain

c2W 1 - C1W2 = ,WIWI + l2 W2. (5.4)

From the last component of (5.3) it follows that the right hand side is zero, and then (5.4)

together with the last component of (5.3) implies w, and w2 are constant, if cl and c2 are

not both zero.
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To establish (ii) in the case that cl = C2 = 0, we show that there is no possible choice

of body coordinates for any rotating rigid body in which the relationships il = w2w3 and

t2 = -W1W3 hold as in (5.3) unless al1 wi's are constant. We proceed by noting there is an

orthogonal change of basis z = Bw (B E SO(3)) such that the angular velocity vector z

is expressed in a principal axis coordinate system with components satisfying the system

of differential equations

2i = 0 iZjzk

where j = r(i), k = or2(i), i = 1,2,3, and or is any permutation cn the three symbols

i = 1,2,3. It may be shown that the definition of the coefficients ai in terms of the

principal moments of inertia implies jail < 1, and al + C2 + a3 + a1a2a3 = 0. The form

of the equations &l = w2w3 , 4 = -WlW3 imposes (polynomial) conditions on the ai's and

the entries of the orthogonal matrix B. A straightforward analysis shows that if C is any

orthogonal matrix and if the transformed vector y = CTz has its first two entries obeying

equations of the form h = 81Y2Y3, i12 = #2yly3, then in fact C must be a permutation

matrix (a nonsingular matrix in which each column has a single 1 and all other entries

equal 0). The /3i's therefore must be equal, modulo a permutation, to the ai's, and in

particular we must have Iflil < 1, which is not consistent with the form of the equations

for w1 , w2 unless all wi's are constant. This completes the proof of statement (ii) in the

theorem.

(iii) follows from a direct computation using (4.4) and (4.6). It may also be obtained

as a direct consequence of the parallel axis theorem.

(iv) follows since woo must satisfy w.. x J .w. = 0. *

Corollary 5.1: The equilibriu m beam function u,,(.) and the equilibrium angular

velocity w, are related by equations (5.1),(5.2) together with the fourth order system of
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ordinary differential equations

p = f(U- C,), (5.)

where cm is the center of mass of the body-beam system in the body frame, u = (usu2 ,u3 +

z), and Sflo = wo,, and where the boundary conditions are as prescribed in Section 4.

Proof: In light of Theorem 5.1, equation (4.8) may be rewritten as

tU = -l U -y-.

From equation (4.9) (in which c' = c" = 0) we see that y(t) = -Y(t)Cm. Moreover, since

Y satisfies Y(t) = Y(t)flo, we have that Y(t) = Yoen tl . Then j = -Y(t)fl2 Cn and

y- 1  -- r2Cm, proving the Corollary.

Remark 5.1: (5.8) prescribes a nonlinear boundary value problem since fl.. depends

on u,(.) through equations (5.1) and (5.2). Some idea of the complexity involved in

explicitly determining uoo(.) may be gleaned from our solution to the model problem

described by equations (6.1)-(6.3) in the following section.

Remark 5.2: A detailed analysis of the way in which the dissipative dynamical

system (4.4)-(4.6) evolves toward steady state is beyond the scope of this report. Never-

theless, a heuristic description which makes contact with the classical theory of rigid bodies

may be given as follows. For a rotating rigid body there are two well known conserved

quantities: the kinetic energy E, and the magnitude of angular momentum IMI. If M

represents the angular momentum vector with respect to the body frame, then the energy

E = M is a quadratic form in M with constant coefficients and the conservation

of energy confines.
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Figure 5.2: Momentum jpherej in the conservative

and dissipative cases.

M to an ellipsoid, resulting in figure 5.2a. If a dissipative elastic appendage is present

then M, while stil confined to a sphere, will move to smaller and smaller energy ellipsoids,

as indicated in figure 5.2b. For the purpose of this heuristic discussion we ignore the

infinite- dimensionality introduced by the beam.

It should be noted that the baiinj of the two jinks S, and S2 in figure 5.2b are

interlaced, and it ij difficult to predict which jink of M will appear if M(O) i's near the

rnazimurm energy point N. This somewhat delicate phenomenon is said to have been

overlooked in the design of the Explorer II mission. The satellite oriented itself along the

pr.)per axis, but in the direction opposite to the desired one.

It must also be noted that the picture in figure 5.2 is valid for moderate IMI only, and

it undergoes bifurcations as IMI is increased. These bifurcations are due to buckling of

the beam at higher angular velocities. Such a phenomenon is analyzed in complete detail

in a model body-beam problem involving a 1 d.o.£ rotation in in the next section and in

a model problem involving a mass-spring attachment to a spatially rotating body in [28).
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6. Bifurcations, Stability and Dissipation in a Model Problem

In this section we illustrate two interesting phenomena in a model rotating body-beam

system-bifurcations and the existence of finitely many predetermined angular velocities

which are the asymptotic limits of all motions. We will see that the example considered be-

low is an infinite-dimensional Morse system. It is similar to the general body-beam system

considered in the preceding sections. We also point out an unexpected connection between

this problem and that of studying bound states of a nonlinear Schrdinger equation, c.f.

[15].

Figure 6.1 shows our model consisting of a disk with a beam attached to its center

and perpendicular to the disk's plane.

4

Figure 6.1: A model problem with 1 rotational d.o.f.

The disk is constrained to rotate around the z-axis without friction, so that the angular

momentum of the system is conserved. The beam is constrained to the z-u-plane, and all

the deflections are parallel to the u-axis. Equations of motion of the beam, including

internal damping, are

putt + .uxzz + kUzzxxt = W2u, (6.1)

W( u 2dz + I) = M, (6.2)
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U(O,t) = u.(O,t) = u..(1,t) = u5S(1,t) = 0, (6.3)

where j, k charactrize elasticity and damping respectively, and equation (6.2) expresses

conservation of angular momentum, I being the disk's moment of inertia. From now on

we set p = 14 = 1 to simplify notation. Steady-state aolutions will satisfy the ordinary

differential equation

-U,,,, + W2 u = 0. (6.4)

(6.4)-(6.3) define a nonlinear igenvalue problem with M as a parameter, the nonlinearity

lying in the u-dependence of w in (6.2).

Remark 6.1. The stationary problem (6.4)-(6.3) admits a revealing variational for-

mulation: its solutions are the critical points of total energy

1p
=W2 + U +W 2 U+U2)dz (6.5)

when the angular momentum M is fixed, as one easily checks. This has a simple physical

explanation: As the beam vibrates energy is dissipated. Ultimately the virbatioins are

damped out, and the total energy of the system is extremized. Actually, for some excep-

tional (in a sense which we make precise in Theorem 6.1) initial conditions the limiting

energy value will be not minimal, but rather critical. (See Theorem 6.1 and Figure 6.4.)

We note also that

E = - (U)2dz (6.6)

Remark 6.2 on Stability. The same variational formulation suggests a stability

criterion for the dynamical system (6.1)-(6.3). Namely, consider the space S of all triples

(u,il,w) with angular momentum M, i.e. satisfying (6.2). If the stationary solution zo =

(U, O,w) minimizes total energy (6.5) on S, then this stationary solution is stable, even

in the undamped case. This means that for all initial data (U,ut,W)t=o in S sufficiently
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close to the minimal (u, 0, w) (in the energy metric) the solution will stay dose to the

minimizing solution z for all time. This is quite similar to the standard minimal energy

criterion of Lagrange; here, however, the energy is minimal only subject to the angular

momentum being constrained. This minimality is guaranteed if the following condition

holds: E.. + M.. > 0 on the tangent space to M = conet. at the point zo, where A is

the Lagrange multiplier: M. = AEt.

This is the idea behind the Energy-Casimir method, which is the second derivative

test in the presence of the constraints and which is applicable in the infinite-dimensional

settings. This method has been used to establish stability in a variety of problems (see,

e.g., the work and references in Krishnaprasad and Marsden [8]).

A complete picture of the behavior of our model system, in particular of the global

phase portrait and its bifurcations, is given by Theorems 6.1 and 6.2 below. A perhaps

surprising consequence of this result is that the system selects a discrete set of angular

velocities for its stationary rotations independent of the angular momentum M! This

phenomenon is observed in a number of model problems, but it is by no means universal.

See [36] on this point. Another aspect of this result is that our model is an infinite-

dimensional Morse system.

To state our first result we combine (6.1) and (6.2) into a single nonlinear equation

Utt + UZZ2 + ku5 ,, 5, - w2(u)u

where w(u) = M/(llu112 + I), ! 112 = fI u dz. This can be rewritten as a system

U= = (84& , V + W2u)u) F() (6.7)

Theorem 6.1. Qualitative behavior of the system. Assume that k > 0, i.e. the

damping is present.
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There ezists an infinite sequence 0 < w, < W2 < ... - oo of preferred angular

velocities associated with the problem (6.7) with boundary conditions (6.3) such that if

the angular momentum M lies in the interval (M,,M.+i) = (Iw,,Iwh+i), the problem

(6.7),(6.3) has k distinct nontrivial stationary solutions (u, v) = (ui(z),0), 1 < i < k, and

a trivial solution (u, v) = (0, 0), with angular velocities w(uj) = .. f, .. ,. = w,, 1 <i <k

and w(0) = M. These solutions are depicted in Figure 6.2. The solution with the smallest

angular velocity is dynamically stable, i.e. any solution of (6.7),(6.3) with nearby initial

conditions remains close to it for all time, in the L 2 -norm given by

II(u,i)Il = II(uv)II = j(u2 +v 2 )dz.

Stationary solutions with higher angular velocities are unstable, and furthermore, i-th so-

lution (in the order of increasing angular velocity) (u, -) = (u, 0) has (i - 1)-dimensional

unstable manifold; this dimension coincides with the number of zeroes of ui. In particular,

if M < M1 = Iw1 , only one mode u - 0 is present and is stable. As M crosses the bifur-

cation values Mi, the system undergoes a series of pitchfork bifurcations shown in Figure

6.3.

U'

U2

UO 0

-U 2

-U'

Figure 6.2: Solutions to (6.1)-(6.1)

There have been several recent studies of the evolution of solutions to infinite dimen-

sional systems toward equilibria (see Dafermos [4] and references therein). Theorem 6.2
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below shows that under mild (physically reasonable) assumptions solutions of our systems

approach the equilibrium states described above.

Theorem 6.2 Fiz M > 0 and let k > 0, say k = 1. Any aolution w(t) of (6.7) with

uo(z),vo(z) E H( 12)(O,1) tends in the LV-norm ast o-0 to one of the stationary solutions

from Theorem 6.1 (See Figure 6.4).

0 MI(2 ME

Pigure 6.3 a denotes stable equilibria, and ul,u 2,... denote unstable equilibria

with 1, 2,... dimensional unstable manifolds. The numbers and

L2-norm of equilibria depend on the parameter M.

. . 0 0 0 0

I

0- M M I  M I <M< M2  M2  M'M 3  M3 M< M4

Figure 6.4. Global phase portrait of the system (6.7),(6.4). Indices show

the dimension of the unstable manifolds, which are depicted by arrows.
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Proof: of Theorem 6.1.

1. Ezistence of k + 1 solutions for Mk < M < M,+i. Stationary solutions satisfy the

nonlinear boundary value problem (6.3)-(6.4). There exists a sequence 0 < w, < w2 < ... of

angular velocities for which this problem has nontrivial solutions (the eigenfunctions of IL

with boundary conditions (6.3)) which we denote by ciei, ci arbitrary and Ilei(z)IL2 = 1.

Define Mj = Iwi.* Freedom of choice of ci is used to satisfy the angular momentum

constraint (6.2), which becomes

w,(C? + A) = M.

This can be solved for ci if and only if M > Iwi - Mi; setting ui = ciei proves the

existence of k solutions if M > Mk. One additional solution is obtained by setting uk+ I
M

0, Wk+1 = IM*

2. Stability of stationaryj modes. We restrict ourselves to the undamped (k = 0) case,

as the dissipation does not affect stability of stationary modes. The governing equations

can be written as

= M + Z i) 2  de1 A(u). (6.8)

The dimension of the unstable manifold of the mode ui(z) is given by the number of

positive eigenvalues of the linearization of the operator A(u) at u = ui. This linearization

is given by

A'(u)v = -e, + (ImI,+ ) " (II 4+I) V( ' )U

* Mj is the total angular momentum when the beam is undeflected, since the straight

beam's (u - 0) contribution to the angular momentum is zero.
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where 0-- and (u,v) $o= u(z)v(z)dz.

At u = ui we have

Bv A'(u,)v = -u + wv - , M- (u,, )ui

The last term in this expression is a scalar multiple of the orthogonal projection of v onto

ui. Comparing B with the operator C given by

Cv = -ev + WV,

we see that the spectrum of B can be obtained from that of C by replacing the eigenvalue

o of C corresponding to the eigenfunction ui by -4&iM-1 hUsh 2. Thus the eigenvalues of

B are

2 W 2 2 2 2

of which precisely i-1 are positive. This shows that the dimension of the unstable manifold

at the stationary solution ui is (i - 1).

Proof of Theorem 6.2 consists of two steps:

(1) Showing that for any e > 0 the solution w(t) enters and stays in an e-neighborhood

(in L2 norm) of the zero set of the dissipation function. This set is {(u,v) : f vf2 dz =

0} - {(U, v) ((x),0), u E H(12)1, see (8.6).

(2) Showing that if w(t) stays in an e-neighborhood of the zero set of {v - 0}, then

w is e-close to one of the stationary points of the flow, figure 6.5.
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Figure 6.5 Solutionj which remain e-close to {t = 0} must be

c-close to a stationary point.

Proof of Step 1. Pick e > 0, and consider two neighborhoods of {v 0): A, =

{(u,V) : IIVI1L, < c} and .A/,. Our solution w(t) enters A,/ 2 for some t > 0 with necessity:

otherwise for all t large enough we would have

E = -j vd j 2 ,dz < -,oA 2d < (6.9)

resulting in E(t) -- -oo, which is a contradiction. Here A. is the smallest eigenvalue of

= (8 4 /0 z 4 ) with boundary conditions (6.3).

Thus to prove that w(t) stays in A' forever after some T > 0 it remains only to

exclude the possibility of infinitely many trips between A(,/ 2 and the exterior of A(,, see

figure 6.5. We will do so by showing that each trip results in a loss of energy at least

AE > 0 depending only on e and w(O) at each crossing, so that w(t) can afford only finite

number of trips.

Let t1 , t2 be two consecutive crossing times of the boundaries of ArE and A/ 2. We

have

IE(t 2) - E(tj)I = jv~dzI _ It2 tIt.o( )2, (6.10)

where we have used the fact that fI v2 dz > (1) 2 and the Poincar6 type estimate as in

(6.9). It remains only to provide a lower bound on the trip time It2 - tl 1; it is provided by

the upper bound on the velocity ab(t) which is the result of the smoothness assumption.

Lemma 6.1. Any solution w(t) = (u(z,t),v(z,t)) of (6.7) with u.(z),v 0 (z) E H(1 2)(0,1)

ha. velocity bounded in the L2 norm: i.e. there ezists C = C(u.,vo) > 0 juch that for all

t>O

IIF(wt))1j2 = IjV12, + - U -. 'V + W2(U)UI11,, < C2 .
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Proof of this lemma is given in the Appendix.

By the choice of tI, t 2 and using Lemma 6.1, we obtain

< IIw(t 2) - w(tI)II = 11 F(w(,))djj < - tIlsup IIFII !5 Cl,,- t ,

2: fIt 2  it tl,

implying

It2 - tl >
2C

which together with (6.10) proves that w(t) stays in . for all t > T(e).

Proof of step 2. We show now that if w(t) stays in A( E for all t > T(e) then it must

tend to an equilibrium point of the flow (6.7) -more precisely, we will show that for every

6 > 0 there exists an e > 0 such that if jivII _5 e for all t > T(e) then for some equilibrium

solution w. = (ue,o) we have IIUe - UlIL2 < 6 for all t > T(e). Our strategy is to show

that if a solution is v(t) not close to an equilibrium, then its velocity v(t) must grow thus

taking it outside the neighborhood A/, leading to a contradiction.

Assume the contrary: There is some 6 > 0 such that for every e > 0 there is a

to = to(e) >_ T(c) such that although

IIv(t)II < e for all t > T(C) (6.11)

we have

Ilu(o) - u.1 II 6, (6.12)

for every equilibrium u.. The idea is to show that being far from any equilibrium causes

an increase in velocity thus causing tjvII > e (a contradiction). The details are as follows.

(6.12) implies for f(u) -- 4 u + w2(u)u:

IIfu(to))l 1> Xllu(t.) -uI > ,, (6.13)
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for some A > 0 independent of 6, if we choose b small enough (which we &,).

We have: (cf. (6.7))

VIV(t) - V(to)IIL > II> f(w())dll - I 84 V(a)d-11. (6.14)

From the proof of Lemma 6.1 it is clear that there exists C > 0 such that I0'vIIL2 _ Cf

for t large enough; without loss of generality we assume that this already holds for t > to.

We have from (6.14):

Iv(t)lII j f(u(a))dII - e(l + C)(t - t,) for all t > t, (6.15)

Furthermore, if t , t" are sufficiently large, and if

IlUWt' ) - uWt' I !5<e

holds, then

If(u(i")) - fCUt'))ll <_ 1IIAfCt'))t

This can be seen from the proof of Lemma 6.1 which shows that all the harmonics of suffi-

ciently high order decay exponentially, with w(t) tending to a finite-dimensional subspace

of L 2 x L 2 . Applying this remark to (6.15) with t' = to,t" = t, we obtain the final lower

bound on v, using (6.13):

I11V(01i 1 2(t - t.) 1l/f(00t))ll - 4(1 + C)(t - to) _>(6.16)

(t - tI)1 - 6 - e(1 + C)],

aa long aa

II(t) - U(ti) I < 5f.

Using this estimate on the velocity v(t), we will show that w(t) leaves the box jvj1 <

e, Iju - u(to)II !5 V through the "horizontal" boundary, i.e. IIv(C)II = e for some first exit

time t > to,, see figure 6.5. This will result in the desired contradiction.
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To see that jvjj = f is reached first, we note that otherwise

Ifu() - (to)I ,

and
Pt

•

C(to - to) >_ 1. v(t)dtll = Iu(t*) - u(to)ll = V,

i.e. the time required to reach the vertical boundary is large:

-t 1

Using this in (6.16)-which is valid for t. < t <i to---we obtain

II,(to + )2 A 6- e(1 + C) > E,

which is a desired contradiction, if we pick e sufficiently small.

This shows that given any 6 > I there exists an e > 0 such that if w stays in A4 , then

u(z,t) is less than 6 (in L 2 [0,1]) from an equilibrium solution ue of (6.8). Since the first

step in this proof showed that for e-neighborhood of the zero set { =_ 0} of the dissipation

function, this proves Theorem 6.2.
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APPENDIX

Proof of Lemma 6.1.

Expand u(z, t) in the orthonormal basis {e1(z)} of the eigenfunctions of a4 with the

boundary conditions (6.3):

u(z,t) = "Eai(Wej. W;

system (6.1) is equivalent to a series of ODE's for the amplitudes:

4j + Akia + Ajak = W2ah,

{Aj} are the eigenvalues of a4, or

• (A .1)

bi-Ab- Aa+W 2 a,

where we have dropped the subscript k for the sake of brevity.

It suffic.,s to prove that there exists C > 0 such that

II84ull2 + li84vii2 = k )1(4(t) + bk(t)) < C for all t > 0. (4)
k=O

This would show that IIF(w)IL2 is bounded for all t, since the boundedness of the last

term w 2 (U)u in L is obtained as follows:

I2 w(U)U11 2 = W4(U)11U112 < (T)411I2 < ( M )4 1

(M)4A\-2C.

To estimate ak(t), bk(t) we use the smoothness of the initial conditions to get an upper

bound on ak(0),bk(0): estimates

11,l2 1LO1L2 = Za 2(O)A6 < C
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II 12VOI =< C

imply

a(O), Ib(O)l <cA .

We will show that for all t > 0 the estimates

Jak(t)l, Ibj,(t)l < CA k2  (A.3)

hold, for k large enough, thus implying (A.2):

A2 2~ <ZA2C2 A-4 = 2 EjA-2 < 00

since Aa - k4 .

To show (A.3) we rewrite (A.1) as

S=Az + Rz

where

A=(O I )
and

R=(22 g) .
Introducing the Lyapunov matrix

B = J eATaeAads satisfying ATB + BA = -I,

we obtain

-d(Bz, z) = -(z,z) + ((RTB + BR)z,z) <

-(1 - IIRT B + BRII)(z,z).
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An explicit computation gives

I I+

and thus IIRTB + BRIJ !5 -conot." since w < .

We have
d z)_-1 "const." 1
-(Bz, z) )(z,z) < -- (z,z),
di -2

the latter inequality holding for all = Ah large enough.

Now, the minimal eigenvalue p of the positive definite matrix B is estimated from

below as

> 1 (for A large enough).

We have for all t > 0 and for k large enough

1 ztzt)< (Bz(t), z(t)) _< (Bz,z.) : ZZ)

or
ah(t) + bk(t) 2Ak(a(O) + b (0)) <

<2c 2 \ 6 = 2c2 \ s.

This implies (A.3), q.e.d.
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EQUILIBRIUM MECHANICS OF ROTATING SYSTEMS

John Baillieul
Aerospace / Mechanical Engineering

Boston University
Boston. MA 02215

ABSTRACT

Equilibrium rotations of a planar kinematic chain undergoing a single degree of freedom (out of

plane) rotation in a gravitational field are studied. Sharp bounds on the number of dynamic equilibria

are given, and the dependence of this number on physical parameters is discussed for the special case

of two-link chains and chains with identical links. The theory indicates that there will be a richer set

of dynamically stable equilibria for carefully designed chains with unequal links. This is born out by

laboratory experiments.

1. INTRODUCTION

As a prelude to a comprehensive study of the dynamic stability of rotating mechanical

systems. it is useful to study the equilibrium dynamics of various classes of prototypes.
Indeed, a number of participants at this conference have carried out such studies involving
rotating mechanisms featuring various different types of elastic and articulated appendages. In
our own recent work (Baillieul and Levi. 1987). the rotational dynamics of a simple structure
consisting of an elastic rod attached to a rigid body were studied. The transient dynamics for
structures of this type involve vibrations of the attachment which are subject to inertial forcing
and viscoelastic damping. We have shown that in the absence of external forcing, the damping
will have a dominant influence on the long term dynamics. and ultimately all movement of the
appendage with respect to the rigid body coordinate frame will disappear. Moreover, we have
shown that in steady state, rotations always tend to a constant velocity, and for the three
rotational degree of freedom problem. this angular velocity vector is aligned with a principal

axis of the steady state inertia tensor of the body beam system. While we do not yet have
a complete understanding of the nonlinear relationship between steady state angular velocity
and steady state elastic deformation of the beam appendage. it has been possible to carry

out a detailed analysis of the qualitative dynamics of a closely related model having only
one rotational degree of freedom. In this system. the rotation is restricted to be about the
neutral axis of the beam. All steady state solutions and corresponding stability characteristics
have been determined, and an explicit description of the system's dependence on the angular
momentum has been developed. It has been shown that as angular momentum is increased.

new equilibria appear as a result of a sequence of pitchfork bifurcations. No matter how rich
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the equilibrium set becomes, however, there is at most one stable equilibrium configuration if
we assume the beam is uniform. (Below a certain threshold angular momentum, the neutral
or undeflected state of the beam is stable, while above this threshold the undeflected state
ceases to be stable, and the first mode shape becomes the stable configuration for all higher

values of angular momentum.)

The bifurcations displayed in the rotating beam model are similar to phenomena described

in classical works on whirling shafts (see e.g. Dick, 1948). In order to obtain a more detailed
understanding of this type of buckling in the context of the modern qualitative theory of non-
linear dynamics, we have turned our investigations to the analysis of rotating planar kinematic
chains. In the next section, we provide a precise statement of the problem under investigation
and summarize recent results (detailed in Baillieul. 1987) regarding the numbers of equilibria.
In Section 3. we present new results which suggest that chains which are uniform (i.e. have
nearly identical links) will have a less rich set of interesting dynamically stable equilibrium
configurations than chains in which the links have carefully prescribed unequal masses and
lengths.

2. EQUILIBRIA IN A ROTATING CHAIN

In this section we consider the rotational dynamics of the rotating simple kinematic chain
depicted in Figure 2.1. Here a certain number. n. of links of various lengths are connected to
form a single-strand planar kinematic chain. We suppose this chain is suspended in such a way
that the force of gravity tends to extend the chain to its maximum total length. We further
assume there is (3600) free rotation (with no actuation or friction) about all joints in the planar
chain, but that torque may be applied about the vertical axis (which passes through all links
and joint axes when the linkage is in the neutral (fully extended) configuration). We suppose
the links are massless. but each joint in the planar chain has mass mi-1 (i = 2,... ,n). and
there is a mass mn located at the tip of the final link. The angles Oi depicted in Figure 2.1
measure deviation of each link from its neutral vertical position. We also let 160 denote the
angle of rotation of the mechanism about the vertical axis. (,O0 is measured with respect
to an arbitrarily chosen reference.) Depending on the mass distribution in the links of an
actual physical chain, the mathematical idealization we have chosen to study may or may not
provide a model which will predict detailed dynamical behavior. The advantage of working
in this simplified setting, however, is that we are able to display a wide range of qualitative
features and to understand the way in which these depend on parameters.
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Figure 2.1: An n-degree of freedom planar kinematic chain in a gravitational field rotated

about its neutral azij.

Following a geometric formalism along lines similar to those detailed in Baillieul and Levi

(1987). it is strightforward to write down the dynamical equations of this rotating chain. At

present. however, we are simply interested in the special case where O = w (a constant) and

j = 0 for j = 1,... ,n. Such equilibrium solutions to the dynamical equations are also given

as the zeros of the gradient system
11 L 0-- 0

where
L = L(w; 01 ..... , 0)

m,[,I(tI sin&, 3 )2 + m2(t( Sin 41 + 12 Sin 2)2+

... + m,(tI sin,1 +... + I sin )2 ]w2

[MI 11cos 1 + n2 (11 cos 4'i + 2 COsB02)+

+, m(I4 cos01' +... + .co4 )]g

with g designating acceleration due to gravity. This system of equations may be explicitly

written out
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[(i +... + M)11- + (in 2 + ... + m,)122 + ... + m ,.S]c 1 W2

-(Mi + ... + m.)s 1 g = 0

[(M 2 +... + mn)14ai + (M 2 + ... + mn)t22 + + m, nS,C2W2

-(m2 +... + m.)82g = 0

[mne1s12 + in1t2s 2 + . + Mnt.Sn]CnW2 
-Mnsng = 0. (2.1)

where as usual ai = sin bi and ci = cos Oi.

Frictional forces will oppose motions in the joints of these kinematic chains, and the
stability of each eqailibrium will be characterized by the signs of the eigenvalues of the Hessian
ft2" Before discussing the stability characteristics of various equilibria, we establish upper

and lower bounds on the numbers of solutions to (2.1). The exact number of solutions in any
particular case will be seen to depend on the values of the parameters 1i, mi, and w. It will
be shown in the next section that for the case n = 2 the bounds we have obtained are tight.

Theorem 2.1: For small values of Iw, there are precisely 2n distinct solutions to the
system (3.1). These solutions are given explicitly by {(0... , = 0 or w-}. The
index (= number of negative eigenvalues of the Hessian (L-L )) of any such solution is the

number of vector entries, sb,, which are equal to ir.

This theorem is proved in Baillieul (1987). Physical intuition suggests that there will
be more than 2n equilibrium solutions as the parameter w (or equivalently 1) is increased
in (2.1). To obtain a sharper picture of the way in which bifurcations occur, we simplify
the mathematics by means of some assumptions and a change of variables. First. note that
for the purposes of establishing a qualitative theory of solutions to (2.1). there is no loss
of generality in normalizing g to be 1 and only allowing w and the li, mi parameters to
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vary. Then letting zi = cosoi. /i = sinbij. (2.1) is transformed into a system of algebraic

(polynomial) equations:

[(i +... + M.)IIy, + (in2 +... + ,)1 23Y+

+ M, , - (M 1 +..- + m,,)t,1 = 0

[(141 + 12Y +2 + t11Y] 2X
nW2 -Yn = 0

2~ 2 -1 = 0

2 Y =0

21 2 + -1 (2.2)

We shall call the system (2.2) the algebraic equilibrium equations for the rotating planar

chain. The precise connection between solutions to (2.1) and (2.2) is given in the following

easily proved lemma.

Lemma 2.1: Real solutions to (2.2) define the solutions to (2.1).

While there are 2n equations in 2n unknowns in (2.2)-a seeming increase in complexity

over (2.1)-we may appeal to classical algebraic geometry and intersection theory in deter-

mining the number of solutions to (2.2). Indeed. since there are 2n quadratic equations.

Bezout's theorem suggests there will be as many as 221 = 4n (possibly complex) solutions.

The precise number is given by the following theorem, whose proof is given in Baillieul (1987)

without reference to the classical theorem of Bezout.

Theorem 2.2: For every choice of angular velocity w and mass and link-length param-

eters M1 ... ,m1 ,, t,... ,4,, there are 4" (some possibly complez) solutions to the system

(2.2).

The proof here depends on the following lemma (also proved in Baillieul. 1987) which is

of interest in its own right.

Lemma 2.2: As w --+ oc, solutions to (2.2) remain finite.
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Because there is a one-to-one correspondence between solutions to (2.1) and real solu-

tions to the corresponding algebraic equilibrium equations (2.2). Theorems 2.1 and 2.2 taken
together imply the following result.

Corollary 3.1: Given any values for the parameters 41, .1. . ,4n,m,... ,mnW 2 , there
are at least 2n but no more than 4n solutions to the equilibrium equations (2.1).

3. THE ROTATING DOUBLE PENDULUM AND
THE CASE OF UNIFORM CHAINS

The analysis of the preceding section shows that for a two link chain there are between 4
and 16 equilibrium states. To facilitate a detailed analysis of the dynamics of this mechanism.
we reformulate equations (2.1) by letting g = 1, 1 = 42, 12 = ri, (0 < r < o0), a =

m 2/(mI + M 2 ). Under these assumptions (2.1) may be rewritten

(I sin ik + art sin b2) cos'0 &W 2 - sin 01 = 0

(I sin bi + r sin 02) cos 2 W 2 - sint'02 = 0. (3.1)

The following theorem gives a substantial answer to the question of parametric dependence
in the case n = 2.

Theorem 3.1: Let a and r be fized in (3.1), and suppose r > 1.

(i) As w2 increases from 0, four pitchfork bifurcations occur involving the fized equi-

librium points (101, &2) = (0,0), (7r,0), (0,w). For sufficiently large values of W2 , these

bifurcated equilibria account for twelve of the possible solutions to (3.1).

(ii) If a bifurcation other than accounted for in (i) occurs, it involves the appearnce of

a symmetric pair of saddle nodes.

(iii) If ar > 1, then for sufficiently large values of w there are only twelve solutions

to (3.1). Two are stable equilibria (the index of the Hessian of L is 0), six are index 1

critical points of L, and four are index 2 critical points. If ar < 1, then for all sufficiently

large values of w2 there are sizteen solutions (counting multiplicities) to (3.1). Four are

stable, eight have index 1, and four have index 2.
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Proof: (i) It is an elementary calculation to show that the Hessian of L is represented

by the 2 x 2 matrix

+ cr82)a - c?1w + C c1 -ar c1 c2w 2

(i + i 2) -ar2 cIc2w2  art2 [(a, + r 2 )-2 - rC]W2 + arc 2 )

Bifurcation of solutions to (3.1) occur when this matrix becomes singular. For the equilibrium

points (0, 0), (7r, 0), and (0, 7r), the Hessian has repspective singular loci satisfying

r(1 - a)w 4 - (1 + r)w 2 + 1 = 0

r(1 - a)w + (r - 1)w 2  1 = 0

r(1 - a)w 4 + (1 - r)W2 
- 1 = 0.

(The matrix is never singular for the unstable equilibrium (ir,r).) Noting that only real

solutions of these equations are of interest, we find they may be rewritten to provide formulae

expressing w2 as a function of r and a:
r+1- (r + 1) 2 -4r(1-a)

2 r+ )

2r(1 - a)

1-r+ V/(1 - ) 4r(-a)
(b) w2  + 4r(1 - a)

2r(l - a)

() w2 = r -l+ v'(rhl)2  - 4r(1 -a)

2r(1 -a)

These expressions for w 2 are listed in order of increasing magnitude. When w2 increases

through the value given by (a). a pitchfork bifurcation occurs at ('1, 02) = (0, 0) wherein this

equilibrium is transformed from being an index zero critical point of L to an index one critical

point. In the process, two index zero critical points are spawned. When w2 increases through

the value given by (b) (resp. (c)). the equilibrium (r,O) (resp. (0,7r)) is transformed from

having index one to index two. Two new eqilibria of index one are spawned at this bifurcation.

Finally when w2 increases through the value given in (d). the equilibirum (0,0) goes from

index one to index two. giving rise to two new index one equilibria in the process.

(ii) The generic bifurcations in a gradient system such as this depending on three param-

eters r, a, w2 involve saddle nodes. (See e.g. Guckenheimer and Holmes. 1983.) Each time

a bifurcation occurs for particular parameter values and (ltk) = , simple physical
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considerations dictate that a symmetric bifurcation occurs at the same parameter values and

(1, 02) = -1,02)

As w 2 -4 00. it follows as in lemma 2.2 that solutions to (3.1) approach solutions to

(sin ,i + ar sin 62 ) cos fi = 0

(sin 0 1 + r sin 0 2) cos&02 = 0. (3.2)

The solutions to this system, together with the index of the Hessian evaluated at each solution
are given in Table 3.1. The conclusion of the theorem is a straightforward consequence of
these facts.

Cl .01 C2 82 Index
0 1 0 1 0
0 -1 0 1 0
0 1 0 -1 0
0 -1 0 -1 0
0 1 1 - 1/r2 -1/r 1

0 1 -. 1 - 1/12 -lit 1

0 -1 -1- 1/r 2  1/r 1

1- a 2r 2  -at 0 1 1
-V/ - a2r2  -at 0 1 1

-1 - a 2r 2  -at 0 -1 1
-/1-a 2r2  -at 0 -1 1

1 0 1 0 2
1 0 -1 0 2

-1 0 1 0 2
-1 0 -1 0 2

Table 3.1(a): The 16 jolutions to (3.2) in caje ar < 1.
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cl s C2 82 Index
0 1 0 1 0
o -1 0 1 0
0 1 0 -1 1
0 -1 0 -1 1o 1 7 I l -E :/ , h, -1 / ,. 1

0 1 -V1 - 1/r 2  -1/r 1

0 -1 ,/I - 1/r2 I/r 1
0 -1 y1 - 1/r2 1/r 1
1 0 1 0 2
1 0 -1 0 2

-1 0 1 0 2
-1 0 -1 0 2

Table 3.1(b): The 12 solutions to (3.2) in case ar > 1.

We conclude by considering the special case r = 3/2. Using MACSYMA we are able to
determine curves in the (a,w)-parameter space where bifurcations occur. These are depicted
in Figure 3.1 where we have normalized t to be 1. Table 3.2 shows how the distribution of
critical points of each index is related to the total numLer of solutions to (3.1).

16
,5 12 10O

0 0.5 1

Figure 3.1: Bifurcation locus of equations (3.1) in the case r = 1.5. The top curve is

cusped as approzimately a = .33.
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i C, c ci ci ci

0 1 2 2 2 2

1 2 3 4 5 6

2 1 1 2 S 4

total 4 6 8 10 12

Table 3.2(a): When ar > 1 the number of critical points of L (= solutions to (3.1))

increases with 1wl from 4 to 12. The table gives the number of critical points of each index.

i ci ci ci ci ci ci

0 1 2 2 2 2 4

1 2 S 4 5 6 8

2 1 1 2 S 4 4

total 4 6 8 10 12 16

Table 3.2(b): When ar < 1 the number of critical points of L also depends on IW1. This

is no longer a monotonic dependence, however, as indicated by the cusped bifurcation lo-

cus illustrated in Fig. .1. The table gives the number of critical points of each index

cooresponding to each possible number of solutions to (3.1).

This example and the approach we have used to study it lead us to several observations

about the dynamics of more general chains. We remark that for the two link chains under

investigation there appear to be a less interesting set of bifurcations when r < 1. (The

possibility of 16 equilibria as w --+ oo is ruled out.) For r = 1. a bifurcation occurs at w = oo.

as illustrated in Table 3.1 where several solutions to the equilibrium equations coalesce. In

general, at w = oo we may in principle explicitly display the 4n solutions to (2.2). In proving

Theorem 3.2 in Baillieul (1987). it was established that for w = oc and generic choices of the

mass and link length parameters. there are (,). 2" solutions to (2.2) with zi -0 for exactly k

values of i between 1 and n. Certain of these solutions must coalesce when all link lengths. Ii.

and mass parameters. mi. are equal. To see this. observe that when = = In = I

and m 2 = M 2  = Mn, = m. the system (2.2) at w = 00 is equivalent to:

(riy, + (n - 1)y2 + . .. + yn)zl = 0

((n - 1)yj + (n- 1)Y2 + ... + Y,)X = 0

(Y1 + Y2 + ""+ )Z = 0
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Consider solutions of the form z = 0 and zi 54 0 for i = 2,...,n. For this case. y =±1

and the above system of equations reduces to

(n - 1)Y2 + (n - 2)y3 +'" + y :F(n - 1)

(n - 2)y2 + (n - 2)Y3 +-- + yn :(n - 2)

Y2 + 3 + '"+ Yn = T1.

Subtracting the second equation from the first. we obtain y2 = :t1 and z2 = 0. showing that

this solution has coalesced with the solution in which we a priori stipulate X2 = 0.

That there are fewer than the maximum possible number of distinct equilibria when we

have identical link lengths and joint masses suggests that there may a'so be fewer stable

equilibria. We may obtain insight into the situation for large values of w from the following.

Theorem 3.2: For an n-link chain of the form under discussion with equilibrium dy-

namica given by (2.2), the only stable equilibria at w = oo are those for which each 1bi is

equal either to E or "

The proof of this theorem will not be given here. but the key idea is that if some Oi's

take values other than ±E. the linkage will be equivalent in equilibrium to a chain with fewer

links which is in an unstable equilibrium.

Theorem 3.3: For an n-link chain (as depicted in Fig. 2.1) with equal link lengths

(4, = ... = in = i) and equal joint masses (ml = ... = Mn = M), the only stable equilibria

at w = oo are those for which all i = "(or symmetrially all =

Proof: By theorem 3.2 we know that at w = oo all Oi are ±E. Thus we may assume

without loss of generality that for some integer k < n. ,n,-k = E and O,-k+1 = O.-k+2

.. =,=O --. At w = oo. when each O; =±:. the Hessian
2"L

L92 L = diag[(nsl + (n - 1)82 + + 5.)rnt 2 5l,N02

((n - 1),I + (n - 1)J2 + _.. + A.)M12 J2,

• .,(JI + J2 +'." + sn)Mt 2a,].
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For stable equilibria, each of these diagonal entries will be positive. Hence we have

(k + 1)(, +...- + a,,,,) + k,._-l_ +...- + ,, > 0

while

k(-9 +.-- + a,) + kn-k_1 +. + n < 0.

Let a = a, + -.. + an-k,. These inequalities may be rewritten as

(k + 1),, > k(k + 1)
2

k(k + 1)
2

which, taken together. are equivalent to

k +1
2 2

But this combined inequality can never be satisfied for integral values of a. Because of this.
we conclude that the only stable configurations occur when either all ki =E or all 'Oi = -E

2

for (i = 1,... ,n). This proves the theorem.

4. CONCLUSION

Theorem 3.3 suggests that for all sufficiently large values of slew rates w. chains with
equal link lengths and joint masses will have only one (symmetric pair) stable equilibrium.
This will occur with the chain being flared out with all angles 'i having the same sign. As
was indicated in the specia! case n = 2. in order for there to be a richer set of dynamically
stable equilibria, uneven mass sizes and unequal link lengths are called for. While the models
we have studied are idealizations of physical chains, our laboratory experiments with the
controlled slewing of actual chains seem to va!Idate the theoretical predictions.
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