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ROTATIONAL ELASTIC DYNAMICS

J. Baillieul

Aerospace and
Mechanical Engineering
Boston University

Boston, MA 02215

and

Abstract

M. Lewvi
Department of Mathematics
Boston University

Boston, MA 02215

The combined dynamical effects of elasticity and a rotating reference frame are ex-

plored for structures in a zero gravity environment. A simple yet general approach to

modeling is presented, and this approach is applied to analyze in detail the dynamics of

a specific prototypical structure. Energy dissipation is included and its effects are studied

i detail in a model problem. Bifurcations and stability are analyzed as well.




1. Introduction

There is now a fairly general awareness among aerospace engineers that the dynamics
of the complex spacecraft currently in production and on the drawing boards will be
greatly influenced by continuum mechanical effects such as elasticity. Indeed as the designs
being contemplated increase in size and complexity ([13]) the dynamic effects of flexible
members become more important, and recognizing this, many researchers over the last
decade have focused their efforts on obtaining new methods for the design, analysis, and
control of flexible mechanisms. Space does not permit (nor would it be in keeping with
the main purpose of this report) to survey the vast literature on flexible space structures;
the interested reader can get some idea of research activity in this area by referring to @y
one of a number of collections of papers and conference proceedings, such as [13] or the
more recent volume [11].

The purpose of this report is to describe recent research which has been aimed at
developing a mathematical theory of the rotational dynamics of complex mechanical sys-
tems which include articulated and elastic components. Our objective in this research has
been to carry out a study of the global qualitative dynamics of such systems in sufficient
depth as to allow predictions regarding the stability and asymptotic behavior of spacecraft
due to a variety of energy dissipation mechanisms such as viscoelastic material damping
of vibrations of clastic parts. We believe that historical evidence points to the value of
developing a fairly complete global asymptotic stability theory of this type since there
are numerous examples of missions in space which did not achieve their stated objectives
because certain long term mechanical effects were never adequately taken into account in
the mission planning. Explorcs I, the £irst successfully lnunched American ratellite, pro-
vides the best known example of such untoward behavior. Upon achieving earth orbit,

the pencil-shaped satellite was supposed to rotate about its major axis of inertia. Before
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it had completed one orbital revolution, however, radio signals indicated that a tumbling
motion had developed and was increasing in amplitude.

While explanations of Explorer’s errant behavior have been offered by a number of
researchers (see e.g. references to this problem in {7]), we are aware of no attemps to obtain
a rigorous mathematical analysis of such occurences, with the exception of [3], where some
of the results of the present report were announced. We also mention a recent paper (8]
which deals with a somewhat different, although related aspect of a similar problem and
several more recent efforts reported in [11] which develop results similar to those described
in Section 5 below.

Our report is organized as follows. In Section 2 we derive equations describing the
rotational dynamics of complex structures. These include the general effects of inertial
forces created by rotation of the reference frame. Section 3 focuses on a general theoretical
framework for Lagrangian mechanics with damping. In Section 4, a simple structure
consisting of a rigid body with an elastic beam appendage is studied, and we present
what we believe is the simplest reasonable continuum mechanical model of such a system
undergoing three degree of freedom rotations. The asymptotic steady state dynamics for
this system are studied in Section 5, and in Section 6 we present a detailed analysis of
the qualitative dynamics of a closely related model having only one rotational degree of
freedom. A second part of the report treats “Equilibrium Mechanics of Rotating Systems,”

dealing principally with rotating kinematic chains.




2. The rotational dynamics of complex structures.

In this section we will derive equations of motion for a class of structures consisting
of elastic, fluid or rigid components. While these equations are completely general, they
are most useful in describing any structure whose configuration is conveniently specified
by the position of the structure with respect to a moving coordinate frame together with

the position of that frame in space, i.e. relative to some fixed inertial system.

Figure 2.1: The body frame is translated and

rotated with respect to the inertial frame.

We fix an orthonormal basis forming an inertial frame (“space freme”), and choose a
“body” coordinate system designated by a set of orthonormal vectors g;,82,8s. Choice
of the g;’s will depend on the particular problem at hand, and it affects the simplicity
of resulting equations. In section 4, where we treat an example of a rigid body with an
elastic appendage, we affix the body frame g; to the rigid body, although other choices are

possible [6].

The position and orientation of the body frame (with respect to the chosen inertial

frame) may be described at each time t by an element of the special Euclidean group,
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SE(3,R), represented by a 4x4 matrix

X(t) = (Y(()t) y(lt))

(see figure 2.1), where Y (t) € SO(3) is an orthogonal matrix describing the orientation of
the body frame and y € R? is the position of the origin of that frame in space. (cf. [5]).
Therefore, if a point P is given by the vector u in the body frame and by vector U in

the space frame, then u and U are related via
U=Xi,
where U = () and 4 = (}).

The positions of various elements of our flexible structure relative to the body frame
will be described by a vector function u(z,t) = u(z,, 23, z3,t) denoting the position at time
t of each particle whose “unperturbed” position is at z. Here “unperturbed” can mean
either initial or undeformed, depending on one’s choice. In section 4, z will denote the
neutral position of a particle of the flexible structure.

In summary, we consider systems whose configuration space is given by
{q} = {(Y,u,y)} = SE(38)x C = SO(3) x R? x C, where C = {u(-,t)} is a suitably defined
function space whose elements are functions u(z) describing the configuration of the body
relative to the body frame.

We describe now the kinematics of the system and give an expression for the kinetic
energy. The evolution of the matrix X(t) € SE(3) can be described by a differential

, (Y(t)ﬂ(t) 1}(*))
X(t) = )

equation

0 0

where () is the skew-symmetric matrix

0 w3 w2
N=1 ws 0 —wy
—wy W) 0




of angular velocities w; about the corresponding body axes g;, 1 =1,2,3.

The inertial coordinates U(z,t) of a point P are related to its body coordinates u(z,t)

U(z,t) = Xi(z,t)

and the corresponding velocities are given by
d . " .
—U=Xu+ X1, =

dt
_ (Y(Qu + ug) +g)
= 0 ,

where u; denotes the partial derivative with respect to t.

The kinetic energy of the body is then given by

) 1 . 1 .
T(0,6) = 3 [ 101dm = 5 [ 1¥(O -+ w) + il dm, (21)

where B denotes the point set comprising the body (at time t) described in the body
coordinate system, and dm is the mass distribution in this coordinate system.

The kinetic energy of almost any rotating structure will be of this form, as it does not
depend on the constitutive relations governing the structure itself. More refined dynam-
ical models, as treated in subsequent sections, will embody structural information in the

expression for potential energy

V(g) = V(Y,u,v)

(which we assume to be independent of ¢). Without specifying the form of V at this point,

we prove the main theorem of this section.
Theorem 2.1. Let A be defined by

A(t) = /B (Qu + ue)uT)adm,
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where M, = %(M — MT) denotes the anti-symmetric part of @ matriz M. Equations of

motion of any system whose configuration space is {q} = {(Y,u,y)} = S0(3) x C x R? as

above are given by

A(t) + [Q(2), A(2)] — L(YTﬁuT).dm =T - (Y"Vy), (2.2)
. - §V
U + Qu+ Qu+2Qu, + YTj=F - o (2.3)
/ Y(Qzu + ﬂu + 29‘!‘; + u“) + f)dm = f - a—V (24)
B 8y
Y=YQ (2.4)

where Vy is the matriz of partial derivatives % , and ‘6—:" is the Frechet derivative of V

with respect to u.

In the skew-symmetric matriz

0 -T3 T2
T = Ts 0 —Ti
-7 T 0,

Ti 15 the net nonconservative torque applied to the system about the body azis g;, F = F(z)
is the distributed nonconservative force density acting on the particle positioned at u(z,t)
ezpressed in the body coordinate system, and f is the net nonconservative ezogenous force.
Remark: In subsequent sections nonconservative forces will arise due to viscoelastic
damping.
Before giving the proof, we rewrite these equations so as to provide a clearer picture
of the physical situation. Let w = (w;,w3,w3)T be the angular velocity of the body frame

ezpressed in that frame; w is related to the angular velocity matrix 2 = Y-1Y as follows:

0 —-w3 Wy wy
= ws 0 -~w},w=|w
—Ww3 wi 0 w3




Denote by S the operator taking a skew-symmetric matrix € into vector w : S = w. One

easily verifies the following:

Lemma 2.1. Given any pair A, B of skew-symmetric 3 x 3 matrices and any pair
u,v of S-vectors, the following identities hold

(i) 5((4, B]) = S(4) x S(B)

(i) S(ur” —vuT)=v xu

(i) Au = S(4) x u
Applying the operator S to equation (2.2) and using Lemma 2.1 on equations (2.2)-(2.4)

we obtain

Corollary 2.1 Equations of motion (2.2)-(2.4) are equivalent to

a(t) + w(t) x a(t) 4 / u(z,8) x Y- §(t)dm = S(T ~ (¥ 'V )a) (2.5)
B
. s 5V
uptwX(wxu)+wxuv+2wxu+Y y:F—s—u (2.6)
%

/[Y(wx(wxu)+d;xu+2wxug+u“)+§]dm=f—- (2.7)
B

8y
where a is defined by
a(t) = / u X (ug + w X u)dm.
B

Written in this way equations (2.5)-(2.7) give an explicit description of the inertial
forces on the mechanical system viewed in the moving body frame. Introducing the deriva-

tion D = £(-) + w x (-), we obtain yet another rendering of these equations.
Corollary 2.2 Equation of motion (2.2)-(2.{) are equivalent to

/ ux (D*u+ Y '§)dm = S(T — (Y "'Vy)a)
B

9
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D*u+Y 'y=F " (2.6)

/ (YD +§)dm = f - V. (2.7)
B Oy

The motions of any complex structure undergoing free or forced rotation are described
by equations (2.5)-(2.7). This formulation is thus fairly general, and it can incorporate
external forces and torques (due, for example, to gravitational and magnetic fields) and
interns’ for.es (due, say, to actuation of joints or the constitutive properties of the mate-
rial). In the next section 3 we will incorporate dissipative effects in this formulation, and in
section 4, we shall develop a complete dynamical model of a system where the constitutive

relations are those of a simple damped beam.

Proof of theorem 2.1: The proof will be given in two parts: First, the treatment
of the inclusion ¥ € SO(3) as the holonomic constraint onto S0(3) as a submanifold
of GL(3), with an appropriate modification of the Lagrange equations (Lemma 2.2), and
second, the utilization of the left-invariance of (‘he rigid path of) kinetic energy to simplify
the resulting equations (Lemma 2.4).

We would like to write the equations of motion of the structure in the Lagrangian
form

d T T av
-&?a—q.- - a—q = ——8—q—’ q = (Y,u,y)-

An appropriate modification of the Lagrange equations is needed, however, to account for
the fact that Y is constrained to the submanifold S0(3) C GI(3). Such a modification
is unnecessary if the Lagrangian equations are expressed in terms of a local coordinate
system on the constraint manifold-cf. [1], page 77. This approach ignores the symmetry
in our system of equations, however. The following Lemmas 2.2 and 2.4 are key to our

proof of Theorem 2.1

10




Lemma 2.2 Any eztremal q(t) of the action [ L(g,q)dt with g constrained to a sub-

manifold My of a Riemannian manifold M satisfies the differential equation

. (38L 9L\
"\dtog o8q)

where 7, is the normal projection from Ty M onto ToM,.

We omit a straightforward proof. Corresponding to the three components of ¢ =

(Y,u,y) we obtain three components for the equations of motion:

doT 8T 8V
Py(zt-a—y:—'é-f'f'—a?) =0, (2.8)

d T 6T 8V
dos % a (2.9)
déT 8T 8V

where Py is the orthogonal projection from Ty Gl(3) onto Ty SO(3) in the trace norm

(A,B) = tr ATB. Here %;{-, % are the derivatives with respect to the standard Rie-

mannian structure on TGL(3); they can be represented as matrices of partial derivatives:
-:—;{- = (0—8}-,7; and % = (%), %';I"- denotes the Frechet derivative of T’ with respect to the

distributed parameter u. The 2xpression for the projection Fy is provided by
Lemma 2.3. For any Y € SO(3) and A C Ty GI(3)
PyA=Y(Y 'A)a, (2.11)
1 T
where Xa. = E(X -X%)

is the anti-symmetric part of X.
Proof. This follows from decomposing the Lie algebra of gl(3) as the orthogonal
direct sum of symmetric and skew symmetric matrices. (gl(3) = s0(3) & s0(3)~.) [

11




Lemma 2.4 Suppose T is a left-invariant function on TGl(n), i.e. suppose there is
a function K defined on gl(n) (= the Lie algebra of Gl(n) = space of real n x n matrices)
such that T(Y,Y) = K() where Q = Y~1Y. Then for (Y,Y) € TSO(n)

d 8T 8T d
p(m-ﬁ) v(&a0+(0,10)

where M = ( )a, and is the derivative of K with respect to Q evaluatedat @ = Y'Y,

Remark. There is an orthogonal direct sum decomposition: gl(n) = so(n) & so(n)*,
where so(n) = the Lie algebra of n X n skew-symmetric metrices, and where orthogonality
is defined in terms of the trace form inner product [4, B] = tr AB7T defined on gl(n). If the
function K appearing in the statement of Lemma 2.4 can be decomposed as K = K; + K,
where K; depends only on the i-th component (i = 1,2) in this orthogonal direct sum,
then M = K{(Q), where by K; we mean the derivative of K; with respect to the natural

differentiable structure on so(n) defined in terms of the Killing form.

Proof. 48T

% ay and ay may be thought of as elements in the cotangent bundle T*Gi(n).

Making the usual identifications, the standard Riemannian structure on Gl(n) may be
prescribed explictly in terms of the trace form, and we may write :‘ 317,' , 35 and %%(- all as

n X n matrices

d 8T d 8K 0K
Eb‘i‘r"(y 7 alan) an]
8T . _1rordK
oy ~ ) Vg

For (Y,Y) € T SO(n), we have (Y~1)T = Y and QT = -2, and the result follows from

Lemma 2.3. B

The proof of Theorem 2.1 proceeds as follows. Using left-invariance of the first term in

the expression for kinetic energy (cf. (2.1))
1 -1 .
7= 5 [ 100+ ul? + 20u 4w Y 75) + [ dm,
B

12




we obtain equation (2.2) as a consequence of Lemma 2.4. The remaining equations (2.3)

and (2.4) follow by direct computation from equation (2.9) and (2.10). We omit the details.
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3. Lagrangian Mechanics with Damping

A major advantage of Lagrangian versus Newtonian mechanics is the invariance of
Lagrange’s equations with respect to coordinate changes; it is this invariance that facilitates
significantly the derivation of our equations of a motion. It is thus desirable to have the
extension to the dissipative case. Such a modification is described in [9], [12]; we reproduce
it here in a slightly more general form.

Let D(q,q) be the so-called dissipation function defined as follows:
gDy = rate of dissipation of energy per second.

(One can think of D; as the generalized dissipation force, and ¢ =velocity. The above
simply says: velocity - force = power).
Let L(gq,q) be the Lagrangian of the system. The equations governing the system are

d
50— Lg+D; =0. (3.1)

Remark 3.1. If D is quadratic in ¢ (as will be the case in the application presented
in the next section), then

1 1 < e e
D= EdDé = -2—(rate of dissipation).

Equations (3.1) are consistent with the definition of D, as shown by
Theorem 3.1. If E(q,q) is the total energy of the system, then

d . .
E;E(q, 4) = —¢Dy.

Proof. E is given by the Legendre transform* in ¢ of L:

E=igz - L

* Usually E is expressed as a function of ¢,p = %; we keep ¢ rather than p here.
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Differentiation by time gives

. .8L .d,8L ) . )
E= 156 + qE(a_q‘) — Lgg— Ly = —4Dy;

we used equation (3.1) in the last step. B

Equation (3.1) has the same invariance property as the conservative Lagrange equa-

tions.

Theorem 3.2.[12] The dissipative Lagrangian system ($.1) is invariant under the
change of variables ¢ = q(Q). More precisely, if q(t) satisfies (3.1), then Q(t) satisfies

equations of the same form:

d
L6 —La+Dy =0, (3.1)

where £(Q, Q) = L(¢(Q),¢'(Q)Q) and D(Q, Q) = D(4(Q),¢'(Q)Q)-

Proof: A simple calculation shows:

d d
51Lo—La+Dg= ¢'(Q) (EL" —Lg+ Dé)

15




4. A Rotating Rigid Body with a Beam Attachment

Consider the spacecraft depicted in Figure 4.1. The key features of this structure are

a rigid body to which a flexible cantilevered beam-like appendage of length £ is attached.

Figure 4.1: A rigid body with cantilevered beam attachment.

As we have mentioned in section 2, we affix the moving frame to the rigid body.
More specifically, we place the origin of the frame at the point of attachment of the beam
and align the z; = z-axis along the undeflected beam. Viewing this cantilevered beam as
essentially a one-dimensional object, we describe the elastic deformations u(zs,t) = u(z2,t)
with respect to the coordinate axes (2;,22,23) = (z,y,2) depicted in Figure 4.1. More
precisely, u(z,t) is the position of the particle whose neutral position is at (0,0,2). The
decomposition of the system into the rigid part and the elastic beam corresponds to the
decomposition of kinetic energy (2.1) into the sum of rotational and translational energies

of the rigid part and the energy of the beam. (Note that u(:,t) restricted to the rigid
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component is just the identity mapping for all ¢.) We have

1
T - E‘.,TI«; + mpyTY Qe + %mbllyll2

1 L
45 [ 1Y@t w)+ i1
0

where S(Q2) = w, € is the center of mass of the rigid body in the body frame, m, is the
mass of the rigid body, we have scaled the linear mass density of the beam to be one, and

the inertia tensor with respect to the body frame is given by

. 1, I,

I.. I, I,
where I, is the moment of inertia with respect to the z-axis, etc. (cf. [1]).
Since the beam is clamped at the origin of the (z,y, z)—coordinate system and free at
its other end, the following boundary conditions are assumed:

Ou; 8%u; Bu; .
u;(O,t) = E—(O,t) = -a—z-z—(l,t) = 8—z3—(l,t) = 0, 1= 1, 2,

and u3(0,t) = %“:(l,t) = 0. These boundary conditions are standard in the theory of
ciamped-free beams. Here uj.uy,u; are the deflections: u = (uj,u2,2 + u3). Note that u;
is not the z-coordinate of u.

The equations of motion for our rotating satellite; are obtained by incorporating (2.5)-
(2.7) into the formalism of Lagrangian mechanics, as discussed in the previous section.

Thus we look for extremals of the Lagrangian L = T — V with kinetic energy T given

above and potential V given by the strain energy

1 [t 8
V() = 5 [ Bl + i) 4wz, 1= 5 (42)
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where only quadratic terms were retained and the material is assumed to obey a linear
Hooke’s law. Here u; (respectively u3) gives the bending elasticity within the zz-plane (yz-
plane respectively), and pj is the Hooke’s constant giving the beam’s stretching elasticity.

Unless the beam is abnormally thick, us >> p1, pa. The dissipation function is given by

N B A , : ._ 9 8
D = D(u,u) = 5‘/0 ky(41)? + ka(0))? + ks(u3)?dz, "= 3’ "= 32 (4.3)
where 4Y,u} can be thought of as the rates of change of appropriate curvatures, while

2} is the rate of change of the contraction coefficient uy. The k;’s are positive constants

reflecting the rates of energy dissipation due to deformation of material in the beam.

Remark 4.1. It might seem at a first glance that the first two terms in the integral

(4.2) should be replaced by a quadratic form (in u},u3
a(uy)? + 2buful + c(uf)?;

however, by properly turning the body coordinate system around the z-axis, we can di-
agonalize this form. In Figure 4.2, the z-axis is chosen along the direction in which the
beam bends most easily (u; < uz); consequently, the beam offers the stiffest resistance to

bending within the yz-plane.

7/ z
/

Y

Figure 4.2: A beam with elastic coefficients p; < pa.
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Remark 4.2. We must point out that the beam was assumed to be of uniform
crossection. Expression (4.2) would have to be modified to include the beams with variable

crossections like the ones show in Figure 4.3.

——

Figure 4.3: Beams with variable crossection.

The modification is in fact quite simple: one would only have to replace the first terms in
(4.2) by a quadratic form with z-dependent coefficients. In the case of a helical beam we

would take the matrix

(Z 1;) = A= A(z) =R ('31 ;?z) "

cosa sina

—sina cos a) by z-dependent angle a = const - z

where R(z) is a rotation matrix (

Remark 4.3. To incorporate torsional deformations of the beam, we introduce the
torsion angle a(z;t), which is the angle formed between the z-axis and the projection onto
the zy-plane of the segment rigidly connected to the beam so that in the unperturbed
position of the beam it is attached at (0,0,z)T and is parallel to the z-axis. Thus the
variable a(z;t) describes a normal bundle of the beam. Potential energy of the beam is
given by

1 L
V= 5‘/ (< R7'uRv",v" > +pus(u})? + pa(a')?)dz,
0
where u = diag(p,u2), pa is the torsional elasticity coefficient, and v = (u1,uz).
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A slightly more subtle remark regarding our model with potential energy defined
by (4.2) is that it does not involve potential terms incorporating tensile forces into the
model. Our model is thus somewhat different from what one would obtain using a so-
called “geometrically exact” beam theory. It is perhaps surprising that the rotational
equilibria described in the next section seem to differ little from what one would expect
in the case of a geometrically exact model. We refer the reader to the recent paper [36]
for a more complete discussion of the effects of constitutive restrictions on the qualitative
dynamics of rotating systems.

The following theorem is a straightforward consequence of the results presented in the
previous two sections.

Theorem 4.1. Given the system depicted in Figure {.1 and described above with
kinetic energy (4.1), potential energy (4.2) and dissipation function (4.8), the equations of

motion are given by

¢
Da + (mye + / WxY1lg=0 (4.4)
0
Dy + pbu+kBi+Y 1§=0 (4.5)
t
my(y+ Ye) + / YD*udz=0 (4.6)
0

where the quantities in these equations are given as follows. D( )= &()+wx (), a(t) =
Tw(t) + folu x (Du)dz, I is the inertia tensor in the body frame defined above, my is the
mass of the rigid body component, Y =Y S~ (w) (with S( -) is as defined as in Lemma
2.1), and 3 is the differential operator defined by 8 = (8%,8%,-8%), p = diag(p1,p2,p3)
and k = diag(ki, kz, ks).
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Equations (4.4)-(4.6) are equivalent to
¢
I+ w xIw+/ uX[ug+wxu+2wxu+wx(wxu)+Y1gdz (4.7)
0

+myc X Y_lg =0

U + 0 X U+ 2w X ug +w X (w X u) + pu + kbu, + Y 1 =0, (4.8)
t

my-{-Y(/ udz + mpc) = ¢ + "'t (4.9)
0

where my denotes the mass of the rigid body component, and m denotes the total mass
of the body-beam system. Since the mass density of the beam has been normalized to be

1, we find m = £ + m;. (4.7) can be further rewritten, using (4.8), as
t
Io +w xIw-/ u X [udu + cdu)dz + mye x Y 1§ = 0. (4.7)
()

One easily checks that the total angular momentum f(y+Yu)x &(y+Y u)dm is conserved,

either using Noether’s theorem or by direct computation.

Remark 4.4. If the center of mass of the system is at rest with respect to the space

frame, we may assume that ¢’ = ¢ = 0.

We indicate the physical meaning of the terms in the equations (4.7)- (4.9). The
sum of the first two terms in (4.7) is interpreted as the rate of change of the rigid body’s
angular momentum. The second term in the brackets gives the inertial force on the beam
due to the body’s angular acceleration, the third term is the Coriolis force, the fourth
is the centrifugal force and the last term is the D’Alembert force. Thus equation (4.7)
expresses the conervation of the total angular momentum in space expressed in the body’s
coordinate system. Equation (4.8) is just Newton’s law for the beam expressed in the non-

inertial body frame (the D’Alembert principle)—it accounts for various inertial forces.
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Equation (4.9) expresses the conservation of the linear momentum of the whole system. It

is important at this point to make the following remark.

Remark 4.5 There is an apparent paradox associated with eq. (4.7)": one might expect
to be able to express the integral term in terms of v and its derivatives at z = 0, since the
body feels the beam only through the attachment point. As it turns out, this expectation is
not met. In formulating our continuum mechanical model of the beam, we have neglected
certain effects such as torsional deformations. The implicit rigidity in our model leads to

this nonlocal character in the equation.
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5. Asymptotic Dynamics of a Rotating Elastic Structure

In this section we begin an analysis of the asymptotic behavior of the body-beam
structure described in the preceding section. For finite dimensional dissipative mechanical
systems, LaSalle’s invariance principle [10] can be used to show that states asymptotically
approach a minimal invariant subset of the zero set of the dissipation function discussed
in Section 3. In Section 6, it is shown that this type of analysis may be extended to
certain infinite dimensional systems with features in common with our body-beam model
described by equations (4.4)-(4.6). While we do not prove that all solutions to (4.4)-(4.6)
tend to the zero set of the dissipation function D as defined by equation (4.3), we do offer
a more or less complete characterization of the set of asymptotic equilibrium states (by
which we mean the set of solutions to (4.4)-(4.6) for which the equality D = 0 also holds).
We prove, in particular, that in asymptotic steady state the beam displacement function
u(- ,-) does not depend on t. Moreover, it is shown that asymptotic equilibrium angular
velocities are constant vectors parallel to the principal axes of the steady state inertia
tensor. This means that the motion of the system is a pure rotation with no precession.

This is the content of the following theorem.

Theorem 5.1: Relctive equilibrium solutions of ({.7)-(4.9) (by which we mean solu-

tions which also satisfy D = 0 with D as defined in ({.3)) have the following properties:
(i) there is no dependence on the time variable t in the beam function: u(z,t) = ue(2);
(ii) the angular velocity w is a constant woo;

(iii) the equilibrium angular momentum is a constant, 6o = JooWeo, with the equilsh-

rium inertia tensor of the combined bedy-beamn system given by

4
Jo =T+ / uTuF — wuTdz - m(CICmE - CnCY) (5.1)
0
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where E = the identity matriz and Cp, = %(m{é+ fol udz) is the center of mass of
the body-beam system (ezpressed in the body frame).

(iv) equilibrium rotat:ions are aligned with a principal azis of the equilibrium inertia
tensor, and taus

JooWoo = Moo (5.2)

Proof: To prove (i), note that for equilibria, f ky(u})? + ka(u%)? + ks(di})?*dz = 0.
Hence uy = 4 = 4} = 0, and the result follows as a consequence of the boundary
conditions.

Using the time-independence of u, we show that corresponding values of w are con-

stant. Since u; = 0, equation (4.8) may be rewritten

Oxutwx(wxu)+pu+Y1§=0.

. . . . — . e 0 — - —
Differentiating with respect to z at z = 0 and using the boundary condition 37 = k =

0
0 | at t = 0, we obtain
1

@ xK+w X