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Summary

Chaos in Classical Nonlinear Fields

We studied chaotic behavior in a high-dimensional periodic lattice version of the

classical Hamiltonian phi-four field theory. Both single and double well potentials were

considered. We examined the existence of a global stochasticity threshold that varied

with energy and initial conditions. The model was discretized using an algorithm due

to Hirota that guarantees stability and energy conservation. Chaotic behavior was

diagnosed using the Lyapunov exponent, with additional information from space-time

profiles, Fourier power spectra, and phase space plots. We found long time scales which

made it difficult to distinguish between asymptotically chaotic and integrable behavior.



1. Background and Motivation

The importance of understanding infinite (or high) dimensional nonlinear systems

is clear: we are surrounded by fluids, plasmas, solids and other continuous (or very high

dimensional) systems whose behavior is critical to us. In some cases, when dissipation

is present, the long-time behavior of such systems may be adequately described by low

dimensional models. But for Hamiltonian systems with no asymptotic description on

attractors possible, and where regular and chaotic regions can be strongly intermixed,

we usually must seek understanding and intuition in a different way.

Another reason for the importance of high dimensional Hamiltonian systems is

their relevance to basic questions in statistical mechanics, including the nature of the

approach to equilibrium and the equipartition of energy. Recent equipartition studies1

in large Hamiltonian systems containing no a priori natural time scale, suggest that

very long times are necessary for some modes to reach equilibrium.

In the present work we studied a non-integrable classical Hamiltonian field theory,

the 04 model (which will be described below). This arises physically as a useful simple

model in condensed matter systems (e.g., polyacetylene, ferroelectrics) and elementary

particle physics. But its basic significance, for our purposes, is as an example of a

nearly-integrable, high- dimensional, nonlinear Hamiltonian system.

Our working hypothesis was that chaotic behavior is to be expected in a non-

integrable system for some values of the parameters and types of initial conditions.

We expect that at sufficiently high energy (or energy density) global stochasticity will

occur in both the single- and double-well potentials, with the two cases being rather

similar in the high energy regime. Since only the double well allows solitary wave (and

near-breather) solutions, we expected the low energy behavior of the two models to be

rather different.

Previous numerical stidies 2 have found conflicting results, some finding no chaos

or chaotic behavior which appcars as the energy (or energy density) increases and then

disappears at higher energies. low the partial differential equation is discretized, what

initial conditions are considered, choice of lattice parameters, and especially the length

of integration times are expected to be crucial to the results.



2. The 44 Model

The Lagrangian and Hamiltonian densities of the (one space dimensional) 04 field

theory are:

2 -at€ 2 1ax):

1. 2 + 1 ( )2 + V()

where
04, 1 2 14

p= ao, V(O))=-1A02 +1A44
i-2 4

The equation of motion for this potential is

a2 9 + + ),01 =0

This model can be regarded as a truncation of the exactly-integrable sine-Gordon (p <

0) and sinh-Gordon (p > 0) equations. With it < 0, V(4)) is a double-well potential

(leading to spontaneous symmetry breaking in the corresponding quantum field theory);

the classical theory then allows solitary wave solutions.

It is possible to remove the 02 and 04 coefficients in V(40) by scaling x, t, and 4)

X - ILI-1/ 2 X

644,

Thus the equation of motinn can always be written in the form

OfL etc.) [1]

In this form we see that the _l.v parameters which can be varied are the total energy

and sign of the quadratic term in the potential (corresponding to the single and double

well cases). For the lattice version of the model there are additional parameters, the

number of lattice points and length of the lattice.

2



The 464 model has two known conserved quantities:

E = 7"l(x, t)dx P = - f z5tdz

The absence of an infinite number of conserved quantities3 is also supported by studies

of 4 solitary wave scattering which show that the initial kink and antikink shapes need

not survive the collision.
4

3. Progress

This work began -s a Master's thesis of D. Bradley-Hutchison, supervised by one

of us (HKS). He used a 300 site spatial lattice (with periodic boundary conditions),

a lowest order finite difference approximation to the equation of motion, and initial

conditions consisting of a sharply peaked static gaussian at the center of the lattice.

A simple diagnostic was used to measure the separation of neighboring trajectories in

phase space:

L

0

where 0S and (' are initially infinitesimally close trajectories . For an integrable

system we expect D(t) - t for large 1, while for a chaotic system we expect In D(t) - I

asymptotically.

Bradley-Hutchison studie-d the separation d-stance, D(t), as the total energy was

varied over thc range 43 < E < 1865. lie found that D(t) grows linearly for "low" ener-

gies and "short" times, crr',sp-nding to typical integrable behavior, and that In D(t)

grows linearly for "high" energies, corresponding to chaotic behavior. For "moder-

ate" energies, there can be a sudvden onset of chaotic behavior after "long" times. In

the strongly chaotic cases, "saturation" is generally observed; i.e., In D(t) reaches a

maximum value at some t value and remains constant thereafter (see Fig. 1).6

3



These preliminary results were interesting enough to warrant a more detailed and

sophisticated study. There are two primary components in the calculation: the dis-

cretization algorithms for the partial differential equation, eq.[1], and the selection of

diagnostics for the spatial-temporal behavior. Ideally we would like to discretize in such

a way that any known conserved quantities for the continuous system are preserved,

and also in such a way that stability is guaranteed as the spatial and time step sizes

are varied in the integration algorithms.

We chose a discretization scheme due to Hirota7 that guarantees stability and

conservation of energy. The discretized Hamiltonian density is

1- 2 + I(A2 + V(O).

The corresponding first order equations of motion are

Ato = IItp

where the central difference operator, A, and averaging operator, H, are defined as

f(X) -[f(x + + f(x-

with

IN 2rf(X) = A.f(x), etc.

Combining the first order equations, we obtain

"1 2 2 0 _ tAO (
t- ATI -%2J v( )

The implicit nature of the Hirota integration algorithm means that in general we

must solve a set of coupled nonlinear equations. When the equations are linear, the

4



resulting equations can be solved using techniques for inverting a tridiagonal matrix

(modified for the periodic boundary conditions that we are imposing). With the non-

linear terms included in the evolution equations, we use an explicit scheme as an ap-

proximation tu the nonlinear term and then iterate the inversion until the field becomes

self-consistent.

In our work we used a simple measure of chaotic behavior, the maximum Lyapunov

exponent, to search for the onset of global stochasticity. This exponent is a function of

the linearized equations of motion which are in turn dependent on the full equations

of motion. On a discrete lattice, the equations for the field become a set of N coupled

oscillators governed by the equations of motion of the form

dO

where is a 2N dimensional vector, N components are the field and the other N are

its time derivative. We linearize the equations of motion about our initial trajectory

by introducing the variable 0:

S li - + 4, t)- R&',t)
E)(4o, t) = bim

16014'0

where &0 indicates the initial values for the variables. These new variables evolve in

time according to the the linear equations

dO, OF

These time evolution equai ";, f.,r 0, are a set of 2N coupled ordinary differential

equations and were integr;'. ,i-Mg a fourth order Runge-Kutta algorithm. Finally,

the maximum Lyapunov e i >, nt is given by

lim -I InI( 0,tII
t~ I I®( 0,0)f1

If there is sensitivity to initia! .T, i,,ns, nearby trajectories diverge exponentially and

the Lyapunov exponent is p,,itivc. For integrable systems the divergence of nearby

5



trajectories is linear and the finite time Lyapunov exponent decreases toward zero as

t - 1. D(t) and the Lyapunov exponent measure essentially the same property of the

system; however the Lyapunov exponent procedure is preferable in that it takes the

limit of the initial separation going to zero.

Figures 2-4 show some of our results. In these calculations (performed on the UNH

VAX 8820 and the San Diego SDSC CRAY X-MP) we imposed periodic boundary

conditions on discrete lattices with 128 or 256 points. Energy was conserved to 6

or 7 digits at each time step. The initial conditions examined to date include static

gaussians of varying amplitude centered on the lattice and pure sinusoidal modes.

As a general summary of these runs, we note (for initial static gaussians): (a) there

is little dependence of the Lyapunov exponent on the number of lattice points (for N

above 100); (b) for energies up to 80 in both the single and double well, we see the

Lyapunov exponent decreasing as t- 1, indicating non-chaotic behavior; (c) at E - 300

the Lyapunov exponent approaches a positive constant value, indicating chaos; here

the double well has a larger exponent than the single well; (d) for all energies between

E = 300 and E = 2600 the asymptotic t behavior is not yet clear, since the data shows

regic,,-s of %i,,ncss as well ab sharp dte-reases; (c) for high energies (2600 and 17356) the

system again has a decreasing Lyapunov exponent. Thus, from our search in energy

space with static gaussian initial conditions, it appears that there might be an onset

and later disappearance of global stochasticity. The study of this question became the

focus of our work at the end of the grant period.

Code development for all the additional useful diagnostics: space-time profiles,

power spectra, and phase space plots has also been completed.

In examining the Lyapunc,Nv exponents over very long times, we became aware of

the sensitivity of our results to the details of the discretization procedure. For this

reason it became difficult to be certain if the Lyapunov exponent differed significantly

from zero and thus whether the system was chaotic or not. We are currently devising

more sophisticated statistical tests to be applied to our Lyapunov exponent data in

order to distinguish between zero and non-zero values.

6



4. Communications and Publications

This grant has resulted in the publication A Numerical Study of Chaos in the One-

Dimensional 0' Model, Douglas A. Bradley-Hutchiqon and Harvey K. Shepard, Physica

Scripta 40, 731 (1989), and the presentation of a poster at Dynamics Days Conference,

Houston, Texas in January 1989.
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Dawn Meredith (Assistant Professor of Physics), Rob Braswell, and Douglas Bradley-

Hutchison (Physics graduate students).
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Sin le Well vs. Double Well
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