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Summary

Chaos in Classical Nonlinear Fields

We studied chaotic behavior in a high-dimensional periodic lattice version of the
classical Hamiltonian phi-four field theory. Both single and double well potentials were
considered. We examined the existence of a global stochasticity threshold that varied
with energy and initial conditions. The model was discretized using an algorithm due
to Hirota that guarantees stability and energy conservation. Chaotic behavior was
diagnosed using the Lyapunov exponent, with additional information from space-time
profiles, Fourier power spectra, and phase space plots. We found long time scales which

made it difficult to distinguish between asymptotically chaotic and integrable behavior.




1. Background and Motivation

The importance of understanding infinite (or high) dimensional nonlinear systems
is clear: we are surrounded by fluids, plasmas, solids and other continuous (or very high
dimensional) systems whose behavior is critical to us. In some cases, when dissipation
is present, the long-time behavior of such systems may be adequately described by low
dimensional models. But for Hamiltonian systems with no asymptotic description on
attractors possible, and where regular and chaotic regions can be strongly intermixed,

we usually must seek understanding and intuition in a different way.

Another reason for the importance of high dimensional Hamiltonian systems is
their relevance to basic questions in statistical mechanics, including the nature of the
approach to equilibrium and the equipartition of energy. Recent equipartition studies’
in large Hamiltonian systems containing no a prior: natural time scale, suggest that

very long times are necessary for some modes to reach equilibrium.

In the present work we studied a non-integrable classical Hamiltonian field theory,
the ¢* model (which will be described below). This arises physically as a useful simple
model in condensed matter systems (e.g., polyacetylene, ferroelectrics) and elementary
particle physics. But its basic significance, for our purposes, is as an example of a

nearly-integrable, high-dimensional, nonlinear Hamiltonian system.

Our working hypothesis was that chaotic behavior is to be expected in a non.
integrable system for some values of the parameters and types of initial conditions.
We expect that at sufficiently high energy (or energy density) global stochasticity will
occur in both the single- and double-well potentials, with the two cases being rather
similar in the high energy regime. Since only the double well allows solitary wave (and
near-breather) solutions, we expected the low energy behavior of the two models to be

rather different.

Previous numerical studies” have found conflicting results, some finding no chaos
or chaotic behavior which appears as the energy (or energy density) increases and then
disappears at higher energies. How the partial differential equation is discretized, what
initial conditions are considered, choice of lattice parameters, and especially the length

of integration times are expected to be crucial to the results.




2. The ¢* Model

The Lagrangian and Hamiltonian densities of the (one space dimensional) ¢* field

theory are:
_1/(84\° 1/[8¢\°
‘—i(a) ‘5(5) + Vi)
1, 1/8g\}
7'{—5? +§(5—2‘:> +V(¢)
where

_ 0¢ _Ll 2. 1,
p= 0 V(g) =g+ 0

The equation of motion for this potential is

¢ 0% 3
B " pgr THETAP =0

This model can be regarded as a truncation of the exactly-integrable sine-Gordon (i <
0) and sinh-Gordon (g > 0) equations. With g < 0, V(¢) is a double-well potential
(leading to spontaneous symmetry breaking in the corresponding quantum field theory);

the classical theory then allows solitary wave solutions.

It is possible to remove the ¢? and ¢* coefficients in V() by scaling =,t, and ¢ :

z = |l

t - |u"M%

1/2
s (B) "

Thus the equation of motinn can always be written in the form

8¢
¢tt - ’f’:ri¢+¢3:0 (¢¢E—3—t—’ etc.) [1]
In this form we see that the «nly parameters which can be varied are the total energy
and sign of the quadratic term in the potential (corresponding to the single and double
well cases). For the lattice version of the model there are additional parameters, the

number of lattice points and length of the lattice.
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The ¢* model has two known conserved quantities:
E= [Henie  P=- [4de

The absence of an infinite number of conserved quantities3 is also supported by studies
of ¢* solitary wave scattering which show that the initial kink and antikink shapes need

. .. 4
not survive the collision.

3. Progress

This work began as a Master’s thesis of D. Bradley-Hutchison,5 supervised by one
of us (HKS). He used a 300 site spatial lattice (with periodic boundary conditions),
a lowest order finite difference approximation to the equation of motion, and initial
conditions consisting of a sharply peaked static gaussian at the center of the lattice.
A simple diagnostic was used to measure the separation of neighboring trajectories in

phase space:

D)7 = 7 [ ¢a{[e0 - 80)"+ [out) - o))}

b~
o\.t‘

where ¢ and ¢ are initially infinitesimally close trajectories . For an integrable
system we expect D(t) ~ t for large ¢, while for a chaotic system we expect In D(t) ~ ¢

asymptotically.

Bradley-Hutchison studicd the separation d'stance, D(t), as the total energy was
varied over the range 43 < £ < 1865. He found that D(t) grows linearly for “low” ener-
gies and “short” times, corre<ponding to typical integrable behavior, and that In D(t)
grows linearly for “high” energies, corresponding to chaotic behavior. For “moder-
ate” energies, there can be a sudden onset of chaotic behavior after “long” times. In
the strongly chaotic cases, “saturation” is generally observed; i.e., In D(t) reaches a

maximum value at some ¢ value and remains constant thereafter (see Fig. 1).6




These preliminary results were interesting enough to warrant a more detailed and
sophisticated study. There are two primary components in the calculation: the dis-
cretization algorithms for the partial differential equation, eq.[1], and the selection of
diagnostics for the spatial-temporal behavior. Ideally we would like to discretize in such
a way that any known conserved quantities for the continuous system are preserved,
and also in such a way that stability is guaranteed as the spatial and time step sizes

are varied in the integration algorithms.

We chose a discretization scheme due to Hirota' that guarantees stability and

conservation of energy. The discretized Hamiltonian density is

L .
H =50+ 5(82:9)" + V(9).

The corresponding first order equations of motion are

Mg =1T1p
Awp = A7, T - ByV(9)),

where the central difference operator, A, and averaging operator, II, are defined as

Buf(e) = 2[f(+5) - Sz - )
ILf(z) = 51f(z + 5) + (= = 3)

with

Az:f(z) = Al f(z), ete.

Combining the first order equations, we obtain

Alo = A I2¢ -~ 1, A4V(9) t

The implicit nature of the Hirota integration algorithm means that in general we

must solve a set of coupled nonlinear equations. When the equations are linear, the




resulting equations can be solved using techniques for inverting a tridiagonal matrix
(modified for the periodic boundary conditions that we are imposing). With the non-
linear terms included in the evolution equations, we use an explicit scheme as an ap-
proximation tu the nonlinear term and then iterate the inversion until the field becomes

self-consistent.

In our work we used a simple measure of chaotic behavior, the maximum Lyapunov
exponent, to search for the onset of global stochasticity. This exponent is a function of
the linearized equations of motion which are in turn dependent on the full equations
of motion. On a discrete lattice, the equations for the field become a set of N coupled

oscillators governed by the equations of motion of the form

—

A = -
jit'—F()

where ¢ is a 2N dimensional vector, N components are the field and the other N are
its time derivative. We linearize the equations of motion about our initial trajectory

by introducing the variable ©:

560 = lim $($o+6$,q — 3(do, )
|6d;|—00 |6¢l

where @, indicates the initial values for the variables. These new variables evolve in

time according to the the linear equations

dO; OF;
@ =25, O

$(8s.1)
These time evolution equar: =x fr O; are a set of 2N coupled ordinary differential
equations and were integri:'- i using a fourth order Runge-Kutta algonthm. Finally,
the maximum Lyapunov ex; :+nt is given by

R P X
t=ot  ||O(do,0)l|

If there is sensitivity to initial .- nditions, nearby trajectories diverge exponentially and

the Lyapunov exponent is positive. For integrable systems the divergence of nearby




trajectories is linear and the finite time Lyapunov exponent decreases toward zero as
t~1. D(t) and the Lyapunov exponent measure essentially the same property of the
system; however the Lyapunov exponent procedure is preferable in that it takes the

limit of the initial separation going to zero.

Figures 2-4 show some of our results. In these calculations (performed on the UNH
VAX 8820 and the San Diego SDSC CRAY X-MP) we imposed periodic bcundary
conditions on discrete lattices with 128 or 256 points. Energy was conserved to 6
or 7 digits at each time step. The initial conditions examined to date include static

gaussians of varying amplitude centered on the lattice and pure sinusoidal modes.

As a general summary of these runs, we note (for initial static gaussians): (a) there
is little dependence of the Lyapunov exponent on the number of lattice points (for N
above 100); (b) for energies up to 80 in both the single and double well, we see the
Lyapunov exponent decreasing as ¢~!, indicating non-chaotic behavior; (c) at E = 300
the Lyapunov exponent approaches a positive constant value, indicating chaos; here
the double well has a larger exponent than the single well; (d) for all energies between
E = 300 and E = 2600 the asymptotic t behavior is not yet clear, since the data shows
regions of fiuiness as well as sharp decreases, (¢) for high energies (2600 and 17356) the
system again has a decreasing Lyapunov exponent. Thus, from our search in energy
space with static gaussian initial conditions, it appears that there might be an onset
and later disappearance of global stochasticity. The study of this question became the

focus of our work at the end of the grant period.

Code development for all the additional useful diagnostics: space-time profiles,

power spectra, and phase space plots has also been completed.

In examining the Lyapunov exponents over very long times, we became aware of
the sensitivity of our results to the details of the discretization procedure. For this
reason it became difficult to be certain if the Lyapunov exponent differed significantly
from zero and thus whether the system was chaotic or not. We are currently devising
more sophisticated statistical tests to be applied to our Lyapunov exponent data in

order to distinguish between zero and non-zero values.




4. Communications and Publications

This grant has resulted in the publication A Numerical Study of Chaos in the One-
Dimensional ¢* Model, Douglas A. Bradley-Hutchison and Harvey K. Shepard, Physica
Scripta 40, 731 (1989), and the presentation of a poster at Dynamics Days Conference

\

Houston, Texas in January 1989.
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