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PREFACE

This report documents the results of the "CR Architectures" project,
performed within the Force Development and Employment Program of
the Arroyo Center. This program studies the coordinated use of new
weapon, intelligence, and command and control systems for effective
deep fires against the Soviet second echelon in Central Europe. It
examines U.S. combat intelligence systems in this broader context,
asking how the contribution of an intelligence system to the effective-
ness of deep fires can be measured.

The report explains a methodology RAND has developed to evaluate
intelligence systems supporting deep fires. The methodology is imple-
mented in C language and RAND-ABEL code suitable for use on a Sun
4 workstation. The code generates high-quality graphics that a user
can exploit to examine results and interact with the evaluation system
The code has not been used for any real evaluations to date.

The principal audience for this report are the analysts who are
responsible for developing effective concepts and doctrine on deep fires.
It should also interest analysts and decisionmakers responsible f
modeling and evaluating the effectiveness of intelligence ms.
Although the focus is on a combat intelligence system a specific
mission in Central Europe, the report will interes ysts attempting
to simulate intelligence fusion without g lost in the mass of
detail that intelligence systems ess and those more generally
concerned with rule-b a tions and simulations based on Baye-
sian logic. Tjmay offers several basic innovations in fusion model-
ing. - o

THE ARROYO CENTER
The Arroyo Center is the U.S. Army's federally funded research and

development center for studies and analysis operated by The RAND
Corporation. The Arroyo Center provides the Army with objective,
independent analytic research on major policy and management con-
cerns, emphasizing mid- to long-term problems. Its research is carried
out in five programs: Policy and Strategy;, Force Development and
Employment; Readiness and Sustainability; Manpower, Training, and
Performance; and Applied Technology.

Army Regulation 5-21 contains basic policy for the conduct of the
Arroyo Center. The Army provides continuing guidance and oversight
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through the Arroyo Center Policy Committee, which is cochaired by
the Vice Chief of Staff and by the Assistant Secretary for Research,
Development, and Acquisition. Arroyo Center work is performed under
contract MDA903-86-C-0059.

The Arroyo Center is housed in RAND's Army Research Division.
The RAND Corporation is a private, nonprofit institution that con-
ducts analytic research on a wide range of public policy matters affect-
ing the nation's security and welfare.

Stephen M. Drezner is vice president for the Army Research Divi-
sion and director of the Arroyo Center. Those interested in further
information concerning the Arroyo Center should contact his office
directly-

Stephen M. Drezner
The RAND Corporation
1700 Main Street
P. 0. Box 2138
Santa Monica, California 90406-2138

Telephone: (213) 393-0411



SUMMARY

Current U.S. Army doctrine emphasizes the importance of extending
command emphasis to include not just the close battle but the deep
battle. It calls for the use of deep fires and maneuver to exploit the
deep portion of the battlefield. Planning focuses on generating deep
fires with Air Force aircraft and the Army Tactical Missile System
(ATACMS). The quality of intelligence on the deep battlefield can
greatly affect the performance of both types of deep-fire assets. The
U.S. Army and Air Force are both pursuing alternatives that would
enhance their intelligence on the deep battlefield during combat. Nei-
ther has an integrated way to ask how specific changes in the U.S.
intelligence system would affect their ability to execute deep fires.

This report presents an analytic approach that could simulate the
development of combat intelligence about the deep battlefield and com-
pare the performance of alternative intelligence systems to support
deep fires. It emphasizes the development of intelligence products that
the Army could use to support the ATACMS in a Central European
war in the mid-1990s. It draws on observations of combat intelligence
activities during several U.S. and NATO command-post exercises in
Germany during 1986-1988 and on Army-approved European scenarios
and Army combat and intelligence collection models to provide inputs
to the simulation of the intelligence system as a whole. It also uses
measures of performance of greater interest to a combat commander
and his staff than to the intelligence community itself.

The analytic approach presented here employs a set of new tech-
niques for modeling the quality of information and changes in the qual-
ity of information in an intelligence system. It uses simple Bayesian
logic to develop a high-level view of intelligence processing and realizes
it in a flexible, parameterized, rule-based network model. Although the
model is tailored to the problem at hand, the techniques could be
applied in a broader context to a wide range of questions about the per-
formance of intelligence systems.

This approach views combat intelligence in the context of a "system
of systems." An inteligence system comprises coUection, procenirv,
and communication systems. U.S. Army doctrine places the corps at
the center of the intelligence system responsible for deep battle. This
approach can model the collection, processing, and communication sys-
tems that are both organic to a corps intelligence system and that a
corps depends on to develop and distribute combat intelligence prod-
ucts. The Army can vary the system by varying these component
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parts. This report provides a flexible, transparent way to measure how
changes in individual systems affect the performance of the intelligence
system as a whole, using high-quality graphics to display information.

Briefly, the approach works in the following way.

1. Fix a baseline in two steps. (a) Over the course of an engage-
ment, use military judgment to set assumptions about the
behavior of Red' units on the deep battlefield, Blue priority
information requirements (PIR), the Blue collection schedule,
and delays in processing and communication. (b) Given these
assumptions, simulate how new information on Red behavior
moves through the intelligence system, updating various data-
bases in the system and ultimately influencing the quality of
information available to Blue commanders and their staffs.

2. Incrementally change the presence, use, or performance of a
constituent part of the intelligence system. Given the
assumptions in step (a) of the baseline, rerun the simulation
to determine the quality of information available to Blue com-
manders following the change.

3. Compare the quality of information on the Red order of battle
available to commanders (a) in the baseline and (b) following
a change, to determine the effect of the change on the perfor-
mance of the intelligence system as a whole.

This approach to evaluation and simulation differs from other
approaches in six important ways.

1. We use the quality of intelligence products as a figure of merit and,
among these products, focus on the Red order of battle in the deep battle-
field. Other approaches look at the technical performance of parts of
an intelligence system, time lines for delivering information from the
battlefield to a decisionmaker, and the effect of intelligence develop-
ment on combat outcomes. All of these measures are valid and useful
in particular applications. Our measure is best for looking in depth at
the performance of the intelligence system as a whole without having
to determine how it interacts with other sources of combat capability.

2. We look at incremental changes in intelligence systems. Our
approach allows us to examine how certain changes in specific com-
ponents of an intelligence system affect its total performance. Focus-
ing on incremental changes allows us to avoid the ambiguities involved
in modeling important feedbacks that military intelligence decision-
makers and analysts do not understand very well. These include

' t the report, we us 'Red" to refer to the enemy end 'Blue" to refer to
friendly forc.
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feedbacks within an intelligence system and between the intelligence
system and other combat capabilities. For example, we need not posit
assumptions about how information flows affect delays in communica-
tion and processing, how information available today affects the
demand for information tomorrow, or how changes in the quality of
information affect combat outcomes and hence the nature of Red
behavior in the future. The last point also means that we need not
posit assumptions about how an intelligence system transforms data on
the Red order of battle into higher-level inferences about Red inten-
tions or how these inferences affect command decisions. Therefore,
where there are great uncertainties, we can use issues where more is
understood to draw more easily defensible conclusions about the per-
formance of combat intelligence systems. Where feedbacks like those
that we avoid are important to policy, however, a user should consider
an alternative approach that looks beyond the effects of incremental
changes.

3. We rely heavily on Army models for input. As currently formu-
lated, our approach relies on the Army's Vector-in-Commander (VIC)
corps combat model to simulate the behavior of Red units on the deep
battlefield and aspects of a Blue intelligence system's collection of data
on this behavior. Given its status as the Army's approved corps com-
bat model, VIC embodies Army doctrine in a way that no other avail-
able model does. Furthermore, to our knowledge, no other models pro-
vide VIC's depth of detail; we need that detail to provide the richness
we seek in our own simulation. We have adjusted inputs from VIC in
small ways that improve its output without challenging Army doctrine.
With certain modifications, those who prefer a combat simulation
other than VIC can use their own combat simulations to drive our
simulation.

4. We emphasize simulating the quality of intelligence products, not
the generation of these products per se. One intuitively appealing way
to present information about the performance of an intelligence system
might be to simulate the Red order of battle as Blue intelligence per-
ceives it, compare this perception with the true Red order of battle,
and use the difference between the two as a figure of merit. We
rejected this potentially attractive approach because simulating a per-
ceived Red order of battle would require massive detail on specific
fusion rules and strong assumptions regarding higher-level inferences
about Red intentions and behavior, such a simulation cannot disentan-
gle the order of battle from these higher-level inferences. Past
attempts to simulate a perceived Red order of battle have yielded
enough questionable inferences to undermine confidence in the simula-
tions. Our method simulates the quality of intelligence directly without
attempting to simulate specific perceptions.
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5. Our simulation of intelligence fusion takes a high-level approach to
avoid getting lost in the intricate detail of true fusion. As a result, our
approach does not attempt to collect rules that order-of-battle analysts
and automated systems use to execute fusion and provide an inference
engine that executes these rules together. Our approach is based on a
set of intelligence concepts and parameters that we have not seen in
earlier simulations of intelligence development. For example, whereas
past efforts have typically used a probability of detection to measure
the quality of information yielded by collection, our approach uses a
likelihood ratio that measures the potential ability of a sighting of Red
behavior to discriminate between competing hypotheses. This concept
and others like it have analytic power and ability to capture basic ideas
underlying the detailed rules of thumb used in true fusion. Because
other analysts have not used these concepts in the past, no one has
attempted to collect data to measure them, thus complicating the
immediate implementation of our approach. If, as we expect, our
approach simplifies the effective simulation of fusion at a high level,
the data we need should become more accessible, making our approach
easier to implement as time passes.

6. We implement our approach with a computer code that promotes
easy understanding and modifications to include new rues as needed.
Substantive portions of the code are in the C-based, English-like lan-
guage RAND-ABEL, which allows users with little programming
experience to look directly at the implemented code and understand
what it is doing. The structure of the code makes it easy to change
collectors, processors, communications links, and the way they interact
in an intelligence system. Its clear, modular form allows targeted
adjustments in the code if new rules are required to characterize
specific capabilities important to a policy evaluation. The structure of
the model uses newly developed methods for tracing changes in the
quality of information while the model operates; they facilitate the
development of simulations and the analysis of the information they
generate. RAND-ABEL also gives us access to the editing and graph-
ics utilities of the RAND Strategic Assessment System (RSAS), utili-
ties that facilitate this approach and the interpretation of its output.

Although the principal purpose of the model presented here is to
facilitate evaluation of intelligence systems that support deep fires, the
analytic techniques developed to implement this model should have
much broader application:

* The measure of information quality that we use, the subjective
probability that a component of the intelligence system impli-
citly associates with the true value of an attribute of a Red unit,
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markedly simplifies the use of Bayesian methods to model
information quality.

* The ways that we (a) measure the information content of new
sightings of Red units on the battlefield and (b) model changes
in the quality of information in databases in the absence of new
sightings allow the simple application of a robust Bayesian
model of information updating.

* These Bayesian techniques provide the key to simulating the
quality of information without simulating the content of the
information itself. This reduces the data required for modeling
and increases the credibility of analytic results.

* The incremental approach to evaluation applied here substan-
tially reduces the set of assumptions, hence the amount of sen-
sitivity analysis required to model intelligence development.1 Our new modeling devices increase the transparency and flexi-
bility of the formal model and computer code that implement
our simulation.

Each of these innovations could find broader application in the simula-
tion of intelligence development and in the development of rule-based
simulation in general.

This approach provides a flexible, accessible analytic environment in
which to simulate the quality of information produced by a corps intel-
ligence system and intelligence assets associated with it. Using this
environment for policy analysis requires collecting data with which to
calibrate simulations for specific applications. As experience with the
approach accumulates, calibration should become simpler and the
range of potential applications for the approach should grow. Also,
many of the new analytic techniques that underlie our approach should
find application in the analysis of other kinds of problems.

4
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GLOSSARY

ASAS/ENSCE. All-Source Analysis System/Enemy Situation Correla-
tion Element. New joint U.S. Army-Air Force system for rapidly
integrating information from different intelligence systems,
transforming it into useful products, and disseminating it to
users.

ASPS. All-Source Production Section. The organization within the
CTOC Support Element currently responsible for integrating
information from different intelligence disciplines to generate a
Red order of battle, situation assessment, and target list.

ATACMS. Army Tactical Missile System. A new weapon system that
will enhance the Army's ability to generate deep fires when it is
introduced in the 1990s.

Blue. Pertaining to friendly forces, activities, or capabilities.
C. A computer programming language in which portions of the PRO

model are implemented.
CENTAG. Central Army Group. The NATO Army organization that

coordinates and directs the defense of southern West Germany.
COMINT. Communications Intelligence. Intelligence based on the

"external" signatures of radio transmissions or their "internal"
content.

CTOC. Corps Tactical Operations Center. The staff immediately
responsible for the coordination and direction of U.S. Army corps
operations.

Decibel. One-tenth of a bel. A unit used to measure ratios on an addi-
tive scale.

Discrimination Ratio (DR). A likelihood ratio that expresses the infor-
mation content of a sighting of a Red unit-attribute in terms of
the information's ability to discriminate between two hypotheses
that the sighting was generated by (a) the true value of this unit-
attribute and (b) some other value.

EACIC. Echelon-Above-Corps-lntelligence Center. The organization
within U.S. Army in Europe (USAREUR) responsible for intelli-
gence development on the area of the battlefield beyond the corps
areas of responsibility.

ELINT. Electronic Intelligence. Intelligence based on the signatures
of radar transmissions.

Enhancement. Change since the beginning of simulation of -10 x log2
OR, when OR is the odds ratio, (1 - P)/P, and P is the

zig
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subjective probability that Blue associates with the true value of
the unit-attribute to which this enhancement applies.

Enhancement Increment (EI). -10 x log2 DR, when DR is the
discrimination ratio associated with a unit-attribute.

FLOT. Forward Line of Own Troops. Loosely speaking, the forward-
most line of Blue positions, hence the dividing line between Red
and Blue forces.

4ATAF. Fourth Allied Tactical Air Force. The NATO Air Force orga-
nization that coordinates and directs the defense of southern
West Germany.

FSCL. Fire Support Control Line. The dividing line between the divi-
sion and corps areas of responsibilities.

GRCS. Guardrail Common Sensor. A new U.S. Army standoff intelli-
gence platform that will carry COMINT (Guardrail) and ELINT
(Quicklook) sensors when it is introduced in the 1990s.

Ground Truth. A description of the time-dependent status of Red and
Blue forces as determined by a simulation external to the PRO
model.

HUMINT. Human Intelligence. Intelligence from human sources
including, among other things, penetrating patrols of Blue forces,
refugees, prisoners of war, and spies.

IMINT. Imagery Intelligence. Intelligence based on imagery includ-
ing, among other things, imagery generated by photographic,
video, radar, and infrared means.

JSTARS. Joint Surveillance, Target Acquisition, and Reconnaissance
System. A joint U.S. Army-Air Force standoff platform that uses
radar to collect and distribute information on moving and fixed
objects in near-real time.

MTI. Moving Target Indicator. A sensor that uses radar to detect
moving objects, especially trucks, tanks, and other heavy vehicles.

Message. In the context of PRO, a device that carries a quantum of
information on a unit-attribute through an intelligence system
until the information ultimately becomes embodied in final intel-
ligence products.

Node. In the context of PRO, a collector, processor, or commander,
each of which is represented as a node in the network model that
implements PRO.

Observation. A PRO message regarding a particular unit-attribute con-
taining an enhancement increment representing the quality or
completeness of that unit attribute.

Order of Battle. The status of key attributes of Red units, including
their identity, type, echelon, location, speed, direction of move-
ment, effectiveness level, and activity.
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Order of Battle Database. A PRO database containing time-varying
attributes with their intelligence qualities of all modeled Red
units perceived at a particular Blue node.

PIR. Priority Information Requirement. A regularly generated state-
ment of the commander's highest-priority information needs.

Pre-Observation. A PRO message regarding a particular unit-attribute
arising from a sighting provided by the ground truth simulator,
containing a measure of the quality or completeness of that unit-
attribute.

PRO. Intelligence Propagation Model. A computer model of the pro-
pagation and quality variation of intelligence.

RAND-ABEL. A computer programming language developed at RAND
that is easy to read by persons unfamiliar with it. Most of the
PRO model is programmed in RAND-ABEL.

Red. Pertaining to enemy forces, activities, or capabilities.
RIPL. Reconnaissance Interdiction Planning Line. The line that

divides the corps and echelons-over-corps areas of responsibility.
RSAS. RAND Strategy Assessment System. An automated wargam-

ing facility developed at RAND. Portions of the RSAS system
were used or adapted for use in the PRO model.

SSM. Surface-to-Surface Missile.
UA V. Unmanned Aerial Vehicle. An automated airborne vehicle that

can act as a penetrating platform for IMINT, COMINT, or
ELINT sensors.

Unit. A unit modeled in VIC or some other combat simulation used to
drive PRO.

Unit-attribute. Any one of the order-of-battle attributes associated
with a unit and modeled in PRO.

UNIX. A popular computer operating system available on most con-
temporary computers. The PRO model described in this report
runs as an application program on a Sun Microsystems computer
operating under UNIX.

VIC. Vector-in-Commander. The currently authorized U.S. Army
corps combat simulation, which the Army uses to generate official
scenarios. VIC was modified by project personnel to operate
under UNIX.



I. INTRODUCTION

Current U.S. Army doctrine emphasizes the importance of extending
command emphasis to include not just the close battle but the deep
battle as well. Roughly speaking, the deep battlefield is the portion of
the battlefield lying beyond line of sight of Blue observers at the for-
ward line of own troops (FLOT). It is a portion of the battlefield that
Blue can exploit only with enhanced intelligence assets. Doctrine calls
for deep fires, maneuver, and electronic warfare to exploit the deep bat-
tlefield. Planning emphasizes the use of Air Force aircraft and the
Army Tactical Missile System (ATACMS) to generate deep fires. The
quality of intelligence on the deep battlefield can greatly affect the per-
formance of both types of deep-fire assets. The U.S. Army and Air
Force are both pursuing alternatives that would enhance their intelli-
gence on the deep battlefield during combat. Neither has an integrated
way to ask how specific changes in the U.S. intelligence system would
affect their ability to execute deep fires effectively.

This report presents an analytic approach that could be used to
simulate the development of combat intelligence about the deep battle-
field and to evaluate the effects on performance of incremental changes
in intelligence systems proposed to support deep fires. The report
emphasizes the development of intelligence products that the Army
could use to support the ATACMS in a Central European war in the
mid-1990s. It draws heavily on observations of combat intelligence
activities during several U.S. and NATO command-post exercises in
Germany during 1986-1988 and relies on Army-approved European
scenarios and Army combat and intelligence collection models to pro-
vide inputs to the simulation of the intelligence system as a whole.
While carefully incorporating information from the Army intelligence
community, it maintains a broader perspective, using measures of per-
formance of greater interest to a combat commander and his staff than
to the intelligence community itself. More generally, the methodology
proposed could be applied in a much broader context to consider a wide
range of questions about intelligence on the deep battlefield.

Section II explains our concept of an intelligence system as a "sys-
tam of systems." It describes the basic functions of an intelligence sys-
tem and how these work in NATO's Central Army Group (CENTAG)
in Central Europe. Alternative ways to evaluate such a system and
why we chose the proposed approach are given. An outline is provided
of the simulation approach we use to compare the actual Red order of
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battle with that perceived by Blue intelligence. This section also
describes the U.S. Army Vector-in-Commander (VIC) corps combat
model that figures prominently in our simulation.

Section III explains how we model the basic functions of an intelli-
gence system as components of a network, how we view information in
terms of data on specific attributes of Red units on the deep battlefield,
and how we model the movement of this information through such a
network. Aspects of collection, processing, and communication delay
the movement of this information in the network. Section MI shows
how we model these sources of delay. Finally, a simple example of an
intelligence system illustrates how our approach would represent the
movement of information in this system.

Section IV indicates how we measure and simulate changes in the
quality of intelligence produced in an intelligence system as informa-
tion moves through it, how formal concepts of subjective probability
can represent uncertainty associated with battlefield information and
its accuracy. Alternative analytic views of intelligence fusion are
reviewed and is how a form of database updating simulates fusion.
Finally, the section describes the extraction and processing of intelli-
gence information from VIC to initiate fusion in the network we use to
represent an intelligence system.

Section V uses a numerical illustration to show how the concepts
explained in Sections III and IV work together. It first shows how we
accept a set of unit sightings by this system from VIC and transform
output from VIC into a usable form. Based on a posited set of delay
and priority factors, information from these sightings flows through the
simple intelligence system until it affects intelligence products relevant
to a corps commander. Information from these sightings affects the
quality of information available to the corps commander and the qual-
ity changes over time. Information about the quality of intelligence
available to the commander permits evaluation of changes.

Section VI presents more technical information on the computer
programs. It explains our formal model architecture, with its data
structures and process control flows. It describes how we actually
extract data from VIC, transform them, and place them in appropriate
data structures for our simulation. It explains the formal structure of
PRO, the propagation model we use to transform information on the
quality of inputs from sensors into information on the quality of Blue's
Red order of battle. Analysts can manipulate and display data on the
quality of this order of battle to support policy analysis.

Section VII concludes the report with some observations about the
general problem of simulating intelligence and its effect on combat out-
comes. It addresses the basic problem of using output from such a simula-
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tion to calibrate it. Other applications of the approach presented here are
also discussed.

The appendix describes aspects of deception that can be included in
our approach. We have not yet implemented them in detail.

The reader will detect three different perspectives in this report.
The first concerns the general problem of simulating an intelligence
system and the way we deal with that problem. The second concerns
our choice of VIC as a source of information of the behavior of Red
units on the deep battlefield and the collection of information about
this behavior. Our propagation model can accept such information
from alternative sources; but to use information from VIC, we must use
certain specific forms. The third perspective concerns the simple intel-
ligence system we use to motivate and illustrate arguments in the text.
PRO, using inputs from VIC, can model much more complex intelfi-
gence systems with very different delay and priority factors from those
in our simple example. Where it is unclear how broadly applicable a
statement is in the text, we attempt to clarify which perspective applies
to that statement.



H. BASIC ISSUES RELEVANT TO EVALUATING
COMBAT INTELLIGENCE

A SYSTEM OF SYSTEMS

A combat intelligence system determines what raw information to
collect, collects it, transforms it into usable intelligence products, and
distributes these products to operators who can use them. Individual
systems back up each of these tasks. A command and control system
conveys information requirements to the intelligence community,
which translates this into a specific collection plan. Collection sys-
tems-sensors, ground stations, surveillance units, and so on-execute
the collection plan and convey raw information back to processors.
Processing systems-correlators, database managers, order of battle
shops, and so on-combine information from many sources and
prepare internal products that provide the basis for intelligence reports.
Production shops for situation assessment and targeting generate these
reports. A distribution system sends these reports to operators who
can use the information to support their combat plans and operations.
A communication system supports all of these activities by moving
information from one place to another. Specially arranged "quick fire
channels" can move near-real-time information from collection systems
to artillery units for immediate use. An "intelligence system" includes
all of these systems and their interactions.

An intelligence system need not be a well-organized and unified
activity in any sense. For example, in the system that supports a U.S.
Army corps in Europe, a NATO army group commander generates
information requirements that the corps commander clarifies for his
corps sector and then conveys to the intelligence staff in the corps tac-
tical operations center (CTOC). That staff and its Military Intelli-
gence (MI) brigade support element and operational battalions
translate these information requirements into a specific collection plan
and, for some collectors, into detailed technical data on what must be
collected. For collection, the corps staff relies heavily on the organic
assets in its supporting MI brigade, but it also sends requests to collec-
tion activities owned by the U.S. Army at echelons above and below
corps, the U.S. Air Force, and NATO allies, particularly the Germans
and British. With various degrees of processing completed, informa-
tion from these sources returns to the CTOC for integration into
usable intelligence reports. The CTOC support element then dis-

4
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tributes these reports, at various levels of classification, to U.S. Army
and Air Force operators, non-U.S. operators, and NATO headquarters.
U.S. Army and Air Force, non-U.S., and NATO communication sys-
tems support these flows of information. Some of these communica-
tions systems are dedicated to intelligence traffic, others are common
carriers. These arrangements differ in each U.S. corps. Markedly dif-
ferent arrangements exist in non-U.S. corps.

When we speak of a system, then, we need not speak of a well-
integrated activity controlled and optimized by a single owner. On the
contrary, an intelligence system is a complex net of activities whose
performance depends not just on technological factors but also on alli-
ance, interservice, and intraservice politics, and on a wide range of
human activities within the systems that constitute the intelligence
system as a whole. Such a system is in continual flux as actors within
its parts attempt to accommodate their behavior to the potentials
offered by changes in personnel experience, technical and procedural
innovations introduced, and new bargains struck throughout the sys-
tem.

HOW AN INTELLIGENCE SYSTEM AFFECTS
THE EFFICACY OF DEEP FIRES

To understand how an intelligence system supports the execution of
deep battle, let us examine how it supports the Army's doctrinal three-
step process for employing the Army's principal deep-battle weapon,
the ATACMS. To use the ATACMS against deep-battle targets, the
Army plans to "Decide, Detect, and Deliver." It first decides on what
targets to strike. It then detects the location of these targets with
enough precision to attack them with high confidence. Then it delivers
the ATACMS against these targets. An intelligence system plays a
central role in the first two steps.

An intelligence system assesses the situation on the battlefield as a
whole, providing information on the current location, capabilities, and
activities of Red units and on their likely intent and future actions.
This allows the Blue commander to determine how specific Blue
actions in the deep battlefield can support his total battle plan. He
can focus his attention in the deep battlefield on specific Red units and
actions and on specific locations and times and Red activities in these
locations and time periods. He can then decide which Red units and
locations to strike with deep fires. Targeting cells, which typically lie
within intelligence assessment organizations, can then translate the
commander's general guidance on targeting into specific targets.



6

Once targets are chosen, intelligence organizations can use existing
information and manage collection of additional information to refine
information on the likely location of these targets when strike assets
are available to hit them. For deep fires by manned aircraft, target
cells may specify locations and times for strikes as much as a day in
advance. With new collectors that the Army expects to provide
target-quality information on current location in near-real-time, the
Army may be able to commit the ATACMS against targets on only a
few minutes notice. Either way, intelligence assets process information
collected on the deep battlefield into a form that allows deep fires at
fairly precise locations and times. The Army can then execute the
"detect" step of its three-step doctrine.

Although intelligence organizations play no direct role in the final
"deliver" step, they can help assess battle damage assessment following
an attack. Further, delivery is more likely to be successful the more

accurate the location information and the faster this information is
provided in the "detect" step.

To understand how well an intelligence system supports deep battle,
we must have information on how well it can perform situation assess-
ment, targeting, and battle damage assessment. Blue intelligence must
develop a Red order of battle and use information from it to infer the
enemy's intent and future actions. In practice, these are not separable

4tasks. An intelligence system relies on its inferences about Red intent
to organize the mass of data it receives and from it refine a coherent
order of battle. A coherent Red order of battle is necessary for confi-
dence in inferences about Red intent. In practice, a Blue processing
organization continuously simultaneously updates both the Red order
of battle and inferences about Red intents.1

Information about both the Red order of battle and inferences about
Red intent is important to situation assessment, targeting, and battle
damage assessment. The reasons should be apparent for situation
assessment. For targeting and battle damage assessment, empirical
information about the location, identity, and type of a unit-

information important to targeting-can always be refined with addi-
tional processing, this additional refinement will reflect Blue assump-
tions about Red intent. Further, any requirement to project Red
activity into the future requires targeteers to move beyond the Red
order of battle, necessitating assumptions about Red intent. The use
of collectors that can deliver high-quality information on location in

1For a discussion of the dynamic relationship between basic intelligence data, like
those in an order of battle, and higher level inferences about the total battlefield situa-
tion, see Kahan, Worley, and Stass, 1989.
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near-real-time reduces the importance of inferences about Red intent,
but in almost all cases, they do not eliminate them.

Ideally, then, any analysis of how well an intelligence system works
to support deep fires should consider its ability to assess the situation
on the battlefield, to pick and locate targets, and to assess success
against targets. These things will depend on its ability to maintain an
accurate Red order of battle and high-level inferences about Red
intent. It is much easier to model how an intelligence system develops
and maintains an order of battle than to model how it makes higher
level inferences. For example, it is easy to define a Red order of battle
in terms of a simple list of unit attributes:2

" name (for example, "21st Guards")
" type ("motorized infantry," "command post," or "SA-12")
" echelon ("battalion" or "battery")
" location (UTM or lat-long)
" direction ("east," "west")
" speed (km/h)
* combat effectiveness ("40 percent," "90 percent")
" activity ("tactical assembly," "in march," or "in hide position").

No similar list suggests what it means to determine the Red
commander's intent; predictable examples might include:

" Where is the enemy's center of gravity?
" What is the enemy's principal axis of approach?
* Where and when will the enemy commit its reserves or opera-

tional maneuver groups (OMGs)?
" What is the enemy's principal objective?

But many other questions can be important; and, to be meaningful, the
phrasing of most questions about intent must reflect the context of an
engagement.3 Further, a variety of analytic efforts have been made to
model how an intelligence system develops information on several of
the attributes above. Analysts have not been successful in the far more
difficult task of modeling intent.

As a result, we focus our attention on using the quality of Blue
information about the Red order of battle to measure the performance
of intelligence systems in the deep battlefield. We recognize that this
is a partial measure, but we believe it is worthwhile to examine where
the analytic basis for evaluation is the strongest. Users should k-ep

2U.S. Army, 1987; hereafter FM 34-1.
3Kahan, Worley, and Staz, 1989.
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this in mind when applying this approach in settings where it might
affect the results.

SPECIAL PROBLEMS OF MODELING INTELLIGENCE
DEVELOPMENT IN CENTAG

In U.S. Army doctrine and practice, the corps plays the central role
in developing combat intelligence on the battlefield situation and tar-
gets. It controls substantial collection and processing assets and coor-
dinates the development of an order of battle for the entire corps sec-
tor." Hence, it is natural to direct any modeling effort to the corps.
First, however, it is important that a focus on the corps will promote
our general interest in the U.S. Army's use of the ATACMS to pursue

Ndeep battle in Central Europe. A review of the corps' role in develop-
ing intelligence relevant to the deep battle in NATO's Central Army
Group (CENTAG)5 will begin with a discussion of some basic aspects
of intelligence development in CENTAG and their implications for
modeling.

Intelligence Development to Support Deep Battle

Two special aspects of deep battle are important in CENTAG. The
first is the question of who has primary responsibility for maintaining
intelligence on the portion of the battlefield relevant to the ATACMS.
The second is who has collection and processing capabilities to develop
such intelligence. Those responsible for maintaining intelligence do
not always have their own capability to develop it.

CENTAG oversees the development of intelligence in its entire area
of interest. To do this, however, it depends on its subordinate com-
mands to develop intelligence within their "areas of responsibility."
Divisions are responsible for developing intelligence on the area within
the Fire Support Control Line (FSCL). They report an aggregated ver-
sion, typically an order of battle at the regiment/brigade level,6 to their

4The organization and operation of a corps are not nearly so standardized as the orga-
nization and operation of units at lower echelons are. Nonetheless, the Army does pro-
vide a useful description of typical military intelligence activities at the corps level in FM
34-1.

5in wartime, the two U.S. corps currently stationed in Europe, V and VII Corps, are
constituent commands within CENTAG. In the event of war, U.S. MI Corps would pro-
vide a reserve for NATO's Northern Army Group (NORTHAG). Although much of our
discussion could easily apply to either army goip, our discussion of specific institutional
arrangements concentrates on CENTAG.

Wfhmn developing an order of battle, each echelon typically maintains detail at two
echelons below its own level4,

I
L
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superior corps. The corps have an area of responsibility that extends
to the Reconnaissance Interdiction Planning Line (RIPL). They take
in division information and add their own intelligence on the area
between the FSCL and RIPL, aggregate their order of battle to the
division level, and send it to CENTAG. CENTAG takes responsibility
for developing intelligence on the area beyond the RIPL. In sum,
intelligence at the CENTAG level is a patchwork of information from
subordinate commands and information it develops on the area beyond
the responsibility of those commands. An analogous situation exists at
each subordinate command.

The portion of the battlefield of greatest concern to this study
extends from the deep portion of the division area of responsibility to a
point beyond the RIPL. That is, deep battle planners give increasing
attention to operations forward of the FSCL. The ATACMS will also
be effective on targets beyond the FSCL in a large portion of the corps
area of responsibility. To choos? targets, Army commanders need
situation assessment information on portions of the battlefield that
extend to an area beyond the RIPL. Technically speaking, then, divi-
sions, corps, and CENTAG itself have responsibility for developing
intelligence on portions of the deep battlefield. CENTAG is primarily
concerned with situation assessment.7 Corps and divisions must con-
sider situation assessment and targeting information.s

Three different kinds of problems arise when we move from this
division of responsibility to the development of combat intelligence.
First, CENTAG has few organic assets to use to develop intelligence.
It relies primarily on U.S. and German assets, which are beyond its
direct tasking control, to collect and process information on the portion
of the battlefield beyond the RIPL. As a result, CENTAG is a con-
sumer, not a producer, of whatever intelligence is available in this por-
tion of the battlefield. CENTAG also relies on the national assets of
its subordinate commands for information inside the RIPL. This
raises the second problem. The technical collection and processing
capabilities of the U.S. corps exceed those of their neighboring non-
U.S. corps and procedures, and facilities do not exist to allow rapid

7CENTAG, in coordination with the 4th Allied Tactical Air Force (4ATAF), chooses
targets for aircraft at fixed locations on the deep battlefield. For the ATACMS, however,
CENTAG's primary intelligence concern would be situation assessment.

OWhether CENTAG or the corps will control the employment of ATACMS has not
been settled. At this time, CENTAG and 4ATAF will probably plan the deep battle, and
the corps will execute the Army's part of it. CENTAG will specify goals and the corps
will operationally control the ATACMS, translate CENTAG goals into specific missions,
and execute the missions. Our discussion assumes this distribution of responsibility.
Either way, however, CENTAG remains responsible for maintaining a situation aess-
ment beyond the corps area.
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communication of intelligence information between corps. Hence, the
quality of intelligence is likely to change as we cross corps boundaries
within the RIPL. Finally, the U.S. Air Force has collection assets that
can make a major contribution to intelligence on all parts of
CENTAG's deep battle area. Difficulties exist in getting requests for
U.S. Air Force data from the U.S. Army and other nations' forces to
the U.S. Air Force and in getting data back in a timely manner. Coali-
tion and joint planning have created a complex net of formal and infor-
mal channels for moving intelligence information and requests for
information within CENTAG and a strong preference within each U.S.
Army command for focusing its intelligence development on informa-
tion from organic assets.9

The All-Source Analysis System/Enemy Situation Correlation Ele-
ment (ASAS/ENSCE), 10 scheduled for full introduction into the Euro-
pean theater during the next decade, will address only some of these
problems. Many expect ASAS/ENSCE to make dramatic improve-
ments in the speed of developing and distributing intelligence products
and in their precision. This may well be true within U.S. corps sectors.
ASAS/ENSCE continues the Army's emphasis on the corps as the cen-
tral player in intelligence development. It will also improve coordina-
tion between the U.S. Army and the U.S. Air Force. But it is not
designed to develop or manage information on areas beyond the U.S.
corps area of responsibility or to coordinate communication on non-
U.S. corps sectors or NATO areas beyond the RIPL.n In fact, it is not
designed to facilitate cross-corps communications that could be critical
to deep battle.

Basic Institutional Factors Relevant to Modeling

These factors can complicate efforts to model effective communica-
tions or priorities determination within the CENTAG intelligence "sys-

OFor a useful discussion of these issues, see Kahan, Worley, and Stasz, 1989.
'°ASAS/ENSCE is a developmental system of hardware and software that is expected

to automate many aspects of communication and data management for intelligence
activities within a corps. The Army and Air Force are jointly developing this system
through the Joint Tactical Fusion Program.

"Because ASAS/ENSCE is not a mature system, it is hard to predict either what it
will look like in Europe or how well it will actually perform. In all likelihood, it will
evolve over time and adapt to the European setting. For example, the U.S. Echelons-
Above-Corpe Intelligence Center (EACIC) has had an effort under way for several years
to develop what has been called a European ASAS. It is primarily a communication and
data management system designed to improve communication beyond the corps contax
This system is not being closely coordinated with the development of ASAS/ENSCE in
the United States.
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ternm " and the way these affect the quality of intelligence in different
parts of CENTAG. To see this, consider the simplest aspect of model-
ing intelligence development within CENTAG-a single U.S. corps-
and then look at what happens when we go beyond a corps sector
within CENTAG.

To a first approximation, we can model one U.S. Army corps area of
the deep battlefield without reference to non-U.S. or Air Force assets.
The Army organizes its combat intelligence system in Europe around
the corps. Each corps has all the collection and processing assets it
needs to develop situation assessment and targeting intelligence on a
large portion of its area of responsibility in the deep battlefield.
Although Air Force aerial platforms, U.S. satellites, and German
human intelligence (HUMINT) enhance this intelligence, each corps
relies primarily on its own assets and can develop credible intelligence
using only those assets. A standard U.S. corps intelligence system
exists. U.S. corps are deliberately designed not to be standardized, and
each U.S. corps with responsibilities in Europe develops combat intelli-
gence on the deep battlefield in a different way, raising difficulties for
the modeler even in this simple case.

Suppose now that we want to model situation assessment beyond
the RIPL. Corps collection assets are not nearly so useful at this dis-
tance. CENTAG must rely heavily on German HUMINT and on tech-
nical intelligence from the EACIC and the U.S. Air Force, which use a
variety of U.S. collection and processing assets to develop intelligence
on the very deep battlefield. In formal protocols, if a U.S. corps wants
information from the EACIC, it asks CENTAG for the information.
Then through NATO channels, CENTAG determines whether the
EACIC is the appropriate source and, if so, forwards the request to the
EACIC. In fact, each U.S. corps is in constant contact with the
EACIC, and informal requests and data flows are typical. German
corps have only the formal channel of communication; they have simi-
lar informal ties to their own national sources, organized within their
intelligence systems, that U.S. corps cannot exploit.

Suppose we are interested in modeling the use of a U.S. corps'
ATACMS in another corps sector, which can substantially increase the
usefulness of the ATACMS. However, intercorps intelligence develop-
ment and communication are not as good as that within a corps.
Because the corps represents the heart of the U.S. Army intelligence
system and corps intelligence systems are not standardized, they are
not well designed to accommodate communication and coordination
across corps sectors. Even coordination between U.S. corps is difficult.
For example, V and VII Corps maintain different situation assessments
of common regions of the deep battlefield and make few attempts to
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coordinate them in peacetime or in exercises.12 Coordination between
U.S. and non-U.S. corps is even harder. Because German corps put
less emphasis on deep battle than U.S. corps, they put fewer resources
into assessing the deep battlefield and fewer still into developing tar-
gets there. They would simply not be prepared to provide the informa-
tion required, in a timely way or in the detail required, to facilitate
employment of ATACMS in a U.S. corps sector against targets in a
German corps sector. This will be true whether decisions on the use of
the ATACMS occur above the level of U.S. and German corps, at
CENTAG, or at the U.S. corps itself.

These examples tell us that very different levels of quality can exist
on different parts of the CENTAG deep battlefield because of differ-
ences in the resources available to develop intelligence and differences
in access to these resources. Different levels of quality can persist for
different users within CENTAG on any part of the battlefield as much
from behavioral and political considerations as from engineering or
technical aspects of intelligence development. Any model attempting
to capture such differences must reflect a subtle institutional
knowledge of intelligence development in CENTAG.13

Implications for Modeling

CENTAG is a complex setting with heterogeneous intelligence capa-
bilities and priorities. For our purposes, we must understand intelli-
gence development within a U.S. corps. The first point that a modeler
must settle is how much institutional detail on intelligence activities
beyond the U.S. corps is really necessary. If the primary interest is
targeting, perhaps a model of a single corps area, with some allowances
for Air Force and perhaps satellite assets, will suffice. For a full under-
standing of the situation assessment that underlies target choices, addi-
tional information on the EACIC, the collectors and processors it uses,
and its formal and informal links to CENTAG and the U.S. corps is
important. Shallow fires require emphasizing certain division collec-
tion and processing assets. Cross-corps fires need detail on differences
between corps and their interactions. We need not develop two com-
plete models for the corps involved, but the nature of inter-corps com-
munication and some basic notion of their relative capabilities and
priorities will be important.

lITLey do not share areas of responsibility. But they have both chosen to maintain
their own orders of battle on portions of the battlefield beyond their areas of responsibil-
ity. CENTAG uses only the information that each corps develops for its area of respon-
sibility.

ISAlthough CENTAG has a particularly complex institutional setting, institutional
factors should be important in other combat organiations as well.
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Different parts of a study may examine each of these questions. In
that case, we may want more than one model. Each would require a
strong representation of intelligence development within a U.S. corps.
Beyond that, considerable variation could be desirable. This would be
easiest if a single underlying modeling approach could be used to
develop them all. A flexible modeling system might use different con-
figurations of collection, processing, and communications assets, cou-
pled with differing priority systems, to represent these variations.

Intelligence systems that support the ATACMS in the future could
be very different from those we observe today. We have already men-
tioned that ASAS/ENSCE is expected to change radically information
management within corps. Other innovations, such as quick-fire chan-
nels and unmanned aerial vehicles (UAVs) carrying near-real-time col-
lectors, could have a similar effect. So could reorganizations within
CENTAG. The future holds great potential and a modeler should be
prepared to consider many variations on that potential. A flexible
model should be detailed enough to accommodate alternative assump-
tions about individual elements of the intelligence system and institu-
tional factors that organize it.

This line of argument suggests that information on current intelli-
gence development within CENTAG is not particularly useful. In fact,
despite the best laid plans, important elements of the U.S. corps intel-
ligence and communications systems in CENTAG date back to the
Korean War. Changes over the next decade should be similarly evolu-
tionary. Certainly, institutional difficulties like those discussed above
will take a long time to ameliorate. Any model should be able to
reflect our current understanding of CENTAG; it should also be able to
reflect serious excursions from current practice. This reinforces the
need for a flexible model that can be varied at different levels of detail.

THE KEY: EFFECTS OF INCREMENTAL CHANGES
IN INTELLIGENCE SYSTEMS

How changes in particular parts of an intelligence system affect the
quality of Blue information on the Red order of battle in the deep battle-
field is the central question of our approach. For example, how would
24-hour availability of data from JSTARS in a corps sector affect the
quality of information on unit location or unit identity in the corps'
deep battlefield? 14  What about 12-hour, intermittent availability?

14JSTARS is the Joint [Army-Air Force] Surveillance and Target Acquisition Radar
System, a radar mounted on a standoff, aerial platform with real-time data links to
dispersed ground stations. It is currently not in the force. If it were added, it should
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Quality can obviously change over the course of an engagement and
differ for different types of units and in different parts of the battle-
field. These differences may be important to policy decisions about the
availability or use of collectors, processors, or communication lines.
Hence, we want to preserve a richness of detail about how changes in
an intelligence system affect the quality of information. By the same
token, wc want to be able to aggregate across these differences, where
they are not important, to generate simpler summary measures of
information quality. Hence, we must measure information quality in
comparable terms across attributes, unit types, locations on the battle-
field, and so on.

To meet these specifications, we employ a carefully detailed, quanti-
tative model of information quality in an intelligence system that
allows us to vary the availability or use of specific elements of the sys-
tem, one at a time. We posit an engagement scenario that describes
how Red units behave on the deep battlefield over the course of an
engagement. Our model simulates the quality of information produced
by a baseline intelligence system in this scenario. We then perturb the
intelligence system to simulate an incremental change in the availabil-
ity or use of a key element. Using the same combat scenario, we gen-
erate measures of the quality of information that this new system pro-
duces. Differences in the quality of information generated by the two
systems measure the effect of the perturbation. By repeating this
sequence under varying assumptions about how the intelligence system
works, or for varying combat scenarios, we can test the sensitivity of
our results in the face of irreducible uncertainties about combat intelli-
gence.

OTHER WAYS TO EVALUATE INTELLIGENCE SYSTEMS

The approach we present is only one of several that analysts have
used to evaluate the performance of intelligence systems. Others have
been used and we can compare them with the Red order of battle
approach.

An engineering approach emphasizes the technological capabilities of
individual elements of an intelligence system or simple combinations.
For example, it might consider the resolution of a sensor or a sensor's
ability to discern a particular object on the battlefield given its resolu-
tion. Similarly, it might consider the data flow rate, queuing, and

make a large contribution to the quality of information on location and almost none to
the quality of information on unit identit3, knowing that is fundamental to knowing the
incremental value of JSTARS to an intelligence system.
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delay time on a specific communication link or in a specific intelligence
processor. In some cases, it might involve the performance of a set of
components. For example, it could consider the compatibility of sen-
sors, communication links, and processors in a "single thread" and
their joint ability to convey to a central location a message about a
specific thing on the battlefield. Such analyses are most useful in set-
ting the technical specifications for individual components of an intelli-
gence system or tuning these components to assure that they perform
as well as possible together.

A connectivity approach views an intelligence system as a network
that passes discrete messages from place to place. Nodes typically
represent sensors or processing activities; arcs typically represent gen-
eralized communication links between these nodes. Nodes do not alter
messages in any way, and representations of such nodes convey no
information about physical or human assets that might be present at a
sensor or processor site. Delays need not even occur in passing mes-
sages through nodes. Arcs may convey information on alternative links
between two nodes, but they typically do not reflect detailed engineer-
ing data on every link. Such a network depiction allows analysts to
examine how messages move from one node to another. It is most use-
ful in studying how fast information can move and how robust infor-
mation flow is in the face of combat damage or reliability considera-
tions.

A combat outcomes approach considers intelligence activities from an
entirely different perspective. If the two approaches above emphasize
inputs to an intelligence system, this approach considers the ultimate
output of an intelligence system-how it affects combat outcomes. It
includes an intelligence module as one of many components in a com-
bat simulation. It then alters parameter values or rules within the
intelligence module and observes how these changes affect the final
outcome of simulated combat. The intelligence module can be very
detailed or fairly simple."5 This approach is most useful when compar-
ing the efficacy of investments in intelligence and nonintelligence com-
bat capabilities that both contribute to total combat effectiveness. It is
also useful in studying intelligence activities when changes in them
affect combat outcomes enough so that we cannot understand their
total effectiveness without studying how they affect combat. For
example, increased use of airborne collection platforms early in a con-
flict could lead to heavy attrition of the platforms that cripples the
intelligence system later, the opportunity cost of focusing intelligence

"T'wo very different approach.. are offered in Gamble et aL., 1967, who offer a very

detailed approach that ultimately require some human intervention to execute properly.
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assets deep rather than shallow could be small if deep intelligence
allows such heavy attrition or delay of Red units in the deep battlefield
that the close battle becomes considerably more manageable.

Our Red order of battle approach builds on the engineering and con-
nectivity approaches and could enhance the combat outcomes
approach. It emphasizes a particular product of the intelligence system
that contributes substantially to a commander's combat effectiveness.
That is, it asks how well the Blue intelligence system depicts the Red
order of battle and how long it takes for the Blue commander and his
operations staff to become aware of important changes in this order of
battle.

This approach draws on information from engineering and connec-
tivity studies but does not incorporate as much detail as those others
do. It sacrifices details on specific portions of the intelligence system
to gain better understanding of how the system as a whole works. It is
also easier to isolate aspects of an intelligence system's performance
that a commander believes are important than using a combat out-
comes approach would be. It is often difficult to determine the precise
channels through which changes in a single combat capability affect
ultimate combat outcomes, particularly when the combat simulation is
complex, the algorithms and rules in it are not transparent, and out-
comes of the simulation are sensitive to aspects of the scenario that are
important to the combat capability in question. Focusing on a system's
ability to perceive the Red order of battle gives a commander direct
information on the performance of one combat capability-in-
telligence-that he can interpret without having to parse the details of
a combat simulation and decide which parts of it he believes under
what circumstances.

The order of battle approach need not replace the other approaches
that evaluators have used. It complements them by providing addi-
tional insights about the effects of changing an intelligence system.
For example, suppose we are interested in the effects of introducing a
new imagery intelligence (IMINT) system like JSTARS. Engineering
studies are required to choose and configure antennae, analyst posi-
tions, communication protocols, and so on. Connectivity studies can
inform us about what users benefit from JSTARS data and how fast
they get information based on these data. A combat outcomes analysis
can compare the desirability of JSTARS with that of other assets like
attack helicopters or missiles that the United States might buy. The
Red order of battle approach can ask how JSTARS contributes to
situation assessment, target acquisition, and the execution of targeting
plans. It asks how the addition of JSTARS affects needs elsewhere in
the intelligence system and suggests specific activities in that system
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that JSTARS might allow to be replaced without jeopardizing the
maintenance of important intelligence products. Good answers to
questions like these can easily improve the execution of the other
approaches by improving their depiction of the intelligence system as a
whole and how it might change when one part of it changes.

COORDINATION WITH VIC

In executing our approach, we rely on Army models and capabilities.
One way we do this is to make the fullest use possible of the Army's
Vector-in-Commander (VIC) corps combat model."' The Army has
chosen VIC from among several models to be the official corps model it
will rely on for scenario development, combat modeling, and other pol-
icy analysis.

Using VIC offers several benefits. First, the TRADOC Analysis
Command (TRAC) has used VIC to develop some authoritative Central
European combat scenarios for U.S. corps. The Army currently uses
these models in its force development activities; VIC allows us to use
these scenarios as well; we therefore do not need to develop scenarios
and we use assumptions consistent with those that underlie Army plan-
ning. Second, VIC generates a detailed account of how Red forces
behave in the deep battlefield that we can use as a basis for empirical
input to the Blue intelligence system. It is the only corps model we
have seen that provides the depth of detail on Red status that we
believe is needed to model Blue intelligence assessments of Red
status. 17 VIC also provides a method for modeling Blue's use of collec-
tors and their information, and it embodies standard Army assump-
tions about the performance of these sensors; we have found that these
assumptions provide a useful baseline for our own analysis.

We have carefully tailored our approach to exploit VIC wherever
possible, although our approach is not totally dependent on VIC.
Without changing its basic structure or logic, our approach could be
tailored to use information from alternative combat models that gen-
erate information on Red activity and Blue's collection efforts against
this activity. The Army will undoubtedly consider new corps models in
the future, and our approach could be tailored to these new models
without serious difficulty.

1V IC combines the Vector Research Corporation ground combat model with the
Commander air model to repreent the full range of AirLand Battle functions in the con-
text of a U.S. corps bettle. For documentation, see Gamble at eL, 1967.

171t provides continuous information, through the course of an engagement, on all of
the attribute listed above for each Red unit. It also models every Red unit type likely to
offer a good target for the ATACMS
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SUMMARY

To support its efforts in the deep battlefield, the U.S. Army needs
good information on the general battlefield situation and the location
of targets for deep fires. It uses a complex system of intelligence sys-
tems to generate this information. These include collectors, processors,
and communication lines. We seek a method to evaluate the effects on
potential performance of incremental changes in combinations of these
systems.

We focus on the intelligence system in a U.S. Army corps. The corps
lies at the heart of the Army intelligence system, and any view of how
the Army might use the ATACMS in Central Europe emphasizes the
importance of the corps intelligence system to support that use. A
complete intelligence system, however, must consider elements outside
a corps. Our approach allows a wide range of variations on a corps
system within a common modeling environment. The simplified
"corps" system we present here to illustrate our approach includes a
joint system, the JSTARS, that in fact lies beyond the corps' complete
control. We could just as easily add other elements in a similar way.
More generally, the approach is extremely flexible and can model con-
figurations of corps intelligence systems and many extensions beyond
them.

Our approach uses the quality of a Blue intelligence system's informa-
tion on the Red order of battle in the deep battlefield to measure the per-
formance of the Blue intelligence system. It allows us to vary the availa-
bility and use of elements of an intelligence system one at a time and
simulate the effects of these variations on the quality of Blue informa-
tion about the Red order of battle. By comparing the quality of infor-
mation generated by intelligence systems with different configurations,
we can measure the effects of their differences. We can also determine
how sensitive differences in information quality are to variations in
assumptions about how intelligence systems work or to circumstances
on the deep battlefield.

Other methods can be used to evaluate intelligence systems.
Engineering methods tend to examine individual components of an
intelligence system and judge them in terms of technical criteria, such
as resolution. Connectivity methods focus on how the elements of
intelligence systems are linked together and ask how fast discrete mes-
sages can flow through them. Combat outcome methods view intelli-
gence systems as one component in a total force and ask how changes
in intelligence activities affect the final outcome of an engagement.
Our approach complements these alternatives, drawing on ernneering
and connectivity studies for its inputs and offering more detailed results
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on intelligence quality per se than combat outcome methods offer. Each
approach is designed to answer different kinds of questions.

We rely as much as possible on existing Army models and capabili-
ties mainly by using the Army VIC corps combat model to simulate the
behavior of Red units in the deep battlefield and to simulate collection of
primary intelligence on this behavior. VIC allows us to use authorized
Army scenarios and facilitates our efforts to incorporate Army assump-
tions about combat intelligence into our analysis. We could use other
simulations of Red unit behavior and Blue intelligence collection to
implement our approach.



HI. MODELING INFORMATION FLOWS
IN AN INTELLIGENCE SYSTEM

Broadly speaking, an intelligence system gathers diverse information
on specific aspects of what Red is doing on the battlefield and uses this
information to infer a more complete picture. Both the information
and the processes that Blue intelligence uses to do this are complex.
Blue intelligence effectively must split this job up and move informa-
tion from one activity to another in an attempt to improve its informa-
tion on Red behavior. We want to understand how changes in ele-
ments of a Blue intelligence system change its activities and how these
changes affect the quality of information that it produces. For analytic
purposes, we can split our inquiry into two closely related questions.
First, how should we model information flows through a Blue intelli-
gence system and the factors that affect this information flow? And
second, as information flows through, how should we model changes
and factors affecting changes in its quality?

A CONCEPTUAL VIEW OF INTELLIGENCE
DEVELOPMENT

For our purposes, an intelligence system includes collectors, proces-
sors, and communication systems. The process that such a system uses
to develop intelligence can be quite complex. But it is possible to cap-
ture the essence of intelligence development in such a system in fairly
simple terms. To see how, let us review first how information flows
from place to place in an intelligence system and then how information
flows over time in a system.

The Structure of Information Flows

Figure 1 uses a simple "single-thread" system to illustrate the key
information flows in an intelligence system. Information flows from
the battlefield to a final user through a single channel of communica-
tion. Letters in parentheses identify key steps in this flow.

Step A. The intelligence manager distributes information on collec-
tion and processing priorities, which reflect the goals and priorities of
the user, presumably the commander. For our purposes, however, the
manager is the ultimate source of all information in the system on

20
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Fig. 1-Basic data flows in intelligence development

priorities. In particular, the intelligence manager tells the collector
where and when to deploy in the future and what to look for. It tells
the processor what is important and how to commit its resources when
transforming new information into new conclusions. Step B. The col-lector gathers information flows from the battlefield and filters this
information. The collector places a portion of it in the communica-
tions system to convey it to its processor. Step C. On the basis ofinstructions from the collector, based in turn on priorities set by the
intelligence manager, the communications system conveys the most
important, "high-priority" information to the processor first. Step D.
The processor update its files, draws conclusions, and places relevant
conclusions in the communication system to convey to its user. Again,
it can process the most important information first and most
thoroughly, convey conclusions based on this first, and instr-ucL the
communications system to give high priority to important messages to

d the user. Step E. The communications system sends relevant conclu-
sions to the user in accordance with instructions from the processor.
Step F. The user determines what additional information it requires
and sends feedback to the intelligence manager. The intelligence
manager translates the user's information needs into instructions for
the collector and processor to start over again.

lit'0 W (a).. . .
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The most striking aspect of this system is that, during any step,
information flows in only one direction between any two elements of
the system. In practice, processors will query collectors directly for
clarifications; similarly, users will query processors directly. Our
representation implicitly views such queries as microprocesses below
the level of concern. They simply facilitate the development and flow
of information in one dominant direction between elements of the sys-
tem.1 Although they can be critical to assuring the integrity and effi-
ciency of the system as a whole, we do not have to understand them in
detail to understand how new information from the battlefield
progresses through an intelligence system, updating its databases, and
how users convey their new requirements back to collectors and proces-
sors.

In this view, then, an intelligence system moves information in a
closed loop. It receives priorities from a user, uses these priorities to
collect and process information, and conveys conclusions based on
these priorities to the user, who then initiates a new cycle. This basic
cycle lies at the core of any combat intelligence system, no matter how
complex. Our model is a slight variation on it. It is still important to
understand other aspects of intelligence development; but we can
model any combat intelligence system by placing one or more cycles
like this at the heart of the model.

When the intelligence system is somewhat more complex, consider a
system with three collectors, three processors, two users, and more
than one intelligence manager. Figure 2 illustrates the information
flows in this system.

Step A. In a more complex system, we can expect more than one
intelligence manager. In Central Europe, for example, the Blue intelli-
gence system includes U.S. and non-U.S., Army, Air Force, and
"national" intelligence managers. They attempt to coordinate priori-
ties, but in the end each sets specific priorities for the assets it over-
sees.

Step B. Now three collectors receive and filter information on the
deep battlefield. They will typically observe different aspects of it at
different times. For example, one may monitor radio communications
(communications intelligence or COMINT). The next might gather
information on Red radars an hour later (electronic intelligence or
ELINT). The third might use radar to detect and measure the move-
ment of Red vehicles on the deep battlefield at yet another time (one
form of imagery intelligence or IMINT). In each case, however, a col-
lector uses collection priorities to determine where to look, when to

'Cf. Kahan, Worley and Stasz, 1989.
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Information from the deep battlefield

Fig. 2-A more realistic set of data flows in intelligence development

look, and what to look for and filters information before conveying it
to a processor, often with information about its priority.

Step C. The communication system accepts instructions about
priorities from collectors and sends their information to processors.

Step D. The processors integrate the information from these collec-
tors with information in their databases and with one another. They
attempt to construct a coherent picture from information on different
aspects of the battlefield collected at different times. In Fig. 2, two col-lectors feed information to one processor while the third collector feeds
a dedicated processor of its own. Each of these processors accepts
information, processes it into updated information in its database, and
develops conclusions to the third processor. They convey information
on priorities to the communication system that carries these conclu-
sions.

The final processor in Fig. 2 uses new information from other pro-
cessors to update its database and to develop conclusions for its various
users. Different users may require information on different parts of
the battlefield, on only targets or only situation assessment, at
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different frequency rates and levels of aggregation, and so on. The
final processor sorts through these information requirements and
places relevant conclusions, with information on their priority, in the
communication system to convey them to users.

This more complex system differs from the single-thread system in
important ways. Most important, processing occurs in several places.
The system processes information from collectors, develops interim
intelligence products, places them in the communication system to
other processors, develops more refined interim intelligence products,
places them in the communication system, and so on. As a result,
several communication steps can reside within this "processing" step.
Some processors must accept new data from more than one source and
send information to more than one destination. Again, this intelli-
gence system allows communication in only one direction between pro-
cessors. As in the single-thread case, queries move in both directions
between any two elements of the system and are important to facilitat-
ing the operation of the system. But basic, intermediate, and final
inferences about the deep battlefield relevant to users typically move in
only one direction between any two elements, the direction shown in
the figure.

Step E. The communication system accepts instructions about
priorities from processors and sends their information to users.

Step F. Users send updated information on their requirements and
priorities to intelligence managers.

Figures 1 and 2 depict closed loop systems in which information
flows in a dominant direction between any two elements and in a cycle
when all elements are considered. The single-thread system contains
one loop; the more complex system includes many interacting loops.
Any new sighting on the deep battlefield potentially initiates a flow of
information through a collector, one or more processors, to one or more
users who then adjust their needs in a way that affects later sightings,
using the collector that initiated this cycle or some other collector, and
processing relevant to the information collected. Our model uses a
variation on a simple loop like that in Fig. 1 as the basis for a model of
an intelligence system with information flows like those in Fig. 2.

Information Flows over Time

Time is important to intelligence development for two reasons.
First, the environment of an intelligence system changes through the
course of an engagement, and when flows occur affects how they occur.
Second, the information flows above do not occur instantaneously.
Several factors make these flows occur over a period of time.
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Over the course of a dynamic combat engagement, what Blue intelli-
gence can see on the deep battlefield changes and what the Blue com-
mander wants to see on the deep battlefield changes. The first point
means that if collection occurs at different times, it will observe dif-
ferent events on the deep battlefield. The second means that the prior-
ities users set for collection and processing will change over the course
of the engagement, and those will change the priorities they convey to
the communication system. If the intelligence system works well, it
should actually influence the course of an engagement. In a fully
developed model of intelligence development, we would want what Blue
sees on the deep battlefield to depend on past actions of Blue intelli-
gence. Our model stops short of this last feature.

Intelligence activities in a dynamic environment are complicated by
the fact that intelligence development takes time. Each of the steps
above takes time. Good empirical data are typically not available to
say how much time each step takes. And within the intelligence com-
munity subjective judgments about times differ substantially, although
everyone agrees that how much time intelligence development takes is
a critical part of any understanding of an intelligence system. Consider
the factors that contribute to delay in each of the above steps.

Step A. It takes time for the commander's staff to review its situa-
tion and goals and revise its priorities. Under current procedures, the
intelligence system receives and communicates most information on
priorities on a regular schedule; planned communication times facilitate
coordination in complex organizations. One effect of this system is
that time can pass from when the commander revises his priorities to
when his staff communicates these to collectors and processors.

Step B. Collection takes time to plan and execute. In fact, collec-
tion managers usually plan their use of assets several days in advance
and report their schedule to processors so they can know when to
expect certain kinds of information. Again, regularity promotes coordi-
nation even as it limits flexibility and responsiveness. Managers
change this schedule only in response to very high priority requests.
They can change collection priorities within a schedule more easily, but
even this requires lead time to prepare collection software and so on.
Execution also takes time. Airborne collectors, the principal source of
information on the deep battlefield, take time to reach station, collect
data, filter and approve preliminary intelligence products, and com-
municate them to a ground station that can place them in the com-
munication system.

Steps C and E. Today, the largest source of delay in U.S. Army
intelligence systems occurs in the communication systems they use.
The systems typically convey information at a slow rate and are often
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not reliable. Intelligence activities often send messages on more than
one channel to increase the probability and speed with which they
arrive at their intended destinations. On dedicated communication
lines, intelligence messages can compete with one another, slowing
arrival times as loads rise. On common communication lines, intelli-
gence messages compete with other messages and suffer slower arrival
times as loads rise on the communication system as a whole. The com-
munication system uses priority levels to sort messages and place
higher priority messages on faster, more reliable channels.

Step D. Processing takes time. In some cases, processing occurs on
a regular schedule. Hence, a processor may not deal with available
data until the prescribed time arrives, even if resources are available.
In some cases, processors do not deal with new data until enough accu-
mulate to constitute a new batch. And once processing starts, it takes
time. Automated systems can produce interim intelligence products in
fractions of a second; human systems can take hours. When process-
ing resources are strained, new data queue, adding further delays.
Given the resources available, a processor can enhance the quality of
one piece of information at the expense of another by shifting
resources between the two. Information on priorities can encourage
allocation of resources to high-priority information. Applying more
resources to a piece of information, of course, may enhance its quality,
but it may also increase the time required for processing, the processor
must continually make tradeoffs between the use of additional
resources and delays that result to ensure the best use. Priorities can
also override standard schedules and batch practices.

Step F. It takes time for a commander to assimilate new informa-
tion. It is probably not possible to state objectively when a user bene-
fits from a typical new piece of intelligence. For simplicity, we treat
such delays as beyond our purview. A user has new intelligence when
he receives it; the time of his receipt closes each cycle.

When all of these delays are considered, the time required to execute
these six steps, including communication time implicit within the pro-
cessing step, can easily exceed 24 hours; commanders can expect to
plan their actions on the basis of information that is many hours old.
When the situation is changing on the battlefield, such delays greatly
degrade the commander's confidence in his understanding of the situa-
tion, making accurate targeting extremely difficult.

Implications for Modeling

We can make a complex intelligence system analytically tractable by
modeling it in the right way. Our real interest is in asking how the
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availability or use of a collection, processing, or communication asset
affects the quality of information available to users. To answer this
question, we need to reflect the following factors in our model. (1) Any
asset whose effect we wish to model must be included as an entity in
the model. For example, JSTARS could become a "collector." Its
Ground Support Module, which maintains and updates databases based
on JSTARS data, could become a dedicated "processor." (2) We want
to build up information about the system as a whole from information
on its parts. We do not need detailed information about each part; we
need the minimum information required to relate each asset included
to the larger system. (3) Information flows systematically in an intelli-
gence system. To understand how any individual element affects infor-
mation quality, we need to understand how it affects the flow of infor-
mation. (4) We need to know how any part of the system affects the
time required for the whole system to develop information. (5) A
major instrument available to users to affect the performance of the
system is control of priorities. We must be able to show how the sys-
tem responds to different priorities. (6) The performance of an intelli-
gence system will depend on the combat scenario in which we judge it.

KEY ELEMENTS OF OUR MODEL AND

THEIR POLICY RELEVANCE

Network Representation

It is natural to think of the information flows in Fig. 2 in terms of a
network model. Collectors, processors, and users constitute the nodes
in the network. Communication links constitute the arcs that link
these nodes. This is our approach. Any collector, processor, or user
can be represented as a node that receives information along arcs from
one or more nodes and sends information along arcs to zero, one, or
more nodes. We initiate the flow of information by placing new infor-
mation in the collection nodes when collection occurs on the battle-
field. This is the only place that new information can enter. The
model then simulates the flow of this information through the network.
The information that enters a node need not be the same as what
leaves; by definition, processing tends to change the information that
moves through the network. Hence, we are not simulating simple con-
nectivity, but we use a network like those in connectivity studies as a
framework for our own analysis.
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Delays in Processing and Communication

Communication and processing delays slow this information flow.
In the model, it takes time for information entering an arc to cross it.
It also takes time for information entering a processor node to induce
new information to leave the processor. We are less concerned with
what determines the size of each delay than with how delays affect the
performance of the system as a whole. As a result, at any point during
a simulation, we set delay times for each node and arc as simple con-
stants that depend only on the priority of the information passing
through. These constants can take different values over the course of
a simulation; their values cannot respond to outcomes from the simula-
tion.

Messages in the Network

To understand the mechanics of the model, it is useful to think of
each information flow across an arc or through a node as a "message."
A collector receives a discrete "message" from the battlefield. Follow-
ing filtering, it then sends a discrete "message" to a processor. This
processor may then send zero, one, or more discrete "messages" to
another processor or a user. This is in fact what occurs in the model
itself. But these "messages" do not correspond to actual battlefield
messages. That is, we are not conducting a connectivity study, which
might look at the number of actual messages generated by an intelli-
gence system, the number of bits associated with each message, the bit
rate of each communication arc, and the queuing that results from
actual message flow in the intelligence system. We are instead looking
at messages that move information through nodes or from node to
node via an arc.

These messages push something like an information quantum
through the intelligence system. They process battlefield information
to enhance it and convey the content of new battlefield information or
new processing from one place to another in the network. In effect,
they allow one node to tell another, "Our image of the battlefield has
changed and we think you should know how." A message that conveys
information along an arc from one node to another might correspond
to many real messages required to achieve this transfer. For example,
one node could send a preliminary message that the receiving node
routinely ignores. Or the receiving node might require two messages
about a change before it responds by accepting the information; our
model would represent this transfer in terms of one message and por-
tray the delay between real-life messages as processing delay in the

.I
I
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receiving node. Similarly, a receiving node may typically back-brief
what it has received before accepting it.2 The exchange associated with
a back-brief could generate several messages in both directions; our
model would include only one message that moves a quantum of infor-
mation in one direction.

Our messages are also much more focused than messages in an
actual intelligence system. In our model, each message signals a
change or transfer of information about an individual Red unit-
attribute. We define information on a unit-attribute as a statement
about one of the following attributes of a specific Red unit: name,
type, echelon, location, direction, speed, effectiveness, or activity.
These are the basic attributes relevant to the Red order of battle. A
single real message in an intelligence system would typically concern
information relevant to several of these on several Red units. In fact,
the real message traffic in an intelligence system typically concerns
much greater detail. It may count trucks, identify technical charac-
teristics of radars, or indicate a speaker's nationality. Although such
detail is obviously critical to the real operation of an intelligence
system-in a sense, the manipulation of such detail is intelligence
development-it lies beneath the level of our analytic concern.

In sum, the messages that move information around our model
really bear little practical relationship to the messages in a real intelli-
gence system. Collectively, they convey the same information that
messages on a real system convey. But their size, content, and number
differ radically.

Priorities

The discussion above considers two kinds of priorities. The first are
those associated with the timing and location of collection. The second
are those associated with types of information that collectors and pro-
cessors should always give special attention.

We reflect the first kind of priority in terms of a collection schedule.
It defines the specific location and timing of each collector mission in
terms that VIC can accept.3 These include the exact orbit that a col-
lector would fly and the exact times when that orbit would start and
finish. Data that can be placed in VIC also indicate what each collec-
tor can see on such an orbit. They typically indicate a swath of Red

'Component A back-brief. component B on information that B has given A by restat-
ing the information in a form more suitable to A's use and checking with B to ensure
that this interpretation is compatible with the information that B providsd.

t For details, se Gamble et aL, 1987.
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territory parallel to the orbit and bands within the swath (also parallel
to the orbit) showing what percentage of a unit located in that band a
collector can see from the orbit and uses to collect information. The
collection schedule reflects the commander's priorities and resource
constraints on the collection system. We would use a similar approach
if we were to coordinate the model with combat simulations other than
VIC.

We reflect the second kind of priority in terms of specific Red unit-
attributes. The form that these take in our model differs from the
priorities one might find in a commander's Priority Information
Requirements (PIRs) or his targeting priorities; but they are meant to
embody the same information about priorities that a commander con-
veys with these formal instruments. For example, if the commander
determined that the speed and direction of movement of the 5th
Guards Army was a priority, our model would label the speed and
direction of movement of each unit within the 5th Guards Army as a
high-priority information item. If the commander wanted the location
of all major command posts, our model would label the location of each
major command post as a high-priority information item. Such priori-
ties typically change in a regular daily cycle during combat; our model
reflects this by allowing the priority placed on each unit-attribute to
change over the course of a simulated engagement. The values of
priorities cannot respond to outcomes from the simulation.

Feedback Versus Departures from a Baseline

The discussion above raises several opportunities for feedback in the
model. (1) The performance of the intelligence system can influence
the course of an engagement; hence, the intelligence activities that
occur today should affect the Red activity that Blue observes tomor-
row. (2) Even if this were not true, the quality of information
developed today should affect users' incremental demands for informa-
tion and hence the priorities that they set for information development
tomorrow. (3) The amount of intelligence traffic moving on communi-
cation lines should affect the total loads on these lines and hence the
delay times on them. (4) Similarly, the amount of processing
demanded in a processor should affect its load and hence the delay
time associated with processing. More subtly, changes in delay times
among processors could lead managers to shift loads among processors.

Modeling such feedback can be demanding. Even the simplest
feedback-probably that associated with communication loads-would
require repeated computation of a system-wide equilibrium in which
the delay time on each link is consistent with the load on that link.
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We opt instead for simple constants to represent delay time on each
link.

Updating new priorities on the basis of information delivered to
users is an order of magnitude more challenging. We do not develop
information about intelligence products other than the Red order of
battle. Serious updating of information needs would require a broader
inquiry into higher-level inferences about Red intent. Analytic tools
are not available to model the development of higher-level inferences.
Effectively placing their development in the context of statistical deci-
sion theory-asking what and how much information to collect before
making a decision-is too demanding in the absence of a basic analytic
framework for constructing such inferences.

Similarly, predicting the effects of the quality of information simu-
lated by our model on future combat outcomes is still more difficult.
Such an effort would require analysis of higher-level inferences and
their combat value. We have not found adequate analytic tools to
model either.4

The alternative approach we have adopted is consistent with our
desire to measure the effects of incremental changes in an intelligence
system. Suppose we are interested in the incremental value of a new
collector. We first represent the intelligence system as it would work
with that collector. We simulate an engagement and determine what
Red units do on the deep battlefield. As part of this, we set a cllec-
tion schedule and set of priorities for unit-attributes consistent with
Cie information a Blue commander would want during this engage-
ment. We determine the delay times that would occur on communica-
tion links and in processing activities over the course of the engage-
ment. We then fix the time series for all of these factors through the
course of the engagement:

* behavior of Red units
" collection schedule
" priorities on unit-attributes
" delay times in processing and communication.

This forms a baseline. We use it to simulate information flows
through the intelligence system and measure how they affect the qual-
ity of information that the system yields. Given these times series, we

'Work is underway at RAND to model such feedbacks. It uses an accounting frame-
work that accommodate fairly simple subjective judgments about how inteUiwce
development affects the quality of higher-level inferences and assumptions about how
that ailects combat outcomes. Although this appach can be useful in answerni some
questins, we do not expect it to help us address our main concerm the effect of ince-
mental change in the Army's intefigence system on its ability to pusue deep battle.
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now remove the new collector and simulate information flows again.
We compare the resulting measure of information quality with that for
the baseline and use it as a basis for judging the incremental value of
the new collector. Similar adjustments relative to this baseline could
be used to judge the incremental value of new processors and commu-
nication lines.5

When a new system has a small effect on the scenario as a whole,
such an approach yields a good approximation of the measure we would
get if we modeled all feedbacks in the system completely (and pro-
perly)." As effects become larger, the approach becomes suspect. It
should not be used to compare the performance of fundamentally dif-
ferent intelligence systems.

We recognize, then, the importance of a wide range of feedback
loops in the development of intelligence. But we do not have analytic
tools to help us to predict how changes in an intelligence system would
affect each of these feedbacks. Whatever baseline case we use must
adequately reflect the effects of such feedback. We have chosen an
analytic approach that allows us to capture all effects of such feedbacks
in the baseline itself.

If we cannot model these feedback loops, how can we determine
what feedback should occur in the baseline? The simple answer is that
we rely on military judgment about some feedbacks and use sensitivity

analysis to examine the importance of others. VIC embodies military
judgment about the feedbacks of information quality on collection

fthe approach is analogous to the use of a Paaache index to measure price, quality,
and welfare changes in economics. For example, to measure the aggregate change inprice level in the economy, a Peasche index would hold constant quantities following the
change and use them to weight price changes. Our approach similarly holds constant awide range of variables at their values after a change and uses them to judge the effect of
a selected change in the intelligence system on the quality of information it produces.
An approach analogous to a Laspeyres index, which holds constant circumstances before
a change to judge the effects of that change, could be equally appropriate for our
analysis. Where we expect a change to have large and widespread effects, Laspeyres and
Panache analogs could be used to bound the size of the effect of information quality that
interests us. Although our approach could allow such an approach, the construction of a
baseline based on VIC is cumbersome and demanding, we concentrate on the Panache
analog for now.

61n essence, we are using analogs to the first-order terms of a Taylor series expansion
around the baseline case to approximate the effects of a departure from the baseline cam.
If M were a figure of merit, M - f (xil ... , x), where xi are measures of inputs relevant
to collectors, processors, and communication links, and f ( ) were suitably well-behaved,

AM - IfjAxi + f,

where e is a sum of higher-order terms that are close to zero, unless changes in zi signifi-
cantly affect f1 and Axi are large. Without claiming that we are using a well-behaved
function f ( ) that translates policy-relevant changes in an intelligence system into
changes in a figure of merit, we can say that our approach uses similar logic.
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schedules and information quality on combat outcomes. Each VIC
scenario is carefully crafted, using extensive human intervention, to
ensure that it is consistent with prevailing military judgment.7 A simi-
lar effort could be used to set priorities for unit-attributes that are con-
sistent with a scenario. Military judgment does not offer a consensus
on delay times in processing and communication.8 In all likelihood, a
range of delay times should be simulated as part of any analysis. The
range of basic uncertainty probably exceeds the change in these delay
times that might result from an incremental addition to an intelligence
system. Uncertainty about delay times almost certainly exceeds the
size of any feedback effects relevant to delay times.

In sum, VIC provides a great deal of information about the baseline.
We could rely on alternative combat simulations if that were appropri-
ate. If we can assume that VIC handles feedback in a way that satis-
fies military judgment, this approach allows us to avoid modeling feed-
back effects. However, this approach is not appropriate to judge the
effects of changes in the intelligence system that could influence the
underlying scenario.

AN INTEGRATED VIEW OF INFORMATION FLOWS

Figure 3 presents a network diagram of the simplified system. It
includes four collection sources, six processors, 12 communication links
(labeled, "Ci"), and two users. Table 1 explains the collectors, proces-
sors, and users. For our purposes, GRCS will generate three data
streams, and we model them as though they were from separate collec-
tors. JSTARS, which the Air Force will actually operate, is expected
to allow full Army participation in its use and to be well integrated
into corps intelligence development. Systems over which the Army has
no direct control could be represented just as easily. The processors
and their connectivity in the system are notional; exact, planned
arrangements in the U.S. corps could be represented in a network
model without any more complexity than that shown here.
ASAS/ENSCE would presumably be composed of a similar set of

7That is not to say that VIC's treatment of these feedbacks could not be improved.
The TRADOC Analysis Command (TRAC) at White Sands Missile Range, New Mexico,
is pursuing a program of research to develop improved intelligence models that can be
applied within the context of VIC. As such improvements occur, we expect to be able to
use improved output from VIC that better reflects feedbacks of this kind.

sEmpirical data on current delays in European command poet exercises and planning
factors for improvements planned for the mid-1990s range over two orders of magnitude
or more. Based on our interviews in Europe, informed judgments on likely delay times
in the mid-1990@ range over more than an order of magnitude.
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processors and the software they use to communicate and manage each
4 others' data. Links to users reflect the delay times before intelligence

products reach the people who need these products to support the corps
commander or use the ATACMS. Communications link C12 contains

a quick-fire channel that moves data from JSTARS to the corps' artil-
lery system fire control information system and then uses that system
to move data to a prearranged ATACMS launcher on hot stand-by.

The elements of the network diagram in Fig. 3 look quite similar to
the nodes and arcs associated with Steps B through F in Figs. 1 and 2;
Fig. 3 does not capture Step A, which moves information on priorities
from users to collectors and processors. Because we do not explicitly
model the feedback processes in intelligence development, we do not
treat such an information flow as part of the network model that we

4[ develop.
In our model, the intelligence system shown in Fig. 3 moves infor-

mation from the top nodes to the bottom nodes in the context of an
Sexternal environment that has four basic elements:

te The behavior of Red units on the deep battlefield, or Red

"ground truth." VIC generates this information in the course of
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Table 1

ELEMENTS OF A SIMPLIFIED CORPS INTELLIGENCE SYSTEM

Element Name Description

Collectors

GRCS-COMINT-intl GRCS COMINT internals.
GRCS is a future Army aerial platform that will carry
COMINT and ELIN4T collectors. This is the data feed
on the internal content of COMINT.

GRCS-COMINT-extl Data feed on the external signatures of COMINT from
the GRCS. It comes from the same sightings used for the
data feed above.

GRCS-ELINT ELINT data from GRCS. It comes from the same
orbits used to generate the data feeds above, but not
necessarily the same individual sightings.

JSTARS-MTI JSTARS Moving Target Indicator, a future joint
Army-Air Force form of radar IMINT collector.

Processors

talk-processor Ground station with interpreters of the content of
COMINT internals.

com-extl-procesor Automated correlator for COMINT external signatures.

ELINT-processor Automated correlator of ELINT data.

MTI-processor Ground Support Module (GSM) for the JSTARS MTI.

signal-processor Automated correlator for Signals Intelligence (SIGINT).

ASPS-processor All-Source Production Section (ASPS) of the Corps
Tactical Operations Center (CTOC).

Users

corps-commander G-2 (intelligence officer) on the corps commander's
staff.

arty-commander ATACMS fire unit operator, via the gateway to the
artillery commander's fire control information system.

simulating the combat scenario we use to establish our baseline.
We need run the VIC scenario only once. We place informa-
tion from this run in a file that our simulation can use
repeatedly without running VIC again.9

hWhn appropriate, we can supplement the ground truth included in a VIC baseline
in a way that facilitates study of the effects of deception. We have designed this capabil-
ity into our modeling approach but have not attempted to implement it. The appendix
provides some details.
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* The Blue collection schedule. VIC provides a baseline collec-
tion schedule and utilities that allow the alteration of this
schedule. Alterations can then affect the baseline simulation if
the VIC baseline is unsuitable. Whatever schedule we choose
serves as an input to the baseline VIC sce;iario. Running that
scenario generates a file of information on what portion of Red
ground truth the Blue collection plan detects. Our simulation
can use this file repeatedly without running VIC again.

* The Blue commander's priorities for unit-attributes. For our
model, an order-of-battle specialist specifies these based on
what he observes in the VIC baseline scenario. The model
places these in an exogenous file that our simulation can access
at any time to establish priorities. Priorities can change over
the course of a simulated engagement.

e Delays associated with Blue processing and communication.
We place information on delay times, by priority level, for each
processor and communication link, in .n exogenous file that
our simulation can access at any time. Delay times can change
over the course of a simulated engagement.

In sum, the information reflected in these four elements is not affected
by information flows that we simulate in the network described above.
The information reflected in these four elements, taken together, effec-
tively forms an exogenous environment in which we can simulate infor-
mation flows through the network.

We transform the contents of the file that VIC generates to show
what battlefield information the collection plan has gathered into a list.
The list contains an item for each event and time when a collector
receives new battlefield information on a particular unit-attribute. The
list orders these items by the time of receipt, starting with the earliest.
Our simulation works its way through the list. Each item initiates a
transaction for the relevant collector in our network model. That
transaction initiates a series of transactions that push this new infor-
mation through th, network. Transactions that depend on information
about unit-attribute priorities or delays use information from the
relevant exogenous files to determine their values. Ultimately, the new
information generates transactions that send new conclusions to the
final users in the model. The simulation records information about
these conclusions and the time when they reach each user. It generates
a time series of information about conclusions on each unit-attribute.
We can then analyze these time series to measure the quality of intelli-
gence associated with that unit-attribute over the course of the simu-
lated engagement.

4
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We can indicate how we look at information flows with and without
a particular element of the intelligence system. Suppose we are
interested in how external COMINT data from the GRCS affect infor-
mation flows in an intelligence system. We would analyze this in the
following way. First, create the exogenous environment of Red
behavior, collection, unit-attribute priorities, and delay times. Second,
set up the network shown in Fig. 3 and generate information flows
through it using the external environment. Third, set up another net-
work that excludes the GRCS-COMINT-extl collector. Generate
information flows through this variation on the original network using
the same external environment. Use the difference in information
flows as the first step in judging the contribution of the GRCS-
COMINT-extl collector.

This example illustrates a fundamental aspect of our model. In a
particular analysis, the external environment is fixed once and for all.
It defines an analytic baseline. To change an intelligence system, we
adjust only the network of collectors, processors, and users. We start
with a network that includes all parts of the system we wish to study
and then isolate the incremental contribution of any element in the
system by eliminating it from the network. This approach provides a
simple way to use what can become a rather complex analytic tool.

SUMMARY

This section presents our approach to modeling information flows
through an intelligence system. To model any intelligence system, we
focus on a fairly simple flow of information: information about Red
unit-attributes. That is, any flow of information concerns a unit's
name, type, echelon, location, speed, direction, effectiveness, or
activity. Intelligence managers first send information on priorities to
collectors and processors from users in the form of a collection
schedule and priorities for the collection and processing of information
on specific unit-attributes. Second, collectors gather information on
Red battlefield activity and send it to processors through a communica-
tion system that is responsive to priorities. Third, a series of proces-
sors within the system move information from different places to a sin-
gle processor that develops final products, which it sends to users
through a communication system that is responsive to priorities.
Finally, users receive intelligence products. They (implicitly) then
determine new information priorities.

Our approach reflects a simplified version of the basic cycle implied
by the four steps above. It measures the effects of changes in an
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intelligeWnce system relative to the perormance of that system in a base-
line. The baseline is based on a specific combat scenario, developed by
the Army, and reflects a series of feedback loops that we do not model
explicitly-the effect of the quality of intelligence on combat outcomes,
the effects of communication and processing loads on delays, and the
way information affects users' information priorities. Rather than
model these feedback loops explicitly, we accept the loops as they exist
in the baseline simulation and consider only changes in an intelligence
system that will not change these feedbacks in a major way.

Given this approach, we model information flows from priorities to
collection to processing to users as one-way flows through a network.
The network represents collectors, processors, and users as nodes and
communication links as arcs. We change an intelligence system by
changing elements of this network. Information flows through this
network in the context of an exogenous environment that defines the
analytic baseline. It defines the behavior of Red units on the battle-
field. It defines Blue's collection schedule, initiating information flows
in the network by supplying information on observed unit-attributes to
collector nodes. It defines unit-attribute priorities for collection and
processing that govern how these elements of the intelligence system
treat information. And it defines delays in processing and communica-
tion elements as a function of priority. The behavior of Red units, the
Blue collection schedule, unit-attribute priorities, and delay times
reflect a wide variety of feedbacks that we accept as being modeled pro-
perly in the baseline.

As information moves through this network under any particular
regime of priorities and delays, the intelligence system changes its
quality. Our ultimate interest is in the quality of information reflected
in intelligence products that the system provides to final users.



IV. MODELING INFORMATION QUALITY
IN AN INTELLIGENCE SYSTEM

An intelligence system receives new information about Red units
and uses this information to build increasingly complete intelligence
products that present inferences about the status and behavior of Red
units on the deep battlefield. In this process, we can think of informa-
tion as flowing into the system through collectors and becoming
embedded in the intelligence products that the system generates. At
each point in the system, how much does the new information about a
Red unit-attribute, embedded in the interim intelligence product that a
Blue processor or user receives, contribute to the quality of intelligence
that that processor or user maintains on this unit-attribute?

DEFINING AND MEASURING THE QUALITY
OF INFORMATION

Our analysis revolves around the ability of an intelligence system to
define the Red order of battle during a campaign. In particular, we are
interested in the system's ability to confirm the presence of Red units
on the deep battlefield and determine the values of the important attri-
butes associated with these units.

Consider the value of a particular attribute of one Red unit, a
"unit-attribute value." The record of this value over time effectively
defines ground truth for this unit-attribute. Elements of the Blue
intelligence system-collectors, processors, and users-maintain subjec-
tive probability distributions that define their "beliefs" about this value
over time.

They generally do not do this consciously. For example, a good order-
of-battle analyst, when asked about the identity of a unit, will not
answer, "We believe there is a 45 percent chance that it is the 5th Guards
and a 55 percent chance that it is the 17th Guards, sir." But he will often
say, "It's either the 5th or the 17th Guards, sir. We're getting informa-
tion to clarify that now. We don't want to hazard a guess now, but if you
pressed us, we hold a slight preference for the 17th." And he would
explain why. Order-of-battle analysts do use ellipses to express their
beliefs about the location of certain Red units. If pressed, they will agree
that, say, an 80 percent chance exists that actual location lies within
such an ellipse. Other analysts will agree that they do not post a unit-

39
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attribute value in their databases until they are at least about 80 percent
sure that they have the right value. In sum, although formal databases
generally do not include explicit information on subjective probability
distributions about unit-attributes, good order-of-battle analysts are
acutely aware of the uncertainties they perceive with regard to Red unit-
attributes and the importance of that uncertainty to battle planning and
collection management.

We use an approach based on formal subjective probability distribu-
tions to capture the implications of this more heuristic understanding of
uncertainty for decisionmaking. With this in mind, the best way to
think about how accurate beliefs are in an intelligence system depends
on whether the unit-attribute in question takes categorical or continuous
values.

1

Consider a unit-attribute with categorical values first. This holds for
all the attributes considered in Secs. II and III except location and speed.
How much weight does a Blue element's subjective probability distribu-
tion for this unit-attribute assign to the value that actually defines
ground truth over time? That is, it is natural to suggest that a belief is
more accurate, the more weight it gives to the value of an actual unit-
attribute. With this in mind, we propose the subjective probability that a
Blue element assigns to the value of an actual unit-attribute during a
particular period as a measure of effectiveness for the intelligence prod-
uct that that element maintains on this unit-attribute. For example, if
the name of the unit that order-of-battle analysts above are discussing is
actually the 5th Guards, the quality of information associated with their
beliefs during that discussion is 0.45. Aggregating across unit-attributes
and time can yield aggregate measures of effectiveness for relevant ele-
ments in the intelligence system.

The attributes of location and speed take continuous values. In these
cases, we redefine the attributes to have categorical values by breaking
their continuous values down into discrete ranges. For example, we ask,
"Can Blue target forward elements of the unit with a dumb weapon-
that is, does Blue know location to within 100 meters?" The measure of
effectiveness is the probability assigned to a circle with a radius of 100
meters around the actual "relevant" location. Alternatively, we ask,
"Can Blue target elements of the unit with a smart weapon-that is, does
Blue know location to within a kilometer?" An analogous measure of

'A unit-attribute takes categorical values if the subjective probability distribution that
defines beliefs about it can be expressed in terms of categories--if it is discrete. For
example, a unit is either an armored unit or a motorized rifle unit or some other discrete
kind of unit. A unit-attribute takes continuous values if the subjective probability distri-
bution that defines beliefs about it is continuous. For example, the center of mess or for-
ward elements of a unit can lie anywhere in space; we do not typically measure their
location as being in Location A or Location B.

-----_ _



41

effectiveness emerges. Or we ask, "Does Blue know the general location
of the unit's center of mass-that is, can Blue place it within 10 km?"
Taken together, these three questions could generate a nested set of mea-
sures that assign subjective weight to circles with radii of 100 m, 1 km,
and 10 km. For simplicity, we use only one circle to define the quality of
information associated with location. We apply a similar approach to
spesed.

2

The reason for treating attributes with categorical and continuous
values differently is really that the typical number of categories for
categorical variables is low. For example, direction can be "north,"
"east," "west," or "south." Hence, we are less concerned about the prox-
imity of differing values for attributes with categorical values than for
those with continuous values. If the proximity of values presents a prob-
lem with categorical values, we can look at the subjective probability
assigned to any combination of values for an attribute to examine the
issue of proximity. For now, we will consider only probability associated
with the actual value of such an attribute.

This definition of quality is only one of several that analysts might
consider. For example, an alternative definition might emphasize the
importance of "regret." We could ask how much subjective probability
Blue places on the value of a unit-attribute that would lead to the worst
outcome for Blue planning, given Red's true behavior. The measure we
use is related to such a measure; the more weight Blue places on a true
value, the less it can place on a value that would endanger its planning.
Nonetheless, to determine what values are most damaging to Blue at any
point in space and time on the battlefield, a measure based on regret
would require a sophisticated understanding of the context in which Blue
observes Red unit-attributes. Our approach does not require such infor-
mation.3

2Other approaches are possible. For example, we considered an option that identifies
the parameters of the subjective probability distribution for location or speed and asks
how these change as new information accrues. The approach uses formal statistical
methods to update information about these parameters as empirical data accumulate.
The approach we use is simpler and allows us to use available information on the quality
of collection as well as this alternative would. As better information becomes available,
however, a more formal approach may be warranted. For details, see Bunn, 1984,
pp. 127-141; cf. Hogg and Craig, 1970, pp. 111-114.

31n the context of decision theory, we are making a strong assumption about the loss
fmction associated with information about unit-attribute values. That function takes
one value for correct unit-attribute values (or, for unit-attributes with continuous values
near the correct value) and another value for all other unit-attribute values. This
implicit mumption makes our simplified approach to defining the quality of information
possible. Given the level of detail modeled in our approach, such simplicity is especially
appropriate. While the los function is somewhat arbitrary, then, no alternative is com-
pelling enough for us to sacrifice the simplicity it offers. For a useful discussion of this
issue, sea Zellner, 1987, up. pp. 291-298.
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Some readers have commented that they find "quality" inherently dif-
ficult to imagine quantifying. What we call "good" or "high quality,"
they think of more as sharp resolution, a characteristic that may or may
not be the same as a command staffs general assessment of quality in a
particular situation. The measure we use offers a simple and useful view
of a richer perception of quality. Given the level of detail that we model,
this simplicity is appropriate. Nonetheless, as we discuss levels and
determinants of "quality," we use a very specific definition of the quality
of information.

Our definition of quality raises some specific potential problems that
we can address in the context of our approach. For example, how can we
use this approach to judge an intelligence system's ability to avoid seeing
things on the battlefield that are not there? Radars and radios can easily
generate false images, even when Red does not intend them to. Through
maskirovka, Red can also attempt to persuade Blue that certain units are
present when they are not. At this point, our analysis does not address
these issues. The appendix discusses ways to introduce them by adding
false elements to ground truth. The measure of effectiveness we would
use here is the subjective probability Blue components assign to the
hypothesis that these observations are in fact false. That is, within the
context of our model, we should be able to judge Blue's ability to recog-
nize these false images in exactly the same way we judge Blue's ability to

see real units on the battlefield.
Another problem is that values assigned to different attributes of a unit

or to attributes to related units can depend on one another. For example,
if Blue believes the speed of a unit is "zero," Blue should also believe t&at
its direction is "stationary" and that it cannot be engaged in such activi-
ties as "column march."4 Similarly, if Blue sees two similar units on a
major road and believes one is moving at a particular speed, Blue will
probably believe that the other unit is moving at a similar speed. The
approach we propose can allow such dependence, but its presence will not
be immediately evident even if we include it because we do not model
complete subjective probability distributions and the weights given to all
values in these distributions. We consider only the probability assigned
to the actual value of each attribute separately. To the extent that such a
probability depends on probabilities assigned to more than one attribute
in a unit or to a unit-attribute across units, that will have to be reflected
in rules used to update these probabilities. As currently formulated, our
approach does not incorporate such rules.

4In fact, statlonary" is not an alowable value for direction in the modeL We we
only the four a W dirctions to defi dimctio.



43

INTELLIGENCE FUSION IN A COMPLEX SYSTEM

To establish the values of each of the unit-attributes of interest, an
intelligence system must bring to bear information from several sources
and "fuse" that information into a subjective probability distribution.
To do this, elements within a Blue intelligence system continually pose
hypotheses about Red behavior and use empirically based information
to test them. Elements of Blue intelligence maintain complex but typi-
cally implicit models of Red unit behavior that they use to frame
hypotheses about the values of its attributes.5 Blue expects each unit
to have a fairly detailed list of equipment. And given this equipment,
the terrain in which the unit is operating, and what Blue thinks the
Red commander's plan is, Blue expects Red to move and operate that
equipment in a fairly predictable way.

Blue's beliefs about Red can be framed as a set of joint, testable
hypotheses. For example, the All-Source element of the Blue intelli-
gence system may expect a Red unit to move from a bivouac area in a
particular pattern down a road, then deploy off-road in separate
columns and deploy its air defense and artillery units in particular
ways in the terrain it occupies. The Blue All-Source element can then
use HUMINT to monitor the unit's activity and identity as it passes
certain check points, use MTI to watch the unit's movement and
perhaps say something about the kinds of vehicles it has, use ELINT
to watch its air defense deploy, and use COMINT to monitor radio
traffic, looking for the kinds of radios Blue expects this unit to have
and listening for clues about the unit's identity and mission.

We can think of a Blue element's view of this Red unit as a complex
if-then statement. Blue intelligence thinks, "If my HUMINT says X1,
MTI says X2, ELINT says X3, and COMINT says X4, then this Red
unit is Y1, and it is executing a maneuver, Y2, that we would expect if
the Red commander's plan were Y3." In fact, pedagogical discussions
of fusion often explain it in this form: If you observe [X4], then you
can conclude [Yd. This description presents three problems for some-
one attempting to model changes in the quality of Blue intelligence
associated with fusion.

OAs is typically true of experts, order-of-battle anabyst an conu of how their
exets is orgaid in only the rouges ses. They use highly complex models
which thy onull updat, to make sense of the m s of data they must assimilate.
But we can only bein to fathom the structure md nuace of them models throh
detailed questioning about why they make particular decisions. As often as not, they a
explain why they make a particular decision, but they do not consciously execute the
loew they ue to explain their decions when they make them. In sum, the expertise of
order-of-battle anasts is no easier to observe and model than the expertise of the pmc-
titionere of other complex arts.
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First, it presumes that the if-then rule is correct and a Blue element
understands Red well enough to specify precisely how it organizes each
unit and how it uses each unit in any piece of terrain under any plan.
This obviously asks too much. The outcomes may be "likely;-" if so, it
makes sense to ask how much uncertainty remains about conclusions
when all the antecedent conditions are met.

Second, it presumes that a Blue element has all the information
specified by these antecedents with a high degree of confidence. Blue
doctrine recognizes that such confidence is not typical and offers a for-
mal way to specify the quality of information sources.6 It does not
indicate what to do when information is poor. In practice, experienced
order-of-battle analysts become more conservative about their conclu-
sions when they doubt the quality of their information sources.

Third, a Blue element-even the All-Source activity-rarely has all
of the information called for by antecedents, at any level of quality,
and almost never gets all the information at the same time. Order-of-
battle analysts in each element of the Blue system must reach conclu-
sions on the basis of limited information and update these conclusions
as new information arrives. Unfortunately, by that time, older infor-
mation is dated and of less value. At any time, good order-of-battle
analysts recognize that uncertainty about conclusions is unavoidable.

Given Blue's hypotheses about a Red unit, then, Blue has more con-
fidence in its hypotheses, the closer they are to prior Blue beliefs about
how the Red unit would behave, the more empirical information Blue
receives that is consistent with these hypotheses, and the higher Blue's
confidence in the information it receives. Over time, Blue poses
hypotheses, tests them, and alters them to reflect Blue's confidence in
its conclusions on the basis of the information it has. Each Blue ele-
ment uses its limited resources to fuse information in a way that main-
tains as high a level of confidence as possible in important parts of its
Red order of battle.

We cannot attempt to model this behavior in terms of an explicit set
of probabilistic if-then rules for each Red unit and contingency that
each Blue element might anticipate. The complexity of such rules and
of the relationships among the elements of the Blue intelligence system
help explain why tactical fusion is at least as much an art as a science,
and human order-of-battle analysts dominate automated systems in all
but the simplest fusion tasks. Our interest is in the quality of the final
product of a complex process of repeatedly forming and testing
hypotheses; a general understanding of that process can help us posit a

6Order-of-battle analysts do not appea to use this doctrinal method during execue
but they a quite aware of what quality they can expect from ewh of their souree For
the doctrinal approach, a FM 34-1.
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simple set of rules with which to simulate changes in the quality of the
final product. This discussion suggests four simple rules: The quality
of the final product of this process increases as Red units behave more
predictably; increases each time new, relevant, good information
arrives; increases as the quality of new information increases; and
decreases as time passes without new empirical information. A corol-
lary of these four rules, taken together, is that the quality of the final
product of this process can decrease when new information is of low
quality or deceptive.

Taken together, these rules have implications for intelligence fusion
and its effect on information quality that are consistent with those
emerging from viewing intelligence fusion in terms of the following
information flow in a set of databases. Each database contains the
subjective probability distribution that an element--collector, proces-
sor, or user-in an intelligence system maintains for each unit-
attribute. If this database receives no new information, its probability
distributions gradually become more and more diffuse over time. Any
time it receives a new piece of information, it (implicitly) invokes a
probabilistic if-then fusion rule like that posited above. The rule
recognizes the qaality of information residing in the database when
new information arrives and the quality of the information arriving.
This quality and the time it takes an element to transform inputs into
outputs affect the level of confidence it places on its outputs. This ele-
ment passes along information about this level of confidence when it
sends its output to other elements in the intelligence system. The
quality of information that any element receives reflects the quality of
that information when it was generated and how much time has passed
since it was generated.

This logic lies at the heart of our simulation of how information
quality changes in an intelligence system. We focus on the one aspect
of this system that interests us-the quality of information. We mea-
sure this for each Red unit-attribute as the subjective probability that
an element of the system associates with the correct value of that unit
attribute. We think of collectors and processors in the intelligence sys-
tem as production activities that transform the quality of information
they receive into a level of quality for information they produce. That
is, without addressing any of the specific probabilistic if-then rules that
reside in this system or the actual inferences they generate, we focus
on a particular definition of information quality. The availability of a
simple way to degrade the quality of information over time and a for-
mal technique for updating databases that can transform the quality of
inputs into a measure of the quality of outputs makes this possible.
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DEGRADING THE QUALITY OF
INFORMATION OVER TIME

The simple logic above suggests that the quality of information in an
intelligence system should fall as time passes without access to new
empirical information. To maintain good information about a Red unit
over time, Blue must be able to (1) associate new data with the right
Red unit; and (2) given (1), apply these data to its implicit models of
the Red unit to test its beliefs about that Red unit's behavior.7 Both of
these tasks become more difficult as time passes without new empirical
data on the Red unit.

Falling Ability to Infer Red Behavior

Consider first a Blue element's ability to make statements about
Red behavior in the absence of new information. The following defini-
tions will facilitate our discussion. Let At be the actual (categorical)
value of a unit-attribute at time t and p(At) the subjective probability a
Blue element assigns to this value at time t. Suppose the value of At
changes over time. The Blue element can use its (often implicit)
models of a unit-attribute to predict how this change will occur. But
as time passes, the Blue element's subjective probability distribution
becomes more and more diffuse, causing p(AJ to fall.' The better
Blue's model of the unit-attribute in question, the more slowly it will
fall. For example, the values of unit names, types, and echelons are
fairly easy to model because they rarely change; unit speeds and loca-
tions present a more difficult challenge because they can change
repeatedly. Similarly, major command posts may be stable for days at
a time in location, effectiveness, and activity; surface-to-surface-missile
(SSM) launchers may be moving and changing activity from minute to
minute. The point is that information decays at different rates for dif-
ferent unit types and unit-attributes. We allow for such differences in
our simulation. As information decays, the probability that Blue main-
tains accurate information about Red falls.

VFor simplicity, we phrase most of this argument in terms of unit-attributes with
categorical valuem The argument applies equally for unit-attributes with continuoua
valum if we replace "the correct or actual value of a unit-attribute" with "values that lie
within some specified distance of the actual location or speed.* For example, we could
use any location within 100 meters of the true location or any speed within I km/h of
the true speed.

Oln cases where Blue analysts have assigned most of their subjective probability to the
wrong value of an attribute, an increasingly diffuse probability distribution could actually
increase the quality of information as we define it. We expect this to happen in an intel-
ligence system, but we do not expect it to be a typical or dominant occurrence.
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Unit Association

Over a period of time, Blue receives information about any particu-
lar unit from several collectors or from several orbits of the same col-
lector. To bring all of this information to bear, a Blue element must
associate new data with the right unit. The better its ability to do this
properly, the better will be the Blue element's knowledge about units
for which it is acquiring information and the lower will be the probabil-
ity that the Blue element improperly associates these new data with
other similar units nearby, thereby polluting its inferences about these
other units.

A Blue element's ability to associate new data with the right unit
depends on two factors:9 (1) the time that has passed since the ele-
ment last received data on the area where the unit was located, and (2)
the proximity and similarity of units that could be confused with the
unit. We treat (1) as simply as possible. When we examine factor (1),
two effects concern us. One is failing to apply new data on a unit to a
Blue element's knowledge about it. The other is applying new data on
a unit to the element's knowledge about another unit. Whenever new
data become available on a unit, we should expect both factors to pose
a problem for the element's knowledge about that unit. When an ele-
ment receives new data on one unit that it might misassociate with
similar nearby units, it will probably receive new data on these other
units as well. Hence, we can assume that delay times between observa-
tions are similar for all of these units and we can treat both types of
eT iecs on a Blue element's knowledge about any particular unit from
thie point of view of that unit.

The rate at which these difficulties cause the quality of information
to degrade presumably differs across units. The rate is also probably
related to rates for individual attributes discussed above, but these are
likely to differ within any unit. For example, Blue is highly likely to
lose the location of a fleeting target such as an SSM launcher but con-
tinue to know that the unit exists and is active on the battlefield.
Hence, loss of a unit's location should not mean that the unit itself is
lost. However, Blue confidence about a Red unit's name can persist
long after all traces of the Red unit have disappeared from the battle-
field. How to relate these rates of decay requires careful attention.

Exponential Degradation

The processes that lead the quality of information to decay over
time-the fall over time in a Blue element's ability to infer Red

9For a useful discussion of this complex problem, see Blacknm. 1986.
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behavior or to associate data with the right units-are obviously com-
plex. We cannot hope to model them directly. We prefer instead a
simple approach that uses a single parameter to indicate how quickly
quality falls over time in particular circumstances; we use exponential
decay to represent the loss of information that occurs in the absence of
new information or data association: 10

- p(At,) - p(At) exp[D(ti - to)] (4.1)P(At ) " p(At.)

where to and tj are two points in time, no new information arrives and
no data association occurs during the period from to to t , and D is an
exponential decay rate (defined positive) specific to a unit-attribute.11

Using this functional form facilitates calculations we discuss in a
moment. The odds ratios shown +ake values from zero (for p(A) - 1)
to infinity (for p(A) - 0). Note that if a Blue element is ever totally
wrong about a unit-attribute and p(Atu) equals zero, the relationship in
Eq. (4.1) is undefined. For practical purposes, we will hold each Blue
element's level of confidence above this level; but we can allow p(A) to
approach zero closely without posing a problem. Note also that this
form of quality degradation can never drive p(At) to zero, which hasi important implications below.

Although Eq. (4.1) defines decay in information quality for only a
discrete period from to to tj, any scenario comprises a series of such
discrete periods and the type of decay represented in Eq. (4.1) occurs
continuously for each Red unit-attribute through the course of any
scenario. It is relieved only at such time, like to and t1, when new
information arrives at a Blue element and new data association occurs.

10 ur decision to use exponential decay is based on similar logic used in analogous

decisions to represent the depreciation of capital assets or the growth of technology

exponentially. Many methods exist to model the depreciation of individual capital
assets; similarly, individual technological innovations can have many different effects on
costs and capabilities. But when analysts consider the depreciation of many assets
together over time, exponential depreciation serves remarkably well to represent this
depreciation. Similarly, when analysts consider the effects of many innovations together
over time, exponential growth works well to represent their cumulative effects. In our
situation, where data are scarce and we are interested more in the effects of many infor-
mation processing actions taken together than in the effects of any one action, the
exponential model offers a simple approach that is likely to represent behavior well in an
intelligence system.

"iThe decay rate could also reflect values of unit-attributes, the time during a cam-
paign, and the unit's location on the battlefield. We have not attempted to model such
subtlety at this time, but it could be modeled fairly easily in the future.



49

A BAYESIAN APPROACH TO UPDATING

We now must consider what happens when new information arrives
at a Blue element to (potentially) offset the general degradation of
information over time. Consider the following situation. The database
in an element of the Blue intelligence system contains a subjective
probability distribution for a particular unit-attribute at a certain time.
New information about that unit atribute arrives. How would this ele-
ment use the new information to update its database?

Bayes' Theorem is a simple but powerful statement that provides an
internally consistent way to order and update subjective probability. If
we state the quality of new information properly, it allows us to calcu-
late how that new information, when added to a database, affects the
quality of information in it. This does not imply that the elements of
an intelligence system use Bayesian techniques to change their percep-
tion of uncertainty when they accept new information. They may or
may not. 2 We are not modeling their perception of uncertainty so
much as we are modeling their ability to use new information to update
their beliefs and the effect that that new information has on the qual-
ity of their beliefs.

In a Bayesian context, we can state our situation as follows. At a
certain time t, p(At) prevails as the subjective probability that a Blue
element assigns the correct value of a unit-attribute. New data, x,
arrive.13 We now want to know the updated probability the Blue ele-
ment assigns to the evnt that At holds, given the availability of x,
p(At I x). Bayes' Theorem states that, if the Blue element accepts x

12Selected automated parts of the Blue intelligence system do use formal Bayesian
updating methods and those that do not, use methods that approximate Bayesian
methods. In their own activities, order-of-battle analysts do not consciously use Raye-
sian techniques. Experienced analysts may view the effects of updating on quality in a
way that is consistent with Bayesian techniques, simply because experience has led them
to do their jobs well. Actu~al observation of order-of-battle analysts in peacetime exer-
cises reveal that their experience varies widely. With enough exercises, less experienced
analysts will presumably achieve the sophistication of their more experienced colleagues;
but if war started today, they would not do so in the crucial opening days of combat.
Whether the Blue intelligence system behaves the way Bayesian methods would dictate
or not, we can use Baysian methods to measure its performance.

131 can consist of any kinds of data. For our purposes, the quality we associate with
these data applies to the moment when a Blue element processes them, If they have just
arrived from the battlefield, they contain all the information they could contain. If they
have been delayed or stored in the Blue element's database before this moment of pro-
cessing, their information quality must reflect the fact that time has passed since collec-
tors gathered them from the battlefield. With this in mind, x can include information of
differing vintage, so long as the quality of each vintage is properly degraded.
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and combines it with information it had previously, the foliowng
holds:

14

p(At I x) - p(At)p(x I At)/[p(At)p(x I A) + p(Ot)p(x I Ot)]. (4.2)

p(x I At) is the probability that the element would receive the new data,
x, if At were true. p(Ot) is the probability that At is not true, and
p(x I Or) is the probability that the Blue element would receive the new
data, x, if At were not true. Equation (4.2) provides a direct method
for updating our measure of how well a Blue element chooses the value
of a unit-attribute when it has categorical values. A more revealing
way to present this expression is:

1-p(At Ix) 1-pAj\(x I( O)(43

1-p(At I) - ( - p p(x IAj)(43

The first ratio on the right is the odds ratio that prevails before new
data arrive; it is the "a priori" odds ratio. It reflects whatever degrada-
tion has occurred in the Blue element's database because of the passage
of time up to the moment when new data arrive. As noted above, it
can take values from zero to infinity. The ratio on the left is the Blue
element's updated odds ratio based on the new information; it is the "a
posteriori" odds ratio. It can be interpreted in a similar way.

We use the second ratio on the right to transform an a priori into an
a posteriori odds ratio. That is, if a Blue element accepts a new datum
and uses it to update its database, this ratio shows how this new datum
affects the quality of the database. The ratio may look familiar as the
likelihood ratio one would use to compare two hypotheses with the data
x.15 As suggested above, the Blue element in fact uses these data,
together with its a priori beliefs, to compare two hypotheses: that At is
true, and that it is not. The likelihood ratio can take any value from
zero to infinity.

Acceptance of new empirical information improves or degrades the
performance of the Blue element depending on which of the probabili-
ties in the likelihood ratio is larger. If x can occur only if the unit-
attribute takes the value At-that is, if p(x I Ot) - 0-this ratio goes to
zero and the updating process immediately drives the odds ratio on the
left to zero. The new information perfectly discriminates between the
value that the unit-attribute actually takes and all other values. If x is
far more likely to occur for values of the unit-attribute other than the

4For a simple exposition, see Raiffa, 1968.
5Cf. Zenner, 1987, pp. 291-298.

4
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one actually occurring than it is for its actual value, the ratio can be
large, reducing the weight that Blue places on the proper value of the
unit-attribute. Because this likelihood ratio measures a Blue element's
ability to use new data to discriminate between two hypotheses, we will
refer to it as a "discrimination ratio."

Why would a Blue element accept new information that degraded
the quality of information in its database? Ideally, Blue would never
accept information whose discrimination ratio is larger than unity.
But Blue cannot measure this discrimination ratio directly. On the
basis of their capabilities, Blue analysts will decide what information to
accept. Suppose Blue analysts hypothesize that an observed Red unit
is an artillery unit when in fact it is an armored unit. These analysts
may tend to collect and accept information that is consistent with their
hypothesis. Such information will have discrimination ratios higher
than one. When analysts make this mistake, they progressively accept
data that confirm their expectations, driving p(At) down as they do so.
Avoiding such mistakes is one of the principal challenges that military
intelligence analysts face."' Some such behavior will always occur.
But experienced analysts should be able to filter much of the bad infor-
mation received before it affects their databases. We can reflect the
quality of order-of-battle analysts and database managers in our model
by placing a threshold on the value of discrimination ratios that a Blue
element will accept. For an element with the best analytic capability
possible, we would set the threshold at unity and accept only ratios
equal to or less than one. As an element's analytic capability falls, we
can allow the threshold to rise.17

We can expand Eq. (4.3) to show how a series of new data affect the
quality of information in a database. Suppose we use Eq. (4.3) to
express the quality of information in an inference based on nonempiri-
cal information and all empirical data available. 5 Decompose those
data into two sets, x, and X2. Then Eq. (4.3) tells us that:

16A large literature addresses this problem in many settings, not just those relevant to
military intelligence. The classic study of this behavior in military intelligence can be
found in Wohlstetter, 1962.

17This approach implicitly assumes that increasing analytic capability affects only a
Blue element's ability to avoid the biggest Type II errors (accepting the wrong
hypothesis). Increasing capability is probably more likely to correct Type II than Type I
errors (rejecting the true hypothesis); in fact, increasing capability should reduce both. If
better information were available, a more refined approach to this phenomenon might be
warranted.

115 'his includes all data collected to date. We properly degrade the quality of old data
to reflect its level of quality at the moment of processing.
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1 - p(At I X1,12)

P(A xx 2 )

I-p(Ad) (X X1 2 I Od) (4.4a)
p(At) p(xI, x2 I A

1- P(Ad) ( X I Ot) P(X2 1 Xi ,OJ (4.4b)
p(At) p(x 1 At) P(x21 xAt

( 1- P(At IlX) ) ( PX 2 I Xi,01 (4.4c)
P(At I x) P(X2 Ix1 ,At)

Equation (4.4a) simply restates Eq. (4.3), decomposing x into x, and X2.
Equation (4.4b) decomposes the discrimination ratio in Eq. (4.4a) into
one based solely on x, and one based on x2, given that x, is available.If we apply Eq. (4.3) to the first two ratios on the right in Eq. (4.4b),
we get the expression in Eq. (4.4c). This last expression is fully analo-
gous to Eq. (4.3), but now the dependence of the a priori odds ratio on
empirical data is explicit. This illustrates why we can refer to Eq. (4.3)as an updating formula; it allows us to incorporate one set of data, x1,
into an a posteriori odds ratio that then becomes an a priori odds ratio
that we update with new data, x2. We can repeat this process as many
times as necessary to incorporate many new datasets. As Eq. (4.4a)
shows, the product of this sequential process is one final a posteriori
odds ratio based on a discrimination ratio of two joint probability dens-
ity functions. And Eq. (4.4b) shows that we can partition this discrim-
ination ratio into a product of many discrimination ratios, each focused
on a new dataset.

The decomposition of the total discrimination ratio into ratios asso-
ciated with each new dataset reflects potential dependencies among
these datasets. If these sets are independent, the decomposition is
especially clean; in this case

P(Xi .... , x. IAt) - p(x1 I At) x ... x p(x IAt)
and we can write Eq. (4.4b) as

OR(x1, ... , x,) - OR(O) DR(x1) x ... x DR(x.), (4.5)
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where OR(x 1 ... , x) is the a posteriori odds ratio, OR(O) is the a
priori odds ratio, and each DR(xi) is a discrimination ratio based only
on xi. This decomposition dramatically simplifies the use of Bayes'
Theorem. We exploit this simplicity to simulate how an intelligence
system transforms a series of new empirical data into intelligence prod-
ucts and, more specifically, how the quality associated with these new
data affect the quality of the intelligence products developed.

Given the level of aggregation we pursue in this simulation, a simple
device of this kind looks extremely attractive. But we must keep it in
perspective.

Expert systems that use a Bayesian approach almost always assume
independence.19 Without this assumption, the need for data to quan-
tify each conditional probability becomes so great that the confidence
we can place in each estimate fades away. Expert systems that assume
independence tend to perform well relative to the alternatives, even
when clear dependencies are present and not modeled in the systems.
This may suggest that, in complex systems, the importance of statisti-
cal dependency to parts of the system need not make dependency so
important when we view the system as a whole. In fact, to exploit the
opportunities presented by statistical dependency, a complex system
may have to focus more and higher-quality information in one place for
a decision than the system can focus on a regular basis; selected and
highly visible cases where a system's exploitation of a dependency
made a difference are not characteristic of the system's normal capabil-
ity. Our simulation is not an expert system, and it is not meant to
predict behavior. But if these factors help explain the success of expert
systems that assume statistical independence, they would suggest that
we could safely make a similar assumption.

Two important sources of statistical dependence could create diffi-
culties in our model. First, suppose a collector introduces the same
information into the system twice. It is not reasonable to suggest that
the intelligence system could get anything from the second set that it
had not extracted from the first. This is simply an extreme case of a
situation in which two similar collectors gather similar information
from the battlefield at about the same time. We cannot say that the
second collector adds much information that the first collector had not
already gathered. Taken together, measures from the two will tend to
wash out the effects of measurement error associated with each of
them, but the value added by this "cross-checking" process is limited.
If we attempt to model intelligence development in which such collec-
tion occurs often, assuming independence will tend to overstate the

19For a usefui survey of the literature, oe Ramsey et &l., 1986.
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quality of information that the system produces on unit-attributes
relevant to the collectors in question.20

Second, dependencies exist in intelligence fusion and can play an
important part in testing hypotheses. Suppose many Red units use
radar type R1, many others use radar type R2, but only one uses both
R1 and R2. A new sighting based on seeing a radar of type R, or R2
will suggest little discriminatory power in the sighting. But successive
sights of R1 and R2 in the same location or a single sighting of both
together would identify the unit without question. That is, the
discrimination ratio for the intersection of seeing R1 and R2 in one
location is far smaller (better) than the product of the ratios for seeing
R, and R 2 separately. Assuming independence will tend to understate
the quality of information generated by joint sighting of both types of
radars in a unit.

This example reflects a specific application of a general principle in
collection management: When looking for a particular item on the
battlefield, look for the set of indicators that jointly distinguish that
item, even if individually they are of little use. The difficulty of col-
lecting information on different indicators simultaneously vitiates the
power of this principle in practice. Perhaps for similar reasons, an
assumption of independence has proven useful in simulations in other
settings (for example, medical diagnosis) where such dependencies are
important. But the contribution of such dependencies to inferences
about Red behavior can be important when experienced intelligence
teams can cue sensors quickly and should prove useful when the
Guardrail Common Sensor facilitates simultaneous collection of
ELINT and COMINT. We must be alert to this possibility and make
adjustments for it, as necessary. 21

Given the simplicity that it allows and the success others have had
using an assumption of independence in similar settings, we use it here
as well. In doing so, we must keep in mind the potential difficulties it
presents and be alert to circumstances in which they unduly color our
analysis. Under this assumption, we can use Eq. (4.3) to update infor-
mation in the following ways:

2°A variation on this problem actually exacerbates problems in real intelligence sys-
tems. Attempts to achieve redundancy in communication often allow one new piece of
information to enter an intelligence system in more than one form. A Blue element,
receiving the information from two different sources, can and occasionally does take the
second arrival as confirmation for the first. We do not allow such errors to occur in our
simulation, even though they do occur in some real intelligence systems,

2 'For example, if an intelligence system routinely uses Common Sensor data on
COMINT and ELINT to exploit dependencies between these disciplines, we should
assure that the value of these dependencies is reflected in the discrimination ratios we
use to characterize new sightings from Common Sensor data streams.
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1. The a priori odds ratio represents the quality of information
in a database when an interim intelligence product arrives.

2. The Blue element responsible for this database decides
whether to accept the interim intelligence product based on
the size of its discrimination ratio. The better the capability
of the Blue element, the smaller the discrimination ratio has
to be for the element to accept this product; the very best
Blue element accepts only products with discrimination ratios
of less than one.

3. Once a Blue element accepts an interim intelligence product
and uses it to update its database, the discrimination ratio
associated with the intelligence product shows how new infor-
mation embedded in this intelligence product will affect the
quality of information in the database. Assuming indepen-
dence effectively means that the way the information in a new
intelligence product affects the quality of information in a
database does not depend on where information embodied in
the new product or the database originally came from.22

4. The a posteriori odds ratio produced when the Blue element
uses new information to update its database, properly
degraded, serves as the basis for the a priori odds ratio in the
database when the next intelligence product with new infor-
mation arrives.

Note that very small and very large values of odds ratios may
present a problem here. If we do not allow discrimination ratios to
take values of zero, the processes above will never reduce an odds ratio
to zero. But if an odds ratio approaches zero, it will be difficult for any
new discrimination ratio to raise its value. Similarly, if an odds ratio
becomes large, it may take an inordinately long time to raise the qual-
ity of information to a reasonable level. To avoid these difficulties, we
reserve the possibility of setting maximum and minimum values for
odds ratios. Bayesian logic provides some basis for choosing a max-
imum value. For example, a diffuse subjective probability distribution
for a unit-attribute that can take only five values would presumably
assign a probability of 0.2 to each category, suggesting a maximum
odds ratio of 4 (0.8/0.2). More generally, for a unit-attribute that can
take n categorical values, the maximum odds ratio is (n - 1).
Appropriate minimum values for unit-attributes with categorical values

22To help avoid the first source of dependence mentioned above, we do not allow
information from any sighting of a unit-attribute to affect the database in any Blue ele-
ment more than once. Hence, we know that if now information has affected an odds
ratio once, it will not affect it spin.
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are unclear, minimum and maximum values of location and oreed are
also unclear a priori. We expect experience with the model to suggest
empirically useful levels to use. 2

HOW THE MODEL DEGRADES AND
UPDATES INFORMATION

Assuming independence allows us to associate a specific discrimina-
tion ratio with each new sighting of a unit-attribute on the battlefield.
Our simulation of the quality of intelligence effectively moves this
discrimination ratio through the intelligence system as intelligence
products that reflect information from this new sighting flow through
the system. As it moves, our simulation degrades it and uses it to
upgrade older information. Figure 4 illustrates this process for new
information on a particular sighting in an intelligence system with one
collector, one processor, and one user.

The new sighting occurs at to. The model sets the initial value of
the discrimination ratio at that time. The new information leaves a
collector at time t, and arrives at a processor for initial processing at
time t3 . We use Eq. (4.1), with an appropriate value of D, to degrade
the discrimination ratio over a period from to to t3 . If the adjusted
value of the ratio is below the processing threshold, we continue. If
not, we discard this information and wait for the next piece of informa-
tion. If we continue, the processor last received new information and
updated its database at time t2 . We use Eq. (4.1) to degrade the infor-
mation in the processor's database over a period from t2 to t3 . With
appropriately adjusted inputs, we use the Bayesian updating formula in
Eq. (4.3) to update the processor's database. The processor sends this
updated information to the user at t4 and the user receives it at t5. We
use Eq. (4.1) to degrade the updated information from t3 to t and
record the result to determine the quality of information that the user
received.

Once a discrimination ratio from a sighting of a unit-attribute enters
the system, it influences the quality of information about that unit-
attribute for the remainder of the scenario. To see this, ask what hap-
pens to the next sighting that enters the intelligence system in Fig. 4.1.
When information about it reaches the processor, information on the
previous sighting (the one in the last example), appropriately upgraded,
is present in the processor's database. The discrimination ratio from

23Sucb minima and mazima are unrelated to the threshold discussed above. Minima
and maxima reflect general aspects of fusion when it occurs. The threshold discussed
above reflect. a specific Blue element's capability to discern the true information content
of new data and to decide whether to fuse it with existing information in its database.
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Time Real-Word Event Simulation Event

to  Blue colector observes a unit- Generate a new discrmination
attribute on the battlefield. ratio for this unit-attibute.

tI  Processor updates Its database Apply Eqs. (4.1) and (4.3) as
with information from a previous shown below.
sigh.

t2  Collector sends new information None.
to the processor.

t3  Processor receives new 1. Use Eq. (4.1) to degrade new
Information and uses it to update information from tto t3 .
its database.

2. Check value of discrmination
ratio against threshold. If
and only if it exceeds the
threshold, continue.

3. Use Eq. (4.1) to degrade
information in database
from tlto t3 .

4. Use Eq. (4.3) to transform
a proi odds ratio in database
into an a posteriori odds ratio.

t4  Processor sends updated None.
information to the user.

ts  User receives new information. 1. Use Eq. (4.1) to degrade updated
information from t3 to t5.

2. Record quality of informaton
sent to user.

Fig. 4-Example of new information moving through an
intelligence system

this previous observation influences the a priori odds ratio in the pro-
cessor updated by information on this new sighting and information on
every sighting that follows it. In fact, at any time, Eq. (4.5) tells us
that the odds ratio in the processor is simply the product of its initial
odds ratio, the discrimination ratios of all previous sighting accepted
at the processor, and the cumulative degradation factor that applies for
the scenario to date. The odds ratio that the user has at any time can
be characterized in a similar way.

Given a' set of initial discrimination ratios, the network associated
with any intelligence system moves these discrimination ratios through
the network until they influence the final products of the system.
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INPUTS FROM VIC ON THE QUALITY OF INFORMATION

As explained above, we use the Army's VIC corps combat model to
simulate combat on the deep battlefield and Blue collectors' gathering
of information on this combat. VIC creates a set of information every
time a collector "sees" a unit. We can use this information to calculate
a discrimination ratio every time a collector sees a unit-attribute. As
more refined analysis proceeds on the discriminatory power of collec-
tors, more sophisticated formulas could be substituted for those simple
ones presented here without affecting our basic approach.

VIC generates three numbers of particular interest. The first is the
"probability of detection" associated with a sighting. In fact, it
represents the fraction of the relevant portion of a unit that a collector
sees during a particular sighting. For ELINT collectors, it is the frac-
tion of the unit's radars detected. If COMINT, it is the fraction of the
unit's radios detected. For IMINT, it is the fraction of the unit's vehi-
cles and other major pieces of equipment. While such a concept is not
really meaningful as a "probability of detection," it is quite useful as an
indication of the quality of a sighting. The second number VIC gen-
erates is the "standard error" associated with a collector's detection of
the unit's location. The third is a similar "standard error" associated
with a collector's detection of the unit's speed. VIC uses these latter
two numbers as inputs to a Kalman filter24 that accumulates informa-
tion from a series of sightings to calculate the parameters of subjective
probability functions for the location and speed of each unit. We can
use these standard errors as a basis for our own simulation before they
enter VIC's Kalman filter.2

The VIC Probability of Detection and Discrimination Ratio.

For unit-attributes with categorical values, VIC's probability of
detection is the only value we can use to derive discrimination ratios.
Suppose that, for any collector and relevant unit-attribute, a simple

24A Kalman filter is a statistical technique that uses individual additions to a sample
of data to update estimates based on that sample. The VIC Kalman filter uee additional
data on a unit's sighted location and velocity to estimate that unit's true location and
velocity at a certain time.

OTh subjective probability distributions that the VIC Kalmn filter generates for
location and speed reflect input from all collectors. We cannot use information from
these distributions to show how changes in the use of collectors affect these distributions
without running VIC under more than one set of ssumptions. Our approach is designed
to use VIC to provide one baseline run. Further, information on these distributions dose
not allow us to examine changes in an intelligence system other than changes in collec-
tors. Therefore, we do not rely on information about the subjective probability distribu-
tions that VIC generates.
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relationship existed between a VIC probability of detection and a
discrimination ratio.2 If we could specify the relationship between
these two concepts at several distinct points, we could use these points
to parameterize the simple relationship and hence to determine the
values of a discrimination ratio that apply for all values of the VIC
probability of detection.

Consider values of the VIC probability equal to zero, one, and some
"typical" value. If a collector does not detect a unit, this "sighting"
presumably has no discriminatory value. If a collector detects every-
thing it could detect about a unit, discriminatory value associated with
the sighting will vary by collector and attribtte. For example, such a
sighting by MTI would provide no information about a unit's name. It
could provide highly accurate-but not perfect-information about its
location. Counts of vehicles and observations on their activities could
provide good information on effectiveness and activity. Such a sighting
by COMINT is harder to interpret. It suggests that the Blue system
intercepts and properly interprets all radio traffic for the duration of
the sighting. Such a sighting could provide highly accurate information
on a unit's name, type, and echelon, and good information about its
location. Rarely, however, will such a sighting generate perfect infor-
mation. A "perfect" sighting implied by a probability of detection of
one is not equivalent to a zero discrimination ratio, and the value of
such a perfect sighting can vary substantially by collector and attri-
bute.

All of the statements above are qualitative. We must be able to
state them quantitatively. For example, can we say that 90 percent of
the units that display a certain pattern of vehicle movement observed
by MTI are engaged in a forward march in the deep battlefield? If so,
and MTI sightings of other activities have similar discriminatory
power, we can assign a discrimination ratio of 0.11 (.1/.9) to MTI
sightings of activities. This approach provides a structured way to con-
sider such subjective assignments. Observation of peacetime exercises
and broad-ranging, preliminary interviews with order-of-battle analysts
suggest that sightings by sensors provide useful information on some
attributes and none on others. In the latter case, we can proceed as
though a sensor provided no new sighting. When sensors do provide
useful information, appropriate values of the discrimination ratio can
get as low as about 0.1. (Table 2 provides details for combinations of
unit-attributes that take categorical values and collectors.) If a Blue

2Any particular collector provides information relevant only to certain unit-
attributes. For example, JSTARS provides no information on unit name. We are con-
cerned here only with establishing a relationship between a VIC probability of detection
and discrimination ratio for unit-attributes relevant to a collector.
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element's initial probability distribution for a unit-attribute is fairly
diffuse, so that the associated odds ratio is one, a single sighting with a
discrimination ratio of 0.1, not degraded by delays, could place 91 per-
cent of subjective probability in the right category. With a similar ini-
tial condition, two independent sightings with discrimination ratios of
0.33 would have about the same effect.

What is the VIC probability of detection associated with the "typi-
cal" sighting of a collector and what discriminatory value does such a
sighting offer? Like the perfect sighting, the value of a typical sighting
will vary by collector and unit-attribute. Observation of peacetime
exercises and preliminary discussions with analysts suggest, for sight-
ings that yield useful information on an attribute, discrimination ratios
can get as low as about 0.2. Two independent sightings of typical qual-
ity from appropriate collectors could change a fairly diffuse probability
distribution to one in which over 90 percent of subjective probability
fell in the correct category. This is consistent with the general rule of
thumb used by order-of-battle analysts that they require two indepen-
dent sources to place a piece of information in their databases.

Results based on preliminary interviews with order-of-battle
analysts suggest that a striking regularity occurs across collectors and
attributes. A given rise in the VIC probability of detection typically

Table 2

PARAMETER VALUES FOR THE RELATIONSHIP BETWEEN THE VIC
PROBAILITY OF DETECTION AND THE DISCRIMINATION RATIO

COMINT COMINT IMINT
Internals Externals ELINT MTI

Attribute aa b a b a b a b

Name 0.1 -1.0 b - - - - -
Type 0.1 -0.8 0.2 -0.9 0.2 -0.9 0.5 -0.6
Echelon 0.1 -1.0 0.2 -0.9 0.2 -0.9 - -
Effectiveness 0.3 -0.9 - - - - 0.2 -0.6
Activity 0.2 -0.6 - - - - 0.2 -0.9

a is the discrimination ratio for a "perfect" sighting. b measures the per-
centage change in discrimination ratio for a 1 percent change in VIC's prob-abtyof detection.

e do not use VIC data to generate sighting for the pairings of data
sources a n l ttributes marked by "-." For example, COMINT interna datasoures are the only ones that genate sighting relevant to a unit' name.
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has a larger effect on the discrimination ratio when the VIC probability
is small than when it is large.27 Figure 5 shows the VIC probability of
detection (PD) on the abscissa and the discrimination ratio (DR) on
the ordinate. It shows the three points discussed above as part of a
functional relationship of the following form:

DR - (a) (PDb) (4.6)

where a and b are constants. a is the value that the discrimination
ratio takes for a perfect sighting. b shows the percentage change in the
discrimination ratio for a 1 percent change in the VIC probability of
detection and always takes an absolute value equal to or less than one.
Table 2 reports reasonable values for a and b based on preliminary
interviews with order-of-battle analysts. This table defines relation-
ships for all unit-attributes except location and speed.

C

0

0 1.0

Probability of detection

Fig. 5-Relationship between the VIC probability of detection
and the discrimination ratio

"7That is, the discrimination ratio appears to be concave in the VIC probability of
detection for most collectors and attributes where a relationship exists.
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VIC Standard Errors and Discrimination Ratios

For speed and location, VIC generates information on standard
errors that gets us closer to the subjective probability distribution that
we use to think about the quality of intelligence. We use our view of
that distribution to derive a simple two-step relationship between
VIC's standard error for a unit-attribute and a discrimination ratio.
First we establish the relationship between the standard error of the
subjective probability distribution for a unit-attribute and a corre-
sponding odds ratio in our model. Then we use this relationship to
transform the standard error that VIC reports for each sighting into a
discrimination ratio for that sighting. For simplicity, we present this
argument in terms of location; a completely analogous argument holds
for speed.

Step 1. Define the region of the subjective probability distribution
that we associate with the correct location as the one that lies within D
meters of the actual location. Consider a normal subjective probability
distribution for location. Project that distribution onto a line that
passes through the actual location and the mean of the distribution so
that we can think of accuracy about location in terms of a single stan-
dard error, SS, and a scalar mean on this line. Assume that the mean
is displaced from the actual location by a distance that is proportional
to the standard error. Hence, as precision increases, the standard error
falls, concentrating subjective probability and bringing the central ten-
dency of this concentration closer to the actual location. How to relate
the standard error and bias in the mean is an open question. For sim-
plicity, let us assume that the distance from the mean to the actual
location equals the difference between the 75th and 50th percentiles of
the normal subjective probability distribution on the line.28 Then ask
how the subjective probability that falls within D of the actual location,
P, changes as the standard error changes. We can use a simple expres-
sion to define this relationship:29

28Here is a heuristic justification for this choice. Our real interest is in the absolute
distance from the actual location to the mean. The subjective distribution tells us that
we would place a 50 percent probability on that distance being larger than the difference
between the 75th and 50th percentiles and a 50 percent chance that it would be smaller.
Hence, choosing this distance gives us the median bias that is consistent with the distri-
bution. This distance equals (0.6745) (SS).

29For selected values of SS, we can calculate values of the probability, P, that this dis-
tribution places within D of the correct location. These pseudodata confirm that a
monotone relationship exists between 88 and P. We use these peudodata to estimate
the relationship shown. It explains about 88 percent of the variation in the pseudodata
for P. We chose the specific functional form shown in Eq. (4.7) simply because it is sim-
ple and fits the pseudodata well.
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P - 1 - [(D/SS)+1]- 3.4 . (4.7)

Step 2. How does SS relate to a new datum on the standard error of
a sighting, SN? If SS is simply the product of a series of similar but
independent observations that display a standard error of SN, then

SS - SN/(n"5) (4.8)

where n is the number of observations in the series. In our model, the
odds ratio is the product of a series of discrimination ratios and an a
priori odds ratio. If the a priori subjective probability were fairly dif-
fuse, so that the a priori odds ratio equaled one, and these observations
were of similar quality, the discrimination ratios associated with them
would be ((1 - p)/p)l/n). From Eqs. (4.7) and (4.8), we can see that

P/(1 - P) - [(n -5) (D/SN) + 1] 3.4 - 1

and that a discrimination ratio would take the value

DR - {[(n .5) (D/SN) + 1I34-I} - /n. (4.9)

We calculated this value for different values of n and examined how
the value of the enhancement increment varies in response to varia-
tions in D/SN. A value of n - 2 yielded values that made the most
sense. The fact that order-of-battle analysts tend to seek two observa-
tions to confirm a location provides a check on this procedure. We can
use a simple expression to capture the relationship in Eq. (4.9) for
n- 2:30

DR - (0.25) (D/SN)- l 3. (4.10)

This is essentially the same functional form that Eq. (4.6) provides
for transforming VIC probabilities of detection into discrimination
ratios. We can easily provide values of the discrimination ratio
appropriate for any circular region we choose to use to define a region
of correct location. We can make Eqs. (4.6) and (4.10) fully analogous
by choosing values of D to define a single region for location and for
speed. Let D equal 0.3 km for location and 0.5 km/h for speed. Then
we can restate Eq. (4.10) as

DR - (a) (SN b) (4.11)

3We fitted this expression using pseudodata from the calculations discussed in the
text. This relationship explains 91 percent of the variation in pseudodata for the
discrimination ratio.
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where the appropriate values of a and b are shown in Table 3. We do
not require separate values of a and b for each type of cc'1ector. Equa-
tion (4.11) simply transforms the standard error that VIC reports for
each collection into a discrimination ratio that we can use for our own
calculations. No longer does a have a simpler intuitive definition; b is
now the percentage change in the discrimination ratio associated with
a 1 percent change in the standard error.

In sum, we use simple formulas to transform data from VIC into
discrimination ratios for our simulation. These functions are based on
subjective judgments that could presumably be refined by more detailed
analysis of each collector and its ability to provide discriminating infor-
mation on each attribute. More sophisticated methods for transform-
ing VIC data into discrimination ratios could easily be substituted for
these without affecting the structure or operation of our simulation.

SUMMARY

We frame our approach to the quality of information in terms of
subjective probabilitN distributions for unit-attributes. The more sub-
jective probability its distribution places on the actual value of a unit-
attribute, the higher the quality of a Blue element's information on
that unit-attribute. We use a particular measure of information qual-
ity, based on this probability, that facilitates our approach. It is an
"odds ratio," the probability above, divided into its complement. For
unit-attributes that take categorical values, we look at the subjective
probability associated with the correct category. For unit-attributes
that take continuous values-location and speed-we essentially create
a category in the vicinity of the actual value and look at the subjective
probability associated with values in this vicinity. While order-of-

Table 3

PARAMETER VALUES FOR THE RELATIONSHIP
BETWEEN VIC STANDARD ERRORS AND

THE DISCRIMINATION RATIO

Parameter"

Attribute a b

Location 1.2 1.3
Speed 0.6 1.3

a and b are parameters in Eq. (4.11).

4
4
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battle analysts do not think of information quality in these formal
terms, these terms capture essential features of the way analysts view
uncertainty and facilitate our development of a simple analytic frame-
work for simulating changes in information quality.

The quality of information changes as time passes and as analysts
use new information to update their databases. To update databases,
analysts continually posit hypotheses about the behavior of Red units
and their implications for Red intentions and use new information to
test these hypotheses and posit new hypotheses. This process is too
complex to model in detail. We aim to capture the central features,
including the following: We want the quality of information developed
by an intelligence system to increase as Red units behave more predic-
tably; new, relevant, good information enters the system; and the qual-
ity of new information increases. We want the quality of information
developed by an intelligence system to decrease as time passes during
which the system receives no new information, and the system accepts
new information that is of low quality or deceptive. Our goal is to
develop a method for showing how individual elements of an intelli-
gence system-collectors, processors, communication links, and
users-influence these factors in the system.

We start our simulation by characterizing the quality of the new
information that enters the intelligence system through collection. We
use the Army's VIC corps combat model to determine when Blue intel-
ligence receives new information on each Red unit and to characterize
the initial quality of the information that Blue intelligence receives.
We use VIC's measures of the "probability of detection" and the "stan-
dard error" associated with each unit sighting. Simple formulas
transform these into a measure of a "discrimination ratio" for each
unit-attribute. The discrimination ratio measures the Blue intelligence
system's ability to use this new information to discriminate between
the hypotheses that a unit-attribute takes its true value and that it
takes some other value. The higher the system's ability to use this
information to discriminate between these hypotheses, the lower the
ratio.

Once information enters the intelligence system, processors incor-
porate it into a series of increasingly complete intelligence products
that culminate in products the system provides to its final users. This
takes time. We expect delays to occur on communication links and in
processors. These delays will degrade information for two reasons.
First, as time passes without new information, Blue intelligence ele-
ments lose confidence that their (typically implicit) models are
appropriately tuned to infer the current status and behavior of Red
units. Second, as time passes without new information, it becomes
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increasingly difficult for Blue elements to associate new data with the
appropriate Red units. We reflect the combined effects of these factors
in our simulation with a simple exponential decay function that
increases at a constant percentage rate the odds ratios and discrimina-
tion ratios that the Blue system associates with a unit-attribute.

As new information enters the intelligence system, it can potentially
offset this decay by giving Blue elements an increased ability to
discriminate between the hypothesis that Red unit-attributes take their
true values and the hypothesis that they do not. New information
enters the intelligence system and becomes embodied in successively
more complete intelligence products until it influences the quality of
information given to the system's users. At each element in the Blue
system, we model the contribution of such new information to an
element's database in the following way. When an interim intelligence
product that reflects new information on a Red unit-attribute arrives at
a Blue element, we observe the Blue element's odds ratio for the unit-
attribute. We observe the information content of the new information,
defined by its discrimination ratio. Bayes' Theorem tells us that, if a
Blue element incorporates this new information into its database, the
resulting quality of the database is the product of the odds ratio when
the information arrived and the discrimination ratio. We assume the
Blue element accepts new information if its value lies below a thresh-
old, which we set at one if the Blue element is highly effective and
increase as the effectiveness of the Blue element falls.

Over the course of a scenario, this simulation transforms a time
series of information from VIC on probabilities of detection and stan-
dard errors associated with Blue sightings of Red units into a time
series of the odds ratio that characterizes the quality of information
the Blue intelligence system sends a user on each Red unit-attribute.
Such time series provide the basis for policy analysis.



V. A SIMPLE EXAMPLE OF SIMULATED
INFORMATION FLOWS AND

INFORMATION QUALITY

This section uses a simple numerical example to illustrate how the
simplified corps intelligence system shown in Fig. 3 uses three sightings
from the Army's VIC corps combat model to develop intelligence on
two attributes of a Red unit.

VIC generates information each time a collector gathers information
on a Red unit. We transform this information into measures of the
discriminatory quality of information on individual Red unit-attributes.

INFORMATION QUALITY OF VIC SIGHTINGS

The intelligence system shown in Fig. 3 includes three collectors:

* Guardrail Common Sensor COMINT
a Guardrail Common Sensor ELINT
* JSTARS MTI.

For our purposes, the first collector generates one data stream on the
internal content of radio communication (GRCS-COMINT-intl) and a
second on the external characteristics of radio communication (GRCS-
COMINT-extl). The second collector generates a data stream on the
technical characteristics of radars (GRCS-ELINT). These two collec-
tors fly on a common platform but need not observe activities in
specific units at the same time. They need not even generate sightings
on the same units. The third sensor uses radar to generate a data
stream on the movement of vehicles (JSTARS-MTI).

VIC generates a single sighting for each of these three collectors of
each Red unit that it "sees" each time the collector goes on station.
Each time Common Sensor ELINT or JSTARS MTI sights a unit in
VIC, VIC generates a probability of detection, a standard error for
location, and a standard error for speed. Our simulation transforms
these into discrimination ratios on eight unit-attributes. Each time
Common Sensor COMINT sights a unit in VIC, our simulation
transforms these three data from VIC into 16 discrimination ratios-
eight unit-attributes for each of two data streams.

Consider a situation in which each collector is on station during a
single hour and VIC generates a sighting from each collector on a

67
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single Red unit during that hour. Table 4 shows these sightings at
times 0, 30, and 45. That is, the MTI sighting occurs first; 30 minutes
later the COMINT sighting occurs, and 15 minutes later the ELINT
sighting occurs.

Let us focus on information from these sightings about two unit-
attributes, one that takes categorical values, "unit type," and one that
takes continuous values, "location." When these three sightings occur,
VIC generates two pieces of information relevant to these unit-
attributes. Table 4 shows values for the "probability of detection" and
the "standard error" for location, measured in kilometers. We apply
Eq. (4.6) to transform the probability of detection into a discrimination
ratio for each categorical unit-attribute. Table 4 shows the outcomes
for unit type. For the values shown, the odds that the actual unit type
generated the data collected range from 1.3:1 to 4.3:1, not particularly
high.' We apply Eq. (4.11) to transform the standard error for location
into a discrimination ratio for location, shown in Table 4. The odds
that a location near the true location generated the data collected
range from 1.3:1 to 17:1. These discrimination ratios show us the qual-
ity of information from these VIC sightings on unit type and location
and initiate our simulation of how an intelligence system uses new data
from the battlefield.

Table 4

QUALITY OF INFORMATION FROM VIC SIGHTINGS

initial
Discrimination

Information from VIC Ratios
Data

Source Name of Time of Probability of Standard
Number Collector Sighting Detection Error Type Location

xl GRCS-COMINT-intl 30 0.35 0.4 0.2316 0.3646
x2 GRCS-COMINT-extl 30 0.35 0.4 0.5145 0.3646
x3 GRCS-ELINT 45 0.30 0.7 0.5910 0.7548
x4 JSTARS-MTI 0 0.50 0.1 0.7579 0.0601

'Them odds are the inverses of the extreme discrimination ratios shown.
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DELAYS IN COMMUNICATIONS AND PROCESSING

An intelligence system takes time to transform new information into
final intelligence products, depending on how long it takes to move
information on specific communication links and to incorporate infor-
mation in intelligence products at specific processors. Our simulation
accepts information on these specific delay times as an input. Table 5
presents a notional set of delay times that we use for the current sim-
ple example.

Given these delay times, we can determine when intelligence prod-
ucts that reflect these new data arrive at various points in the intelli-
gence system, if a Blue element does not reject them as substandard at
some point. Table 6 displays these times. The table states time in
terms of minutes following the initial MTI sighting. It also indicates
which of the four original data sources, from Table 4, is reflected in the

Table 5

NOTIONAL DELAY TIMES IN COMMUNICATION AND PROCESSING

Delay in Minutes for.

Low Priority High Priority
Cause of Delay Information Information

Delays on Communication Links

From To
GRCS-COMINT-intl talk-processor 30 5
GRCS-COMINT-extl com-extl-processor 15 1
GRCS-ELINT ELINT-processor 15 1
JSTARS-MTI MTI-processor 1 1
com-extl-processor signal-processor 120 10
ELINT-processor signal-processor 90 10
talk-processor ASPS-processor 180 20
signal-processor ASPS-processor 180 1
MTI-processor ASPS-processor 180 1
ASPS-processor corps-commander 360 15
ASPS-processor arty-commander 540 45
MTI-processor arty-commander 30 15

Delays Within Processors

talk-processor 45 10
com-etl-processor 10 5
ELINT-prooessor 15 5
MTI-procesaor 5 1
signal-processor 5 5
ASPS-processor 120 15
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product that arrives at each point. The arrival times in Table 6 essen-
tially define how information flows through the intelligence system.

Note two important characteristics of arrival times at the corps
commander's staff in Table 7. First, the intelligence products arriving
at the commander's staff and embodying new data do not arrive in
order of generation. We would also expect this outcome in a more
complete simulation. Second, data generated over a 45-minute period
yield final products that arrive over a period of about three hours.
This has important implications that we cannot reflect here directly.
If the collection pattern shown here is typical for any hour of a
scenario, we would expect information from about 12 sightings to reach
the commander during the three-hour period shown. Some would come

Table 6

ARRIVAL TIMES OF INTELLIGENCE PRODUCTS
THAT REFLECT NEW DATA

Results Based on
Ata Data Source Arrive

Time Number at

0 x4 JSTARS-MTI
1 z4 MTI-procesaor

30 Xl GRCS-COMINT-intl
30 x2 GRCS-COMINT-extl
46 x2 com-extl-procemor

45 x3 GRCS-ELINT
60 11 talk-processor
60 X3 ELINT-processor

160 x3 signal-processor
175 x2 signal-processor
186 z4 ASPS-processor
285 x1 ASPS-processor
345 x3 ASPS-processor
360 x2 ASPS-processor
666 z4 corps-commander
766 xi corps-commander
825 x3 corps-commander
840 12 corps-commander
846 z4 arty-commander
W946 1 arty-commander

1006 z3 arty-commander
4 1020 x2 arty-commander

brims is stated minutes after the initial MTI sight-
ing.
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from collection earlier than those we show here, others would come
from later collections. That is, the data we show here do not maintain
their time ordering as they affect intelligence development in the sys-
tem, nor do data from adjacent time periods, and they would tend to
become intermingled with products we show here by the time they
reached the corps cor mander. For the purposes of this illustration, we
ignore these other sources of new data; we should not forget, however,
that the actual simulation is somewhat more complex than this simple
example.

INFORMATION QUALITY IN THE CORPS

COMMANDER'S DATABASE

Intelligence products reflecting newly collected data eventually reach
a database of particular interest to us, that of the corps commander.
They affect the quality of the database that he and his staff main.ain
and use to support decisions. We can use information on (1) the initial
discrimination ratios for each new data source, (2) delays from collec-
tion to receipt by the commander of products based on each new data
source, (3) decay rates for each unit-attribute, and (4) odds ratios in
the commander's database for each unit-attribute when the first prod-
uct based on one of these data sources arrives, to calculate their effects
on the quality of information in the commander's database.

We can get discrimination ratios from Table 5 and delay times from
Table 7. For simplicity, in this example, we assume that the odds ratio
for each unit-attribute equals 0.1 when the first product arrives. In a
full simulation, this odds ratio would be an output of earlier calcula-
tions based on the quality of earlier information received. The only
factor we do not have is a decay rate for each unit-attribute.

Table 7

QUALITY OF CORPS COMMANDER'S INFORMATION ON UNIT TYPE

Original Decayed A
Source of Arrival A Priori Discrimination Posteriori

Information Time Odds Ratio Ratio Odds Ratio

JSTARS-MTI 666 0.1000 (1.5371) 0.1000
GRCS-COMINT-intl 765 .1111 0.5064 .05614
GRCS-ELINT 825 .06984 1.3528 .0809
GRCS-COMINT-extl 840 .08225 1.2158 .10000
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Choosing Decay Rates for This Example

Our goal in choosing decay rates is to create a reasonable level of
information quality in the baseline intelligence system that we can use
to judge the performance of an alternative intelligence system relative
to the baseline. Assume that new information arriving at the corps
commander's staff on each unit-attribute is just sufficient to offset the
effect of information decay during the period of arrival; the intelligence
system is in steady state for information about each unit-attribute.

We can state this condition in terms of our example in the following
way. Let D be the decay rate for a unit-attribute. Let DR, be the ini-
tial discrimination ratio for the ith data source that reaches the com-
mander in some intelligence product. Let OR0 be the odds ratio for the
commander's database when the first product reflecting these data
sources reaches the commander. Let OR, be the odds ratio immedi-
ately following incorporation of an intelligence product based on the
ith data source. Let TDi be the delay time between collection and
arrival at the commander for the ith data source. And let TOi be the
delay time between arrival of products based on the ith and (i + 1)th
data sources.

Applying Eqs. (4.1) and (4.3) to the arrival of the product based on
the first data source yields

OR, - (ORo) (DR,) exp(D) (TDI) (5.1)

Applying Eqs. (4.1) and (4.3) to the arrival of the product based on the
second data source yields

OR2 - ORexp(D) (TO,) (DR2) exp(D) (TI) 2)

- (OR 0) (DR,) (DR2)exp[(D)(TD, + TD2 + TO1)]. (5.2)

If intelligence products based on all data sources ultimately arrive and
are accepted, this process yields

OR4/ORo - DR1DR2DR3 DR4

exp[D(TD1 + TD2 + TD3 + TD4 + TO, + TO2 + TO3)] (5.3)

To achieve the steady state we seek, we require a decay rate that sets

the expression on the right to unity. That is, we seek

D - - (Z InDA) / (ZTD + XTO) (5.4)
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where the summations are defined over the data sources that actually
affect the commander's database.

In our actual simulation, we do not explicitly apply Eq. (5.4). We
use it here only to achieve a steady state. The quality of intelligence
can rise and fall in a baseline intelligence system. We use thino kind of
logic to choose decay rates that generate an appropriate level of quality
in the baseline intelligence system.

Calculating the Level of Quality in the
Commander's Database

We are now in a position to present the effect of new intelligence on
the quality of the commander's database. Table 8 presents information
on the level of quality for information about unit type. For each new
piece of information, it shows the original source, the arrival time, and
three numbers relevant to the Bayesian updating formula. The table
implements Eq. (4.3) by multiplying the a priori odds ratio in the data-
base when new information arrives by the decayed discrimination ratio
to yield the a posteriori odds ratio for the database following accep-
tance of new information. The table places the discrimination ratio for
new information in parentheses if it does not affect this database.

Based on the information on these four sightings and their arrival
times, we use a ! ecay rate of .001062 per minute. Degradation occurs
over time, not because it is hard to keep track of a unit's type (it rarely
changes during a scenario), but because it is difficult to keep track of
the unit itself. Continuity helps assure that analysts continue to apply
data relevant to type to the right unit.

Information based on MTI data would arrive 666 minutes (about 11
hours) after it was collected if it was of high enough quality to enhance
the intelligence products that the system develops. As shown, however,
its degraded discrimination ratio is large enough that it would probably
be excluded from databases at some point in the fusion process and
never reach the commander. Our model would recognize this by set-
ting a threshold low enough to exclude this from calculations. For the
purposes of this illustration, let us assume a threshold of 1.4. In Table
8, it has no effect on the commander's information. Much higher qual-
ity information arrives 99 minutes later based on COMINT internals
collected 735 minutes (12 hours, 15 minutes) earlier. By this time, the
quality of the commander's database has eroded 11 percent in the
absence of new information. This new information updates the data-
base, greatly increasing its quality. Information based on ELINT
arrives 60 minutes later that was collected 780 minutes (13 hours) ear-
lier. Its quality has eroded with time, but analysts do not catch this
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and allow it in the database. Together with the passage of time, this
drives down the quality of the commander's information. Information
based on the last data source in our example arrives 15 minutes later.
Information based on COMINT externals, collected 810 minutes (13
hours, 30 minutes) earlier has also degraded in quality. Analysts do
not catch this. Together with the passage of time without new infor-
mation, this drives the level of quality in the database to its level when
the first information would have arrived.

Table 8 presents similar information about the quality of informa-
tion on location. We can trace changes in the quality of the
commander's information on location through Table 8 in a similar way.
For the four sightings in this table and their arrival times, the steady-
state decay rate is .003347 per minute. This rate is much higher than
that for unit type. As noted in Sec. IV, we would expect the decay rate
to be higher for location than for type because location is such a vola-
tile attribute. Hence, even though we derive this rate from the some-
what arbitrary data on these sightings, it is realistic to expect a high
decay rate here. (For this reason, it is also realistic to expect higher
initial discrimination ratios here than for unit type.)

In Table 8, information based on an MTI sighting 666 minutes ear-
lier arrives and substantially upgrades the commander's database.
Given the high decay rate and the time it takes to get information to
the commander, this is the only information that remains useful many
hours after it is collected. It is reasonable to expect that analysts
would reject other data and simply let the quality of the commander's
information fali as time passes without fresh empirical input. This
occurs in the table until, by assumption, the quality of the
commander's information on location returns to its starting value.

Table 8

QUALITY OF CORPS COMMANDER'S INFORMATION ON UNIT LOCATION

Original Decayed A
Source of Arrival A Priori Discrimination Posteriori

Information Time Odds Ratio Ratio Odds Ratio

JSTARS-MTI 666 0.10000 0.5585 0.05585
GRCS-COMINT-intl 765 0.07798 (4.2688) 0.07798
GRCS-ELINT 825 0.09510 (10.2739) 0.09510
GRCS-COMINT-extl 840 0.10000 (5.4869) 0.10000
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The a posteriori odds ratios in Tables 7 and 8 provide the basis for
data series on the quality of the commander's information on unit-
attributes. Figure 6 shows time of arrival on the abscissa and the sub-
jective probability that the commander places on the right values of
unit type and location.2 In a complete simulation, such time series
might measure quality at many hundreds of points in time over the
course of a scenario for each unit-attribute.

MEASURING THE EFFECT OF AN
INCREMENTAL CHANGE

This numerical illustration is far too simple to use to calculate the
effects of an incremental change in an intelligence system. But we can
exploit its simplicity to see the channels through which an incremental
change would affect our measures of information quality.

Consider, for example, a change that eliminated the availability of
COMINT internals. This could result from changes in the intelligence
system that eliminated the collection of data on internals, eliminated
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the availability or training of interpreters to listen to internals, deem-
phasized cryptographic analysis in a way that removed our ability to
break Red codes and read their messages, or deemphasized internals in
a way that sharply reduced connectivity with the rest of the system. In
the extreme, we can represent any of these by removing the data
stream on COMINT externals. What difference would this make?

In answering this, we must be careful. In this example, we assume a
beginning odds ratio in the commander's database for each unit-
attribute. Unless we adjust that, we can only model a loss of COMINT
internals that occurs shortly before the time series in our example
starts. That does not present a serious problem over the course of a
scenario that runs for several days, but it seriously distorts the picture
that comes from looking at one hour of collection. Again, our goal in
this example is to understand how we use our approach, not to capture
nuances of change in a real intelligence system.

From Tables 7 a.id 8, a loss of COMINT internals would remove a
row from each table. For unit type, this would yield the results shown
in Table 9. The one source of positive information enhancement is
now gone and information quality falls steadily through the table. The
loss of the row for COMINT internals in Table 8 has no effect on any
other part of the table. Because analysts do not use COMINT inter-
nals to determine the location of he unit in this example, the loss of
this information has no effect. In sum, our approach helps us deter-
mine that, for these very simple simulated data, losing COMINT inter-
nals would substantially affect the quality of the commander's informa-
tion on unit type, but not that on unit location. It also provides a
quantitative measure of what the effect would be.

We can think of other changes in an intelligence system in a similar
way. A change in processing or communication time in a particular

Table 9

QUALITY OF CORPS COMMANDER'S INFORMATION ON UNIT TYPE
IN THE ABSENCE OF COMINT INTERNALS

Oriial Decayed A
Source of Arrival A Priori Discrimination Poeteriori

Information Time Odd. Ratio Ratio Odds Ratio

JSTARS-MTI 666 0.1000 (1.5371) 0.1000
GRCS-ELINT 825 0.1184 1.3528 0.1602
GRCS-COMINT-extl 840 0.1627 1.2158 0.1979
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part of the intelligence system could change the arrival times in Tables
7 and 8 for information based on data from different sources. Decay
rates would remain the same as in the baseline. This would alter the
degraded discrimination ratios in these tables and potentially change
the value of information from different data sources in the
commander's database.

A change in the processing of information from a particular collector
could change its discriminatory value. We could represent this depar-
ture from the baseline intelligence system by adjusting parameter
values in relationships that convert VIC data into discrimination
ratios. Decay rates from the baseline would not change. Such a
change would alter the adjusted discrimination ratios that enter Tables
7 and 8 and alter odds ratios in the commander's database.

A change in the analytic capability of the system could change the
threshold used to reject poor-quality new information. Such a change
could potentially be targeted within the intelligence system so that it
affected only data flowing through that part of the system. This would
tend to raise the discrimination ratios reaching the commander and
have effects li&e those above.

We emphasize again that this illustration is too simple to give a
detailed sense of how changes affect information quality. But its sim-
plicity allows us to use it to trace the mechanics of how we model
change in the simulation. In each case, we construct a baseline and
then alter some part of it, inducing changes in the elements of Tables 7
and 8. These alter the time seiies we use to measure quality levels
over time. Changes in these time series provide the basis for policy
analysis.

SUMMARY

The example we offer here is a very simple one. We start by
extracting specific data when collectors sight individual units in VIC.
We transform these data into discrimination ratios that define the
quality of information in these sightings relevant to the attributes of
these units and the data streams generated by these collectors. Each
discrimination ratio that we generate potentially initiates a series of
events as the information associated with this ratio works its way
through the network that defines the intelligence system. How rapidly
information moves depends on exogenous assumptions about delay
times on each communication link and in each processor. Once we
know how fast information moves, we can examine the quality of infor-
mation maintained in the commander's database. When data arrive at
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the commander's database, we degrade their quarity to reflect the pas-
sage of time and ask whether their quality is higher enough for the
intelligence system to incorporate them in this database. If it is, we
degrade the database for the passage of time and then use Bayes'
Theorem to calculate the effects of new information on it. We choose
a degradation factor to achieve the pattern of quality that we would
expect in the commander's database in a baseline case. We then use
this factor to analyze departures from the base case that we can
represent in terms of changes in the discrimination ratios associated
with new information, delay times in the intelligence system, or tl resh-
olds used to determine which data reach the commander.

Although our example is simple, it conveys the essence of our
approach. An actual simulation would use many more collectors and
processors, a complete set of attributes, many more sightings by collec-
tors, more realistic (and hence classified) assumptions about the qual-
ity of information from collectors and delay times, and hence more
realistic baseline degradation factors. But at its heart, a full-olown
simulation wnuld simply execute the calculations illustrated here on a
much larger scale.

4



VI. MODEL STRUCTURE AND
IMPLEMENTATION

TERMINOLOGY AND OVERVIEW

This section presents the main data structures and process control
flows within the model. For ease of reference, we call the computer
implementation of this model PRO (for "intelligence PROpagation
model"). To avoid confusion in the discussions within this section, we
use "simulation" to represent the VIC ground truth simulation, and
"model" to represent our computer model of an intelligence collection
and fusion system.

The PRO model uses a battlefield simulation that is external to
itself to generate two databases: (a) ground truth, a stream of readings
of the location, ID, and other attributes of battlefield units at certain
snapshots in time; and (b) a stream of sensor sightings. These sensor
sightings later undergo a transformation process into what we call
"pre-observations" that contain indications of the quality of (not the
value of) time-stamped sensor readings of individual attributes of indi-
vidual battlefield units. Later, another transformation step converts
the pre-observations into normal observations1 that flow among nodes
in our model of a communication network.

For now, we are using the VIC battlefield simulation. In the future,
other simulations may be used to provide this information to PRO.

Between VIC and PRO, we use a "VIC Postprocessor" program to
map VIC outputs into the correct format for PRO inputs.2 The simpli-
fied version of the data flows among these programs is shown in Figure
7.

An important characteristic of our system design lies in the fact that
the two data flows from VIC are not dependent on any of the subse-
quent processing performed on those data flows. Consequently, each

1We are using the word observtion not in the sense of a recorded measurement, but
in the deeper sense of "a judgment or an inference from what one has observed."
(Webeter's New Co/egiate Dictionary, 1979 edition.) The (pre-)obuervations derived from
VIC may result from the action of a collection of sensors or represent other aggregated
data, although we invariably extract thse data before they enter one of the Kalman
filters built into VIC to perform fusion.

nThis is not the postprocessor that the VIC simultion uses to organize and present
ite output. It is a special program we have written to link VIC and PRO.
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file of ground file of sensor
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computer Interface database(s) for
(map display) I Individual node(s)

Fig. 7-Schematic of top-level PRO data flow

data flow is routed to a data file from a run of the VIC simulation;
then many differing runs of the PRO model can be performed (for
example, varying some parameter for sensitivity analysis) using those
same VIC output data files. Because of VIC's large size and processing
requirements, this results in major savings of time and project
resources.

MODIFICATIONS TO VIC AND ITS
OUTPUT DATA FLOWS

At its simplest, VIC may be considered an "engine" that moves both
enemy and friendly units around on a battlefield. It also simulates the
collection activities of various sensors.

As one of its standard outputs, the VIC simulation can produce a
ground truth data stream. We have additionally inserted a set of
PRINT statements into VIC to generate a stream of sensor sightings of
unit attributes resulting from the actions of sensors.
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Ground Truth Data Stream

A portion of a typical ground truth data stream generated by VIC
during its operation is shown in Figure 8.3 At certain time steps (we
have chosen four-hour and 1/2-hour time steps for the recording of
these ground truth "snapshots" in various of our VIC runs), a set of
lines or records are emitted into the ground truth data file, providing
current values for several attributes (unit ID, location, mass of unit,
etc.) for every unit being simulated. Since this is a standard VIC
report, it contains some data that are not relevant to our model (such
as kill rate, loss rate, decon status, distance to the FLOT). The unit
attributes that we use in this report are described below.

This "raw" ground truth data file is fed into a ground truth post-
processor4 that: (1) extracts units of interest based on unit type and
echelon,5 and (2) transforms VIC-style unit-attributes into ones that
are more readable and appropriate for subsequent PRO modeling. A
typical output ground truth file resulting from ground truth postpro-
ceasing is shown in Figure 9.

We retain the VIC ground truth information for Blue units as part
of this data file for context; the location and movement of Blue units
on the map display screen in the user interface indicate the FLOT and
aids in interpreting the movements of the Red units.

Unit attributes stored in the revised ground truth data file are the
following. The file contains one record for each unit of interest at each
time step.

Unit-ID A unique identifier for this unit, as provided by VIC.
These are not the real identities of units, because of the sensi-
tivity of these data. The unit-ID is used as an index to other
attributes, identifying the unit and placing it within an organiza-
tional hierarchy. This is the same code as the NAME field within
the raw VIC ground truth report.

Examples of unit-IDs are:
B11113007 R1114
R11000050 R10171007
R1409000B R140C4007

&The standard VIC output file called SS.HISTORY.FILE contains location and
strength information for each unit at user-selected intervals during the simulation. A
small portion of this file for one of our VIC runs is reproduced in Figure .

4Ground truth poetprocessing is performed by a routine called "truth.prl," which we
have written in PERL, a language in the public domain that operate. under UNIX. It
was written by Larry Wall of NASA/JPL and is useful for scanning text files, extracting
information from them, and producing reports based on that information.

5Curently, unit types of interest are: tank, mechanized-infantry, infantry, cavalry,
tube-artillery, headquarters, aviation-HQ, and artiflery-HQ. Echelons of interest am.
front, army, corps, division, brigade, regiment, and battalion.
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We currently track data on 178 Red units with unique but artifi-
cial VIC names. We can easily adjust the postprocessor to track
other units if appropriate.

Unit-side This indicates the side of the unit. Certain attributes of
Blue units are stored within the ground truth database so that
their positions may be displayed along with the perceived posi-
tions of the Red units. This attribute is used to display units of
different sides in different colors. The value of this attribute is
derived from the first letter of the unit-f) code.

Allowable values for unit-side are:

red (indicates enemy unit)
blue (indicates friendly unit)

Unit-type The generic type of the unit. This attribute allows cer-
tain processing to be performed for all units of a particular
generic type. This information is derived from a lookup table
within the ground truth postprocessor based on the unit-ID.

Allowable values for unit-type of primary interest in the current
PRO model, with their corresponding VIC unit-type codes, are:

tank [VIC: TNK ]
mechanized-infantry [ VIC: MEC]
infantry [VIC: INF I
cavalry [VIC: CAV
tube-artillery [VIC: TUB I
headquarters [VIC: HQ I
aviation-HQ [VIC: HQV I
artillery-HQ [VIC: HQA I

We can easily include other unit-types modeled by VIC if appro-
priate.

Unit-echelon This attribute indicates the echelon level of the unit.
These echelon values are independent of unit-type. Again they
are derived by lookup table from the unit-ID.

Allowable values for unit-echelon of primary interest in the
current PRO model, with their corresponding VIC unit-echelon
codes, are:

front [VIC: FRT I
army [VIC: ARMJ
corps [VIC: COR ]
division [VIC: DIV I



85

brigade [ VIC: BDE ]
regiment [VIC: RGT
battalion [VIC: BN ]

If appropriate, we could add other unit-echelon codes modeled by
VIC: battery, company, platoon, squadron, task-force, troop.

Unit-activity This attribute indicates the activity in which the unit
is engaged at any point in time. This attribute is a rewriting of
the VIC code for combat status (CBTSTAT) contained within
the raw VIC ground truth output report. Allowable values for
unit-activity in the current model, with their corresponding VIC
unit-activity codes, are shown in Table 10.

Unit-effectiveness A real number from 0.0 to 100.0, indicating unit-
effectiveness. The value 0.0 represents total unit-ineffectiveness;
100.0 represents total effectiveness relative to its level of effec-
tiveness at the beginning of a scenario. This number is the "%
MASS" value in the VIC raw ground truth report, indicating the
present level of effectiveness of the unit.

Unit-modeled A boolean value (either Yes or No) representing
whether this unit is to be modeled within PRO. (Note: regardless
of this setting, the unit's behavior is still simulated within VIC.)
This attribute permits a larger database of units to be represented
in PRO, only some of which might be modeled in any particular
run. In this manner, selections from the larger unit database may
be made without major restructuring of the model. In PRO as
currently constituted, all units whose unit-side is "Red" have a
unit-modeled value of "Yes," and all Blue units have a value of
"No."

Unit-predictable A boolean value representing whether the actions
of this unit are predictable or not-that is, whether the actions
are consistent with Blue's intelligence preparation of the battle-
field (IPB). The default value is Yes.

Unit-lat A real number representing the latitude of the unit in
decimal degrees (range -100.0 to 100.0). South of the equator is
negative, north positive. This is derived from the location attri-
butes of the unit in the VIC raw ground truth report.

Unit-Ion A real number representing the longitude of the unit in
decimal degrees (range -180.0 to 180.0). West of Greenwich is
negative, east positive. Derived from the location attributes of
the unit in the VIC raw ground truth report.
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Table 10

ALLOWABLE VALUES FOR UNIT-ACTIVITYa

Corresponding
PRO Activity Value VIC

ADA-acquiring ADA ON
ADA-not-acquiring ADA OFF
advance-unopposed *ADVANCE
artillery-in-place *ART STAT
delay DELAY
engineer-HQ-in-place EN HQ S
engineer-at-base-and-ready EN READY
engineer-at-minefield EN AT MF
engineer-moving-to-HQ EN TO HQ
engineer-moving-to-base
engineer-post-task
engineer-to-minefield EN TO MF
frontal-attack *FRT ATK
frontal-defense 'FRT DEF
helicopter-at-base-ready HC READY
helicopter-at-base HC BA ST
helicopter-in-potflight HC POFLT
helicopter-in-preflight HC PRFLT
helicopter-on-station HC ON ST
helicopter-to-base
helicopter-to-station
HC-TO-BO
inactive *INACTIVE
movement-to-contact *CONTACT
pursue *PURSUE
reinforcing *REINF
supply-unit-active SUPPLY
withdraw-unopposed
withdraw-opposed

6VIC activity codes prefaced with an asterisk
are the activities we expect to see for the Red
units being modeled.

Unit-veloc-speed A real number representing the speed of the unit
in kilometers/hr. The speed is computed from the change in loca-
tion of the unit from the previous time-step (for example, four
hours ago) to the current one within the VIC raw ground truth
report.

Unit-veloc-direction The general direction of movement of the unit.
If unit-veloc-speed is 0, this attribute's value has no meaning and
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is ignored. This value is also computed from the change in loca-
tion of the unit from the previous time-step to the current one.

Allowable values for unit-veloc-direction in the current model are:

north east
south west

After its postprocessing, ground truth consists of a collection of unit
records at each time stamp. This collection contains one record for
every unit of interest (both Blue and Red) giving the values of the
above unit-attributes at that time stamp. This file can then be used as
input to an interactive display of the locations (or other attributes) of
units as a function of time as a scenario unfolds.

Sensor Sightings Data Stream from VIC

The second data stream is generated from PRINT statements
inserted into VIC.6 It consists of individual sensor sightings made at
various (simulated) dates/times. At present, we have chosen to extract
from VIC the observations made by the four categories of sensors
described in Sec. III:

GRCS-COMINT-intl GRCS-ELINT
GRCS-COMINT-extl JSTARS-MTI

In the current version of the model, we take sensor readings labeled
GRCS-C in VIC and duplicate them, providing identical outputs from
the sensors we call GRCS-COMINT-intl and CRCS-COMINT-extl.
The reason for this duplication and relabeling is so that these sensor
sightings can be routed through two different communication and pro-
cessing paths in our model.

An extract of a file of raw sensor sightings emitted from our PRINT
statement inserted into VIC is shown in Fig. 10. Several of the attri-
butes reported there are not currently being used; others are
transformed into more useful sensor observation readings for the PRO
model. That transformation and the mapping between the readings in
Fig. 10 and the messages we call "pre-observations" are made by a VIC
postprocessing step.

Seneors in VIC ar handled in the Fusion Intelligence (FLSIM) module. The routine
F.CARRY.OUT.OBSERVATION cull the routine FI.CREATE.AN.OBSERVATION to
produce sightinp of individual units As soon as VIC creates the shtin we write out a
record with the relevant data. This prefusion sighting has not yet gone through the Kal-
man filtering proces (FI.PERFORM.KALMAN.ESTIMA7TION) used to Ows location
and velocity dat from the sightings.
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VIC Postprocessing

The PRO model works by modeling the flow of a set of "messages"
among communication paths within an intelligence fusion communica-
tion net being studied. Most messages contain information about the
enhancement (or degradation) in the quality of a processing node's
information about an attribute of a (Red) unit at a particular simulated
date/time, caused by a sensor sighting, or by subsequent fusion activi-
ties of processing nodes. The purpose of the VIC postprocessing step is
to transform the information in the raw sensor sightings (as illustrated
in Fig. 10) into messages in the standard form for subsequent PRO
processing. The result of this postprocessing is a stream of what we
call "pre-observations," because they are still not quite in the form of a
normal PRO observation.

An extract from a typical file of pre-observations emerging from VIC
postprocessing is shown in Fig. 11. Each pre-observation is given a
unique observation number, a (simulated) date/time stamp, the name
of the sensor making the observation (recorded as both Sender and
Recipient), the unit-rn of the unit observed, the name of the attribute
observed, and an "FP #" (floating point number) representing the
quality of the sighting. Each line describes only a single unit-attribute
combination as observed by a single sensor, whereas the records in the
raw sensor sightings (Fig. 11) contain information on several unit-
attributes. One record in the raw sensor sighting file therefore gen-
erates multiple records in the resulting pre-observations file.

The date/time stamp, the names of the Sender and Recipient nodes
representing the type of sensor sighting, and the unit-rn of the unit in
the pre-observations file are taken straightforwardly from the raw sen-
sor readings file record. Each raw sighting record generates seven pre-
observations with the above common attributes, each having a distinct
unit-attribute - FP# pair as shown in Table 11. The FP # reading
associated with each unit-attribute in the pre-observations is an indica-
tor of the quality of the sensor sighting. This number is the basis for
the calculation of an "enhancement increment" associated with this
message when it becomes transformed from a pre-observation into a
normal observation in the PRO model. That transformation is per-
formed as follows: Recall from Eq. (4.6) that for categorical unit-
attributes,

DR - a x (probabilityoLdetection)b, (6.1)

where DR is the discrimination ratio.
We use the FP # derived above as a surrogate for probability of

detection (which is in turn a surrogate for the quality of the
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*Obev# Time Sender Recipient Unit-ID UnLt-attribute r? 3
#_---- - - - - - - - --- - - - --- - --- - -- --- - -- -- - - --- - - ---

1 0 1:22 GRS-C:CST-intl GRCS-CUI-intl 110000050 ID 1.00
2 0 1:22 GACS-CO .ST-extl 03CS-CMINT-"t1 R10000050 ID 1.00
3 0 1:22 GtCS-COfW3T-intl GtCS-COIXT-intl 310000030 location 0.53
4 0 1:22 G3CS-CONT-estL GACS-CMIrT-U tl R310000050 location 0.53
S 0 1:12 G3CS-CWNT-inti OM0-CHIU-Intl 100000 0 veloc-apee 1.16
6 0 1:22 GRCS-CCUC-extl G3CS-CCIIT-eztl R10000050 veloc-aped 1.16
7 0 1:22 G&CS-CMUT-intl G&CS-C INT-ifnt 310000050 type 1.00

1723 0 1:22 GRCS-CLINT GCS-CLINT 310000050 1D 1.00
1724 0 1:22 GRCS-LUT GICS-LLINt R100000SO location 0.53
1725 0 1:22 GICS-ILUZ GCS-CLIE? R10000050 veloc-epeed 1.16
1726 0 1:22 GCWS-CLrNT GRCS-,LrT R10000050 type 1.00
1727 0 1:22 G .CS-9LIl GACS-CLN R100000 echelon 1.00
1720 0 1:22 GRCS-LINT GIS-LIf R10000SQ effectiveness 1.00
1729 0 1:22 GICS-9LIUT GACS-CLIET R10000050 veLoc-dLrection 1.00
1730 0 1:22 GtCS-CINTl G1CS-1LIE1T 110174007 tO 1.00
1731 0 1:22 GCS-CLINT GIGS-gLIT R10174007 location 0.29
1732 0 1:22 GRCS-CLIT GAGS-CLIuT R10174007 vloc-sead 0.65
2416 0 1:22 JSTA*S-I'I JSTAMI R11100056 10 1.00
2417 0 1:22 JSTARS-UI JSTAUUS-NI R11100056 location 2.11
2410 0 1:22 JSTA.S-M J.STAUS-WNI R11100056 veloc-apeed 0.12
2419 0 1:22 JSTAU-4TI JSTUAMRS-I 311100054 type 1.00
2420 0 1:22 JSTUtS-NT! JSTAIS-NTI 311100056 echelon 1.00
2421 0 1:22 JSTAU-UT- JSTMUIS-NfZ 1111000S effectiveness 1.00
2422 0 1:22 JSTAS4 JSTAlJ-NTI R11100056 veloc-directlon 1.00
2423 0 1:22 3STAR1UT! JSTAR1-Nt! R1111 ID 1.00
2424 0 1:22 JSTARS-NI JSITAS-TI 31111 location 1.79
2425 0 1:22 JS7AS-I JSTJAtS- 31111 eloc-apaed 0.10

160571 2 12:34 .76A5S-IM JITMRS-TI 311300056 echelon 1.00
160572 2 12:34 JST.R41*- J97*1-NI 311300056 effectiveness 1.00
160573 2 12:34 3J.7M54 J571-UMT 311300056 veloc-direction 1.00
160574 2 12:34 3571*14W JSTMIRS-I 114000050 ID 1.00
160S75 2 12:34 J37R*1U4 JSTAURS-t! 314000050 location 2.04
160576 2 12:34 357155451 397*A15I-U 314000050 veloc-apaed 0.11
1I0S17 2 12:34 J37R*t431 JT7S-UMl R140000S0 type 1.00
160578 2 12:34 J337*U417! JTRS-11T 314000050 echelon 1.00
110571 2 12:34 JSTURS-431 JS7t1-MI 314000050 effectiveness 1.00
160S60 2 12:34 JST R943 JSTAR*-UTT R14000050 veloc-direction 1.00

Fig. 11-Sample from file of pre-observations

observation) and use values for parameters a,b in the above equation
that are dependent on both the type of sensor being used and the
unit-attribute being detected by that sensor, as discussed in Sec. IV.

From Eq. (4.5), the discrimination ratio is multiplied by the a priori
odds ratio to obtain the a posteriori odds ratio, given a discrimination
ratio for a particular sighting, i:

odds-ratioi - odds-ratio - I x DPi (6.2)

and from Eq. (4.1), we have a corresponding equation for the decay of
information over a time interval from tO to t1:

oddsratiou - odds-ratiow x exp[-D(tl - tO)] (6.3)

4
I-iI l l .
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Table 11

PRE-OBSERVATIONS IN THE RAW SIGHTING FILE

Unit-attribute Corresponding FP #

ID - FRAC in raw sensor sightings file,
which is fraction of actual current
unit mass that was detected by the
sensor

location - (.0045 x RANGE) for GRCS-COMINT and
GRCS-ELINT

- (.018 x RANGE) for JSTARS-MTI,
where RANGE is the range reading
in the raw sensor sighting file,
representing distance from the sensor
to (center of mass of) the observed unit

veloc-speed - (.01 x RANGE) for GRCS-COMINT and
GRCS-ELINT;

- (.001 x RANGE) for JSTARS-MTI

type - FRAC in raw sensor sightings file

echelon - FRAC in raw sensor sightings file

effectiveness - FRAC in raw sensor sightings file

veloc-direction - FRAC in raw sensor sightings file

aVIC uses a product of this form to estimate the standard
error of location associated with a sighting. The products
shown for veloc-speed have an analogous interpretation. The
numbers in the text were chosen more or less arbitrari

As time intervals pass and several observations are received by a par-
ticular observer (node), repeated applications of the above equations
yield a generalization of Eq. (6.3):

odds-ratio, .mnt -

odds-ratio 0r& x DR1 x ... x DRn x

exp[-D(TD1 + ... + TD.)] (6.4a)

where the TDk are time intervals of various kinds (for example, com-
munication times, processing times) that sum to the total time differ-
ence between "current" time and "original" time.

From Eq. (6.4a), the only effect of the original odds ratio is as a
multiplicative constant on the final answer. Also the effect of an intel-
ligence collection and fusion system is to multiply those original odds
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by a factor, and for the purposes of evaluating alternative intelligence
collection and fusion systems, aU we are concerned with is that factor.

odds-ratiocmnt
odds-ratioo,"nn

DR, x ... x DR., x exp[-D(TD, + ... + TDm)] (6.4b)

If this factor-call it the "intelligence effectiveness factor"-is greater
than one, the quality of the commander's information about a particu-
lar unit-attribute at the current time is poorer than it was at the origi-
nal time; if equal to one, the qualities ae the same; and if less than
one, the quality of his information has increased from the original to
the current time.7

PRO implements Eqs. (6.1) and (6.2) in logarithmic form. We
prefer a logarithmic form for four reasons:

" Repeated computations in PRO Eqs. (6.1) and (6.2) to obtain a
posteriori odds for the quality of a unit-attribute are faster
using the logarithmic form of the equations.

" It is simpler to present the operations in PRO using addition
and multiplication instead of multiplication and exponentiation,
respectively.

* Many people find that it is natural to think of very large and
very small probabilities on an informal logarithmic scale.

" In other areas where multiplicative relationships describe the
underlying phenomenon, the use of a logarithmic scale with
decibel units has proven useful to elucidate the phenomenon.

Users will not always find it easiest to use the output of PRO in a loga-
rithmic form. PRO provides a flexible environment in which a user
can present outputs for final display or analysis as logarithms, odds
ratios, subjective probabilities, or whatever other form the user finds
most appropriate for a particular application.8

7PRO allows the user to enter values for odds-ratio.10W and to multiply them by the
expression in Eq. (6.4b) to calculate values of odds-ratio ,. However, a user need not
determine meaningful values of odds-ratiodpl. To use PRO, a user will be interested
in the value of the expression in Eq. (6.4b) in two cases: the baseline case and a case fol-
lowing an incremental change in the baseline. He can use the ratio of values for the
expression in Eq. (6.4b) to measure the effect of the incremental change in question.
Becamse odds-ratior 1s takes the same value in both cases, this ratio of values does not
depend on values ofodds-tior= .

5For example, a user's rr il interest may be in 'targetability." If targetability is
defined as knowing the location of a unit's elements within, say, 500 meters, a user can
fairly easily transform the output of PRO into a measure that states the subjective prob-
ability that the system places on a unit's elements being within 500 meters of the loca-
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Taking the base 2 logarithm of both sides of Eq. (6.2), dividing both
sides by oddsratioorvw , and multiplying by -10 to obtain a decibel
scale and switch the sign of the effect,9 we obtain:

-10X 192( odds-ratioi )_-10 × log2( oddsratio)

( odds-ratio1 i)

-10 X log 2  oddsratioo.ji -10 x log2(DRi) (6.5a)

We call the value of the term:

-10 X lg 2 ( odds-ratioi
- odds-ratiofitiw

the "enhancement" of the quality of the information caused by the
receipt of observations 1 through i, and we call the term:

-10 x log 2(DRi) , or equivalently from Eq. (6.2):

-10 x log 2  oddsratioi
(odds-ratio1..-I

the "enhancement increment" caused by observation i. In these terms,
Eq. (6.5a) can be rephrased as:

enhancementi - enhancement, 1 + enhancement_increment (6.5b)

The values of enhancement and enhancement increment are in deci-
bels. Since the enhancement value of unit-attribute information at a
particular node measures the change in the quality of the information
about that unit-attribute at that node after a set of observations and a
time interval have passed, the initial enhancement value for all nodes
and unit-attribute combinations is, by definition, zero.

As a discrimination ratio DR, is received representing a particular
sensor observation, it is converted within the PRO model to an
enhancement increment term and added to the existing value of the

tions designated in the intelligence system. Alternatively, a user can transform PRO
output into a statement that the intelligence system places, say, an 80 percent probability
weight on the statement that it knows the location of a unit's elements to within %
meters. Many other transformations are also possible. Although PRO software does not
perform all such transformations, the output it produces contains the information
required to generate such products with suitable manipulation.

98witching the sign of the effect enhances the intuitive comprehension of the calculs-
tions. Positive numbers are "good"; negative numbers an "bed."
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enhancement for that node-unit-attribute combination, as indicated by
Eq. (6.5b).

Within the PRO model, an observation is converted to an enhance-
ment increment by use of the formula:

enhancement-increment, -

max-increment + 10 x elasticity x

log2 (probability-oLdetection) (6.6)

where max-increment -- 10 x log2 (a) and elasticity - -b, given
parameters ab representing characteristics of the sensor as discussed
in Sec. IV. Equation (6.6) follows from Eq. (6.1) and the definition of
enhancement increment, above.

A similar derivation from Eq. (6.3) leads to the equation:

enhancementt + dt - enhancementt - (Kdt) (6.7)

representing the (exponential) decay of an enhancement value over
period of time dt. In Eq. (6.7) the decay factor K is:

10 x D
o g. (2)

where D is the decay rate factor in Eq. (6.3). The decay coefficient, K,
in Eq. (6.7) is in decibels/hour.

In Eq. (6.5b), if a computed enhancement increment for a unit-
attribute observation is greater than zero, the observation increases the
quality of information about that unit-attribute at a particular node; if
zero, the quality is unchanged; and if less than zero, the quality
decreases as a result of that observation.

All of Eqs. (6.1) through (6.7) are also used for computation of
enhancement increments and their addition to existing enhancement
terms for continuous attributes; in this case, the parameter
"probabilityfoLdetection" is replaced by the standard error calculated
as the product of RANGE and a factor that depends on the attribute
and sensor. VIC provides this appropriate value of RANGE, and the
values of parameters a,b are derived as described in Sec. IV.

THE PRO MODEL

The PRO model follows the flow of observations of unit-attributes
from sensors simulated within VIC through various intelligence pro-
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ceasing nodes. We record not the data values associated with the
observations, but rather an indicator of the quality of the observation,
stored as an enhancement increment (El). At any time in the PRO
model, an enhancement value is recorded for each unit-attribute combi-
nation for each node being modeled; the enhancement value represents
that node's belief in the correct value for the unit-attribute. These
enhancement values are reduced as time passes to reflect the increasing
staleness of the information, and they can be increased as new observa-
tions are received by a node providing higher-quality information.

The PRO model is programmed primarily in the RAND-ABEL
language,10 with some supplemental routines coded in the C language.
RAND-ABEL was designed and implemented at RAND initially to
support the advanced modeling required in the RAND Strategy Assess-
ment System (RSAS).11 In addition to providing succinct, readable pro-
gram code, RAND-ABEL allows access to the Data Editor and graph-
ics displays of RSAS, such as map displays of western Europe with
overlays of military unit icons showing their location and movement.
These major RSAS resources can provide interactive data updating
during a model run and a graphic interactive interface to PRO with
modest programming effort.

Our descriptions here of data and processing within the PRO model are
informal but similar to the actual structures and algorithms within the
RAND-ABEL code for PRO. This similarity should allow an interested
reader to understand the code of the PRO model. Most of the data struc-
tures within PRO are represented by arrays; we use the notation Nix,y] to
represent access to an array N, where xy,... are the values of the indices
of the information being sought in the array. The version of the RAND-
ABEL language we are using at present allows only two-dimensional
arrays. Our description of PRO uses n-dimensional arrays, where
appropriate, for succinctness and clarity; within the model they are
implemented as a collection of two-dimensional arrays.

In general, the PRO model is described in terms of the following
concepts:

UNITS
"Things" on the battlefield, such as an armored division or a bri-
gade. Units may be illusory, caused by wrong observations or
wrong conclusions (see the appendix). The goal of the intelli-
gence fusion process we are modeling is the determination of the

10,0 Shapiro et al., 198 and 18.
"1For an introduction to the Rand Strateay Asusment System, see Davia, Banks

and Kala 1966. The basic functional elements of RSM software are publicly reles-
able in a form caled RAMP.
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location, identification, and other attributes of (enemy) units on
the battlefield. The measure of the success of the intelligence
fusion process is the resulting enhancement or decay in the accu-
racy of a commander's perception of these enemy unit-attributes.
Red units are modeled in PRO; some Blue units are passed along
as ground truth elements so that they may be displayed to provide
context for the model's outputs.

NODES
Persons, organizations, or other abstractions that receive observa-
tions, process them, or use them. Nodes are interconnected to
form a communication network over which observations are
transmitted. Certain nodes perform intelligence fusion on inputs
received; others represent commanders who are end-user recip-
ients of fused intelligence; others form the interface between PRO
and VIC, acting as recipients of VIC intelligence observations and
passing them on to one or more PRO nodes. Each node has asso-
ciated "inbox" and processing time delays, and each link between
nodes has an associated transmission time delay.

MESSAGES
Messages transmit observations from VIC into PRO, and between
units modeled within PRO. They are also used to govern certain
system operations, often to be performed at a future time
(represented by the date/time stamp within the message).

ORDER OF BATTLE (OOB)
A snapshot of the state of the modeled world, giving some node's
(for example, a commander's) perceptions at some point in time.
A collection of these snapshots for some node is contained in that
node's order of battle database. An OOB database may be com-
piled for any node at the discretion of the modelers.

ENHANCEMENT
The net increase (or decrease, if negative) of the quality of the
intelligence (about a given attribute of a given unit, maintained at
a given node) since the beginning of the simulation (normally the
initiation of hostilities). Measured in decibels, it is proportional
to the logarithm of the ratio of the initial to final odds ratio asso-
ciated with the subjective probability that the attribute has the
value known by the simulation to be the correct value. It is a
measure of uncertainty about attributes of units.
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Units

A set of (Red) units is being modeled. The behavior of these units
on the battlefield as a function of time constitutes ground truth, and
changes in the quality of Blue's perceptions regarding information
about various attributes of these units constitutes our modeling of an
intelligence collection and fusion system. We currently model 178 Red
units; VIC includes as many as 500 that could be modeled. Within the
ground truth component of PRO, each unit is described by the values
associated with the set of its attributes. When representing a sensor
observation, these unit-attributes contain not the corresponding data
value, but an "enhancement increment" representing the change in the
quality of a commander's perception of that unit-attribute at some
point. (For the purposes of this El, a single unit location El is stored
within the unit-lat attribute, and the unit-Ion attribute is rnused.)
The unit-attributes we model are:

Unit-ID Unit-modeled
Unit-side Unit-predictable
Unit-type Unit-lat
Unit-echelon Unit-Ion
Unit-activity Unit-veloc-speed
Unit-effectiveness Unit-veloc-direction

The PRO model also retains an additional attribute for each unit:

Unit-displayed A boolean value representing whether this unit is
to be displayed on the interactive map display during model exe-
cution. In this manner, selections of modeled units may be made
to keep the display uncluttered and to focus on the movements
and attributes of certain units of interest.

If a unit is to be displayed, the icon representing the unit is derived
from its unit-type and is currently the military map symbol repre-
senting one of the following unit-types:

armored brigade.hq front-hq
armyihq cavalry mechanized-infantry
artillery corpshq regimenthq
artilleryjhq division.hq

PRO can accept icons for additional unit-types. If a unit
has a type with no specified icon, it is represented by a
displayed point.

We are also interested in the hierarchical relationships among units.
These relationships are not explicitly encoded within the unit-
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attributes listed above because this information can be extracted from
the unit-ID codes provided by VIC. Examples of model behavior influ-
enced by hierarchical relationships that we may include in future elab-
orations of PRO include the following types of rules:12

The presence of three of five subordinate units of an army gives
us an inference about the status of the army. If a PIR is "Find
the 8th Tank Army," we might simply increase the priority for
the components of the 8th Tank Army. We may also develop a
figure of merit by asking how many of these components are iden-
tified over the course of the processing. The figure of merit in
essence becomes a measure of our ability to make higher-level
inferences about hierarchy.

If attributes of three of five units of an army are identified to
some degree of tolerance, the likelihood that attributes of the
remaining units would be identified should increase. Hence, a
rule about an information enhancement term (see below) for a
unit-attribute might have as an antecedent some function of the
enhancement term for related unit-attributes.

Nodes

The PRO model contains the representation of a communication
network linking various "nodes." Nodes may have zero or more sources
of incoming information, and zero or more output communication
paths to other nodes. In general, nodes represent "sensors," "fusion
shops," "commanders," "weapons systems," and other abstractions
within the intelligence processing network. Nodes have a belief about
a unit. It is the decisions of human nodes, the output of institutional
nodes, and the observations of sensor nodes that we are modeling. A
node is anything that is capable of forming hypotheses about units.
The following attributes are recorded for each modeled node:

"Ono of the virtues of writing PRO in RAND-ABEL is the ability to introduce rules
like thee easily. As noted in Sec. IV, we do not believe it is possible to use such rules to
model every last detail of fusion activities or even to attempt to capture key aspects of
fusion. Rules like the examples shown here, however, can be used to highlight certain
fusion activities. The rules shown here, for example provide illustrations of some of the
simplest "higher inference" that analysts might draw from the sort of order of battle we
tracL In fact, because such simple inferencw constitute an important part of order of
battle development itself and can be represented by fairly say rules, it may be quite
appropriate to compare the ability of alternative intelligenc system to produce order of
battle data in terms of thee higher inferences rather than the bac order of battle data
from VIC. More generally, such rules illustrate the kinds of rules that PRO can eaily
accommodate to highlight particular aspects of intelligence fuion.
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Node-ID A unique identifier for this node. This identifier is used
as an index into arrays holding the values of the attributes of a
node.

In this model, valid attribute values for node-ID are:

GRCS-COMINT-intl ELINT-processor
GRCS-COMINT-extl MTI-processor
GRCS-ELINT signal-processor
JSTARS-MTI ASPS-processor
talk-processor corps-commander
com-extl-processor arty-commander

More values can be easily added.

Node-default-process-delay A pair of numbers (t-lo, t-hi) indicating
the time delay, in minutes, a message encounters during process-
ing by this node. These are delay times for low- and high-priority
12 unit/attribute combinations, as stored in the unit-priority
array. In the current model, we use the processing delays shown
in Table 12 as a function of type of node.

Node-maintain-OOB A boolean value indicating whether an OOB
database is to be maintained for this node.

The values of the default delay times associated with a particular
processing node may be changed by operation of the model. In future
versions of PRO, we intend to implement a general mechanism for
scheduling changes at a future time to any model parameter. This may
be done by adding a new message type, called a "change-order," whose
function is to effect a particular parameter change at the (simulated)
date/time associated with the message.

Table 12

PROCESSING DELAY BY NODE

Processing Delay (minutes) for

Node-ID Low-Priority Unite High-Priority Units

talk-processor 45 10
COM-nitl-processor 10 5
ELINT-processor 10 5
MTI-proceseor 5 1
signal-processor 5 5
ASPS-processor 120 15

aProcessing delays are set to zro for nodes acting as origi-
nators and end-user of observations. The nodes listed in tbe
tabl are all intermediate processing nodes.
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Max-increment and Elasticity

To convert a probability of detection computed from VIC data into
an enhancement increment using Eq. (6.3b), we must store values of
maxincrement and elasticity used in that equation. In the current
model, we have chosen to make these values a function of node type
and unit-attribute; that is, they depend on which sensor is being used
and which unit-attribute is being detected. These values are stored in
two arrays:

Max-increment[unit-attribute, node-ID]

Elasticity[unit-attribute, node-ID]

An example of the values for JSTARS-MTI sensor for each type of
categorical unit-attribute is given below:

Node-ID Unit-attribute Max-increment Elasticity

JSTARS-MTI unit-type -10 x log2(0.5) 0.6
JSTARS-MTI unit-activity -10 x log2(0.2) 0.9
JSTARS-MTI unit-effectiveness -10 x log2(0.2) 0.6

A complete list of these settings for all sensor/unit-attribute combina-
tions is given in Tables 2 and 3, where max-increment and elasticity
are related to the factors ab (respectively) by the formulas contained
in the discussion following Eq. (6.6), above: max-increment -

-10 x log2 (a) and elasticity - -b.

Communication Network

The sightings emanating from (our abstracted and summarized
model of) the collectors within VIC, after postprocessing to become
what we call "pre-observations," go into a MESSAGES queue. After
additional processing to turn their FP # into an enhancement incre-
ment for a particular unit-attribute-node combination, these observa-
tions are then passed to various processing nodes (for example, repre-
senting intelligence fusion centers), and eventually to end-user nodes.
Some nodes can pass their processed observations to more than one
subsequent processing node or end user. Nodes may be thought of as
having three independent properties, each of which may or may not be
present:

* Some nodes, which we call "collectors," may originate observa-
tions; (most of these observations really come from postpro-
ceased VIC, but they "originate" into the fusion model through
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these nodes); other nodes might originate observations through
other mechanisms exterior to the model;

" Some nodes, which we call "recorders," have order-of-battle
databases periodically maintained to represent their perception
of the battlefield at various simulated times. This feature is
controlled by the node attribute "Node-maintain-OOB" listed
above. (The only effect of calling a node a recorder is genera-
tion of an output file; this has no effect on the model itself.) It
is useful for debugging purposes to call some nodes recorders (to
generate an output file of their beliefs over time), even though
those nodes would not normally hold beliefs regarding the intel-
ligence product at that point;

" Some nodes, which we call "processing nodes" (correlators),
receive messages, process them, and emit zero or more other
messages to represent the transmission of their processed data
to other nodes in the network.

A node can have all three properties, or any subset of them, or none of
them. (A node having none of these properties would be disregarded;
presumably it is a node that we wish to model at times, but it has been
inactivated, at least temporarily.)

The particular communication network among nodes that we are
currently modeling in PRO is shown in Fig. 12, which reproduces Fig. 3
for local reference. The PRO program is independent of this particular
network; other communication networks linking a collection of nodes
can be modeled merely by changing data tables within PRO.

The communication paths shown in Fig. 12 that are currently being
modeled are labeled in that diagram as C1 ... C12. There are some
restrictions on unit-attributes that can move on each link in the intelli-
gence system. Those restrictions, as itemized in the current PRO
model, are listed in Table 13.

The data in Table 10 are stored within PRO in the following array.

Propagate.att[sendernode, receiver-node, unit-attribute]

For each active communication ("commo") link between specific
nodes, we need to store the default transmission delay time for obser-
vation types of messages, for both low- and high-priority observations,
for each type of unit-attribute. We can therefore think of the com-
munication network at any moment as a "connection matrix"
represented by a four-dimensional array:

Default-comm-delay[from-node, to-node, unit-attribute, lo-or-hi]

containing in each array location a number, d, indicating the amount of
time delay in seconds that is the default initial value for observation
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Fig. 12-Communication network currently modeled in PRO

Table 13

COMMUNICATION PATH RESTRICTIONS IN CURRENT PRO MODEL

unit-
Attribute C1 C2 C3 C4 C5 C6 C7 CS C9 ClO Cl1 C12

ID yes no no no no no yes no no yes yes no
type yes yes yes yes yes yes yes yes yes yes yes no
echelon yes yes yes no yes yea yes yes no yes yes no
activity yes no no yes no no yes no yes yes yes no
effectiveness yes no no yes no no yes no yes yes yes no
location yes Yes yes yes yes yes yes yes yes yes yes yes
veloc-speed yes yes yes yes yes yes yes yes yes yes yes yes
veloc-direction yes yes yes yes yes yes yes yes yes yes yes yes

transmissions over the link from the from-node to the tonode, for
information regarding the specific unit-attribute (for example, a unit's
ED, type, echelon, activity, effectiveness, location, speed, direction), and
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for low- or high-priority observations. Communication link delay times
currently being used are shown in Table 5.13

The time from nodel to node2 may be different from the time from
node2 to nodel. If there were no communication link between nodel
and node2, the value at the intersection has a special value (a very
large number) indicating no link (an infinite delay).

During the operation of the model, rules could change which commo
links are operational and the value of the time delay for any link.

Because the observation propagation network need not be a tree-
indeed our initial network is not a tree-it is possible for observations
based on the same pre-observation 4 to reach the same node by a dif-
ferent route. It would be inappropriate for two such observations to
both increase the enhancement of the same node. From the structure
of the specific communication net being modeled, shown above, one
can in principle deduce the correct versions of propagation inhibition
rules to avoid such double- (or higher) counting at a fusion node from a
single pre-observation. In the general case, there are problems with
doing this. For example, what if a given node receives information
derived from the same pre-observation through two routes and the first
to be received arrives with a smaller enhancement increment than the
second? The proper thing to do would be to accept the first increment,
but then when the second arrives, increase the node's enhancement by
the difference between the second enhancement increment and the
time-discounted first enhancement increment. At the present time, we
avoid this complexity by incorporating a single highly ad hoc inhibition
rule:

An observation of location, received by ASPS-processor from
MTI-processor, will not be propagated to ARTI-commander.

Similar rules can be written to handle this problem in other networks.

Message.

There is a queue called MESSAGES in which various messages are
stored. (We use the word "queue" loosely here; the set of data iters in
MESSAGES is, at least notionally, kept sorted by date/time stamp as

'Th Defaultcomm..delay array is sparse, unsymmetric, and more than half empty
(since in our present model each link is only one way). Storage schemes might be used
that save considerable computer memory;, these will be implemented 7- later PRO ver-
sions if space becomes a consideration.

14Recll from an earlier discussion that a pre-obervation is the (effectiveness of the)
reading of an individual unit-attribute by a sensor. They are derived from sensor reed-
ings emitted from the sensor simulator (in the preent case, VIC).
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items are removed from the queue and new items are placed into it as a
result of processing.) The messages in the queue are of two types:

(1) "Observations," representing both (summarized) observations
of (attributes of units on) the battlefield by sensors being
simulated in VIC, and later fused (or otherwise processed)
observations introduced into the queue by nodes representing
intelligence fusion centers. Observations contain sporadic,
selective quality information about certain unit-attribute data
detected, with associated ID no. and time stamp identifying
the collection event. Therefore, "snapshots" of the quality of
unit-attribute readings, serial numbered and time stamped,
emerge from (postprocessed) VIC for use in our model. Also,
processing of an observation generates new observations.

(2) "Directives," administrative directives to the system causing a
change in its behavior at the (modeled) date/time contained
within the directive. Examples of directives are ones to halt
the model's operation, to trigger computation and storage of
certain nodes' "order of battle" perceptions, and to pause for
human interaction with the model to take place.

As mentioned above, at a later time we expect to implement a third
category of messages:

(3) "Change orders," telling the system to change some value in
some data structure or table representing the model at the
(modeled) date/time contained within the change order.

A message is a data object having the following attributes:

Mesg-type Indicates the type of message

Valid values for Mesg.type are:

observation
directive

Mesg-directive Indicates the specific directive being issued. The
directive will be executed by PRO at the simulated date/time
indicated within the message.

Valid values of Mesg-directive are:
read-truth read the ground truth database
stop stop model processing
log-OOB write to a data file a "snapshot"

* the ground truth and order-of-

If
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battle databases for all nodes
recording them

decay-enhancements compute the time decay of
enhancement values

update-all-unit-icons redisplay all unit icons
based on current
enhancement values

Mesg-repeat-interval A time interval, in seconds. If nonzero, gives
the frequency (in simulated seconds) at which to repeat this direc-
tive. Directives are repeated by incrementing their date/time by
this repeat-interval value and reinserting them on the MES-
SAGES queue.

Mesg-observation-num An integer that is a unique ID given this
observation by the VIC simulation. (Not used for directive-type
messages.)

Mesg-time The modeled date/time at which this observation was
made, or at which the directive it represents is to take effect.

Mesg-sender The Node-rn of the node that placed this message on
the message queue.

Mesg-sender-type The Node-type of the node that place" Etas mes-
sage on the message queue.

Mesg-recipient The Node-ID of the node that is the intended recip-
ient of this message. If multiple nodes are to receive a message, a
separate message is placed on the messages queue ior each
intended recipient. (Not used for directive-type messages.)

Mesg-unit-ID The unit-ID of the unit for which this is an obser-
vation. (Not used for directive-type messages.)

Mesg-unit-att The name of the unit-attribute for which this is an
observation. (Not used for directive-type messages.)

Meag-El An "enhancement increment" for this unit-attribute
observation. (Not used for directive-type messages.)

Note that messages relating to an observation DO NOT contain a data
value for that observation (for example, the latitude or longitude of a
unit observed). They only contain an "enhancement increment" repre-
senting the CHANGE in a commander's belief caused by this observa-
tion. This is a powerful feature of the PRO model design.

One of these data structures is generated for each unit-attribute pair
obseived by any collector during the collection activity being simulated
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within VIC. This "collector" may be a summarization or abstraction of
real collectors modeled in VIC, with the summarization or abstraction
performed during VIC output postprocessing. These observations are
also removed from the MESSAGES queue by processing nodes within
the communication network being modeled, while zero or more new
observations (with differing EI, sender, sender-type, recipient, and time
fields) are created and added to MESSAGES as a means of modeling
the passage of information through nodes of the communication net-
work being modeled.

If the additional message type "change-order" becomes modeled in
future versions of PRO, they will be placed there by some process
within the model to cause some change to a table or data structure rep-
resenting the model, usually at some future (modeled) date/time. In
this way, priorities, processing or communication delays, and other
attributes of fusion nodes, communication links, or other entities
within the model can be altered during its operation (for example, to
reflect processing loads, .ocusing, time of day, what has been
observed to date, how the war is going, etc.). We expect change-order
types of messages to have the following additional fields:

Mesg-what-to-change An indication of the array or list entry
to be changed

Mesg-new-value The replacement value for that entry

Unit Priorities

Some combinations of unit-ID and attribute (for example, the unit-
effectiveness of unit E13000050) may be flagged by some commander
as having high priority. Messages carrying observations about that
particular unit-attribute combination should be given priority handling.
To allow modeling of priorities, each unit-attribute pair is assigned an
initial default priority (low or high). These priorities may be modified
by the operation of rules during the running of the model (by use of
eventual change-order types of messages placed into the MESSAGES
queue). Conceptually, one can think of the priorities as existing in a
unit-by-attribute 2D array:

Unit-priority[unit-ID, attribute]

each location of which contains a representation of either "high" or
"low" indicating the priority of that unit-attribute combination.
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In the current PRO model, certain unit priorities are established at
the beginning of the run, and revised unit priorities are set (by use of a
directive-type message) at time 01:19:00 (one day and 19 hours of simu-
lation time into the run). Current unit priorities being used for these
two time intervals are strictly notional and are representative of the
type of qualitative information a corps commander would demand from
his intel system.

High priority is given to the following categories of units, in each
time period; all other units are given low priority.

High-priority units for period 1: from 00:00:00 to 01:18.00

-First echelon artillery assets
-All MAJOR command posts

High-priority units for period 2: from 01:19:00 to (end)

-3rd East German Army
-All MAJOR command posts

Decay of Unit-attribute Information Effectiveness

We assume various information regarding certain attributes of types
of units decays at different rates. To record this, we store a table of
decay factors (in real numbers representing decibels/hour) for each
combination of unit-type (for example, cavalry, aviation-HQ) and
unit-attribute. The information is represented by an information
enhancement decay rate array-

Enhancement-decay-rate[unit-type, attribute]

The values stored in this table indicate initial default values. This
information might be updated dynamically during the operation of
PRO, but that feature is not implemented in the initial version of the
model. At present, an enhancement decay rate of one decibel per hour
is used for all unit-type/attribute combinations. Then decay rate fac-
tors must be tailored to a particular application of PRO as explained in
sec. V.

During model operation, the El value representing the enhancement
of a commander's perception of a unit-attribute is decayed over a time
interval DT by multiplying the appropriate entry in the enhancement-
decay-rate table (divided by 3600 to convert it to per-second) by DT,
then subtracting the result from the current value of El (for that unit-
attribute combination, for that node).
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Order of Battle Databases

Any node in the communication net can maintain an order-of-battle
database showing the values of its enhancement readings for each unit
and attribute at various points in time. (Whether this database is
maintained for a node is governed by the Node-maintain-OOB attribute
of the "Node" structure.) This database is a collection of snapshots,
each one being a table of unit versus attribute with an associated
time-stamp. The entries in this table are enhancement values repre-
senting the enhancement or degradation of the commander's percep-
tion of the unit's attribute at this modeled time.

Each node designated as "maintain-OOB" is initialized to have an
initial ORDEROFBATTLE database with "0" for each entry and a
Time-stamp representing the starting time of the model. Subsequent
snapshots are derived from this initial table by processing described
below.

Each "maintain-OOB" node also maintains an associated MES-
SAGES queue of all messages received. These messages have the same
form as described for observation-type messages above.

This MESSAGES queue for each recording node need not be a phy-
sical queue of such structures, it could merely be a list of pointers into
a master queue of messages. The need for this individual node's MES-
SAGES queue can be eliminated if the order-of-battle database for this
node is updated (that is, a snapshot is taken) every time this node
receives a message. We believe that overhead would be too great, but
this tradeoff analysis might be considered.

Weightings

We intend to use the PRO model to comparatively evaluate various
combinations of intelligence collectors and processing (data fusion)
regimes. To accomplish this, in the future we may want to develop a
figure of merit for a particular model run (for a particular node's
order-of-battle database within that run).

Because some unit-attribute combinations might be considered more
important than others in developing this figure of merit, we need a
table of weightings for unit-attributes, telling the relative importance of
each of them in contributing to the final figure of merit. Therefore, we
expect there will be many tables of this kind and tables that could
easily be created on demand and could be applied to raw output from
the model well after we ran it. These tables really are part of a post-
processor for PRO, to be run separately from the model, but are
described here for completeness.
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To this end, we envision a two-dimensional array of weightings:

Weightings[unit-ID, attribute]

where each entry in this table might have a number from 0 to 10, or
from 0.0 to 1.0, to indicate relative weight to be given to a unit-
attribute combination in the final figure of merit. There may be a
requirement for a "family" of such weightings tables, reflecting dif-
ferent commanders' priorities, or something else. If it is decided that
the weighting of a unit-attribute combination depends on the unit-type
(for example, cavalry, aviation-HQ) rather than a specific unit's ID,
then the weightings table could be much smaller.

The data contained in the ground truth database might contribute to
the formation of these weightings, for example by having the weight-
ings be a function of the battlefield location of a unit. The exact form
of this relationship is to be determined. Weightings are not imple-
mented in the present version of PRO.

MODEL CONTROL FLOW

Given the above data structures and data files, we can now describe
the control flow of the PRO model as it routes messages among intelli-
gence fusion processing nodes in the network being modeled.

At the most general level, the PRO model is exceedingly simple to
explain: A list of "messages" initially consists of all the pre-
observations generated by a VIC run. These messages are stored in
date/time order, with the earliest first. The main PRO processing con-
sists of the following general steps:

START:

1. Initialize data tables within the PRO model, place certain
repeating directives into the message list to trigger periodic
processes to be initiated, initialize the map display used as a
"window" onto the model, and perform other initialization
steps as needed.

The data tables being initialized by this step are those mentioned
above, storing such information as the communication delay for each
communication line for low- and high-priority messages, processing times
(both low- and high-priority) for nodes, maxincrement and elasticity
values to be used in Eq. (6.6) for sensor/unit-attribute combinations, and
so forth.

Repeating directives are special messages that, when processed,
cause a copy of the message to be replaced on the message queue with
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a later date/time stamp. In this manner, periodic actions (such as
update of the display) can be handled using the normal message pro-
cesing mechanism of PRO.

LOOP:
2. Obtain the earliest message from the message list; if there are

no more messages, perform cleanup activities (such as a final
update of the display screen) and stop.

This most basic loop of the PRO model is governed by a procedure
called "Process-mesgs." After reading the earliest message on the
queue, this procedure determines whether the message is an
observation- or a directive-type, and calls the appropriate subroutine
for further processing.

3. If the message is a pre-observation from VIC, transform it
into a PRO observation containing an enhancement incre-
ment.

Recall that pre-observations retain a FP * representing probability
of detection for categorical attributes. If the current message is still a
pre-observation from VIC, its associated probability.oLdetection factor
is transformed into an enhancement increment by use of Eq. (6.6), tak-
ing the values of max-increment and elasticity from a table of such
values depending on the node (representing type of sensor) and unit-
attribute observed. Equation (6.6) is also used for continuous attri-
butes; in this case, the "probabilityoLdetection" term in Eq. (6.6)
represents a standard error factor, and the stored values of
maz..increment and elasticity reflect that difference. For the
remainder of the processing of this message and its successors (that is,
messages derived from it as it passes through processing nodes), the
enhancement increment term stored in the message, resulting from the
above preprocessing, is used directly in succeeding processing steps.

4. If the message is an observation (or has been transformed into
one by the previous step) then begin to act on the message on
behalf of the recipient node (NI). This node now becomes the
new "sender." Then:

4.1. If node Nl maintains an order-of-battle database, then
update node Ni's enhancement value for the unit-
attribute combination mentioned in this message by
adding to it the El contained within the message. The
next time the "decay enhancements" directive is
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processed, this enhancement value is decayed by the
product of the appropriate decay factor and the time
interval since it was last decayed.

Any node can be flagged as maintaining an order-of-battle database,
meaning that a table of enhancement values, one for each unit-
attribute combination, is stored for it. As an observation message is
received at the node, the relevant unit-attribute enhancement is
updated using Eq. (6.5b). That is, the enhancement increment in the
message is merely added to the existing enhancement value. (All
enhancement values are initialized to zero at the beginning of a model
run.) In addition, Eq. (6.7) is periodically used to decay the enhance-
ment value. These processes are mainly carried out by the procedure
"Process-observations."

4.2. Add to the message's date/time stamp to account for
processing delay in node N1.

The array "Unit-priority[unit-ID, attribute]" contains "high" or
"low" designations for each unit-attribute combination. For the unit-
attribute mentioned in the current message, the priority is obtained;
based on this priority, the value of a processing delay for the current
node is contained in the node's attribute "Node-default-process-delay."

4.3. For each node, N2, in the communication network to
which node N1 sends messages of this type, perform
the following steps. (Thus a given message can cause
zero or more messages to be propagated.)

4.3.1. Create a copy of the original message; in the
copy, make the current node (Ni) the sender
and N2 the recipient node

4.3.2. Add to the copied message's date/time stamp
to account for communication delay from node
N1 to node N2

4.3.3. Place the message copy back into the master
message list in sequence based on its (new)
date/time stamp, so that the message list
retains its ordering by message date/time

The communication delay from node N1 to N2 is found in array
"Default-comm-delay," and the restrictions in array "Propagate.att"
are checked to see if this is a valid message. If not, the nwmessage is
not sent. The set of all nodes to whom N1 communicates is all those
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in the "Defaultcomm_delay" array for which Ni is the fromnode,
and the delay time to any to-node is not "infnite."15 These actions are
coordinated by the procedure "Process-observation," calling upon other
subroutines as needed.

4.4. Delete the original message from the message list and
go to LOOP.

The incoming observation has been "processed" by the current node
(NI) and has spawned zero or more other messages to other nodes.
The incoming message has no further purpose and is deleted from the
message list.

5. If the message is a directive (such as update display, or write
the order-of-battle databases to disk), then execute the direc-
tive. If the directive is a repeating one, increment its
date/time stamp and replace the directive in the message list,
so that it will "fire" at a future date/time. Go back to LOOP.
(Note: one repeating directive that is placed into the message
list during initialization of the model is one that triggers a
decay of all enhancement values for all unit-attribute combi-
nations at each node for which order-of-battle databases are
being maintained, to reflect the decay of the accuracy of infor-
mation with the passage of time. The rate of decay used
depends on the particular type of unit and unit-attribute.)

The directive-type messages currently processed by PRO are: read-
truth; stop; log-OOB; decay-enhancements; update-all-unit-icons. The
actions associated with these directives are mostly self-explanatory and
mentioned in the subsection "Messages," above.

USER INTERFACE/DISPLAY MODULE

The purposes of the user interface module are to (1) display the
actual (ground truth) locations of some or all of the Red and Blue units
on a map, as a function of simulated time, so that the user can view
the military situation; (2) display the color intensity of each icon repre-
senting a Red unit to represent the current enhancement value for
som attribute of that unit, as recorded by one node in the communica-
tion network for which an order-of-battle file has been generated; and

*We put "infinite" in quota becaum it is rpresented within the computer by a very
larg but finite number.
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(3) allow the user to query various data in the system and provide
other interactive control over the operation of the PRO model.

Figure 13 illustrates a typical map display for a section of the U.S. V
Corps area of interest in Central Europe. In this figure, the color
intensities recording enhancement values for some unit-attribute have
been displayed as grey levels.

To perform its functions, the user interface module accesses the
order-of-battle database (being) generated for a particular node in the
communication network. This OOB database contains "snapshots" of
data at regular intervals (for example, four-hour), with these snapshots
including both ground truth data and all unit-attribute enhancement
values for that simulated date/time.

The user interface module has been constructed from a program
called "Map Tool" written for the RSAS. Map Tool is a display pro-
gram that knows about maps and geometric forms, but not about geo-
graphy, specific maps, tabular displays, or military substance. The
software interface between Map Tool and PRO is called the Applica-
tion Interface Processor (AIP); the AIP knows which maps are wanted
and how to form tabular displays about a place or item on the map
based on data from the rest of PRO. The design of the AIP has been
strongly influenced by, and borrows portions of its code from, the
RSAS Data Editor system.

Among the control actions available to the user are:

- Click the mouse within the "scroll bars" at the bottom and
right edge of the map display to scroll the map left/right and
up/down

- Select a unit icon (by clicking the left mouse button while the
cursor is nearest to that icon, within some limit) and display
various unit-attribute enhancement values or ground truth
data items for that icon, as stored by one or more network
nodes

- Move a tabular display of data for a unit to a convenient place
on the display screen.

Figure 14 shows a pop-up tabular display of unit-attribute enhance-
ment values on the map display after a particular unit is mouse-
selected.

Many other interactive features are available to the user, such as
on-line help facilities, tailoring of the tabular displays shown upon
selection of an icon, accessing other tabular data displays showing
other data values within the PRO system, map area coloring. These
features are described in a help file available to the PRO model user.
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In the present model, each unit icon on the map display is shown in
one of five color intensities (from light pink to dark red), to graphically
represent the enhancement value for some attribute of that unit
(usually location, but not necessarily) at that simulated date/time. The
four enhancement threshold values used as boundaries between these
five categories of values are determined separately for each attribute.
When PRO is used for intelligence fusion analyses, these boundaries
can be chosen to highlight particular ranges of data quality readings for
a unit-attribute of interest to the analyst. At present, these threshold
values are chosen so that, for all the units being displayed and for this
particular attribute and when integrated over time for the entire PRO
model run, an (approximately) equal number of units will be placed in
each of the five color intensity categories.

It is possible to run the user interface to PRO either in real time as
PRO operates, or else in a retrospective "movie mode" based on the
files generated during a PRO model run. Note that even in the movie
mode, the user has substantial control over the user interface, for
example in selecting unit-attributes to be viewed, mapping of data
quality values into color intensities, and selection of units and map
portion to be viewed.

PRO OPERATING ENVIRONMENT REQUIREMENTS

At present, the PRO model runs on a Sun 4 workstation (from Sun
Microsystems) with color monitor, under the Sun-UNIX1 6 4.01 operat-
ing system and the SunTools interface. A minimum of 16 megabytes
of RAM memory is required, and we recommend at least 100 mega-
bytes of disk space to hold the VIC output files being processed, order-
of-battle files generated during a PRO run, and executable code for
PRO, Map Tool, and the auxiliary programs they require. The above
size requirements do not include space for the storage of the operating
system, SunTools, and other system packages.

On a Sun 4/110 (8 MIPS), PRO currently operates at approximately
25 seconds of wall clock time per simulated hour. The code has been
somewhat optimized, but we expect that considerable improvements in
operating efficiency can be made as time and resources permit.

iSIJNIX is a trademark of Bell Laboratories.
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SUMMARY

We have developed a computer model called PRO to study the
effects of the change in quality of intelligence information at various
nodes within an intelligence fusion network given sensor observations
of various unit-attributes and the decay in the quality of intelligence
information as time passes. We are currently using the VIC simulation
to generate movements of units on a battlefield and sensor observa-
tions of various attributes of those units.

The PRO model has considerable flexibility. For example: (1) it is
not dependent on VIC as the battlefield simulation; another program
could be substituted without much difficulty; (2) the battlefield units
being modeled can be selected; (3) the sensor readings to be modeled
are governed by tabular entries that can be changed; (4) the configura-
tion of the communication network linking intelligence processing
nodes can be changed, as can attributes of the links and nodes (such as
their transmission or processing delay times); (5) the change in the
quality of intelligence information can be assessed at any node in the
communication network, merely by flagging that node as one that
maintains an order-of-battle database; and (6) during model execution,
much of the information within the model can be inspected at an
interactive map display user interface, and many system parameters
can be changed during the model run.

As its main processing cycle, PRO traces the passage of "messages"
(mostly representing sensor observations) through the network of pro-
cetwing nodes, computing the increase or decrease in quality of infor-
mation about unit-attributes at each node. In general, sensor observa-
tions increase quality of information (although this need not be so) and
the quality decays with the passage of time. The quality of informa-
tion about unit-attributes at a node is measured only relative to the
starting point (- 0), not in absolute terms.

Most of the PRO model is written in the RAND-ABEL language,
which was designed to permit readability of models by persons with
knowledge of the subject matter being modeled. PRO has also utilized
major features of the RSAS, particularly the Data Editor and a map
graphic display package (Map Tool). PRO currently operates on a Sun
4 workstation under Sun-UNIX version 4.01.



VII. CONCLUSIONS

This report describes a new way to evaluate intelligence systems. It
has a distinctive set of features that differentiate it from alternative
approaches. This section summarizes these features, then reviews fac-
tors that analysts should consider as they validate our approach in a
particular application and suggests applications in which the approach
should prove useful.

KEY FEATURES OF THE APPROACH

Because the evaluation approach offered here is forward-looking, it
relies heavily on simulation and on the comparison of simulated alter-
natives. Our approach to evaluation and to simulation differs consider-
ably from other approaches because we have carefully crafted our
approach to help analysts examine a specific question: How do specific,
incremental changes in a combat intelligence system affect the quality of
relevant information available to decisionmakers on the deep battlefield?
Our pursuit of a technique that analysts could use to answer this ques-
tion led to ciAoices that make our approach different from others in six
important ways.

1. We evaluate intelligence development by using a figure of merit
based on an explicit definition of the quality of intelligence products. We
focus on one intelligence product in particular, the Red order of battle in
the deep battlefield. Other approaches look at the technical perfor-
mance of particular parts of an intelligence system, time lines for
delivering information from the battlefield to a decisionmaker, and the
effect of intelligence development on combat outcomes. All of these
measures are valid and useful in particular applications. Our measure
is best for looking at the performance of the intelligence system as a
whole and in depth without having to determine how it interacts with
other sources of combat capability.

2. We focus on incremental changes in intelligence systems. Our
approach allows us to examine how certain changes in collectors, pro-
cessors, and communication links affect the total performance of an
intelligence system. Focusing on incremental changes allows us to
avoid the ambiguities involved in modeling important feedbacks within
an intelligence system and between the intelligence system and other
combat capabilities. For example, we need not posit assumptions about
how information flows affect delays in communication and processing,
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how information available today affects the demand for information
tomorrow, or how changes in the quality of information affect combat
outcomes and hence the nature of Red behavior in the future. This
last point also means that we need not posit assumptions about how an
intelligence system transforms data into higher-level inferences and
how these inferences affect command decisions. Because we need not
speculate about these factors, where great uncertainties reside, we can
examine issues where more is understood and use these to draw more
easily defensible conclusions about the performance of combat intelli-
gence systems. Where feedbacks like those that we avoid are impor-
tant to policy, however, a user should consider an alternative approach
that looks beyond the effects of incremental changes.

3. We rely heavily on Army models for input. As currently formu-
lated, our approach relies heavily on the Army's VIC corps combat
model to simulate the behavior of Red units on the deep battlefield and
aspects of a Blue intelligence system's collection of data on this
behavior. With modest modifications, we could accept such informa-
tion from alternative sources; to our knowledge, no other sources can
provide the depth of detail that VIC provides and that we need to pro-
vide the richness we seek in our own simulation. Given its status as
the Army's approved corps combat model, VIC embodies Army doc-
trine in a way that no other available model does. We can and have
adjusted inputs from VIC in small ways that do not challenge Army
doctrine. Users who prefer to use a combat simulation other than VIC
can potentially use their own combat simulation to drive our simula-
tion if it generates suitable information. They will need to provide
considerable substantive information on the behavior of Red units and
on Blue's collection of information about these units that we do not
address directly as part of our approach.

4. We simulate the quality of intelligence products, not the genera-
tion of these products per se. An intuitively appealing way to present
information about the performance of an intelligence system might be
to simulate the Red order of battle as Blue intelligence perceives it,
compare this perception with the true Red order of battle, and use the
difference between the two as a figure of merit. We rejected this
potentially attractive approach because simulating a perceived Red
order of battle would require massive detail about specific fusion rules
and strong assumptions about higher-level inferences about Red
behavior, such a simulation cannot disentangle the order of battle from
these higher-leve inferences. Past attempts to simulate a perceived
Red order of battle have yielded enough questionable inferences to
undermine confidence in these simulations. We have been able to
develop a method that simulates the quality of intelligence directly
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without attempting to simulate specific perceptions or make assump-
tions about the inferences that make it so hard to simulate these per-
ceptions. Our approach makes strong assumptions about the loss func-
tions of decisionmakers who use data on the Red order of battle, but
we believe the simplicity that these assumptions justify our decision to
use them.

5. Our simulation of intelligence fusion takes a high-level approach
to avoid getting lost in the intricate detail of true fusion. As a result, our
approach does not attempt to collect rules that order-of-battle analysts
and automated systems use to execute fusion and provide an inference
engine that executes these rules together. Attempts to do this in other
settings have not yet succeeded. We take a more aggregate approach
based on a set of intelligence concepts and parameters that we have
not seen in earlier simulations of intelligence development. For exam-
ple, while past efforts have typically used a probability of detection to
measure the quality of information yielded by collection, our approach
uses a discrimination ratio or enhancement increment, concepts we
find useful because of their analytic power and their ability to capture
basic ideas that underlie the detailed rules of thumb used in true
fusion. Because other analysts have not used these concepts in the
past, no one has attempted to collect data to measure them. Similar
statements could be made about other concepts that we use. This com-
plicates the immediate implementation of our approach. If, as we
expect, our approach simplifies the effective simulation of fusion at a
high level, we expect the data we need to become more accessible, mak-
ing our approach easier to implement as time passes.

6. We implement our approach with code that promotes easy under-
standing and modification to include new rules as needed. We have
written substantive portions of the code in the C-based English-like
language RAND-ABEL, which allows users with little programming
experience to look directly at the implemented code and understand
what it is doing. The structure of the code makes it easy to change
collectors, processors, communications links, and the way that they
interact in an intelligence system. Its clear, modular form also allows
targeted adjustments in the code if specific new rules are required to
characterize specific capabilities that are important to a policy evalua-
tion in an intelligence system. Using RAND-ABEL also gives us
access to the editing and graphics utilities of the RSAS, which greatly
facilitates the use of our approach and interpretation of the output that
it generates. Where computational speed is more important than easy
comprehension of the substance of our model, we have used C to
increase this speed. Other simulations that give less importance to
comprehension run faster than the code we have devised. We believe
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that such comprehension is vital in this model because we expect
analysts who test sensitivities and examine policy alternatives to
change the model often. Comprehension is important enough to justify
the slower run times required to support it.

VALIDATING SPECIFIC APPLICATIONS
OF THE APPROACH

The next step in using this approach will be to select a specific pol-
icy problem and validate a smulation of the intelligence system
relevant to this problem. Because intelligence development is such a
complex process, we have not attempted to capture the full structure of
each activity that contributes to intelligence development. On the con-
trary, we have attempted to specify a minimal set of parameter values
that we can use to capture the performance of the system as a whole
and the effect on total performance of changing selected aspects of the
intelligence system. As a result, we cannot validate our approach sim-
ply by choosing realistic values of inputs and accepting whatever out-
put the approach generates. Instead, users must be prepared to
develop a baseline case that generates reasonable outputs and use that
as a starting point to ask how changes in the baseline would affect the
quality of information in the intelligence system. Developing such a
baseline will take care and patience.

In this regard, our model is not different from other simulations of
intelligence development that the Army currently uses for training pur-
poses. When one asks users of these systems how they validate these
simulations, they invariably respond that they adjust the simulations
until they generate reasonable results. Our approach must be adjusted
in a similar way.

What is the meaning of "reasonable results?" The simulated quality
of a commander's information should vary in certain systematic ways
in the baseline case. It should generally fall as Blue looks farther
beyond the FLOT. It should abruptly increase following a collection
mission that brings new information into the intelligence system.
Quality should vary systematically across attributes. Blue should gen-
erally know more about unit name, type, and echelon than about unit
effectiveness or activity. Quality should vary by unit type. Blue
should know much more about the location of major units with
armored vehicles than about the location of surface-to-surface missile
batteries. The degradation factors that we calculate should be higher
for some attributes than for others-for example, higher for location
than for unit identification. And in general, the quality of information
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should be high at the beginning of a war, fall over a period of time
after the war starts, and then, if the scenario lasts long enough, recover
as collection and processing activities intensify and Red behavior
becomes more predictable. These are macrotrends we would want to
observe in the baseline; an experienced order-of-battle analyst could
specify a more detailed set.

Once a reasonable baseline case is developed, sensitivities should
also be used to ensure that the model reacts to parameter changes in
reasonable ways. For example, removing JSTARS should degrade the
quality of information on unit location without affecting information
about unit identification much. Changing the delay time on the
quick-fire channel that links an MTI collector with an artillery com-
mander should not affect the contribution of COMINT internals to the
quality of a corps commander's information on the identity of units.

These sensitivities can look very much like the changes in an inteni-
gence system whose effects we wish to examine. In fact, the typical
process of using a model of this kind is one of simultaneously validat-
ing the model and developing the results of policy analysis. We should
not expect the model simply to generate useful numerical results
without a careful examination of how the model generated these results
and how they might change if the model were specified differently.
The model's purpose is essentially to assist an analyst in ersuring a
reasonable story to explain why a change in an intelligence system has
the effects it has. Again, an experienced order-of-battle analyst should
play an integral part in this process. The model is specifically designed
to allow a user to examine the order of battle maintained at any node
during an engagement; this capability should allow an analyst to
develop a fairly subtle understanding of information flows in the
model.

As the discussion of the simple intelligence system that we use to
illustrate points in Secs. III through V should indicate, we have chosen
the values of parameters for that system to achieve results like those
suggested above. But the proof is in the pudding. In all likelihood, it
will take a good deal of adjustment with a realistic, complex intelli-
gence system to choose a set of input parameters that achieves a rea-
sonable baseline and hence prepares the model for useful analyses of
changes in an intelligence system.

It may well be easy to abuse this approach by manipulating its
parameter values until they yield results that support a predetermined
policy position. That is a risk associated with all combat simulations
of this kind. We attempt to limit such abuse by requiring careful
attention to the behavior of the simulation in the baseline case. That
is, the simulation must produce reasonable results before any policy
change is considered. Nonetheless, an unscrupulous user with
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sufficient resources will probably be able to prepare a baseline case in a
way that yields the "right" results when policy excursions are modeled.
In the end, this approach will yield the most useful new information
for analysts truly interested in getting it. Such analysts will not
dismiss unexpected results out of hand. They will instead seek a com-
monsense explanation. When they can satisfy themselves that such
unexpected results make sense, they will benefit from the approach's
ability to yield new insights.

FUTURE APPLICATIONS

The discussion in the text focuses on evaluating how specific
changes in an intelligence system would affect the quality of combat
intelligence on the deep battlefield in a Central European war. This is
the issue that we had in mind when we designed the approach. It is
not the only way that the approach might be used.

The most obvious opportunities are evaluations of intelligence sys-
tems that cover more than the deep battlefield and that operate outside
Europe. Moving beyond the deep battlefield in Europe simply involves
including additional collection, processing, and communication assets
to reflect expansion into the close or, potentially, the rear battle area.
VIC supports all collectors relevant to a corps area of interest, includ-
ing division assets relevant to the close battle. Including these assets
would slow the execution of simulation runs by increasing the number
of computations required to complete a simulation. We will not know
how serious a problem this presents until actual applications are made.
We have explored the use of sampling-tracking information about
only selected Red units on the battlefield-as a way to reduce computa-
tion times, and that looks promising, the results do not depend on the
number of Red units actually included.

Moving beyond Europe presents a more serious challenge. VIC
scenarios exist only for the European theater and then only for
selected U.S. corps areas in Germany. To move beyond these areas, a
user would have to find or develop a suitable substitute for VIC and
adapt our model to that substitute. Once that was done, the approach
should operate with little difficulty.

Once we move beyond dependence on VIC, other opportunities open
up. For example, the approach could be used to simulate peacetime
intelligence development. If intelligence assets were exercised as part
of a large-scale Blue field exercise, analysts could measure the perfor-
mance of the intelligence system against unit behavior that was well
documented. Analysts could use our approach to simulate the perfor-
mance of this intelligence system and, by comparing simulated with
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actual performance, learn more about how to select values for impor-
tant parameters in our simulation. Our approach might also be uPd to
help evaluate the U.S. peacetime program for monitoring military
activities in eastern Europe. With a suitable driver, it could be used to
examine strategic intelligence development. In such an application, a
different set of unit-attributes would presumably become important;
our approach could easily be adapted to deal with this. We have not
explored these possibilities in any depth, so we cannot comment on the
availability of suitable drivers or the difficulty of adapting our
approach to these drivers. Our main point is to emphasize the flexibil-
ity that lies at the core of our approach.

The ability to evaluate incremental changes in intelligence systems
raises the possibility of a very different kind of application. Let us
examine it in the context of the European-theater, corps-level intelli-
gence system that we emphasize in the text. The depiction of intelli-
gence in current combat simulations is fairly crude. Our approach
could potentially provide a basis for enhancing the treatment of intelli-
gence. The approach runs too slowly to be incorporated as an integral
part of these simulations, but analysts could use it to generate tables or
parameter values integral to combat simulations.

For example, a combat simulation might characterize a corps inteni-
gence system in terms of the presence of certain key assets or a general
statement about the level of quality of key factors. These factors
might be identified in terms of collection, processing, and communica-
tions; intelligence disciplines such as COMINT, ELINT, and IMINT;
intelligence functions such as situation assessment and target acquisi-
tion; or some other scheme. Analysts could then structure a real intel-
ligence system that yielded the levels of quality associated with these
factors and use our approach to simulate it. By varying appropriate
elements of the system, these analysts could simulate the way changes
in their quality factors changed the quality of intelligence relevant to
the combat simulation. Such an application steps well beyond our
approach and requires careful consideration of many factors not dis-
cussed. But the approach we offer provides a way to develop such
information for combat simulations.

Other applications might also be considered. The next logical step,
however, is to do something "simple." Analysts must apply the
approach to a real intelligence system, validate the application to
ensure that it yields reasonable results, and use it to evaluate selected
changes in that system. The process of applying the approach in this
way will tell us a great deal more about the capabilities that this
approach offers than we can specify now with any confidence.
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DECEPTION, GHOSTS, AND PREDICTABILITY

Soviet doctrine gives high priority to the use of deception as an
integral part of military operations. One of the principal goals of Blue
intelligence must be to detect deception and to sort out what Red is
really doing from what he wants Blue to believe he is doing. Our
approach is designed to analyze two aspects of Red deception and of
Blue intelligence's ability to deal with it. VIC does not generate the
information we would need to implement these aspects of our
approach. But we have designed our model so that they could be
implemented as soon as suitable information was available.

The two aspects of deception that we examine are the presence of
"ghost" units and the predictability of the behavior of Red units on the
deep battlefield.

GHOSTS

We calculate the quality of information that Blue intelligence main-
tains on specific attributes of each Red unit on the deep battlefield.
However, when Blue intelligence makes an error, it is not always useful
to think of it in terms of a reduction in the quality of Blue information
on units that Red actually employs. For example, when Blue posits
Red units that do not exist, it may be important to understand how
strongly Blue holds its beliefs about these units and how changes in an
intelligence system affect these beliefs. We refer to such Red units as
"ghosts."

Several factors can lead Blue to believe in ghosts. The notion is
fundamental to the simplest forms of Soviet mashirooka, which use
radio traffic and simple replicas of tanks and other heavy vehicles,
equipped with devices that produce realistic visual and thermal "signa-
tures" for these vehicles, to create the illusion that a unit is at a loca-
tion when it is not. But Red need not attempt to create ghosts for
Blue to perceive their presence. For example, emanations from two
separate but similar radar installations can lead Blue to believe a radar
installation lies somewhere between them. That can happen whether
Red intends it to happen or not. In each of these cases, Blue infers the
presence of a Red unit that does not exist. How can we analyze the
effect of changes in an intelligence system on such inferences?
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We reserve a unit-attribute that describes whether a Red unit on the
battlefield is real or not and measure the subjective probability weight
that a Blue intelligence system places on the right value of this attri-
bute. In VIC, all units currently portrayed are real. But, using VIC's
data input preprocessor, we could add ghost units to the scenario that
VIC portrays, together with details about their behavior on the deep
battlefield. We could then specify simple parametric models like those
in Sec. IV to show how values of VIC's "probability of detection"
translate into discrimination ratios relevant to this unit-attribute.
This exercise would require the special knowledge of an order-of-battle
specialist familiar with Soviet doctrine and the circumstances under
which Blue collectors perceive ghosts on the battlefield. We have
designed our model to accept such information as soon as it is
developed.

PREDICTABILITY

In Sec. IV, we suggest that it is desirable to reflect the following rule
in our simulation of intelligence development:

The quality of Blue intelligence on a particular Red unit-attribute
rises as Blue's ability to predict the behavior of that unit-attribute
rise.

We capture this rule to some extent in the degradation factors
described in Sec. IV and in factors that convert VIC data into discrimi-
nation ratios in a way that reflects Blue's relative ability to maintain
accurate models of different kinds of unit-attributes. But in certain
circumstances, Red can deliberately deploy a unit in a way that runs
counter to Blue expectations. If Blue is not looking for the kind of
behavior that a Red unit is pursuing, Blue is less likely to observe this
behavior accurately. How can we capture the effects of changes in an
intelligence system on the quality of Blue's information about Red
units that do not behave as expected?

We do this by reserving a unit-attribute for each Red unit on the
battlefield that states whether that unit is behaving "predictably" or
not. The value of this unit-attribute acts as an input to a simple rule
that adjusts the data we receive from VIC. If the unit is behaving
predictably, this rule does not change the input from VIC. If the unit
is not behaving predictably, the rule degrades the information from
VIC. To implement this feature, we rely on an experienced order-of-
battle analyst to add information to our input file identifying each
sighting in which a unit-attribute is not behaving predictably. We
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must then determine how much to degrade information. That is, we
expect the determination of what behavior is predictable and how
predictability affects the input to PRO to be made off-line, without for-
mal rules, by an informed order-of-battle analyst. Although we have
not implemented this feature, the model is currently written to imple-
ment it as soon as appropriate information is available.

These are not the only forms of deception that might occur on the
deep battlefield. In fact, Red's real goal is to achieve operational
deception with regard to higher-level inferences about its basic intent.
As explained in Sec. II, we do not attempt to analyze an intelligence
system's ability to develop accurate higher-level inferences. The forms
of deception discussed here are relevant to the Red order of battle that
we emphasize. They should be understood in that context.
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