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ABSTRACT

In section 1., brittle and ductile isotropic damage mechanisms are studied from a

meso-mechanical viewpoint. Relationships between crack density and void volume

fraction defined at meso-scale on one hand, and a scalar internal variable characterizing

damage on the other hand, are given.

In section 2., a general form for the evolution law for this damage variable is

derived. A threshold which defines the onset of this evolution is derived from

thermodynamical considerations.

In section 3., it is proposed to relate the ultimate stage of continuum damage

evolution, i.e. the local failure, to localization phenomena. The corresponding criteria are

studied in details.
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1. MICROMECHANICS OF DAMAGE



Micromechanics consists in deriving the behaviour of materials at meso-scale from

the study of specific mechanisms at micro-scale. The micro-mechanisms must be

precisely defined from physical observations for both the geometries and the kinematics.

Their mechanical modelling is performed with elementary usual constitutive equations

established at meso- or macro-scale for strain, crack growth and fracture. When

compared to the direct analysis of the macroscopic properties, the additional power of this

approach comes from a better modelling of the possible interactions between different

mechanisms and from the homogenization that bridges the gap between micro- and meso-

scales.

When using classical continuum thermodynamics concepts, the effects at meso-

scale of material degradation at micro-scale are characterized by an internal variable called

damage. Hereafter, the effects of the material degradation are assumed to be isotropic at

meso-scale and the damage variable to be a scalar denoted by D. In this section,

definitions for this scalar variable are derived from the study of two different micro-

mechanisms.

1.1. Brittle isotropic damage

1.1.1. Microcracks and scalar damage variable

The main mechanism of brittle damage is the nucleation, gowth and coalescence

of microcracks up to the initiation at meso-scale of a crack. Hereafter, a relationship

between the micro-crack pattern and the damage variable D is established.

Let us consider a Representative Volume Element at meso-scale as a cube of

dimension (I * 1 * 1). This RVE is assumed to be constituted at microscale of cubic cells

of dimension (d * d * d) in which may lie a microcrack of any area si and any orientation
(see Fig. 1). The number of cells is m=13/d3 and the number of cracks n < m.

/ /
/ /

mesoscale R V E

d

-. microcrack
: area Si

Fig. 1. Micro- and meso-models for brittle damage
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The geometry being defined, the modelling consists in writing the balance of the

dissipated energy calculated by classical fracture mechanics one one hand, and calculated

by continuum damage mechanics on the other hand.

For a cracked cell i, subjected to a given state of stress, if Gi denotes the strain

energy release rate corresponding to a crack of area si, Di the equivalent damage of the

cell and Yi the strain energy density release rate, the balance of dissipated energy can be

written as :

Gi si YDi d3

For the n cracked cells of the meso-cube, the previous relation becomes
n n

Gi si1= YiDid 3

S1 1

Assuming that brittle growth of microcracks occurs at G = Gc = constant, corresponding

to Y = Yc = constant, it can be written that:

Gc Y_ si = Yc d3  D1

Furthermore, if it is assumed that si 0 corresponds to Di = 0, integration of the previous

relation yields :
n n

GcX si = Yd 3 Y Di

The simplest homogenization consists in defining the damage D at macro-scale by

the mean value of the damages Di of all the 13/d3 micro-cells, so that
I M I n d3n

D= Di= n I Di= i-3 Di
m1 1 I

or D = G i
Yc 13 1 i

The term n 3 may be evaluated from a rupture criterion defining the initiation

of a meso-crack. Because of the localization of the damage phenomenon, it can be

assumed that the meso-crack initiation occurs when only part of the flat volume (I * I * d)

is micro-cracked, the other microcraks being neglected.

In other words, if it is assumed that the mesocrack initiates, i.e. D = Dc at meso-scale,

when
n

then,
Dc-= Gc k 12 Gc Dc

Yc1 3  Yc1 3 - k1 2

6



Hence,

n
xsi

CD DcD-
12 k

n
In this case, the damage variable D appears as the micro-cracks surface density (X si 12)

corrected by a factor (here DcJk).

f the following simplest fracture criterion is considered
n

" si
n 1
Y s=l 2 --+ k=l -Dc= I then, D- 12

By the way, this calculation gives an order of magnitude of a characteristic length

which allows for the matching between fracture mechanics and damage mechanics namely

1, the size of the Representation Volume Element. Since,

D Gc Dc

n Yc 3 - k 12

Xsi

Gc

Hence, for the simple fracture criterion k 1, Dc = 1,

For most metallic materials

light alloys Steel and high alloys

0.005 G c S 0.05 MPa m

2. <Yc ! 10. MPa

0.0025 <1 5 0.005 m

and for concrete in tension Gc = 3 10-5 Mpa.m, Yc = 1.5.10 -4 MPa, so that 1 2. 10-1.

This shows that the size of the physical RVE must be of the order of the millimeter for

metals and of the order of the decimeter for concrete.
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1.1.2. Brittle damage orowth

As a specific example, let us derive the kinetic damage evolution law at meso-scale

which corresponds to the fatigue microcracks growth at micro-scale of Fig.1. For

simplicity sake, the analysis is restricted to a two dimensional problem, for which e

denotes the uniform thickness of the whole RVE.

With Dc = k, it has been established that
n n .
xsi si

D-1 and 11

and, for each cracked cell, if 2a denotes the crack length, the following relations hold:
Ki = (EGi) 1/2  Ii E/2 Gi "1/2 Gi st = 2e ;j

The surface growth rate si of each crack can be expressed as a function of the strain

energy release rate Gi of the corresponding cell, by means of the Paris' law of fatigue

crack growth. If N denotes the number of cycles of loading in mode I, and

KM = KNlax the amplitude of the stress intensity factor (with Kmin = 0), then
,_ - C K '1
8N N

where C and ri are two material constants, with TI _ 4 for many metallic materials.

If one assumes that this Paris' law corresponds to the integation over one cycle of:

a=rl C Kr11

then

;j= CeETV2 Gi2 Gi

A relationship between Gi and Yi can be found through their definition from the

elastic energy. If w denotes the elastic strain energy density and Wi the elastic strain

energy of the elementary cell, then

Gi = - "i whereas Yi= -

8



Since Wi = wid 2 e,

D(wi d 2 e) dDGi = - al) ds

if Di = si 2 ae Gi =Yi di 6i = i di

di2  d- d e '

then

si = T C e E'1/2 d~r /2 Yi2 yi

Hence, the damage rate is:
6i !1 - rl C E /1 2 d/ 2 n 11-121 XeYi2  y,

12 11

Assuming that all the n cracked cells have the same strain energy density release rate

Yi = Yn, the homogenized strain energy density release rate for the meso-RVE is:

Y=nYn and Y=n n

Consequently
n B-1 B r-1 JA 1-1,r-1

Yei Y 2 Yi= n eYn2 Yn e en 2 i2 y

rI_
CI CE1/2 dT/ 2 e y2

12 n2

In this example, the damage rate is an increasing function of the strain energy density
release rate ; for most materials since 11 = 4, the damage rate is quasi-proportional to the

strain energy density release rate. The damage rate is also proportional to the rate Y.

This will be used in section 2.1 as a guideline to derive a general kinetic law for damage

evolution.
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1.2. Ductile isotropic damage

1.2.1. Microcavities and scalar damage variable

The main mechanism of ductile damage is the nucleation, the growth and the

coales,ence of microcavities by large local plastic deformations. Hereafter, a relationship

between the density of micro voids and the damage variable D is established.

Let us consider again a Representative Volume Element at meso-scale as a cube of
dimension (I * 1 * 1). This RVE is assumed to be constituted at microscale of cubic cells

of dimension (d * d * d) in which may lie a void of volume d3 (Fig.2.).
/ /

/ /

d

jd
void

/

Fig. 2. Micro-meso element for ductile damage

On this very simple geometry, the modelling consists in writing the balance of the

dissipated energy calculated from the growth of the cavities on one hand, and calculated

by continuum damage mechanics on the other hand.

For the geometrical model under consideration, the porosity P can be defined as

P 1 P n nd3

P0 13

where p and Po are the current and initial porosity respectively, and A the number of

cavities.

According to Gurson's model, the porosity P at meso-scale is equal to the

hydrostatic part c H = C of the plastic strain due to the growth of voids.hydostti pat H ofois

Here, this assumption leads to the following equality written at meso-scale:

10
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At meso-scale, given an homogenized stress Tij and a plastic strain rate P , he total

power dissipated is
~1P = Pj

This can be split in two parts by means of the deviatoric and hydrostatic quantities i.e.
((T D + D -p
ij +H 6ii + cH r ij)

D i pD + 3 H  + 0
ii i H

The first term is the power dissipated in pure plasticity by slips. The second term which

corresponds to the irreversible change of volume may be interpreted as the power

dissipated in the RVE to increase the material discontinuities by growth of the -ivities.

This latter part must balance the damage dissipation i.e.

3a PH P 3 Y D 13

so that
_3°a

Assuming for simplicity, proportional loading, perfect plasticity,- - const, and the

initial condition P 0 -- D = 0. the integration yields

D 3 oll d3

As for brittle damage, because of the localization of the damage phenomenon, it can be

assumed that the meso-crack initiation occurs when a set of cavities occupies only part of

the flat volume (I * 1 * d), the other cavities in the RVE being neglected.

In other words, the critical value of the porosity corresponding to D = I is assumed as
d3  12 d d

Pc= n T= k 13 = kf

3 (Y,
This allows for the calculation of the term in the damage equation

D=I= 'al k T

Hence,D n d2I

Lk 11



1.2.2. Ductile damage growth

As a specific example, let us derive the kinetic damage evolution law at meso-scale

which corresponds to the voids growth at micro-scale. For simplicity sake, the analysis

is restricted to the particular case k = 1.

The kinetic law for damage evolution can be directly derived from the expression

for D established in the previous section, so that

d2  dDi=--+ 2n 12Y

The first term accounts for the increase of the number of cavities and n denotes the

number of cavities nucleated per second. The second term accounts for the cavity

growth. In the Gurson model, the porosity rate is also the sum of two terms accounting

for nucleation and growth.

a) Danzage growth bY nucleation (f cavities

To model nucleation. Tvergaard proposed the following kinetic law for porosity

= A= A q + B -

here A and B are material parameters.

Assuming for simplicity sake a sudden nucleation of cavities of a fixed size d
P -- n -

and
* . I I +

SP d d(A ; + B

so that,

~= d~q (A + B )

Damage can be expressed as a function of the accumulated plastic strain rate p written in

terms of the plastic tangent modulus ET. Assuming proportional loading, i.e.

;H (TH

P £j j ET

so that,

ET A+ B -

12



b) Damage growth by enlargement ofa fixed number n of cavities.

The problem of void growth has received much attention in the past 20 years.

Essential results are the McClintock and Rice & Tracey analyses which derive the rate of

growth of a cylindrical or spherical cavity of volume V in a perfectly plastic infinite body

as a function of the accumulated plastic strain rate p and triaxiality ratio CTH/Ocq i.e.

"=0.85 V p exp(3 ')0c1

Taking

V = d"

leads to
3d 2 da=0.85 d3 ; exp(- 3cY-)

- Ocq

Since

d d2  d
D=2n 12 D=n--, D=2D d

I-d
D=.57 Dp expK_

c) Conclusions

In this example, the damage rate by nucleation and growth of voids appears as

- proportional to the accumulated plastic strain rate,

- an increasing function of the triaxiality ratio-,Qcq

- through ET or D, a function of the current state of the material.

This will be used in section 2.1 as a guideline to derive a general kinetic law for damage

evolution.

13



2. GENERAL PROPERTIES AND FORMULATION
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2.1. A general form for continuum damage evolution law

a) General formalism

Within the framework of classical continuum thermodynamics, the thermo-

mechanical state of a material is described by the following set of independent state

variables :

V - (S, T, V) with V - (D, sP, VP),

where s, £P denote the total and plastic strain tensors respectively, T the temperature, V

the set of the internal variables, and D the damage variable. For simplicity sake, hereafter

only isothermal situations will be considered.

The reversible behaviour is described by the Helmholtz specific free energy

Y = -(-, V),

chosen as

T= V(- - SP, D) + IPP(--P, VP)

with Ce _ _ p __ p

I ( - D) 2

where -0 denotes the elasticity matrix of the undamaged material. The thermodynamic

forces

A, (, A)
are defined from the following state laws

-P , A -(-Y, - ,Ap ) =p-,

where p denotes the mass density, - the stress tensor, and Y the strain energy density

release rate or damage energy release rate.

The irreversible behaviour is described by a dissipation potential

= D(z, A ; V) ,

from which the following evolution laws are derived
Ep - 0 v-=,-

0 aA

In particular, the damage evolution law can be chosen such that

5 aFD

15



b) damage vs (micro-)plasticity

In section 1., it has been established that damage is always related to some

irreversible strain either at micro- or meso-level. This property can be taken into account

in the evolution law for the damage variable by assuming that the factor X is proportional

to the accumulated plastic strain so that

6=DFD

The irreversible nature of damage is directly taken into account by the fact that the variable

p is always positive or null.

In most materials, a certain amount of plasticity must be accumulated before

damage at meso-level appears. In metals, this corresponds to the accumulation of micro-

stresses in the vicinity of initial defects, of dislocations ... , prior to the nucleation of

micro-cracks or micro-voids. To model this phenomenon, since the damage evolution is

governed by the accumulated plastic strain rate, it is natural to introduce a threshold PD on

the variable p, such that

D E-p if P PD

=0 ifp<pD

or
I6 aFD°

= p H(p- PD)

where HO is the Heavyside step function.

In monotonic loading, PD can be identified as the uniaxial damage threshold Ewhereas

for fatigue or creep processes PD is a function of the applied stress, as it will be discussed

in section 2.2.

c) driving force for damage

From the thermodynamical analysis, it has been deduced that the driving force for

damage is the strain energy density release rate Y. Hence, FD must be a function of Y:

FD = FD (Y, ... )

16
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d) influence of the triaxiality ratio

Another important feature of fracture mechanisms is the influence of the triaxiality

ratio (crH/eq), where it is recalled that OH denotes the hydrostatic stress and aeq the Von

Mises' equivalent stress. This effect is directly taken into account through the damage

energy release rate Y which is a function of the triaxiality factor Rv:
y _ C eq2 Rv

2 E (1 - D) 2

with
Rv = 2 (1 +v) + 3 (1 -2v) ___

e) a generalform

In order to choose the proper and simplest expression for FD, let us recall the

kinetic damage laws obtained by micromechanics for particular mechanisms in section 1.

6 T C E'/ 2 d'/ 2 e YT'-

Brittle damage by fatigue growth of micro-cracks: D- - y

12 n2

rl being of the order of 4

= (const) * Y

Although no plasticity has been introduced in the analysis, it always exists at

micro-scale at the crack tips of the micro-cracks and it is possible, at least formally

to relate '" to t through a plasticity constitutive equation

Y = Y(%eq) -Y(beq)

and

req (p) -- Gcq(P)

Ductile dunage by nucleation of micro-cavities T= ET A+ B - p

Ductile damage by enlargement of micro-cavities: D 0.57 D ;exp(3 <" ')

17



The qualitative conclusion which can be drawn from these three results is that the

damage rate D can be considered as proportional to Y, which is a function of ((TH/Gcq),

and p'

D-Yp

or

FD -y2

As in any realistic constitutive equation, a material dependent scale factor, such as
I

(const), j ET, or 0.57, must be introduced. Let us denote by S this material constant so

that
y2

FD S

Finally, according to the qualitative properties listed above, the damage potential is

naturally written as

FD(Y, (p.D)) = 2 H(p - PD)

where the factor 2 has been introduced to compensate for the factor (1/2) coming from the

derivation. Hence, the proposed general continuum damage evolution law is the

following

where two material dependent parameters are introduced, viz. S and PD which characterize

the energetic resistance against the damage process and the damage threshold,

respectively. The effects of the temperature T are taken into account through the variation

of these coefficients with T and through the accumulated plastic strain rate 1 which is also

a function of T.

Several important properties, though not directly introduced in the formulation,

are also naturally exhibited by this general evolution law, i.e.

- the non linear accumulation of damage,

- the effect of mean stress in fatigue,

- the non linear interaction of different kinds of damage.

18



2.2. Damage threshold

Under monotonic loading, the damage threshold PD can be identified with the
uniaxial damage threshold Eg, whereas in the case of fatigue or creep loadings it is a

function of the applied stress. It corresponds to the critical level of plasticity which

induces the nucleation of microcracks without any consequence on the mechanical

properties and can be related to the energy stored in the material.

Experiments in fatigue have shown that the total plastic strain energy dissipated

may reach tremendous values before failure although the stored energy remains constant

at microcrack initiation. This stored energy is the result of microstress concentrations

which develop in the neighbouring of dislocation networks in metals and of

inhomogeneities in other materials. For a unit volume, it is equal to the differencet

between the total plastic strain energy ( f (5ij PJ- dt ) and the energy dissipated in heat as
0

given by the Clausius-Duhem inequality of the second principle of thermodynamics.

For instance, in the case of a material exhibiting kinematic X and isotropic R

strain hardenings and no damage, under an isothermal transformation the rate of energy

dissipated in heat is :

0 = ;- Rp - j _ 0

This expression may be calculated from

- the potential of dissipation e.g.

F= (zD-7)c q -R R - Ty - 3X

- its associated normality flow rle
, a= - iEI DYj R(Xij x ij

- and the yield criterion

f= (ZDX)eq - R - Yy =0

so that
0 3 Xij X ij)l
= (- '2X.

H-ence, the stored energy Ws as a function of time t is

WS(t)= j~ ;P~ dt - (OYY + 3~ X1 X1 jpt
0 0X

19



This formula can be simplified if the following assumptions are made •

- the effect of the kinematic hardening is neglected:

WS f (ceq - gy) dp
0

- the variation of aceq is neglected as for a quasi perfectly plastic material

Ws = [Sup ((Geq)- Uy] p

If this stored energy is considered as a constant for the damage threshold PD, its

value can be identified in the one-dimensional monotonic case used as a reference with
PD = PD.

In the particular case considered above, and with the crude approximations made,

the onset for the damage process, or damage threshold, corresponds in the case of a

monotonic loading to the ultimate stress 5u"

[Sup (aCq) - y] PD =  - (7') PD

SO that

P D = P _ S u p (a s e1) - I ,

As a summary, in the particular case considered in this section, the whole set of

equations that governs the damage evolution is

- p F( p - CPD Sup(aeq)y* -

20



3. LOCAL FAILURE CRITERIA
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The ultimate stage of continuum damage evolution corresponds to meso-crack

initiation. As a first approximation, this critical damage state can be characterized by a

critical value Dc of the damage variable, for instance Dc = 1.

In fact, the value of Dc is not solely material dependent. As discussed below, it

also depends on the local stress state.

It is proposed to relate the conditions for the meso-crack initiation to the

conditions for the localization of the deformation in the material. In this section, these

latter conditions are studied in details, inside, at the boundaries or at the interfaces of rate-

independent solids for both the linear and the non-linear case. Physical interpretations of

these conditions are also given.

3.1. Introduction

Since the pioneering works of Hadamard, Hill, Mandel and Rice, the localization

of the deformation in rate-independent materials is treated as the bifurcation of the rate

problem.

Here, we give a general view of the various bifurcation and localization

phenomena for possibly heterogeneous solids made of rate-independent materials. Under

the small strain assumption, the behaviour of these materials is described by the following

piece-wise linear rate constitutive laws

7,=.when f <0, or f =0andb'3:(v)<0

(1) L 0=(v) with

L = "-: when f = 0 and b:•E(v) > 0

where : and £(v) = C respectively denote the stress and strain rates, v the velocity, andf

the yield function.

The general class of materials modelled by relations (1) includes for instance the

elasto-plastic damageable solids the behaviour of which is described by the constitutive

equations discussed in section 2. l.a.

22



It is shown that, in general, different types of localization phenomena may occur,

depending on the failure of one of the three conditions which are described in section 3.2.

Their physical interpretation is the following:

- the ellipticity condition is very classical. Its failure is the condition for
localization given by Rice and linked to the appearance of deformation modes involving

discontinuities of the velocity gradient. It has also been related to stationary acceleration

waves;

- the boundary complementing condition governs instabilities at the boundary of
the solid. Its failure leads to deformation modes localized at the boundary and is relited

to stationary surface waves (for instance Rayleigh waves) ;

- the interfacial complementing condition governs instabilities at interfaces. Its

failure leads to deformation modes localized at each side of the interface and is related to

stationary interfacial waves (Stonely waves).

3.2. Rate problem analysis : the linear case

Let us consider for instance the body sketched in Fig.3.

surfac ineraia m d

m Q
1) si g u a

Fig. 3. Different types of localization modes

2



Qualitative results can be exhibited from the analysis of the rate problem for the

so-called linear comparison solid (see Hill). In this case, this linear problem is well-

posed if and only if the following conditions are met:

- the ellipticity condition : the rate equilibrium equations must be elliptic in the

closure of the body Q, i.e.

det(n . --. n) # 0 for any vector n # 0, and any point M e f.

- the boundary complementing condition : this relation between the coefficients of

the field and boundary operators must be satisfied at every point P belonging to the

boundary F where the boundary conditions are formally written as E(v) = g. This

condition is easily phrased in terms of an associated problem on a half space defined by

z > 0. It requires for ever-y vector k = (kl, k-, 0) # 0, that the only solution to the rate

equilibrium equations with constant coefficients (equal to those of the operator at point

P), in the form

v(x, v, z) = w(z) exp[i (kI x + k2 -v)

with bounded w and satisfying the homogeneous boundary conditions ,(v) = 0. is the

identically zero solution V 0.

- the interfacial conplemnenting condition : this relation between the coefficients of
the field operators in i1 and 0 2 must be satisfied at every point Q of the interface I

between Q1 and ! 2 . This condition is again easily phrased in terms of an associated

problem on the whole space divided by the plane interface z = 0. It requires for every

vector k = (k l. ki, 0) e 0, that the only solution to the rate equilibrium equations with

constant coefficients (equal to those of the operators at point Q, in f1 for z < 0 and in Q-2

for z > 0), in the form

(vl(x, y, Z). v2 (., y, z)) = (Wl(z), w2(z)) expli (kj x + k2 y)]

with bounded (wj,w 2 ) and satisfying the continuity requirements (continuity of the

velocity and the traction rates) across the interface z = 0, is the identically zero solution

(vl(z), v'2(z)) - (0, 0) ; (where vI and v2 are the solutions, respectively for z < 0 and for

z > 0).

When these three conditions are fulfilled, the rate boundary problem admits a

finite number of linearly independent solutions, which depend continuously on the data,

and which constitute diffuse modes of deformation.

24
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P Remarks

these three conditions are local, and this is particulally important when

considering their numerical implementation;

- the above-given results remain valid for an arbitrary number of non-intersecting

interfaces, an interfacial cordition being written for each interface;

- the failure of these conditions can be interpreted as localization criteria as recalled

in section 3.1. These localization criteria can also be used as indicators of the local failure

of the material ;

- both boundary and interfacial complementing conditions fail in the elliptic regime

of the equilibrium equations, or at the latest, when the ellipticity condition fails. Thus,

localized modes of deformation at the boundary or at the interface generally occur before

the onset of so-called shear banding modes.

3.3. The non-linear case : some results

Although the complete analysis of the non-linear problem is not yet available,

some results can be given for the possibility of emergence of deformation modes

involving jumps of the velocity gradient for the bi-linear rate constitutive laws (1).

The necessary and sufficient conditions for the onset of such modes inside the

body have been given by Borr6 & Maier who extended the results given by Rice, and

Rudnicki & Rice for so-called continuous and discontinuous localizations. We have

amplified these results by seeking necessary and sufficient conditions for which a

discontinuity surface for the velocity gradient appears at, or reaches the boundary of the

solid. These conditions are given below for the constitutive laws (1) with

h
where it is assumed that h > 0, and E7 is strictly positive definite.

At a point P of the boundary F where only surface traction rates F are applied, the

necessary and sufficient conditions for continuous localization [i.e. the material is in

loading (L = H) on each side of the singular surface] are

i) there exists E0 such that m . H : ;

(2a) ii det (n .H .n) =0

iii) (m .E.n).(n .E.n) - .(n.E:z) - m .Ez
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At a point P of the boundary F where only surface traction rates F are applied, the

necessary and sufficient conditions for discontinuous localization [i.e. the material is in

loading (- = H) on one side and in unloading ( 3 = ) on the other side of the singular

surface] are

i) there existsSo) such thatm . -:0 =F and P-'0 > 0

(2b) ii) det (n . H. n) < 0
iill) (m .7- n) .(n . . n )-l . (n . .E ': ) = m  . - ' :

In these conditions, m denotes the unit outward noirmal to the boundary of the solid in P,

whereas n denotes the unit normal to the singular surface in P.

At a point Q of an interface I, two types of singular surface may occur. The

singular surface can either stop at, or cross the interface (see Fig.2). In the latter case, the

singular surface can meet the interface at different angles on each side. Analogous

conditions to conditions (2) can he exhibited.

Remarks

- conditions (2) are to be compared with the corresponding conditions inside the

solid .iven by Borr & Naier and stated as

(3) det (n.-.. n) < 0

w. ith equality corresponding to continuous, and inequality corresponding to discontinuous
lo calization"

- given conditions (2) and (3), singular surfaces of the type discussed here

generally appear first inside the body

- similar conditions to conditions (2) can be exhibited for general boundary

conditions. (Note that for displacement boundary conditions, relation (3) applies both

inside the body and at the boundary.)

- conditions (2) and (3) are a priori unrelated to the boundary complementing

condition.
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