TASK: UR20
CDRL: 00980

UR20 — Process/Environment;\
) Integration @x
cLE COPY Ada Command Environment
pic b (ACE) User’s Manual

lnformal Technical Data

®
UNISYS
(o
o
<<
o
&
o 3
Q
<4
STARS-RC-00980/001/00
29 October 1990
® _
~ HETRPHON STATEMENT K

Agyoved M poNSc rehmams
Do oo "Ny gamisind




v -

REPORT DOCUMENTATION PAGE

Form Approved
OMB No (0704-0188

PLDNiC r@DC ™ G DUFIEN 107 1Ny ICHECTION ¢f ‘ntcrmatior « estimated IC average * mOur Der *epOrse, ‘nOaUgLt3g the tume tor FOVIEWING IMITTUCTIONS, $EBTC™"C €osUInS CITD SOUrCe™
Gatrenny ana MaNtaINING the Gata NEECed. ANC COMDIETING AAD feviewing the CCIILTION Of INtOrmation  Sena comments ve?
CONPCLIAN ¢ :AIOFMATICA INCUOING SugJeLIONS 1OF reauiing this DUIGen t0 WashiNGlon Heagauarnten Secvices. Directorate
Dass gt mdy, Surte 1204 arhingicn VA 222024307, ana 1 the OHice 5t Manage™ent and Suage: Paperworx Redustion Project (0704-0188). Wasnington. DC 22503

ATQING this DurGen SSUIMALE Or an, STNET A%DLCT DT 1Yy
or information Operations ans Reponts, 1215 Jetterson

2. REPORT DATE
29 October 1990

1. AGENCY USE ONLY (Leave blank)

Final

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

User Manual for Ada Command Environment (ACE)

6. AUTHOR(S)

William P. Loftus
John A. Thalhammer

5. FUNDING NUMBERS

STARS Contract
F19628-88-D-0031

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation
12010 sunrise Valley Drive
Reston, VA 2209

8. PERFORMING ORGANIZATION
REPORT NUMBER

GR-7670-1141 (NP)

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force

Headquarters, Electronic Systems Division (AFSC)

Hanscom AFB, MA 01731-5000

10. SPONSORING - MONITORING
AGENCY REPORT NUMBER

00980

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release;
distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This technical report provides users of the Ada Command Environment

(ACE) with a description of each of the packages and subprograms
the report describes the

overall purpose of ACE, general guidelines on ACE usage, and provides
examples of typical user interaction during an ACE session.

that are provided with ACE.

In addition,

14, SUBJECT TERMS
Ada Command Environment (ACE)

Abstract Data Types (ADT)
X Window System -

15. NUMBER OF PAGES
142

16. PRICE CODE

19. SECURITY CLASSIFICATION
OF ABSTRACT

doclasilllad

20. LIMITATION OF ABSTRACT

i ————

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
Onclaseifisd Unclassifiad




TASK: UR20
CDRL: 00980
29 Qctober 1990

USER MANUAL
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Ada Command Environment (ACE)
Version 8.0
SunOS Implementation

STARS-RC-00980/001/00
Publication No. GR-7670-1141(NP)
29 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

. Dlst\nbuzxon I.yxmlied
U.S. Governmen andU.S Gq\rerlmént A
Contractors onﬂy. SRR
Admlmstbatxvg (29h0ct}obet/1 9”) U




TASK: UR20
CDRL: 00980
29 October 1990

USER MANUAL
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Ada Command Environment (ACE)
Version 8.0
SunOS Implementation

STARS-RC-00980/001/00
Publication No. GR-7670-1141(NP)
29 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091




29 October 1990 STARS-RC-00980/001/00

PREFACE

This document was prepared by Unisys Defense Systems, Valley Forge Laboratories, in sup-
port of the Unisys STARS Prime contract under the Process/Environment Integration task
(UR20). This CDRL, 00980, is type A0O5 (Informal Technical Data) and is entitled "Ada
Command Environment (ACE) User’s Manual, Version 8.0".

Reviewed by: \—é'ff[//( MM £CK

,;Teri F. Payton, Sysfem Architect
(// /

Approved by: /47""‘4 & ‘%M /0,[30/?0

Hans W. Polzer, Program Manager




29 Qctober 1990

Contents

1 Introduction

1.1 Intended Audience . .. ... .. .. ......
1.2 Reference Documents . . . . . ... ... .. ..

2 The Command Language of ACE

2.1 The Environmentof ACE . . ... .......
2.2 Interactionwith ACE. . ... ... .......

3 Starting ACE

3.1 Example . . . ... .. .. ... ... ...,

4 Software and Hardware Environment

4.1 Sun Workstation . ... ... ... .. .....

5 Pragmas Supported by ACE

6 Environment of ACE
6.1 ACE Libraries and Environment Tailoring

6.2 ADT Philosophy . . ... ... .........
6.2.1 The Ada Language Standard . . . . . . .
6.2.2 Command Structure . ... .......
6.2.3 Command Applicability . ...... ..
6.2.4 Command Specialization . . . . . .. ..
6.2.5 Command Extensibility .. ... ...

6.3 ADT Interfaces within ACE . . ... .. .. ..

6.4 ADT Body Implementations . . . . ... .. ..

6.5 Externallmages. ... ..............

6.6 ADT Summary ... ...............

6.7 ACE Command List . .. ............

7 Abstract Data Types of ACE

7.1 Standard Packages ... .............
7.1.1 Objects .. ... ... ..........
7.1.2 Standard. .. ... ............
713 System...................
7.14 JoExceptions .. .............
71.5 Lowlevello ...............
716 Calendar. ... ..............
717 Textdo...................
7.18 AceStandard . .. ............
7.9 Strings . .. ... oo

7.2 Command Language Commands . . . . .. ...
721 AceAdt . . ... ... ...
722 HostOs .. ................

................

................

................

STARS-RC-00980/001/00

— —

W o =

(75




29 October 1990 STARS-RC-00980/001/00

7.2.3  Manipulate_Scope . . . . ... L Lo 338
. 724 Debugger . . .. Lo 39
7.2.5 FileSystem . . . .. L 41
7.26 Directory.Objects . . . . . . . .. .. .. e 2
727 Text.Objects . . . . . . . . . . i i e e 44
7.2.8 Program.Objects . . .. ... .. ... .. ... ... .. 45
7.29 Program Text Objects . . . ... ... ... ... .. ....... 46
7.2.10 Binary Objects . . . . . . .. .. . .. ... 47
7.2.11 Program.Units . . ... ... ... .. ... ... ... 47
7.2.12 Help Adt . . . . . . . . e 50
7.2.13 Object_Lister . . . . . . . . . . . . . e 50

73 KeyBindings . . . .. ... 51
73,1 KeyBindings . . ... ... ... 51

7.4 Windowing Commands . . . . . . .. ... ... ... . 56
741 Window Objects . .. ... .. ... ... ... .. ... .. ... 56
742 AceXWindowSystem . . . . .. ... ... ... ... ....... 56
743 AceUser X_Window System . . . . . ... ... ............ 57
744 Window Draw_Routines . . .. ... ... ... ... ......... 58

7.0 CAIS-A Commands . . .. .. .. .. . ... 59
7.5.1 CAISRoutines . . ... ... ... .. ... .. 59
7.5.2 STARS Tools . . ... .. .. ... . . . 61

7.6 CPU Timing Package . . . . . .. .. ... ... ... .. .. .. . ...... 63
‘ 76.1 CpulTime . . . . . . . . . . . e 63
7.7 Xt Toolkit Interface . . . . . . . . .. .. . .. L 63
7.7.1 X Windows . . . . .. .. .. 64

7.72 Renamed Xlib.Types . . . . . . .. .. .. .. .. ... ... ..., 65
7.73 Imtrinsics. . . . . . . . . . . e e 66
774 Widget Package . . . . . . .. ... ... ... . ... ... 67
7.7.5 HpWidgets . . . . .. . . . ... 84

8 More Information About Some Ace Features 109
8.1 Xt Toolkit Interface . . . . . . .. ... .. ... ... . 109
8.1.1 Xt Prototyping Sessions . . . .. .. ... ... oL 110
8.1.1.1 Starting an Xt Prototyping Session. . .. ... ....... 110

8.1.1.2 Finishing an Xt Prototyping Session . . . . .. ... .. .. 111

81.2 XtArgumentLists . . . ... .. ... .. ... ... . ... ..., 112
813 XtCallbacks ......... ... ... . ... ... 113
8.1.3.1 Callback Procedures. . . . . ... ... .. .. ........ 113

8.1.3.2 Action Procedures. . . . .. ... .. oo 0oL 114

8.1.3.3 Callback Interpretation. . ... ................ 115

8.1.3.4 Prototyping Callbacks. . . . . .. .. ... ... ....... 115

8.1.4 Transition to Compiled Code . . . . .. .. .. ... . ....... 116
819 ASmall Example . . . ... ... ... ... ... .. .. .. ..., 117

8.2 'The Key_BindingsPackage . . . . . ... ... ... ... ........... 119
. 8.2.1 Making Bindings . . . ... ... .. 119

Page iii




29 October 1990 STARS-RC-00980/001/00

3.2.1.1  Using [nterprel String. . . . . . ... ... 121

$.2.1.2  Intermixing [, O with Rey_Bindings Routines. . . . . . . . 12!

3.2.2  An Example for Interpret String . . .. .. ... 0oL 122

9 Supported Ada Features 123
10 Examples 130
10.1 Interactive Ada Example . . . . . . .. .. .. ... o . 130
10.2 Manipulating Ada Components . . . . .. .. .. ... ... ... ... 31
10.3 Interfacing with Host O/S (UNIX) . ... .. ... . ... ... ...... 134

Page iv




FO October 1990 STARS-RC-00980/001/G0

i .
;1 Introduction

I'he Ada Command Environment (ACE) is an interactive command language environment
for Ada software development. Ada is both the programming language and the command
language used within ACE. The paradigm and philosophy used by the Ada programmer
during program development are extended into the environment in which program devel-
opment takes place. ACE is modeled after other interactive programming environments,
such as Smalltalk and Interlisp, which are touted for individual programmer productivity.
Whereas other interactive programming environments are targeted toward programming-in-
the-small, ACE supports programming-in-the-large techniques that are key elements of the
Ada language.

s oo

//

‘;/ 1.1 Intended Audience

" This document assumes the user has a basic understanding of the Ada language, including
its concepts and the use of Ada for software design and development. This document is not
tutorial in nature with regards to the Ada language. The user is directed to one of the many

texts on Ada or the Ada Language Reference Manual for background on Ada. /.7 3
- ( e o ) - [’) DN para
(‘— ..r.!.“ 4 -—/') [—‘ The % 7 <z AT . // B b4 rs.ﬁ M~ ) . . :, e
. 2 D L o /2/ J\A ELye ;ﬁ,'\ '/jv Jq:’,,[" - B / e "(lt t : .“.

i
A

1.2 Reference Documents
MIL-STD-1815A Ada Programming Language, 22 Jan 1983

William P. Loftus, Charles L. Oei, and John A. Thalhamer. The Ada Command Environment—
ACE. In Proceedings of Ada Ezpo ’88, Anaheim, California, October 1988.

John A. Thalhamer, William P. Loftus, Charles L. Oei, Ralph A. Foy. Ada Abstract Data
Types—the Foundation of an Interactive Ada Command Environment. Proceedings of the
Seventh Annual National Conference on Ada Technology, Atlantic City, New Jerseyv. March
1939

Unisys, Ada Command Environment Installation Guide, Version 8.0, Informal Report, U.S.
Department of Defense Contract No. F19628-88-D-0031, 12 April 1990

2 The Command Language of ACE

The command language accepted by ACE is Ada. Within ACE, Ada is used as the language
for program development as well as the mechanism for traditional interaction with the host
operating system. Each command entered into ACE must be a legal Ada construct.

Ada as a command language allows interactive program development, typical user inter-
action with the host environment, and the development of command language procedures.
Whereas within other environments different language constructs are needed for the com-

Page 1




29 October 1990 STARS-RC-00980/001/00

mand language and command language procedures (not to wention the different program-
ming langnage. ACE allows Ada to be used as the unifving language.

ACE immediately executes Ada constructs as they are presented. The set of Ada constructs
that are immediately executed are compilation units, statements, and basic declarations.
Upon the completion of one of the constructs, the statements associated with the construct
are executed and the appropriate results are given based upon the Ada statements that were
evaluated.

Immediate execution of the Ada constructs for compilation units, statements, and basic
declarations allows Ada to be effectively used as a command language. An interactive devel-
opment environment requires a dynamic atmosphere in which the next operation performed
may be based upon a previous result. The ability to intermingle declarations, statements,
and compilation units as commands to ACE is the basis for a dynamic environment. For
example, a typical order of Ada commands to ACE may be the declaration of an object,
assignment of an initial value to that object, the definition of a subprogram specification and
body, followed by an invocation of the subprogram using the declared object. This sample
shows the ability to intermix the sequence of declarations, statements, and compilation units
that are submitted to ACE.

2.1 The Environment of ACE

ACE provides a basic set of Ada objects and operations as the initial environment of ACE.
These objects and operations are encapsulated as abstract data types (ADTs) and imple-
mented as a set of Ada packages. Upon initialization of ACE, the basic set of ADTs are
assimilated into a base environment for the user. This base environment includes pack-
ages that are necessary for the interpretation of Ada statements (such as the Ada package
Standard), as well as packages that provide operations typically performed by a user when
interacting with the underlying operating system.

Each subprogram or package that is entered by the user during an ACE session may be
viewed as an extension of the environment. The subprogram and/or package provides a set
of objects and operations which is available to the user. These subprograms and packages
may be permanently stored so that they will be persistent between ACE sessions. Upon
start-up of the user’s subsequent ACE session, these user-defined ADTs may be included
into the ACE environment, thus tailoring the ACE environment to the user’s preferences.

Common, every day operations that would typically be invoked by the majority of ACE
users are made directly visible to the user as a default. The user may simply acquire direct
visibility of other ADTs through the Ada use statement. In the event that direct visibility
is nut desired when given as a default, ACE provides a set of ADTs that may “undo” the
Ada use statement. More detail on the operation of this type of ADT is provided in the
description of the dynamic environment ADTs.

The description of the ADTs that are provided as the base environment for ACE are described

Page 2




29 October 1990 STARS-RC-00980/001/00

later in this manual (see section 7).

2.2 Interaction with ACE

The user is provided with a mechanism for controlling the operating characteristics of the
Ada Command Environment. Within Ada, the pragma construct is the means for issuing
directives o the compiler which do not affect the legality of the Ada program. Since ACE
is based upon the paradigms of Ada, the Ada pragma construct is utilized within ACE to
control the operation of ACE.

In addition to the pragma directives of ACE, Ada objects and operations (in the form of
an ADT) are employed to provide user control over ACE’s input and output mechanisms.
The Ada Tezt.lo package contains the definition of a set of operations to control the default
input and output files associated with the Ada program. A similar facility is provided
within ACE to control the default input and output files associated with ACE. For example,
Standard_Ace_Input and Standard_Ace.Output are defined to return a file type associated
with the keyboard and CRT, respectively. Additional operations such as Set_Ace_Input and
Current_Ace.Input are used to modify and acquire the current file type which defines the file
from which ACE is to acquire input. Similarly named operations exist for output.

A description of the pragmas supported by ACE and the ADTs associated with the operation
of ACE are given later in this manual (see section 5).

The Exit Statement

The ezit statement is used to terminate the execution of subprograms within ACE or ACE
itself.

o crit Ace terminates the execution of ACE and returns the user to the host operating
system.

o exit Ace_Level terrminates the current level of execution and returns the user to the
next higher level.

e erit Ace_Main terminates execution of all subprograms and returns the user to the top
level of ACE.
3 Starting ACE
ACE can be started by typing the command “ACE” at the Unix prompt. This initiates the

ACE session. During start up, ACE processes the definitions of the default abstract data
types that will be available during the ACE session. A noticeable delay occurs during the

Page 3




29 October 1990 STARS-RC-00980/0C1,/00

initiation of ACE while this set of abstract data types is processed. ACL is ready 10 accept
user commands after the display of the ACE main prompt—-=ACE> ~

When ACE has begun accepting a command and requires more information to complete the
command, ACE will display a continuation prompt “ |”. This prompt indica‘tes that the
Ada construct being entered as a command is not yet complete. Examples of these Ada
constructs include a compound statement, such as an if statement, a subprogram body, or
even an assignment statement or declaration statement tha* is entered on multiple lines.
The continuation prompt indicates that ACE is awaiting furtoer input associated with the
incomplete command, and will execute the command upon completion of the command.

3.1 Example

ACE>

ACE> i : integer;

ACE> 1 := 100;

ACE>

ACE> 1if 1 < 0 then
| put_line ("negative value");
| elsif i > O then
I put_line ("positive value");
| else

| put_line ("zero value”);
| end if;

positive value

ACE>

4 Software and Hardware Environment

The ACE prototype is operational on a Sun-3 workstation. The description of each of these
environments is detailed below.

Execution of ACE should be performed within the same directory in which the executable
image of ACE resides. The files that should be located within this directory are as follows:

o ACE—the ACE executable image
o startup.ace—the environment initialization file processed by ACE when ACE is started

o ace_ada— script that interfaces with the host Ada compilation system (Verdix on the
Sun workstation). This may be tailored to local preferences.

o ace_edit—script that interfaces with the host editor (vt on the Sun workstation). This
may be tailored to local preferences.

Page 1




29 October 1990 STARS-RC-00980/001/00

o observe_window.icn—iconic image for the windows created by pragma observe. which
is only needed when running within a window enviroument and when a window is
closed to its 1conic form.

4.1 Sun Workstation

Within the Sun workstation environment, ACE provides a simple interface to the X Window
System. However, ACE may be executed independently without a supporting windowing
system. Window manipulation operations are provided with the X Window System—ACE
has integrated Xlib-Ada binding from the Unisys UR20 user interface task to provide a
programmatic interface to X.

To execute ACE, the suggested configuration is a Sun-3 workstation running:

e SunOS 3.5
e X Window System, X 11 Release 3, if running under X

o Verdix Ada Development System version 3.5 and the v editor

To create an ACE executable image, the suggested configuration is a Sun-3 workstation
running:

e SunO0S 3.5

e X Window System, X 11 Release 3, if using a window system

e Verdix Ada Development System version 5.5

Ada bindings to Xlib (Available from Unisys STARSCenter)

C compiler provided with SunOS 3.5

5 Pragmas Supported by ACE

Pragmas are the mechanism for controlling ACE’s operating characteristics. These pragmas
control the production and format of information produced by ACE, and are particularly
useful for debugging purposes. The following pragmas are supported in ACE:

1. Observe

Takes an enumeration string literal ( Objects, Statements, or Subprograms) as the first
argument and one of the identifiers On or Off as the second argument. Default at ACE
initialization is Off for all three observation items.

Page 5




29 October 1990 STARS-RC-00980/001/00

An observation window is created to observe the manipulation of objects, statements.
or subprograms. On enables observation: Off disables observation. Objects displayvs
the detinition ot each object within ACE when it is elaborated. Statements displays
each Ada statement as it is executed within ACE. Subprograms displays each Ada
subprogram as it is executed, by displaying the Ada statements that make up the
subprogram body and highlighting the statement number of each statement as the
statement is executed. (Execution speed of ACE is artificially decreased during Sub-
programs observation to allow appropriate visual recognition of the trace of statement
execution.)

Only a single Subprogram observation window is created. For Objects and Statements,
each pragma Observe with On will create a new observation window, and will not
delete the previous observation window. This allows tracing and comparison of several
program execution paths.

2. Echo

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

Echo will display within the primary ACE window each line of input that is being
processed by ACE.
3. Dump

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

Dump will display the Ada statement that has been syntactically and semantically
checked by ACE prior to its execution.
4. Trace

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

Trace will display within the primary ACE window each Ada statement as it is exe-
cuted. (This is similar to pragma Observe (Statements, On) except that tracing output
is sent to the primary ACE window rather than to a statement observation window.)

5. Debug

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

Debug will force ACE to save the local symbolic information associated with subpro-
grams during subprogram execution. This allows local symbolic information to be
referenced when breakpoints are triggered within subprograms. This saving of local
symbolic infrrmation decreases the execution speed of ACE.

6. List_Statement_Numbers

Page 6




29 October 1990 STARS-RC-00980/001/00

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-

ization is Off.

List_Statement_Numbers will flag the internal Dump routines to associate numbers with
the statements that are dumped. These numbers can be used in association with the
ACE Debugger ADT.

7. Main_Prompt
Takes a string as its only argument.

Main_Prompt will set the main prompt of ACE.

8. Continue_Prompt
Takes a string as its only argument.

Continue_Prompt will set the continuation prompt of ACE.

9. Buzltin
FOR DEVELOPERS/SYSTEM ADMINISTRATORS ONLY

Takes a string literal, the name of a subprogram, as the ¥ " argument and a static
expression of the predefined integer type as the second arg..uent.

The body associated with the identified subprogram specification is built-in to ACE.
The body has been pre-compiled and merged into ACE. ACE does not expect further
Ada input to define the body for this built-in subprogram. The second argument is an
internal numbering scheme within ACE to uniquely identify each built-in subprogram.

6 Environment of ACE

The environment encompasses the traditional view of programmer interaction with the op-
erating system, such as file manipulations, editors. compilers, debuggers, and windowing
systems. A set of consistent Ada packages has been constructed to encapsulate these tradi-
tional objects and operations. Moreover, the environment extends the user’s view to include
interaction with parts of Ada software systems to facilitate programming-in-the-large activi-
ties.

The environment consists of a set of Ada packages that is interpreted by the ACE Ada
interpreter, where each package defines an ADT which the user may manipulate, redefine,
or extend. ADTs implemented in ACE which support the user’s traditional view of an
environment include:

e a help ADT
¢ a host operating system ADT

e a hierarchical typed file system ADT (which includes the editor, compiler, stubber,
and other file support tools)

Page 7




29 October 1990 STARS-RC-00980/001/00

e a windowing ADT

e a syvmbolic debugger ADT

o Ada predefined library packages (Standard ADT, ASCII ADT, System ADT, Text_lo
ADT, Io_Exceptions ADT, Low_Level_.lo ADT, Calendar ADT, Object List ADT)

ADTs implemented in ACE which support rapid prototyping and programming-in-the-large
include a package ADT and subprogram ADT (i.e. abstract data types that allow Ada
packages and subprograms to be manipulated as data).

For example, the ACE user could enter a set of Ada procedures into the Ada interpreter,
testing and refining them as needed. Then, using the package and subprogram ADTs, the
user could define a package and insert the procedures into the package, thus creating a new
ADT. This illustrates the power ACE provides in extending the environment, and the ease by
which the user may accomplish it. ACE provides the mechanism for the user to interactively
define a set of data types and operations on the data types. ACE also allows the user to
further manipulate these types and operations by encapsulating them into abstract data
types. Moreover, the user may then collect a set of ADTs into a software system.

Currently, the ACE-developed ADTSs provide basic, low-level functionality within their par-
ticular domains. This avoids biasing the ACE environment towards specific existing environ-
ments. Users can easily tailor or augment the basic routines to personal or project needs. As
general-purpose higher levels of abstraction are defined, additional ADTs will be developed
which extend the ACE environment. The basic ADTs serve as building blocks for the next
higher level of abstraction.

Use of Form Parameters in ACE

The Form parameter i1s used within Ada Input-Output (Chapter 14 of the Ada Reference
Manual) to give system-dependent characteristics that may be associated with a file. For
example, the Form parameter of the Open subprogram in the package Tezt_Io is used to
define attributes of the specified file (e.g., protection, type of file, etc.). Since ACE supports
Tezt_lo (and other standard Ada packages) the Form parameter is also supported.

In addition, the ACE Command Language uses the Form parameter as a mechanism within
other abstract data types to give system-dependent characteristics that are associated with
the objects being manipulated within the package. Some ADTs within ACE are concerned
with the manipulation of subprograms. Expanded names alone cannot uniquely identify
overloaded subprograms. The Form parameter is the mechanism by which overloaded sub-
programs are uniquely identified. Each Ada statement within ACE is assigned a unique
statement number . This statement number, passed as a string in the Form parameter, may
uniquely identify the appropriate subprogram.

In order to acquire the statement number (or Form) attribute of a subprogram, ACE also

Page 3




29 October 1990 STARS-RC-00980/001/00

provides a Form function within several ADTs. When invoked upon a subprogram or package
object. this function will return the string Form of the respective object.

The following example will highlight the use of the Form parameter. List is an operation
that can display a subprogram’s specification and/or implementation. In the example, in-
vocations of List illustrate acquisition of the most recently defined subprogram of a given
name (Interpret), all subprograms of the same given name, or a specific subprogram of the
given name—identified via the Form parameter.

ACE> List ("interpret");

procedure interpret (file : in file_type; error : out boolean);
-- Form => " 377"
pragma builtin (interpret, 505);

ACE> List ("interpret", "all");

procedure interpret (file : in file_type; error : out boolean) ;
-- Form => " 377"
pragma builtin (interpret, 505);

procedure interpret (str : in string; error : out boolean);
-- Form => " 375"
pragma builtin (interpret, 504);

procedure interpret (tree : in ace_statement_database; error : out boolean);
-- Form => " 373"
pragma builtin (interpret, 503);

ACE> List ("interpret", "375");
--?7 interpret will "execute" the value of the str parameter.
procedure interpret (str : in string; error : out boolean);

-- Form => " 375"
pragma builtin (interpret, 504);

6.1 ACE Libraries and Environment Tailoring

When ACE is executed, an initialization file is automatically interpreted. This initialization
file is called startup.ace and is located in the user’s home directory. This file contains ACE

Page 9




29 October 1990 STARS-RC-00980/001/00

commands (in the form of Ada) that define all the operations (i.e., subprograms) that will
be recognized by ACE. The following is an example of a startup.ace file:

--pragma echo(on);
--pragma trace(on);

Demo_Directory : constant String := "/ace/demo/";
Startup_Directory : constant String := "/ace/startups/";

-- Define "&", so we can use environment strings (e.g., Demo_Directory).
function "&" (Lhs, Rhs : String) return String;
pragma builtin ("&", 0);

-- get routines for measuring CPU.
Interpret_File (Startup_Directory & "cpu_time.ace");

-- Variables for clocking our startup speed.
Start : Time;
Stop : Time;

-- Start ticking
Start := Clock;

-- Ada’s Standard Package
Interpret_File (Startup_Directory & "standard.ace");

-- Key Mappings
Interpret_File (Startup_Directory & "bindings.ace");

-- Normal Command Language commands (e.g., Set_Directory)
Interpret_File (Startup_Directory & 'commands.ace");

-~ Windowing ADTs
Interpret_File (Startup_Directory & "windowing.ace");

-- Some developer debugging aids
Interpret_File (Startup_Directory & "developer.ace");

-- Xt toolkit ADTs
Interpret_File (Startup_Directory & "xt.ace");

-- Xt demonstration

Set_Directory (Demo_Directory & "Xt");
--Console ("Support");
--Interpret_File ("support");

Page 10




29 October 1990 STARS-RC-00980/001/00

--Console ("Globals");

. --Interpret_File ("globals");
--Console ("Edit_panel");
--Interpret_File ("edit_panel");
--Console (“Callbacks");
--Interpret_File ("callbacks");
--Console ("Ace.buttons");
~--Interpret_File ("ace.buttons");
--Console ("Demo");
--Interpret_File ("demo");
--New_Line;

procedure Back_Word is
begin
Do_Move_Left;
while Key_Bindings.Do_Get_Current_Character = ’ ’ and
Key_Bindings.Do_Get_Current_Column /= 1 loop
Do_Move_Left;
end loop;
while Key_Bindings.Do_Get_Current_Character /= ’ ’
and Key_Bindings.Do_Get_Current_Column /= 1 loop
Do_Move_Left;

. end loop;
if Key_Bindings.Do_Get_Current_Column /= 1 then
Do_Move_Right;
end 1if;
end Back_Word;

procedure Kill_Word is
begin
Back_Word;
while (Do_Get_Current_Character /= ’ ’ and
Do_Get_Current_Character /= Ascii.Nul) loop
Do_Delete_This_Char;
end loop;
Do_Delete_This_Char;
end Kill_Word;

procedure Forward_Word is
begin
while (Do_Get_Current_Character /= ’ ' and
Do_Get _Current_Character /= Ascii.Nul) loop
Do_Move_Right;

end loop;
. while (Do_Get_Current_Character = ’ ’) loop

Page 11




29 October 1990 STARS-RC-00980/001/00

Po_Move_Right;
end loop;
end;

-- Set some history and editing key commands

Make_Binding (Ascii.Eot, Delete_This_Char);

Make_Binding (Ascii.Nak, Kill_Line);

Make_Binding (Ascii.Enq, Key_Bindings.End_Of_Line);
Make_Binding (Ascii.Soh, Beginning Of_Line);

Make_Binding (Ascii.Dc2, Refresh_Current_Line_And_Prompt);

Make_Binding (Ascii.Etb, Interpret_String, "Kill_Word;");
Make_Binding (Ascii.Ack, Interpret_String, "Forward_Word;");
Make_Binding (Ascii.Stx, Interpret_String, "Back_Word;");

Make_Binding (Ascii.Esc & "[A", History_Back);
Make_Binding (Ascii.Esc & "[B", History_Forward);
Make_Binding (Ascii.Esc & "[D", Move_Left);
Make_Binding (Ascii.Esc & "[C", Move_Right);

-- Stop Ticking
Stop := Clock;

-- How much time?
Put ("Startup CPU seconds: ");
Put_Time(Difference(Stop, Start));

~= ASCII Terminal clear to EQOL.
Put_Line(Ascii.Esc & "[K");

The Interpret_File command is predefined in ACE, and can be used without being defined
by the user. All other commands and variables must be defined by a previous declaration.
Through the editing of this file the user can customize and tailor their environment. The
ACE libraries (.ace files) referred to in the example are described in section 7.

6.2 ADT Philosophy

Data abstraction, information hiding, modularity, and locality are some of the the mod-
ern software engineering principles used in the development of software applications. The
notion of data abstraction is also a powerful mechanism for the definition of a command
environment—an environment that contains a set of objects upon which a group of com-
mand operations act.

An abstract data type is an abstraction mechanism that encapsulates a set of values together

Page 12




29 October 1990 STARS-RC-00930/001/00

with a set of operations that apply to the values. Within software development. the decom-
position of the system may be defined through a set of objects. the operations applicable
to the objects, and the operations needed by the objects. ADTs serve as a natural descrip-
tion method for this tvpe of system decomposition. ADTs are also a key component of the
object-oriented design and development approach.

The directives issued by a software developer to the underlying host environment may also
be naturally defined through the use of ADTs. Each directive or command may be viewed
as an operation; the qualifiers or parameters may be viewed as the objects upon which
the operation is performed. Logically associated objects and operations may be gathered
together into collections which are related to particular components of the underlying host
environment. Thus, a parallel can be drawn between abstract data types and the composition
of a command language.

Many of the newer procedural languages provide syntactic mechanisms to easily specify and
manipulate ADTs. Ada is one such language. The constructs of packages (specification and
body), subprograms (functions and procedures), subprogram invocation, type declarations,
object declarations, and context clauses are examples of Ada’s support for ADTs. The Ada
Command Environment makes use of these Ada constructs to define the environment objects
and operations through ADTs.

ACE provides an Ada ADT interface to the underlying host environment in the form of Ada
package specifications. The package specifications are processed by ACE upon initiation.
Thus, a set of predefined types and operations are made available to the user from the
beginning of an ACE session. Since these types and operations are defined via the Ada
package construct, the methods used to manipulate Ada packages are also used to manipulate
the operation of the environment ADTs.

6.2.1 The Ada Language Standard

Ada, 2s a modern procedural language, encompasses many of the state-of-the-art software
engineering principles. These principles are extended into the command environment through
the use of Ada to define the environment with ADTs.

The Ada package construct supports the principles of data abstraction and information
hiding through the separation of the package specification from the package body. The
separation of the specification and implementation of the abstract data type in Ada and
ACE is a key element in the ability to tailor the environment. Different implementations of
an environment ADT specification are an obvious mechanism for tailoring the environment
to a project’s taste. For example, a common configuration management interface may be
defined through a single ADT specification, but different implementations may be written
based upon the project’s particular selection of a configuration management application
system.

The ability to layer ADTs within Ada supports the principles of modularity and locality.

Page 13




29 October 1990 STARS-RC-00980/001,/00

Environment extensibility may be accomplished through the use of layered ADTs. For
example. a new ADT specification mayv be written that presents an interface that is more
familiar or comfortable to the user. The implementation of that ADT simply invokes the
standard set of operations. The ADT makes the translation from user orientation to system
orientation, rather than forcing the human to mentally perform the translation. Layered
ADTs also support the notion of different levels of abstraction. For example, the notion of
formatting a textual document, building its table of contents, and printing the result on a
printer may be viewed as either a single operation or a series of lower level operations. Low

level ADTs serve as the building blocks for higher level ADTs.

Within the language definition of Ada, Ada is used to extend its own definition. The Ada
input-output operations (chapter 14 of the reference manual) are provided in the language by
the means of predefined packages. In addition, other-predefined library packages are required
for each Ada implementation. ACE has implemented the Ada predefined packages, such as
Standard, ASCII, Calendar, System, and Tezt_lo. This set of packages makes the standard
Ada types and operations available in the command environment. Continuity is established
between the command environment and the typical Ada development environment.

ACE also views the set of Ada predefined packages defined in the reference manual as a set
of guidelines to be followed in the development of environment ADTs. The input-output
packages of chapter 14 of the reference manual denote a style of operation definition and
object manipulation that ACE has expanded to encapsulate the entire environment. The
Create, Open, Close, and Delete procedures that are applicable to file objects are used within
the command environment to define similar control operations upon other types of objects.
An example of this is the similar treatment of file objects and window objects. File objects
and window objects are each abstract data types in ACE that are created using the Create
procedure and removed using the Delete procedure. The operations that the Ada developer
is familiar with in the program development. environment are the same operations that are
to be invoked within the host environment to accomplish similar tasks.

The guidelines are followed in more detail than simply through subprogram names. Names
and modes of parameters, the selection of a procedure versus a function, and the use of the
Form parameter as a string data type to specify non-default implementation options are all
further examples of following the style of Ada as defined in the language standard. These
and other instances of conformance within ACE, enforce an Ada-oriented style of ADTs
within the ACE environment.

6.2.2 Command Structure

Consistency and uniformity in the command environment of ACE is achieved through the
use of Ada and ADTs. Commands and objects are logically grouped together as ADTs
via the Ada package mechanisms. This grouping allows the environment to be structured
and ordered. In addition, by nesting packages and subprograms the environment provides
controlled access to information. Users explore the environment in an orderly and informative
manner. This logical grouping of environment components has many benefits over the flat

Page 14




29 October 1990 STARS-RC-00980/001/00

structure supported by most command languages.

For example, if a specific windowing package is nested inside a basic windowing package.
novice users must “use” or reference the basic windowing package before they can access
the specific windowing package. This does not guarantee that novice users understand the
environment. However, it does guarantee that novice users understand the logical structure
of the environment. Of course, expert users who know the structure of the environment are
not hindered, since they can simply reference an arbitrarily nested command via the Ada
expanded name feature.

Another benefit of this command structure combined with Ada is the ability to define a user
interface that is consistent with the paradigms of Ada, as well as uniform in its treatment
of objects and operations in the environment. Such an environment would support (at all
levels of interaction with the environment) Ada philosophies, providing an excellent vehicle
for Ada development. The facilities of overloading and derived subprograms in Ada provide
the opportunity to define uniform interfaces to logically related operations and objects. As
described above, the ability to define a Create operation for each type of environment ob ject
is supported in Ada through overloading. ACE supports overloading to allow the uniform
definition of abstract data types across the entire command environment. In acdition to
being consistent with the Ada standard, the environment is also uniform among the ADTs
that are defined within it.

6.2.3 Command Applicability

One benefit of modern procedural languages is the notion of strong typing. The benefits of
strong typing within Ada are also of benefit to Ada as a command language and the definition
of ADTs. While ADTs allow the definition of operations for objects, strong typing enforces
the proper use of the operations. Many of the problems associated with a novice’s use of
a command language can be attributed to the application of operations to inappropriate
objects (e.g.. printing a binary image). In a strongly typed command language. and in
particular ACE, if there is no operation *print” defined for binary image objects then the
user can not (even accidentally) apply the operation.

Another benefit of strong typing in a command language is in the operation of very large
software systems. Many of the benefits of using ADTs in the construction of these software
systems are retained in the command language which acts as the “glue” which holds such
systems together. Having a strongly typed command language helps guarantee that the
systems are correctly constructed from their components. In addition, having a compilable
command language allows an interpreted system to become an entirely compiled system
merely by compiling the command language, whereas in a traditional command language,
the “glue” would have to be rewritten into the system’s programming language.

Page 15




29 October 1990 STARS-RC-00980/001/00

6.2.4 Command Specialization

Through the use of derived types and derived subprograms. new objects can be described
as specializations of existing objects, i.e., described as differences from existing objects. For
example, the entire abstract data type for ACE'’s hierarchical file system is constructed of
existing ADT's that are specializations of a general file ADT. The general file ADT provides
the basic operations (e.g., Create, Delete, Copy, Rename, etc.) that can be performed on all
files. The immediate specializations of the general file ADT are Tezt_Files, Directory_Files,
and Binary_Files. Each of these specializations provides specific new or redefined operations
for each type. Any operation defined for the general file ADT that is not redefined in a
specialization’s operations is inherited by the specialization. Therefore, each specialization
of the general file ADT inherits the Create, Delete, etc. operations, which in turn allows every
type of file in the file system to be manipulated via the general file operations. Specialization
provides a very powerful reuse mechanism within ACE; existing objects can be extended or
tailored for particular applications or user aesthetics without having to describe the entire
ADT.

In addition, since Ada (and consequently ACE) implicitly derives subprograms for every
derived type, much of the work that is normally associated with strong typing in a command
language and the construction of a hierarchical command environment is removed from
the user. Each derived type implicitly inherits a set of commands that enable its basic
manipulation.

6.2.5 Command Extensibility

An important part of any state-of-the-art environment is the ability of the environment to
evolve as technology and methodologies evoive. ACE’s approach is to use Ada ADTs to
define the command language (creating a command environment). As described before, Ada
ADTs have a clean separation of implementation from specification. Therefore, as technology
makes small leaps, the new techniques can be incorporated in the ADT implementation
while not effecting the specification. In addition, when radical breakthroughs are made in
technology, new environment ADTs can be constructed and incorporated into the command
environment. Using this approach, we are only limited by the ability of Ada to assimilate
new approaches.

6.3 ADT Interfaces within ACE

Abstract data types within ACE are defined by Ada packages. The package specifications
encapsulate the definition of the objects and the operations that are applicable to the ob-
jects. Additionally, the package specification provides a mechanism for information hiding,
particularly hiding of the operations’ implementations. The Ada package body contains the
implementation of the object and its respective operations.

ACE supports two mechanisms for the implementation of the ADT bodies: interpreted and

Page 16




29 October 1990 STARS-RC-00980/001/00

built-in. Each of these mechanisms supports a different facet of environment definition. and
together they provide the facilities to compose and extend the Ada command environment.
Additionally, ACE through its ADTs provides a mechanism to access executable images
external to ACE. This provides added power and flexibility to the command environment.

6.4 ADT Body Implementations

As previously stated, Ada is the command language accepted by ACE and interpreted by
ACE’s command language interpreter. The environment (as defined by Ada packages) is
read by the command language interpreter and processed, resulting in the elaboration of
Ada packages. This process of interpreting Ada ADT package specifications and bodies is
the typical method through which ADTs are declared within ACE.

ACE provides an additional mechanism by which package bodies may be defined. Rather
than interpreting an Ada package body, the Ada code may be compiled and linked into
the ACE executable. The package specification for the package is still Ada code that is
interpreted by ACE. A pragma directive informs ACE that the package body associated
with this package specification is already compiled and included within ACE.

This method of package body inclusion provides benefits to the runtime efficiency of ACE.
ACE may be tuned such that frequently invoked code is executed at the machine language
level (i.e., the compiled level), rather than interpreted.

Another benefit of compiled implementation is that it provides interactive invocation and
composition of compiled code within the command environment. An example of this is the
X Window System ADT of ACE which provides Ada interfaces to the X Window System
(currently implemented in C).

6.5 External Images

A vast array of applications and support tools are typically available within the host envi-
ronment. ACE does not impose a restrictive environment that limits the facilities available
to the software developer. Through a host operating system ADT, ACE provides an inter-
face mechanism which makes external executable images on the host system available from
within the command environment. Thus, environment ADT specifications are able to pro-
vide the user with a censistent Ada paradigm that may interface with a diverse set of Ada
and non-Ada external images, including the host operating system.

The ability to access external images provides the opportunity to build high level Ada ab-
stractions from low level non-Ada applications. Relationships may be formed among stand-
alone applications, providing a higher level data abstraction that encompasses the user’s
desired functionality. The intricacies and/or idiosyncrasies of the individual applications
are hidden from the user in the ADT implementation. The implementation also hides the
handling of intermediate results being passed between applications. The user simply sees

Page 17




29 October 1990 STARS-RC-00980/001/00

the specification. which is designed to provide a consistent interface within the Ada-oriented
environment.

By invoking external images through environmeat ADTs, the functionality of ACE can be
extended into domains which can be tailored to specific environments, projects, or users. For
example, a project-oriented configuration management ADT can be defined which provides
software configuration control objects and operations. The programs which must be accessed
to support these facilities may exist scattered about the file system, or perhaps in a common
directory with many other programs unrelated to configuration management tasks. The
configuration management ADT can provide a coherent view of these operations and hide
the organization or disorganization of the underlying programs.

6.6 ADT Summary

This section lists the ADTs which are defined in the startup.ace file provided with the current
release of ACE and gives a brief description of the subprograms and objects provided by the
package.

1. Objects Contains the basic definitions for all objects in the environment.

2. Standard Predefined identifiers based upon the package Standard in the LRM (C).

3. ASCII Contains identifiers for characters in the ASCII character set, as defined in the
LRM (C). This package is defined within the package Standard.

4. System Contains identifiers for configuration-dependent characteristics. It is based
upon the package System as defined in the LRM (13.7).

5. lo_Ezceptions Not currently supported.

6. Low_Level Io Not currently supported.

-]

Calendar Provides the user operations on the clock, as defined in the LRM (9.6).

[0.2]

Text_lo

Provides facilities for input and output in human-readable form, as defined in the LRM
(14.3).

9. Ace_Integer_lo Provides input/output functions for integers. This is a hand-instantiated
version of the Integer_lo package defined in the LRM (14.3.7), tailored for Integer_lo

type.

10. Ace.Standard Provides assistance objects and operations that are standard for ACE.
11. Ace_lo Provides operations that control the input/output of the ACLI.

12. Strings Provides operations that mimic the slicing and indexing of arrays for Ace_String.

Page 13




29 October 1990 STARS-RC-00980/001/00

13.

14

15.

16.
17.

13.

30.

31.
32.
33.

Ace.Adt Provides objects and operations to support a programmatic interface to the

ACLL
Host_Os Provides an interface to the underlying host operating system.

Manipulate_Scope Provides operations to support the dynamic removal and hiding of
objects from the environment.

Debugger Provides operations to manipulate the symbolic execution of subroutines.

File_System Defines objects and operations that may be performed on the hierarchical,
typed file system.

Directory_Objects Provides operations that may be performed upon directories.

. Tezxt_Objects Provides operations that may be performed upon text files.
. Program_Qébjects Provides operations that may be performed upon programs.

. Program_Tezt_Objects Provides an interface to the the Ada Repository Stubber pro-

gram.

Binary.Objects Provides operations that may be performed upon binary files.

. Program_Units Provides the objects and operatic~ “.r ACE compilation units.

. Help_Adt Defines operations which ~-nv.de the user with on-line assistance for declared

objects in ACE, namely: packages, subprograms, anc types.

. Object_Lister Provides a routine to aliow qurriz- o. the statement database for groups

of objects declared the same way (i.e, all objects, all types, etc).

Key_Bindings Provides the operations that allow sequences of key strokes to be bound
to editing and history functions.

Window_Objects Defines the objects that are associated with the Window ADTs.

. Ace_X_Window_System Provides an interface to a small subset of the X Window system

based upon the X Window naming conventions.

. Ace.User_X_Window_System Provides an interface to a small subset of the X Window

system based upon Ada paradigms.

Window_Draw_Routines Provides a simple set of drawing operations that may be per-
formed in Window objects.

Line_Counter Provides a completely interpreted Ada line counter operation.
Cuais_Routines Provides access to the underlying CAIS-A operations.

Stars_Tools Provides access to various STARS developed tools.

Page 19




29 October 1990 STARS-RC-00980/001/00

34. Cpu_Time Provides operations to determine CPU use.
I I

35. N_Windows Provides declarations of the basic X library data types needed to use the
ACE interface to the Xt toolkit.

36. Renamed_Xlib_Types Defines the connection between some type names used by Xt
routines and the equivalent type names in the basic X libary.

37. Intrinsics Contains the type declarations common to all Xt toolkit routines.
38. Widget_Package Provides a sample selection of Xt toolkit procedures.
39. Xt_Stringde/s Detines commonly used Xt resource name constants.

40. Hp.Widgets Provides the ACE interface to the Hewlett-Packard widget set.

6.7 ACE Command List

Ace Adt: Compile, Delete, Interpret, Interpret_File

Ace Io: Current_Ace_Input, Current_Ace_Output, Set_Ace_Input, Set_Ace_QOutnut,
Standard_Ace_Input, Standard_Ace_Output

Ace User X Window System: Create, Delete
Ace X Window System: Clear_Window, Create_Window, Destroy_Window

Ada Standard Commands: abs, and, mod, not, or, rem, xor, +, -, <, <=, =, >
>=, [=,%, [, **, &

Binary Objects: Execute

Calendar: Clock, Day, Month, Seconds, Split, Time_0f, Year, +, -, <, <=, >

Cais Routines: Append_To_Cais_Arg_List, Create_Cais_Argument_List,
Invoke_Process, Put_Cais_File_Node_Host_Name,
Put_Cais_Node_Relationships, Put_Current_Cais_Node,
Prefix_To_Cais_Arg_List, Set_Current_Cais_Node, Spawn_Process,

Cpu Time: Clock, Difference, Put_Time

Debugger: Break, Clear_Break, Continue, Display, Display_Current_Statement,
Display_Next, Display_Previous, List, List_Breakpoints,

List_Symbol_Table, Set_Break, Step

Directory Objects: Close, Create, Current_Directory, Form, Home_Diractory,

Page 20




29 October 1990 STARS-RC-00980/001/00

Is_Open, List, Name, Open, Put_Current_Directory, Set_Directory

File System: Copy, Create, Delete_File, Exists, Open, Rename, Reset,
Temporary_Name

Help: Help
Host: Host

Hp Widgets: Xw_Arrow_Widget_Class, Xw_Ascii_Sink_Create,
Xw_Bulletin_Board_Widget_Class,
Xw_Bulletin_Widget_Class, Xw_Button_Widget_Class,
Xw_Cascade_Widget_Class, Xw_Disk_Source_Create,
Xw_Disk_Source_Destroy, Xw_Form_Widget_Class,
Xw_Image_Edit_Widget_Class, Xw_List_Widget_Class,
Xw_Listrow_Col_Widget_Class, Xw_Manager_Widget_Class,
Xw_Menu_Button_Widget_Class, Xw_Menu_Sep_Widget_Class,
Xw_Menubutton_Widget_Class, Xw_Menumgr_ Widget_Class,
Xw_Menupane_Widget_Class, Xw_Move_Focus, Xw_Panel _Widget_Class,
Xw_Popup_Mgr_Widget_Class, Xw_Popupmgr_Widget_Class,
Xw_Primitive_Widget_Class, Xw_Push_Button_Widget_Class,
Xw_Row_Col_Widget_Class, Xw_Sash_Widget_Class,
Xw_Scroll_Bar_Widget_Class, Xw_Scrollbar_Widget_Class,
Xw_Scrolled_Window_Widget_Class, Xt_Set_Arg, Xw_Sraster_Widget_Class,
Xw_Static_Raster_Widget_Class, Xw_Static_Text_Widget_Class,
Xw_Statictext_Widget_Class, Xw_String_Source_Create,
Xw_String_Source_Destroy, Xw_Swindow_Widget_Class,
Xw_Text_Clear_Buffer, Xw_Text_Copy_Buffer, Xw_Text_Copy_Selection,
Xw_Text_Edit_Widget_Class, Xw_Textedit_Widget_Class,
Xw_Text_Get_Insert_Pos, Xw_Text_Get_Last_Pos, Xw_Text_Get_Selection_Pos,
Xw_Text_Insert, Xw_Text_Read_Sub_String, Xw_Text_Redraw,
Xw_Text_Set_Insert_Pos, Xw_Text_Set_Selection, Xw_Text_Set_Source,
Xw_Text_Replace, Xw_Text_Unset_Selection,
Xw_Text_Update, Xw_Text_Set_Source,
Xw_Title_Bar_Widget_Class, Xw_Titlebar_Widget_Class,
Xw_Toggle _Widget_Class, Xw_Valuator_Widget_Class,
Xw_Work_Space_Widget_Class

Intrinsics: Null_Caddr_ T, Null_Widget, Null_Widget_Class

rKey Bindings: Do_Goto_End_Of _History, Do_Goto_Start_Of_History,
Do_Goto_Beg_Of Line, Do_Goto_End_0f_Line,
Do_Move_Left, Do_Move_ Right,
Do_Show_History, Do_Delete, Do_Delete_This_Char,
Do_Self_Insert, Do_Kill_Line,

Page 21




29 October 1990 STARS-RC-00980/001/00

Do_Insert_String, Do_Show_History_Limit, Do_Set_History_Limit,
. Do_Quoted_Insert, Do_Refresh_Current_Line,

Do_Refresh_Current_Line_And_Prompt, Do_Rewrite_Current_Line,

Do_Rewrite_Current_Line_And_Prompt, Do_Get_Current_Line,

Do_Get_Current_Character, Do_Get_Current_Column

Make_Binding, Interpret_String, History_Back, History_Forward

Manipulate Scope: Delete, Deuse, Undelete
Object Lister: List
Program Objects: Compile, Edit_And_Interpret

Program Units: Close, Create, Delete, Deuse, Form, Is_Open, List, Mode, Name,
Open, Put

Stars Tools: Check_Style, Count_Features, Count_Statements,
Diana_Browser, Diana_Front_End, Diana_Mklib, Diana_Rmlib,
Diana_Cleanlib, Diana_Make_Predefined_Env, Diana_Create_Predefined_Env,
Measure_Mccabe_Complexity, Set_Up, Test_Case_Generator,
Test_Results_Analyzer, Test_Procedures_Generator, Test_Comparator,
Test_Updater

’ Strings: Length, Slice
Text Io:
File Management: Close, Create, Delete, Form, Is_Open, Mode, Name,

Open, Reset

Default Io Control: Current_Input, Current_Output, Set_Input, Set_QOutput,
Standard_Input, Standard_Output

Specify Line and Page Length: Line_Length, Page_Length, Set_Line_Length,
Set_Page_Length

Column, Line and Page Control: Col, End_Of_File, End_Of_Line, End_0f_Page,
Line, New_Line, New_Page, Page, Set_Col, Set_Line, Skip_Line, Skip_Page

Character Input-Output: Get, Put
String Input-Output: Get, Get_Line, Put, Put_Line

Ace Integer Io: Get, Put

Page 22




29 October 1990 STARS-RC-00980/001/00

Text Objects: Edit, Edit_File, Get_File, List, List_File, Print, Put_File

Widgets Package: Action_Procedure_Pointer, Callback_Procedure_Pointer,
Create, Get, Make_Xt_String, Null_Xrm_Option_List, Null_Xt_Arg_List,
Put, Xt_Add_Actions, Xt_Add_Callback, Xt_App_Next_Event,
Xt_Augment_Translations, Xt_Create_Managed_Widget, Xt_Create_Widget,
Xt_Default_App_Context, Xt_Destroy_Widget, Xt_Dispatch_Event,
Xt_Get_Value, Xt_Initialize, Xt_Main_Loop, Xt_Override_Translationms,
Xt _Parse_Translation_Table, Xt_Realize_Widget, Xt_Set_Arg,
Xt_Set_Values, X_Text_Width

Window Draw Routines: Draw_Dashed_Line, Draw_Line, Draw_Rectangle,
Draw_Rectangle_Builtin, Draw_Text -

X Windows: Ascent, Descent, Text_Width

7 Abstract Data Types of ACE

This section provides a description of the Abstract Data Types (ADTs) currently supported
by ACE. The ADTs are grouped into several related areas as ACE library files. They are:

standard.ace, commands.ace, bindings.ace, windows.ace, and cais.ace.

1. standard.ace provides the standard Ada package, ai:d several packages that are stan-

dard to ACE.

o

commands.ace provides the operations that are normally associated with a command
language.

3. bindings.ace provides the operation to bind arbitrary kev strokes to editing and history
functions.

4. windows.ace provides a simple interface to the X Window System.
5. cats.ace provides an interface to the underlying CAIS-A implementation.

6. cpu_time.ace provides the operation to measure CPU time use.

7.1 Standard Packages

The following packages provide the standard definitions of the required Ada packages, and
several packages that are standard for ACE.

Page 23




29 October 1990 STARS-RC-00980/001/00

7.1.1 Objects

The basic building blocks of all ACE objects are the objects package. derived types. and
derived subprograms. The "Object_Type” type is the basic representation of every object in
ACE, and provides the means (through derived subprograms) of defining operations on all
ACE objects. Since every object in ACE is a derived type of "Object_Type” in the objects
package, it 1s possible to define an operation that can act on every object in ACE.

package Objects is
type Object_Type is new Integer;

end Objects;

7.1.2 Standard

This is the package "Standard” from the Ada reference manual as implemented in ACE. The
description order of this package is slightly rearranged from that within the Ada reference
manual order to conform with the format used in the description of all ACE’s ADTs.

package Standard is
use Objects;

-- type Boolean is (False, True);
-- The predefined relational operators for this type are as follows:

function "=" (Left, Right : Boolean) return Boolean;
function "/=" (Left, Right : Boolean) return Boolean;
function "<" (Left, Right : Boolean) return Boolean;
function "<=" (Left, Right : Boolean) return Boolean;
function ">" (Left, Right : Boolean) return Boolean;
function ">=" (Left, Right : Boolean) return Boolean;

-- The predefined logical operators and the predefined logical
-- negation operator are as follows:

function "and" (Left, Right : Boolean) return Boolean;
function "or" (Left, Right : Boolean) return Boolean;
function "xor" (Left, Right : Boolean) return Boolean;

Page 24




29 October 1990 STARS-RC-00980/001/00

function "not" (Right : Boolean) return Boolean;

-- the Universal type universal_integer is predefined.

-- type Integer is range -Integer’last .. Integer’last;
-- The predefined operators for this type are as follows:

function "=" (Left, Right : Integer) return Boolean;
function "/=" (Left, Right : Integer) return Boolean;
function "<" (Left, Right : Integer) return Boolean;
function "<=" (Left, Right : Integer) return Boolean;
function ">" (Left, Right : Integer) return Boolean;
function ">=" (Left, Right : Integer) return Boolean;

function "+"  (Right : Integer) return Integer;
function "-" (Right : Integer) return Integer;
function "abs" (Right : Integer) return Integer;

function "+"  (Left, Right : Integer) return Integer;
function "-~" (Left, Right : Integer) return Integer;
function "*"  (Left, Right : Integer) return Integer;
function "/" (Left, Right : Integer) return Integer;
function "rem" (Left, Right : Integer) return Integer;
function "mod" (Left, Right : Integer) return Integer;

function "**" (Left : Integer; Right : Integer) return Integer;
-- Type Float is unimplemented.
-- Type Character is partially implemented, but not supported.

package Ascii is

Page 25




29 October 1990

-- Control characters:

Nul
Soh
Stx
Etx
Eot
Enq
Ack
Bel
Bs
Ht
Lf
vVt
Ff
Cr
So
Si
Dle
Dci
Dc2
Dc3
Dc4
Nak
Syn
Etb
Can

Sub
Esc
Fs
Gs
Rs
Us
Del

constant

. constant
: constant
. constant
: constant
. constant
. constant
. constant
. constant
: constant
. constant
: constant
: constant
: constant

constant
constant

: constant
. constant
. constant
: constant
¢ constant
. constant
: constant
: constant
. constant
. constant
: constant
: constant
. constant
: constant
. constant

constant

: constant

-- Other characters:

Exclam
Sharp
Percent
Colon
Query
L_Bracket
R_Bracket

: constant
: constant

constant

: constant
: constant
: constant
. constant

Character :
Character -
Character :
Character :
Character :

Character :=
Character :=
Character :=

Character :

Character :=
Character :=
Character :=

Character :

Character :=
Character :=
Character :=
Character :=
Character :=

Character :
Character :
Character :

Character :=

Character :
Character :
Character :
Character :
Character :
Character :
Character :
Character :
Character :
Character :
Character :

Character :
Character :
Character :
Character :
Character :
Character :

Character

Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL
Character’VAL

).
’

] ).
L
1Y .
. 3
).y .
L
121 .
L ]

x[;;
;]1;

Page 26

STARS-RC-00980/001/00

(0);
(1);
(2);
(3);
(4);
(8);
(5);
™
(8);
9);
(10);
(11);
(12);
(13);
(14) ;
(15);
(16);
17);
(18);
(19) ;
(20);
(21);
(22);
(23);
(24);
(25);
(26);
(27);
(28);
(29);
(30);
(31);
(127);




29 Qctober 1990

Underline
L_Brace
R_Brace

Quotation
Dollar
Ampersand
Semicolon
At_Sign

Back_Slash :

Circumflex
Grave

Bar

Tilde

-- Lower case letters:

Lc_A
Lc_B
Lc_C
Lc D
Lc E
Lc_F
Lc_G
Lc_H
Le I
Le_J
Lec_K
Le_L
Lc M
Lc_N
Lc O
Lc_P
Lc_Q
Lc_R
Lc_S
Le T
Lc U
Lc_V
Lc_W
Lec X
Lec Y
Lc_Z

end Ascii;

constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant

: constant

constant

constant
constant
constant
constant
constant
constant
constant
constant

: constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

Character
Character
Character

Character
Character
Character
Character
Character
Character
Character
Character

Character :

Character

Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character

Page 27

PRI

2
xsx;
)&;
2.

H

)@J;
;\;;
)
36
),;;

=)

ra’;
b
rel;
)dl;
‘e’ ;
S &
)g);
'h!;
)i);
IJ');
'k’
117,
‘m’;
'n’;
‘o’ ;

)p);

)r};
’s);
)-t);
,ul;
lv';
)w);
)x);
)y);
lz);

STARS-RC-00930/001/00




29 QOctober 1990 STARS-RC-00980/001/00

~- Predefined subtypes:

subtype Natural 1is Integer; -- range 0 .. Integer’last;
subtype Positive is Integer; -- range 1 .. Integer’last;

-- type String is array (Positive range <>) of Character;

-- Type "String" is not implemented in ACE as a one-dimensional array
-- of the predefined type character. Strings and string literals

-- within ACE provide some of the operations that are applicable to
-- Standard strings. Operations applicable to one-dimensional arrays
-- are not applicable to "String"s in ACE.

-- When composite types are supported in ACE, "String" will be changed
-- to its array definition.

subtype Ace_String is String;

function "=" (Left, Right : String) return Boolean;

function "/=" (Left, Right : String) return Boolean;

function "<" (Left, Right : String) return Boolean;

function "<=" (Left, Right : String) return Boolean;

function ">" (Left, Right : String) return Boolean;

function ">=" (Left, Right : String) return Boolean;

function "&" (Left : String; Right : String) return String;
function "&" (Left : String; Right : Character) return String;
function "&" (Left : Character; Right : String) return String;
function "&" (Left : Character; Right : Character) return String;
type Duration is new Object_Type;

-- Duration is simply a new integer type

-- since fixed points are not implemented [TDB]

-- Exceptions are not supported. [TDB]

-- Constraint_Error : exception;

-- Numeric_Error : exception;

-- Program_Error : exception;

-- Storage_Error : exception;

Page 28




29 QOctober 1990

-~ Tasking_Error : exception;

end Standard;

7.1.3 System

STARS-RC-00980/001/00

Predefined system package, as defined in the Ada standard.

package System is
use Objects;

type Address is new Object_Type;
type Name is (Ms_Dos, Sun_Unix);

System_Name : constant Name := Sun_Unix;

-- Storage_Unit : constant Integer :
-- Memory_Size : constant Integer :

Min_Int : constant | cteger :
Max_Int : const.a’ integer :
-- Max_Digits : constant Integer :=

1;
1;

Integer’First;
Integer’Last;

1
-- Max_Man*issa : constant Integer := 1;
-- Fine_Telta : constant Integer := 1;
-- Tick : constant Integer := 1;
-- subtype PRIOCRITY is integer range -16 .. 16;

end System;

7.1.4 Io_Exceptions

This package defines the exceptions needed by the packages
Sequential_Io, Direct_Io, and Text_Io. Only Text_Io is

implemented in ACE. Exceptions are currently not fully supported.

package Io_Exceptions is

Status_Error : exception;

Mode_Error : exception;
Name_Error : exception;
Use_Error : exception;

Page 29




29 October 1990 STARS-RC-00930/001/00

Device_Error : exception;
End_Error . exception;
Data_Error : exception;
Layout_Error : exception;

end Io_Exceptions;

7.1.5 Low_Level_lo

Low Level input-output operations are operations that act on a physical
device. Low_Level_Io is currently not supported.

package Low_Level_Io is

end Low_Level_Io;

7.1.6 Calendar

This package provides the user access to operations on the
clock, as defined in the LRM (9.6).

Note: Duration is currently not implementated as a fixed point,
and exceptions are currently not supported.

package Calendar is
use Objects;

type Time is new Object_Type;

subtype Year_Number 1is Integer; =~- range 1901 .. 2099;
subtype Month_Number is Integer; ~- range 1 .. 12;
subtype Day_Number is Integer; ~- range 1 .. 31;
subtype Day_Duration is Duration; ~- range 0 .. 86_400;

function Clock return Time;

function Year (Date : Time) return Year_Number;
function Month (Date : Time) return Month_Number;
function Day (Date : Time) return Day_Number;
function Seconds (Date : Time) return Day_Duration;

procedure Split (Date : in Time;
Year : out Year_Number;

Page 30




29 October 1990 STARS-RC-00930/001/00

Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration);

function Time_0f (Year : Year_Number;

Month : Month_Number;

Day : Day_Number;

Seconds : Day_Duration := 0) return Time;
function "+" (Left : Time; Right : Duration) return Time;
function "+" (Left : Duration; Right : Time) return Time;
function "-" (Left : Time; Right : Duration) return Time;
function "-" (Left : Time; Right : Time) return Duration;

function "<" (Left, Right : Time) return Boolean;
function "<=" (Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function '">=" (Left, Right : Time) return Boolean;

Time_Error : exception;

end Calendar;

7.1.7 Text o

This is the "Text_Io" package of Ada (Chapter 14 of the Ada
Reference Manual).

package Text_Io 1is
use Objects;

tyre File_Type is new Object_Type;
type File_Mode is (In_File, Out_File);

type Count is new Integer;
subtype Positive_Count is Count;

Unbounded : constant Count := 0; -- line and page length

subtype Field is Integer;
subtype Number_Base is Integer;

type Type_Set is (Lower_Case, Upper_Case);

~-- File Management

Page 31




29 October 1990

procedure Create (File :
Mode :
Name :
Form :

procedure Open (File :
Mode :
Name :
Form :

procedure Close (File :
procedure Delete (File :
procedure Reset (File :
Mode :
procedure Reset (File :

function Mode (File :
function Name (File :
function Form (File :

function Is_Open (File :

STARS-RC-00980/001/00

in out File_Type;

in File_Mode := Qut_File;
in String =y

in String 1= M),

in out File_Type;
in File_Mode;

in String;

in String := "");

in out File_Type);
in out File_Type);
in out File_Type;
in File_Mode);

in out File_Type);

in File_Type) return File_Mode;
in File_Type) return String;
in File_Type) return String;

in File_Type) return Boolean;

-- Control of default input and output files

procedure Set_Input (File :
procedure Set_Output (File :

in File_Type);
in File_Type);

function Standard_Input return File_Type;
function Standard_Output return File_Type;

function Current_Input return File_Type;
function Current_QOutput return File_Type;

-- Specification of line and page lengths

procedure Set_Line_Length (File :
procedure Set_Line_Length (To :
procedure Set_Page_Length (File :

procedure Set_Page_Length (To

in File_Type;
To : in Count);
in Count);

in File_Type;
To : in Count);

in Count);

Page 32




249 October 1990 STARS-RC-00930/001/00

function Line_Length (File : in File_Type) return Count;
function Line_Length return Count;

function Page_Length (File : in File_Type) return Count;
function Page_Length return Count;

-- Column, Line, and Page Control

procedure New_Line (File : in File_Type;

Spacing : in Positive_Count := 1);
procedure New_Line (Spacing : in Positive_Count := 1);
procedure Skip_Line (File : in File_Type;

Spacing : in Positive_Count := 1);
procedure Skip_Line (Spacing : in Positive_Count := 1);

function End_Of_Line (File : in File_Type) return Boolean;
function End_0Of_Line return Boolean;

procedure New_Page (File : in File_Type);
procedure New_Page;

procedure Skip_Page (File : in File_Type);
procedure Skip_Page;

function End_Of_Page (File : in File_Type) return Boolean;
function End_0f _Page return Boolean;

function End_Of_File (File : in File_Type) return Boolean;
function End_0Of_File return Boolean;

procedure Set_Col (File : in File_Type;
To : in Positive_Count);
procedure Set_Col (To : in Positive_Count);

procedure Set_Line (File : in File_Type;
To : in Positive_Count);
procedure Set_Line (To : in Positive_Count);

function Col ‘File : in File_Type) return Positive_Count;
function Col return Positive;

Page 33




29 Qctober 1990

function
function

function
function

-- Charac
procedure
procedure
procedure
procedure
-- String
precedure
procedure
procedure
procedure

procedure

procedure
procedure
procedure
-- Instan
Ace_Integer
package A

Defaul
Defaul

proced

Line (File : in File_Type) return Positive_Count;
Line return Positive_Count;
Page (File : in File_Type) return Positive_Count;
Page return Positive_Count;
ter Input-Output
Get (File : in File_Type;
Item : out Character);
Get (Item : out Character);
Put (File : in File_Type;
Item : in Character);
Put (Item : in Character);
Input-Output
Get (File : in File_Type;
Item : out String);
Get (Item : out String);
Put (File : in File_Type;
Item : in String);
Put (Item : in String);
Get_Line (File : in File_Type;
Item : out String;
Last : out Natural);
Get_Line (Item : out String;
Last : out Natural);
Put_Line (File : in File_Type;
Item : in String);
Put_Line (Item : in String);

tiated generic package for Input-Output of Integer Types

-Io is a hand-instantiated Integer_Io package.

ce_Integer_Io is

t_Width : Field = 10;
t.Base : Number_Base := 10;
ure Get (File in File_Type;

Page 34

STARS-RC-00980/001/00




29 October 1990 STARS-RC-00980/001/00

Item : out Integer;
Width : in Field := 0);

procedure Get (Item : out Integer;
Width : in Field := 0);

procedure Put (File : in File_Type;

Item : in Integer;

Width : in Field = Default_Width;

Base : in Number_Base := Default_Base);
procedure Put (Item : in Integer;

Width : in Field = Default_Width;

Base : in Number_Base := Default_Base);

procedure Get (From : in String;
Item : out Integer;
Last : out Positive);

procedure Put (To : out String;
Item : in Integer;
Base : in Number_Base := Default_Base);

end Ace_Integer_Io;

end Text_Io;

7.1.8 Ace_Standard

In addition to the Ada package "Standard", ACE contains an
additional set of objects and operations that are standard for ACE.

package Ace_Standard is
subtype Interpreter_String is Ace_String;
subtype File_System_String is Ace_String;
subtype Data_String is Ace_String;
subtype Host_0Os_String is Ace_String;

type List_Mode is (Both, Specification, Implementation);

type Method_Of_Execution is (Foreground, Background);

Page 35




29 October 1990 STARS-RC-00980/001/00

-- These should remain in Text_Io, since File_Type
-- should be a limited private type.
package Ace_Io 1is

use Text_Io;

procedure Set_Ace_Input (File : in File_Type);
procedure Set_Ace_Output (File : in File_Type);
function Standard_Ace_Input return File_Type;
function Standard_Ace_Dutput return File_Type;
function Current_Ace_Input return File_Type;
function Current_Ace_QOutput return File_Type;

end Ace_Io;

end Ace_Standard;

7.1.9 Strings

Temporary string operations that perform slices.

package Strings is

function Slice (Str : in String;
Start_Pos : in Integer;
Stop_Pos : in Integer) return String;

function Slice (Str : in String;
Pos : in Integer) return Character;

function Length (Str : in String) return Integer;

end Strings;

7.2 Command Language Commands

The following packages provide operations that are similar to the expected commands pro-
vided by most command langunages (i.c., Set_Directory).

Page 36




29 October 1990 STARS-RC-00980/001/00

7.2.1 Ace_Adt

Ace_Adt provides an interface to the interpret in the ACE system.

package Ace_Adt is
use Text_Io;
use Objects;

type Ace_Statement_Database is new Object_Type;

This routine will "compile" a string into the statement
database form.
procedure Compile (Str : in String;
Tree : in out Ace_Statement_Database;
Error : out Boolean);
This routine will "compile" a file into the statement
database form.
procedure Compile (File : in File_Type;
Tree : 1in out Ace_Statement_Database;
Error : out Boolean);

This routine will delete the statement database tree associated
with "tree".

procedure Delete (Tree : in Ace_Statement_Database);
Interpret will "execute"” the tree associated with the parameter
"tree".

procedure Interpret (Tree : in Ace_Statement_Database;
Error : out Boolean);

Interpret will "execute" the value of the Str parameter.
procedure Interpret (Str : in String;
Error : out Boolean);
Interpret will "execute" the contents of a file.
procedure Interpret (File : in File_Type;
Error : out Boolean);
Interpret will "execute" the tree associated with the parameter
"tree".

procedure Interpret (Tree : in Ace_Statement_Database);
Interpret will "execute" the value of the Str parameter.
procedure Interpret (Str : in String);

Interpret will "execute" the contents of a file.
procedure Interpret (File : in File_Type);

Page 37




29 October 1990 STARS-RC-00980,/001/00

Interpret_File will "execute'" the contents of a file.
procedure Interpret_File (File : String);
end Ace_Adt;

7.2.2 Host Os

"Host_0Os" provides the interface to the underlying operating
system on which ACE is executing.

package Host_0Os is

Host provides an escape to the host operating system. The

text of the "Command" parameter will be passed to the command language
processor of the host operating system. Arguments to the command may
be passed, as well as an indication whether ACE should wait for the
completion of the command.

procedure Host (Command : in Host_0Os_String;
Command_Arguments : in Host_0Os_String := "";
How : in Method_of_Execution := Foreground);

end Host_0Os;

7.2.3 Manipulate_Scope

"Manipulate_Scope'" contains routines which allow the scope of

objects to be manipulated within ACE. These routines support the
dynamic removal of existing objects and the availability to "undo" the
Ada "Use" statement.

package Manipulate_Scope is

Procedure "Delete” removes an object from the ACE environment.
This allows objects to be removed and a new defintion of the object to
be reintroduced into ACE. The Form parameter also allows overloaded
names to be uniquely identified.
procedure Delete (Name : in Interpreter_String;
Form : in Interpreter_String := "");

-- (TBD] NOT YET IMPLEMENTED

-- procedure Undelete (Name : in Interpreter_String;
-- Form : in Interpreter_String);

Page 13




29 October 1990 STARS-RC-00980/001/00

-- procedure Undelete (Name : in Interpreter_String);

Procedure '"Deuse'" performs an "undo' for the Ada "Use" statement.
The names given direct visibility are no longer directly visible.
NOTE: an item from another package that was hidden due to USE-ing this
package will not automatically be made visible.
procedure Deuse (Package_Name : in Interpreter_String;
Form : Interpreter_String := "");

end Manipulate_Scope;

7.2.4 Debugger

The debugger package provides routines to symbolically view the
execution of programs.

package Debugger is

This procedure will list the contents of the entire
statement database (i.e., every object declared in the
environment) .
procedure List_Symbol_Table (List_Kind : in List_Mode := Specification);

This procedure will list the object that has been associated
with the "name" parameter. The List_Kind parameter can be
use to list the implementation or specification of the object,
and the Form parameter can be used to identify an overloaded
subprogram.
procedure List (Name : in Interpreter_String;
List_Kind : in List_Mode := Specification;
Form : in Interpreter_String := "");

This procedure will list the specification of the
object that has been associated with the ‘‘name" parameter.
The Form parameter can be used to identify an overloaded
subprogram.
procedure List (Name : in Interpreter_String;
Form : in Interpreter_String := "");

List_Breakpoints will list all the break points that are
currently active.
procedure List_Breakpoints;

Page 39




29 October 1990 STARS-RC-00930/001/00

Break will temporarily suspend execution for debugging.
procedure Break;

Continue will begin execution after a Break statement was encountered
procedure Continue;

Step will execute a statement after a break statement was encountered
procedure Step (Count : Positive := 1);

Set_Break will place a break point on the appropriate Statement_Number
procedure Set_Break (Statement_Number : in Integer);

Set_Break will place a break point on the appropriate Subprogram
procedure Set_Break (Name : in Interpreter_String);

Set_Break will place a break point on the current Statement
procedure Set_Break;

Clear_Break will remove a break point on the appropriate Statement_Number
procedure Clear_Break (Statement_Number : in Integer);

Clear_Break will remove a break point on the appropriate Subprogram
procedure Clear _Break (Name : in Interpreter_String);

Clear_Break will remove a break point on the current statement
procedure Clear_Break;

Display will list the current statement

procedure Display (Statement_Number : in Integer);
Display will list the first statement associated with a
subprogram upon which a breakpoint may be set.

procedure Display (Name : in Interpreter_String);
Display will list the current statement.

procedure Display;

Display_Current_Statement will list the current statement.
procedure Display_Current_Statement;

Display_Next will list the next executable statement
procedure Display_Next (Statement_Number : in Integer);

Display_Next will list the next executable statement
procedure Display_Next;

Display_Previcus will list the previously executed statement
procedure Display_Previous (Statement_Number : in Integer);

Display_Previous will list the previously executed statement
procedure Display_Previous;

Page 10




29 October 1990 STARS-RC-00980/001/00

end Debugger;

7.2.5 File_System

This package is the basic definition of the ACE file system.

All other file system packages will be derived from this one (i.e.,
they will use this package--directly or indirectly--and derive types
from the basic type "File_Object").

package File_System is
use Objects;
use Text_Io;

-- File_Object is the basic representation of an Object (or File) in
~- ACE.

type File_Object is new File_Type;
type Ubject_Mode is (In_Object, Out_Object);

-- by every derived type of File_0Object.

~- (Other commands can be declared

~- Using this technique we can define the entire file
~-- system for ACE as Ada declarations.

Generate a temporary name.
function Temporary Name return String;

Thi: procedure copies the contents from one file to the other file.
procedure Copy (From : in File_Object;
To : in File_Object);

This procedure copies the contents from one file to the other file.
procedure Copy (From : in File_System_String;

To : in File_System_String);

This procedure deletes an object from the file system.
procedure Delete_File (0Obj : in File_System_String);

This procedure changes the name associated with a file.
procedure Rename (From : in File_Object;

To : in File_Object);

This procedure changes the name associated with a file.

Page 1




29 October 1990 STARS-RC-00980/001/00

procedure Rename (From : in File_System_String;
To : in File_System_String);

This function returns the boolean value "True" if a file exists
within the current working directory.
function Exists (Obj : in File_System_String) return Boolean;

This procedure creates a new persistent file object with the
specified name. If no name is given, an arbitrary name will be

generated.
procedure Create (Obj : in out File_Object;
Mode : in Object_Mode = Out_Object;
Name : in File_System_String := "";
Form : in Host_Os_String 1= "),

This procedure associates a file object with the persistent
object having the specified name.
procedure Open (0Obj : in out File_Object;
Mode : in Object_Mode;
Name : in File_System_String;
Form : in Host_0s_String := "");

This procedure resets the specified file object, possibly
changing the mode associated with it.
procedure Reset (File : in out File_Object;
Mode : in Object_Mode);

This procedure resets the specified file object.
procedure Reset (File : in out File_Object);

end File_System;

7.2.6 Directory_Objects

Directory_Objects provides operations on directories

package Directory_Objects is
use File_Systenm;

-- There needs to be a universal naming scheme for identifying
-- directories (e.g., "..").

type Directory_Object is new File_Object;

Page 42




29 October 1990 STARS-RC-00980/001/00

This procedure creates a new directory object with the specified
name. If a name 1s not given, an arbitrary name will be generated
procedure Create (Directory : in out Directory_Object;
Name : in File_System_String;
Form : in Host_0s_String := "");

This procedure associates an object with the directory object
procedure Open (Directory : in out Directory_Object;
Name : in File_System_String;
Form : in Host_0s_String := "");

This procedure disassociates an object from the directory object
procedure Close (Directory : in out Directory_Object);

This function returns the name of the specified directury object
function Name (File : in Directory_Object) return String;

This function returns the form string of the specified directory object
function Form (File : in Directory_Object) return String;

This function returns the file status of the specified directory object
function Is_Open (File : in Directory_Object) return Boolean;

This function returns the user’s home directory
function Home_Directory return Directory_Object;

This function returns the user’s current working directory
function Current_Directory return Directory_Object;

This procedure lists the contents of the specified directory object
procedure List (Directory : in Directory_Object := Current_Directory);

This procedure changes the current working directory to the
specified directory object, or the specified file system directory
procedure Set_Directory (Directory : in Directory_Object := Home_Directory);
This procedure changes the current working directory to the
specified directory object, or the specified file system directory
procedure Set_Directory (Directory : in File_System_String);

This procedure displays the current working directory
procedure Put_Current_Directory;

end Directory_Objects;

Page 13




29 October 1990 STARS-RC-00930/001/00

7.2.7 Text_Objects

Text _Objects provides operations on text files.

package Text_QObjects is
use File_System;

type Text_Object is new File_0Object;
type History_Mode is (New_File, 0ld_File);

This procedure displays the contents of a text file, either by
specifying the text object
procedure List (Text : in Text_Object);

This procedure displays the contents of a text file, either uy
specifying the file system name of the text file

procedure List_File (Text : in File_System_String);

-- This routine should be List not List_File,

~-- but until we have expanded names this will have

-- to do.

This procedure invokes the system editor upon the specified text file
procedure Edit (Text : in out Text_Object;
How : in Method_Of_Execution := Foreground);

This procedure invokes the system editor upon the specified text file

procedure Edit_File (Text : in File_System_String;
History : in History_Mode := 0ld_File;
How : in Method_Of _Execution := Foreground);

-~ These routines should be Edit not Edit_File,
-- but until we have expanded names this will have
-- to do.

This procedure will print the specified file on the standard
default printer

procedure Print (Text : in Text_Object);
This procedure will print the specified file on the standard
default printer

procedure Print (Text : in File_System_String);

Ttis procedure will put the textual Ada code that is associated
with the ACE persistent object (Interpreter_String) into the specified
file name.

procedure Put_File (Object : in Interpreter_String;

Page 1




29 October 1990 STARS-RC-00980/001/00

Form : in Interpreter_String;
File_Name : in File_System_String);
This procedure will put the textual Ada code that 1s associated
with the ACE persistent object (Interpreter_String) into
a default file that will have a file name identical to the name of
the ACE object.
procedure Put_File (Object : in Interpreter_String;
Form : in Interpreter_String := "");

This procedure will cause ACE to read textual input from the

specified file, rather than from Ace_Standard_Input (see

Ace_Standard.Ace_Io package), until the end of file is reached.
procedure Get_File (File_Name : in File_System_String);

end Text_Objects;

7.2.8 Program_Objects

Program_Objects provides operations for text files that contain
Ada code.

package Program _0Objects is
use File_System;
use Text_0Objects;
use Ace_Adt;

"Program_Text" represents files that contain Ada code.
type Program _Text is new Text_Object;

"Format_Text" represents files that are formatted, such as
program listings.
type Format_Text is new Text_Object;

"Data_Text" can represent any ASCII file.
type Data_Text is new Text_Object;

This procedure submits the specified program text to an Ada
compiler with the Form string being passed to the Ada compiler.
procedure Compile (Program : in Program_Text;
Form : in Host_0Os_String := "");
This procedure submits the specified program text to an Ada
compiler and linker, identifying the name of the main unit and the
executable code file.

Page {5




29 October 1990 STARS-RC-00980/001/00

procedure Compile (Program : 1in Program_Text;
Main_Unit : in Data_String;
Host_Binary_Name : in File_System_String);
This procedure submits the specified file containing Ada co’=
to an Ada compiler
procedure Compile (Program : in File_System_String;
Form : in Data_String := "");
This procedure submits the specified program text to an *la
compiler and linker, identifying the name of the main unit and
executable code file.
procedure Compile (Program : in File_System_String;
Main_Unit : 1n Data_String;
Host_Binary_Name : in File_System_String);

This procedure edits the ACE item ("Name"), where the Form parameter
is used to uniquely identify overloaded names, such as
subprograms, with the ACE item also being stored in the program
text file denoted by "Object". The item will be reinterpreted by
the ACLI.
procedure Edit_And_Interpret (Name : in Interpreter_String;
Form : in Interpreter_String := "";
Object : in out Program_Text);
This procedure edits the ACE item ("Name"), where the Form parameter
may be used to uniquely identify overloaded names, such as
subprograms. The item will then be reinterpreted by the ACLI.
procedure Edit_And_Interpret (Name : in Interpreter_String;
Form : in Interpreter_String := "");

end Program_QObjects;

7.2.9 Program_Text_Objects

Program_Text_Objects provides operations on program specs and bodies
package Program_Text_Objects is
use Program_(Objects;

"Spec_Program" represents files that contain Ada specifications.
type Spec_Program is new Program_Text;

"Body_Program" represents files that contain Ada implementations.
type Body_Program is new Program_Text;

end Program_Text_0Objects;

Page 16




29 October 1990 STARS-RC-00980/001/00

7.2.10 Binary_Objects

Binary_Objects provides operations on executable files.

package Binary_Objects is
use File_Systenm;

Binary_Object represents files that would contain any data such
as program execuatbles, raster images, etc.
type Binary_Object is new File_0Object;

Program_Binary 1s the compiled version of a Program_Text type.
type Program_Binary is new Binary_Object;

Format_Binary is formatted output that contains non-ASCII data,
such as raster images.
type Format_Binary 1is new Binary_QObject;

Data_Binary is any file that contains non-ASCII data and 1is
neither a Program_Binary or Format_Binary file.
type Data_Binary 1s new Binary_0Object;

This procedure has the host operating system execute the
specified program binary object.

procedure Execute (Program : in Program_Binary;
Command_Line_Arguments : in Data_String := "");

procedure Execute (Program : in File_System_String;
Command_Line_Arguments : in Data_String := "");

end Binary_0Objects;

7.2.11 Program_Units

Package "Program_Units" contains the defintion of ACE compilation
units. Packages and subprograms are currently supported within ACE
compilations units. This package provides the definition of the
creation, deletion, open, close, mode, and is_open operations.

package Program_Units is
use Objects;

type Package_Type is new Object_Type;

type Subprogram_Type is new Object_Type;
type Program_Urit_Mode is (In_Prog_Unit, Out_Prog_Unit);

Page 17




29 October 1990 STARS-RC-00980/001/00

procedure Create (Ace_Package : in out Package_Type;

Mode : in Program_Unit_Mode := Out_Prog_Unit;
Name : in Interpreter_String := "";
Form : in Interpreter_String := "");

--procedure Create (Ace_Subprogram : in out Subprogram_ Type;

-- Mode : in Program_Unit_Mode := Qut_Prog_Unit;
- Name : in Interpreter_String := "";
-- Form : in Interpreter_String := "");

Procedure "Open'" associates an existing package with a package object
procedure Open (Ace_Package : in out Package_Type;

Mode : in Program_Unit_Mode;
Name : in Interpreter_String;
Form . : in Interpreter_String := "");

Procedure "Open' associates an existing program with a
subprogram object
procedure Open (Ace_Subprogram : in out Subprogram_Type;

Mode : in Program_Unit_Mode;
Name : in Interpreter_String;
Form : in Interpreter_String := "");

This procedure disassociates a package object with a package
resident within ACE
procedure Close (Ace_Package : in out Package_Type);

This procedure disassociates a subprogram object with a package
resident within ACE
procedure Close (Ace_Subprogram : in out Subprogram_Type);

This procedure removes the specified package object from the
name space of ACE.
procedure Delete (Ace_Package : in out Package_Type);

This procedure removes the specified subprogram object from the
name space of ACE.
procedure Delete (Ace_Subprogram : in out Subprogram_Type) ;

This function returns the mode of the specified package object
function Mode (Ace_Package : in Package_Type) return Program_Unit_Mode;

Page 48




29 October 1990 ST/ RS-RC-00930,001,00

This function returns the mode of the specified subprogram object
function Mode (Ace_Subprogram : in Subprogram_Type)
return Program_Unit_Mode;

This function returns the name of the specified package object
function Name (Ace_Package : in Package_Type) return Interpreter_Stri: -;

This function returns the name of the specified subprogram object
function Name
(Ace_Subprogram : in Subprogram_Type) return Interpreter_String;

This function returns the form of the specified package object.
The form 1s the statement number associated with the package.
function Form (Ace_Package : in Package_Type) return Interpreter_String;

This function returns the form of the specified subprogram object.
The form is the statement number associated with the SubProgram.
function Form
(Ace_Subprogram : in Subprogram_Type) return Interpreter_String;

This function returns the open status of the specified package object
function Is_Open (Ace_Package : in Package_Type) return Boolean;

This function returns the open status of the specified

subprogram object
function Is_Open (Ace_Subprogram : in Subprogram_Type) return Boolean;

This procedure performs an '"undo" of the Ada "use" statement.
The names given direct visibility by the "use" stavement will no
longer be directly visible.
note: An item from another package that was hidden due to using
the package will not automatically be made visible.
procedure Deuse (Ace_Package : in Package_Type) ;

The location type specifies whether the subprogram is only to
be moved into the package specification or into the package body.
type Location_Type is (In_Spec, In_Body);

The visibility type specifies whether the the subprogram object

is to be visible (moved into the visible portion of the package

spec) or hidden (moved into the private portion of the package spec).
type Visibility _Type is (Visible, Hidden);

"Put" will put the textual Ada code that is associated
with the ACE persistent object (Subprogram_Item) into

Page 19




29 October 1990 STARS-RC-00930/001/00

the specified package.
procedure Put (Subprogram_Item : in Subprogram_Type;

Into_Package : 1in Package_Type;
Location : in Location_Type;
Visibility : in Visibility_Type);

"List" displays the package object. The "List_Method" controls the
portion of the package listed: spec, body, or both.
procedure List (Ace_Package : in Package_Type;
List_Method : in List_Mode := Both);

"List" displays the subprogram object. The "List_Method" controls the
portion of the subprogram listed: spec, body, or both.
procedure List (Ace_Subprogram : in Subprogram_Type;
List_Method : in List_Mode := Both);

end Program_Units;

7.2.12 Help_Adt

The Help_Adt provides operations to aid the user. Type
"Help;" to learn more about the help subprogram.

package Help_Adt 1is

The Help command provides the user with on-line assistance for
declared objects in ACE: packages, subprograms, and types.

These objects may be associated with help comments, which are
denoted by the PDL-like "--?". When invoked, this command displays
the text of the help comment associated with the object (NAME).

The form parameter is used to uniquely identify overloaded names.

procedure Help (Name : Interpreter_String := "Help";
Form : Interpreter_String := "");

end Help_Adt;

7.2.13 Object_Lister

Object_Lister provides operations that allow users to browse the
defined constructs in ACE.

package Object_Lister is

Page 50




29 October 1990 STARS-RC-00980/001/00

‘ type Object_Declarations 1is
(Any,
Objs,
Type_Marks,
Types, .
Subtypes,
Subprograms,
Packages,
Procedures,
Functions,
Labels);

procedure List will display the names of environment objects that
are currently visible. One can focus the report on a particular object
procedure List (Object_Type : Object_Declaratioms;
Specifier : Interpreter_String := "");

end Object_Lister;

7.3 Key Bindings

. The following packages provide operations to bind arbitrary keystrokes to editing and history
functions.

7.3.1 Key_ Bindings

Key_Bindings provides operations to bind arbitrary keystrokes
to editing and history functionms.

package Key_Bindings 1is

type Commands is
(Error,
Unbound,
Line_Separator,
Interpret_String,
History_Back,
History_Forward,
Move_Left,
Move_Right,
Beginning 0f Line,

' End_0f_Line,

Start_0Of _History,

Page 51




29 October 1990 STARS-RC-00980/001/00

End_0f _History,

Delete,

Delete_This_Char,

Show_History,

Set_History_Limit,
Show_History_Limit,

Kill_Line,

Quoted_Insert,
Refresh_Current_Line,
Refresh_Current_Line_and_Prompt,
Rewrite_Current_Line,
Rewrite_Current_Line_and_Prompt,
Get_Current_Line,

Get _Current_Character,
Get_Current_Column,
Insert_String,

Self_Insert);

Bind an input string to a history or editing command;
available commands are:

Unbound (used to remove an existing binding)

Line_Separator End-of-line symbol for input

Interpret_String Interpret arbitrary Ada code

History_Back Show previous command

History_Forward Show next command

Move_Left Move cursor left (backspace)

Move_Right , Move cursor right

Beginning_0f Line Move cursor to beginning of line

Start_Of_History Show oldest command

End_Of History Show most recent command

Show_History Show complete command history

Delete Delete character to left of cursor

Delete_This_Char Delete character under cursor

Self_Insert Insert character corresponding tc keystroke

Show_History_Limit Show the number of lines being saved in history

Set _History_Limit Change the number of lines being saved in history

Kill _Line Delete the entire line

Quoted_Insert For the next character received, do not look for
a binding, just insert it into the line

Refresh_Current_Line refre.h the portion of the line following the prompt

Refresh_Current_Line_And_Prompt refresh the entire line

Rewrite_Current_Line replace the current line with the argument

Rewrite_Current_Line_And_Prompt write the prompt, followed by the argument
on the next physical line

Page 52




29 QOctober 1990

Q Get_Current_Line
Get _Current_Character
Get_Current_Column
Insert_String

0

available commands are:
Unbound
Line_Separator
Interpret_String
History_Back
History_Forward

Move_Left
Move_Right
Beginning_0f Line
Start_Of History
‘ End_Of _History
Show_History
Delete
Delete_This_Char
Self_Insert

Show_History_Limit
Set_History_Limit
Kill_Line
Quoted_Insert

Refresh_Current_Line
Refresh_Current_Line_And_
Rewrite_Current_Line
Rewrite_Current_Line_And_

Get_Current_Line
Get_Current_Character

Get_Current_Column
Insert _String

procedure Make_Binding (C

STARS-RC-00930/001/00

argument will hold the current input

argument will hold the current character, or
ascii.nul if the cursor 1is at the end of the line
argument 1s the 1-based position of the cursor

insert argument into current line at current position

procedure Make_Binding (Char_Seq : in String;
Binding : in Commands;

ptional_String : in String := "y

Bind an input character to a history or editing command;

(used to remove an existing binding)

End-of-line symbol for input

Interpret arbitrary Ada code

Show previous command

Show next command

Move cursor left (backspace)

Move cursor right

Move cursor to beginning of line

Show oldest command

Show most recent command

Show complete command history

Delete character to left of cursor

Delete character under cursor

Insert character corresponding to keystroke

Show the number of lines being saved in history
Change the number of lines being saved in history
Delete the entire line

For the next character received, do not look for
a binding, just insert it into the line

refresh the portion of the line following the prompt
Prompt refresh the entire line

replace the current line with the argument

Prompt write the prompt, followed by the argument
on the next physical line

argument will hold the current input

argument will hold the current character, or
ascii.nul if the cursor is at the end of the line
argument is the 1-based position of the cursor
insert argument into current line at current position

: in Character;

Page 53




29 October 1990 ) STARS-RC-00980/001/00

‘ Binding : in Commands;
Optional_String : in String := "'");

-- Commands

String is the name of a procedure to be invoked
procedure Interpret_String (Str : String);

Display previous command, that is, the next oldest command

from the current history position; if this position is the

top of the command history, this procedure does nothing
procedure History_Back;

Display next command, that is, the next most recent command

from the current history position; if this position is the

bottom of the command history, this procedure does nothing
procedure History_Forward;

Move cursor left (i.e., backspace); if the cursor is already
. at the beginning of the input line, this procedure does nothing
procedure Do_Move_Left;

Move cursor right; this procedure will only move the cursor
as far as one position to the right of the last input character

procedure Do_Move_Right;

Move cursor to beginning of (input) line
procedure Do_Goto_Beg_0f_Line;

Move the cursor to the end of the line;
procedure Do_Goto_End_Of_Line;

Show oldest command in the command history
procedure Do_Goto_Start_Of_History;

Show most recent command in the command history
procedure Do_Goto_End_0f _History;

Show complete command history
‘ procedure Do_Show_History;

Page 54




29 October 1990 STARS-RC-00980,/001/00

Delete character to left of cursor
procedure Do_Delete;

Delete character under cursor
procedure Do_Delete_This_Char;

Insert character corresponding to keystroke;
procedure Do_Self_Insert;

Delete the entire line
procedure Do_Kill_Line;

Insert a string passed in Str;
procedure Do_Insert_String (Str : String);

Show the user the number of lines saved for the command history
procedure Do_Show_History_Limit;

Reset the number of lines of command history to be saved (based on user input)
procedure Do_Set_History_Limit;

Insert the next character typed into the current line as is
procedure Do_Quoted_Insert;

clear, then rewrite the current line, not including the prompt
procedure Do_Refresh_Current_Line;

(cursor should already be positioned at the beginning of a line) writes
out the prompt and current line;
procedure Do_Refresh_Current_Line_And_Prompt;

kill the current line and replace it with Line, not including the prompt;
procedure Do_Rewrite_Current_Line( Line : String);

(cursor should already be positioned at the beginning of a line) kills the
current line and replaces it with Line, writing out both the prompt and Line
procedure Do_Rewrite_Current_Line_And_Prompt ( Line : String);

returns the current line of input
procedure Do_Get_Current_Line (Line : out String; Length : out Natural);

returns the character on which the cursor is positioned
function Do_Get_Current_Character return Character;

Page 55




29 October 1990 ) STARS-RC-00980/001/00

returns the 1-based number of the column the cursor is in
function Do_Get_Current_Column return Natural;

end Key_Bindings;

7.4 Windowing Commands

The following packages provide a simplified interface to a small subset of the X Window
System.

7.4.1 Window_Objects

This package defines the objects that are associated with the
Windows abstract data type.

package Window_0Objects is
use Objects;
type Window_Type is new Object_Type;

type Coordinate 1is new Integer;
type Pixels is new Integer;

end Window_Objects;

7.4.2 AceX_Window_System

Package "Ace_X_Window_System" defines the ACE abstraction to the

X window system. This package is intended for experienced windowing
system programmers. X Window system version i1, release 2 is the
supported version.

package Ace_X_Window_System is
use Window_0Objects;
This procedure creates a window at the specified position with
the given size and associates the window with a window object.
procedure Create_Window

(Window : in out Window_Type;
Horizontal_Position : in Coordinate;

Page 56




29 October 1990 STARS-RC-00980/001/00

Vertical_Position : in Coordinate;
Horizontal_Size : in Pixels;
Vertical_Size : 1n Pixels);

This procedure destroys the window associated with the window object.
procedure Destroy_Window (Window : in out Window_Type);

This procedure clears the window object by painting the window
with the window’s background color.
procedure Clear_Window (Window : in out Window_Type);

end Ace_X_Window_System;

7.4.3 Ace.User X_Window_System

This package defines a simplified ACE windows system

abstraction to the X window system. The operation nomenclature within
this package adheres to Ada paradigms, rather than to the X window
system paradigms. This package is intended for novices to windowing
systems and novices to the X window system. X Window System version
11, release 3 is the supported version.

package Ace_User_X_Window_System is

use Window_Objects;
use Ace_X_Window_System;

This procedure creates a window at the specified position with
the given size and associates the window with a window object.

procedure Create (Window : in out Window_Type;
Horizontal_Position : in Coordinate;
Vertical_Position : in Coordinate;
Horizontal_Size : in Pixels;
Vertical_Size : in Pixels);

This procedure destroys the window associated with the window object.
procedure Delete (Window : in out Window_Type);

This procedure clears the window object by painting the window
with the window’s background color.

procedure Reset (Window : in out Window_Type);

end Ace_User_X_Window_System;

1
-1

Page :




29 October 1990 STARS-RC-00980/001/00

7.4.4 Window_Draw_Routines

"Window_Draw_Routines" provides a simple set of drawing

operations that may be performed in window objects. The routines
rely upon the X window system and therefore should only be use when X
is running.

package Window_Draw_Routines is

use Window_0Objects;
use Ace_X_Window_System;

"Draw_Line" draws a line within the window object from the
coordinates (x1, y1) to (x2, y2)
procedure Draw_Line (Window : in Window_Type;
X1, Y1, X2, Y2 : in Coordinate);

"Draw_Dashed_Line'" draws a dashed line within the window object

from the coordinates (x1, y1) to (x2, y2)
procedure Draw_Dashed_Line (Window : in Window_Type;
X1, Y1, X2, Y2 : in Coordinate);

"Draw_Text" draws the text string within the current window
object left justified from the coordinate (x, y)
procedure Draw_Text (Window : in Window_Type;
X, Y : in Coordinate;
Text : in String);

"Draw_Rectangle'" draws a rectangle within the window object with
the upper left corner positioned at coordinate (X, Y) and of the
specified width and height in pixels
procedure Draw_Rectangle (Window : in Window_Type;
X, Y : in Coordinate;
Width, Height : in Pixels);

"Draw_Rectangle_Builtin" draws a rectangle within the window object with
the upper left corner positioned at coordinate (X, Y) and of the
specified width and height in pixels
procedure Draw_Rectangle_Builtin
(Window : in Window_Type;
X, Y : in Coordinate;
Width, Height : in Pixels);

end Window_Draw_Routines;

Page 58




29 October 1990 STARS-RC-00980/001/00

7.5 CAIS-A Commands

The following packages provide ACE’s interface to the underlying CAIS-A system.

7.5.1 CAIS_Routines

Package CAIS_Routines provides operations to view and move around
the CAIS-A node model, to invoke and spawn CAIS-A processes,
and to build string representations of CAIS-A argument lists.

package Cais_Routines is

type Cais_Node_Kinds is
(Structural_Nodes_Only,
File_Nodes_Only,
Process_Nodes_Only,
All_But_Structural_Nodes,
All_But_File_Nodes,
All_But_Process_Nodes,
All_Cais_Node_Kinds);

type Cais_Relationship_Kinds is
(Primary_Relationships,
Secondary_Relationships,
Both_Relationship_Kinds);

subtype Cais_Arg_List_Str_Rep is Ace_String;

Procedure spawn_process will use the CAIS to create a process
node in the CAIS node model and start the process running
in the background.
procedure Spawn_Process (Node_Path : in Host_0Os_String;
Parameters : in Host_0s_String := "");

Procedure invoke_process will use the CAIS to create a process
node in the CAIS node model and execute the process, returning
results in the Results parameter.

procedure Invoke_Process (Node_Path : in Host_0Os_String;
Parameters : in Host_0s_String := "";
Results : out Host_0s_String);

Procedure set_current_CAIS_node will change the CURRENT_NODE in

Page 59




29 October 1990 STARS-RC-00980/001/00

the CAIS node model to the node whose path name is passed in.
procedure Set_Current_Cais_Node (Node_Path : in File_System_String);

Procedure current_CAIS_node returns a string representation
of the primary pathname of the CURRENT_NODE in the CAIS-A node
model.

procedure Put_Current_Cais_Node;

Procedure put_CAIS_node_relationships displays some or all of the
relationships eranating from the CURRENT_NODE in the CAIS node model
procedure Put_Cais_Node_Relationships
(Relation : in Host_0Os_String p= M
Key : in Host_0s_String 1= M
Rel_Kinds : in Cais_Relationship_Kinds := Both_Relationship_Kinds;
Node_Kinds : in Cais_Node_Kinds All_But_Process_Nodes);

Procedure put_CAIS_file_node_host_name displays the host
operating system’s file name for the CAIS-A file node found
at node model pathname passed in. This file name is the file
name of the file within the CONTENTS directory of the CAIS-A database.
procedure Put_Cais_File_Node_Host_Name
(Node_Path : in File_System_String := "’CURRENT_NODE");

Function Create_Cais_Argument_List builds a string representation
of a CAIS argument list using the string item passed in as the sole
item in the returned CAIS argument list string representation.
function Create_Cais_Argument_List (Str : in Ace_String) return
Cais_Arg_List_Str_Rep;

Function Append_To CAIS_Arg_List appends the string item passed in
to the CAIS argument list string representation also passed, and
returns the resulting string representation of a CAIS list.
function Append_To_Cais_Arg_List (List : in Cais_Arg_List_Str_Rep;
Str : in Ace_String) return
Cais_Arg_List_Str_Rep;

Function Prefix_To_CAIS_Arg_List prefixes the string item passed in
to the CAIS argument list string representation also passed, and
returns the resulting string representation of a CAIS list.
function Prefix_To_Cais_Arg_List (List : in Cais_Arg_List_Str_Rep;
Str : in Ace_String) return
Cais_Arg_List_Str_Rep;

end Cais_Routines;

Page 60




29 October 1990 STARS-RC-00930/001/00

7.5.2 STARS_Tools

Package STARS_Tools contains the interfaces to the Unisys Q task
tools integrated with the ACE/CAIS-A Baseline SEE. These include
the Q13 Ada source code metrics tools, the Q14 Diana IDL tools,
and the Q10 test tool suite.

package Stars_Tools is

Procedure Check_Style invokes the modified Q13 Style Checker.
The tool takes its input and output files as parameters.
If no input file is provided, the user is prompted for its name.
Output defaults to a file named "Style_Report."
procedure Check_Style (File_To_Check : in File_System_String := "“;

Flaws_File : in File_System_String :=
“"Flaws_Report";

Style_File : in File_System_String :=
"Style_Report”;

How : in Method_of_Execution :=
Foreground) ;

Procedure Count_Features invokes the (13 feature counting tool.
The tool takes its input and output files as parameters.
If no input file 1s provided, the user is prompted for its name.
Output defaults to a file named "Features_Report."
procedure Count_Features (File_To_Count : in File_System_String :
Results_File : in File_System_String :
"Features_Report";
How : in Method_of_Execution :=
Foreground) ;

"t ,
»

Procedure Count_Statements invokes the Q13 statement counting tool.
The tool takes its input and output files as parameters.
If no input file is provided, the user is prompted for its name.
Output defaults to a file named "Statements_Report."
procedure Count_Statements (File_To_Count : in File_System_String := "";
Results_File : in File_System_String :

i

"Statements_Report";
How : in Method_of_Execution :=
Foreground) ;

Procedure Measure_Mccabe_Complexity invokes the Q13 tool which

calculates the McCabe Complexity for a source file.
The tool takes its input and output files as parameters.

Pawge 61




29 October 1990 STARS-RC-00980/001/00

If no input file is provided, the user is prompted for its name.
Output defaults to a file named '"Mccabe_Report."
procedure Measure_Mccabe_Complexity
(File_To_Measure : in File_System_String := "";
Results_File : in File_System_String := '"Mccabe_Report";
How : in Method_of_Execution := Foreground);

Procedure Diana_Browser invokes the Q14 Diana IDL Library Unit Browser.
It takes the name of tle unit to browse as an argument, and an optiomal
"-b" which has the Browser display bodies as well as specifications.
procedure Diana_Browser (Unit : in Ace_String;
Options : in Ace_String := "");

Procedure Diana_Front_End invokes the Diana IDL Front End Processor.
It takes an Ada source filename to process as an argument.
procedure Diana_Front_End (Source : File System_String);

Procedure Diana_Mklib creates a new Diana unit library.
procedure Diana_Mklib;

Procedure Diana_Rmlib removes a Diana unit library.
procedure Diana_Rmlib;

Procedure Diana_Cleanlib resets a Diana unit library.
procedure Diana_Cleanlib;

Procedure Diana_Make_Predefined_Env builds the Diana IDL predefined
environment.
procedure Diana_Make_Predefined_Env;

Procedure Diana_Create_Predefined_Env builds the Diana IDL
predefined environment after the IDL has been modified.
This procedure should omnly be run once.

procedure Diana_Create_Predefined_Env;

Procedure Test_Case_Generator invokes the Q10 test case generator.
procedure Test_Case_Generator;

Procedure Test_Results_Analyzer invokes the Q10 tool which analyzes
the test case results.

procedure Test_Results_Analyzer;

Procedure Test_Procedures_Generator invokes the Q10 tool which
generates testing procedures.

Page 62




29 October 1990 STARS-RC-00980/001/00

procedure Test_Procedures_Generator;

Procedure Test_Comparator invokes the Q10 test comparator.
procedure Test_Comparator;

Procedure Test_Updater invokes the Q10 test updater.
procedure Test_Updater;

Procedure Set _Up invokes the Q10 routine to set up the environment.
procedure Set_Up;

end Stars_Tools;

7.6 CPU Timing Package

The following packages provide routines to measure and report CPU use.

7.6.1 Cpu_Time

Cpu_Time defines operations to determine the amount of CPU time
used during a specific period.
package Cpu_Time is

type Time is new Integer;

Clock returns the current CPU time
function Clock return Time;

Difference will return the amount of time between two clock points.
function Difference (Stop_Time, Start_Time : Time) return Time;

Put Time will print the time out in a reasonable manner.
procedure Put_Time (A_Time : in Time);

end Cpu_Time;
7.7 Xt Toolkit Interface

The tollowing packages provide an interface to a subset of the Xt Toolkit, which is a set of
procedures for building applications of the X Window System.

Page 63




29 October 1990 STARS-RC-00980/001/00

. 7.7.1 X_Windows

with Objects;

Package X_Windows provides declarations of the basic X library
data types needed to use the ACE interface to the Xt toolkit.
The X windows library procedures supported by ACE will also be
found here.
Package X_Windows is

use Objects;

type Drawable is new Object_Type;
type Context is new Object_Type; -~

type Visual is new Object_Type;
type Screen is new Object_Type;
type Display is new Object_Type;

subtype Window is Drawable;
subtyp~ Pixmap 1is Drawable;

type Pixels is new Integer;
. subtype Coordinate is Pixels;
type Caddr_T is new System.Address;
type String_Pointer is new Object_Type;
type String_Pointer_Array is new Object_Type;
type String List 1is new 0Object_Type; :
-- type String_Pointer is access String;
-- type String_Pointer_Array is array (Natural range <>) of String_Pointer;
-- type String_List 1is access String_Pointer_Array;
package Fonts 1is
type Font is new Object_Type;
type Font_Direction is (Left_To_Right, Right_To_Left);

type Font_Record is new Object_Type;

Returns the Ascent field of its parameter.
. function Ascent (F : in Font_Record) return Pixels;
pragma Builtin (Ascent, 2101);

Page 64




29 October 1990 STARS-RC-00930/001,/00

Returns the Descent field of its parameter.
function Descent (F : in Font_Record) return Pixels;
pragma Builtin (Descent, 2102);

Returns the width of its Text parameter, in the
font specified by the Font_Info parameter.
function Text_Width (Font_Info : in Font_Record;
Text : in String) return Pixels;
pragma Builtin (Text_Width, 2103);
end Fonts;

type Gravity_Type is
(Forget_Gravity,
Northwest_Gravity,
North_Gravity,
Northeast_Gravity,
West_Gravity,
Center_Gravity,
East_Gravity,
Southwest_Gravity,
South_Gravity,
Southeast_Gravity,
Static_Gravity);

package Events is
type Event is new Object_Type;
end Events;
package Resource_Manager 1is
type Xrm_Option_Desc_List is new Object_Type;

end Resource_Manager;
end X_Windows;

7.7.2 Renamed Xlib_Types

with X_Windows;
Package Renamed_X1lib_Types defines the connection between some
type names used by Xt routines and the equivalent type names

in the basic X iibary.

package Renamed_X1ib_Types is

Page 65




29 October 1990

STARS-RC-00950/001/00

subtype Pixel is X_Windows.Pixels;

subtype Xt_String is X_Windows.String_Pointer;

subtype Xt_String_List is X_Windows.String_Pointer_Array;
subtype Xt_String_List_Ptr 1s X_Windows.String_Llist;
subtype Argv_Type is X_Windows.String_List;

end Renamed_X1ib_Types;

7.7.3 Intrinsics

with Objects;

with System; —
with Renamed_X1ib_Types;

with X_Windows;

The package Intrinsics contains the type declarations common to

all Xt toolkit routines.
package Intrinsics 1is
use Objects;

type Cardinal is new Integer;

type Short_Cardinal is new Integer;

~~ type Cardinal is range 0 ..

(2 *x 31 - 1);

-~ type Short_Cardinal is range 0 .. (2 *x 16 - 1);

subtype Position is X_Windows.Pixels;
subtype Cimension is Short_Cardinal;

type Widget is new System.Address;
type Widget_Class is new System.Address;

function Null_Widget return Widget;
function Null_Widget_Class return Widget_Class;

function Null_Caddr_T return X_Windows.Caddr_T;

type Xt_App_Context is new System.Address,

package Xt_Ancillary_Types is

subtype Xt_Arg_Val is X_Windows.Caddr_T;
type Xt_Arg is new Object_Type;

Page 66

o




29 October 1990 STARS-RC-00980/001/00

-- type Xt_Arg is

-- record

-~ Name : Renamed_Xlib_Types.Xt_String;
-- Value : Xt_Arg_Val;

-- end record;

end Xt_Ancillary_Types;

end Intrinsics;

7.7.4 Widget_Package

with Objects;

with System;

with Intrinsics;

with X_Windows;

with Renamed_X1ib_Types;

This package offers a sample selection of Xt toolkit procedures.
For detailed documentation on these routines, the user should
consult Xt documentation. The names of the toolkit procedures,
as given in the Xt documentation are the same as the names used
here, but with the underscores removed.

package Vidget_Package is
use Ob ects;

function Null_Xrm_Option_List
return X_Windows.Resource _Manager.Xrm_Option_Desc_List;

pragma Builtin (Null_Xrm_Option_List, 2201);

-~ ty 2 Xt_Arg_List is

~-- array (Integer range <>) of Intrinsics.Xt_Ancillary_Types.Xt_Arg;

type X-._Arg_List is new Object_Type;

function Null_Xt_Arg_List return Xt_Arg_List;
pragma Builtin (Null_Xt_Arg_List, 2202);

type Xt_Translations is new System.Address;

Converts an Ada string to a string suitable for the Xt toolkit.

function Make_Xt_String (S : in String) return Renamed_Xlib_Types.Xt_String;

pragma Builtin (Make_Xt_String, 2203);

Page 67




29 October 1990 STARS-RC-00980/001/00

. Ada version of the Xt toolkit routine XtInitialize.
procedure Xt_Initialize
(Out_Value : out Intrinsics.Widget;

Name : in String;

Classname : in String;

Urlist : in X_Windows.Resource_Manager.Xrm_Option_Desc_List;
Num_Urs : in Intrinsics.Cardinal;

Argc : in out Intrinsics.Cardinal;

Argv : in out Renamed_Xlib_Types.Argv_Type);

pragma Builtin (Xt Initialize, 2204);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:
Boolean
String
Integer
Address
Dimension
. Position
Gravity_Type
procedure Xt_Set_Arg (Arg : out Intrinsics.Xt_Ancillary_Types.Xt_Arg;
Name : in String;
Value : in Boolean);
pragma Builtin (Xt_Set_Arg, 2205);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:
Boolean
String
Integer
Address
Dimension
Position
Gravity_Type
procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;

Name : 1n String;
. Value : in Boolean);

Page 63




29 October 1990 STARS-RC-00980,/001/00

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:
Boolean
String
Integer
Address
Dimension
Position
Gravity_Type
procedure Xt_Set_Arg (Arg : out Intrinsics.Xt_Ancillary_Types.Xt_Arg;
Name : in String;
Value : in String);
pragma Builtin (Xt_Set_Arg, 2206);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one
of the following types:

Boolean

String

Integer

Address

Dimension

Position

Gravity_Type

procedure Xt_Set_Arg (List : in out Xt_Arg_List;

Subscript : in Integer;
Name : in String;
Value : in String);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:
Boolean
String
Integer
Address
Dimension
Position
Gravity_.Type
procedure Xt_Set_Arg (Arg : out Intrinsics.Xt_Ancillary Types.Xt_Arg;

Page 69




29 October 1990 STARS-RC-00980/001/00

Name : 1in String;
. Value : in Integer);
pragma Builtin (Xt_Set_Arg, 2207);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one
of the following types:

Boolean

String

Integer

Address

Dimension

Position

Gravity_Type

procedure Xt_Set_Arg (List : in out Xt_Arg_List;

Subscript : in Integer;
Name : in String;
Value : in Integer);

This set of overloaded procedures provides a strongly typed,
‘ Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:
Boolean
String
Integer
Address
Dimension
Position
Gravity_Type
procedure Xt_Set_Arg (Arg : out Intrinsics.Xt_Ancillary_Types.Xt_Arg;
Name : in String;
Value : in System.Address);
pragma Builtin (Xt_Set_Arg, 2208);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:
Boolean
String
‘ Integer

Address

Page 70




29 October 1990 STARS-RC-00980/001/00

. Dimension
Positicn

Gravity_Type

procedure Xt_Set_Arg (List : 1n out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in System.Address);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:
Boolean
String
Integer
Address
Dimension
Position
Gravity_Type
procedure Xt_Set_Arg (Arg : out Intrinsics.Xt_Ancillary_Types.Xt_Arg;
Name : in String;
Value : in Intrinsics.Dimension);
. pragma Builtin (Xt_Set_Arg, 2209),

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one

of the following types:

Boolean

String

Integer

Address

Dimension

Position

Gravity_Type

procedure Xt_Set_Arg (List : in out Xt_Arg_List;

Subscript : in Integer;
Name : in String;
Value : in Intrinsics.Dimension);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

. Current overloading permits the Value parameter to be one
of the following types:

Page 71




29 October 1990

Boolean
String
Integer
Address
Dimension
Position
Gravity_Type

procedure Xt_Set_Arg (Arg : out Intrinsics.Xt_Ancillary_Types.Xt_Arg;

STARS-RC-00980/001/00

Name : in String;
Value : in Intrinsics.Position);

pragma Builtin (Xt_Set_Arg, 2210);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be omne

of the following types:

Boolean

String

Integer

Address

Dimension

Position

Gravity_Type

procedure Xt_Set_Arg (List

Subscript
Name
Value

in

: in
: in

out Xt_Arg_List;
Integer;

String;
Intrinsics.Position);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be omne

of the following types:

Boolean

String

Integer

Address
Dimension
Position
Gravity_Type

procedure Xt_Set_Arg (Arg : out Intrinsics.Xt_Ancillarv_Types.Xt_Arg;

Name . .n String;
Value : in X_Windows.Gravity_Type);

pragma Builtin (Xt_Set_Arg, 2211);

Page

-1
[V




29 October 1990 STARS-RC-00980/001/00

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one
of the following types:

Boolean

String

Integer

Address

Dimension

Position \

Gravity_Type

procedure Xt_Set_Arg (List : in out Xt_Arg_List;

Subscript : in Integer;
Name : in String;
Value : in X_Windows.Gravity_Type);

Create produces an array of Xt_Arg
procedure Create (Arg_List : out Xt_Arg_List;
First : in Integer;
Last : in Integer);
pragma Builtin (Create, 2212);

Put sets an element of an array of Xt _Arg
procedure Put (Arg_List : out Xt_Arg_List;
Subscript : in Integer;
Value : in Intrinsics.Xt_Ancillary_Types.Xt_Arg);
pragma Builtin (Put, 2213);

Get retrieves the value of an element of an array of Xt_Arg
function Get
(Arg_List : in Xt_Arg_List;
Subscript : in Integer) return Intrinsics.Xt_Ancillary_Types.Xt_Arg;
pragma Builtin (Get, 2214);

Get retrieves a slice of an array of Xt_Arg
function Get (Arg_List : in Xt_Arg_List;
First : in Integer;
Last : in Integer) return Xt_Arg_List;
pragma Builtin (Get, 2215);

Ada version of the toolkit preocedure XtSetValues.
procedure Xt_Set_Values (W : in Intrinsics.Widget;
Arg_List : in Xt_Arg_List);
pragma Builtin (Xt_Set_Values, 2216);

Page 73




29 October 1990 STARS-RC-00930/001/00

This set of overloaded functions provides a strongly typed,
Ada alternative to the Xt toolkit procedure XtGetValues.
Current overloading permits the returned value to be one
of the following types:

Boolean
Dimension
Font_Record
function Xt_Get_Value (W : in Intrinsics.Widget;
Name : in String) return Boolean;
pragma Builtin (Xt_Get_Value, 2217);

This set of overloaded functions provides a strongly typed,
Ada alternative to the Xt toolkit procedure XtGetValues.
Current overloading permits the returned value to be one
of the following types:
Boolean
Dimension
Font_Record
function Xt_Get_Valiue (W : in Intrinsics.Widget;
Name : in String) return Intrinsics.Dimension;
pragma Builtin (Xt_Get_Value, 2218);

This set of overloaded functions provides a strongly typed,
Ada alternative to the Xt toolkit procedure XtGetValues.
Current overloading permicts the returned value to be one
of the following types:

Boolean

Dimension

Font_Record

function Xt_Get_Value (W : in Intrinsics.Widget;

Name : in String) return X_Windows.Fonts.Font_Record;

pragma Builtin (Xt_Get_Value, 2219);

This set of overloaded procedures provides a strongly typed,
Ada interface to the XtAddCallback toolkit procedure.

Current overloading permits the Closure parameter to be one
of the following types:
Address
Integer
procedure Xt_Add_Callback (W : in Intrinsics.Widget;
Name : in 3tring;

Page 71




29 October 1990 STARS-RC-00930,/001,/00

Callback_Proc : 1n System.Address;
. Closure : 1n System.Address);
pragma Builtin (Xt_Add_Callback, 2220);

This set of overloaded procedures provides a strongly typed,
Ada interface to the XtAddCallback toolkit procedure.

Current overloading permits the Closure parameter to be one
of the following types:

Address
Integer
procedure Xt_Add_Callback (W : in Intrinsics.Widget;
Name : in String;
Callback_Proc : in System.Address;
Closure : in Integer);

pragma Builtin (Xt_Add_Callback, 2221);

Ada version of the Xt toolkit routine XtCreateWidget.

procedure Xt_Create_Widget (Out_Value : out Intrinsics.Widget;
Name : in String;
Widgetclass : 1n Intrinsics.Widget _Class;
Parent : in Intrinsics.Widget;
. Arg_List  : in Xt_Arg_List);

pragma Builtin (Xt_Create_Widget, 2222);

Ada version of the Xt toolkit routine XtCreateManagedWidget.

procedure Xt_Create_Managed_Widget (Out_Value : out Intrinsics.Widget;
Name : in String;
Widgetclass : in Intrinsics.Widget _Class;
Parent : 1n Intrinsics.Widgsat;
Arg_List : in Xt_Arg_List);

pragma Builtin (Xt_Create_Managed_Widget, 2223);

Ada version of the Xt toolkit routine XtRealizeWidget.
procedure Xt_Realize_Widget (W : in Intrinsics.Widget);
pragma Builtin (Xt_Realize_Widget, 2224);

Ada version of the Xt toolkit routine XtMainLoop.
procedure Xt_Main_Loop;
pragma Builtin (Xt_Main_Loop, 2225);

Ada version of the Xt toolkit routine XtDestroyWidget.

procedure Xt_Destroy_Widget (W : in Intrinsics.didget);
' pragma Builtin (Xt_Destroy_Widget, 2226);

Page 75




29 October 1990 STARS-RC-00930/001/00

Ada version of the X library routine XTextWidth.
function X_Text_Width (F : in X_Windows.Fonts.Font_Record;
S : in String) return Intrinsics.Dimension;
pragma Builtin (X_Text_Width, 2227);

Ada version of the Xt toolkit routine XtParseTranslationTable.
function Xt_Parse_Translation_Table (S : in String) return Xt_Translationms;
pragma Builtin (Xt_Parse_Translation_Table, 2228);

Ada version of the Xt toolkit routine XtOverrideTranslationms.
procedure Xt_Override_Translations (W : in Intrinsics.Widget;
T : in Xt_Translations);
pragma Builtin (Xt_Override_Translations, 2229);

Ada version of the Xt toolkit routine XtAugmentTranslations.
procedure Xt_Augment_Translations (W : in Intrinsics.Widget;
T : in Xt_Translations);
pragma Builtin (Xt_Augment_Translations, 2230);

Ada version of the Xt toolkit routine XtAddActioms.
procedure Xt_Add_Actions (Arg_List : in Xt_Arg_List);
pragma Builtin (Xt_Add_Actioms, 2231);

Returns a pointer to an interpreted action procedure;

this should be used when providing procedure "addresses" to

Xt_Add_Actions
function Action_Procedure_Pointer (Name : in String) return System.Address;
pragma Builtin (Action_Procedure_Pointer, 2232);

Returns a pointer to an interpreted callback procedure;

this should be used when providing procedure "addresses" to

Xt_Add_Callback
function Callback_Procedure_Pointer (Name : in String) return System.Address;
pragma Builtin (Callback_Procedure_Pointer, 2233);

Ada version of the Xt toolkit routine _XtDefaultAppContext.
function Xt_Default_App_Context return Intrinsics.Xt_App_Context;
pragma Builtin (Xt_Default_App_Context, 2234);

Ada version of the Xt toolkit routine XtAppNextEvent.
function Xt_App_Next_Event
(App : in Intrinsics.Xt_App_Context) return X_Windows.Events.Event;

pragma Builtin (Xt_App_Next_Event, 2235);

Ada version of the Xt toolkit routine XtDispatchEvent.

Page 76




29 Ccrober 1990 STARS-RC-00930/001,00

procedure Xt_Dispatch_Event (E : in X_Windows.Events .Event);

pragma Builtin (Xt_Dispatch_Evern® 2236);

end Widget_Package;

with System;
with X_Windows;
with Intrinsics;
package body Widget_Package 1s
use Systenm;
use X_Windows;
use Intrinsics;
use Xt_Ancillary_Types;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : 1n String;
Value : in Boolean) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : 1n String;
Value : in Striag) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Integer) is
Temp_X*_Arg @ Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

Page 77




29 QOctober 1990

procedure Xt_Set_Arg (List
Subscript
Name
Value
Temp_Xt_Arg : Xt_Arg;

begin

STARS-RC-00980,/001/00

in out Xt_Arg_List;

: in Integer;
: 1n String;

in Address) is

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set_Arg;

procedure Xt_Set_Arg (List

Subscript :
Name
Value
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name,

in out Xt_Arg_List;
in Integer;

: in String;

in Dimension) 1is

Value);

Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set_Arg;

procedure Xt_Set_Arg (List

Subscript
Name
Value
Temp_Xt_Arg : Xt_Arg;
begin

in out Xt_Arg_List;

: in Integer;
: in String;

in Position) is

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set_Arg;

procedure Xt_Set_Arg (List

Subscript :
Name
Value
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name,

in out Xt_Arg_List;
in Integer;

in String;

in Gravity_Type) is

Value);

Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set_Arg;

end Widget_Package;

Xt_Stringdefs is a package which contains commonly used

resource name constants.

Page

8




29 October 1990

package Xt_Stringdefs 1is
-- resource name constants

Xt_N_Accelerators

Xt_N_Allow_Horiz

Xt_N_Allow_Vert

Xt _N_Ancestor_Sensitive

Xt _N_Background

Xt _N_Background_Pixmap

Xt_N_Bitmap

Xt _N_Border_Color

Xt _N_Border

Xt_N_Border_Pixmap

Xt_N_Border_Width

Xt _N_Callback

Xt _N_Colormap

Xt_N_Depth

Xt _N_Destroy_Callback
Xt_N_Edit_Type

Xt_N_File

Xt_N_Font

Xt_N_Force_Bars

Xt _N_Foreground

Xt _N_Function

Xt_N_Height

Xt_N_Highlight

Xt _N_H_Space

Xt _N_Index
t_N_Inner_Height

Xt _N_Inner_Width
Xt_N_Inner_Window
Xt_N_Insert_Position

Xt_N_Internal_Height

Xt_N_Internal_Width

Xt_N_Jump_Proc

Xt_N_Justify

Xt _N_Knob_Height

Xt _N_Knob_Indent

Xt _N_Knob_Pixel

Xt_N_Knob_Width

Xt_N_Label

Xt_N_Length

Xt _N_Lower_Right

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
. constant
: constant
: constant
: constant
. constant
: constant
: constant
. constant
: constant
: constant
: constant
: constant
: constant
. constant
: constant
: constant
. constant
: constant
: constant
: constant
: constant
: constant
: constant
. constant

String :
String :
String :=
String :=
String :=
String :=
String :=
String :=
String :=
String :
String :=
String :=
String :
String :=
String :=
String :=
String :=
String :=
String :
String :=
String :=
String :
String :=
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

Page 79

STARS-RC-00930/001/00

"accelerators";
"allowHoriz";
"allowVert";
"ancestorSensitive";
"background";
"backgroundPixmap";
"bitmap";
"borderColor"; —
"borderColor";
"borderPixmap";
"borderWidth";
"callback";
"colormap”;

"depth";
"destroyCallback";
"editType";

"file";

"font";

= "forceBars";

"foreground";
"function";
"height";
"highlight";
"hSpace";
“1ndex";
"innerHeight";
"innerWidth";
"innerWindow";
"insertPosition";
"internalHeight";
"internalWidth";
"jumpProc";
"justify",
"knobHeight";
"knobIndent";
"knobPixel";
"knobWidth";
"label";
"length";
"loverRight";




29 QOctober 1990

Xt _N_Mapped_When_Managed :
Xt_N_Menu_Entry

Xt _N_Name
Xt_N_Notify

Xt _N_Orientation

Xt _N_Parameter
Xt_N_Pixmap
Xt_N_Popup_Callback
Xt_N_Popdown_Callback
Xt_N_Resize
Xt_N_Reverse_Video
Xt_N_Screen
Xt_N_Scroll_Proc
Xt_N_Scroll_D_Cursor
Xt_N_Scroll_H_Cursor
Xt_N_Scroll_L_Cursor
Xt_N_Scroll_R_Cursor
Xt_N_Scroll_U_Cursor
Xt_N_Scroll_V_Cursor
Xt_N_Selection
Xt_N_Selection_Array
Xt_N_Sensitive
Xt_N_Shown
Xt_N_Space
Xt_N_String
Xt_N_Text_Options
Xt_N_Text_Sink

Xt _N_Text _Source

Xt _N_Thickness

Xt _N_Thumb

Xt _N_Thumb_Proc
Xt_N_Top
Xt_N_Translations
Xt_N_Update
Xt_N_Use_Bottom
Xt_N_Use_Right
Xt_N_Value
Xt_N_V_Space
Xt_N_Width
Xt_N_Window

Xt_N_X

Xt_N_Y

-~ resource class constants

constant
constant
constant
constant

. constant
: constant
: constant
: constant

constant

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant

constant

: constant
: constant
: constant

constant
constant

: constant
: constant
: constant
: constant
: constant

constant
constant

. constant
: constant
: constant

constant

. constant
: constant
¢ constant
. constant
. constant
: constant

constant

String :
String :
String :
String :=
String :=
String :
String :=
String
String :=
String :=
String :=
String :
String :
String :
String :=
String :
String :
String :
String :=
String :=
String :
String :=
String :=
String :=
String :
String :=
String :=
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

Page 20

STARS-RC-00980/001/00

"mappedWhenManaged";
"menuEntry";
""name"’;
"notify";
“orientation';
"parameter";
"pixmap";
"popupCallback";
"popdownCallback";
"resize";
"reverseVideo";
“screen";
"scrollProc";
"scrollDCursor";
"scrollHCursor";
"scrollLCursor";
"scrollRCursor";
"scrollUCursor";
"scrollVCursor”;
"selection";
"selectionArray";
"sensitive";
“shown'";
"space";
"string";
"textOptions";
"textSink";
"textSource";
"thickness";
"thumb";
"thumbProc";
"top";
“translations";
"update";
"useBottom";
"useRight";
"value";
"vSpace";
"width";
“"window";

s

yts




29 October 1990

Xt_C_Accelerators
Xt_C_Background
Xt_C_Bitmap
Xt_C_Boolean
Xt_C_Border_Color
Xt_C_Border_Width
Xt_C_Callback
Xt_C_Colormap
Xt_C_Color
Xt_C_Cursor
Xt_C_Depth
Xt_C_Edit Type
Xt_C_Event_Bindings
Xt_C_File
Xt_C_Font
Xt_C_Foreground
Xt_C_Fraction
Xt_C_Function

Xt _C_Height
Xt_C_H_Space
Xt_C_Index
Xt_C_Insert_Position
Xt_C_Interval
Xt_C_Justify
Xt_C_Knob_Indent
Xt_C_Knob_Pixel
Xt_C_Label
Xt_C_Length

Xt_C_Margin
Xt_C_Menu_Entry
Xt_C_Notify
Xt_C_Orientation

Xt _C_Parameter
Xt_C_Pixmap
Xt_C_Position

Xt _C_Resize
Xt_C_Revarse_Video
Xt_C_Screen
Xt_C_Scroll_Proc
Xt_C_Scroll_D_Cursor
Xt_C_Scroll_H_Cursor
Xt_C_Scroll_L_Cursor
Xt_C_Scroll_R_Cursor
Xt_C_Scroll_U_Cursor

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
Xt_C_Mapped_When_Managed :

constant

: constant

constant

: constant
: constant
. constant
: constant
: constant
: constant

constant

: constant
: constant
: constant

constant

: constant
. constant
: constant

String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

String :=
String :=
String :=

String :
String :

String :=

String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

Page 81

STARS-RC-00980/001/00

"Accelerators';
"Background";
"Bitmap";
"Boolean'";
"BorderColor";
"BorderWidth";
"Callback";
"Colormap";
"Color";
"Cursor"';
"Depth";
"EditType";
~r'EventBindings";
"File";
"Font";
"Foreground";
"Fraction";
"Function";
"Height";
"HSpace";
*Index";
"InsertPosition";
"Interval";
"Justify";
"KnobIndent";
"KnobPixel";
"Label";
"Length";
"MappedWhenManaged";
"Margin'';
"MenuEntry";
"Notify";
“Orientation";
"Parameter";
"Pixmap";
"Position";
"Resize";
"ReverseVideo";
"Screen'";
"ScrollProc";
"ScrollDCursor";
"ScrollHCurser",;
"ScrollLCursor";
"ScrollRCursor";
"ScrollUCursor";




29 October 1990

Xt_C_Scroll_V_Cursor
Xt_C_Selection
Xt_C_Sensitive
Xt_C_Selection_Array
Xt_C_Space
Xt_C_String
Xt_C_Text_Options
Xt_C_Text_Position
Xt_C_Text_Sink
Xt_C_Text_Source
Xt_C_Thickness
Xt_C_Thumb
Xt_C_Translations
Xt_C_Value
Xt_C_V_Space
Xt_C_Width

Xt _C_Window

Xt_C_X

Xt_C_Y

-- resource type

Xt_R_Accelerator_Table :
: constant
: constant
: constant
: constant
: constant

Xt_R_Bool
Xt_R_Boolean
Xt_R_Callback
Xt_R_Call_Proc
Xt_R_Color

Xt _R_Cursor
Xt_R_Dimension
Xt_R_Display

Xt _R_Edit_Mode
Xt_R_File

Xt _R_Font
Xt_R_Font _Struct
Xt _R_Function
Xt_R_Geometry
Xt_R_Immediate
Xt_R_Int
Xt_R_Justify

Xt _R_Long_Boolean
Xt_R_Orientation
Xt_R_Pixel
Xt_R_Pixmap
Xt_R_Pointer

: constant String :
: constant String :=
: comnstant String :
: constant String :=
: constant String :
: constant String :=
: constant String :
: constant String :=
: constant String :=
: constant String :
: constant String :=
: constant String :
: constant String :=
: constant String :
: constant String :=
: constant String :
: constant String :=
: constant String :=
: constant String :

STARS-RC-00980/001/00

"ScrollVCursor";
"Selection";
"Sensitive";
"SelectionArray";
"Space";
"String";
"TextOptions";
"TextPosition";
"TextSink";
"TextSource";
"Thickness";
"Thumb" ;
"Translations";
"Value';
"VSpace";
"Width";
"Window";

|IXII;

HYII;

constants

constant

constant

: constant
: constant
. constant
: constant
: constant

constant
constant
constant

: constant
: constant
: constant
: constant

constant
constant

: constant
: constant

String :=
String :=

String :

String :=

String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

String :=
String :=

String :
String :
String :
String :
String :
String :
String :

Page 82

"AcceleratorTable";
"Bool";
"Boolean";
"Callback";
"CallProc";
"Color";
"Cursor";
"Dimension";
"Display";
"EditMode";
“File";
"Font";
"FontStruct";
"Function";
"Geometry";
"Immediate";
"Int";
"Justify";
"Bool";
"Orientation”;
"Pixel";
"Pixmap';
"Pointer";




29 Qctober 1990

Xt_R_Position
Xt_R_Short
Xt_R_String
Xt_R_String_Table
Xt_R_Unsigned_Char

Xt_R_Translation_Table :

Xt_R_Window

constant
constant
constant

String
String
String
String
String
String
String

: constant
constant
constant
: constant

-- shell specific stringdefs

Xt _N_Icon_Name
Xt_C_Icon_Name
Xt_N_Icon_Pixmap
Xt_C_Icon_Pixmap
Xt_N_Icon_Window
Xt_C_Icon_Window
Xt_N_Icon_Mask
Xt_C_Icon_Mask
Xt_N_Window_Group
Xt_C_Window_Group

Xt _N_Save_Under
Xt_C_Save_Under
Xt_N_Transient
Xt_C_Transient

Xt_N_Override_Redirect
Xt_C_Override_Redirect

STARS-RC-00930/001/00

:= "Position';

:= "Short";

;= "String";

:= "StringTable";

:= "UnsignedChar";
:= "TranslationTable";
:= "Window";

Xt_N_Allow_Shell_Resize
Xt_C_Allow_Shell_Resaize
Xt _N_Create_Popup_Child_Proc
Xt _C_Create_Popup_Child_Proc

Xt_N_Title :
Xt_C.Title :

constant String
constant String

: constant String
: constant String :
© constant String :
: constant String :

‘= "title” ;
:= "Title";

: constant String := "iconName";
: constant String := "IconName";
constant String := "iconPixmap";
constant String := "IconPixmap";
: constant String := "iconWindow";
: constant String := "IconWindow";
: constant String := "iconMask";
: constant String := "IconMask";
: constant String := "windowGroup";
: constant String := "WindowGroup";
constant String := "savelUnder";
: constant String := "SavelUnder";
: constant String := "transient";
: constant String := "Transient";
: constant String := "overrideRedirect";
: constant String := "OverrideRedirect";

"allowShellResize";
"AllowShellResize";
"createPopupChildProc";
"CreatePopupChildProc";

-- The following are only used at creation and can not be changed via

-=- SetValues.

Xt_N_Argc
Xt_C_Argc
Xt_N_Argv
Xt_C_Argv
Xt_N_Icon_X
Xt_C_Icon_X

: constant String :=
: constant String :=
constant String :=
: constant String :=
constant String :=
constant String :=

Page X3

"arge";
"Arge";
"argv';
"Argv";
"iconX";
"IconX";




29 October 1990

Xt_N_Icon_Y
Xt_C_Icon_Y
Xt_N_Input
Xt_C_Input
Xt _N_Iconic
Xt_C_Iconic

Xt_C_Initial_State
Xt_N_Geometry

Xt _C_Geometry

Xt _N_Min_wWidth
Xt_C_Min_Width
Xt_N_Min_Height
Xt_C_Min_Height
Xt _N_Max_Width
Xt_C_Max_Width
Xt_N_Max_Height
Xt_C_Max_Height
Xt_N_Width_Inc
Xt_C_Width_Inc

Xt _N_Height _Inc
Xt_C_Height_Inc
Xt_N_Min_Aspect_Y
Xt_C_Min_Aspect_ Y
Xt_N_Max_Aspect_Y
Xt_C_Max_Aspect_Y
Xt_N_Min_Aspect_X
Xt_C_Min_Aspect_X
Xt_N_Max_Aspect_X
Xt_C_Max_Aspect_X
Xt _N_Wm_Timeout
Xt_C_Wm_Timeout
Xt_N_Wait_For_Wm
Xt_C_Wait_For_Wm

end Xt_Stringdefs;

7.7.5 Hp-Widgets

with Intrinsics;
with Widget_Package;
with System;

The package Hp_Widgets is the ACE

constant
constant
constant

: constant

constant

: constant
Xt_N_Initial_State :
: constant
: constant
: constant
: constant
: constant

constant

constant

: constant
: constant
: constant
: constant

constant

. constant
: constant
: constant
: constant
. constant
: constant
: constant
: constant
. constant
: constant
: constant
: constant

constant

. constant
: constant
: constant

String :
String :
String :
String :=
String :=
String :
String :
String :
String :=
String :=
String :=
String :=
String :=
String :=
String :=
String :
String :=
String :=
String :
String :=
String :=
String :=
String :
String :=
String :=
String :=
String :=
String :=
String :=
String :
String :
String :
String :=
String :

interface to the Hewlett-Packard

Page 81

STARS-RC-00980,/001/00

"iconY";
"IconY";
"input';
"Input";
"iconic";
"Iconic";
"initialState";
"InitialState";
"geometry";
"Geometry";
"minWidth";
"MinWidth";
"minHeight";
"MinHeight";
"maxWidth";
"MaxWidth";
"maxHeight";
"MaxHeight";
"widthInc";
"WidthInc";
"heightInc";
"HeightInc";
"minAspectY";
"MinAspectV";
"maxAspectY";
"MaxAspectY";
"minAspectX";
"MinAspectX";
"maxAspectX";
"MaxAspectX";
"wmTimeout";
"WmTimeout";
"waitforwm";
"Waitforwm";




29 QOctober 1990

widget set.

STARS-RC-00980/001/00

This package defines all of the numeric constants,

enumerated types, and resource names of this widget set, defines all
of the widget classes in this set, and supports all of the user

widget procedures in this set.

For further information on these routines, see the Hewlett-Packard

documentation.

package Hp_Widgets is
use Intrinsics;
use Widget_Package;
use Xt_Ancillary_Types;

Xw_Single : constant Integer := 0;
Xw_Multiple : constant Integer := 1;
Xw_Border : constant Integer := 0;
Xw_Invert : comnstant Integer := 1;
Xw_No_Bias : constant Integer := 0;
Xw_Row_Bias : constant Integer := 1;
Xw_Col_Bias : constant Integer := 2;
Xw_Instant : constant Integer := 0;
Xw_Sticky : constant Integer := 1;

Xw_No_Shrink : constant Integer := 0;
Xw_Shrink_Column
Xw_Shrink_All : constant Integer := 2;
Xw_Auto_Scroll O0ff : constant Integer :=
Xw_Auto_Scroll_Horizontal
Xw_Auto_Scroll_Vertical
Xw_Grow_0ff : constant Integer := 0;
Xw_Grow_Horizontal : constant Integer :=
Xw_Grow_Vertical : constant Integer := 2
Xw_N_0f_Many : constant Integer := 0;
Xw_One_0f _Many : constant Integer := 1;
Xw_Requested_Columns : constant Integer
Xw_Maximum_Columns : constant Integer :=
Xw_Maximum_Unaligned

Xw_Right : constant Integer := 0;
Xw_Left : constant Integer := 1;
Xu_Center : constant Integer := 2;
Xw_String : constant Integer := O0;
Xw_Image : constant Integer := 1;
Xw_No_Line : constant Integer := 0;
Xw_Single_Line : constant Integer := 1;
Xvw_Double_Line : constant Integer := 2;

Xw_Single_Dashed_Line :
Xw_Double_Dashed_Line

Page 35

: constant Integer := 1;

: constant Integer :

constant Integer :
: constant Integer :

3

0;

1;

b

1;

0;

2;

: constant Integer :
: constant Integer

= 2,

-

1;




29 Qctober 1990

Xw_Solid

Xw_Pattern :

: constant Integer
constant Integer :

= 0;

Xw_Tra. sparent
Xw_Horizontal

: constant Integer :

: constant Integer :

-

Xw_Vertical
Xw_Top
Xw_Bottom :

: constant Integer :

: constant Integer :
1;

1;

2;
0;

.
H

constant Integer := 2;

Xw_Foreground :
Xw_Background :

constant Integer :
constant Integer :

]

Xw_25_Foreground :
Xw_50_Foreground
Xw_75_Foreground :
Xw_Vertical_Tile

Xw_Horizcntal_Tile :

Xw_Slant _Right : co
Xw_Slant_Left

Xw_Highlight Off

Xw_Highlight _Enter :
Xw_Highlight _Traversal

: constant Integer :
: constant Integer :
constant Integer :
: constant Integer :

constant Integer :

: constant Integer :

constant Integer :

: constant Integer :
constant Integer :

nstant Integer :

=

8

0;

Xw_Arrow_Up :

constant Integer :=

Xw_Arrow_Down :
Xw_Arrow_Left
Xw_Arrow_Right

constant Integer

: constant Integer :
: constant Integer :

= 1;
=

- .

Xw_Pattern_Border

: constant Integer :

2

H -

Xw_Widget_D
Xw_Ignore
Xw_Minimize
Xw_Maximize

: constant Integer
: constant Integer :
: constant Integer :

efined

: constant Integer
= 0;

1;

]

Tf_No_Fit
Tf_Include_Tab
Tf_End_Text
Tf_Newline
Tf_Wrap_White_Space
Tf_Wrap_Any
Word_Break

Scroll _Vertical
Scroll _Horizontal
Scroll_On_Overflow
Resize_Width
Resize_Height
Editable

Xt_N_Traversal_On
Xt _N_Traversal_Type

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant

constant

: constant

-onstant
constant

Integer :
Integer :
Integer :
Integer -
Integer :=
Integer :=
Integer :
Integer :
Integer :
Integer :
Integer :
Integer :
Integer :

: constant

STARS-RC-00930/001/00

6;

0;

1;

2;

1;
2.

16#01%;
16#02%#;
16#04%;
16#084#;
168104#;
16820%;
168#014%;
16#02%;
16#04%;
16#08%;
16#10%;
16#204%;
158408 ;

String := "traversalOn";

: constant

Page 36

String

:= "traversalType";




29 QOctober 1990

Xt _N_Highlight _Style
Xt_N_Highlight _Tile
Xt_N_Highlight _Thickness
Xt_N_Highlight_Color
Xt_N_Background_Tile
Xt_N_Cursor
Xt_N_Recompute_Size
Xt_N_Layout
Xt_N_Label_Location
Xt_N_Sensitive_Tile
Xt_N_Columns

Xt _N_Mode

Xt_N_Set

Xt_N_Select
Xt_N_Release
Xt_N_Next_Top
Xt_N_Title_Showing
Xt_N_Mgr _Title_Override
Xt_N_Title_Type
Xt_N_Title_String
Xt_N_Title_Image
Xt_N_Font_Color
Xt_N_Mnemonic
Xt_N_Underline_Title

Xt _N_Mgr_Underline_QOverride
Xt_N_Underline_Position
Xt_N_Attach_To

Xt _N_Kbd_Accelerator
Xt_N_Associate_Children
Xt_N_Menu_Post

Xt _N_Menu_Select
Xt_N_Post_Accelerator
Xt_N_Menu_Unpost

Xt _N_Kbd_Select
Xt_N_Num_Columns

Xt _N_Row_Position
Xt_N_Column_Position
Xt_N_Selection_Method
Xt_N_Element Highlight
Xt_N_Selection_Bias
Xt_N_Selection_Style
Xt_N_Column_Width
Xt_N_Element _Height
Xt_N_Selected_Elements
Xt_N_Num_Selected_Elements

: constant
: constant

constant

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant

constant
constant

;. constant
: constant
: constant

constant

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constaut
: constant

constant

: constant

constant

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant

Page 37

String :
String :

String :=

String :
String :
String :
String :
String :
String :

String :=

String :

String :=

String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

String :=

String :
String :
String :

String :=

String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

L A A

String :=
String :=

STARS-RC-00980/001 /00

"highlightStyle";
"highlightTile";
“"highlightThickness";
"highlightColor";
"backgroundlile”;
"cursor";
"recomputeSize";
"layout";
"labellocation";
"sensitiveTile";
"columns';

"mode"';

"set";

"select";

"release";
"nextTop";
"titleShowing";
"mgrTitleOverride";
"titleType";
"titleString";
"titlelmage";
"fontColor";
"mnemcenic;
"underlineTitle";
"mgrUnderlinaUverride";
"underlinePosition";
"attachTo";
"kbdAccelerator";
"associateChildren";
"menuPost";
"menuSelect";
"postAccelerator”;
"menulUnpost";
"kbdSelect";
"numColumns";
"rowPosition";
"columnPosition";
"selectionMethod";
"elementHighlight";
"selectionBias";
"selectionStyle";
“"columnWidth";
"elementHeight";
"selectedElements";
"numSelectedElements";




249 Qctober 1990

Xt _N_Destroy Mode
Xt_N_Layout_Type
Xt_N_Force_Size
Xt_N_Single_Row
Xt_N_Separator_Type
Xt_N_Vsb_X

Xt_N_Vsb_Y
Xt_N_Vsb_Width
Xt_N_Vsb_Height
Xt_N_Hsb_X

Xt_N_Hsb_Y
Xt_N_Hsb_Width

Xt _N_Hsb_Height
Xt_N_V_Slider_Min
Xt_N_V_Slider_Max
Xt_N_V_Slider_Origin
Xt_N_V_Slider_Extent
Xt_N_H_Slider_Min
Xt_N_H_Slider_Max
Xt_N_H_Slider_Origin
Xt_N_H_Slider_Extent
Xt_N_H_Scroll_Event
Xt_N_V_Scroll_Event
Xt_N_V_Scroll_Bar_Width
Xt_N_V_Scroll_Bar_Height
Xt_N_H_Scroll_Bar_Width
Xt_N_H_Scroll_Bar_Height
Xt_N_Force_Vertical_Sb
Xt _N_Force_Horizontal_Sb
Xt_N_Initial_X
Xt_N_InitiallY

Xt _N_Border_Pad
Xt_N_S_Rimage
Xt_N_Show_Selected
Xt_N_Display_Position
Xt_N_Insert_Positinn
Xt_N_Left_Margin
Xt_N_Right_Margin
Xt_N_Top_Margin

Xt _N_Bottom_Margin
Xt_N_Selection_Array

Xt _N_Text _Source
Xt_N_Selection
Xt_N_Maximum_Cize

Xt _N_Edit_Type

: constant

constant
constant
constant

: constant
: coustant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant

constant

: constant
: constant
: constant
: constant

constant

: constant
. constant
: constant

constant

: constant
: constant
: constant

constant

: constant
: constant
: constant
: constant
: constant

constant

: constant

constant
constant

: constant
. constant
. constant

Page 3%

Strirg :
String :

String

String :
String :=
String :=
String :=
String :=
String :=
Straing :=
String :
String :=
String :
String :=
String :=
String :=
String :=
String :
String :
String :
String :
String :
String :=
String :=
String :=
String :=
String :
String :
String :=
String :
String :
String :
String :=
String :=
String :=
String :=
String :
String :
String :=
String :
String
String :
String :
String :
String :

STARS-RC-00930/001/00

"destroyMode";
"layoutType";
"forceSize";
"singleRow";
"seraratorType";
"ysbX";

YysbY";
"vsbWidth";
"vsbHeight";
"hsbX";

"hsbY";
"hsbWidth";
"hsbHeight";
"vSliderMin";
"vSliderMax";
"vSliderOrigin";
"vSliderExtent";
"hSliderMin";
"hsliderMax";
"hSliderOrigin";
"hSliderExtent"”;
"hScrollEvent";
"yScrollEvent";
“vScrollBarWidth";
"vScrollBarHeigut";
"hScrollBarWidth";
"hScrollBarHeight";
"forceVerticalSB";
"forceHorizontalSB";
"initialX";
"initialY";
"borderPad";
“"rasterImage";
"showSelected";
"displayPosition";
"insertPosition";
"leftMargin";
"rightMargin";
"tcpMargin”;
"bottomMargin";
"selectionArray";
""textSource";
"selection";
"maximumSize";
"editType";




29 October 1990 STARS-RC-00980/001/00

Page 89

Xt_N_File : constant String := "file";

. -- Xt_N_String : constant String := "string"; -- defined in Xt_Stringdefs
Xt_N_Length. : constant String := "length";
-- Xt_N_Font : constant String := "font"; -- defined in Xt_Stringdefs
Xt_N_Disk_Src : constant String := "disksrc";
Xt_N_String_Src : constant String := "stringsrc";
Xt_N_Execute : constant String := "execute";
Xt_N_Source_Type : constant String := "sourceType";
Xt_N_Motion_Verification : constant String := "motiomVerificatiomn";
Xt_N_Modify_Verification : constant String := "modifyVerification";
Xt_N_Leave_Verification : constant String := "leaveVerification";
Xt_N_Wrap : constant String := "wrap";
Xt_N_Wrap_Form : constant String := "wrapForm";
Xt_N_Wrap_Break : constant String := "wrapBreak";
Xt_N_Scroll : constant String := '"scroll";
Xt_N_Grow : constant String := "grow";
Xt_N_Alignment : constant String := "alignment";
Xt_N_Line_Space : constant String := "lineSpace";
Xt_N_Gravity : constant String := ''gravity";
Xt_N_Slider_Min : constant String := "sliderMin";
Xt_N_Slider_Max : constant String := "sliderMax";
Xt_N_Slider_Origin : constant String := “sliderOrigin";

. Xt_N_Slider_Extent : constant String := "sliderExtent";
Xt_N_Slider_Color : constant String := "sliderColor";
Xt_N_Slide_0Orientation : constant String := "slideOrientation";
Xt_N_Slide_Move_Type : constant String := "slideMoveType";
Xt_N_Slide_Area_Tile : constant String := "slideAreaTile";
Xt_N_Slider_Moved : constant String := "sliderMoved";
Xt_N_Area_Selected : constant String := "areaSelected"”;
Xt_N_Slider_Tile : constant String := "sliderTile";
Xt_N_Slider_Released : constant String := "sliderReleased";
Xt_N_X_Ref_Name : constant String := "xRefName";
Xt _N_X_Ref_Widget : constant String := "xRefWidget";
Xt_N_X_Offset : constant String := "xOffset”;
Xt _N_X_Add_Width : constant String := "xAddWidth";
Xt_N_X _Vary_Offset : constant String := "xVaryOffset";
Xt_N_X_Resizable : constant String := "xResizable";
Xt_N_X_Attach_Right : constant String := "xAttachRight";
Xt _N_X_Attach_Offset : constant String := "xAttachOffset";
Xt_N_Y_Ref_Name : constant String := "yRefName";
Xt_N_Y_Ref_Widget : constant String := "yRefWidget";
Xt_N_Y_Offset : constant String := "yOffset";
Xt _N_Y_Add_Height : constant String := "yAddHeight";

. Xt_N_Y_Vary_Offset : constant String := "yVaryOffset";
Xt_N_Y_Resizable : constant String := "yResizable";




29 October 1990

Xt_N_Y_Attach_Bottom
Xt_N_Y_Attach_Offset
Xt_N_Pixel_Scale
Xt_N_Grid_Thickness
Xt_N_Image
Xt_N_Draw_Color
Xt_N_Erase_Color
Xt_N_Erase_0On
Xt_N_Label_Type
Xt_N_Label_Image
Xt_N_Cascade_Image
Xt_N_Mark_Image
Xt_N_Set_Mark
Xt_N_Cascade_On
Xt_N_Invert_On_Enter
Xt_N_Mgr_Override_Mnemonic
Xt _N_Cascade_Select
Xt_N_Cascade_Unselect
Xt_N_Menu_Mgr_Id
Xt_N_Scrollbar_Orientation
Xt_N_Selection_Color
Xt_N_Initial_Delay
Xt_N_Repeat_Rate
Xt_N_Granularity
Xt_N_Invert_0On_Select
Xt_N_Toggle

Xt_N_Square
Xt_N_Select_Color
Xt_N_Allow_Resize
Xt_N_Sash_Indent
Xt_N_Refigure_Mode
Xt_N_Padding

Xt_N_Min :
Xt_N_Max :
Xt_N_Skip_Adjust
Xt_N_Framed
Xt_N_Border_Frame
Xt_N_Expose
Xt_N_Resize
Xt_N_Key_Down
Xt_N_Sticky_Menus
Xt_N_Allow_Cascades
Xt_N_Pulldown_Bar_Id
Xt_N_Strip
Xt_N_Title_Precedence

constant String :
constant String :=

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
. constant
: constant
: constant
: constant
: constant
: constant
: constant
;. constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
"minll ;
"max";
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
. constant
: constant
: constant

Page 90

String :
String :
String :
String :

String :=

String :

String :=

String :
String :
String :

String :=

String :

String :=
String :=
String :=
String :=
String :=
String :=

String :

String :=
String :=
String :=

String :

String :=
String :=
String :=

String :
String :
String :

String :=
String :=

String :

String :
String :
String :

String :=

String :
String :
String :
String :
String :
String :
String :

STARS-RC-00980,/001/00

"yAttachBottom";
"yAttachOffset";
"pixelScale";
"gridThickness";
"image";
"drawColor";
"eraseColor";
"erase(On'";
"labelType";
"labelImage";
"cascadelmage";
"markImage";
"setMark";
"cascadeOn";
“invertOnEnter";
"mgrOverrideMnemonic";
"cascadeSelect";
"cascadeUnselect”;
"menuMgrIid";
"scrollbarOrientation";
"selectionColor";
"initialDelay";
"repeatRate";
"granularity";
"invertOnSelect";
"toggle";
"square";
*selectColor";
"allowResize";
"sashIndent";
"refigureMode";
"padding";

"skipAdjust";
“"framed";
"borderFrame'";
"expose";
"resize";
"keyDown";
"stickyMenus";
"allowCascades";
"pulldownBarlId";
"strip";
"titlePrecedence";




29 October 1990

Xt_N_Title_Foreground
Xt_N_Title_Background
Xt_N_Title_Region
Xt_N_Title_Position
Xt_N_Title_Rpadding
Xt_N_Title_Lpadding
Xt_N_Title_Border_Width
Xt_N_Title_Translatiomns
Xt_N_Title_Hspace
Xt_N_Title_Vspace
Xt_N_Title_Select
Xt_N_Title_Release
Xt_N_Title_Next_Top
Xt_N_Titlebar_Tile
Xt_N_Enter

Xt_N_Leave

Xt_N_Region

Xt _N_Position
Xt_N_L_Padding
Xt_N_R_Padding
Xt_N_Precedence
Xt_N_Title_To_Menu_Pad

Xt_N_Widget_Type
Xt_N_Top_Level
Xt_N_Display_Title
Xt_N_Causes_Resize
Xt_N_Arrow_Direction

: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
: constant
Xt _N_Work_Space_To_Sibling_Pad :

constant

: constant
: constant
: constant
: constant
: constant

subtype Xw_Text_Position is Cardinal;

String :
String :
String :

String :=

String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :
String :

String :=

String :

String :=

String :
String :
String :

String :=

String :

String :=

String :
String :
String :

type Xw_Text_Source_Ptr is new System.Address;
type Xw_Text_Sink_Ptr is new System.Address;

type Xw_Alignment is
(Xw_Align_None,
Xw_Align_Left,
Xw_Align_Center,
Xw_Align_Right);

STARS-RC-00980/001/00

"titleForeground";
"titleBackground";
"titleRegion";
"titlePosition";
"titleRPadding";
"titleLPadding";
"titleBorderWidth";
"titleTranslations";
"titleHSpace";
"titleVSpace";
"titleSelect";
"titleRelease";
"titleNextTop";
"titlebarTile";
"enter";

"leave';

"region";
"position";
"1Padding";
"rPadding";
"precedence";
"titleToMenuPad";
"workSpaceToSiblingPad";
"widgetType";
"topLevel";
"displayTitle";
"causesResize";
"arrowDirection";

type Xw_Widget_Type is (Xw_Unknown, Xw_Pulldown, Xw_Title, Xw_Work_Space);

type Xw_Scan_Direction is (Xw_Sd_Left, Xw_Sd_Right);

type Xw_Scan_Type is

Page 91




29 October 1990 STARS-RC-00980/001/00

(Xw_St_Positions,
. Xw_St_White_Space,

Xw_St_Eol,

Xw_St_Last);

type Xw_Edit_Type is (Xw_Text_Read, Xw_Text_Append, Xw_Text_Edit);

type Xw_Edit_Result is
(Xw_Edit_Done,
Xw_Edit_Error,
Xw_Edit_Pos_Error,
Xw_Edit_Reject);

type Xw_Verify_Op_Type is (Motion_Verify, Mod_Verify, Leave_Verify);

type Xw_Source_Type is (Xw_String_Src, Xw_Disk_Src, Xw_Prog_Defined_Src);
type Xw_Wrap is (Xw_Wrap_Off, Xw_Soft_Wrap, Xw_Hard_Wrap);

type Xw_Wrap_Form is (Xw_Source_Form, Xw_Display_Form);

type Xw_Wrap_Break is (Xw_Wrap_Any, Xw_Wrap_White_Space);

function Xw_Arrow_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Arrow_Widget_Class, 2301);

function Xw_Bulletin_Board_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Bulletin_Board_Widget_Class, 2302);

function Xw_Bulletin_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Bulletin_Widget_Class, 2303);

function Xw_Button_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Button_Widget_Class, 2304);

function Xw_Cascade_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Cascade_Widget_Class, 2305);

function Xw_Form_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Form_Widget_Class, 2306);

function Xw_Image_Edit_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Image_Edit_Widget_Class, 2307);

function Xw_List_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_List_Widget_Class, 2308);

function Xw_Listrow_Col_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Listrow_Col_Widget_Class, 2309);

function Xw_Manager_Widget_Class return Intrinsics.Widget_Class;
. pragma Builtin (Xw_Manager_Widget_Class, 2310);

function Xw_Menu_Button_Widget_Class return Intrinsics.Widget_Class;

Page 92




29 QOctober 1990

STARS-RC-00980/001/00

pragma Builtin (Xw_Menu_Button_Widget_Class, 2311);

function Xw_Menu_Sep_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Menu_Sep_Widget_Class, 2312);

function Xw_Menubutton_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Menubutton_Widget_Class, 2313);

function Xw_Menumgr _Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Menumgr_Widget_Class, 2314);

function Xw_Menupane_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Menupane_Widget_Class, 2315);

function Xw_Panel_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Panel_Widget_Class, 2316);

function Xw_Popup_Mgr_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Popup_Mgr_Widget_Class, 2317);

function Xw_Popupmgr_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Popupmgr_Widget_Class, 2318);

function Xw_Primitive_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Primitive_Widget_Class, 2319);

function Xw_Push_Button_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Push_Button_Widget_Class, 2320);

function Xw_Row_Col_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Row_Col_Widget_Class, 2321);

function Xw_Sash_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Sash_Widget_Class, 2322);

function Xw_Scroll_Bar_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Scroll_Bar_Widget_Class, 2323);

function Xw_Scrollbar_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Scrollbar_Widget_Class, 2324);

function Xw_Scrolled_Window_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Scrolled_Window_Wilget_Class, 2325);

function Xw_Sraster_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Sraster_Widget_Class, 2326);

function Xw_Static_Raster_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Static_Raster_Widget_Class, 2327);

function Xw_Static_Text_Widget_Class return Intrinsics Widget_Class;
pragma Builtin (Xw_Static_Text_Widget_Class, 2328);

function Xw_Statictext_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Statictext_Widget_Class, 2329);

function Xw_Swindow_Widget_Class return Intrinsics.Vidget_Class;
pragma Builtin (Xw_Swindow_Hidget_Class, 2330);

function Xw_Text_Edit_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Text_Edit_Hidget_Class, 2331);

function Xw_Textedit_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Textedit_Widget Class, 2332);

Page 93




29 October 1990 STARS-RC-00980/001 /00

function Xw_Title_Bar_Widget_Class return Intrinsics.Widget_Class;
. pragma Builtin (Xw_Title_Bar_Widget_Class, 2333);

function Xw_Titlebar_Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Titlebar_Widget_Class, 2334);

function Xw_Toggle Widget_Class return Intrinsics.Widget_Class;

pragma Builtin (Xw_Toggle_Widget_Class, 2335);

-- Using Xw_V_Paned_Widget_Class creates a demand for a procedure
-- called _XtCreateFontCursor, which does not seem to be in any

-- X library (rhp, 5/2/90)

-- Aha! This is apparently a misprint for _XCreateFontCursor (rhp)

-- function Xw_V_Paned_Widget_Class return Intrinsics.Widget_Class;
-- pragma Builtin (Xw_V_Paned_Widget_Class, 2336);

function Xw_Valuator_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Valuator_Widget_Class, 2337);

function Xw_Work_Space_Widget_Class return Intrinsics.Widget_Class;
pragma Builtin (Xw_Work_Space_Widget_Class, 2338);

Ada interface to the widget procedure XwTextClearBuffer
procedure Xw_Text_Clear_Buffer (W : in Widget);
. pragma Builtin (Xw_Text_Clear_Buffer, 2401);

Ada interface to the widget procedure XwTextCopyBuffer
function Xw_Text_Copy_Buffer (W : in Widget) return String;
pragma Builtin (Xw_Text_Copy_Buffer, 2402);

Ada interface to the widget procedure XwTextCopySelection

function Xw_Text_Copy_Selection (W : in Widget) return String;
pragma Builtin (Xw_Text_Copy_Selection, 2403);

Ada interface to the widget procedure XwTextReadSubString

procedure Xw_Text_Read_Sub_String (W : in Widget;
Start_Pos : in Integer;
End_Pos : in Integer;
Target : out String;

Target _Used : out Integer;
Source_Used : out Integer);
pragma Builtin (:w_Text_Read_Sub_String, 2404);

Ada interface to the widget procedure XwTextUnsetSelection
. procedure Xw_Text_Unset_Selection (W : in Widget);
pragma Builtin (Xw_Text_Unset_Selection, 2405);

Page 94




29 October 1990 STARS-RC-00980/001/00

Ada interface to the widget procedure XwTextSetSelection
procedure Xw_Text_Set_Selection (W : 1n Widget;
Left : in Xw_Text_Position;
Right : in Xw_Text_Position);
pragma Builtin (Xw_Text_Set_Selection, 2406);

Ada interface to the widget procedure XwTextReplace

function Xw_Text_Replace (W : in Widget;
Start_Pos : in Xw_Text_Position;
End_Pos : in Xw_Text_Position;
S : in String) return Xw_Edit_Result;

pragma Builtin (Xw_Text_Replace, 2407);

Ada interface to the widget procedure XwTextRedraw
procedure Xw_Text_Redraw (W : in Widget);
pragma Builtin (Xw_Text_Redraw, 2408);

Ada interface to the widget procedure XwTextUpdate
procedure Xw_Text_Update (W : in Widget;
Status : in Boolean);
pragma Builtin (Xw_Text_Update, 2409);

Ada interface to the widget procedure XwTextInsert
procedure Xw_Text_Insert (W : in Widget;
S : in String);
pragma Builtin (Xw_Text_Insert, 2410);

Ada interface to the widget procedure XwTextGetLastPos
function Xw_Text_Get_Last_Pos (W : in Widget) return Xw_Text_Position;
pragma Builtin (Xw_Text_Get_Last_Pos, 2411);

Ada interface to the widget procedure XwTextGetSelectionPos
proceure Xw_Text_Get_Selection_Pos (W : in Widget;
Left : out Xw_Text_Position;
Right : out Xw_Text_Position);
pragma Builtin (Xw_Text_Get_Selection_Pos, 2412);

Ada interface to the widget procedure XwTextSetInsertPos
procedure Xw_Text_Set_Insert_Pos (W : in Widget;
Pos : in Xw_Text_Position);
pragma Builtin (Xw_Text_Set_Insert_Pos, 2413);

Ada interface to the widget procedure XwTextGetInsertPos

Page 95




29 October 1990 STARS-RC-00980/001/00

function Xw_Text_Get_Insert_Pos (W : in Widget) return Xw_Text_Position;
pragma Builtin (Xw_Text_Get_Insert_Pos, 2414);

Ada interface to the widget procedure XwTextSetSource
procedure Xw_Text_Set_Source (W : in Widget;
Source : in Xw_Text_Source_Ptr;
Start_Pos : in Xw_Text_Position);
pragra Builtin (Xw_Text_Set_Source, 2415);

Ada interface to the widget procedure XwAsciiSinkCreate
function Xw_Ascii_Sink_Create
(W : in Widget;
Args : in Xt_Arg_List) return Xw_Text_Sink_Ptr;
pragma Builtin (Xw_Ascii_Sink_Create, 2416);

Ada interface to the widget procedure XwDiskSourceCreate
function Xw_Disk_Source_Create
(W : in Widget;
Args : in Xt_Arg_List) return Xw_Text_Source_Ptr;
pragma Builtin (Xw_Disk_Source_Create, 2417);

Ada interface to the widget procedure XwDiskSourceDestroy
procedure Xw_Disk_Source_Destroy (Src : in Xw_Text_Source_Ptr);
pragma Builtin (Xw_Disk_Source_Destroy, 2418);

Ada interface to the widget procedure XwStringSourceCreate
function Xw_String_Source_Create
(W : in Widget;
Args : in Xt_Arg_List) return Xw_Text_Source_Ptr;
pragma Builtin (Xw_String_Source_Create, 2419);

Ada interface to the widget procedure XwStringSourceDestroy
procedure Xw_String_Source_Destroy (Src : in Xw_Text_Source_Ptr);
pragma Builtin (Xw_String_Source_Destroy, 2420);

Ada interface to the widget procedure XwMoveFocus
procedure Xw_Move_Focus (W : in Widget);
pragma Builtin (Xw_Move_Focus, 2421);

This set of overloaded procedures provides a strongly typed,

Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:
Xw_Alignment

Page 96




29 October 1990 STARS-RC-00980/001/00

Xw_Widget_Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

Xw_Wrap_Break

procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Alignment);

pragma Builtin (Xt_Set_Arg, 2422);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be omne
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget _Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

Xw_Wrap_Break

procedure Xt_Set_Arg (List : in out Xt_Arg_.List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Alignment);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget _Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type

Page 97




29 October 1990 STARS-RC-00980/001/00

Xw_Edit_Result
. Xw_Verify_Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Widget_Type);
pragma Builtin (Xt_Set_Arg, 2423);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be omne
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget_Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify_Op_Type
. Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break

procedure Xt_Set_Arg (List : in out Xt _Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Widget_Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
nf the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget_Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

. Xw_Source_Type
Xw_Wrap

Page 93




29 October 1990 STARS-RC-00980/001/00

Xw_Wrap_Form
Xw_Wrap_Break
piocedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Scan_Direction);
pragma Builtin (Xt_Set_Arg, 2424);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget_Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

Xw_Wrap_Break

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Scan_Direction);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget_Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify_Op_Type
Xw_Source_Type
Yw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;

Page 99




29 QOctober 1990

STARS-RC-00980/001/00

Value : in Xw_Scan_Type);
pragma Builtin (Xt_Set_Arg, 2425);

This set of overloaded procedures provides a strongly typed,
Ad. version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget _Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

Xw_Wrap_Break

procedure Xt_Set_Arg (List in out Xt_Arg_List;

Subscript : in Integer;
Name : in String;
Value : in Xw_Scan_Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget _Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

Xw_Wrap_Break

procedure Xt_Set_Arg (frg : out Xt_Arg;
Name in String;
Value : in Xw_Edit_Type);

pragma Builtin (Xt_Set_Arg, 2426);

This set of overloadad procedures provides a strongly typed,

Page 100




29 October 1990 STARS-RC-009%0/001/00

Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget _Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify _Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Edit_Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget_Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify_Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Edit_Result);
pragma Builtin (Xt_Set_Arg, 2427);

This set of overloaded procedures provides a strongly typed,

Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:
Xw_Alignment

Page 101




29 October 1990 STARS-RC-00980/001/00

Xw_Widget _Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify_Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Edit_Result);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget _Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify_Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Verify_Op_Type);
pragma Builtin (Xt_Set_Arg, 2428);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget _Type
Xwv_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type

Page 102




29 October 1990 STARS-RC-00980/001/00

Xw_Edit_Result
‘ Xw_Verify_Op_Type
Xw_Source_Type
Xu_Wrap
Xw_Wrap_Form
Xw_Wrap_Break

procedure Xt_Set_Arg (List : in out Xt_Arg_List:
Subscript : in Integer;
Name : in String;
Value : in Xw_Verify_ Op_Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget_Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
. Xw_Verify_Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Source_Type);
pragma Builtin (Xt_Set_Arg, 2429);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be omne
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget_Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

. Xw_Source_Type
Xw_Wrap

Page 103




29 October 1990 STARS-RC-00980/001/00

Xw_Wrap_Form

‘ Xw_Wrap_Break
procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Source_Type) ;

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget_Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

. Xw_Wrap_Break
procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Wrap);
pragma Builtin (Xt_Set_Arg, 2430);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget_Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
. procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;

Page 104




e ————————————— |
29 October 1990 STARS-RC-00980/001/00

Name : in String;

’ Value : in Xw_Wrap);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget_Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_ Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

Xw_Wrap_Break

procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Wrap_Form);
‘ pragma Builtin (Xt_Set_Arg, 2431);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw_Alignment

Xw_Widget_Type

Xw_Scan_Direction

Xw_Scan_Type

Xw_Edit_Type

Xw_Edit_Result

Xw_Verify_Op_Type

Xw_Source_Type

Xw_Wrap

Xw_Wrap_Form

Xw_Wrap_Break

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Wrap_Form);

Page 105




e —

.

29 October 1990 STARS-RC-00980/001/00

This set of overlcaded procedures provides a strongly typed,
. Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment
Xw_Widget _Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify_Op_Type
Xw_Source_Type
Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Xw_Wrap_Break);
pragma Builtin (Xt_Set_Arg, 2432);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.

. The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:
Xw_Alignment

Xw_Widget_Type
Xw_Scan_Direction
Xw_Scan_Type
Xw_Edit_Type
Xw_Edit_Result
Xw_Verify_Op_Type
Xw_Source_Type

Xw_Wrap
Xw_Wrap_Form
Xw_Wrap_Break
procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Wrap_Break) ;

end Hp_Widgets;

. with Intrinsics;
with Widget_Package;

Page 106




26 October 1990

package body Hp_Widgets is
use Widget_Package;
use Intrinsics;
use Xt_Ancillary_Types;

procedure Xt_Set_Arg (List

Name
Value
Temp_Xt_Arg : Xt_Arg;
begin

STARS-RC-00980/001/00

: in out Xt_Arg_List;
Subscript :
: in String;

: in Xw_Alignment) is

in Integer;

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set_Arg;

procedure Xt_Set_Arg (List

Subscript
Name
Value
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name,

: in out Xt_Arg_List;

: in Integer;

: in String;

: in Xw_Widget_Type) is

Value);

Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set_Arg;

procedure Xt_Set_Arg (List

Subscript :
Name
Value
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name,

: in out Xt_Arg_List;

in Integer;

: in String;

in Xw_Scan_Direction) is

Value);

Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set_Arg;

procedure Xt_Set_Arg (List

Subscript :
Name
Value
Temp_Xt_Arg : Xt_Arg;
begin

: in out Xt_Arg_List;

in Integer;

: in String;
: in Xw_Scan_Type) is

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);

end Xt_Set _Arg;

Page 107




29 October 1990 STARS-RC-00980/001/00

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Edit_Type) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Edit_Result) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Verify_Op_Type) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Source_Type) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Wrap) is

Temp_Xt_Arg : Xt_Arg;

Page 108




29 October 1990 STARS-RC-00980/001/00

begin
Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Xw_Wrap_Form) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name 1 in String;
Value : in Xw_Wrap_Break) is
Temp_Xt_Arg : Xt_Arg;
begin

Xt_Set_Arg (Temp_Xt_Arg, Name, Value);
Put (List, Subscript, Temp_Xt_Arg);
end Xt_Set_Arg;

end Hp_Widgets;

8 More Information About Some Ace Features

This section provides a detailed look at some Ace ADTs, to help the user become familiar
with the functionality they provide.

8.1 Xt Toolkit Interface

The Xt toolkit is a library of functions that provide an object-oriented approach to the
X windowing system. The toolkit consists of a set of basic procedures, called intrinsics
and a set of facilities for creating window objects called widgets. Widgets are individual
representatives of widget classes. While the Xt toolkit permits the creation of new widget
classes, many sets of widget classes are already available in the public domain.

ACE provides an Ada interface to a subset of the Xt intrinsic functions and to a complete
set of widget classes, namely. those offered in the Hewlett-Packard widget set. This section

Page 109




29 October 1990 STARS-RC-00980/001/00

is not intended as a detailed description of either the Xt intrinsics or the Hewlett-Packard
widget set, for which appropriate documentation is available from the respective distributors.
This section describes only those features of the ACE interface that differ from a compiled
interface to these libraries.

8.1.1 Xt Prototyping Sessions

The Xt toolkit assumes that an application will be driven entirely from the X windows that it
creates. Each Xt application consists, therefore, of two distinct parts. The initialization code
creates the application’s windows, panels, and pushbuttons. After the initialization code has
run, control is given to an endless event-handling loop. The event loop responds to events
such as pointer motions and keyboard input by calling user-defined response code through
a mechanism known as callback. In the Xt toolkit’s view of an application, this process
continues as long as the application. That is, when the windowing part of the application is
finished, so is the application program itself.

In order to provide this view of an application without requiring ACE to be restarted, the
ACE interface provides a means of creating separate Xt sessions. Each Xt session appears
to the Xt toolkit as a new application program.

8.1.1.1 Starting an Xt Prototyping Session. To begin a new Xt session, the ACE
user should use the routine Xt_Initialize. When the Xt session begins, ACE will signal the
user by changing its prompt from

ACE>
to
ACE Xt>

Calling Xt_Initialize not only begins an Xt session, but also performs the toolkit functions
associated with this procedure. For this reason, it is an error to call this procedure once the
Xt session has started, since this would appear to the Xt toolkit as if an application were
trying to initialize twice, a violation of the Xt toolkit’s rules.

Also, if the Xt_Initialize procedure is called from some other procedure, the code following
it will be interpreted twice, once in the Xt session, and again after the Xt session is finished.
If the following code contains certain calls to the Xt toolkit, the toolkit’s error action, taken
when these calls are performed outside the Xt prototyping session, can cause ACE to exit.
It is therefore a good practice not to call this procedure as part of some other procedure
(unless calling Xt_Initialize is the only instruction, as shown in the example below).

The Ada specification of the .Xt_Initialize procedure is given below.

Page 110




29 October 1990 STARS-RC-00980/001/00

procedure Xt_Initialize

. (Out_Value : out Intrinsics.Widget;
Name : 1n String;
Classname : in String;
Urlist : in X_Windows.Resource_Manager.Xrm_Option_Desc_List;
Num_Urs : in Intrinsics.Cardinal;
Argc : in out Intrinsics.Cardinal;
Argv : in out Renamed_X1lib_Types.Argv_Type);

After the Xt_Initialize procedure has been called, the Out_Value parameter will contain the
value of the shell widget, which is used as the ultimate ancestor for all other widgets created
during the Xt prototyping session.

Because the Xt_Initialize procedure requires a complex set of arguments, it will be convenient
to create an argument-free procedure that calls it. For the reasons given above, the call to
Xt_Initialize should be the only instruction in such a procedure. A typical version of such a
procedure is shown below.

procedure Start_Xt is

Argc : Intrinsics.Cardinal := 0;
Argv : Renamed_X1lib_Types.Argv_Type := 0;
begin
. Xt_Initialize (Shell_Widget, "", "",

Widget _Package.Null_Xrm_Option_List, O,
Argc, Argv);
end Start_Xt;

Currently, ACE does not provide any means of creating objects of either the type Xrm_Option_Desc_L.
or the type Argv_Type. Therefore, the values shown in this example for the parameters [ rlist.
Num_Urs, Arge, and Argv are the only values allowable.

8.1.1.2 Finishing an Xt Prototyping Session To end an Xt prototyping session, the
user should cause ACE to interpret the instruction

exit ACE;

That is, the same instruction that is normally used to end an ACE run will also end an Xt
prototyping session. When used from such a session, however, ACE will not end, but will
return to its normal mode of operation, with its original user prompt.

This instruction will normally be part of a callback procedure. A typical means of ending an
. application that uses the Hewlett-Packard widget set is to incorporate a pushbutton widget
whose selection callback is a procedure that performs this instruction.

Page 111




29 October 1990 STARS-RC-00980/001/00

In the current version of ACE, any callback routine that fails to execute properly. that is.
any routine that raises an exception, will also cause the Xt prototyping session to end.

8.1.2 Xt Argument Lists

Most of the Xt routines are parameterized by lists of pairs, with each pair consisting of a
resource name and a resource value. Because ACE does not support arrays, special routines
are provided to manipulate such lists. The Ada specifications of these routines are shown
below.

procedure Create (Arg_List : out Xt_Arg_List;
First : in Integer;
Last : in Integer);

procedure Put (Arg_List : out Xt_Arg_List;
Subscript : in Integer;
Value : in Xt_Arg);

function Get
(Arg_List : in Xt_Arg_List;
Subscript : in Integer) return Xt_Arg;

function Get (Arg_List : in Xt_Arg_List;
First : in Integer;
Last : in Integer) return Xt_Arg_List;

The Create procedure reserves space for an argument list and assigns upper and lower bounds.
The Put procedure assigns a value to a specified member of an argument list. The Get
function with a single Integer parameter returns the value of a member of an argument list,
while the Get function with two Integer parameters returns a specified slice.

To create values of the type Xt.Arg suitable for inclusion in argument lists, ACE provides the
Xt toolkit procedure Xt_Set_Arg. Since the elements of argument lists are of many different
types, the Xt_Set_Arg procedure is overloaded many times. All of its overloaded versions,
however, conform to one of two basic patterns.

In the first pattern, Xt_Set_Arg is used to create a single value of type Xt_Arg, as shown

below.

procedure Xt_Set_Arg (Arg : out Xt_Arg;
Name : in String;
Value : in Some_Value_Type);

Page 112




e —E——————— e . ]

29 October 1990 STARS-RC-00980/001/00

In the second pattern, an argument value is built and inserted directly into an argument list,

. as shown below.

procedure Xt_Set_Arg (List : in out Xt_Arg_List;
Subscript : in Integer;
Name : in String;
Value : in Some_Value_Type);

The reader should consult Xt toolkit documentation for the allowable resource names and
value types.

8.1.3 Xt Callbacks

The Xt toolkit supports two kinds of user response procedures, called callback procedures
and action procedures. From the programmer’s point of view, there is little difference be-
tween these two kinds of procedures. Both kinds are registered with the toolkit during the
initialization part of an Xt application and both are called by the event-handling loop in
response to some set of events.

8.1.3.1 Callback Procedures. Callback procedures are associated with specific call-
. back points provided by each widget class. Callback procedures are registered through the
procedure Xt_Add-Callback, whose Ada specification is given below.

procedure Xt_Add_Callback (W : in Intrinsics.Widget;
Name : in String;
Callback_Proc : in System.Address;
Closure : in Integer);

To obtain a value for the Callback.Proc parameter, the ACE user should use the function
Callback_Procedure_Pointer, which accepts a callback procedure’s name, in the form of a
string, and returns a value that ACE can use as the callback procedure’s address. The
Closure parameter is an arbitrary value that will be passed to the callback procedure when
it is called. The typical use of this parameter is to permit a callback routine to be registered
more than once and to distinguish the two registrations.

Every callback procedure must conform (except for the names of the procedure and its
parameters) to the following specification.

procedure Typical_Callback (W : in Intrinsics.Widget;
. Client_Data : in Integer;
Call_Data : in Integer);

Page 113




29 October 1990 STARS-RC-00980/001/00

When the procedure is called, the second parameter (Client_Data) will be a copy of the
Closure parameter given at registration. The meaning of the thiid parameter (Call_Data) is
defined by each widget class.

Callback procedures should be either independent compilation units or should be at the top
level of some package. [hat is, callback procedures should not be nested inside other proce-
dures. The results of registering and invoking nested callback procedures are unpredictable.

8.1.3.2 Action Procedures. Action procedures can be associated with various events,
such as pointer motions and keyboard input, that are not specific to a single widget class.
The use of action procedures involves two distinct steps. First, the procedures are registered
with the Xt toolkit by using the Xt_Add_Actions procedure. The Xt_Add-Actions procedure
takes a single argument of type Xt_Arg_List. The elements of this list consist of pairs whose
first element is a string containing an arbitrary symbolic name for the action procedure and
whose second element is a procedure pointer.

To obtain values for the required procedure pointers, the ACE user should use the function
Action_Procedure_Pointer, which accepts an action procedure’s name, in the form of a string,.
and returns a value that ACE can use as the action procedure’s address.

Every action procedure must conform (except for the names of the procedure and its param-
eters) to the following specification.

procedure Typical_Action (W : in Intrinsics.Widget;
E : in X_Windows.Events.Event;
Args : in X_Windows.String List);

Since the current version of ACE does not provide support for manipulating the Fvent and
String_List types, the second and third parameters are not currently useful, but they must
nevertheless be declared.

After symbolic names have been assigned to action procedures by Xt_Add_Actions, these sym-
bolic names are used by an Xt toolkit facility called translation, whose task is to translate the
symbolic names of the action procedures and the (predefined) symbolic names of events into
the proper widget structures. The relevant Xt routines that cause these things to happen are
Xt_Parse_Translation_Table, Xt.Override_Translations, and Xt_Augment_Translations. For
further information on these routines, the user should consult Xt toolkit documentation,
since ACE does not impose any of its own constraints on their use.

Action procedures should be either independent compilation units or should be at the top
level of some package. That is, action procedures should not be nested inside other proce-
dures. The results of registering and invoking nested action procedures are unpredictable.

For implementation reasons, no more than thirty-two action procedures may be registered
by any one Xt prototyping session. Calling the function Action_Procedure_Pointer more than

Page 114




29 October 1990 STARS-RC-00980/001/00

thirty-two times in one Xt prototyping session will produce an error message and will not
. register the action procedure. There is no similar limit on the number of callback procedures.
however.

8.1.3.3 Callback Interpretation. Because callback and action procedures are actually
interpreted by ACE, there is more flexibility in ACE callbacks than in conpiled code. In par-
ticular, the parameter supplied to the Callback_Procedure.Pointer and Action_Procedure_Pointer
functions is not confined to simply the names of valid callback and action procedures, but
may be any valid seqence of Ada statements ending with such a name.

Since this has no equivalent in compiled ccde, the ACE user should use this feature very
sparingly; otherwise, the eventual transition to a compiled application will be more difficult.

This feature does have one important application in ACE, however. It permits input events
to be associated with ACE’s debugging pragmas. For example, if the ACE user wants a
pushbutton that will cause ACE's trace facility to start, he can use

Xt_Add_Callback
(Button_Widget, Xt_N_Select,
Callback_Procedure_Pointer ("pragma TRACE (On); No_Op"), 0);

. where No_Op is a callback procedure that does nothing.

8.1.3.4 Prototyping Callbacks. The usual method for prototyping Xt code in ACE
will be to test each version of the code in a separate prototyping session. Because ACE call-
backs are interpreted, however, callback code can be changed without ending the prototyping
session.

This does require special care on the part of the ACE user. In a usual Xt application, the
initialization part of the application ends by calling the procedure X¢_Main_Loop, which is
available in the ACE interface. This procedure is an endless event-handling loop, which does
not end until the application itself is finished.

The following procedure, which performs exactly the same functions as Xt_Main_Loop, can
also be entered in the ACE Xt interface.

procedure My_Main_Loop is

E : Event;
C : Intrinsics.Xt_App_Context := Xt_Default_App_Context;
begin
loop
. E .= Xt_App_Next_Event (C);

Page 115




29 October 1990 STARS-RC-00980/001/00

Xt_Dispatch_Event (E);
end loop;
end My_Main_Loop;

The advantage of using such a loop instead of Xt_Main_Loop, however, is that the routin=
shown above can be interrupted and resumed. While this loop is running, the ACE interrupt
key will cause it to stop, and the ACE Continue procedure will cause it to resume.

While the loop is interrupted, the user is free to change the contents of a callback or action
procedure. Thus, such procedures can be altered without ending the prototyping session.

The user should be prepared for some peculiar effects when using this facility. While the
event loop is interrupted, nothing will be handling the events for the Xt application. This
means, for example, that if the application window is covered and re-exposed, it will not be
refreshed until the loop resumes.

The user should also be aware that the Xt_App_Next_FEvent function does not return until
an event occurs. In practice, this means that the ACE interrupt key will not take effect
until after some event occurs in the Xt application. The typical sequence of operations for
interrupting this loop, therefore, will be:

Move the mouse pointer to the ACE window

Enter the interrupt key

Move the mouse pointer to an Xt application widget (to cause an event)

Return the pointer to the ACE window (to enter new callback code)

8.1.4 Transition to Compiled Code

The purpose of the ACE interface to the Xt toolkit is to permit the prototyping of applica-
tions that will eventually be compiled. For this reason, great care has been taken to make
the ACE interface nearly the same as the compilable Ada bindings to the Xt toolkit. Once a
given application has been successfully prototyped in ACE, it should be possible to compile
the same code with very few changes. A few changes will be necessary, however, which are
noted below.

o Procedure Pointers

References to the functions Callback_Procedure.Pointer and Action.Procedure.Pointer
should be replacod by an appropriate compilable means of obtaining a procedure
pointer. For some Xt bindings, this will be the Ada ADDRESS attribute, while others
will require procedure pointers to be obtained by generic instantiation.

Page 116




29 October 1990 STARS-RC-00980/001/00

As noted above, there is no compilable equivalent to ACE’s ability to create procedure
pointers from a sequence of Ada statements. Parts of the application that use this
ability must be ecither eliminated or rewritten.

o Array References

The use of ACE procedures that eliminate array references should be replaced by the
appropriate subscripted expressions or slices.

In particular, the overloadings of the Xt_Set_Arg procedure that take a list and a
subscript as separate arguments will not be available in compilable Xt bindings; these
should be replaced by a single subscripted argument.

Also, the Get function that returns a slice of an Xt_Arg_List will not be available, and

should be replaced by array slice expressions. Such slices will usually be arguments to
the procedures Xt_Add_Actions, Xt_Create_Widget, and Xt_Create_Managed_Widget.

e Ending the Application

Since the statement ezit A CE; has no equivalent in compiled Ada, it must be replaced
by some other means of ending the application. This can take the form of interfacing
to the host computer’s process termination routine, or can be implemented by raising
an unhandled exception.

8.1.5 A Small Example

The following is an example of how the ACE Xt interface might be used. Once this example
has been entered, it is run in the following way:

e Run the procedure Start_Xi.
¢ When the prompt changes to the Xt prototyping prompt, run the procedure Aloha.

o The screen should now show a small panel with two buttons labelled "Hello” and
"Goodbye”. Pressing the left mouse button with the pointer in the "Hello” button will
cause the application to print "Hello”; pressing the "Goodbye” button will cause the
application to print ”Goodbye” and end the prototyping session.

Not all of the Ada use statements shown below are actually needed to run this example.
They will be required, however, to extend it.

use System;
use Strings;
use Text_Io;
use X_Windows;
use Fonts;

Page 117




29 October 1990

use Events;

use Resource_Manager;
use Renamed_Xlib_Types;
use Intrinsics;

use Xt_Ancillary_Types;
use Widget_Package;
use Xt_Stringdefs;

use Hp_Widgets;

Shell_Widget : Widget;

procedure Start_Xt 1is

Argc : Cardinal := 0;

Argv : Argv_Type := 0;
begin

Xt_Initialize (Shell_Widget,
end Start_Xt;

procedure Message (W

Client_Data :

Call_Data
begin
if Client_Data = 0 then
Put_Line ("Hello");
else
Put_Line ("Goodbye");
exit Ace;
end if;
end Message;

procedure Aloha is

*—

STARS-RC-00980/001/00

we o owue o Nyll_Xrm_Option_List, 0, Argc, Argv);

: in Widget;
in Integer;
: in Integer) is

My_Xt_Arg_List : Xt_Arg_List;

Panel : Widget;

Buttonil : Widget;

Button2 : Widget;
begin

Create (My_Xt_Arg_List, 1, 20);

Xt_Create_Managed_Widget (Panel, "", Xw_Row_Col_Widget_Class,
Shell_Widget, Null_Xt_Arg_List);

Xt_Set_Arg (My_Xt_Arg_List, 1, Xt_N_Label, "Hello");

Xt_Create_Managed_Widget

(Buttoni, "", Xw_Push_Button_Widget_Class, Panel,

Get (My_Xt_Arg_List, 1,

1)),

Page 118




——
29 October 1990 STARS-RC-00980/001/00

Xt_Add_Callback (Buttonl, Xt_N_Select,

. Callback_Proccdure_Pointer ("Message"), 0);
Xt_Set_Arg (My_Xt_Arg_List, 1, Xt_N_Label, "Goodbye");
Xt_Create_Managed_Widget

(Button2, "", Xw_Push_Button_Widget_Class, Panel,
Get (My_Xt_Arg_List, 1, 1));
Xt_Add_Callback (Button2, Xt_N_Select,
Callback_Procedure_Pointer ("Message"), 1);
Xt_Realize_Widget (Shell_Widget);
Xt_Main_Loop;
end Aloha;

8.2 The Key-Bindings Package

The package, Key_Bindings, provides the user with Ada routines to edit command line
input, and recall earlier lines. It also supplies the mechanism to invoke a specified Ada
procedure by a user designated keystroke. These capabilities can greatly enhance the day-
to-day environment of a development programmer.

Ace is able to provide these capabilities because it now maintains a log of the input (within
the bounds of the user specified limit), which is available to the history routines declared
in Key_ Bindings, and finds the binding associated with each keystroke (or sequence of

. keystrokes) and calls the routine indicated by the binding. Usually that will be Do_Self_Insert.
But there are many other things one might want to do, and the code to accomplish some of
those things is already written, and available to the user at the touch of a key, for the paltry
price of a call to Make_Binding.

8.2.1 Making Bindings

The package Key.Bindings contains the procedures that will associate a routine with a
keystroke, or sequence thereof, and also all the empowered binding choices (command names).
When Ace is started a set of default bindings is installed. Each printable ASCII character
(from space to tilde) is bound to Do_Self_-Insert. Carriage return and line feed are bound to
Line_Separator. The user’s environment is checked to find out which key the user normally
uses for deleting characters and that key is bound to Delete.

It is necessary to always have at least one character bound to Line.Separator, and the
Make_Binding procedures enforce this rule by refusing to cooperate with a request to change
the binding of the last thing currently bound to Line_Separator. This requirement exists
because the Line_Separator binding is the only signal to Ace that a line of input has been
completed.

. [n order to obtain the services of any of the other provided routines the user must make the
appropriate call to Make_Binding. The specifications for the two versions of Make_Binding

Page 119




29 October 1990 STARS-RC-00980,001/00
. are:
procedure Make_Binding (C : in Character;
Binding : in Commands;

Optional_String : in String := "");

procedure Make_Binding (Char_Seq : in String;
Binding : in Commands;
Optional_String : in String := "");

The first parameter of these procedures should be the value transmitted when the relevant
key (or sequence) is struck.

The legal choices for the Binding parameter are:

Line_Separator
Interpret_String
History_Back
History_Forward
Move_Left
Move_Right

. Beginning_Of_Line

' End_Of Line

Start _Of_History
End_Of_History
Delete
Delete_This_Char
Show_History
Show_History _Limit
Set_History_Limit
Kill_Line
Quoted_Insert
Refresh_Current_Line
Refresh_Current.Line_And _Prompt
Self Insert

The third parameter is needed only when the second parameter is set to Interpret_String,
which is explained below. Please note that it is meaningless to bind a function or procedure
with parameters to a keystroke. because there is no way to communicate the return value
to other parts of the code. nor to pass parameter values to the procedure. However. such
routines can be manipulated through the use of Interpret_String.

Page 120




—

29 October 1990 STARS-RC-00980/001/00

8.2.1.1 Using [nterpret_String. In addition to the provided routines the user can write
Ada procedures of their own and bind them to a key via the Interpret_String procedure. To
use this facility, the user should simply provide the procedure to be invoked and a binding
for Interpret_String. For example:

Make_Binding (Ascii.Esc & "[2262",
Key_Bindings.Interpret_String,
"My_Procedure;");

The third parameter is a string containing an Ada statement, exactly as it would appear
in a unit of Ada code. Usually this statement will be a call to some routine, but it can be
more. Some possible values are:

e “Flag := Some_Function;”

e “Some_Procedure (Argl, Arg2);”

e “Var := 0; Other_Procedure; Other_Var := Something;”
Any variables appearing in such a string must be global and must be declared before the
bound key is struck. This hypothetical routine, My_Procedure, in general, is just like any
other routine written in Ace. However, its [/O must be done according to the guidelines
given below.

8.2.1.2 Intermixing I/O with Key_Bindings Routines. If the user wishes to include
screen or keyboard oriented 1/O, they may use Tert.lo. However, the programmer must
keep in mind that their procedure will be executed within the internal environment of Ace
which has put the terminal in raw mode. Therefore it is necessary to place calls around
the Tezt_lo routines, to reset the terminal before Tezt_lo is used, and then to set it back
again before returning to Ace’s control. The same is true when using Key_Bindings routines,
which assume that they know what the current line looks like and that the terminal is in
raw mode.

In addition to setting the terminal back to raw mode, the user must always call either
Refresh_Current_Line_And_Prompt or Rewrite_Current_Line_And_Prompt, when entering the
Ace_.Command_Line_Input or Key_Bindings environment. This routine will restore the screen
so that the active line on the screen looks as it did before the user hit the key that caused
My_Procedure to be invoked, (or restore a different value as the current line of input if the
programmer prefers). The programmer should be certain that the cursor is positioned at
the beginning of a line before making the call to restore the line. This is because, currently,
there is no way for the Key_Bindings routines to clear away output they didn’t write, so you
must be at the beginning of a line in order to ensure that the restored line looks ok. In a
later release this requirement should go away.

The prohibition against making calls to Tert_lo routines, while in the cultural context of
Ace or the KNey_Bindings package. also applies in reverse: Ney-Bindings routines (other than
Terminal_Set) should not be called in the Tert.lo (cooked) environment. This is because

Page 12}




29 October 1990 STARS-RC-00980/001/00

those routines assume they know how the active line on the screen looks. To summarize.
calls to Tert_lo routines can bhe intermingled with KNey_Bindings calls just so long as:

e you are in cooked mode when making a Texzt.lo call
e you are in raw mode when returning to Ace or when making a Key_Bindings call

e if the terminal is reset to cooked mode, then a call to restore the active line on the
screen must be made, after Terminal_Set, and before any Key_Bindings call or return
to Ace

When control enters My_Procedure, the terminal will be in raw (set) mode. And after a call to
any of the four Refresh/Rewrite procedures, the terminal will be in raw mode. To explicitly
flip from one mode to the other, call Terminal_Set to gain the Ace_Command_Line_Input or
Key.Bindings environment, or Terminal_Reset to prepare for calls to Tezt_lo routines.

Of course if My_Procedure doesn’t have any screen output or keyboard input then the terminal
will stay set and Key_Bindings routines can be freely interspersed with other Ada code. All
the Key_Bindings routines listed in the Bindings section can be used in My_Procedure, with
the single exception of Interpret_String.

8.2.2 An Example for Interpret_String

Here is an example of what My_Procedure might look like:
with Text_Io;

with Ace_Integer_Io;

with Strings;

with Key_Bindings; use Key_Bindings;

-- This procedure copies the input typed so far,
-- a user supplied number of times

procedure My_Procedure is

Line : String (1 .. 1024);
Length : Natural;
The_Integer : Integer := - 1;
I : Integer := 1;

begin

Do_Get_Current_Line (Line, Length);

Do_Kill_Line;

Terminal _Reset; -- go to cooked mode

Text_Io.Put ("How many times should this pattern be repeated?");

Page 122




T————.

29 October 1990 STARS-RC-00980/001/00
Ace_Integer_Io.Get (The_Integer);
. Terminal_Set; -- go to raw

-- the carriage return the user ended the integer with
-- prepares us for the insert
while I <= The_Integer loop
Do_Insert_String (Strings.Slice( Line, 1, Length));
I :=1+1;
end loop;
end My_Procedure;

9 Supported Ada Features

The command language of ACE is Ada. This section describes the language features of
Ada that are currently supported by the ACE prototype. (Section 5 described the pragmas
supported by ACE.) The Ada features implemented in the prototype version of ACE are
those that are necessary to make use of Ada as a command language, those that are needed
to provide a basis for the construction of abstract data types within the environment, and
those that together form a logical collection of Ada functionality. This feature set includes
packages, subprograms, subprogram derivation and overload resolution, assignment, condi-
tional, iteration, termination, and return statments, and scalar types with type and subtype

. declarations.

The following list summarizes the Ada language features currently implemented in ACE.
The numbering scheme corresponds to that of the Ada Reference Manual. Qualifications
on the level of support, if any, are given following the appropriate section. Support is not
provided for those sections of the reference manual that are omitted from this list.

As development is continuing for ACE, an explicit “Not Yet Supported” message is produced
for those Ada features that are still being developed. However, a range of possibilities exist for
the outcome when an incomplete feature of Ada within ACE is invoked. These possibilities
include the generation of an Internal Error message, no error message or result due to the
fact that the statement is parsed successfully and/or discarded, and successful execution of
some portion of a partially implemented Ada feature. The following list should be consulted
to verify that only supported features of Ada have been exercised.

Ada Language Reference Manual Sections
supported by ACE

Page 123




O R R R EEEEEII———.
29 October 1990 STARS-RC-00980/001/00

2. Lexical Elements

2.1 Character Set

2.2 Lexical Elements, Separators, & Delimiters
2.3 Identifiers

2.4 Numeric Literals

2.4.1 Decimal Literals

2.4.2 Based Literals

2.5 Character Literals

Partial support for Character Literals is provided

2.6 String Literals

Partial support for String Literals is provided

2.7 Comments

2.8 Pragmas

2.9 Reserved Words

3. Declarations & Types

3.1 Declarations

3.2 Objects & Named Numbers
3.2.1 Object Declarations

3.3 Types & Subtypes

3.3.1 Type Declarations

No support for incomplete_type_definition and private_type_definition delcarations

3.3.2 Subtype Declarations

No support for constraints

Page 124




29 October 1990 STARS-RC-00980/001/00

3.4 Derived Types

No support for constraint portion of subtype_indication

3.5.1 Enumeration Types

No support for character_literal as enumeration literal
No support for overloaded enumeration literals

3.5.3 Boolean Types
3.5.4 Integer Types

Support only for predefined Integer

3.6.3 The Type String

Not supported as a one-dimensional array;
Temporarily implemented as a developer’s string type—Ace_String

3.9 Declarative Parts

4. Names & Expressions

4.1 Names

4.2 Literals

4.4 Expressions

4.5 Operators & Expression Evaluation

4.5.1 Logical Operators & Short-circuit Control Forms

Short-circuit control forms (and then, or else) not yet supported

4.5.2 Relational Operators & Membership Tests

Membership tests (in) not vet supported




29 October 1990 STARS-RC-00980/001/00

4.5.3 Binary Adding Operators

4.5.4 Unary Adding Operators

4.5.5 Multiplying Operators

4.5.6 Highest Precedence Operators

4.6 Type Conversions

4.9 Static Expressions & Static Subtypes
4.10 Universal Expressions

Partial support for universal_integer

5. Statements
5.1 Simple & Compound Statements - Sequence of Statements

No support for statement label

5.2 Assignment Statement
5.3 If Statement
5.4 Case Statement

others, list of choices not yet supported
5.5 Loop Statement
for iteration scheme not yet supported

loop simple name not yet supported

5.7 Exit Statement

loop name not yet supported

Page 126




29 October 1990 STARS-RC-00980/001/00

5.8 Return Statement

6. Subprograms

6.1 Subprogram Declarations
6.2 Formal Parameter Modes
6.3 Subprogram Bodies

Exceptions not yet supported, except for exception declarations

6.3.1 Conformance Rules

Legal variations in subprogram conformance not yet supported (numeric literals, simple vs.
expanded name, string literal as operator symbol)

6.4 Subprogram Calls

Named association not yet supported

6.4.1 Parameter Associations
6.5 Function Subprograms
6.6 Parameter & Result Type Profile - Overloading of Subprograms

Complete overload resolution not vet supported (e.g. overloaded subprogram where an actual
parameter is also overloaded. overloaded functions that differ only in return type)

6.7 Overloading of Operators

Check that proper number of parameters are given for the overloaded operator symbol used
as a function designator not yet supported

Page 127




29 October 1990

7. Packages

7.1 Package Structure

7.2 Package Specifications & Declarations
7.3 Package Bodies

ezception part of a package not yet supported

8. Visibility Rules

Partial support of expanded names is provided

8.1 Declarative Region

Declarative blocks are partially supported

8.2 Scope of Declarations

8.3 Visibility

8.4 Use Clauses

8.6 The Package Standard

8.7 The Context of Overload Resolution

Partial support for overload resolution is provided

Page 128

STARS-RC-00980/001/00




29 October 1490 STARS-RC-00980/001/00

' 10. Program Structure & Compilation Issues
10.1 Compilation Units - Library Units
10.3 Order of Compilation
10.5 Elaboration of Library Units
10.6 Program Optimization
14. Input-Output
14.1 External Files and File Objects
14.3 Text Input-Output
14.3.1 File Management
14.3.2 Default Input and Output Files
14.3.3 Specification of Line and Page Lengths
14.3.4 Operations on Columns, Lines, and Pages
. 14.3.5 Get and Put Procedures
14.3.6 Input-Output of Characters and Strings
14.3.7 Input-Output for Integer Types

Support for the predefined type Integer provided by the ACE package Ace_Integer_lo

14.3.10 Specification of the Package Text_IO
14.4 Exceptions in Input-Output

Exceptions not supported, except for expection declarations

14.5 Specification of the Package IO_Exceptions

Exceptions not supported. except for expection declarations

Page 129




29 October 1990 STARS-RC-00980/001/00

10 Examples

This section provides some condensed examples of interactive sessions with ACE. These
examples include illustrations of Ada being used as an interactive command language, ma-
nipulating Ada subprograms and packages as data, and interfacing with the underlying host
operating system. The use of the abstract data types described in previous sections, along
with the Ada statements supported by this ACE prototype, are illustrated in these examples.

10.1 Interactive Ada Example

% ACE
Ada Command Environment; Revision: 6.0 Date: 89/12/14 14:51:30

Processing environment definition...

ACE>

ACE> -- EXAMPLE INTERACTIVE ACE SESSION

ACE> -- This is a simple example of the development of Ada subprograms
ACE> -- that shows the use of ACE for interactive development.

ACE> -- This example makes use of the packages Text_IO and
ACE> -- ACE_Integer_IO of the ACE environment. It also shows examples

ACE> -- of declarations, procedures, functions, overload resolution,
ACE> -- the if statement, loop statement, return statement, assignment
ACE> -- statement, use statement and exit statement, and comments.
ACE>

ACE> use text_io;
ACE> use ace_integer_io;
ACE>
ACE> -- Develop a Put_Line routine for Integers
ACE> procedure Put_Line (Item : in Integer) is
| begin
| Put (Item);
| New_Line;
| end Put_Line;

ACE> i : integer;
ACE> i := 100;
ACE> Put_Line (i);

100
ACE>
ACE>
ACE> -- Develop a simple Put routine for Booleans
ACE> procedure Put (Item : in Boolean) is
| begin

| Put (Boolean’Image(item));

Page 130




29 October 1990 STARS-RC-00980/001/00

| end Put;

ACE>
ACE> b : boolean := false;
ACE> Put (b); New_Line;
FALSE
ACE>
ACE> -- Develop a routine to determine whether a number is prime
ACE> function Is_Prime (n : in integer) return Boolean is

local : integer := 3;

begin
if n rem 2 = O then
return False;
end 1if; —

I

|

|

|

|

|

I while local ** 2 <= n loop
l if n rem local = Q0 then
| return False;

| end if;

] local := local + 2;

| end loop;

|

|

]

return True;

end Is_Prime;
ACE>
ACE> put (Is_Prime (7)); New_Line;
TRUE
ACE> put (Is_Prime (143)); Newv_Line;
FALSE
ACE>
ACE>
ACE> exit ace;
Exiting ACE

10.2 Manipulating Ada Components

% ACE
Ada Command Environment; Revision: 6.0 Date: 89/12/14 14:51:30

Processing environment definitionm...

ACE>

ACE> -- Example of iterative development of an Ada subprogram
ACE> -- followed by incorporation of the subprogram into a
ACE> -- package that is stored to an external file.

ACE>

Page 131




29 October 1990 STARS-RC-00980/001/00

ACE> -- Develop a Factorial routine
ACE> function Fact (n : in integer) return integer is
begin
if n = 0 then
return 1,
else

|
I
!
|
I -~ >>> ERROR: will type + rather than * <<<
] return n + fact (n-1);

| end if;

| end;

ACE>

ACE>

ACE> put (fact (4));

Error: could not find a valid subprogram specification: put
ACE>

ACE> -- The above error is due to the fact that we have not yet
ACE> -- acquired direct visibility of the Put operation from the
ACE> -- package Ace_Integer_Io within Text_Io.

ACE>

ACE> -- Use these packages

ACE> use text_io;
ACE> wuse ace_integer_io;

ACE>
ACE> put (fact (4)); New_Line;
11
ACE>
ACE> -- Fact produces an erroneous result.
ACE> -- Invoke the edit and re-interpret ADT to fix the
ACE> -- erroneous statement in the Fact function.
ACE>

ACE> edit_and_interpret ('"fact");
Spawning a window for editing /sun/ace/src/fact.tmp

-- At this point, the editor is brought up and the
-- "+" is changed to a "*". The changes are written
-- out and the editor is terminated.

ACE> -- Display the revised Fact function
ACE> 1list ("fact", both);

function fact (n : in integer) return integer;
-- Form => " 819"

function fact (n : in integer) return integer is
-- Form => " 819"

begin

Page 132




29 October 1990 STARS-RC-00980/001/00

if (n = 0) then
return 1;
else
return (n * fact({(n - 1)));
end if;
end fact;

ACE> Put (Fact (4)); New_Line;

24
ACE>
ACE> Put (Fact (5)); New_Line;
120
ACE> -~
ACE> -- Fact routine is now working.
ACE> -- Define a package into which Fact will be placed.
ACE>
ACE> package Math_Routines is
| end;
ACE>
ACE>
ACE> -- Using the Program_Unit abstract data types and operations,
ACE> -- define a package object and a subprogram object.
ACE>

ACE> package_object : package_type;
ACE> function_object : subprogram_type;

ACE>

ACE> -- Associate the package object with Math_Routines;
ACE> -- associate the function object with Fact-

ACE>

ACE> open (package_object, out_prog_unit, "Math_Routines");
ACE> open (function_object, in_prog_unit, "Fact");

ACE>

ACE> -- Place the function object into the package object,
ACE> =-- with the implementation of the function being placed
ACE> =-- in the body of the package and visible in the package
ACE> -- specification.

ACE>

ACE> put (function_object, package_object, in_body, visible);
ACE>

ACE> -- Display the package object, both spec and body

ACE>

ACE> 1list (package_object, both);

package math_routines is

-- Form => " 825"

Page 133




29 October 1990 STARS-RC-00980/001/00

. function fact (n : in integer) return integer;

end math_routines;
package body math_routines 1is

function fact (n : in integer) return integer is

begin
if (n = 0) then
return 1;
else
return (n * fact((n - 1)));
end if;
end fact;

end math_routines;

ACE>

ACE> -- Store the Math_Routines package in an external file
ACE>

ACE> put_file ( Name(package_object), "", "math_package.ada");
ACE>

ACE> -- End of ACE session

. ACE> exit ace;

10.3 Interfacing with Host O/S (UNIX)

% ACE
Ada Command Environment; Revision: 6.0 Date: 89/12/14 14:51:30

Processing environment definition...

ACE> -- Example of interacting with external Ada compilation
ACE> -- system and the underlying host operating system
ACE>

ACE> -- Define a program text object
ACE> program_object : program_text;

ACE>

ACE> -- List out the contents of the current working directory
ACE> list;

Test_Cases requirements

a.out math_package.ada

ada.lib test_data

. find_primes.a
ACE>

Page 134




-

29 October 1990 STARS-RC-00930/001/00

ACE> -- Associate the program text object with the file
ACE> -- find_primes.a

ACE>

ACE> open (program_object, in_object, "find_primes.a");
ACE>

ACE> -- List out the contents of the program_object
ACE>

ACE> list (program_object):
with Text_Io;
procedure Find_Primes 1is

function Is_Prime (n : in integer) return Boolean is
local : integer := 3; -
begin
if n rem 2 = 0 then
return False;
end if;

while local *x 2 <= n loop
if n rem local = O then
return False;
end if;
local := local + 2;
end loop;

return True;
end Is_Prime;

package Int_Io is new Text_Io.Integer_Io (Integer);

begin
Text_Io.Put_Line ("PRIME NUMBERS FROM 2 .. 64");
for i in 2 .. 64 loop
if Is_Prime (i) then
Int_Jo.Put (1);
Text_lo.Put_Line (" is a prime number");
end if;
end loop;
end Find_Primes;
ACE>
ACE> -- Submit the program text object to the external Ada
ACE> -- batch compilation system (Verdix VADS), where

ACE> -- Find_Primes is the name of the main compilation unit
ACE> -- and the executable image will be stored into the file
ACE> -- "find_primes.exe"

Page 135




29 Qctober 1990

STARS-RC-00930/001/00

ACE>

ACE> compile (program_object, "Find_Primes", "find_primes.exe'");
Compiling -M Find_Primes -o find_primes.exe /johndoe/find_primes.a
ACE>

ACE> -- Define a program binary object and execute it

ACE>

ACE> load_image :
ACE> open (load_image, in_object, "find_primes.exe");

ACE>

program_binary;

ACE> execute (load_image);
PRIME NUMBERS FROM 2

3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
ACE>
ACE> -- End

is
1s
is
is
1s
1s
is
is
is
is
is
is
1s
is
is
is
is

of

ACE> exit ace;

Exiting ACE

a
a

[N VI I I 2 I AR A L

prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime

. 64

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number

ACE session

Page 136




Index

"= pkg. def. 25

"==" pkg. def. 25

"+” pkg. def. 25, 30

"." pkg. def. 25, 30

"/” pkg. def. 25

" /=" pkg. def. 24-25, 28

™" okeg. def. 24-25, 28, 30

"i=" pkg. def. 24-25, 28, 30

"=" pkg. def. 24-25, 28

".” pkg. def. 24-25, 28, 30

".=" pkg. def: 24-25, 28, 30

"abs” pkg. def. 25

"and” pkg. def. 24

“"mod” pkg. def. 25

“not” pkg. def. 24

“or” pkg. def. 24

“rem” pkg. def. 25

“xor” pkg. def. 24

"&" pkg. def. 28

abstract data types (ADT) 2-3, 8, 12-17,
23, 109

abstract data types and a command lan-
guage 13

Ace Adt 37

Ace Integer lo 33

Ace User X Window System 19, 57

Ace X Window System 19. 56

ACE ¢

ace_ada 4

Ace_Adt 19

ace_edit 4

Ace_Integer_lo 18

Acelo 18

Ace_Standard 18

Action.Procedure_Pointer pkg. def. 75

Action_Procedure_Pointer 114
AAA Tanmina Aard 1 192

\da language standara 1, 13
Ada-oriented environment 18

ADT Philosophy 12
Append._ToCais_Arg_List pkg. def. 60
applications 12

Ascent pkg. def. 64

ASCII 18

Binary Files 16

Binary Objects 19, 47
bindings.ace 23

Break pkg. def. 39

built-in 17

Cais Routines 19, 23, 59
CAIS-A 59

cais.ace 23

Cais_Node_Kinds 59
Cais_Relationship_Kinds 59
Calendar 18, 30
Callback_Procedure_Pointer pkg. def. 75
Character lo 33

Check.Style pkg. def. 61
Clear _Break pkg. def. 39
Clear_Window pkg. def. 56
Clock pkg. def. 30. 63

Close pkg. def. 32, 42, 47
Close 14

Col pkg. def. 33

Column control 32

command applicability 15
command environmemt 13
command extensibility 16
command language 1, 15-16, 23, 123
command language commands 20, 36
command line editing 23
command line history 23
command speciahization 15
command structure 14
commands.ace 23

compilation units 2

Compile pkg. def. 37, 45
complete command 4
consistency 14

consistent objects and operations 15
Continue pkg. def. 39
Continue_Prompt 4, 7

Copy pkg. def. 41

Copy 16

Count_Features pkg. def. 61
Count_Statements pkg. def. 61
Cpu Time 20, 23, 63




29 October 1990

cpu-time.ace 23

Create pkg. def. 32,420 17,57, 72, 112
create ACE S

Create 14-16
Create_Cais_Argument_List pkg. def. 60
Create_Window pkg. def. 56
Current_Ace_Input pkg. def. 35
Current_Ace_Input 3
Current_Ace_.Output pkg. def. 35
Current_Directory pkg. def. 43
Current_Input pkg. def. 32
Current_Output pkg. def. 32

data abstraction 12-13

Day pkg. def. 30

Debugger 7-8, 19, 39

declarations 2

Default Io files 32

Delete pkg. def. 32, 37-38, 47-48, 57
Delete 14, 16

Delete_File pkg. def. 41

derived subprograms 15

Descent pkg. def. 64

Destroy_Window pkg. def. 56

Deuse pkg. def. 38, 48

development approach 13
Diana_Browser pkg. def. 61
Diana_Cleanlib pkg. def. 61
Diana_Create_Predefined_Env pkg. def. 62
Diana_Front_End pkg. def. 61
Diana_Make_Predefined Env pkg. def. 62
Diana_Mklib pkg. def. 61

Diana_Rmlib pkg. def. 61

Difference pkg. def. 63

Directory Files 16

Directory Objects 19, 42

Display pkg. def. 39
Display_Current._Statement pkg. def. 39
Display Next pkg. def. 39
Display_Previous pkg. def. 39
Do_Beg.Of_Line pkg. def. 54
Do_Delete pkg. def. 54
Do_Delete_This_Char pkg. def. 34
Do_Get_Current_Character pkg. def. 55
Do_Get_Current_Column pkg. def. 55
Do_Get_Current_Line pkg. def. 54

STARS-RC-00980/001/00

Do_Goto_End_Of_History pkg. def. 54

Do_Goto_End_Of_Line pkg. def. 54

Do_Goto_Start .Of_History pkg. def. 5!

Do_History _Back pkg. def. 54

Do_History Forward pkg. def. 54

Do_Insert_Ascii pkg. def. 54

Do_Insert _String pkg. def. 54

Do Interpret_String pkg. def. 54

Do_Kill Line pkg. def. 54

Do Move_Left pkg. def. 54

Do_Move_Right pkg. def. 54

Do_Quoted_Insert pkg. def. 54

Do_Refresh_Current_Line pkg. def. 34

Do_Refresh_Current_Line_And_Prompt pkg.
def. 54

Do_Rewrite_Current_Line pkg. def. 54

Do_Rewrite_Current_Line_And_Prompt pkg.
def. 54

Do Self_Insert pkg. def. 54

Do Set_History Limit pkg. def. 54

Do_Show_History pkg. def. 54

Do_Show _History_Limit pkg. def. 54

Draw_Dashed_Line pkg. def. 58

Draw_Line pkg. def. 58

Draw_Rectangle pkg. def. 58

Draw_Rectangle Builtin pkg. def. 58

Draw_Text pkg. def. 58

dynamic 2

Edit pkg. def. 44

Edit_And_Interpret pkg. def. 45

Edit_File pkg. def. 44

End_Of_File pkg. def. 32

End_Of_Line pkg. def. 32

End_Of_Page pkg. def. 32

environment customize and tailor 12

environment initialization 4

environment 2

error messages 123

evolution 16

Example of Interactive Ada 130

Example of Interfacing with Host OS 131

Example of Manipulatind Ada Components
131

Example of Xt 117

Example of multiple line input 4

Page 138




29 October 1990

example of nesting commands 15

example of Form parameters and overload-
ing Y

example startup.ace file 10

Execute pkg. def. 47

execute ACE 5

execution of ACE 4

existing environments 8

Exists pkg. def. 41

exit Ace 3, 111

exit Ace_Level 3

exit Ace_Main 3

exit 3

File Management 32

file object 14

file system 7, 16, 19, 41

Form parameter 8, 14

Form pkg. def. 32, 43, 48

general file 16

Get pkg. def. 33, 35, 72-73, 112

Get_File pkg. def. 44

Get_Line pkg. def. 33

Help pkg. def. 50

help 7, 19, 50

hierarchical command environment 16

home directory 9

Home Directory pkg. def. 43

Host Os 19, 38

Host pkg. def. 38

host environment support tools 17

host operating system 7, 17, 19, 38

Hp Widgets 20, 84, 109

incomplete command 4

information hiding 12-13

inheritance 16

input and output 3, 14

interactive 1-2

interfaces 16

Interlisp 1

Interpret pkg. def. 37

Interpret 9

interpreted 7, 9, 16-17

Interpret File pkg. def. 37

Interpret_File 12

Intrinsics 20, 66

STARS-RC-00980/001/00

Invoke_Process pkg. def. 59

o Exceptions 18. 29

Is_Open pkg. def. 32,43, 43
Key Bindings 19, 23, 51, 119
Length pkg. def. 36

library files 8, 14, 23

Line Counter 19

Line control 32

Line length 32

Line pkg. def. 33

Line_Length pkg. def. 32

List Mode 35

List pkg. def. 39, 43-44, 19, 51
List 9

List Breakpoints pkg. def. 39
List_File pkg. def. 44

List Symbol_Table pkg. def. 39
locality 12-13

logical grouping 14

Low Level lo 18, 30
Main_Prompt 4, 7

Make Bindings 119
Make_Binding pkg. def. 52
Make Xt String pkg. def. 67
Manipulate Scope 19, 38
Measure_Mccabe_Complexity pkg. def. 61
Method of Execution 35

Mode pkg. def. 32, 48
modularity 12-13

Month pkg. def. 30

Name pkg. def. 32, 43, 48
nested subprograms and packages 14
New _Line pkg. def. 32
New_Page pkg. def. 32
Null_Caddr.T pkg. def. 66
Null_Widget pkg. def. 66
Null_Widget_Class pkg. def. 66
Null Xrm_Option_List pkg. def. 67
Null Xt_Arg_List pkg. def. 67
Object Lister 19, 50
object-oriented design 13
Objects 2-3, 5, 18, 24
observe_window.icn 5

Off 5-7

On 5-7

Page 139




29 October 1990

Open pkg. def. 32,42, 47

Open 3. 14

operations 2-3, 13

overloaded suprograms uniquely identified
8

overloading 15

package ADT 8

packages 13

Page control 32

Page length 32

Page pkg. def. 33

Page_Length pkg. def. 32

pragma Continue_Prompt 7

pragma Debug 6

pragma Dump 6

pragma Echo 6 ’

pragma List_Statement_Numbers 6

pragma Main_Prompt 7

pragma Observe 5

pragma Trace 6

pragma 3

pramga Builtin 7

pre-compiled 7

Prefix_To_Cais_Arg_List pkg. def. 60

Print pkg. def. 44

Program Objects 19, 45

Program Text Objects 19, 46

Program Units 19, 47

Put pkg. def. 33, 35, 49, 72, 112

Put_Cais_File_Node_Host _Name pkg. def.
60

Put_Current_Cais_Node pkg. def. 59

Put_Current Directory pkg. def. 43

Put_File pkg. def. 44

Put_Line pkg. def. 33

Put_Time pkg. def. 63

rapid prototyping 8

Rename pkg. def. 41

Rename 16

Renamed Xlib Types 20, 65

Reset pkg. def. 32, 42,57

runtime efficiency 17

Seconds pkg. def. 30

session 3

Set_Ace_Input pkg. def. 35

STARS-RC-00980/001/00

Set_Ace_Input 3
Set_Ace_Output pkg. def. 35
Set_Break pkg. def. 39
Set_Col pkg. def. 32
Set_Current_Cais_Node pkg. def. 59
Set _Directory pkg. def. 43
Set_Input pkg. def. 32
Set_Line pkg. def. 33
Set_Line_Length pkg. def. 32
Set_Output pkg. def. 32
Set_Page Length pkg. def. 32
Set_Up pkg. def. 62
Skip_Line pkg. def. 32
Skip_Page pkg. def. 32

Slice pkg. def. 36

Smalltalk 1

software engineering 12
Spawn_Process pkg. def. 59
Split pkg. def. 30

standard packages 23
Standard 18, 23-24
standard’s paradigm 14
standard.ace 23
Standard_Ace_Input pkg. def. 35
Standard_Ace_Input 3
Standard_Ace_Output pkg. def. 35
Standard_Ace_Output 3
Standard Input pkg. def. 32
Standard_Output pkg. def. 32
Stars Tools 19. 61
startup.ace 4, 9, 18

Start Xt pkg. def. 111
statement database 37
statement number 8
Statements 2, 5

Step pkg. def. 39

String Io 33

Strings 18, 28, 36

strong typing 15

subprogram ADT 8
Subprograms 5, 13

Sun workstation 3

system decomposition 13
System 18

system-dependent 8

Page 140




29 QOctober 1990

technology 16

Temporary _Name pkg. def. 11
Test_Case_Generator pkg. def. 62
Test_Comparator pkg. def. 62
Test_Procedures_Generator pkg. def. 62
Test_Results_Analyzer pkg. def. 62
Test_Updater pkg. def. 62

Text Files 16

Text Objects 19, 44

Text Jo 3, 8, 31

Text_Width pkg. def. 64

Time_Of pkg. def. 30

traditional view 7T

Undelete pkg. def. 38

uniformity 14

visibility 2

Widget Package 20, 67

widget 109

Window Draw Routines 19, 38
Window Objects 14, 19, 56, 109
window environment 5

windowing 8, 19, 23, 56

windows.ace 23

X Window System 5

X Windows 20, 23, 64

Xt Stringdefs 20

Xt toolkit 63, 109

Xt_Add.Actions pkg. def. 75
Xt_Add_Actions 114
Xt.Add_Callback pkg. def. 73-74. 113
Xt_App-Next_Event pkg. def. 75
Xt_Arg.List 114
Xt_Augment_Translations pkg. def. 75
Xt_Create_Managed .Widget pkg. def. 74
Xt_Create_Widget pkg. def. 74
Xt_Default_App_Context pkg. def. 75
Xt_Destroy_Widget pkg. def. 74
Xt_Dispatch_Event pkg. def. 67, 75
Xt_Get_Value pkg. def. 73
Xt_Initialize pkg. def. 67, 110
Xt-Main_Loop pkg. def. 71
Xt_Override_Translations pkg. def. 75
Xt_Parse_Translation_Table pkg. def. 75
Xt_Realize_Widget pkg. def. 74

STARS-RC-00980/001/00

Xt_Set_Arg pkg. def. 68-72, 77-78. 96-107.
109
Xt Set_Arg 112
Xt Set_Values pkg. def. 73
Xw_Arrow_Widget_Class pkg. def. 92
Xw_Ascii_Sink_Create pkg. def. 95
Xw_Bulletin_Board _Widget_Class pkg. def.
92
Xw_Bulletin_ Widget_Class pkg. def. 92
Xw_Button_Widget_Class pkg. def. 92
Xw_Cascade_Widget_Class pkg. def. 92
Xw_Disk_Source_Create pkg. def. 95
Xw_Disk_Source_Destroy pkg. def. 95
Xw_Form_Widget_Class pkg. def. 92
Xw_Image_Edit_Widget_Class pkg. def. 92
Xw_Listrow_Col_Widget_Class pkg. def. 92
Xw_List_Widget_Class pkg. def. 92
Xw_Manager_Widget_Class pkg. def. 92
Xw_Menubutton_-Widget_Class pkg. def. 92
Xw_Menumgr-Widget_Class pkg. def. 92
Xw_Menupane_Widget _Class pkg. def. 92
Xw_Menu Button_-Widget_Class pkg. def.
92
Xw_Menu.Sep_Widget_Class pkg. def. 92
Xw_Move_Focus pkg. def. 95
Xw_Panel_Widget_Class pkg. def. 92
Xw_Popupmgr.Widget_Class pkg. def. 92
Xw_Popup_Mgr_Widget_Class pkg. def. 92
Xw_Primitive_Widget .Class pkg. def. 92
Xw_Push_Button_Widget _Class pkg. def.
92
Xw_Row_Col_Widget_Class pkg. def. 92
Xw_Sash_Widget_Class pkg. def. 92
Xw_Scrollbar_Widget .Class pkg. def. 92
Xw.Scrolled_-Window_Widget_Class pkg. def.
92
XwScroll_Bar_Widget_Class pkg. def. 92
Xw Sraster.Widget_Class pkg. def. 93
Xw Statictext_-Widget_Class pkg. def. 93
Xw_Static_Raster_-Widget _Class pkg. def.
93
XwStatic.Text_-Widget_Class pkg. def. 93
Xw_String_Source_Create pkg. def. 95
Xw.String_Source Destroy pkg. def. 95
Xw.Swindow_Widget_Class pkg. def. 93

Page 141




29 October 1990

Xw_Textedit_Widget_Class pkg. def. 93
Xw_Text_Clear_Buffer pkg. def. 93
Nw_Text _Copy_Buffer pkg. def. 93
Xw_Text_Copy_Selection pkg. def. 93
Xw_Text Edit_Widget_Class pkg. def. 93
Xw_Text_Get_Insert_Pos pkg. def. 95
Xw_Text_Get_Last_Pos pkg. def. 94
Xw_Text_Get Selection_Pos pkg. def. 94
Xw_Text Insert pkg. def. 94
Xw_Text_Read Sub_String pkg. def. 94
Xw_Text_Redraw pkg. def. 94
Xw_Text_Replace pkg. def. 94
Xw_Text_Set_Insert_Pos pkg. def. 95
Xw_Text_Set_Selection pkg. def. 94
Xw_Text Set_Source pkg. def. 95
Xw_Text_Unset_Selection pkg. def. 94
Xw_Text_Update pkg. def. 94
Xw_Titlebar_Widget.Class pkg. def. 93
Xw_Title_Bar_-Widget_Class pkg. def. 93
Xw_Toggle_Widget_Class pkg. def. 93
Xw_Valuator-Widgci-Class pkg. def. 93
Xw_Work_Space_-Widget_Class pkg. def. 93
X_Text_-Width pkg. def. 75

Year pkg. def. 30

Page 142

STARS-RC-00930,/001/00




