
TASK: UR2

* Integration
Cop Ada Command Environment

(ACE) User's Manual
Informal Technical Data

UNISYS

DTI

V 14 1 0A

REPOT D CUM NTATON AGEForm Approved

REPORT~ ~ DOUETTO PAG P No 0704-0188
P 1, reoc-' nSurger. ?or%", :Ci.eCjor, of 'ntCeymatror snta~ ~r o cur oer -fin.3-se. -nCiijaj; t'e time for tim,4*.nq instructions. watc-m e.ti'; data sOvfCe
giitfrg.. &nc M~attairI'ng the ciii ficcoed. and Coffl4e'nqt anc tce.ce.nq tPhe ColctiCon of infortaon Sena Conifflef"Sfreqgaing Iti bgpicfi estonat 0, an. ztneriOC 0e ot,,.

coiMr ' morphatcr. IAC uaing Iigg~titen for reauCtng th.. ou.raen to wash-nqlon 4qeooaUarterm irrn'ce. Diretorate fat no'ao Og.alom ind Recoin. IDS~ leersr,
ZDa,! uir 12 CA A rhngion. VA 22202-4302. inaC to in .4 Ce-)fMnoen and quage. Pacc'*Ork Reauticn Propect IO7O'-O'In). VWavumalon. DC .^503
1. AGENCY USE ONLY (Leave blank) T2.REPORT DATE 3. REPORT TYPE AND DATES COVERED

129 October 1990 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

User Manual for Ada Command Environment (ACE)
STARS Contract

__ Fl 9628-88-D-0031
6. AUTHOR(S)

William P. Loftus
John A. Thalhammer

7. PERFORMING ORGANIZATION NAME(S AND AODRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation
12010 Sunrise valley Drive GR-7670-1141 (NP)
Reston, VA 22091

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC) 00980
Hanscom AFB, HA 01731-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION, 'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 words)

This technical report provides users of the Ada Command Environment
(ACE) with a description of each of the packages and subprograms
that are provided with ACE. In addition, the report describes the
overall purpose of ACE, general guidelines on ACE usage, and provides
examples of typical user interaction during an ACE session.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Ada Command Environment (ACE) 142
Abstract Data Types (ADT) 16. PRICE CODE
X Window System -

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

TASK: UR20
CDRL: 00980

29 October 1990

USER MANUAL

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Ada Command Environment (ACE)
Version 8.0

SunOS Implementation

STARS-RC-00980/001/00
Publication No. GR-7670-1141(NP)

29 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

Distribu ion ,hmived
U.S. Governmen and iU.,S Gfverlmnt '1

Contractors ony:
40Adbiinist~ative (29 OctioeO9 9J0)i

TASK: UR20
CDRL: 00980

29 Octobei '990

USER MANUAL

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Ada Command Environment (ACE)
Version 8.0

SunOS Implementation

STARS-RC-00980/001/00
Publication No. GR-7670-1141(NP)

29 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

0

29 October 1990 STARS-RC-00980/001/00

PREFACE

This document was prepared by Unisys Defense Systems, Valley Forge Laboratories, in sup-
port of the Unisys STARS Prime contract under the Process/Environment Integration task
(UR20). This CDRL, 00980, is type A005 (Informal Technical Data) and is entitled "Ada
Command Environment (ACE) User's Manual, Version 8.0".

Reviewed by: _______________ , _-
__

/,Ter F. Payton, Sysem Architect

Approved by: A-- -2 /O/o
Hans W. Polzer, Program Manager

- I

1.°

itj z i,

O,! ---

-@

.. I i i i I

29 October 1990 STARS-RC-00980/001 1/00

Contents.1 Introduction 1
1.1 Intended Audience. 1
1.2 Reference Documents. 1

2 The Command Language of ACE 1
2.1 The Environment of ACE 2
2.2 Interaction with ACE. 3

3 Starting ACE 3
3.1 Example 4

4 Software and Hardware Environment 4
4.1 Sun Workstation 5

5 Pragmas Supported by ACE 5

6 Environment of ACE 7
6.1 ACE Libraries and Environment Tailoring. 9
6.2 ADT Philosophy 12

6.2.1 The Ada Language Sta.ndard. 13
6.2.2 Command Structure. 14
6.2.3 Command Applicability. 1506.2.4 Command Specialization 16
6.2.5 Command Extensibility. 16

6.3 ADT Interfaces within ACE. 16
6.4 ADT Body Implementations. 17
6.5 External Images 17
6.6 ADT Summary. 18
6.7 ACE Command List. 20

7 Abstract Data Types of ACE 23
7.1 Standard Packages 23

7.1.1 Objects. 24
7.1.2 Standard 24
7.1.3 System. 29
7.1.4 lo-Exceptions 29
7.1.5 Low-.Levelo. 30
7.1.6 Calendar 30
7.1.7 TextIo 31
7.1.8 Ace-Standard 35
7.1.9 Strings. 36

7.2 Command Language Commands 36
7.2.1 Ace-.Adt 37
7.2.2 Host-Os 38

Page ii

29 October 1990 STARS-RC-00980/00 1/00

7.2.3 Manipulate-Scope. 38
7.2.4 Debugge-r:39

-..5 File-Svstemi.. 41
7.2.6 Directory-Objects 42
7.2.7 Text-Objects. 44
7.2.8 Program-.Objects 45
7.2.9 Prograxn..Text-Objects 46
7.2.10 Binary-.Objects. 47
7.2.11 Program-.Units. 47
7.2.12 Help..Adt 50
7.2.13 Object-Lister. 50

7.3 Key Bindings 51
7.3.1 Key-Bindings 51

7.4 Windowing Commands. 56
7.4.1 Window-.Objects 56
7.4.2 Ace .X.Window-System. 56
7.4.3 Ace-User.X.Wi ndow.-System. 57
7.4.4 Window-Draw-Routines. 58

7.5 CAIS-A Commands. 59
7.5.1 CAlS-Routines. 59
7.5.2 STARS-.Tools 61

7.6 CPU Timing Package 63
7.6.1 Cpujime. 63

7.7 Xt Toolkit Interface. 63
7.7.1 X-.Windows 64
7.7.2 RenamecL.Xlib-.Types. 65
7.7.3 Intrinsics 66
7.7.4 Widget-Package 67
7.7.5 Hp-.Widgets 84

8 More Information About Some Ace Features 109
8.1 Xt Toolkit Interface 109

8.1.1 Xt Prototyping Sessions 110
8.1.1.1 Starting an Xt Prototyping Session 110
8.1.1.2 Finishing an Xt Prototyping Session 111

8.1.2 Xt Argument Lists 112
8.1.3 Xt Callbacks 113

8.1.3.1 Callback Procedures. 113
8.1.3.2 Action Procedures. 114
8.1.3.3 Callback Interpretation. 115
8.1.3.4 Prototyping Calibacks 115

8.1.4 Transition to Compiled Code 116
8.1.5 A Small Example. 117

8.2 T1'he Key-.Bindings Package. 119

8.2.1 Making Bindings. 119

Page iii

29 October 1990 STARS-RC-00980/001 /00

S.2.1.1 Using [nte,7rcI3Irig......................121
S.2.1.2 Intcrnixing 1/O with KeyBindings Routines 21

S.2.2 An Example for IhcrprcetStraig 22

9 Supported Ada Features 123

10 Examples 130
10.1 Interactive Ada Example 130
10.2 Manipulating Ada Components 131
10.3 Interfacing with Host O/S (UNIX) 134

Page iv

f 9 October 1990 STARS-RC-00980/001/00

I Introduction

*irihe .\da Coninand Environment (ACE) is an interactive command language environment

for Ada software development. Ada is both the programming language and the command
language used within ACE. The paradigm and philosophy used by the Ada programmer
during program development are extended into the environment in which program devel-
opment takes place. ACE is modeled after other interactive programming environments,
such as Smalltalk and Interlisp, which are touted for individual programmer productivity.
Whereas other interactive programming environments are targeted toward programming-in-
the-small, ACE supports programming-in-the-large techniques that are key elements of the
Ada language.

/ 1.1 Intended Audience

This document assumes the user has a basic understanding of the Ada language, including
its concepts and the use of Ada for software design and development. This document is not
tutorial in nature with regards to the Ada language. The user is directed to one of the many
texts on Ada or the Ada Language Reference Manual for background on Ada.

1.2 Reference Documents

MIL-STD-1815A Ada Programming Language, 22 Jan 1983

William P. Loftus, Charles L. Oei, and John A. Thalhamer. The Ada Command Environment-
ACE. In Proceedings of Ada Expo '88. Anaheim, California, October 1988.

John A. Thalhamer, William P. Loftus, Charles L. Oei, Ralph A. Foy. Ada Abstract Data
Types-the Foundation of an Interactive Ada Command Environment. Proceedings of the
Seventh Annual National Conference on Ada Technology, Atlantic City. New Jersey, March
1989

Unisys, Ada Command Environment Installation Guide, Version 8.0, Informal Report, U.S.
Department of Defense Contract No. F19628-88-D-0031, 12 April 1990

2 The Command Language of ACE

The command language accepted by ACE is Ada. Within ACE, Ada is used as the language
for program development as well as the mechanism for traditional interaction with the host
operating system. Each command entered into ACE must be a legal Ada construct.

Ada as a command language allows interactive program development, typical user inter-
action with the host environment, and the development of command language procedures.
'Whereas within other environments different language constructs are needed for the com-

Page 1

29 October 1990 STARS-RC-00980/00 1/00

niand language and conunand language procedures (not to mention the different program-
:nine- !anrilagz . ACE allows Ada to be used as the unifying language.

ACE immediately executes Ada constructs as tluey are presented. The set of Ada constructs
that are immediately executed are compilation units, statements, and basic declarations.
Upon the completion of one of the constructs, the statements associated with the construct
are executed and the appropriate results are given based upon the Ada statements that were
evaluated.

Immediate execution of the Ada constructs for compilation units, statements, and basic
declarations allows Ada to be effectively used as a command language. An interactive devel-
opment environment requires a dynamic atmosphere in which the next operation performed
may be based upon a previous result. The ability to intermingle declarations, statements,
and compilation units as commands to ACE is the basis for a dynamic environment. For
example, a typical order of Ada commands to ACE may be the declaration of an object,
assignment of an initial value to that object, the definition of a subprogram specification and
body, followed by an invocation of the subprogram using the declared object. This sample
shows the ability to intermix the sequence of declarations, statements, and compilation units
that are submitted to ACE.

2.1 The Environment of ACE.ACE provides a basic set of Ada objects and operations as the initial environment of ACE.
These objects and operations are encapsulated as abstract data types (ADTs) and imple-
mented as a set of Ada packages. Upon initialization of ACE, the basic set of ADTs are
assimilated into a base environment for the user. This base environment includes pack-
ages that are necessary for the interpretation of Ada statements (such as the Ada package
Standard), as well as packages that provide operations typically performed by a user when
interacting with the underlying operating system.

Each subprogram or package that is entered by the user during an ACE session may be
viewed as an extension of the environment. The subprogram and/or package provides a set
of objects and operations which is available to the user. These subprograms and packages
may be permanently stored so that they will be persistent between ACE sessions. Upon
start-up of the user's subsequent ACE session, these user-defined ADTs may be included
into the ACE environment, thus tailoring the ACE environment to the user's preferences.

Common, every day operations that would typically be invoked by the majority of ACE
users are made directly visible to the user as a default. The user may simply acquire direct
visibility of other ADTs through the Ada use statement. In the event that direct visibility
is rt desired when given as a default, ACE provides a set of ADTs that may "undo" the
Ada use statement. More detail on the operation of this type of ADT is provided in the
description of the dynamic environment ADTs.

The description of the ADTs that are provided as the base environment for ACE are described

Page 2

29 October 1990 STARS-RC-00980/001/00

later in this manual (see section 7).

2.2 Interaction with ACE

The user is provided with a mechanism for controlling the operating characteristics of the
Ada Command Environment. Within Ada, the pragma construct is the means for issuing
directives to the compiler which do not affect the legality of the Ada program. Since ACE
is based upon the paradigms of Ada, the Ada pragma construct is utilized within ACE to
control the operation of ACE.

In addition to the pragma directives of ACE, Ada objects and operations (in the form of
an ADT) are employed to provide user control over ACE's input and output mechanisms.
The Ada TextIo package contains the definition of a set of operations to control the default
input and output files associated with the Ada program. A similar facility is provided
within ACE to control the default input and output files associated with ACE. For example,
Standard.Ace-Input and StandardAce-Output are defined to return a file type associated
with the keyboard and CRT, respectively. Additional operations such as SetAceInput and
CurrentAceInput are used to modify and acquire the current file type which defines the file
from which ACE is to acquire input. Similarly named operations exist for output.

A description of the pragmas supported by ACE and the ADTs associated with the operation
of ACE are given later in this manual (see section 5).

The Exit Statement

The exit statement is used to terminate the execution of subprograms within ACE or ACE
itself.

" exit Ace terminates the execution of ACE and returns the user to the host operating
system.

" exit Ace-Level terminates the current level of execution and returns the user to the
next higher level.

" exit Ace-Main terminates execution of all subprograms and returns the user to the top
level of ACE.

3 Starting ACE

ACE can be started by typing the command "ACE" at the Unix prompt. This initiates the
ACE session. During start up, ACE processes the definitions of the default abstract data.types that will be available during the ACE session. A noticeable delay occurs during the

Page 3

29 October 1990 STARS-RC- 00980/OC 1/00

initiation of ACE while this set of abstract data types is processed. ACE is roady To accepT
isel.r ,oflfa mIs ;i P r tlio ki~phty ,-,f die .\CE main prompt-"ACE>

When ACE has begun accepting a command and requires more information to complete tie
command, ACE will display a continuation prompt " I". This prompt indicates that the
Ada construct being entered as a command is not yet complete. Examples of these Ada
constructs include a compound statement, such as an if statement, a subprogram body, or
even an assignment statement or declaration statement that is entered on multiple lines.
The continuation prompt indicates that ACE is awaiting furt.er input associated with the
incomplete command, and will execute the command upon completion of the command.

3.1 Example

ACE>
ACE> i integer;
ACE> i 100;
ACE>
ACE> if i < 0 then

I put-line ("negative value");
I elsif i > 0 then
I put-line ("positive value");
else

I put-line ("zero value");

end if;
positive value
ACE>

4 Software and Hardware Environment

The ACE prototype is operational on a Sun-3 workstation. The description of each of these
environments is detailed below.

Execution of ACE should be performed within the same directory in which the executable
image of ACE resides. The files that should be located within this directory are as follows:

* ACE-the ACE executable image

* startup.ace-the environment initialization file processed by ACE when ACE is started

9 ace-ada- script that interfaces with the host Ada compilation system (Verdix on the
Sun workstation). This may be tailored to local preferences.

* ace.edit-script that interfaces with the host editor (vi on the Sun workstation). This
may be tailored to local preferences.

Page .1

29 October 1990 STARS-RC-00980/00 1/00

0 obser'ew ido, i . w-ironic image for the windows created by pragma observe, which

is only needed when rinning within a window environment and when a window is

(loseCu to its iconic form.

4.1 Sun Workstation

Within the Sun workstation environment, ACE provides a simple interface to the X Window

System. However, ACE may be executed independently without a supporting windowing

system. Window manipulation operations are provided with the X Window System-ACE

has integrated Xlib-Ada binding from the Unisys UR20 user interface task to provide a
programmatic interface to X.

To execute ACE, the suggested configuration is a Sun-3 workstation running:

" SunOS 3.5

" X Window System, X 11 Release 3, if running under X

" Verdix Ada Development System version 5.5 and the vi editor

To create an ACE executable image, the suggested configuration is a Sun-3 workstation

* running:

" SunOS 3.5

" X Window System, X 11 Release 3, if using a window system

* Verdix Ada Development System version 5.5

" Ada bindings to Xlii) (Available from Unisys STARSCenter)

" C compiler provided with SunOS 3.5

5 Pragmas Supported by ACE

Pragmas are the mechanism for controlling ACE's operating characteristics. These pragmas
control the production and format of information produced by ACE, and are particularly

useful for debugging purposes. The following pragmas are supported in ACE:

1. Observe

Takes an enumeration string literal (Objects, Statements, or Subprograms) as the first
argument and one of the identifiers On or Off as the second argument. Default at ACE

initialization is Off for all three observation items.

Page 5

29 October 1990 STARS-RC-00980/001 /00

An observation window is created to observe the manipulation of objects, statements.
or subprograms. O enables observation: Off disables observation. Objects displays
the detinition of each object within ACE when it is elaborated. Statements displays
each Ada statement as it is executed within ACE. Subprograms displays each Ada
subprogram as it is executed, by displaying the Ada statements that make up the
subprogram body and highlighting the statement number of each statement as the
statement is executed. (Execution speed of ACE is artificially decreased during Sub-
programs observation to allow appropriate visual recognition of the trace of statement
execution.)

Only a single Subprogram observation window is created. For Objects and Statements,
each pragma Observe with On will create a new observation window, and will not
delete the previous observation window. This allows tracing and comparison of several
program execution paths.

2. Echo

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

Echo will display within the primary ACE window each line of input that is being
processed by ACE.

3. Dump

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-0 ization is Off.

Dump will display the Ada statement that has been syntactically and semantically
checked by ACE prior to its execution.

4. Trace

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

Trace will display within the primary ACE window each Ada statement as it is exe-
cuted. (This is similar to pragma Observe (Statements, On) except that tracing output
is sent to the primary ACE window rather than to a statement observation window.)

5. Debug

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

Debug will force ACE to save the local symbolic information associated with subpro-
grams during subprogram execution. This allows local symbolic information to be

referenced when breakpoints are triggered within subprograms. This saving of local
symbolic infnrmation decreases the execution speed of ACE.

6. List-StatementNumbers

Page 6

29 October 1990 STARS-RC-00980/ 001/00

Takes one of the identifiers On or Off as the single argument. Default at ACE initial-
ization is Off.

ListStatemcntVumbrrs will flag the internal Dump routines to associate numbers with
the statements that are dumped. These numbers can be used in association with the
ACE Debugger ADT.

7. Main-Prompt

Takes a string as its only argument.

Main-Prompt will set the main prompt of ACE.

8. Continue-Prompt

Takes a string as its only argument.

Continue-Prompt will set the continuation prompt of ACE.

9. Builtin

FOR DEVELOPERS/SYSTEM ADMINISTRATORS ONLY

Takes a string literal, the name of a subprogram, as the ' argument and a static
expression of the predefined integer type as the second argtiient.

The body associated with the identified subprogram specification is built-in to ACE.
The body has been pre-compiled and merged into ACE. ACE does not expect further
Ada input to define the body for this built-in subprogram. The second argument is an

Sinternal numbering scheme within ACE to uniquely identify each built-in subprogram.

6 Environment of ACE

The environment encompasses the traditional view of programmer interaction with the op-
(,rating system, such as file manipulations, editors, compilers, debuggers, and windowing
systems. A set of consistent Ada packages has been constructed to encapsulate these tradi-
tional objects and operations. Moreover, the environment extends the user's view to include
interaction with parts of Ada software systems to facilitate programming-in-the-large activi-
ties.

The environment consists of a set of Ada packages that is interpreted by the ACE Ada
interpreter, where each package defines an ADT which the user may manipulate, redefine,
or extend. ADTs implemented in ACE which support the user's traditional view of an
environment include:

* a help ADT

* a host operating system ADT

* a hierarchical typed file system ADT (which includes the editor, compiler, stubber,
and other file support tools)

Page 7

29 October 1990 STARS-RC-00980/001/00

" a windowing ADT

O* a sVIb0olic dC)ugger ADT

* Ada predefined library packages (Standard ADT, ASCII ADT, System ADT, TextJo
ADT, IoExceptions ADT, Low-LevelIo ADT, Calendar ADT, Object List ADT)

ADTs implemented in ACE which support rapid prototyping and programming-in-the-large
include a package ADT and subprogram ADT (i.e. abstract data types that allow Ada
packages and subprograms to be manipulated as data).

For example, the ACE user could enter a set of Ada procedures into the Ada interpreter,
testing and refining them as needed. Then, using the package and subprogram ADTs, the
user could define a package and insert the procedures into the package, thus creating a new
ADT. This illustrates the power ACE provides in extending the environment, and the ease by
which the user may accomplish it. ACE provides the mechanism for the user to interactively
define a set of data types and operations on the data types. ACE also allows the user to

further manipulate these types and operations by encapsulating them into abstract data
types. Moreover, the user may then collect a set of ADTs into a software system.

Currently, the ACE-developed ADTs provide basic, low-level functionality within their par-
ticular domains. This avoids biasing the ACE environment towards specific existing environ-
ments. Users can easily tailor or augment the basic routines to personal or project needs. As
general-purpose higher levels of abstraction are defined, additional ADTs will be developed
which extend the ACE environment. The basic ADTs serve as building blocks for the next
higher level of abstraction.

Use of Form Parameters in ACE

The Form parameter is used within Ada Input-Output (Chapter 14 of the Ada Reference
Manual) to give system-dependent characteristics that may be associated with a file. For
example, the Form parameter of the Open subprogram in the package TextIo is used to
define attributes of the specified file (e.g., protection, type of file, etc.). Since ACE supports
TextIo (and other standard Ada packages) the Form parameter is also supported.

In addition, the ACE Command Language uses the Form parameter as a mechanism within
other abstract data types to give system-dependent characteristics that are associated with
the objects being manipulated within the package. Some ADTs within ACE are concerned
with the manipulation of subprograms. Expanded names alone cannot uniquely identify
overloaded subprograms. The Form parameter is the mechanism by which overloaded sub-

programs are uniquely identified. Each Ada statement within ACE is assigned a unique
statement number . This statement number, passed as a string in the Form parameter, may
uniquely identify the appropriate subprogram.

In order to acquire the statement number (or Form) attribute of a subprogram, ACE also

Page 8

29 October 1990 STARS-RC-00980/001/00

provides a Form function within several ADTs. When invoked upon a subprogram or package
*o iect this function I retiurn the string Form of the respective object.

The following example will highlight the use of the Form parameter. List is an operation
that can display a subprogram's specification and/or implementation. In the example, in-
vocations of List illustrate acquisition of the most recently defined subprogram of a given
name (Interpret), all subprograms of the same given name, or a specific subprogram of the
given name-identified via the Form parameter.

ACE> List ("interpret");

procedure interpret (file : in file-type; error out boolean);

-- Form => " 377"
pragma builtin (interpret, 505);

ACE> List ("interpret", "all");

procedure interpret (file : in file-type; error out boolean);

-- Form => " 377"
pragma builtin (interpret, 505);

procedure interpret (str: in string; error : out boolean);
-- Form => " 375"
pragma builtin (interpret, 504.);

procedure interpret (tree : in ace-statementdatabase; error out boolean);
-- Form => " 373"
pragma builtin (interpret, 503);

ACE> List ("interpret", "375");

--? interpret will "execute" the value of the str parameter.
procedure interpret (str : in string; error : out boolean);
-- Form => " 375"
pragma builtin (interpret, 504);

6.1 ACE Libraries and Environment Tailoring

When ACE is executed, an initialization file is automatically interpreted. This initialization
file is called startup.ace and is located in the user's home directory. This file contains ACE

Page 9

29 October 1990 STARS- RC-00980/001/00

commands (in the form of Ada) that define all the operations (i.e., subprograms) that will.be recognized bv ACE. The following is an example of a startup.ace file:

--pragma echo(on);
--pragma trace(on);

Demo-Directory constant String :- "/ace/demo/";
Startup-Directory constant String := "/ace/startups/";

-- Define "&", so we can use environment strings (e.g., DemoDirectory).
function "&" (Lhs, Rhs : String) return String;

pragma builtin ("&", 0);

-- get routines for measuring CPU.

InterpretFile (Startup-Directory & "cpu.time.ace");

-- Variables for clocking our startup speed.

Start Time;
Stop Time;

-- Start ticking

Start := Clock;

O-- Ada's Standard Package
InterpretFile (Startup-Directory & "standard.ace");

-- Key Mappings

Interpret-File (Startup-Directory & "bindings.ace");

-- Normal Command Language commands (e.g., Set.Directory)
Interpret-File (Startup-Directory & "commands.ace");

-- Windowing ADTs

InterpretFile (Startup-Directory & "windowing.ace");

-- Some developer debugging aids

InterpretFile (Startup-Directory & "developer.ace");

-- Xt toolkit ADTs

Interpret_File (Startup-Directory & "xt.ace");

-- Xt demonstration

SetDirectory (Demo-Directory & "Xt");.-- Console ("Support") ;
--InterpretFile ("support");

Page 10

29 October 1990 STA RS- RC-00980/00 1/00

-- Console ("Globals");. -- Interpret-File ("globals");
-Console ("Edit-.panel");

-- Interpret.File ("edit-panel");
-- Console ("Callbacks");
-- Interpret-.File ("callbacks");
-- Console ('Ace.buttons");

-- Console ("Demo");
-- Interpret-.File ("demo"l);

procedure Back-.Word is
begin
Do-MoveLeft;
while Key-.Bindings.Do-.Get-.Current-.Character =''and

Key-.Bindings.Do-.Get-.Current-Column /= 1 loop
Do-.Move-.Left;

end loop;
while Key-Bindings.DoGet-.Current-Character/

and Key-.Bindings.Do-.Get-.Current-.Column 11 loop
Do-.Move-.Left;

* enddloop;
ifKey-Bindings.Do-.GetCurrent-Column /= 1 then
Do-.Move-.Right;

end if;
end Back_.Word;

procedure Kill-Word is
begin

Back-Word;
while (Do_.Get-.Current..Character /' and

Do..Get-.Current-.Character 1=Ascii.NJul) loop
Do..Delete-.This-.Char;

end loop;
Do..Delete.This-.Char;

end Kill..Word;

procedure Forward-Word is
begin
while (Do_.Get,Current Character /~''and

Do-.GetCurrentCharacter 1=Ascii.Nul) loop
Do-.Move-.Right;

* end loop;
wile (Do_.Get_.Current..Character =)loop

Page I1I

29 October 1990 STARS-RC-00980/001 /00

DoMoveRight;
*end loop;

end;

-- Set some history and editing key commands
Make-Binding (Ascii.Eot, DeleteThisChar);
Make-Binding (Ascii.Nak, KillLine);
Make-Binding (Ascii.Enq, KeyBindings.EndOfLine);
Make-Binding (Ascii.Soh, BeginningOfLine);
Make-Binding (Ascii.Dc2, RefreshCurrentLineAndPrompt);

Make-Binding (Ascii.Etb, InterpretString, "KillWord;");
Make-Binding (Ascii.Ack, InterpretString, "ForwardWord;");
Make-Binding (Ascii.Stx, InterpretString, "BackWord;");

Make-Binding (Ascii.Esc & "[A", History-Back);
Make-Binding (Ascii.Esc & "[B", History-Forward);
Make-Binding (Ascii.Esc & "[D", Move-Left);
Make-Binding (Ascii.Esc & "[C", Move-Right);

-- Stop Ticking

Stop := Clock;

* -- How much time?
Put ("Startup CPU seconds: ");

PutTime(Difference(Stop, Start));

-- ASCII Terminal clear to EOL.

PutLine(Ascii.Esc & "[K");

The Interpret-File command is predefined in ACE, and can be used without being defined
by the user. All other commands and variables must be defined by a previous declaration.
Through the editing of this file the user can customize and tailor their environment. The
ACE libraries (.ace files) referred to in the example are described in section 7.

6.2 ADT Philosophy

Data abstraction, information hiding, modularity, and locality are some of the the mod-
ern software engineering principles used in the development of software applications. The
notion of data abstraction is also a powerful mechanism for the definition of a command
environment-an environment that contains a set of objects upon which a group of com-
mand operations act.

40 An abstract data type is an abstraction mechanism that encapsulates a set of values together

Page 12

29 October 1990 STARS-RC-009S0/001/00

with a set of operations that apply to the values. %%ithin software development, the decom-
position of the system may be defined through a set of objects, the operations applicable
to tile objects, and the operations needed by the objects. ADTs serve as a natural descrip-
tion method for this type of system decomposition. ADTs are also a key component of the
object-oriented design and development approach.

The directives issued by a software developer to the underlying host environment may also
be naturally defined through the use of ADTs. Each directive or command may be viewed
as an operation; the qualifiers or parameters may be viewed as the objects upon which
the operation is performed. Logically associated objects and operations may be gathered
together into collections which are related to particular components of the underlying host
environment, Thus, a parallel can be drawn between abstract data types and the composition
of a command language.

Many of the newer procedural languages provide syntactic mechanisms to easily specify and
manipulate ADTs. Ada is one such language. The constructs of packages (specification and
body), subprograms (functions and procedures), subprogram invocation, type declarations,
object declarations, and context clauses are examples of Ada's support for ADTs. The Ada
Command Environment makes use of these Ada constructs to define the environment objects
and operations through ADTs.

ACE provides an Ada ADT interface to the underlying host environment in the form of Ada
package specifications. The package specifications are processed by ACE upon initiation.
Thus, a set of predefined types and operations are made available to the user from the
beginning of an ACE session. Since these types and operations are defined via the Ada
package construct, the methods used to manipulate Ada packages are also used to manipulate
the operation of the environment ADTs.

6.2.1 The Ada Language Standard

Ada, as a modern procedural language, encompasses many of the state-of-the-art software
engineering principles. These principles are extended into the command environment through
the use of Ada to define the environment with ADTs.

The Ada package construct supports the principles of data abstraction and information
hiding through the separation of the package specification from the package body. The
separation of the specification and implementation of the abstract data type in Ada and
ACE is a key element in the ability to tailor the environment. Different implementations of
an environment ADT specification are an obvious mechanism for tailoring the environment
to a project's taste. For example, a common configuration management interface may be
defined through a single ADT specification, but different implementations may be written
based upon the project's particular selection of a configuration management application
system.. The ability to layer ADTs within Ada supports the principles of modularity and locality.

Page 13

29 October 1990 STARS-RC-00980/00 1/00

Environment extensibility may be accomplished through the use of layered ADTs. For
example. a new ADT specification may be written that presents an interface that is more
familiar or comfortable to the user. The implementation of that ADT simply invokes the
standard set of operations. The ADT makes the translation from user orientation to system
orientation, rather than forcing the human to mentally perform the translation. Layered
ADTs also support the notion of different levels of abstraction. For example, the notion of
formatting a textual document, building its table of contents, and printing the result on a
printer may be viewed as either a single operation or a series of lower level operations. Low
level ADTs serve as the building blocks for higher level ADTs.

Within the language definition of Ada, Ada is used to extend its own definition. The Ada
input-output operations (chapter 14 of the reference manual) are provided in the language by
the means of predefined packages. In addition, other-predefined library packages are required
for each Ada implementation. ACE has implemented the Ada predefined packages, such as
Standard, ASCII, Calendar, System, and TextIo. This set of packages makes the standard
Ada types and operations available in the command environment. Continuity is established
between the command environment and the typical Ada development environment.

ACE also views the set of Ada predefined packages defined in the reference manual as a set
of guidelines to be followed in the development of environment ADTs. The input-output
packages of chapter 14 of the reference manual denote a style of operation definition and
object manipulation that ACE has expanded to encapsulate the entire environment. The
Create, Open, Close, and Delete procedures that are applicable to file objects are used within
the command environment to define similar control operations upon other types of objects.
An example of this is the similar treatment of file objects and window objects. File objects
and window objects are each abstract data types in ACE that are created using the Create
procedure and removed using the Delete procedure. The operations that the Ada developer
is familiar with in the program development, environment are the same operations that are
to be invoked within the host environment to accomplish similar tasks.

The guidelines are followed in more detail than simply through subprogram names. Names
and modes of parameters, the selection of a procedure versus a function, and the use of the
Form parameter as a string data type to specify non-default implementation options are all
further examples of following the style of Ada as defined in the language standard. These
and other instances of conformance within ACE, enforce an Ada-oriented style of ADTs
within the ACE environment.

6.2.2 Command Structure

Consistency and uniformity in the command environment of ACE is achieved through the
use of Ada and ADTs. Commands and objects are iogically grouped together as ADTs
via the Ada package mechanisms. This grouping allows the environment to be structured
and ordered. In addition, by nesting packages and subprograms the environment provides
controlled access to information. Users explore the environment in an orderly and informative
manner. This logical grouping of environment components has many benefits over the flat

Page 14

29 October 1990 STARS-RC-00980/001/00

structure supported by most command languages.

For example, if a specific windowing package is nested inside a basic windowing package.
novice users must -use" or reference the basic windowing package before they can access
the specific windowing package. This does not guarantee that novice users understand the
environment. However, it does guarantee that novice users understand the logical structure
of the environment. Of course, expert users who know the structure of the environment are
not hindered, since they can simply reference an arbitrarily nested command via the Ada
expanded name feature.

Another benefit of this command structure combined with Ada is the ability to define a user
interface that is consistent with the paradigms of Ada, as well as uniform in its treatment
of objects and operations in the environment. Such an environment would support (at all
levels of interaction with the environment) Ada philosophies, providing an excellent vehicle
for Ada development. The facilities of overloading and derived subprograms in Ada provide
the opportunity to define uniform interfaces to logically related operations and objects. As
described above, the ability to define a Create operation for each type of environment object
is supported in Ada through overloading. ACE supports overloading to allow the uniform
definition of abstract data types across the entire command environment. In adlition to
being consistent with the Ada standard, the environment is also uniform among the ADTs
that are defined within it.

.6.2.3 Command Applicability

One benefit of modern procedural languages is the notion of strong typing. The benefits of
strong typing within Ada are also of benefit to Ada as a command language and the definition
of ADTs. While ADTs allow the definition of operations for objects, strong typing enforces
the proper use of the operations. Many of the problems associated with a novice's use of
a command language can be attributed to the application of operations to inappropriate
objects (e.g., printing a binary image). In a strongly typed command language, and in
particular ACE, if there is no operation "print" defined for binary image objects then the
user can not (even accidentally) apply the operation.

Another benefit of strong typing in a command language is in the operation of very large
software systems. Many of the benefits of using ADTs in the construction of these software
systems are retained in the command language which acts as the "glue" which holds such
systems together. Having a strongly typed command language helps guarantee that the
systems are correctly constructed from their components. In addition, having a compilable
command language allows an interpreted system to become an entirely compiled system
merely by compiling the command language, whereas in a traditional command language,
the "glue" would have to be rewritten into the system's programming language.

Page 15

29 October 1990 STARS- RC-00980/001 /00

6.2.4 Command Specialization

* Through the use of derived types and derived subprograms, new objects can be described
as specializations of existing objects, i.e., described as differences from existing objects. For
example, the entire abstract data type for ACE's hierarchical file system is constructed of
existing ADTs that are specializations of a general file ADT. The general file ADT provides
the basic operations (e.g., Create, Delete, Copy, Rename, etc.) that can be performed on all
files. The immediate specializations of the general file ADT are Text-Files, Directory-Files,
and Binary-Files. Each of these specializations provides specific new or redefined operations
for each type. Any operation defined for the general file ADT that is not redefined in a
specialization's operations is inherited by the specialization. Therefore, each specialization
of the general file ADT inherits the Create, Delete, etc. operations, which in turn allows every
type of file in the file system to be manipulated via the general file operations. Specialization
provides a very powerful reuse mechanism within ACE; existing objects can be extended or
tailored for particular applications or user aesthetics without having to describe the entire
ADT.

In addition, since Ada (and consequently ACE) implicitly derives subprograms for every
derived type, much of the work that is normally associated with strong typing in a command
language and the construction of a hierarchical command environment is removed from
the user. Each derived type implicitly inherits a set of commands that enable its basic
manipulation.

6.2.5 Command Extensibility

An important part of any state-of-the-art environment is the ability of the environment to
evolve as technology and methodologies evolve. ACE's approach is to use Ada ADTs to
define the command language (creating a command environment). As described before, Ada
ADTs have a clean separation of implementation from specification. Therefore, as technology
makes small leaps, the new techniques can be incorporated in the ADT implementation
while not effecting the specification. In addition, when radical breakthroughs are made in
technology, new environment ADTs can be constructed and incorporated into the command
environment. Using this approach, we are only limited by the ability of Ada to assimilate
new approaches.

6.3 ADT Interfaces within ACE

Abstract data types within ACE are defined by Ada packages. The package specifications
encapsulate the definition of the objects and the operations that are applicable to the ob-
jects. Additionally, the package specification provides a mechanism for information hiding,
particularly hiding of the operations' implementations. The Ada package body contains the
implementation of the object and its respective operations.. ACE supports two mechanisms for the implementation of the ADT bodies: interpreted and

Page 16

29 October 1990 STARS-RC-00980/001 /00

built-in. Each of these mechanisms supports a different facet of environment definition, and
together they provide the facilities to compose and extend the Ada command environment.
Additionally, ACE through its ADTs provides a mechanism to access executable images
external to ACE. This provides added power and flexibility to the command environment.

6.4 ADT Body Implementations

As previously stated, Ada is the command language accepted by ACE and interpreted by
ACE's command language interpreter. The environment (as defined by Ada packages) is
read by the command language interpreter and processed, resulting in the elaboration of
Ada packages. This process of interpreting Ada ADT package specifications and bodies is
the typical method through which ADTs are declared within ACE.

ACE provides an additional mechanism by which package bodies may be defined. Rather
than interpreting an Ada package body, the Ada code may be compiled and linked into
the ACE executable. The package specification for the package is still Ada code that is
interpreted by ACE. A pragma directive informs ACE that the package body associated
with this package specification is already compiled and included within ACE.

This method of package body inclusion provides benefits to the runtime efficiency of ACE.
ACE may be tuned such that frequently invoked code is executed at the machine language
level (i.e., the compiled level), rather than interpreted.. Another benefit of compiled implementation is that it provides interactive invocation and
composition of compiled code within the command environment. An example of this is the
X Window System ADT of ACE which provides Ada interfaces to the X Window System
(currently implemented in C).

6.5 External Images

A vast array of applications and support tools are typically available within the host envi-
ronment. ACE does not impose a restrictive environment that limits the facilities available
to the software developer. Through a host operating system ADT, ACE provides an inter-
face mechanism which makes external executable images on the host system available from
within the command environment. Thus, environment ADT specifications are able to pro-
vide the user with a consistent Ada paradigm that may interface with a diverse set of Ada
and non-Ada external images, including the host operating system.

The ability to access external images provides the opportunity to build high level Ada ab-
stractions from low level non-Ada applications. Relationships may be formed among stand-
alone applications, providing a higher level data abstraction that encompasses the user's
desired functionality. The intricacies and/or idiosyncrasies of the individual applications
are hidden from the user in the ADT implementation. The implementation also hides the. handling of intermediate results being passed between applications. The user simply sees

Page 17

29 October 1990 STARS-RC-00980/001/00

the specification, which is designed to provide a consistent interface within the Ada-oriented. environ nint.

By invoking external images through environmeit ADTs, the functionality of ACE can be

extended into domains which can be tailored to specific environments, projects, or users. For
example, a project-oriented configuration management ADT can be defined which provides
software configuration control objects and operations. The programs which must be accessed
to support these facilities may exist scattered about the file system, or perhaps in a common
directory with many other programs unrelated to configuration management tasks. The
configuration management ADT can provide a coherent view of these operations and hide
the organization or disorganization of the underlying programs.

6.6 ADT Summary

This section lists the ADTs which are defined in the startup.ace file provided with the current
release of ACE and gives a brief description of the subprograms and objects provided by the
package.

1. Objects Contains the basic definitions for all objects in the environment.

2. Standard Predefined identifiers based upon the package Standard in the LRM (C).

3. ASCII Contains identifiers for characters in the ASCII character set, as defined in the
LRM (C). This package is defined within the package Standard.

4. System Contains identifiers for configuration-dependent characteristics. It is based
upon the package System as defined in the LRM (13.7).

5. JoExceptions Not currently supported.

6. lowLevelIo Not currently supported.

7. Calendar Provides the user operations on the clock, as defined in the LRM (9.6).

8. TextlIo

Provides facilities for input and output in human-readable form, as defined in the LRM
(14.3).

9. AceIntegerIo Provides input/output functions for integers. This is a hand-instantiated
version of the Integer-Io package defined in the LRM (14.3.7), tailored for IntegerdIo
type.

10. AceStandard Provides assistance objects and operations that are standard for ACE.

11. Ace-Io Provides operations that control the input/output of the ACLI.

12. Strngs Provides operations that mimic the slicing and indexing of arrays for Ace-String.

Page 18

29 October 1990 STARS- RC-00980/001/00

13.. AceAdt Provides objects and operations to support a programmatic interface to the
ACLI.

14. IlostOs Provides an interface to the underlying host operating system.

15. Manipulate-Scope Provides operations to support the dynamic removal and hiding of
objects from the environment.

16. Debugger Provides operations to manipulate the symbolic execution of subroutines.

17. FileSystem Defines objects and operations that may be performed on the hierarchical,
typed file system.

18. DirectoryObjects Provides operations that may be performed upon directories.

19. TextObjects Provides operations that may be performed upon text files.

20. ProgramObjects Provides operations that may be performed upon programs.

21. ProgranmTextObjects Provides an interface to the the Ada Repository Stubber pro-
gram.

22. BinanjObjects Provides operations that may be performed upon binary files.

23. ProgramUnits Provides the objects and operatir ACE compilation units.

24. IIeIp_,Adt Defines operations which rw.ie the user with on-line assistance for declared
objects in ACE, namely: packages, subprograms, an(' types.

25. Object-Lister Provides a routine to ailow p --rie- , the statement database for groups
of objects declared the same way (i.e, all objects, all types, etc).

26. KeyBindings Provides the operations that allow sequences of key strokes to be bound
to editing and history functions.

27. lindowObjects Defines the objects that are associated with the Window ADTs.

28. Ace..XWindowSystem Provides an interface to a small subset of the X Window system
based upon the X Window naming conventions.

29. AceUser..XWindowSystem Provides an interface to a small subset of the X Window
system based upon Ada paradigms.

30. WindowDrawRoutines Provides a simple set of drawing operations that may be per-
formed in Window objects.

31. LineCountcr Provides a completely interpreted Ada line counter operation.

32. CaisRoutines Provides access to the unierlying CAIS-A operations.

33. StarsTools Provides access to various STARS developed tools.

P~age 19

29 October 1990 STARS-RC-00980/001/00

3-1. CiuTine Provides operations to determine CPU use.

35.. _Ii,1do rs Provides declarations of tile basic X library data types needed to use lie
ACE interface to the Xt toolkit.

36. Renamed.Xlib_ Types Defines the connection between some type names used by Xt
routines and the equivalent type names in the basic X libary.

37. Intrinsics Contains the type declarations common to all Xt toolkit routines.

38. Widget-Package Provides a sample selection of Xt toolkit procedures.

39. XtStringdef3 Defines commonly used Xt resource name constants.

40. HpWidgets Provides the ACE interface to the Hewlett-Packard widget set.

6.7 ACE Command List

Ace Adt: Compile, Delete, Interpret, Interpret-File

Ace Io: CurrentAce_Input, CurrentAceOutput, SetAce_Input, SetAceOutnut,
StandardAceInput, StandardAceOutput

Ace User X Window System: Create, Delete

Ace X Window System: ClearWindow, Create-Window, Destroy-Window

Ada Standard Commands: abs, and, mod, not, or, rem, xor, ', -, <, <, ", >,
>=, /=,*, /, **, &

Binary Objects: Execute

Calendar: Clock, Day, Month, Seconds, Split, TimeOf, Year, +, -, <, <, >, >=

Cais Routines: AppendToCaisArgList, CreateCaisArgumentList,

InvokeProcess, PutCaisFileNodeHostName,
PutCaisNodeRelationships, PutCurrentCaisNode,
PrefixToCaisArgList, SetCurrentCaisNode, SpawnProcess,

Cpu Time: Clock, Difference, Put-Time

Debugger: Break, Clear-Break, Continue, Display, DisplayCurrentStatement,
Display-Next, DizplayPrevious, List, ListBreakpoints,
ListSymbolTable, Set.Break, Step

Directory Objects: Close, Create, CurrentDirectory, Form, HomeDirectory,

I'age 20

29 October 1990 STAR.S-RC-009S0/001/O0

Is-Open, List, Name, Open, Put_.CurrentDirectory, Set-Directory

File System: Copy, Create, Delete-File, Exists, Open, Rename, Reset,

Temporary-.Name

Help: Help

Host: Host

Hp Widgets: Xw-.Arrow-.Widget-.Class, Xw..AsciiSink-.Create,

Xw-Bulletin-WidgetClass, Xw..Button-.Widget-.Class,
Xw-ascade.Yidget-.Class, Xw...DiskSourceCreate,
Xw-.Disk-.Source-.Destroy, Xw-.Form_.Widget_.Class,
Xw-mage-Edit-.Widget_.Class, Xw-.List-.Widget-.Class,
Xw-Listrow-Col.Widget-Class, Xw-.Manager-.Widget..Class,
Xw-.MenuButton-idget-.Class, Xw-.Menu...Sep-.Widget_.Class,

Xw-enubutton-Widget..Class, Xw-.Menumgr-Widget-.Class,
Xw-.Menupane-.Widget-.Class, Xw-.Movejocus, Xw_.Panel_.WidgetClass,
Xv..Popup-.MgrWidgetClass, Xw-Popupmgr-.Widget-Class,
Xw-.Primitive-.Widget-.Class, Xw-.Push...Button-.Widget-.Class,
Xv-.Row-.Col-.Widget_.Class, Xw_.Sash.Widget_.Class,
Xw..Scroll-ar-Widget-.Class, Xw-.Scrollbar-.Widget_.Class,
Xw-ScrolledWindowWidget.Class, Xt-.Set-.Arg, Xw..Sraster-.WidgetClass,

Xw-.Statictext-.Widget-.Class, Xv-String-Source-.Create,
Xw-.String-.Source-.Destroy, Xw-.Swindov..WidgetClass,
Xw..Text-Clear.Buffer, Xw-.Text-.Copy-.Buffer, Xw-ext-opy-Select ion,
Xw-.Text-Edit-.WidgetClass, Xwextedit-Widget-.Class,

Xw-Text-.GetInsert-Pos, Xw-Text-Get-.Last-Pos, Xw-ext..Get-SelectionPos,
Xw.Text-Insert, Xw-.Text-Read_.Sub_.String, Xv..TextRedraw,
Xw-.Text-Set-nsert-.Pos, Xw-.Text-.SetSelection, Xwext-Set_.Source,
Xw_.Text_.Replace, Xw_.Text..UnsetSelect ion,
XWText-.Update, Xw-extSet-Source,

Xw-.Title..Bar-.Widget-.Class, Xw_.Titlebar-.Widget-.Class,
Xw...Toggle-.Widget-.Class, Xw..Valuator-.Widget-.Class,
Xw-.Work-.SpaceWidget-.Class

Intrinsics: Null-.CaddrT, Null-.Widget, Null-.Widget-Class

Key Bindings: Do-Goto-EndOf-History, DoGotoStartOfHistory,
Do-.Goto-.Beg-.Of...Line, Do-.Gotond-.Of-Line,
Do_.Move-.Left, Do-Move..Right,
Do.-Show..Histor,, Do-..Delete, Do_.Delete.ThisChar,
Do-Self-Insert, Do-Kill-Line,

fiige 21

29 October 1990 STARS- RC-00980/00 1/00

DoInsertString, DoShowHistoryLimit, DoSetHistoryLimit,

Do_Quoted_Insert, DoRefreshCurrentLine,
DoRefreshCurrentLineAndPrompt, DoRewriteCurrentLine,
DoRewriteCurrentLineAndPrompt, DoGetCurrentLine,

DoGetCurrentCharacter, DoGetCurrentColumn
MakeBinding, Interpret-String, HistoryBack, History-Forward

Manipulate Scope: Delete, Deuse, Undelete

Object Lister: List

Program Objects: Compile, EditAndInterpret

Program Units: Close, Create, Delete, Deuse, Form, Is-Open, List, Mode, Name,

Open, Put

Stars Tools: Check-Style, Count-Features, Count-Statements,

Diana-Browser, DianaFrontEnd, Diana_Mklib, DianaRmlib,

DianaCleanlib, DianaMakePredefinedEnv, DianaCreatePredefinedEnv,
MeasureMccabeComplexity, Set-Up, TestCaseGenerator,

TestResultsAnalyzer, Test_ProceduresGenerator, TestComparator,
TestUpdater

.Strings: Length, Slice

Text Io:
File Management: Close, Create, Delete, Form, Is-Open, Mode, Name,

Open, Reset

Default lo Control: Current-Input, CurrentOutput, Set_Input, SetOutput,
Standard_Input, Standard-Output

Specify Line and Page Length: Line-Length, Page-Length, SetLineLength,
SetPageLength

Column, Line and Page Control: Col, End_Of_File, EndOf_Line, EndOfPage,

Line, New-Line, New_Page, Page, SetCol, Set-Line, Skip-Line, Skip-Page

Character Input-Output: Get, Put

String Input-Output: Get, Get-Line, Put, Put-Line

Ace Integer Io: Get, Put

Page 22

29 October 1990 STARS-RC-009S0/00 1/00

Text Objects: Edit, EditFile, GetFile, List, List_.File, Print, Put-File

. Widgets Package: Action-Procedure-Pointer, Callback..Yrocedure-Pointer,
Create, Get, MakeXt.String, Null-XrmOption.List, Null-Xt.ArgList,
Put, Xt-.Add-.Act ions, Xt-.Add-.Callback, Xt-.App-.Next-.Event,
Xt...AugmentTranslat ions, Xt...Create-.Manage-Widget, Xt...Create-Widget,
Xt-.Default..App-.Context, Xt-.Destroy-.Widget, Xt-.Dispatch-.Event,
Xt-.Get-.Value, Xt-Initialize, Xt-Main-.Loop, Xt-.Override-.Translations,

Xt-.ParseTranslation-Table, Xt-.Realize-.Widget, Xt_.Set..Arg,
Xt_.Set,..Values, X..Text..Width

Window Draw Routines: Draw-.Dashed_.Line, Draw_.Line, Draw_.Rectangle,

Draw-.Rectangle-.Built in, Draw-Text

X Windows: Ascent, Descent, Text-.Width

7 Abstract Data Types of ACE

This section provides a description of the Abstract Data Types (ADTs) currently supported
by ACE. The ADTs are grouped into several related areas as ACE library files. They are:
standard. ace, commands. ace, bindings, ace, windows, ace, and cais. ace.

1. standard.ace provides the standard Adla packatge, wid several packages that are stan-
dard to ACE.

2. commands.ace provides the operations that are normally associated with a command
language.

.3. bindings.ace provides the operation t~o bind arbitrary key strokes to editing and history
functions.

4. win dows.ace provides a simple interface to the X Window System.

5. cais.ace provides an interface to the underlying CAIS-A implementation.

6. cpu...ime.ace provides the operation to measure CPU time use.

7.1 Standard Packages

The following packages provide the standard definitions of the required Ada packages, and
several packages that are standard for ACE.

Pit ge 2:3

29 October 1990 STARS-RC-00980/001/00

7.1.1 Objects. ,he lbasic building blocks of all ACE objects are the objects package. (lerived types. and
derived subprograms. The "ObjectType" type is the basic representation of every object in
ACE, and provides the means (through derived subprograms) of defining operations on all
ACE objects. Since every object in ACE is a derived type of "Object-Type" in the objects
package, it is possible to define an operation that can act on every object in ACE.

package Objects is

type Object-Type is new Integer;

end Objects;

7.1.2 Standard

This is the package Standard" from the Ada reference manual as implemented in ACE. The
description order of this package is slightly rearranged from that within the Ada reference
manual order to conform with the format used in the description of all ACE's ADTs.

.package Standard is
use Objects;

-- type Boolean is (False, True);

-- The predefined relational operators for this type are as follows:

function =" (Left, Right Boolean) return Boolean;
function "/=" (Left, Right Boolean) return Boolean;
function "<" (Left, Right : Boolean) return Boolean;
function "<=" (Left, Right Boolean) return Boolean;
function ">" (Left, Right Boolean) return Boolean;
function ">=" (Left, Right Boolean) return Boolean;

-- The predefined logical operators and the predefined logical
-- negation operator are as follows:

function "and" (Left, Right : Boolean) return Boolean;
function "or" (Left, Right : Boolean) return Boolean;
function "xor" (Left, Right : Boolean) return Boolean;

lPage 24

29 October 1990 STARS-RC-00980/001/00

function "not" (Right : Boolean) return Boolean;

-- the Universal type universal-integer is predefined.

-- type Integer is range -Integer'last .. Integer'last;

-- The predefined operators for this type are as follows:

function '=" (Left, Right : Integer) return Boolean;
function "/=" (Left, Right : Integer) return Boolean;
function "<1 (Left, Right : Integer) return Boolean;
function "<=" (Left, Right : Integer)-return Boolean;
function ">" (Left, Right : Integer) return Boolean;
function ">=" (Left, Right : Integer) return Boolean;

function "+" (Right : Integer) return Integer;
function "-" (Right : Integer) return Integer;
function "abs" (Right : Integer) return Integer;

function "+" (Left, Right Integer) return Integer;

function "-" (Left, Right : Integer) return Integer;

function "-" (Left, Right : Integer) return Integer;

function "" (Left, Right Integer) return Integer;

function "rem" (Left, Right : Integer) return Integer;

function "mod" (Left, Right : Integer) return Integer;

function "**" (Left : Integer; Right : Integer) return Integer;

-- Type Float is unimplemented.

-- Type Character is partially implemented, but not supported.

package Ascii is

Page 25

29 October 1990 STARS- RC-00980/001 /00

-- Control characters:

Nul constant Character Character'VAL (0);
Soh constant Character Character'VAL (1);
Stx : constant Character Character'VAL (2);
Etix constant Character :--Character'VAL (3);
Eat constant Character Character'VAL (4);
Enq : constant Character := Character'VAL (5);
Ack : constant Character Character'VAL (5);
Belk constant Character Character'VAL (7);
Bs constant Character := Character'VAL (8);
Ht constant Character Character'VAL (9);
Lf constant Character Character'VAL (10);
Vt constant Character Character'VAL (11);
Ff constant Character := Character'VAL (12);
Cr constant Character Character'VAL (13);
So constant Character := Character'VAL (14);
Si : constant Character := Character'VAL (15);
Die : constant Character := Character'VAL (16);
Dcl constant Character := Character'VAL (17);
Dc2 : constant Character Character'VAL (18);
Dc3 : constant Character := Character'VAL (19);
Dc4 : constant Character Character'VAL (20);
Nak : constant Character : Character'VAL (21);
Syn : constant Character Character'VAL (22);
Etb : constant Character := Character'VAL (23);
Can : constant Character Character'VAL (24);
Em : constant Character Character'VAL (25);

Sub : constant Character := Character'VAL (26);
Esc : constant Character := Character'VAL (27);
Fs : constant Character := Character'VAL (28);
Gs constant Character Character'VAL (29);
Rs : constant Character Character'VAL (30);
Us constant Character := Character'VAL (31);
Del : constant Character := Character'VAL (127);

-- Other characters:

Exclam constant Character := '';

Sharp constant Character:: '';
Percent : constant Character :
Colon constant Character :
Query constant Character : '?''

LBracket : constant Character :=
RBracket : constant Character :=

Page 26

29 October 1990 STARS-RC-00980/001/00

Underline constant Character : ';

LBrace constant Character

RBrace constant Character

Quotation constant Character

Dollar : constant Character :=

Ampersand : constant Character := '&';

Semicolon : constant Character :

At-Sign : constant Character := '10';
Back-Slash : constant Character :IV

Circumflex : constant Character :z '';

Grave : constant Character

Bar :-constant Character '4';

Tilde : constant Character :=

-- Lower case letters:

LcA constant Character := 'a';

LcB constant Character :=b;

LcC constant Character :=c)

LcD : constant Character :=d;

LcE constant Character :=e;

LcF constant Character :=f;

LcG constant Character :=I

LcH : constant Character :=h'

LcI constant Character := 'i';

LcJ constant Character :=j;

LcK : constant Character :=k;

LcL : constant Character : 'I';

LcM: constant Character : ;
LcN constant Character =n);

LcO : constant Character :=);

LcP : constant Character :=p;

LcQ : constant Character :=q;

LcR : constant Character :=r;

Lc.S : constant Character :=s,

LcT : constant Character : t ,

LcU : constant Character :=)u

LcV : constant Character : 'v';

LcW : constant Character :=w;

LcX : constant Character :=x;

LcY : constant Character :=Y;

Lc.Z : constant Character : 'z';

end Ascii;

Page 27

29 October 1990 STARS-RC-009S0/001/00

-- Predefined subtypes:

subtype Natural is Integer; -- range 0 .. Integer'last;

subtype Positive is Integer; -- range 1 .. Integer'last;

-- type String is array (Positive range <>) of Character;

-- Type "String" is not implemented in ACE as a one-dimensional array

-- of the predefined type character. Strings and string literals

-- within ACE provide some of the operations that are applicable to

-- Standard strings. Operations applicable to one-dimensional arrays

-- are not applicable to "String"s in ACE.

-- When composite types are supported in ACE, "String" will be changed
-- to its array definition.

subtype Ace-String is String;

function "" (Left, Right : String) return Boolean;
function "/=" (Left, Right String) return Boolean;

function "<" (Left, Right String) return Boolean;
function "<=" (Left, Right String) return Boolean;

function ">" (Left, Right String) return Boolean;
function ">=" (Left, Right String) return Boolean;

function "&" (Left String; Right String) return String;

function "&" (Left : String, Right : Character) return String;

function "k" (Left : Character; Right String) return String;

function "&" (Left Character; Right Character) return String;

type Duration is new Object-Type;

-- Duration is simply a new integer type

-- since fixed points are not implemented [TDB]

-- Exceptions are not supported. [TDB]

-- Constraint-Error : exception;

-- Numeric-Error exception;

-- Program-Error exception;

-- Storage-Error : exception;

Page 28

29 October 1990 STARS-RC-00980/001/00

-- Tasking-Error : exception;

end Standard;

7.1.3 System

Predefined system package, as defined in the Ada standard.

package System is
use Objects;

type Address is new Object-Type;
type Name is (MsDos, Sun-Unix);

System-Name : constant Name := SunUnix;

-- Storage-Unit constant Integer 1;
-- Memory-Size constant Integer 1;

MinInt constant I-reger Integer'First;
MaxInt const-i' integer Integer'Last;
-- Max-Digits constant Integer 1;
-- MaxMan-issa constant Integer 1;
-- Fine-nelta constant Integer 1;
-- Tick: constant Integer 1;

-- subtype PRIORITY is integer range -16 .. 16;

end System;

7.1.4 IoExceptions

This package defines the exceptions needed by the packages

SequentialIo, Direct_Io, and TextIo. Only TextIo is

implemented in ACE. Exceptions are currently not fully supported.

package IoExceptions is

Status-Error exception;
Mode-Error exception;

Name-Error exception;
Use-Error exception;

Page 29

29 October 1990 STARS-RC-00980/001/00

DeviceError : exception;

End-Error exception;

Data-Error exception;

Layout-Error exception;

end IoExceptions;

7.1.5 LowLevelIo

Low Level input-output operations are operations that act on a physical

device. LowLevelIo is currently not supported.

package LowLevelIo is

end LowLevel_Io;

7.1.6 Calendar

This package provides the user access to operations on the

clock, as defined in the LRM (9.6)..Note: Duration is currently not implementated as a fixed point,

and exceptions are currently not supported.

package Calendar is

use Objects;

type Time is new ObjectType;

subtype Year-Number is Integer; -- range 1901 .. 2099;

subtype Month-Number is Integer; -- range 1 .. 12;

subtype Day-Number is Integer; -- range 1 .. 31;

subtype Day-Duration is Duration; -- range 0 .. 86400;

function Clock return Time;

function Year (Date : Time) return YearNumber;
function Month (Date : Time) return Month-Number;
function Day (Date : Time) return Day-Number;

function Seconds (Date : Time) return DayDuration;

procedure Split (Date in Time;
Year : out YearNumber;

Page:0

29 October 1990 STARS-RC-00980/001/00

Month out Month-Number;

Day out Day-Number;

Seconds out Day-Duration);

function Time-Of (Year Year-Number;

Month Month-Number;

Day DayNumber;

Seconds Day-Duration :=-0) return Time;

function "+" (Left Time; Right Duration) return Time;

function "+" (Left Duration; Right Time) return Time;

function "-" (Left Time; Right Duration) return Time;

function "-" (Left Time; Right Time) return Duration;

function "<" (Left, Right Time) return Boolean;

function "<=" (Left, Right Time) return Boolean;

function ">" (Left, Right Time) return Boolean;

function '>=' (Left, Right Time) return Boolean;

Time-Error exception;

end Calendar;

7.1.7 TextIo

This is the "TextIo" package of Ada (Chapter 14 of the Ada

Reference Manual).

package Text-lo is

use Objects;

type File-Type is new Object-Type;
type FileMode is (InjFile, Out-File);

type Count is new Integer;

subtype Positive-Count is Count;

Unbounded : constant Count := 0; -- line and page length

subtype Field is Integer;

subtype Number-Base is Integer;

type Type-Set is (Lower-Case, Upper-Case);

-- File Management

Page 3I1

29 October 1990 STARS-RC-00980/001/00

procedare Create (File in out File-Type;
Mode in File-Mode OutFile;

Name in String

Form in String g=l");

procedure Open (File in out File-Type;

Mode in File-Mode;

Name in String;

Form in String := il);

procedure Close (File in out File-Type);

procedure Delete (File in out File-Type);

procedure Reset (File in out File-Type;

Mode in File-Mode);

procedure Reset (File in out File-Type);

function Mode (File in File-Type) return FileMode;

function Name (File in File-Type) return String;

function Form (File in File-Type) return String;

function Is-Open (File : in File-Type) return Boolean;

-- Control of default input and output files

procedure Set-Input (File in FileType);

procedure Set-Output (File in FileType);

function Standard-Input return File-Type;

function StandardOutput return File-Type;

function Current-Input return File.Type;

function Current-Output return File-Type;

-- Specification of line and page lengths

procedure SetLineLength (File in File-Type;
To in Count);

procedure SetLineLength (To : in Count);

procedure SetPageLength (File in File-Type;
To in Count);

procedure SetPageLength (To : in Count);

Page :32

29 October 199)0 STARS-RC-009S0/00 1i00

function Line-Length (File : in File-Type) return Count;
function Line-Length return Count;

function Page-Length (File : in File-Type) return Count;

function Page-Length return Count;

-- Column, Line, and Page Control

procedure New-Line (File in FileType;
Spacing in Positive-Count 1);

procedure New-Line (Spacing in Positive_Count 1);

procedure Skip-Line (File in File-Type;
Spacing in Positive-Count 1);

procedure Skip-Line (Spacing in Positive-Count 1);

function EndOfLine (File : in File-Type) return Boolean;
function EndOfLine return Boolean;

procedure New-Page (File in File-Type);
procedure New-Page;

0procedure Skip-Page (File in FileType);
procedure Skip-Page;

function EndOfPage (File : in File-Type) return Boolean;

function EndOfPage return Boolean;

function EndOfFile (File : in File-Type) return Boolean;
function EndOfFile return Boolean;

procedure SetCol (File in File-Type;
To in Positive-Count);

procedure SetCol (To : in PositiveCount);

procedure Set-Line (File in File-Type;
To in Positive-Count);

procedure Set-Line (To : in Positive-Count);

function Col 'File : in File-Type) return Positive-Count;
function Col return Positive;

Page :3

29 October 1990 STARS- RC-00980/001/00

function Line (File : in File-Type) return PisitiveCount;
function Line return Positive-Count;

function Page (File : in File-Type) return Positive-Count;
function Page return Positive-Count;

-- Character Input-Output

procedure Get (File in File-Type;
Item out Character);

procedure Get (Item out Character);

procedure Put (File in File-Type;

Item in Character);
procedure Put (Item in Character);

-- String Input-Output

procedure Get (File in File-Type;

Item out String);
procedure Get (Item out String);

procedure Put (File in File-Type;

Item in String);
procedure Put (Item in String);

procedure Get-Line (File in File.Type;

Item out String;
Last out Natural);

procedure Get-Line (Item out String;
Last out Natural);

procedure Put-Line (File in File-Type;
Item in String);

procedure Put-Line (Item in String);

-- Instantiated generic package for Input-Output of Integer Types

AceIntegerIo is a hand-instantiated IntegerIo package.

package AceIntegerIo is

Default.Width Field 10;
Default-Base Number-Base := 10;

procedure Get (File in File-Type;

Page 34

29 October 1990 STARS-RC-00980/001/00

Item out Integer;

Width in Field := 0);

procedure Get (Item out Integer;

Width in Field := 0);

procedure Put (File in File-Type;

Item in Integer;

Width in Field DefaultWidth;

Base in Number-Base Default-Base);

procedure Put (Item in Integer;

Width in Field DefaultWidth;

Base in Number-Base Default-Base);

procedure Get (From in String;
Item out Integer;

Last out Positive);

procedure Put (To out String;

Item in Integer;

Base in Number-Base := Default-Base);

end AceIntegerIo;

end Text_Io;

7.1.8 Ace-Standard

In addition to the Ada package "Standard", ACE contains an

additional set of objects and operations that are standard for ACE.

package AceStandard is

subtype Interpreter-String is Ace-String;

subtype FileSystemString is Ace-String;

subtype Data-String is Ace-String;

subtype HostOsString is Ace-String;

type List-Mode is (Both, Specification, Implementation);

type MethodOfExecution is (Foreground, Background);

lPage:35

29 October 1990 STARS-RC-00980/001/00

-- These should remain in TextIo, since File-Type

-- should be a limited private type.

package AceIo is

use TextIo;

procedure SetAceInput (File : in File-Type);

procedure SetAceOutput (File : in File-Type);

function StandardAceInput return File-Type;

function StandardAceOutput return File-Type;

function CurrentAceInput return File-Type;

function CurrentAceOutput return File-Type;

end AceIo;

end AceStandard;

7.1.9 Strings

.Temporary string operations that perform slices.

package Strings is

function Slice (Str : in String;

StartPos : in Integer;
StopPos : in Integer) return String;

function Slice (Str in String;
Pos in Integer) return Character;

function Length (Str in String) return Integer;

end Strings;

7.2 Command Language Commands

The following packages provide operations that are similar to the expected commands pro-
vided by most command languages (i.e., Set-Directory).

Page :36

29 October 1990 STARS-RC-00980/001 /00

* 7.2.1 AceAdt

AceAdt provides an interface to the interpret in the ACE system.

package AceAdt is
use TextIo;
use Objects;

type AceStatementDatabase is new Object-Type;

This routine will "compile" a string into the statement
database form.

procedurre Compile (Str in String;
Tree in out AceStatementDatabase;

Error out Boolean);
This routine will "compile" a file into the statement
database form.

procedure Compile (File in File-Type;

Tree in out AceStatement-Database;
Error out Boolean);

This routine will delete the statement database tree associated
* with "tree".

procedure Delete (Tree : in AceStatementDatabase);
Interpret will "execute" the tree associated with the parameter
"tree".

procedure Interpret (Tree in AceStatementDatabase;
Error out Boolean);

Interpret will "execute" the value of the Str parameter.
procedure Interpret (Str in String;

Error out Boolean);
Interpret will "execute" the contents of a file.

procedure Interpret (File in File-Type;

Error out Boolean);
Interpret will "execute" the tree associated 6ith the parameter
"tree".

procedure Interpret (Tree in AceStatementDatabase);
Interpret will "execute" the value of the Str parameter.

procedure Interpret (Str : in String);
Interpret will "execute" the contents of a file.

procedure Interpret (File in File-Type);

[age :37

29 October 1990 STARS-RC-00980/01/O0

Interpret-File will "execute" the contents of a file.
procedure Interpret-File (File : String);

end AceAdt;

7.2.2 HostOs

"HostOs" provides the interface to the underlying operating
system on which ACE is executing.

package HostOs is

Host provides an escape to the host operating system. The
text of the "Command" parameter will be passed to the command language
processor of the host operating system. Arguments to the command may
be passed, as well as an indication whether ACE should wait for the
completion of the command.

procedure Host (Command in HostOsString;
Command-Arguments in HostOsString

How in Method-of-Execution Foreground);

.end HostOs;
7.2.3 Manipulate-Scope

"ManipulateScope" contains routines which allow the scope of

objects to be manipulated within ACE. These routines support the
dynamic removal of existing objects and the availability to "undo" the
Ada "Use" statement.

package Manipulate-Scope is

Procedure "Delete" removes an object from the ACE environment.
This allows objects to be removed and a new defintion of the object to
be reintroduced into ACE. The Form parameter also allows overloaded

names to be uniquely identified.
procedure Delete (Name in InterpreterString;

Form in Interpreter-String

- - TBD] NOT YET IMPLEMENTED
-- procedure Undelete (Name in InterpreterString;
-- Form in Interpreter-String);

Page 38

29 October 1990 STARS-RC-00980/001/00

-- procedure Undelete (Name : in InterpreterString);

Procedure "Deuse" performs an "undo" for the Ada "Use" statement.
The names given direct visibility are no longer directly visible.
NOTE: an item from another package that was hidden due to USE-ing this
package will not automatically be made visible.

procedure Deuse (Package-Name : in Interpreter-String;

Form Interpreter-String :

end Manipulate-Scope;

7.2.4 Debugger

The debugger package provides routines to symbolically view the
execution of programs.

package Debugger is

This procedure will list the contents of the entire
statement database (i.e., every object declared in the
environment).

procedure ListSymbolTable (List-Kind : in List-Mode := Specification);

This procedure will list the object that has been associated
with the "name" parameter. The List-Kind parameter can be

use to list the implementation or specification of the object,
and the Form parameter can be used to identify an overloaded

subprogram.
procedure List (Name : in InterpreterString;

List-Kind : in List-Mode := Specification;
Form : in Interpreter-String := '");

This procedure will list the specification of the

object that has been associated with the "name" parameter.
The Form parameter can be used to identify an overloaded
subprogram.

procedure List (Name in InterpreterString;

Form in Interpreter-String :=

.ListBreakpoints will list all the break points that are
currently active.

procedure ListBreakpoints;

Page :39

29 October 1990 STARS-RC-00980/001/00

.Break will temporarily suspend execution for debugging.

procedure Break;

Continue will begin execution after a Break statement was encountered
procedure Continue;

Step will execute a statement after a break statement was encountered
procedure Step (Count : Positive := 1);

SetBreak will place a break point on the appropriate Statement-Number
procedure Set-Break (Statement-Number : in Integer);

Set-Break will place a break point on the appropriate Subprogram
procedure Set-Break (Name : in InterpreterString);

Set-Break will place a break point on the current Statement

procedure Set-Break;

Clear-Break will remove a break point on the appropriate Statement-Number

procedure ClearBreak (Statement-Number : in Integer);
Clear-Break will remove a break point on the appropriate Subprogram

procedure Clear-Break (Name : in Interpreter-String);
Clear-Break will remove a break point on the current statement

procedure Clear-Break;

Display will list the current statement
procedure Display (StatementNumber : in Integer);

Display will list the first statement associated with a
subprogram upon which a breakpoint may be set.

procedure Display (Name : in Interpreter-String);
Display will list the current statement.

procedure Display;

DisplayCurrentStatement will list the current statement.
procedure DisplayCurrentStatement;

Display-Next will list the next executable statement
procedure DisplayNext (Statement-Number : in Integer);

Display-Next will list the next executable statement

procedure Display-Next;

DisplayPrevicus will list the previously executed statement
procedure DisplayPrevious (Statement-Number : in Integer);

Display-Previous will list the previously executed statement
procedure Display-Previous;

Page 40

29 October 1990 STARS-RC-00980/001 /00

.end Debugger;

7.2.5 File-System

This package is the basic definition of the ACE file system.
All other file system packages will be derived from this one (i.e.,
they will use this package--directly or indirectly--and derive types
from the basic type "File-Object").

package File-System is

use Objects;
use Text_Io;

-- File-Object is the basic representation of an Object (or File) in
-- ACE.

type File-Object is new File-Type;

type Object-Mode is (In-Object, OutObject);

-- by every derived type of File-Object.

-- Other commands can be declared

-- Using this technique we can define the entire file
-- system for ACE as Ada declarations.

Generate a temporary name.

function Temporary-Name return String;

Thi procedure copies the contents from one file to the other file.

procedure Copy (From in File-Object;

To in File-Object);

This procedure copies the contents from one file to the other file.

procedure Copy (From in FileSystemString;
To in FileSystemString);

This procedure deletes an object from the file system.
procedure Delete-File (Obj : in FileSystemString);

This procedure changes the name associated with a file.

procedure Rename (From in File-Object;
To in File-Object);

This procedure changes the name associated with a file.

Page 41

29 October 1990 STARS-RC-00980/001/00

procedure Rename (From in FileSystemString;
To in FileSystemString);

This function returns the boolean value "True" if a file exists
within the current working directory.

function Exists (Obj : in FileSystemString) return Boolean;

This procedure creates a new persistent file object with the
specified name. If no name is given, an arbitrary name will be
generated.

procedure Create (Obj in out File-Object;
Mode in Object-Mode OutObject;
Name in FileSystemString -"";

Form in HostOsString "i);

This procedure associates a file object with the persistent
object having the specified name.

procedure Open (Obj in out File-Object;
Mode in Object-Mode;
Name in FileSystemString;
Form in HostOsString := "l);

This procedure resets the specified file object, possibly
changing the mode associated with it.

procedure Reset (File in out File-Object;
Mode in Object-Mode);

This procedure resets the specified file object.
procedure Reset (File in out File-Object);

end File_System;

7.2.6 Directory-Objects

Directory-Objects provides operations on directories

package Directory-Objects is
use FileSystem;

-- There needs to be a universal naming scheme for identifying
-- directories (e.g., "..").

type Directory-Object is new File-Object;

Page 42

29 October 1990 STARS-RC-00980/001 /00

. This procedure creates a new directory object with the specified
name. If a name is not given, an arbitrary name will be generated

procedure Create (Directory in out Directory-Object;
Name in FileSystemString;
Form in HostOsString := ");

This procedure associates an object with the directory object
procedure Open (Directory in out Directory-Object;

Name in FileSystemString;
Form in Host_0sString := "");

This procedure disassociates an object from the directory object
procedure Close (Directory : in out Directory-Object);

This function returns the name of the specified directuxy object
function Name (File : in Directory.Object) return String;

This function returns the form string of the specified directory object
function Form (File : in Directory-Object) return String;

. This function returns the file status of the specified directory object
function Is-Open (File : in Directory-Object) return Boolean;

This function returns the user's home directory
function Home-Directory return Directory-Object;

This function returns the user's current working directory
function Current-Directory return Directory-Object;

This procedure lists the contents of the specified directory object
procedure List (Directory : in Directory-Object := Current-Directory);

This procedure changes the current working directory to the
specified directory object, or the specified file system directory

procedure Set-Directory (Directory : in Directory-Object := Home-Directory);
This procedure changes the current working directory to the
specified directory object, or the specified file system directory

procedure Set-Directory (Directory : in FileSystemString);

This procedure displays the current working directory
procedure PutCurrentDirectory;

end Directory-Objects;

Page,43

29 October 1990 STARS-RC-009S0/001/00

.7.2.7 TextObjects

Text-Objects provides operations on text files.

package TextObjects is
use File-System;

type Text.Object is new File-Object;
type History-Mode is (New-File, Old-File);

This procedure displays the contents of a text file, either by
specifying the text object

procedure List (Text : in Text-Object);

This procedure displays the contents of a text file, either 'y
specifying the file system name of the text file

procedure List-File (Text : in FileSystemString);

-- This routine should be List not List-File,
-- but until we have expanded names this will have
-- to do.

.This procedure invokes the system editor upon the specified text file
procedure Edit (Text in out Text-Object;

How in MethodOfExecution := Foreground);

This procedure invokes the system editor upon the specified text file
procedure Edit-File (Text : in FileSystemString;

History in History-Mode := 01d-File;
How in MethodOfExecution := Foreground);

-- These routines should be Edit not Edit-File,
-- but until we have expanded names this will have
-- to do.

This procedure will print the specified file on the standard
default printer

procedure Print (Text in Text-Object);
This procedure will print the specified file on the standard
default printer

procedure Print (Text in FileSystemString);

This procedure will put the textual Ada code that is associated.with the ACE persistent object (Interpreter-String) into the specified
file name.

procedure Put-File (Object in Interpreter-String;

Page144

29 October 1990 STARS-RC-00980/001/00

Form in Interpreter-String;
File-Name in FileSystem-String);

This procedure will put the textual Ada code that is associated
with the ACE persistent object (Interpreter-String) into
a default file that will have a file name identical to the name of
the ACE object.

procedure Put-File (Object in Interpreter-String;
Form in Interpreter-String

This procedure will cause ACE to read textual input from the
specified file, rather than from AceStandardInput (see
AceStandard.AceIo package), until the end of file is reached.

procedure Get-File (File_Name : in FileSystemString);

end Text-Objects;

7.2.8 Program-Objects

Program-Objects provides operations for text files that contain
Ada code.

.package Program-Objects is
use FileSystem;
use TextObjects;

use AceAdt;

"Program-Text" represents files that contain Ada code.

type ProgramText is new Text-Object;

"Format-Text" represents files that are formatted, such as
program listings.

type Format-Text is new TextObject;

"Data-Text" can represent any ASCII file.
type Data-Text is new TextObject;

This procedure submits the specified program text to an Ada
compiler with the Form string being passed to the Ada compiler.

procedure Compile (Program in ProgramText;

Form in HostOsString := fi);.This procedure submits the specified program text to an Ada
compiler and linker, identifying the name of the main unit and the

executable code file.

Page .15

29) October 1990 STARS-RC-O0980/001/00

procedure Compile (Program in Program-Text;

Main-Unit in DataString;
HostBinaryName in FileSystemString);

This procedure submits the specified file containing Ada co'
to an Ada compiler

procedure Compile (Program in FileSystemString;
Form in Data-String :- "");

This procedure submits the specified program text to an
compiler and linker, identifying the name of the main unit and
executable code file.

procedure Compile (Program in FileSystemString;
Main-Unit in Data-String;
HostBinaryName in FileSystemString);

This procedure edits the ACE item ("Name"), where the Form parameter
is used to uniquely identify overloaded names, such as
subprograms, with the ACE item also being stored in the program
text file denoted by "Object". The item will be reinterpreted by
the ACLI.

procedure EditAnd-Interpret (Name in Interpreter-String;
Form in Interpreter-String

Object in out Program-Text);
This procedure edits the ACE item ("Name"), where the Form parameter
may be used to uniquely identify overloaded names, such as
subprograms. The item will then be reinterpreted by the ACLI.

procedure EditAnd-Interpret (Name in Interpreter-String;
Form in Interpreter-String

end Program-Objects;

7.2.9 ProgramTextObjects

ProgramTextObjects provides operations on program specs and bodies
package ProgramTextObjects is

use Program-Objects;

"Spec-Program" represents files that contain Ada specifications.
type Spec-Program is new Program-Text;

"Body-Program" represents files that contain Ada implementations.
type Body-Program is new Program-Text;

.end ProgramTextObjects;
Piage 46

29 October 1990 STARS-RC-00980/001/00

7.2.10 Binary-Objects

Binary-Objects provides operations on executable files.

package Binary-Objects is
use FileSystem;

Binary-Object represents files that would contain any data such
as program execuatbles, raster images, etc.

type Binary-Object is new File-Object;

ProgramBinary is the compiled version of a ProgramText type.
type Program-Binary is new Binary-Object;

Format-Binary is formatted output that contains non-ASCII data,
such as raster images.

type Format-Binary is new Binary-Object;

Data-Binary is any file that contains non-ASCII data and is
neither a Program-Binary or FormatBinary file.

type Data-Binary is new Binary-Object;

S This procedure has the host operating system execute the
specified program binary object.

procedure Execute (Program in Program-Binary;

CommandLineArguments in Data-String := l");
procedure Execute (Program in FileSystemString;

CommandLineArguments in Data-String := i");

end Binary-Objects;

7.2.11 Program-Units

Package "Program-Units" contains the defintion of ACE compilation
units. Packages and subprograms are currently supported within ACE
compilations units. This package provides the definition of the
creation, deletion, open, close, mode, and is-open operations.

package Program-Units is

use Objects;

type Package-Type is new Object-Type;
type Subprogram-Type is new Object-Type;

type ProgramUnitMode is (InProg-Unit, OutProgUnit);

I'age I

29 October 1990 STARS- RC-00980/00 1/00

procedure Create (Ace_Package in out Package-Type;
Mode in ProgramUnitMode OutProgUnit;

Name in Interpreter-String
Form in Interpreter-String

--procedure Create (Ace-Subprogram : in out Subprogram-Type;
-- Mode : in ProgramUnitMode OutProgUnit;
-- Name : in Interpreter-String

-- Form : in Interpreter-String

Procedure "Open" associates an existing package with a package object
procedure Open (Ace-Package in out Package-Type;

Mode in ProgramUnitMode;
Name in Interpreter-String;
Form in Interpreter-String :a");

Procedure "Open" associates an existing program with a

subprogram object
procedure Open (Ace-Subprogram in out Subprogram-Type;

Mode in ProgramUnitMode;
Name in Interpreter-String;
Form in Interpreter-String

This procedure disassociates a package object with a package
resident within ACE

procedure Close (Ace-Package : in out Package-Type);

This procedure disassociates a subprogram object with a package

resident within ACE
procedure Close (Ace-Subprogram : in out Subprogram-Type);

This procedure removes the specified package object from the

name space of ACE.
procedure Delete (Ace-Package : in out Package-Type);

This procedure removes the specified subprogram object from the

name space of ACE.
procedure Delete (Ace-Subprogram : in out Subprogram-Type);

This function returns the mode of the specified package object
function Mode (Ace-Package : in Package-Type) return ProgramUnitMode;

Page .18

29 October 1990 ST/ RS-RC-009S0/001/00

.This function returns the mode of the specified subprogram object
function Mode (Ace-Subprogram : in SubprogramType)

return ProgramUnitMode;

This function returns the name of the specified package object
function Name (Ace-Package : in PackageType) return InterpreterStri-;

This function returns the name of the specified subprogram object
function Name

(Ace-Subprogram : in Subprogram-Type) return Interpreter-String;

This function returns the form of the specified package object.
The form is the statement number associated with the package.

function Form (Ace-Package : in Package-Type) return Interpreter-String;

This function returns the form of the specified subprogram object.
The form is the statement number associated with the SubProgram.

function Form
(Ace-Subprogram : in Subprogram-Type) return Interpreter-String;

This function returns the open status of the specified package object
function Is-Open (Ace-Package : in Package-Type) return Boolean;

This function returns the open status of the specified

subprogram object
function Is-Open (Ace-Subprogram : in Subprogram-Type) return Boolean;

This procedure performs an "undo" of the Ada "use" statement.
The names given direct visibility by the "use" staTement will no
longer be directly visible.

note: An item from another package that was hidden due to using
the package will not automatically be made visible.

Procedure Deuse (Ace-Package : in Package-Type);

The location type specifies whether the subprogram is only to
be moved into the package specification or into the package body.

type Location-Type is (In-Spec, In-Body);

The visibility type specifies whethe- the the subprogram object
is to be visible (moved into the visible portion of the package
spec) or hidden (moved into the private portion of the package spec).

type Visibility-Type is (Visible, Hidden);

.'"Put" will put the textual Ada code that is associated
with the ACE persistent object (SubprogramItem) into

Page 19

29 October 1990 STARS-RC-00980/001/00

.the specified package.
procedure Put (Subprogram-Item in Subprogram-Type;

Into-Package in Package-Type;

Location in Location-Type;
Visibility in Visibility-Type);

"List" displays the package object. The "List-Method" controls the
portion of the package listed: spec, body, or both.

procedure List (Ace-Package : in Package-Type;
List-Method in List-Mode := Both);

"List" displays the subprogram object. The "List-Method" controls the
portion of the subprogram listed: spec, body, or both.

procedure List (Ace-Subprogram in Subprogram-Type;
List-Method in List-Mode := Both);

end Program-Units;

7.2.12 HelpAdt

The Help-Adt provides operations to aid the user. Type
"Help;" to learn more about the help subprogram.

package HelpAdt is

The Help command provides the user with on-line assistance for
declared objects in ACE: packages, subprograms, and types.
These objects may be associated with help comments, which are
denoted by the PDL-like "..?" When invoked, this command displays
the text of the help comment associated with the object (NAME).
The form parameter is used to uniquely identify overloaded names.

procedure Help (Name : Interpreter-String : "Help";
Form : Interpreter-String

end HelpAdt;

7.2.13 Object-Lister

Object-Lister provides operations that allow users to browse the
defined constructs in ACE.

.package Object-Lister is

Page 50

29 October 1990 STARS-RC-00980/001/00

type Object-Declarations is
(Any,
Objs,
Type-Marks,

Types,
Subtypes,
Subprograms,
Packages,
Procedures,
Functions,
Labels);

procedure List will display the names of environment objects that
are currently visible. One can focus the report on a particular object

procedure List (Object-Type Object-Declarations;
Specifier Interpreter-String := "l);

end Object-Lister;

7.3 Key Bindings

* The following packages provide operations to bind arbitrary keystrokes to editing and history
functions.

7.3.1 Key-Bindings

Key-Bindings provides operations to bind arbitrary keystrokes

to editing and history functions.

package Key-Bindings is

type Commands is
(Error,
Unbound,

LineSeparator,
Interpret-String,
History-Back,
History-Forward,

Move-Left,
MoveRight,
BeginningOfLine,
EndOfLine,
StartOf _History,

Page .5 1

29 October 1990 STARS-RC-00980/00 1/00

End_0fHistory,
Delete,
DeleteThisChar,

ShowHistory,
SetHistoryLimit,
ShowHistoryLimit,

Kill-Line,
QuotedInsert,
RefreshCurrentLine,
RefreshCurrentLineandPrompt,
RewriteCurrentLine,
RewriteCurrentLine-andPrompt,

GetCurrentLine,
GetCurrentCharacter,

GetCurrentColumn,
InsertString,
Self -Insert);

Bind an input string to a history or editing command;
available commands are:

Unbound (used to remove an existing binding)
Line-Separator End-of-line symbol for input
Interpret-String Interpret arbitrary Ada code
History-Back Show previous command
History-Forward Show next command
Move-Left Move cursor left (backspace)
Move-Right Move cursor right
BeginningOfLine Move cursor to beginning of line
StartOfHistory Show oldest command
EndOfHistory Show most recent command
Show-History Show complete command history
Delete Delete character to left of cursor
DeleteThisChar Delete character under cursor
Self-Insert Insert character corresponding to keystroke
ShowHistoryLimit Show the number of lines being saved in history
SetHistoryLimit Change the number of lines being saved in history
Kill-Line Delete the entire line

Quoted_Insert For the next character received, do not look for
a binding, just insert it into the line

RefreshCurrentLine refresh the portion of the line following the prompt
RefreshCurrentLineAndPrompt refresh the entire line
RewriteCurrentLine replace the current line with the argument
RewriteCurrentLineAndPrompt write the prompt, followed by the argument

on the next physical line

Page 52

29 October 1990 STARS-RC-00980/001/00

GetCurrentLine argument will hold the current input

GetCurrentCharacter argument will hold the current character, or
ascii.nul if the cursor is at the end of the line

Get-Current-Column argument is the 1-based position of the cursor

Insert-String insert argument into current line at current position

procedure MakeBinding (CharSeq : in String;
Binding : in Commands;
Optional-String : in String := "");

Bind an input character to a history or editing command;

available commands are:
Unbound (used to remove an existing binding)
Line-Separator End-of-line symbol for input
Interpret-String Interpret arbitrary Ada code
History-Back Show previous command
History-Forward Show next command

Move-Left Move cursor left (backspace)
Move-Right Move cursor right

BeginningOfLine Move cursor to beginning of line
StartOfHistory Show oldest command
EndOfHistory Show most recent command
Show-History Show complete command history
Delete Delete character to left of cursor
DeleteThisChar Delete character under cursor
Self-Insert Insert character corresponding to keystroke
ShowHistoryLimit Show the number of lines being saved in history
SetHistoryLimit Change the number of lines being saved in history
Kill-Line Delete the entire line
Quoted_Insert For the next character received, do not look for

a binding, just insert it into the line
RefreshCurrentLine refresh the portion of the line following the prompt
RefreshCurrentLineAndPrompt refresh the entire line
RewriteCurrentLine replace the current line with the argument
RewriteCurrentLineAndPrompt write the prompt, followed by the argument

on the next physical line
GetCurrentLine argument will hold the current input
GetCurrentCharacter argument will hold the current character, or

ascii.nul if the cursor is at the end of the line
GetCurrentColumn argument is the 1-based position of the cursor
Insert-String insert argument into current line at current position

procedure Make-Binding (C : in Character;

Page 53

29 October 1990 STARS-RC-00980/001/00

Binding in Commands;
Optional-String in String

-- Commands

String is the name of a procedure to be invoked
procedure Interpret-String (Str : String);

Display previous command, that is, the next oldest command
from the current history position; if this position is the
top of the command history, this procedure does nothing

procedure History-Back;

Display next command, that is, the next most recent command
from the current history position; if this position is the
bottom of the command history, this procedure does nothing

procedure History-Forward;

Move cursor left (i.e., backspace); if the cursor is already
at the beginning of the input line, this procedure does nothing

procedure DoMoveLeft;

Move cursor right; this procedure will only move the cursor
as far as one position to the right of the last input character

procedure DoMoveRight;

Move cursor to beginning of (input) line
procedure DoGotoBegOfLine;

Move the cursor to the end of the line;
procedure DoGotoEndOfLine;

Show oldest command in the command history
procedure DoGotoStartOfHistory;

Show most recent command in the command history
procedure DoGotoEndOfHistory;

.Show complete command history
procedure DoShowHistory;

Page 54

29 October 1990 STARS-RC-00980/001 /00

.Delete character to left of cursor
procedure Do-Delete;

Delete character under cursor
procedure DoDeleteThisChar;

Insert character corresponding to keystroke;

procedure DoSelfInsert;

Delete the entire line
procedure DoKillLine;

Insert a string passed in Str;
procedure DoInsertString (Str : String);

Show the user the number of lines saved for the command history

procedure DoShowHistoryLimit;

Reset the number of lines of command history to be saved (based on user input)

procedure DoSetHistoryLimit;

Insert the next character typed into the current line as is

procedure DoQuotedInsert;

clear, then rewrite the current line, not including the prompt

procedure DoRefreshCurrent-Line;

(cursor should already be positioned at the beginning of a line) writes
out the prompt and current line;

procedure DoRefreshCurrentLineAnd_Prompt;

kill the current line and replace it with Line, not including the prompt;
procedure DoRewriteCurrentLine(Line : String);

(cursor should already be positioned at the beginning of a line) kills the
current line and replaces it with Line, writing out both the prompt and Line

procedure DoRewriteCurrent-LineAndPrompt (Line : String);

returns the current line of input

procedure DoGetCurrentLine (Line : out String; Length : out Natural);

returns the character on which the cursor is positioned

function DoGetCurrentCharacter return Character;

Page 55

29 October 1990 STARS-RC-00980/001/00

.returns the 1-based number of the column the cursor is in
function DoGetCurrentColumn return Natural;

end Key-Bindings;

7.4 Windowing Commands

The following packages provide a simplified interface to a small subset of the X Window
System.

7.4.1 Window-Objects

This package defines the objects that are associated with the
Windows abstract data type.

package Window-Objects is

use Objects;

type Window-Type is new Object-Type;

type Coordinate is new Integer;

type Pixels is new Integer;

end Window-Objects;

7.4.2 AceXWindowSystem

Package "AceXWindowSystem" defines the ACE abstraction to the
X window system. This package is intended for experienced windowing

system programmers. X Window system version 11, release 2 is the
supported version.

package AceXWindowSystem is

use Window-Objects;

This procedure creates a window at the specified position with
the given size and associates the window with a window object.

procedure Create-Window
(Window : in out Window-Type;

Horizontal-Position in Coordinate;

Pagc A7

29 October 1990 STARS-RC-00980/001/00

Vertical-Position in Coordinate;
Horizontal-Size in Pixels;

Vertical-Size . in Pixels);

This procedure destroys the window associated with the window object.

procedure Destroy-Window (Window : in out Window-Type);

This procedure clears the window object by painting the window

with the window's background color.

procedure Clear-Window (Window : in out Window-Type);

end AceXWindowSystem;

7.4.3 AceUserXWindowSystem

This package defines a simplified ACE windows system
abstraction to the X window system. The operation nomenclature within
this package adheres to Ada paradigms, rather than to the X window

system paradigms. This package is intended for novices to windowing
systems and novices to the X window system. X Window System versionO i, release 3 is the supported version.

package AceUserXWindowSystem is

use Window-Objects;

use AceXWindowSystem;

This procedure creates a window at the specified position with
the given size and associates the window with a window object.

procedure Create (Window . in out Window-Type;

Horizontal-Position in Coordinate;

Vertical-Position in Coordinate;

Horizontal-Size in Pixels;
Vertical-Size : in Pixels);

This procedure destroys the window associated with the window object.

procedure Delete (Window : in out Window_Type);

This procedure clears the window object by painting the window
with the window's background color.

procedure Reset (Window : in out Window-Type);

. end AceUserXWindowSystem;

Page 57

29 October 1990 STARS-RC-00980/001 /00

.7.4.4 Window-DrawRoutines

"WindowDrawRoutines" provides a simple set of drawing

operations that may be performed in window objects. The routines

rely upon the X window system and therefore should only be use when X

is running.

package WindowDrawRoutines is

use Window-Objects;

use AceXWindowSystem;

"Draw-Line" draws a line within the window object from the
coordinates (xl, yl) to (x2, y2)

procedure Draw-Line (Window in Window_Type;
X1, Yi, X2, Y2 in Coordinate);

"DrawDashedLine" draws a dashed line within the window object

from the coordinates (xl, yl) to (x2, y2)

procedure DrawDashedLine (Window in Window-Type;
Xi, Yi, X2, Y2 in Coordinate);

"Draw-Text" draws the text string within the current window
object left justified from the coordinate (x, y)

procedure Draw-Text (Window in Window_Type;
X, Y in Coordinate;
Text in String);

"Draw-Rectangle" draws a rectangle within the window object with

the upper left corner positioned at coordinate (X, Y) and of the

specified width and height in pixels

procedure Draw-Rectangle (Window in WindowType;
X, Y in Coordinate;
Width, Height in Pixels);

"DrawRectangleBuiltin" draws a rectangle within the window object with
the upper left corner positioned at coordinate (X, Y) and of the
specified width and height in pixels

procedure DrawRectangleBuiltin
(Window in WindowType;

X, Y in Coordinate;
ed Width, Height in Pixels);

end WindowDrawPRoutines;

Page .58

29 October 1990 STARS-RC-00980/001/00

.7.5 CAIS-A Commands

lhe following packages provide .(' s interface to the underlying CAIS-A system.

7.5.1 CAIS-Routines

Package CAISRoutines provides operations to view and move around

the CAIS-A node model, to invoke and spawn CAIS-A processes,

and to build string representations of CAIS-A argument lists.

package CaisRoutines is

type CaisNodeKinds is

(StructuralNodesOnly,
FileNodesOnly,
Process-NodesOnly,
AllButStructural_Nodes,
AllButFileNodes,

AllButProcessNodes,
AllCaisNodeKinds);

type CaisRelationshipKinds is

(Primary-Relationships,

Secondary-Relationships,
BothRelationshipKinds);

subtype CaisArgListStrRep is AceString;

Procedure spawn-process will use the CAIS to create a process

node in the CAIS node model and start the process running

in the background.

procedure Spawn.Process (Node-Path in HostOsString;
Parameters in HostOsString

Procedure invoke-process will use the CAIS to create a process

node in the CAIS node model and execute the process, returning

results in the Results parameter.

procedure Invoke-Process (Node-Path in HostOsString;
Parameters in HostOsString

Results out HostOsString);

Procedure set-currentCAISnode will change the CURRENT-NODE in

Page 59

29 October 1990 STARS- RC-009S0/001 /00

. the CAIS node model to the node whose path name is passed in.
procedure SetCurrentCaisNode (Node-Path : in FileSystemString);

Procedure currentCAIS-node returns a string representation
of the primary pathname of the CURRENT-NODE in the CAIS-A node
model.

procedure PutCurrentCaisNode;

Procedure putCAIS.node-relationships displays some or all of the
relationships emanating from the CURRENT-NODE in the CAIS node model

procedure PutCaisNodeRelationships

(Relation in HostOsString *;

Key in HostOsString
RelKinds in CaisRelationshipKinds BothRelationshipKinds;
Node-Kinds in CaisNodeKinds AllButProcessNodes);

Procedure putCAIS-file-node-host-name displays the host
operating system's file name for the CAIS-A file node found
at node model pathname passed in. This file name is the file
name of the file within the CONTENTS directory of the CAIS-A database.

procedure PutCaisFileNodeHostName
(Node-Path : in FileSystemString := "'CURRENTNODE");

Function CreateCaisArgumentList builds a string representation
of a CAIS argument list using the string item passed in as the sole
item in the returned CAIS argument list string representation.

function CreateCaisArgumentList (Str : in AceString) return
CaisArgList-StrRep;

Function AppendToCAISArgList appends the string item passed in
to the CAIS argument list string representation also passed, and
returns the resulting string representation of a CAIS list.

function AppendToCaisArgList (List in CaisArgListStrRep;

Str in Ace-String) return
CaisArgListStrRep;

Function PrefixToCAISArgList prefixes the string item passed in
to the CAIS argument list string representation also passed, and
returns the resulting string representation of a CAIS list.

function Prefix-ToCaisArgList (List in CaisArgListStrRep;
Str in Ace-String) return

CaisArgListStrRep;

end Cais-Routines;

Page G0

29 October 1990 STARS-RC-00980/00 1/00

* 7.5.2 STARS-Tools

Package STARS-Tools contains the interfaces to the Unisys Q task
tools integrated with the ACE/CAIS-A Baseline SEE. These include
the Q13 Ada source code metrics tools, the Q14 Diana IDL tools,
and the Q1O test tool suite.

package Stars-Tools is

Procedure Check-Style invokes the modified Q13 Style Checker.
The tool takes its input and output files as parameters.
If no input file is provided, the user is prompted for its name.
Output defaults to a file named "Style-Report."

procedure Check-Style (FileToCheck in FileSystemString

Flaws-File in FileSystemString
"Flaws-Report";

Style-File in FileSystemString
"Style-Report";

How in Method-ofExecution
Foreground);

.Procedure Count-Features invokes the Q13 feature counting tool.
The tool takes its input and output files as parameters.
If no input file is provided, the user is prompted for its name.
Output defaults to a file named "Features-Report."

procedure Count-Features (FilejoCount in FileSystemString : ";

Results-File in FileSystemString :=

"Features-Report";
How in Method-ofExecution

Foreground);

Procedure Count-Statements invokes the Q13 statement counting tool.
The tool takes its input and output files as parameters.
If no input file is provided, the user is prompted for its name.
Output defaults to a file named "Statements-Report."

procedure Count-Statements (FileToCount in FileSystemString = .;
Results-File in FileSystemString

"Statements-Report";

How in Method-ofExecution

Foreground);

.Procedure MeasureMccabeComplexity invokes the Q13 tool which
calculates the McCabe Complexity for a source file.
The tool takes its input and output files as parameters.

P t [GI

29 October 1990 STARS-RC-00980/001/00

eIf no input file is provided, the user is prompted for its name.
Output defaults to a file named "MccabeReport."

procedure MeasureMccabeComplexity
(FileToMeasure in FileSystemString I= ";

Results-File in FileSystemString "MccabeReport";
How in Method-ofExecution := Foreground);

Procedure Diana-Browser invokes the Q14 Diana IDL Library Unit Browser.
It takes the name of the unit to browse as an argument, and an optional
"-b" which has the Browser display bodies as well as specifications.

procedure Diana-Browser (Unit : in Ace_-String;
Options : in Ace-String

Procedure DianaFront-End invokes the Diana IDL Front End Processor.
It takes an Ada source filename to process as an argument.

procedure DianaFrontEnd (Source : Fil' System-String);

Procedure DianaMklib creates a new Diana unit library.
procedure DianaMklib;

Procedure DianaRmlib removes a Diana unit library.
procedure Diana-Rmlib;

Procedure DianaCleanlib resets a Diana unit library.
procedure DianaCleanlib;

Procedure DianaMakePredefinedEnv builds the Diana IDL predefined
environment.

procedure DianaMakePredefined_.Env;

Procedure DianaCreatePredefinedEnv builds the Diana IDL
predefined environment after the IDL has been modified.
This procedure should only be run once.

procedure DianaCreatePredefined_.Env;

Procedure TestCaseGenerator invokes the Q1O test case generator.
procedure TestCaseGenerator;

Procedure TestResultsAnalyzer invokes the Q1O tool which analyzes
the test case results.

procedure TestResultsAnalyzer;

Procedure TestProceduresGenerator invokes the Q1O tool which
generates testing procedures.

['age 62

29 October 1990 STARS-RC-00980/00 1/00

procedure TestProceduresGenerator;

Procedure Test-Comparator invokes the Q1O test comparator.

Frocedure TestComparator;

Procedure TestUpdater invokes the QiO test updater.
procedure TestUpdater;

Procedure Set-Up invokes the Qi routine to set up the environment.
procedure SetUp;

end Stars_Tools;

7.6 CPU Timing Package

The following packages provide routines to measure and report CPU use.

7.6.1 CpuTime

CpuTime defines operations to determine the amount of CPU time.used during a specific period.

package CpuTime is

type Time is new Integer;

Clock returns the current CPU time
function Clock return Time;

Difference will return the amount of time between two clock points.
function Difference (Stop_Time, Start-Time : Time) return Time;

Put-Time will print the time out in a reasonable manner.
procedure Put-Time (ATime : in Time);

end CpuTime;

7.7 Xt Toolkit Interface

S1I I following packages provie ait interface to a subset of the Xt Toolkit, which is a set of
procedures for building apIplications of the X Window System.

tPage 63

29 October 1990 STARS-RC-00980/001/00

. 7.7.1 XWindows

with Objects;

Package XWindows provides declarations of the basic X library

data types needed to use the ACE interface to the Xt toolkit.
The X windows library procedures supported by ACE will also be

found here.
Package XWindows is

use Objects;

type Drawable is new Object-Type;
type Context is new Object-Type;

type Visual is new Object-Type;
type Screen is new Object-Type;

type Display is new Object-Type;

subtype Window is Drawable;

subtyp" Pixmap is Drawable;

type Pixels is new Integer;0subtype Coordinate is Pixels;
type CaddrT is new System.Address;

type String-Pointer is new Object-Type;
type StringPointerArray is new Object-Type;
type String-List is new Object-Type;

-- type String-Pointer is access String;

-- type StringPointerArray is array (Natural range <>) of StringPointer;
-- type String-List is access StringPointerArray;

package Fonts is

type Font is new Object-Type;

type Font-Direction is (LeftToRight, RightToLeft);

type Font-Record is new Object-Type;

Returns the Ascent field of its parameter.

function Ascent (F : in Font-Record) return Pixels;
pragma Builtin (Ascent, 2101);

Pitg e6.

29 October 1990 STARS-RC-00980/001 /00

.Returns the Descent field of its parameter.
function Descent (F : in Font-Record) return Pixels;
pragma Builtin (Descent, 2102);

Returns the width of its Text parameter, in the
font specified by the Font-Info parameter.

function Text-Width (Font-Info in FontRecord;
Text in String) return Pixels;

pragma Builtin (Text-Width, 2103);

end Fonts;

type Gravity-Type is

(Forget-Gravity,
Northwest-Gravity,
NorthGravity,
Northeast-Gravity,
WestGravity,

CenterGravity,
EastGravity,
Southwest-Gravity,

SouthGravity,
Southeast-Gravity,
Static-Gravity);

package Events is
type Event is new Object-Type;

end Events;

package Resource-Manager is
type XrmOptionDescList is new Object-Type;

end Resource-Manager;
end XWindows;

7.7.2 RenamedXlibTypes

with XWindows;

Package RenamedXlibTypes defines the connection between some

type names used by Xt routines and the equivalent type names
in the basic X libary.

.package RenamedXlibTypes is

P;'ge 65

29 October 1990 STARS-RC-00980/001 /00

subtype Pixel is XWindows.Pixels;
subtype Xt.String is XWindows.StringPointer;
subtype XtStringList is XWindows.StringPointerArray;

subtype XtStringListPtr is XWindows.StringList;
subtype ArgvType is XWindows.StringList;

end RenamedXlibTypes;

7.7.3 Intrinsics

with Objects;
with System;
with RenamedXlibTypes;
with XWindows;

The package Intrinsics contains the type declarations common to
all Xt toolkit routines.
package Intrinsics is

use Objects;

type Cardinal is new Integer;
type Short-Cardinal is new Integer;

-- type Cardinal is range 0 .. (2 ** 31 - 1);

-- type Short-Cardinal is range 0 .. (2 ** 16 - 1);

subtype Position is XWindows.Pixels;
subtype Dimension is Short-Cardinal;

type Widget is new System.Address;
type Widget-Class is new System.Address;

function Null-Widget return Widget;

function Null-WidgetClass return Widget-Class;

function Null-CaddrT return X.Windows.CaddrT;

type XtAppContext is new System.Address;

package XtAncillaryTypes is

subtype XtArgVal is XWindowsCaddrT;
type XtArg is new Object-Type;

Page 66

29 October 1990 STARS-RC-00980/001 /00

-- type Xt-Arg is

-- record
-- Name RenamedXlibTypes.XtString;

-- Value XtArgVal;
-- end record;

end XtAncillaryTypes;

end Intrinsics;

7.7.4 Widget-Package

with Objects;
with System;
with Intrinsics;
with XWindows;
with RenamedXlibTypes;

This package offers a sample selection of Xt toolkit procedures.
For detailed documentation on these routines, the user should

consult Xt documentation. The names of the toolkit procedures,
as given in the Xt documentation are the same as the names used

here, but with the underscores removed.

package V '.dgetPackage is
use Ob~ects;

functi2 n NullXrmOption-List
return XWindows. Resource-Manager. XrmOption~DescList;

pragma Builtin (NullXrm_0ptionList, 2201);

ty-.3 XtArgList is
-- array (Integer range <>) of Intrinsics.XtAncillaryTypes.XtArg;

type X._ArgList is new Object-Type;

function NullXtArgList return XtArgList;
pragma Builtin (NullXtArgList, 2202);

type XtTranslations is new System.Address;

Converts an Ada string to a string suitable for the Xt toolkit.
function MakeXtString (S : in String) return RenamedXlibTypes.XtString;

pragma Builtin (MakeXtString, 2203);

P'ige 6T

29 October 1990 STARS-RC-00980/001/00

.Ada version of the Xt toolkit routine XtInitialize.
procedure XtInitialize

(Out-Value out Intrinsics.Widget;

Name : in String;
Classname : in String;
Urlist in XWindows.ResourceManager.XrmOptionDescList;
NumUrs in Intrinsics.Cardinal;
Argc in out Intrinsics.Cardinal;
Argv in out RenamedXlibTypes.ArgvType);

pragma Builtin (XtInitialize, 2204);

This set of overloaded procedures provides a strongly typed,

Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean
String
Integer
Address
Dimension
Position
Gravity-Type

procedure XtSetArg (Arg : out Intrinsics.XtAncillaryTypes.XtArg;
Name in String;
Value : in Boolean);

pragma Builtin (XtSetArg, 2205);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one
of the following types:

Boolean
String

Integer
Address
Dimension
Position

Gravity-Type
procedure XtSetArg (List : in out XtArgList;

Subscript : in Integer;

Name : in String;
Value : in Boolean);

Page 68

29 October 1990 STARS-RC-00980/001/00

.This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one
of the following types:

Boolean
String
Integer

Address
Dimension

Position
Gravity-Type

procedure XtSetArg (Arg : out Intrinsics.XtAncillaryTypes.XtArg;
Name : in String;
Value : in String);

pragma Builtin (XtSetArg, 2206);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one

of the following types:
Boolean

String

Integer
Address
Dimension
Position
Gravity-Type

procedure XtSetArg (List : in out XtArgList;
Subscript : in Integer;

Name : in String;
Value : in String);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one

of the following types:

Boolean
String
Integer
Address

Dimension
Position
Gravity-Type

procedure XtSetArg (Arg : out Intrinsics.XtAncillaryTypes.XtArg;

Page 6!)

29 October 1990 STARS-RC-00980/001 /00

Name in String;
Value : in Integer);

pragma Builtin (XtSet _Arg, 2207);

This set of overloaded procedures provides a strongly typed,

Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one
of the following types:

Boolean
String
Integer

Address
Dimension
Position
Gravity-Type

procedure XtSetArg (List : in out XtArgList;
Subscript : in Integer;
Name in String;
Value : in Integer);

.This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean
String

Integer

Address

Dimension

Position

Gravity-Type
procedure XtSetArg (Arg : out Intrinsics.XtAncillaryTypes.XtArg;

Name in String;

Value : in System.Address);

pragma Builtin (XtSetArg, 2208);

This set of overloaded procedures provides a strongly typed,

Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean
String

Integer
Address

Page 70

29 October 1990 STARS-RC-00980/00 1/00

Dimension

Position
Gravity-Type

procedure XtSetArg (List in out XtArgList;
Subscript : in Integer;
Name in String;
Value : in System.Address);

This set of overloaded procedures provides a strongly typed,

Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean

String
Integer
Address
Dimension
Position

Gravity-Type

procedure XtSetArg (Arg : out Intrinsics.XtAncillaryTypes.XtArg;
Name : in String;
Value : in Intrinsics.Dimension);

pragma Builtin (XtSetArg, 2209),

This set of overloaded procedures provides a strongly typed,
Aaa version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean
String
Integer

Address
Dimension
Position

Gravity-Type
procedure XtSetArg (List : in out XtArgList;

Subscript : in Integer;
Name : in String;

Value : in Intrinsics.Dimension);

This set of overloaded procedures provides a strongly typed,

Ada version of the Xt toolkit macro XtSetArg.

Current overloading permits the Value parameter to be one
of the following types:

'age 11

29 October 1990 STARS-RC-00980/001/00

Boolean

String
Integer
Address

Dimension
Position
Gravity-Type

procedure XtSetArg (Arg : out Intrinsics.XtAncillaryTypes.XtArg;
Name in String;
Value in Intrinsics.Position);

pragma Builtin (XtSetArg, 2210);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean

String
Integer
Address

Dimension

Gravity-Type

procedure XtSetArg (List : in out XtArgList;

Subscript in Integer;
Name : in String;
Value : in Intrinsics.Position);

This set of overloaded procedures provides a strongly typed,
Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean

String
Integer

Address
Dimension
Position

Gravity-Type

procedure XtSetArg (Arg : out Intrinsics.XtAncillarvTypes.XtArg;
Name -n String;

Value : in XWindows.GravityType);

pragma Builtin (XtSetArg, 2211);

Pag 72

29 October 1990 STARS-RC-00980/001/00

.This set of overloaded procedures provides a strongly typed,

Ada version of the Xt toolkit macro XtSetArg.
Current overloading permits the Value parameter to be one
of the following types:

Boolean
String

Integer
Address

Dimension
Position

Gravity-Type
procedure XtSetArg (List : in out XtArgList;

Subscript : in Integer;
Name : in String;
Value : in XWindows.GravityType);

Create produces an array of XtArg
procedure Create (ArgList : out XtArgList;

First : in Integer;

Last : in Integer);
pragma Builtin (Create, 2212);

. Put sets an element of an array of Xt~Arg
procedure Put (Arg-List out Xt-Arg-List;

Subscript :in Integer;
Value in Intrinsics.Xt-AncillaryTypes.Xt-Arg);

pragma Builtin (Put, 2213);

Get retrieves the value of an element of an array of XtArg

function Get

(Arg..List :in Xt-~ArgList;

Subscript : in Integer) return Intrinsics.XtAncillaryjypes.Xt-Arg;

pragma Builtin (Get, 2214);

Get retrieves a slice of an array of XtArg
function Get (ArgList : in XtArgList;

First :in Integer;
Last in Integer) return XtArgList;

pragma Builtin (Get, 2215);

Ada version of the toolkit procedure XtSetValues.

procedure XtSetValues (W : in Intrinsics.Widget;
ArgList : in XtArgList);

pragma Builtin (XtSetValues, 2216);

Pige7:

29 October 1990 STARS- RC-00980/001 /00

. This set of overloaded functions provides a strongly typed,
Ada alternative to the Xt toolkit procedure XtGetValues.
Current overloading permits the returned value to be one
of the following types:

Boolean
Dimension
Font-Record

function XtGetValue (W : in Intrinsics.Widget;
Name : in String) return Boolptn;

pragma Builtin (XtGetValue, 2217);

This set of overloaded functions provides a strongly typed,
Ada alternative to the Xt toolkit procedure XtGetValues.
Current overloading permits the returned value to be one
of the following types:

Boolean
Dimension

Font-Record
function XtGetVaiue (W : in Intrinsics.Widget;

Name : in String) return Intrinsics.Dimension;
pragma Builtin (XtGetValue, 2218);

This set of overloaded functions provides a strongly typed,
Ada alternative to the Xt toolkit procedure XtGetValues.

Current overloading permics the returned value to be one
of the following types:

Boolean

Dimension
Font-Record

function XtGetValue (W : in Intrinsics.Widget;
Name : in String) return XWindows.Fonts.FontRecord;

pragma Builtin (XtGetValue, 2219);

This set of overloaded procedures provides a strongly typed,
Ada interface to the XtAddCallback toolkit procedure.

Current overloading permits the Closure parameter to be one
of the following types:

Address
Integer

procedure XtAddCallback (W : in Intrinsics.Widget;

Name : in 3tring;

I)age T-

29 October 1990 STA\RS-RC-009S0,'00 1 00

Callback..Proc :in System.Address;

Closure in System.Address);

pragma Builtin (Xt-_Add_ Callback, 2220);

This set of overloaded procedures provides a strongly typed,
Ada interface to the XtAddCallback toolkit procedure.

Current overloading permits the Closure parameter to be one

of the following types:
Address
Integer

procedure Xt-Add-Callback (W :in Intrinsics.Widget;
Name :in String;
Callback-Proc :in System.Address;

Closure :in Integer);
pragma Builtin (Xt-Add-Callback, 2221);

Ada version of the Xt toolkit routine XtCreateWidget.
procedure Xt-CreateWidget (OutValue :out Intrinsics.Widget;

Name in String;
Widgetclass :in Intrinsics.WidgetClass;

Parent :in Entrinsics.Widget;
Arg-.List in XtArgList);

pragma Builtin (Xt.CreateWidget, 2222);

Ada version of the Xt toolkit routine XtCreateManagedWidget.
procedure Xt-Create-Managed-Widget (OutValue :out Intrinsics.Widget;

Name :in String;
Widgetclass :in Intrinsics.Widget.Class;I
Parent :in Intrinsics.Widget;

Arg-.List in XtArg_.List);
pragma Builtin (Xt-Create-Managed-Widget, 2223);

Ada version of the Xt toolkit routine XtRealizeWidget.
procedure Xt-Realize-Widget (W : in Intrinsics.Widget);
pragma Builtin (Xt-.Realize-.Widget, 2224);

Ada version of the Xt toolkit routine XtMainLoop.
procedure Xt-.Main.Loop;
pragma Builtin (Xt.Main-Loop, 2225);

Ada version of the Xt toolkit routine XtDestroyWidget.

procedure Xt-Destroy.Widget (W : in Intrinsics.4idget);
pragma Builtin (Xt-.Destroy-.Widget, 222G);

Pag 75

29 October 1990 STARS-RC-009S0/00 1/00

Ada version of the X library routine XTextWidth.
function X-Text-Width (F in XWindows.Fonts.FontRecord;

S in String) return Intrinsics.Dimension;

pragma Builtin (X-Text_.Width, 2227);

Ada version of the Xt toolkit routine XtParseTranslationTable.
function Xt-Parse-Translation.Table (S :in String) return XtjI'ranslations;
pragma. Builtin (Xt-Parse-ranslation-Table, 2228);

Ada version of the Xt toolkit routine XtOverrideTranslations.
procedure Xt-Override-Translations (W in Intrinsics.Widget;

T in Xt-.Translations);
pragma Builtin (Xt-OverrideTranslations, 2229);

Ada version of the Xt toolkit routine XtAugmentTranslations.
procedure Xt-Augment-Tra-nslations (W in Intrinsics.Widget;

T in Xt-Translations);
pragma Builtin (Xt-.AugmentTranslations, 2230);

Ada version of the Xt toolkit routine XtAddActions.
procedure Xt-Add-Actions (Arg-List :in Xt-Arg-List);

pragma Builtin (Xt-.Add_.Actions, 2231);

Returns a pointer to an interpreted action procedure;
this should be used when providing procedure "addresses" to
Xt..Ad&.Actions

function Action-Procedure-.Pointer (Name :in String) return System.Address;
pragma Builtin (Action-.Procedure..Pointer, 2232);

Returns a pointer to an interpreted callback procedure;
this should be used when providing procedure "addresses" to

Xt-Add-allback
function Callback..yrocedure-Pointer (Name :in String) return System.Address;
pragma Builtin (Callback-.Procedure..ointer, 2233);

Ada version of the Xt toolkit routine -XtDefaultAppContext.
function Xt-.DefaultApp-Context return Intrinsics .Xt-App-~Context;
pragma Builtin (Xt-.Default-.AppContext, 2234);

Ada version of the Xt toolkit routine XtAppNextEvent.
function Xt-App-.Next-Event

(App :in Intrinsics .Xt.App-Context) return XWindows.Events .Event;

pragma Builtin (Xt-App-.Next-.Event, 2235);

Ada version of the Xt toolkit routine XtDispatchFvent.

Pitgt 76

29 October 1990 STARS-RC-00980/001/00

procedure XtDispatchEvent (E : in XWindows.Events.Event);

pragma Builtin (XtDispatchEver 2236);

end Widget-Package;

with System;

with X_Windows;
with Intrinsics;

package body Widget-Package is

use System;

use XWindows;
use Intrinsics;

use XtAncillaryTypes;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;

Value in Boolean) is

TempXtArg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, Temp-Xt-Arg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;
Subscript in Integer;

Name in String;

Value in String) is

TempXtArg : XtArg;

begin
XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;
Subscript in Integer;

Name in String;

Value in Integer) is

TempXtArg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);
end XtSetArg;

Page 77

29 October 1990 STARS-RC-00980/001/00

procedure Xt_SetArg (List in out XtArgList;

Subscript in Integer;
Name in String;

Value in Address) is

TempXt.Arg : XtArg;

begin
XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;
Value in Dimension) is

TempXtArg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;
Value in Position) is

TempXtArg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);
Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;
Name in String;
Value in Gravity-Type) is

TempXtArg : XtArg;

begin
XtSet-Arg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);

end XtSetArg;

end Widget-Package;

.XtStringdefs is a package which contains commonly used

resource name constants.

Page 78

29 October 1990 STARS-RC-00980/001/00

. package XtStringdefs is

-- resource name constants

XtNAccelerators constant String : "accelerators";
XtNAllowHoriz constant String "allowHoriz";
XtNAllowVert constant String : "allowVert";
XtNncestorSensitive constant String "ancestorSensitive";
XtNBackground constant String "background";
XtNBackgroundPixmap constant String "backgroundPixmap";
XtNBitmap constant String "bitmap";
XtNBorderColor constant String "borderColor";
XtNBorder constant String "borderColor";
XtNBorderPixmap constant String "borderPixmap";
Xt-NBorderWidth constant String "borderWidth";
XtNCallback constant String "callback";
XtNColormap constant String "colormap";
XtNDepth constant String "depth";
XtNDestroyCallback constant String "destroyCallback";
XtNEditType constant String "editType";
XtNFile constant String ="file";
XtNFont constant String "font";
XtNForceBars constant String "forceBars";
XtNForeground constant String "foreground";
XtNFunction constant String "function";
XtNHeight constant String "height";
XtNHighlight constant String "highlight";
XtNHSpace constant String "hSpace";
XtNIndex constant String "index";
XtNInnerHeight constant String "innerHeight";
XtNInnerWidth constant String "innerWidth";
XtNInnerWindow constant String "innerWindow";
XtNInsertPosition constant String "insertPosition";
XtNInternalHeight constant String "internalHeight";
XtNInternalWidth constant String : "internalWidth";
XtNJumpProc constant String : "jumpProc";
XtNJustify constant String := "justify";
XtNKnobHeight constant String :U "knobHeight";
XtNKnobIndent constant String : "knobIndent";
XtNKnobPixel constant String "knobPixel";
XtNKnobWidth constant String "knobWidth";
XtNLabel constant String : "label";
XtNLength constant String :z "length";
XtNLowerRight constant String : "lowerRight";

Pi age 79

29 October 1990 STARS-RC-009S0/00 1/00

Xt-N-Mapped-When-Managed constant String "mappedWhenManaged";
Xt _NMenu-Entry constant String "menuEntry";
Xt-NName constant String = "name";
Xt-N-Notify constant String "notify";
Xt-N-Orientation constant String "orientation";
Xt.Y..Yarameter constant String :="Parameter";

Xt-.N-.Pixmap constant String 11pixmap";
Xt.A...Popup-.Callback constant String "popupCallback";
Xt-.N-.Popdown.Callback constant String "popdownCallback";
Xt-N..Resize constant String "resize";
Xt-.N-.Reverse-.Video constant String "reverseVideo";
Xt-N-.Screen constant String "screen";
Xt-N-Scroll-Proc constant String "scrollProc";
Xt-N-Scroll-D-.Cursor constant String "scrollDCursor";
Xt-.N-.Scroll-H-.Cursor constant String "scrollHCursor";
Xt-NScroll.L-Cursor constant String "scroliLCursor";
Xt-N-Scroll-RCursor constant String "scroliRCursor";
Xt-.N.ScrolljJ..Cursor constant String "scrollUCursor";
Xt-N-Scroll-V-Cursor constant String "scrollVCursor";
Xt-N-Selection constant String "selection";
Xt-.N-.Selection..Array constant String "selectionArray";
Xt-.N-.Sensitive constant String "sensitive";
Xt-.N-.Shown constant String "shown";
Xt-N.Space constant String "1space";
Xt-.N-.String constant String :="string";
Xt..N-~Text-.Options constant String "textOptions";
Xt-.N-Text-.Sink constant String "textSink";
Xt-.N-.Text.Source constant String :"textSource";
Xt-N-Thickness constant String "thickness";
Xt-.N-Thumb constant String "thumb";
Xt-N..Thumb-Proc constant String "thumbProc";
Xt-.N-.Top constant String "top";
Xt.N-ranslations constant String "translations";
Xt-.N-.Update constant String "update";
Xt...N-.seBottom constant String ="useBottom";

Xt-.N-.Use-.Right constant String :="useRight";
Xt-.N-.Value constant String :"value";

Xt-.N3...Space constant String :-"vSpace";
Xt-N-.Width constant String :"width";

Xt..N-.Window constant String :="window".
Xt-.N..X constant String i"
Xt-.N-.Y consta-nt String "y"

-resource class constants

Page 80

29 October 1990 STARS-RC-00980/001/00

XtCAccelerators constant String = "Accelerators";

Xt_C_Background constant String "Background";

XtCBitma: constant String "Bitmap";

XtCBoolean constant String = "Boolean";

XtCBorderColor constant String "BorderColor";

XtCBorderWidth constant String : "BorderWidth";

XtCCallback constant String ="Callback";

XtCColormap constant String : "Colormap";

XtCColor constant String : "Color";

XtCCursor constant String = "Cursor";

XtCDepth constant String := "Depth";

XtCEdit. Type constant String "EditType";

XtCEventBindings constant String :=-!'EventBindings";

XtCFile constant String ="File";

XtCFont constant String "Font";

XtCForeground constant String "Foreground";

XtCFraction constant String := "Fraction";

XtCFunction constant String "Function";

XtCHeight constant String "Height";

XtCHSpace constant String "HSpace";

XtCIndex constant String "Index";

XtCInsertPosition constant String := "InsertPosition";

XtCInterval constant String := "Interval";

XtCJustify constant String "Justify";

XtCKnobIndent constant String := "KnobIndent";

XtCKnobPixel constant String := "KnobPixel";

XtCLabel constant String "Label";

XtCLength constant String "Length";

XtCMappedWhenManaged constant String = "MappedWhenManaged";

XtCMargin constant String "Margin";

XtCMenu-Entry constant String := "MenuEntry";

XtCNotify constant String "Notify";

XtCOrientation constant String "Orientation";

XtCParameter constant String "Parameter";

XtCPixmap constant String ="Pixmap";

XtCPosition constant String "Position";

XtC-esize constant String :z "Resize";

XtCRevarseVideo constant String "ReverseVideo";

XtCScreen constant String := "Screen";

XtCScrollProc constant String : "ScrollProc";

XtCScrollDCursor constant String "ScrollDCursor";

XtCScrollHCursor constant String "ScrollHCursor";

XtCScrollLCursor constant String : "ScrollLCursor";

XtCScroll-R-Cursor constant String := "ScrollRCursor";

XtCScrollUCursor constant String "ScrollUCursor";

Page 81

29 October 1990 STARS-RC-009S0/00 1/00

Xt-CScroll-V-Crsor constant String "ScrollVCursor";

Xt-CSelection constant String "Selection";
Xt-C-Sensitive constant String "Sensitive;
Xt-C-.Selection-.Array constant String "SelectionArray";

Xt-.C-.Space constant String "Space;

Xt-.C-.String constant String "String",;
Xt...CText-.Options constant String :"TextOptions",;

Xt..C-.Text-.Position constant String "TextPosition";
Xt-CText..Sink constant String "TextSink"l;
Xt-.C-.Text..Source constant String "tTextSource";
XtS...Thickness constant String "Thickness";
Xt-C-Thumb constant String :="Thumb"l;

Xt-C-Translations constant String "Translations";
Xt-.C-Value constant String "Value";
Xt..C-.V-.Space constant String "VSpace";
Xt-C-Width constant String "Width";
Xt-C-Window constant String "Window",;
Xt_.CX constant String 1xl

Xt_C_Y constant String ""

-- resource type constants

Xt-R-.Accelerator-.Table :constant String "AcceleratorTable";
Xt-.R-.Bool :constant String "Bool";

Xt-R-.Boolean :constant String "Boolean";
Xt-R-.Callback :constant String :="Callback";

Xt-.R-.Call-Proc constant String "CallProc";
Xt-R.Color constant String "Color";
Xt..R-.Cursor constant String "Cursor";
Xt-R-Dimension constant String "Dimension",;
Xt-R-Display constant String "Display";
Xt..3..Edit-Mode constant String "EditMode"l;
Xt-.R-.File constant String "File";
Xt-R-Font constant String "Font";
Xt-.R-.Font.Struct constant String "FontStruct";
Xt..R-.Function constant String "Function";
Xt-.R-.Geometry constant String "Geometry";
Xt..R_.Immediate constant String U"Immediate";

Xt-.RInt constant String := t"
Xt-.R-.Justify constant String :="justify",;

Xt-R-Long-Boolean constant String "Bool":
Xt..R-.Orientation constant String "Orientation";
Xt-.R-Pixel constant String :="Pixel";
Xt..R_.Pixmap constant String :-"Pixmap";
Xt..R-.Pointer constant String :="Pointer";

Page 82

29) October 1990 STARS-RC-009S0/001 /00

Xt-R..Position constant String "Position";
Xt-R-.Short constant String "Short";
Xt-R-String constant String "String";

Xt-R-String-Table constant String "StringTable";
Xt-.RUnsignedChar constant String "UnsignedChar";
Xt..R-ranslation-.Table constant String "TranslationTable";

Xt-R-.Window constant String "Window";

-- shell specific stringdefs

Xt-.N-Icon-Name constant String "iconNaine";
Xt-C-con-Name constant String "IconName";
Xt-N-Icon-Pixmap const-ant String "iconPixmap";
Xt..C-.Icon-.Pixmap constant String "IconPixmap";
Xt-.N-Icon-Window constant String "iconWindow";
Xt-C-con-Window constant String "IconWindow";
Xt-N-Icon-.Mask constant String "iconMask";
Xt-.C-Icon-.Mask constant String ="IconMask";

Xt-N-Window-Group constant String "windowGroup";
Xt..C-.Window-Group constant String "WindowGroup";

Xt-.N-.Save-.Under constant String "saveUnder";
Xt-C..Save-.Under constant String "SaveUnder";
Xt-N-Transient constant String :="transient";

Xt-.C.-Transient constant String "Transient";
Xt-.N.Override..Redirect constant String "overrideRedirect";
Xt-.COverride..Redirect constant String :="OverrideRedirect";

Xt-N-Allow-Shell-Resize constant String "allowShellResize";
Xt _CAllow-Shell-Resize constant String :="AllowShellResize";

Xt-N-Create-Popup-.Child-Proc constant String "createPopuChildProc";
Xt-.C-.CreatePopup.Child-.Proc constant String "CreatePopupChildProc";

Xt-.NTitle constant String :="title";
Xt-.C-.Title constant String :="Title";

-The following are only used at creation and can not be changed via
-- SetValues.

Xt-.N..Argc constant String := argc"l;
Xt-C-Argc constant String :="Argc";

Xt-N-Argv constant String "largv";
Xt-.C-.Argv constant String :="Argv";

Xt..N-con-X constant String :-"iconX";

Xt-.C-Icon.X constant String :"Icon.X";

P~age 8:3

29 October 1990 STA RS- RC-009S0/ 001 /00

Xt-N.Icon-Y constant String "iconY";0Xt-C-Icon-Y constant String "IconY";
Xt-N-nput constant String "1input";
Xt-Cjnput constant String "Input";
Xt-.NIconic constant String "iconic";

Xt-.CIconic constant String "Iconic";
Xt-.N-.Initia..State constant String :"initialState";
Xt-C-Initial-State constant String "InitialState";
Xt-.N...Geometry '-ionstant String "geometry";
XtS...Geometry constant String "Geometry";
Xt-N-.MinWidth constant String "minWidth";
Xt...C.MinWidth constant String "MmnWidth";
XtjLNMin-.Height constant String "minHeight";
Xt-.C-.Min-.Height constant String "MmnHeight";
Xt-.N-Max.Width constant String ="maxWidth";

XtS..Max-Width constant String "MaxWidth";
Xt..N-.Max...Height constant String "maxHeight";
Xt-C-Max-Height constant String "MaxHeight";
Xt-N-.WidthInc constant String "widthlnc";
Xt-C-Width-Inc constant String :="Widthlnc";

Xt-N-Height-Inc constant String :="heightluc";

Xt-.C-HeightInc constant String "Heightlnc";
Xt-.N-.Min-.Aspect-.Y constant String :="minAspectY";

Xt-.C-.Min-.Aspect-Y constant String :="MinAspectL"';

Xt-.N-.Max-.Aspect-.Y constant String ="maxAspectY";

Xt-.C-.Max-.Aspect-Y constant String ="MaxAspectY"l;

Xt-.N-.Min-.Aspect-X constant String = "minAspectX"1;
XtS...Min-.Aspect-X constant String U"MinAspectX";

Xt-N.MaxAspect-X constant String :="maxAspectX";

Xt..C-Max-Aspect-X constant String "MaxAspectX";
Xt.N-Wm-Timeout constant String :="wmTimeout";
Xt-C-WmTimeout constant String :=NmTimeout";

Xt-.N-.Wait-.For-Wm constant String "waitforwm";
Xt-.C-.Wait..For-Wm constant String ="Waitforwm";

end Xt-.Stringdefs;

7.7.5 Hp...Widgets

with Intrinsics;

with Widget-Package;

with System;

. The package Hp-.Widgets is the ACE interface to the Hewlett-Packard

P~age S.1

29 October 1990 STARS-RC-00980/001 /00

.widget set. This package defines all of the numeric constants,
enumerated types, and resource names of this widget set, defines all
of the widget classes in this set, and supports all of the user
widget procedures in this set.
For further information on these routines, see the Hewlett-Packard
documentation.

package HpWidgets is

use Intrinsics;
use Widget-Package;
use XtAncillaryTypes;

Xw..Single : constant Integer := 0;
XwMultiple : constant Integer := 1;
XwBorder constant Integer 0;
XwInvert constant Integer 1;
XwNoBias constant Integer 0;
XwRowBias constant Integer 1;
XwColBias constant Integer 2;
XwInstant constant Integer 0;
XwSticky constant Integer 1;
XwNoShrink : constant Integer := 0;
XwShrinkColumn : constant Integer := 1;
XwShrinkAll : constant Integer := 2;
XwAutoScrollOff : constant Integer := 0;
XwAutoScrollHorizontal : constant Integer 1;
XwAutoScrollVertical : constant Integer := 2;
XwGrowOff : constant Integer := 0;
XwGrowHorizontal : constant Integer := 1;
XwGrowVertical : constant Integer := 2;
XwNOfMany : constant Integer := 0;
XwOneOfMany : constant Integer := 1;
XwRequestedColumns : constant Integer := 0;
XwMaximumColumns : constant Integer := 1;

XwMaximumUnaligned : constant Integer := 2;
XwRight constant Integer : 0;
XwLeft constant Integer 1;
XwCenter constant Integer : 2;
XwString constant Integer 0;
XwImage constant Integer := 1;
XwNoLine : constant Integer := 0;
XwSingleLine constant Integer 1;
XwDoubleLine constant Integer 2;
XwSingleDashedLine : constant Integer := 3;
XwDoubleDashedLine : constant Integer :- 4;

Page 85

29 October 1990 STARS-RC-009S0/001/00

XwSolid : constant Integer := 0;
XwPattern : constant Integer := 1;
XwTra.sparent constant Integer 2;
XwHorizontal constant Integer 0;

XwVertical : constant Integer := 1;
XwTop : constant Integer := 1;
XwBottom : constant Integer := 2;
XwForeground constant Integer 0;
XwBackground constant Integer 1;
Xw_25_Foreground constant Integer 2;
Xw_50_Foreground constant Integer := 3;
Xw_75_Foreground constant Integer 4;
Xw-VerticalTile constant Integer 5;
XwHorizcntalTile : constant Integer := 6;
Xw-SlantRight constant Integer 7;
XwSlantLeft constant Integer 8;
XwHighlightOff : constant Integer := 0;
XwHighlightEnter : constant Integer := 1;
XwHighlightTraversal : constant Integer := 2;
XwArrowUp : constant Integer := 0;
XwArrowDown constant Integer 1;
XwArrowLeft constant Integer 2;
XwArrowRight constant Integer 3;
XwPatternBorder constant Integer 1;
XwWidgetDefined constant Integer 2;
XwIgnore : constant Integer := 0;
XwMinimize constant Integer 1;
XwMaximize constant Integer 2;

TfNoFit constant Integer 16#01#;
TfIncludeTab constant Integer 16#02#;
TfEndText constant Integer 16#04#;
TfNewline constant Integer 16#08#:
TfWrapWhiteSpace constant Integer 16#10#;
TfWrapAny constant Integer 16#200;
Word-Break constant Integer 16#01#;
Scroll-Vertical constant Integer := 16#02#;
Scroll-Horizontal constant Integer := 16#048;
ScrollOnOverflow constant Integer 16#08#;
Resize-Width constant Integer 16#10#;
Resize-Height : constant Integer 16#20#;
Editable : constant Integer 16#40#;

XtNTraversalOn : constant String :- "traversalOn";
XtNTraversaiType : constant String := "traversalType";

Page 86

29 October 1990 STA1RS-RC-009S0/001 /00

Xt-N-Highlight-Style consta-nt String 'highlightStyle";
Xt-N-.Hghight-Tile constant String "highlightTile";
Xt-NHighlightjhickness constant String "highlightThickness";
Xt-N-Highlight-Color constant String "highlightColor";
Xt-.NBackgroundTile constant String "backgroundTile";

Xt-.N-.Cursor constant String :"cursor"
Xt-.N-.Recompute-.Size constant String "recomputeSize";
Xt-.N-.Layout constant String "layout";
Xt-M-Label-.Location constant String "labelLocation";
Xt-.NSensitive-Tile constant String "sensitiveTile";
Xt-.NColiuns constant String "1coluimns";
Xt-N-Mode constant String "mode";

Xt-.N-.Set constant String "1set";
Xt-NSelect constant String :="select";
Xt-.N-.Release constant String "release";
Xt-.N-.Next-.Top constant String "nextTop";
Xt-NTitle-Showing constant String "titleShowing";
Xt-.N..Mgr.Title-.Override constant String "mgrTitleOverride";
Xt-N-Title-Type constant String "titleType";
Xt-.NTitle-String constant String "titleString";
Xt-.NTitle-Image constant String "titlelmage";
Xt-N-.Font-,Color constant String "fontColor";
Xt-NMnemonic constant String "mnemonic";

Xt-.N-Underline-Title constant String "underlineTitle";
Xt-N-Mgr-.Underline-.Override constant String "mgrUnderlinaUverride";
Xt-N-.Underline-Position constant String "underlinePosition";
Xt-N-.Attach-.To constant String "attachTo"l;
Xt-N-Kbd-.Accelerator constant Str'ng "kbdAccelerator";
Xt-N-Associate-Children consta-it String "associateChildren";
Xt-NMenu-Post constant String "menuPost";
Xt-NMenu-Select constant String "menuSelect";
Xt-N-Post.Accelerator constant String U"postAccelerator";

Xt..N..enu-inpost constant String "menuUnpost";
Xt-N-Kbd.Select constant String "kbdSelect";
Xt.N-Num..Colilmns constant String :="numColumns";
Xt-.N-.Rov.Position constant String :"rovPosition";
Xt-.N-.Colulmn.Position constant String "columnPosition";
Xt-NSelection-Method constant String :="selectionMethod";
Xt-N-.Element-.Highlight constant String "elementHighlight";
Xt-N-.Selection-Bias constant String "selectionBias";
Xt-N-Selection-Style constant String "selectionStyle";
Xt-N..Column-Width constant String "columnWidth";
Xt-.N..Element-.Height constant String :="elementHeight";
Xt..N..Selected-.Elements constant String :a "selectedElements";

Xt-N..Num-.SelectedElements constant String := "numSelectedElements";

Page 87

29 October 1990 STARS-RC-009S0/00 1/00

Xt-N-.Destroy-Mode constant String "destroyMode";

Xt-NLayout-Type constant String "layoutType";

Xt-NForce-Size constant String "forceSize";

Xt-N-Single-Row constant String "singleRow";

Xt-N-Separator-Type constant String "ser'aratorType";

Xt-NVsb-.X coustant String llvsbX";

Xt-.N-Vsb-.Y constant String 'vsbY";

Xt-N-Vsb-.Width constant String "vsbW.dth";

Xt-.N-Vsb-.Height constant String "vsbHeight";

Xt..N-sb-X constant String "hsbX" ;
Xt-NHsb-.Y constant String "hsbY";

Xt-N..sb-.Width constant String ="hsbWidth";

Xt-N-.Hsb-.Height constant String "hsbHeight";

Xt..N-.V-.Slider.Min constant String "vSliderMin';

Xt-.N-.V-.Slider-.Max constant String :="vSliderMax';

Xt..N-.VSlider-Origin constant String "vSlider~rigin";

Xt-N-V-Slider-Externt constant String "vSliderExtent";

Xt-N-H-.Slider-Min constant String "hSliderMin";

Xt-N-H-Slider-Max constant String "h~liderMax";

Xt-N..H-.Slider-.Origin constant String "hSlider~rigin";

Xt-N-HSlider-xtent constant String "hSliderExtent";

Xt-NY.Scroll-.Event constant String :="hScrollEvent";

Xt-N.V-.Scroll-.Event constant String "vScrollEvent";

Xt-N-.VScroll-Bar-Width constant String :="vScrollBarWidth";

Xt-NVScroll-Bar-Height constant String "vScrollBarHeigLLCc";

Xt-.N-.H.Scroll-.Bar-.Width constant String :="hScrollBarWidth";

Xt-.N-.HScroll-Bar-.Height constant String :="hScrollBarHeight";

Xt-.N-.Force-.Vertical-.Sb constant String "forceVerticalSB";

Xt _NForce-HorizontalSb constant String "forceHorizontalSB";

Xt _NInitial-X constant String "initialX";

Xt-NInitial-Y constant String "initialY";

Xt-.NBorder-.Pad constant String "borderPad";

Xt-.N...S.Rimage constant String "rastermage";

Xt-NShow-Selected constant String "showSelected";

Xt-.N-.Display-.Position constant String := displayPosition";

Xt-.NInsert-Position constant String "insertPosition";

Xt-N-.Left-.Margin constant String :="leftMargin";

Xt-.N-.Right-.Margin constant String :~"rightMargin";

Xt-N-.Top-.Margin constant String "tcpMargin";

Xt-.N-.Bottom-Margin constant String : "bottomMargin";

Xt-N-Selection.Array .onstant String "'selectionArray";

Xt-N-Text-Source constant String "textSource";

Xt.,N.Selection constant String := selection",

Xt-N-Maximum-C.ize constant String :-"maximum~ize";

Xt-N-.Edit-Type constant String "editType";

Page 88

29 October 1990 STARS-RC-00980/O01 /00

Xt-N-.File constant String "file";
-- Xt-N-.String :constant String :="string"; -- defined in Xt-Stringdefs
Xt-N-Length.: constant String "length";
-- Xt..N-Font :constant String "font"; -- defined in Xt-Stringdef s
Xt-.N-.Disk..Src constant String "disksrc";

Xt-N..String-.Src constant String :"stringsrc";

XtN-Execute constant String :"execute";

Xt-.N-.Source-.Type constant String :"sourceType";

Xt-N-Motion-Verification constant String :="motionVerification";
Xt-.NModifyVerification constant String "'modifyVerification";
Xt-N-.Leave.Verification constant String "leaveVerification";

Xt-.N-.Wrap :constant String "wrap";
Xt-.N-Wrap-.Form constant String "wrapForm";

Xt-.N-WrapBreak constant String "wrap~reak";
Xt..N.Scroll constant String :"scroll";

Xt-.N.Grow :constant String "grow"l;
Xt.)k.Alignment constant String "alignment";
Xt-.N-.Line.Space constant String "lineSpace";

Xt-.N-.Gravity constant String ="gravity";

Xt-.N.Slider-Min constant String "sliderMin";
Xt...N-.Slider-.Max constant String :="sliderMax";
Xt-.N-.Slider-O.rigin constant String "slider~rigin";
Xt-N-.Slider-Extent constant String :="sliderExtent";
Xt-N-.Slider-.Color constant String :="sliderColor";
Xt-.N-.Slide-.Orientation constant String "slideOrientation";
Xt-.N-.Slide-.Move-.Type constant String :="slideMoveType";
Xt-N..Slide-.AreaTile constant String "slideAreaTile";

Xt-N-Slider-.Moved constant String "sliderMoved";

Xt-.NArea..Selected constant String "areaSelected";

Xt-.NSliderTile constant String "sliderTile";
Xt-.N-.Slider-.Released constant String :="sliderReleased";

Xt-N-.X.Ref-.Nanie constant String "xRefName";
Xt-.N-.X-.Ref-.Widget constant String "xRef Widget";
Xt..N-X-Offset constant String :"xOff set";
Xt-.N..X-.Add-.Width constant String :"xAddWidth";
Xt-.N-.X.Vary-.Offset constant String :"iVaryOff set";
Xt-N-WX.Resizable constant String : "xResizable";
Xt-.N-.X-.Attach-.Right constant String :m"xAttachRight";
Xt-!IX-.Attach-.Offset constant String :"xAttachOffset";

Xt-.N-.Y-.Ref...Name constant String ="yRefName";

Xt-.N3...Ref-.Widget constant String :="yRefWidget";
Xt...N-.Y.Offset constant String "y~ff set";
Xt-N-Y-~Add-.Height constant String :"yAddHeight";

Xt-.N...YVary..Offset constant String :"yVaryOff set";
Xt-.N-.Y.Resizable constant String :="yResizable";

Page S9

29 October 1990 STARS-RC-00980/00 1 /00

Xt-N-YAttach-Bottom constant String "YAttachBottom";

Xt-.N..Y-.Attach..Off set constant String "yAttachOff set";

Xt-.NPixel-Scale constant String "pixelScale";

Xt-NGrid-hickness constant String "gridThickness";

Xt-.N-.Image constant String "timage";

Xt-N-Draw.Color constant String "drawColor";

Xt..N.Erase-.Color constant String ="eraseColor";

Xt-NErase-On constant String :"eraseOn";

Xt-.N-.Label-.Type constant String = "labelType";

Xt..N.Label-Image constant String "labellmage";

Xt..N-.Cascade-.Image constant String :="cascadelmage";

Xt-.N-MarkImage constant String "mrkmage";

Xt-N-.Set-.Mark constant String "setMark";

Xt-N-.Cascade-.On constant String ="cascadeOn";

Xt..N-nvert-On-.Enter constant String "invertOnEnter";

Xt-.N-.MgrC.verride-.Mnemonic constant String "mgrOverrideMnemonic";

Xt.N-Cascade-.Select constant String "cascadeSelect";

Xt-.NCascade-.Unselect constant String "cascadeUnselect";

Xt-.N-.Menu-.MgrId constant String "mnuMgrld";

Xt-.N..Scrollbar-.Orientat ion constant String ="scroilbar~rientat ion";

Xt..N.Selection-.Color constant String :="select ionColor";

Xt-.N-Initial-.Delay constant String "initialDelay";

Xt-.N-.Repeat...ate constant String :="repeatRate";

Xt-.N.Granularity constant String "granularity";

Xt-N-nvert-On-.Select constant String "invertOnSelect";

Xt-.Noggle constant String = "toggle";

Xt-.N-.Square constant String "1square";

Xt-NSelect-Color constant String = selectColor";

Xt-.NAllow..Resize constant String "allowResize";

Xt-N-Sash.Indent constant String "sashlndent";

Xt-N-.Refigure-Mode constant String "ref igureMode";

Xt-.N-.Padding constant String "Padding";

Xt-NMin constant String "min";

Xt..N-.Max constant String "max";

Xt..N-.Slip-.Adjust constant String "skipAdjust";

Xt-.N-Framed constant String ="framed";

Xt-N-Border.Frame constant String "borderFraxe";

Xt..N-.Expose constant String :="expose";

Xt..N.Resize constant String :="resize";

Xt-.N-.Key-.Down constant String :"keyDown";

Xt..N.Sticky-.Menus constant String "stickyMenus";

Xt-.N.Allow-.Cascades constant String "allowCascades";

Xt-N-ulldown-Bar-.Id constant String :="pulldownBarld";

Xt-.NStrip constant String := "trip";
Xt..N-.Title-.Precedence constant String :-"titlePrecedence";

Page 90

29 October 1990 STARS- RC-00980/001 /00

Xt...NTitleForeground constant String "titleForeground";
Xt-N-itle-Background constant String "titleBackground";
Xt-N-.Title..Region constant String "titleRegion";
Xt-N-Title-Position constant String "titlePosition";
Xt-.N-.Title-.Rpadding constant String "titleRPadding";
Xt-.N-.Title-.Lpadding constant String := title~adding";
Xt...Nitle-.Border..Width :constant String :"titleBorderWidth";
Xt-.N-.Title-.Translat ions :constant String = "titleTranslations";
Xt-.N-.Title-.Hspace :constant String :"titleHSpace";
Xt-.N-.Title..Vspace: constant String : "titleVSpace";
Xt-.N-.Title-.Select :constant String "titleSelect";
Xt-N.Title.Release :constant String :"titleRelease"l;

Xt-.N-.Title-.Next-.Top: constant String "titleNextTop";
Xt-.N.Titlebar..ile :constant String "titlebarTile";
Xt-N..Enter :constant String "enter";
Xt-.N...Leave :constant String "leave";
Xt-.N...Region :constant String :="region";

Xt-N..Yosition :constant String "position";
Xt-.N-.L-.Padding :constant String :="iPadding";
Xt-N-.R-.Padding :constant String "rPadding";
Xt-.N.Precedence :constant String :"precedence";
Xt-NTitle-To..Menu-Pad :constant String "titleToMenuPad";
Xt-N-Work-.Space-To-.SiblingPad :constant String "workSpaceToSiblingPad";
Xt-.N-.Widget-.Type :constant String "widgetType";
Xt-.N-.Top-Level :constant String "topLevel";
Xt..N-.Display.Title :constant String "displayTitle";
Xt..N-.Causes-Resize :constant String :"causesResize";
Xt-.N.Arrow-.Direction :constant String "arrowDirection";

subtype Xw..Text-.Position is Cardinal;

type Xw-.Text..Source-.Ptr is new System.Address;
type Xw-.TextSink-Ptr is new System.Address;

type Xw-.Alignment is
(Xv..Align-.None,
Xw-.Align-.Left,

Xv-.Align-.Center,
Xw-.Align-.Right);

type Xw-Widget-Type is (XwUnknown, Xw-Pulldown, XwTitle, Xv..Work-Space);

type Xw-.Scan...Direction is (Xw..Sd-.Left, Xw-.Sd-.Right);

type Xw..Scan-.Type is

Page 91

29 October 1990 STARS-RC-00980/001 /00

XwSt-White-Space,
XwSt-Eol,
Xv-.St-.Last);

type Xv-.EditType is (Xw-.Text_.Read, Xv-.Text-.Append, Xv-.Text_.Edit);

type Xw.Edit-Result is

(Xw-.Edit-.Done,
Xw.Edit-Error,
Xv-.Edit...Pos-.Error,

Xw-.Edit-.Reject);

type Xw-.Verify-.Op-.Type is (Motion-Verify, ModVerify, Leave_.Verify);

type Xw..Source-.Type is (Xw..String-.Src, Xw..DiskSrc, Xv-.Prog-.DefineSrc);

type Xw..Wrap is (Xw-.Wrap..Off, Xw..Soft-.Wrap, Xw...HardWrap);

type Xw-rap-.Form is (Xw-.Source..Form, Xw-.Display-Form);

type Xw-.Wrap.Break is (Xw-.Wrap-.Any, Xw-.Wrap-.White-.Space);

function Xw-.Arrow-.Widget..Class return Intrinsics.Widget-.Class;

pragma Builtin (Xw-.Arrow-.Widget-.Class, 2301);
function Xw...Bulletin-.BoardWidget.Class retu~rn Intrinsics.Widget-.Class;

pragma Builtin (Xv..Bulletin-.Board-.Widget-.Class, 2302);
function Xw-.Bulletin..Widget..Class return Intrinsics.Widget-.Class;

pragma Builtin (Xw-BulletinWidget_.Cla-s, 2303);

function Xw-Button..Yidget-Class return Intrinsics.Widget-Class;

pragma Built in (Xw-.Button-.Widget-.Class, 2304);

function Xw..Cascade-Widget-.Class return Intrinsics .WidgetClass;
pragma Builtin (Xv..Cascade-.Widget-.Class, 2305);

function Xv..Form-.Widget-.Class return Intrinsics .Widget-Class;
pragma Builtin (Xw-.Form-Widget..Class, 2306);
function Xw-.Image-.Edit.WidgetClass return Intrinsics .Widget-Class;
pragma Builtin (Xw-.Image-.EditWidget_.Class, 2307);
function Xw-.List-.Widget-.Class return Intrinsics .Widget-.Class;

pragma Builtin (Xv-.List-Widget-.Class, 2308);
function Xw-.Listrow-.Col-WidgetClass return Intrinsics .Widget-Class;

pragma Builtin (Xw..Listrow-.Col-.Widget_.Class, 2309);

function Xw-.Manager-.Widget-.Class return Intrinsics .WidgetClass;
pragma Builtin (Xv..Manager-.Widget-.Class, 2310);
function Xv..Menu-Button-.Widget..Class return Intrinsics .Widget-Class;

Page 92

29 October 1990 STARS- RC-00980/001 /00

pragma Builtin (Xw-.Menu.Button-.Widget-.Class, 2311);
function Xw-.Menu-SepWidgetClass return Intrinsics.WidgetClass;
pragma Builtin (Xw-Menu-Sep-Widget-Class, 2312);

function Xw..Menubutton-Widget-.Class return Intrinsics .Widget-.Class;

pragma Builtin (Xw-.Menubutton-idget-.Class, 2313);
function Xw.Yenuingr-.Widget-.Class return Intrinsics .Widget-Class;
pragma Builtin (Xv..MenumgrWidget..Class, 2314);
function Xw-.Menupane-.Widget-.Class return Intrinsics.Widget-.Class;

pragma Builtin (Xv-Menupane-Widget-.Class, 2315);

function Xw-.Panel-.Widget-.Class return Intrinsics .Widget-.Class;

pragma Builtin (Xw-.Panel-Widget-.Class, 2316);
function Xw..Popup-Mgr-.WidgetClass return Intrinsics .Widget_.Class;
pragma Built in (Xw-Popup-Mgr-.Widget..Class, 2317);

funztion Xw..Popupmgr-.WidgetClass return Intrinsics Widget-.Class;

pragma BuiTltin (Xw..Popupmgr-.WidgetClass, 2318);
function Xw-.Primitive-.Widget-.Class return Intrinsics .Widget-.Class;
pragma Builtin (Xw-.Primitive-.Widget-.Class, 2319);
function Xw-Push-.Button-.WidgetClass return Intrinsics.Widget-.Class;

pragma Builtin (Xw-.Push-.ButtonWidget_.Class, 2320);

pragma Builtin (Xw-.Row-.Col-Widget...Class, 2321);
function Xw-.Sash-.Widget-.Class return Intrinsics .Widget_.Class;

pragma Builtin (Xv-.Sash.WidgetClass, 2322);
function Xw-.ScrollBar-.Widget-.Class return Intrinsics .Widget-Class;

pragma Builtin (Xw-.Scroll-.Bar-.Widget_.Class, 2323);
function Xw..Scrollbar..Widget...Class return Intrinsics.Widget..Class;
pragma Built in (Xw..Scrollbar-.Widget-.Class, 2324);
function Xw-.Scrolled-indow-Widget-.Class return Intrinsics .Widget-Class;

pragma Builtin (Xw-.Scrolled-.Window_.Widget.Class, 2325);

function Xw..Sraster-.Widget-.Class return Intrinsics .WidgetClass;
pragma Built in (Xw-.Sraster-.Widget-.Class, 2326);

function Xw..Static-.Raster-.Widget-.Class return Intrinsics.Widget-Class;

pragma Built in (Xw..Static-.Raster-Widget_.Class, 2327);
function Xw-.Static-.Text-Widget-.Class return Intrinsics Wridget-.Class;
pragma Builtin (XvStatic-.Tet-Widget..Class, 2328);

function Xw-.Statictext..Widget..Class return Intrinsics .Widget-.Class;
pragma Builtin (Xw-.Statictet-.Widget-.Class, 2329);

function Xw-Sw$indov.Yidget..Class return Intrinsics .Vidget-.Class;
pragma Builtin (Xw-.Swindow-.Widget_.Class, 2330);
function XwText.Edit-Widget-Class return fntrinsics .Widget-.Class;
pragma Builtin (Xw-.TextEditWidgetClass, 2331);
function Xw-.Textedit-.Widget-.Class return Intrinsics.Widget_.Class;

pragma Builtin (Xw-Textedit-idget..Glass, 2332);

Page 93

29 October 1990 STARS-RC-00980/OO1 /00

function Xw-.Title-.Bar-.Widget-.Class return Intrinsi-s .Widget-.Class;
pragma Builtin (Xw-.Title-.Bar-.Widget_.Class, 2333);
function Xw-Titlebar-Widget-Class return Intrinsics.WidgetClass;
pragma Builtin (Xw-.Titlebar-.Widget-.Class, 2334);
function Xw-.Toggle-.Widget-.Class return Intrinsics.Widget_.Class;
pragma Built in (Xw-.Toggle-..Widget-.Class, 2335);

-- Using Xw-.V.Paned..Widget-.Class creates a demand for a procedure
-called -XtCreateFontCursor, which does not seem to be in any
X library (rhp, 5/2/90)

-Aha! This is apparently a misprint for .XCreateFontCursor (rhp)

-- function Xw-.V-.PanedWidget-.Class return Intrinsics.Widget-.Class;
-- pragma Builtin (Xw-.V-.Pane-Widget-.Class, 2336);

function Xw-.Valuator.WidgetClass return Intrinsics .Widget_.Class;
pragma Builtin (Xw-aluator-Widget-.Class, 2337);
function Xw-.Work-.SpaceWidgetClass return Intrinsics .Widget-Class;
pragma Builtin (Xw-.Work-.Space-.Widget-.Class, 2338);

Ada interface to the widget procedure XwTextClearBuffer
procedure Xvjext-Clear-.Buffer (W :in Widget);
pragma Builtin (Xw-.Text-.Clear-.Buffer, 2401);

Ada interface to the widget procedure XwTextCopyBuffer
function Xw-.Text-.Copy-.Buffer (W :in Widget) return String;
pragma Builtin (Xwjext-.Copy..Buffer, 2402);

Ada interface to the widget procedure XwTextCopySelection
function Xw-ext-.Copy-.Selection (W :in Widget) return String;
pragma Builtin (Xw-.Text...Copy-.Selection, 2403);

Ada interface to the widget procedure XwTextReadSubString
procedure Xw..Text..Read-.Sub.String (W :in Widget;

Start-Pos :in Integer;

End-.Pos :in Integer;
Target :out String;
Target-.Used :out Integer;
Source-.Used :out Integer);

pragma Built in k:w-ext..Read-Sub-String, 2404);

Ada interface to the widget procedure XwTextUnsetSelection
procedure Xw-.Text-Unset-.Selection (W :in Widget);
pragma Builtin (Xw-ext-.Unset-Selection, 2405);

Page 94

29 October 1990 STARS-RC-00980/001/00

* Ada interface to the widget procedure XwTextSetSelection
procedure XwTextSetSelection (W in Widget;

Left in XwTextPosition;
Right in XwTextPosition);

pragma Builtin (XwTextSetSelection, 2406);

Ada interface to the widget procedure XwTextReplace
function XwTextReplace (W in Widget;

StartPos in XwTexztPosition;
EndPos in XwTextPosition;
S in String) return Xw_Edit_Result;

pragma Builtin (XwTextReplace, 2407);

Ada interface to the widget procedure XwTextRedraw
procedure XwTextRedraw (W : in Widget);
pragma Builtin (XwTextRedraw, 2408);

Ada interface to the widget procedure XwTextUpdate

procedure XwTextUpdate (W : in Widget;
Status : in Boolean);

pragma Builtin (XwTextUpdate, 2409);

.Ada interface to the widget procedure XwTextInsert
procedure XwTextInsert (W in Widget;

S in String);
pragma Builtin (XwTextInsert, 2410);

Ada interface to the widget procedure XwTextGetLastPos

function XwTextGetLastPos (W : in Widget) return XwTextPosition;
pragma Builtin (XwTextGetLastPos, 2411);

Ada interface to the widget procedure XwTextGetSelectionPos

proceure XwTextGetSelectionPos (W in Widget;

Left out XwTextPosition;
Right out XwTextPosition);

pragma Builtin (Xw-TextGetSelectionPos, 2412);

Ada interface to the widget procedure XwTextSetInsertPos

procedure XwTextSetInserPos (W : in Widget;
Pos : in XwTextPosition);

pragma Builtin (XwTextSetInsertPos, 2413);

.Ada interface to the widget procedure XwTextGetInsertPos

Page 95

29 October 1990 STA RS- RC-00980/ 00 1/00

function Xw-ext.Get-nsert-Pos (W :in Widget) return Xw-.Text-.Position;
pragma Builtin (Xw-Text-Get-Insert-Pos, 2414);

Ada interface to the widget procedure XwTextSetSource
procedure Xw-extSet..Source (W in Widget;

Source in Xw-.Text-.SourcePtr;
Start-.Pos in Xw-.Text-.Position);

prae,.a Builtin (Xw-ext-Set-.Source, 2415);

Ada interface to the widget procedure XwAsciiSinkCreate
function Xw-Ascii-Sink-Create

(W in Widget;
Args in Xt-.Arg-.List) return Xw-Text-.Sink-.Ptr;

pragma Builtin (Xw-.Ascii-.Sink-.Create, 2416);

Ada interface to the widget procedure XwDiskSourceCreate
function Xw-.Disk-.SourceCreate

(W in Widget;
Args in Xt-Arg-.List) return Xw-.Text-.Source-.Ptr;

pragma Builtin (Xw-.Disk-.Source-.Create, 2417);

Ada interface to the widget procedure XwDiskSourceDestroy
procedure Xw-.Disk-.Source-.Destroy (Src :in Xw..Text-.Source-.Ptr);
pragma Builtin (Xw-Disk-Source-Destroy, 2418);

Ada interface to the widget procedure XwStringSourceCreate
function Xw-.String-.Source-.Create

(W :in Widget;
Args :in Xt-Arg-List) return Xw-.Text...Source-Ptr;

pragma Builtin (Xw-String-Source-Create, 2419);

Ada interface to the widget procedure XwStringSourceDestroy
procedure Xw-.String-.Source-.Destroy (Src :in Xw-ext..Source-.Ptr);
pragma Builtin (Xw-.String-.Source-.Destroy, 2420);

Ada interface to the widget procedure XwMoveFocus
procedure Xw-Move-.Focus (W :in Widget);
pragma Builtin (Xw..Move-.Focus, 2421);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one. of the enumerated types defined in this package, namely:

Xw-Alignment

Page 96

29 October 1990 STARS-RC-00980/00 1/00

XWdidget-.Type
Xw-Scan-Direct ion
Xw-Scan-Type
Xw-.EditType
Xw-.Edit-.Result

X-Vlerify-.Op-Type
Xw-.Source..Type
Xw-Wrap
Xw-Wrap..Form
Xw-Wrap-.Break

procedure Xt...Set-.Arg (Arg out Xt_.Arg;
Name :in String;
Value in Xv..Alignment);

pragma Builtin (Xt-.Set_.Arg, 2422);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw-.Alignment
Xw-.Widget ..Type
Xw...Scan-.Direct ion
Xw-.Scan-.Type
Xw-.EditType
Xw-.Edit.Result
XwVerify-0p-Type
Xv..Source-.Type
Xv...Wrap
Xw-Wrap-Form
Xw-Wrap-Break

procedure Xt-SetArg (List :in out Xt...Arg-List;
Subscript :in Integer;
Name :in String;
Value in Xw-.Alignment);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw-A1ignment
Xw-Widget ..Type
Xw-.Scan-.Direct ion

Xw...Scan-.Type
Xw-Edit-Type

Page 97

29 October 1990 STARS- RC- 00980/00 1 /00

Xw..Edit-.Result
Xw-Verify-.OpType
Xw-Source-Type

Xw-.Wrap
Xv .Yrap-Foarm
Xv-rap-.Break

procedure Xt-.Set-.Arg (Arg :out Xt_.Arg;
Name :in String;

Value : in Xw-.Widget-.Type);
pragma Builtin (Xt-.Set_.Arg, 2423);

This set of overloaded procedures provides a strongly typed,

Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:
Xw-Alignment
Xw-.Widget-Type
Xw-.Scan...Direct ion

Xw...Scan-.Type
Xw-.Edit...Type
Xw-Edit..Result
Xw-Verify-Op-.Type
Xv-.Source..Type
Xw..Wrap
Xw-Wrap-Form

Xw-Wrap-Break
procedure Xt-.Set-.Arg (List :in out Xt-.Arg-.List;

Subscript :in Integer;
Name :in String;
Value : in Xw-.Widget-Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:
Xw..Alignment
Xw-.Widget ..Type
Xw...Scan-.Direct ion

Xw-Scan-.Type
Xw.EditType
Xw.Edit-Result
Xw-Ver if y .OpType
Xw..Source-.Type
Xw-Wrap

Page 98

29 October 1990 STARS- RC-00980/00 1 /00

Xw..Wrap-Form
Xw-.Wrap...Break

piocedure Xt.Set-Arg (Arg out Xt-Arg;

Name in String;
Value in Xw-.Scan-.Direction);

pragma Builtin (Xt...Set_.Arg, 2424);

This set of overloaded procedures provides a strongly typed,

Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:

Xw-.Al ignment

Xw-.Widget-.Type
Xw..Scan..Direct ion
Xw-Scan..Type
Xw...Edit-.Type
XwEdit-Result
Xw-.Verify-Op-.Type
Xw.SourceType
Xw-.Wrap
Xw-.Wrap-Form
Xw-rap..Break

procedure Xt...Set-.Arg (List :in out Xt...Arg-.List;

Subscript :in Integer;
Name :in String;
Value :in Xw..Scan-.Direct ion);

This set of overloaded procedures provides a strongly typed,

Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw-.Al ignment
Xw-Widget-..Type
Xw-Scan.Direct ion

Xw. Scan-Type
Xw-.Edit-.Type
Xw-Edit-.Result
Xv-Verify-Op-Type

Xw...Source-.Type
Xw-.Wrap
Xw..Wrap-.Form
Xw-rap-.Break
procedure Xt-Set-Arg (Arg :out Xt_.Arg;

Name :in String;

Page 99

29 October 1990 STARS-RC-n09S0/00 1/00

Value :in Xw-.Scan-.Type);
pragma Builtin (Xt-Set.Arg, 2425);

This set of overloaded procedures provides a strongly typed,
Ad.. version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw-Al ignment
Xw-.Widget ..Type
Xv..Scan..Direct ion
Xw...Scanype
XwEdit-Type
XwEdit-Result
Xw-Verify-.Op-Type
Xw-.Source-.Type
Xw-Wrap
Xw-Wrap..Form
Xw-Wrap-Break

procedure Xt...SetArg (List in out Xt-.Arg-List;
Subscript :in Integer;
Name :in String;
Value :in Xw-.Scan-.Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be une
of the enumerated types defined in this package, namely:

Xw-Alignment

Xw-W idget .Type
Xw.ScanDirect ion
Xv..S can-Type
XwEdit-Type
Xw-Edit-.Result

Xv..V er if y-Op-Typ e
Xw..Source-.Type
Xw-.Wrap
Xw-Wrap-.Form
Xw-Wrap-.Break

procedure Xt-.Set-.Arg (Prg .out Xt-.Arg;
Name in String;
Value in Xw-Edit-Type);

pragma Builtin (Xt-.Set-.Arg, 2426);

This set of overload3d procedures provides a strongly typed,

Page 100

29 October 1990 STARS- RC-00990./00 1/00

. Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:

Xw-Alignment
Xw-.Widget-.Type
Xw-Scan.Direct ion

Xw.ScanType
Xv-Edit-.Type
Xw..Edit .Result
Xw-Verify-Op-.Type
Xv-.Source-.Type
Xw..Wrap
Xw-Wrap-Form
Xv-.WrapBreak
procedure Xt-.Set-.Arg (List :in out Xt...Arg.List;

Subscript :in Integer;
Name :in String;
Value :in Xw-.Edit_.Type);

This set of overloaded procedures provides a strongly typed,. Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:

Xv...Alignment
Xw-.Widget-.Type
Xv-.Scan-.Direct ion

Xv...Scan-..Type
XwEdit-Type
Xw-Edit-Result
XwVerify-.OpType
Xw-.Source-.Type
Xw-.Wrap
Xw-Wrap .. Form.
Xv...Wrap-..B re ak
procedure Xt-.Set-.Arg (Arg :out Xt_.Arg;

Name :in String;
Value :in Xw-.Edit-.Result);

pragma Builtin (Xt-Set-.Arg, 2427);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one. of the enumerated types defined in this package, namely:

Xw-.Alignment

Page 101

29 October 1990 STARS-RC-00980/001 /00

Xw-Widget-T.ype
XwScan-Direct ion

XwScanType
Xw-Edit-.Type
Xw-.Edit...Result
XwVerify-Op-.Type
Xw-.Source..Type
Xw-Wrap

Xw...Wrap-Form
Xw-W rap..B re ak
procedure Xt-.Set-.Arg (List in out Xt-.Arg-.List;

Subscript in Integer;
Name :in String;

Value in Xv..Edit-.Result);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:

Xw-.Alignment
Xw-Widget ..Type
Xv..Scan..Direct ion

Xv...Scan-Type
Xw-.EditType
Xw-Edit-Result
Xw-Verify.Op.Type
Xw-.Source-.Type
Xw...Wrap
Xw..Wrap..Form

Xw-Wrap..Break
procedure Xt-.Set-.Arg (Arg :out Xt_.Arg;

Name :in String;
Value :in Xw-.Verify..Op-.Type);

pragma Builtin (Xt-.Set_.Arg, 2428);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:
Xw...Alignment
Xw-Widget-Type
Xv..Scan-.Direction
Xv...Scan-Type

Xw-Edit .jype

Page 102

29 October 1990 STARS-RC-009S0/O01 /00

Xw-Edit ..Result
Xw-Verify-Op-Type
XwSource-Type
Xw-Wrap
Xw-Wrap-Form
Xw-Wrap-.Break
procedure Xt-.Set..Arg (List :in out Xt-.Arg-.List:

Subscript in Integer;

Name in String;
Value in Xw-.Verify-.Op.Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw..Al ignment
Xw-Widget-Type
Xw-Scan-Direction
Xw-.ScanType
Xw...Edit-.Type
Xw.Edit-Result
Xw-.Verify-.Op-.Type
Xw-.Source-.Type
Xw-Wrap
Xw-Wrap-.Form
XwWrap-Break

procedure Xt-.Set..Arg (Arg :out Xt...Arg;
Name in String;
Value :in Xw.Source.Type);

pragma Builtin (Xt..Set-.Arg, 2429);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw-.Alignment
Xw.Y idget ,Type
Xw-.Scan-.Direct ion
Xw-Scan..Type
XwEdit-Type
Xw..Edit-.Result

Xw-erify-O.p-Type
Xw..SourceType
Xw..Wrap

Page 103

29 October 1990 STARS-RC-00980/0O 1/00

Xw-Wrap-Form
Xw-Wrap-.Break
procedure Xt-.Set-.Arg (List in out Xt-.Arg-.List;

Subscript :in Integer;
Name in String;
Value :in Xv-.Source-.Type);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw-.Alignment

Xv-Widget ..Type
Xw-.Scan-.Direct ion
Xw...Scan-Type
Xw-Edit-Type
Xw..Edit-.Result

Xw..Ver ify-.Op-.Type
Xw...Source...Type
Xw-Wrap
Xw-Wrap-Form.
Xw-Wrap-.Break
procedure Xt-.Set-.Arg (Arg :out Xt_.Arg;

Name in String;
Value :in Xv...Wrap);

pragma Builtin (Xt..Set_.Arg, 2430);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw..Alignment
Xw-Widget-Type
Xw-Scan-.Direct ion
Xw-.ScanType
Xw-.Edit...Type
XwEdit-Result
XwVerify-Op-Type
Xw-Source-.Type
Xw-Wrap
Xw..Wrap-Form
Xw-Wrap-Break

procedure Xt-.Set-.Arg (List in out Xt-.Arg-.List;
Subscript in Integer;

Page 104

29 October 1990 STARS-RC-009S0/O1 /00

Name in String;
Value in XwWrap);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw-.Alignment
Xw-.Widget ..Type
Xw..Scan-.Direct ion
Xw-Scan-Type
Xw-.Edit .Type
Xw-.Edit-Result
Xw-Verify.Op-.Type
Xw-.SourceType
Xw-Wrap
Xw-.WrapForm
Xw-Wrap. Break
procedure Xt-.SetArg (Arg out Xt-.Arg;

Name :in String;
Value :in Xw-.Wrap-.Form);

pragma Builtin (Xt-.Set-.Arg, 2431);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.
The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

Xw...Alignment
Xw-.Widget-.Type
Xwv-ScanDirect ion

Xv-.Scan-.Type
Xw-.Edit-.Type
Xw-.Edit-.Result
XwVerify-.Op-Type
Xw..Source-.Type
XwWrap

Xw-Wrap-Form
Xw-.W rap..Break

procedure Xt-.Set-.Arg (List .in out Xt-.Arg-.List,
Subscript :in Integer;
Name :in String;
Value :in Xw-Wrap-.Form);

Page 105

29 October 1990 STARS-RC-00980/001/00

This set of overloaded procedures provides a strongly typed,.Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one

of the enumerated types defined in this package, namely:

XwAlignment
XwWidgetType
XwScanDirection

XwScanType
XwEditType
XwEditResult
XwVerifyOpType
XwSourceType
XwWrap

XwWrapForm
XwWrapBreak
procedure XtSetArg (Arg : out XtArg;

Name : in String;
Value : in XwWrapBreak);

pragma Builtin (XtSetArg, 2432);

This set of overloaded procedures provides a strongly typed,
Ada version of the C macro XtSetArg.

The overloading provided here permits the Value parameter to be one
of the enumerated types defined in this package, namely:

XwAlignment

XwWidgetType
XwScanDirection
XwScanType

XwEditType
XwEditResult
XwVerifyOpType
XvSourceType

XwWrap
XwWrapForm
XwWrapBreak

procedure XtSetArg (List : in out XtArgList;
Subscript : in Integer;

Name : in String;
Value : in XwWrapBreak);

end HpWidgets;

.with Intrinsics;
with Widget-Package;

Page 106

29 October 1990 STARS-RC-00980/001/00

package body HpWidgets is
use Widget-Package;
use Intrinsics;
use XtAncillaryTypes;

procedure XtSetArg (List in out XtArgList;
Subscript in Integer;
Name in String;
Value in XwAlignment) is

TempXtArg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);
Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;
Subscript in Integer;
Name in String;
Value in Xw-WidgetType) is

TempXt-Arg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);
Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;
Subscript in Integer;
Name in String;
Value in XwScanDirection) is

TempXtArg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);
Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List : in out XtArgList;
Subscript : in Integer;
Name : in String;
Value : in XwScanType) is

TempXtArg : XtArg;
begin

XtSetArg (TempXtArg, Name, Value);
Put (List, Subscript, Temp.XtArg);

end XtSetArg;

Page 107

29 October 1990 STARS-RC-00980/001/00

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;

Value in XwEditType) is

TempXtArg : XtArg;

begin
XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;

Value in XwEditResult) is

TempXtArg : XtArg;

begin
XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);
end XtSetArg;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;

Value in XwVerifyOpType) is

TempXtArg : XtArg;

begin

XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;
Value in XwSourceType) is

TempXtArg : XtArg;

begin

XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, TempXtArg);

end XtSetArg;

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;

Name in String;
Value in Xw.Wrap) is

0TempXtArg : XtArg;
Page 108

29 October 1990 STARS-RC-00980/001 /00

begin
XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, Temp.Xt-Arg);

end XtSetArg;

procedure XtSetArg (List in out Xt-ArgList;

Subscript in Integer;
Name in String;
Value in XwWrapForm) is

TempXtArg : XtArg;

begin
XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, Temp.XtArg);

end XtSetArg;

procedure XtSet-Arg (List in out Xt-Arg-List;
Subscript in Integer;
Name in String;
Value in XwWrap.Break) is

TempXtArg : Xt.Arg;

begin
XtSetArg (TempXtArg, Name, Value);

Put (List, Subscript, Temp.XtArg);

end XtSetArg;

end HpWidgets;

8 More Information About Some Ace Features

This section provides a detailed look at some Ace ADTs, to help the user become familiar
with the functionality they provide.

8.1 Xt Toolkit Interface

The Xt toolkit is a library of functions that provide an object-oriented approach to the

X windowing system. The toolkit consists of a set of basic procedures, called intrinsics
and a set of facilities for creating window objects called widgets. Widgets are individual
representatives of widget classes. While the Xt toolkit permits the creation of new widget
(-lasses. many sets of widget classes are already available in the public domain.

* ACE provides an Ada interface to a subset of the Xt intrinsic functions and to a complete
set, of widget classes, namely. those offered in the Hewlett-Packard widget set. This section

Page 109

29 October 1990 STARS-RC-00980/001/00

is not intended as a detailed description of either the Xt intrinsics or the Hewlett-Packard. widget set, for which appropriate documentation is available from the respective distributors.
This section describes only those features of the ACE interface that differ from a compiled
interface to these libraries.

8.1.1 Xt Prototyping Sessions

The Xt toolkit assumes that an application will be driven entirely from the X windows that it
creates. Each Xt application consists, therefore, of two distinct parts. The initialization code
creates the application's windows, panels, and pushbuttons. After the initialization code has
run, control is given to an endless event-handling loop. The event loop responds to events
such as pointer motions and keyboard input by calling user-defined response code through
a mechanism known as callback. In the Xt toolkit's view of an application, this process
continues as long as the application. That is, when the windowing part of the application is
finished, so is the application program itself.

In order to provide this view of an application without requiring ACE to be restarted, the
ACE interface provides a means of creating separate Xt sessions. Each Xt session appears
to the Xt toolkit as a new application program.

8.1.1.1 Starting an Xt Prototyping Session. To begin a new Xt session, the ACE
* user should use the routine XtInitialize. When the Xt session begins, ACE will signal the

user by changing its prompt from

ACE>

to

ACE Xt>

Calling Xt-Initialize not only begins an Xt session, but also performs the toolkit functions
associated with this procedure. For this reason, it is an error to call this procedure once the
Xt session has started, since this would appear to the Xt toolkit as if an application were
trying to initialize twice, a violation of the Xt toolkit's rules.

Also, if the XtInitialize procedure is called from some other procedure, the code following
it will be interpreted twice, once in the Xt session, and again after the Xt session is finished.
If the following code contains certain calls to the Xt toolkit, the toolkit's error action, taken
when these calls are performed outside the Xt prototyping session, can cause ACE to exit.
It is therefore a good practice not to call this procedure as part of some other procedure
(unless calling Xt.Initialize is the only instruction, as shown in the example below).

* The Ada specification of the Xtlnitialize procedure is given below.

Page 110

29 October 1990 STARS-RC-00980/00 1/00

procedure XtInitialize
(Out-Value out Intrinsics.Widget;
Name in String;
Classname in String;
Urlist in XWindows.ResourceManager.XrmOptionDescList;
NumUrs in Intrinsics.Cardinal;
Argc in out Intrinsics.Cardinal;
Argv in out Renamed_XlibTypes.ArgvType);

After the XtInitialize procedure has been called, the OuL Value parameter will contain the
value of the shell widget, which is used as the ultimate ancestor for all other widgets created
during the Xt prototyping session.

Because the Xt-Initialize procedure requires a complex set of arguments, it will be convenient
to create an argument-free procedure that calls it. For the reasons given above, the call to
Xt-lnitialize should be the only instruction in such a procedure. A typical version of such a
procedure is shown below.

procedure StartXt is
Argc Intrinsics.Cardinal 0;
Argv RenamedXlibTypes.Argv-Type 0;

begin~~XtInitialize (Shell-Widget,"" "

WidgetPackage.NullXrmOptionList, 0,
Argc, Argv);

end StartXt;

Currently, ACE does not provide any means of creating objects of either the type XrmOptionDescL.
or the type ArgvType. Therefore, the values shown in this example for the parameters Urlist.
NuVnUrs, A rgc, and Argv are the only values allowable.

8.1.1.2 Finishing an Xt Prototyping Session To end an Xt prototyping session, the
user should cause ACE to interpret the instruction

exit ACE;

That is, the same instruction that is normally used to end an ACE run will also end an Xt
prototyping session. When used from such a session, however, ACE will not end, but will
return to its normal mode of operation, with its original user prompt.

This instruction will normally be part of a callback procedure. A typical means of ending an
* application that uses the Hewlett-Packard widget set is to incorporate a pushbutton widget

whose selection callback is a procedure that performs this instruction.

Page 111

29 October 1990 STARS- RC-00980/001/00

In the current version of ACE, any callback routine that fails to execute properly, that is.
*anv routine that raises an exception, will also cause the Xt prototvping session to end.

8.1.2 Xt Argument Lists

Most of the Xt routines are parameterized by lists of pairs, with each pair consisting of a
resource name and a resource value. Because ACE does not support arrays, special routines
are provided to manipulate such lists. The Ada specifications of these routines are shown
below.

procedure Create (ArgList out XtArgList;
First in Integer;
Last in Integer);

procedure Put (ArgList : out Xt.ArgList;
Subscript : in Integer;
Value : in XtArg);

function Get
(ArgList in XtArgList;
Subscript in Integer) return XtArg;

function Get (Arg.List in XtArgList;

First in Integer;
Last in Integer) return XtArg_List;

The Create procedure reserves space for an argument list and assigns upper and lower bounds.
The Put procedure assigns a value to a specified member of an argument list. The Get
function with a single Integer parameter returns the value of a member of an argument list,
while the Get function with two Integer parameters returns a specified slice.

To create values of the type Xt-Arg suitable for inclusion in argument lists, ACE provides the
Xt toolkit procedure Xt.Set.Arg. Since the elements of argument lists are of many different
types, the Xt.SetArg procedure is overloaded many times. All of its overloaded versions,
however, conform to one of two basic patterns.

In the first pattern, Xt..SetArg is used to create a single value of type Xt.Ar, as shown
below.

procedure XtSetArg (Arg out XtArg;

Name in String;
Value in SomeValue_Type);

Page 112

29 October 1990 STARS-RC-00980/001/00

In the second pattern, an argument value is built and inserted directly into an argument list,.as shown below.

procedure XtSetArg (List in out XtArgList;

Subscript in Integer;
Name in String;
Value in SomeValueType);

The reader should consult Xt toolkit documentation for the allowable resource names and
value types.

8.1.3 Xt Callbacks

The Xt toolkit supports two kinds of user response procedures, called callback procedures
and action procedures. From the programmer's point of view, there is little difference be-
tween these two kinds of procedures. Both kinds are registered with the toolkit during the
initialization part of an Xt application and both are called by the event-handling loop in
response to some set of events.

.8.1.3.1 Callback Procedures. Callback procedures are associated with specific call-
back points provided by each widget class. Callback procedures are registered through the
procedure XtAddCallback, whose Ada specification is given below.

procedure XtAddCallback (W in Intrinsics.Widget;
Name in String;

CallbackProc in System.Address;

Closure in Integer);

To obtain a value for the CallbackProc parameter, the ACE user should use the function
CallbackProcedure.Pointer, which accepts a callback procedure's name, in the form of a
string, and returns a value that ACE can use as the callback procedure's address. The
Closure parameter is an arbitrary value that will be passed to the callback procedure when
it is called. The typical use of this parameter is to permit a callback routine to be registered
more than once and to distinguish the two registrations.

Every callback procedure must conform (except for the names of the procedure and its
parameters) to the following specification.

procedure Typical-Callback (W in Intrinsics.Widget;
Client-Data in Integer;

Call-Data in Integer);

Page 113

29 October 1990 STARS-RC-00980/001 /00

When the procedure is called, the second parameter (Client-Data) will be a copy of the
* Closure parameter given at registration. The meaning of the thi'd parameter (CallData) is

defined l)v each widget class.

Callback procedures should be either independent compilation units or should be at the top
level of some package. rhat is, callback procedures should not be nested inside other proce-
dures. The results of registering and invoking nested callback procedures are unpredictable.

8.1.3.2 Action Procedures. Action procedures can be associated with various events,
such as pointer motions and keyboard input, that are not specific to a single widget class.
The use of action procedures involves two distinct steps. First, the procedures are registered
with the Xt toolkit by using the XtAdd-4ctions procedure. The XtAdd-Actions procedure
takes a single argument of type Xt.Arg-List. The elements of this list consist of pairs whose
first element is a string containing an arbitrary symbolic name for the action procedure and
whose second element is a procedure pointer.

To obtain values for the required procedure pointers, the ACE user should use the function
ActionProcedure.Pointer, which accepts an action procedure's name, in the form of a string.
and returns a value that ACE can use as the action procedure's address.

Every action procedure must conform (except for the names of the procedure and its param-
eters) to the following specification.

procedure Typical-Action (W in Intrinsics.Widget;
E in XWindows.Events.Event;
Args in XWindows.StringList);

Since the current version of ACE does not provide support for manipulating the Event and
StringList types, the second and third parameters are not currently useful, but they must
nevertheless be declared.

After symbolic names have been assigned to action procedures by XtAddActions, these sym-
bolic names are used by an Xt toolkit facility called translation, whose task is to translate the
symbolic names of the action procedures and the (predefined) symbolic names of events into
the proper widget structures. The relevant Xt routines that cause these things to happen are
XtParseTranslation_ Table, XtOverride Translations, and XLA ugmenL Translations. For
further information on these routines, the user should consult Xt toolkit documentation,
since ACE does not impose any of its own constraints on their use.

Action procedures should be either independent compilation units or should be at the top
level of some package. That is, action procedures should not be nested inside other proce-
(lures. The results of registering and invoking nested action procedures are unpredictable.

For implementation reasons, no more than thirty-two action procedures may be registered
by any one Xt prototyping session. Calling the function 4ctiorLP,'ocedureJointer more than

Page 114

29 October 1990 STARS-RC-00980/001/00

thirty-two times in one Xt prototyping session will produce an error message and will not
*r register the action procedure. There is no similar limit on the number of callback procedures.

hlowever.

8.1.3.3 Callback Interpretation. Because callback and action procedures are actually
interpreted by ACE, there is more flexibility in ACE callbacks than in compiled code. In par-
ticular, the parameter supplied to the CallbackProcedurePointer and ActionProcedure-Pointer
functions is not confined to simply the names of valid callback and action procedures, but
may be any valid seqence of Ada statements ending with such a name.

Since this has no equivalent in compiled code, the ACE user should use this feature very
sparingly: otherwise, the eventual transition to a compiled application will be more difficult.

This feature does have one important application in ACE, however. It permits input events
to be associated with ACE's debugging pragmas. For example, if the ACE user wants a
pushbutton that will cause ACE's trace facility to start, he can use

XTAddCallback
(Button-Widget, XtNSelect,

CallbackProcedurePointer ("pragma TRACE (On); NoOp"), 0);

. where NoOp is a callback procedure that does nothing.

8.1.3.4 Prototyping Callbacks. The usual method for prototyping Xt code in ACE
will be to test each version of the code in a separate prototyping session. Because ACE call-
backs are interpreted, however, callback code can be changed without ending the prototyping
session.

This does require special care on the part of the ACE user. In a usual Xt application, the
initialization part of the application ends by calling the procedure XtMainLoop, which is
available in the ACE interface. This procedure is an endless event-handling loop, which does
not end until the application itself is finished.

The following procedure, which performs exactly the same functions as XtMainLoop, can
also be entered in the ACE Xt interface.

procedure MyMainLoop is
E Event;
C Intrinsics.XtAppContext := XtDefaultAppContext;

begin
loop

E .= XtAppNextEvent (C);

Page 115

29 October 1990 STARS-RC-00980/001 /00

XtDispatchEvent (E);
* end loop;

end My-MainLoop;

The advantage of using such a loop instead of XtMaindLoop, however, is that the routine
shown above can be interrupted and resumed. While this loop is running, the ACE interrupt
key will cause it to stop, and the ACE Continue procedure will cause it to resume.

While the loop is interrupted, the user is free to change the contents of a callback or action
procedure. Thus, such procedures can be altered without ending the prototyping session.

The user should be prepared for some peculiar effects when using this facility. While the
event loop is interrupted, nothing will be handling the events for the-Xt application. This
means, for example, that if the application window is covered and re-exposed, it will not be
refreshed until the loop resumes.

The user should also be aware that the XtAppNextEvent function does not return until
an event occurs. In practice, this means that the ACE interrupt key will not take effect
until after some event occurs in the Xt application. The typical sequence of operations for
interrupting this loop, therefore, will be:

* Move the mouse pointer to the ACE window

* Enter the interrupt key

• Move the mouse pointer to an Xt application widget (to cause an event)

* Return the pointer to the ACE window (to enter new callback code)

8.1.4 Transition to Compiled Code

The purpose of the ACE interface to the Xt toolkit is to permit the prototyping of applica-
tions that will eventually be compiled. For this reason, great care has been taken to make
the ACE interface nearly the same as the compilable Ada bindings to the Xt toolkit. Once a
given application has been successfully prototyped in ACE, it should be possible to compile
the same code with very few changes. A few changes will be necessary, however, which are
noted below.

* Procedure Pointers

References to the functions CallbackProcedurePointer and ActionProcedurcPoin tcr
should be replaced by an appropriate compilable means of obtaining a procedure
pointer. For some Xt bindings., this will be the Ada ADDRESS attribute, while others
will require procedure pointers to be obtained by generic instantiation.

Page 116

29 October 1990 STARS-RC-00980/001/00

As noted above, there is no compilable equivalent to ACE's ability to create procedure
pointers from a sequence of Ada statements. Parts of the application that use this
ability must be either eliminated or rewritten.

" Array References

The use of ACE procedures that eliminate array references should be replaced by the
appropriate subscripted expressions or slices.

In particular, the overloadings of the XtSetArg procedure that take a list and a
subscript as separate arguments will not be available in compilable Xt bindings; these
should be replaced by a single subscripted argument.

Also, the Get function that returns a slice of an XtArgList will not be available, and
should be replaced by array slice expressions. Such slices will usually be arguments to
the procedures Xt.AddActions, XLCreate-_Widget, and XtCreateManaged Widget.

" Ending the Application

Since the statement exit ACE; has no equivalent in compiled Ada, it must be replaced
by some other means of ending the application. This can take the form of interfacing
to the host computer's process termination routine, or can be implemented by raising
an unhandled exception.

.8.1.5 A Small Example

The following is an example of how the ACE Xt interface might be used. Once this example
has been entered, it is run in the following way:

" Run the procedure Start-t.

* When the prompt changes to the Xt prototyping prompt, run the procedure Aloha.

* The screen should now show a small panel with two buttons labelled "Hello" and
"Goodbye". Pressing the left mouse button with the pointer in the "Hello" button will
cause the application to print "Hello", pressing the "Goodbye" button will cause the
application to print "Goodbye" and end the prototyping session.

Not all of the Ada use statements shown below are actually needed to run this example.
They will be required, however, to extend it.

use System;
use Strings;
use Text_Io;
use XWindows;
use Fonts;

Page 117

29 October 1990 STARS-RC-00980/00 1/00

use Events;
use Resource-Manager;
use RenamedXlibTypes;

use Intrinsics;
use XtAncillaryTypes;

use Widget-Package;
use XtStringdefs;
use Hp_Widgets;

Shell-Widget : Widget;

procedure StartXt is

Argc: Cardinal 0;

Argv : ArgvType 0;

begin
XtInitialize (Shell-Widget, ",",Null_XrmOptionList, 0, Argc, Argv);

end StartXt;

procedure Message (W in Widget;
Client-Data in Integer;

Call-Data in Integer) is

begin
if Client-Data = 0 then

Put-Line ("Hello");
else

PutLine ("Goodbye");

exit Ace;
end if;

end Message;

procedure Aloha is

MyXtArgList XtArgList;

Panel Widget;

Button1 Widget;

Button2 Widget;

begin

Create (MyXtArgList, 1, 20);

XtCreateManagedWidget (Panel, "", XwRowColWidgetClass,
Shell-Widget, NullXtArgList);

XtSetArg (MyXtArgList, 1, XtNLabel, "Hello");

XtCreateManagedWidget
(Buttoni, "", XwPushButtonWidgetClass, Panel,

Get (MyXtArgList, 1, 1));

Page 118

29 October 1990 STARS-RC-00980/001/00

XtAddCallback (Buttonl, XtNSelect,
CallbackProcodurePointer ("Message"), 0);

XtSetArg (MyXtArgList, 1, Xt_N_Label, "Goodbye");
Xt-Create-Managed-Widget

(Button2, Il, Xw.PushButtonWidgetClass, Panel,
Get (MyXtArgList, 1, 1));

XtAddCallback (Button2, XtNSelect,
CallbackProcedurePointer ("Message"), 1);

XtRealizeWidget (Shell-Widget);
XtMainLoop;

end Aloha;

8.2 The Key-Bindings Package

The package, Key-Bindings, provides the user with Ada routines to edit command line
input, and recall earlier lines. It also supplies the mechanism to invoke a specified Ada
procedure by a user designated keystroke. These capabilities can greatly enhance the day-
to-day environment of a development programmer.

Ace is able to provide these capabilities because it now maintains a log of the input (within
the bounds of the user specified limit), which is available to the history routines declared

* in Key-Bindings, and finds the binding associated with each keystroke (or sequence of
keystrokes) and calls the routine indicated by the binding. Usually that will be Do-Self-Insert.
But there are many other things one might want to do, and the code to accomplish some of
those things is already written, and available to the user at the touch of a key, for the paltry
price of a call to Make-Binding.

8.2.1 Making Bindings

The package Key-Bindings contains the procedures that will associate a routine with a
keystroke, or sequence thereof, and also all the empowered binding choices (commti~d names).
When Ace is started a set of default bindings is installed. Each printable ASCII character
(from space to tilde) is bound to Do-SelfInsert. Carriage return and line feed are bound to
LineSeparator. The user's environment is checked to find out which key the user normally
uses for deleting characters and that key is bound to Delete.

It is necessary to always have at least one character bound to Line-Separator, and the
Make.Binding procedures enforce this rule by refusing to cooperate with a request to change
the binding of the last thing currently bound to Line.Separator. This requirement exists
because the LineSeparator binding is the only signal to Ace that a line of input has been
co(ipleted.

In order to obtain the services of any of the other provided routines the user must make the
appropriate call to Make-Binding. The specifications for the two versions of MakeBinding

Page 119

29 October 1990 STARS-RC-00980,i001/00

* are:

procedure Make-Binding (C : in Character;
Binding in Commands;

Optional-String in String

procedure MakeBinding (CharSeq in String;

Binding in Commands;
Optional-String in String :- "");

The first parameter of these procedures should be the value transmitted when the relevant

key (or sequence) is struck.

The legal choices for the Binding parameter are:

Line-Separator
Interpret-String
History-Back
History-Forward
Move-Left
Move-Right
BeginningOfLine
EndOf-Line
Start_-Of-History
EndOfHistory
Delete
DeleteThisChar
Show-listory
ShowHistoryLimit
SetHistory-Limit
KillLine
Quoted-Insert
Refresh_-Current_-Line
Refresh_-Current-Line..And..Prompt
Self-Insert

The third parameter is needed only when the second parameter is set to lnterpret.String,
which is explained below. Please note that it is meaningless to bind a function or procedure

with parameters to a keystroke, because there is no way to communicate the return value

to other parts of the code. nor to pass parameter values to the procedure. However, such

routines can be manipulated through the use of LlctrprrLSring.

Page 120

29 October 1990 STARS-RC-00980/001/00

8.2.1.1 Using !nterprtShri9ng. In addition to the provided routines the user can write

Ada, procedures of their own and bind them to a kev via the Interpret-String procedure. To
use this facility. the user should siniply provide the procedure to be invoked and a binding
for InterpretStritig. For example:

Make-Binding (Ascii.Esc & "[226z",
KeyBindings. InterpretString,

"MyProcedure;");

The third parameter is a string containing an Ada statement, exactly as it would appear

in a unit of Ada code. Usually this statement will be a call to some routine, but it can be
more. Some possible values are:

" "Flag := SomeFunction;"
" "Some-Procedure (Argl, Arg2);"
" "Var := 0; Other-Procedure; OtherVar := Something;"

Any variables appearing in such a string must be global and must be declared before the

bound key is struck. This hypothetical routine, MyProcedure, in general, is just like any
other routine written in Ace. However, its 1/0 must be done according to the guidelines
given below.

* 8.2.1.2 Intermixing I/O with Key-Bindings Routines. If the user wishes to include
screen or keyboard oriented I/0, they may use TextLIo. However, the programmer must
keep in mind that their procedure will be executed within the internal environment of Ace
which has put the terminal in raw mode. Therefore it is necessary to place calls around
the TeztIo routines, to reset the terminal before Text-Io is used, and then to set it back
again before returning to Ace's control. The same is true when using Key-Bindings routines,
which assume that they know what the current line looks like and that the terminal is in
raw mode.

In addition to setting the terminal back to raw mode, the user must always call either
RefreshCurrentLineA ndPrompt or RewiteCurrentLine.A ndPrompt, when entering the
AceCommandLineInput or KeyBindings environment. This routine will restore the screen
so that the active line on the screen looks as it did before the user hit the key that caused
My.Procedure to be invoked, (or restore a different value as the current line of input if the
programmer prefers). The programmer should be certain that the cursor is positioned at
the beginning of a line before making the call to restore the line. This is because, currently,
there is no way for the Key-Bindings routines to clear away output they didn't write, so you
must be at the beginning of a line in order to ensure that the restored line looks ok. In a
later release this requirement should go away.

The prohibition against making calls to ert-lo routines, while in the cultural context of
\ce or the KcyBindings package, also applies in reverse: KeyBindings routines (other than
Terminal.Set) should not be called in the Text-Io (cooked) environment. This is because

Page 121

29 October 1990 STARS-RC-00980/001 /00

. those routines assume they know how the active line on the screen looks. To summarize.
calls to Text-lo routines can be intermingled with KIyBindings calls just so long as:

" you are in cooked mode when making a TextLIo call

" you are in raw mode when returning to Ace or when making a Key-Bindings call

" if the terminal is reset to cooked mode, then a call to restore the active line on the
screen must be made, after TerminalSet, and before any Key-Bindings call or return
to Ace

When control enters IMy-Procedure, the terminal will be in raw (set) mode. And after a call to
any of the four Refresh/Rewrite procedures, the terminal will be in raw mode. To explicitly
flip from one mode to the other, call Terminal-Set to gain the AceCommandLineInput or
Key-Bindings environment, or TerminaLReset to prepare for calls to TextIo routines.

Of course if MyProcedure doesn't have any screen output or keyboard input then the terminal
will stay set and KeyBindings routines can be freely interspersed with other Ada code. All
the KeyBindings routines listed in the Bindings section can be used in Ify-Procedure, with
the single exception of InterpretString.

. 8.2.2 An Example for Interpret-String

Here is an example of what My-Procedure might look like:

with TextIo;

with AceIntegerIo;
with Strings;
with Key-Bindings; use Key-Bindings;

-- This procedure copies the input typed so far,
-- a user supplied number of times

procedure My-Procedure is
Line : String (1., 1024);
Length : Natural;
The-Integer : Integer ;- 1;
I : Integer :- 1;

begin
DoGetCurrentLine (Line, Length);
DoKillLine;
TerminalReset; -- go to cooked mode
TextIo.Put ("How many times should this pattern be repeated?");

Page 122

29 October 1990 STARS-RC-00980/001/00

AceIntegerIo.Get (The-Integer);
TerminalSet; -- go to raw

-- the carriage return the user ended the integer with

-- prepares us for the insert
while I <= The-Integer loop

DoInsertString (Strings.Slice(Line, 1, Length));

I := I+ 1;
end loop;

end MyProcedure;

9 Supported Ada Features

The command language of ACE is Ada. This section describes the language features of
Ada that are currently supported by the ACE prototype. (Section 5 described the pragmas
supported by ACE.) The Ada features implemented in the prototype version of ACE are
those that are necessary to make use of Ada as a command language, those that are needed
to provide a basis for the construction of abstract data types within the environment, and
those that together form a logical collection of Ada functionality. This feature set includes
packages, subprograms, subprogram derivation and overload resolution, assignment, condi-
tional, iteration, termination, and return statments, and scalar types with type and subtype
declarations.

The following list summarizes the Ada language features currently implemented in ACE.
The numbering scheme corresponds to that of the Ada Reference Manual. Qualifications
on the level of support, if any, are given following the appropriate section. Support is not
provided for those sections of the reference manual that are omitted from this list.

As development is continuing for ACE, an explicit "Not Yet Supported" message is produced
for those Ada features that are still being developed. However, a range of possibilities exist for
the outcome when an incomplete feature of Ada within ACE is invoked. These possibilities
include the generation of an Internal Error message, no error message or result due to the
fact that the statement is parsed successfully and/or discarded, and successful execution of
some portion of a partially implemented Ada feature. The following list should be consulted
to verify that only supported features of Ada have been exercised.

Ada Language Reference Manual Sections
supported by ACE

Page 123

29 October 1990 STARS-RC-00980/001/00

. 2. Lexical Elements

2.1 Character Set

2.2 Lexical Elements, Separators, & Delimiters

2.3 Identifiers

2.4 Numeric Literals

2.4.1 Decimal Literals

2.4.2 Based Literals

2.5 Character Literals

Partial support for Character Literals is provided

2.6 String Literals

Partial support for String Literals is provided

. 2.7 Comments

2.8 Pragmas

2.9 Reserved Words

3. Declarations & Types

3.1 Declarations

3.2 Objects & Named Numbers

3.2.1 Object Declarations

3.3 Types & Subtypes

3.3.1 Type Declarations

No support for incomplete-type-definition and private-type.definition delcarations

3.3.2 Subtype Declarations

0 No support for constinints

Page 121

29 October 1990 STARS-RC-00980/001 /00

. 3.4 Derived Types

No support for colsltrtit portion of .subtype-indication

3.5.1 Enumeration Types

No support for character-literal as enumeration literal
No support for overloaded enumeration literals

3.5.3 Boolean Types

3.5.4 Integer Types

Support only for predefined Integer

3.6.3 The Type String

Not supported as a one-dimensional array;
Temporarily implemented as a developer's string type--AceString

3.9 Declarative Parts

4. Names & Expressions

4.1 Names

4.2 Literals

4.4 Expressions

4.5 Operators & Expression Evaluation

4.5.1 Logical Operators & Short-circuit Control Forms

Short-circuit control forms (and then, or else) not yet supported

4.5.2 Relational Operators & Membership Tests

.Memibership tests (in) not vet stip)ported

Page 125

29 October 1990 STARS-RC-00980/001/00

4.5.3 Binary Adding Operators

4.5.4 Unary Adding Operators

4.5.5 Multiplying Operators

4.5.6 Highest Precedence Operators

4.6 Type Conversions

4.9 Static Expressions & Static Subtypes

4.10 Universal Expressions

Partial support for universal-integer

5. Statements

5.1 Simple & Compound Statements - Sequence of Statements

No support for statement label

. 5.2 Assignment Statement

5.3 If Statement

5.4 Case Statement

others, list of choices not yet supported

5.5 Loop Statement

for iteration scheme not yet supported
loop simple name not yet supported

5.7 Exit Statement

loop name not yet supported

Page 126

29 October 1990 STARS-RC-00980/001/O0

. 5.8 Return Statement

6. Subprograms

6.1 Subprogram Declarations

6.2 Formal Parameter Modes

6.3 Subprogram Bodies

Exceptions not yet supported, except for exception declarations

6.3.1 Conformance Rules

Legal variations in subprogram conformance not yet supported (numeric literals, simple vs.
expanded name, string literal as operator symbol)

6.4 Subprogram Calls

Named association not yet supported

O 6.4.1 Parameter Associations

6.5 Function Subprograms

6.6 Parameter & Result Type Profile - Overloading of Subprograms

Complete overload resolution not yet supported (e.g. overloaded subprogram where an actual
parameter is also overloaded, overloaded functions that differ only in return type)

6.7 Overloading of Operators

Check that proper number of parameters are given for the overloaded operator symbol used
as a function designator not yet supported

l'age 127

29 October 1990 STARS-RC-00980/00 1/00

* 7. Packages

7.1 Package Structure

7.2 Package Specifications & Declarations

7.3 Package Bodies

exception part of a package not yet supported

8. Visibility Rules

Partial support of expanded names is provided

8.1 Declarative Region

Declarative blocks are partially supported

8.2 Scope of Declarations

. 8.3 Visibility

8.4 Use Clauses

8.6 The Package Standard

8.7 The Context of Overload Resolution

Partial support for overload resolution is provided

Patit 128

29 October 1990 STARS-RC-00980/001/00

10. Program Structure & Compilation Issues

10.1 Compilation Units - Library Units

10.3 Order of Compilation

10.5 Elaboration of Library Units

10.6 Program Optimization

14. Input-Output

14.1 External Files and File Objects

14.3 Text Input-Output

14.3.1 File Management

14.3.2 Default Input and Output Files

14.3.3 Specification of Line and Page Lengths

14.3.4 Operations on Columns, Lines, and Pages

. 14.3.5 Get and Put Procedures

14.3.6 Input-Output of Characters and Strings

14.3.7 Input-Output for Integer Types

Support for the predefined type Integer provided by the ACE package AceIntegerIo

14.3.10 Specification of the Package TextIO

14.4 Exceptions in Input-Output

Exceptions not supported, except for expection declarations

14.5 Specification of the Package IOExceptions

Exceptions not supported, except for expection declarations

Page 129

29 October 1990 STARS-RC-00980/001 /00

10 Examples

This section provides so me condeiised examples of interactive sessions with ACE. -Fhese
examples include illustrations of Ada being used as an interactive command language, ma-
nipulating Ada subprograms and packages as data, and interfacing with the underlying host
operating system. The use of the abstract data types described in previous sections, along
with the Ada statements supported by this ACE prototype, are illustrated in these examples.

10.1 Interactive Ada Example

% ACE
Ada Command Environment; Revision: 6.0 Date: 89/12/14 14:51:30

Processing environment definition...
ACE>
ACE> -- EXAMPLE INTERACTIVE ACE SESSION

ACE> -- This is a simple example of the development of Ada subprograms
ACE> -- that shows the use of ACE for interactive development.
ACE> -- This example makes use of the packages TextIO and
ACE> -- ACEIntegerIO of the ACE environment. It also shows examples
ACE> -- of declarations, procedures, functions, overload resolution,
ACE> -- the if statement, loop statement, return statement, assignment
ACE> -- statement, use statement and exit statement, and comments.
ACE>
ACE> use text-io;
ACE> use ace-integer-io;
ACE>
ACE> -- Develop a Put-Line routine for Integers

ACE> procedure Put-Line (Item : in Integer) is

I begin
I Put (Item);
I NewLine;

end Put-Line;
ACE>
ACE> i : integer;
ACE> i : 100;
ACE> Put-Line (i);

100
ACE>

ACE>
ACE> -- Develop a simple Put routine for Booleans

ACE> procedure Put (Item : in Boolean) is

II begin
I Put (Boolean'Image(item));

Page 130

29 October 1990 STARS-RC-00980/001/00

I end Put;
ACE>
ACE> b : boolean := false;

ACE> Put (b); New-Line;

FALSE
ACE>
ACE> -- Develop a routine to determine whether a number is prime

ACE> function Is-Prime (n : in integer) return Boolean is

local : integer := 3;

begin
if n rem 2 = 0 then

return False;

end if;

while local ** 2 <= n loop
if n rem local = 0 then

return False;
end if;

local := local + 2;

end loop;

return True;

O end IsPrime;
ACE>
ACE> put (Is_Prime (7)); NewLine;

TRUE
ACE> put (IsPrime (143)); New-Line;

FALSE
ACE>
ACE>
ACE> exit ace;

Exiting ACE

10.2 Manipulating Ada Components

% ACE
Ada Command Environment; Revision: 6.0 Date: 89/12/14 14:51:30

Processing environment definition...

ACE>

ACE> -- Example of iterative development of an Ada subprogram

ACE> -- followed by incorporation of the subprogram into a. ACE> -- package that is stored to an external file.

ACE>

Page 1:31

29 October 1990 STARS-RC-00980/001/00

. ACE> -- Develop a Factorial routine
ACE> function Fact (n : in integer) return integer is

I begin
if n = 0 then

return 1;
else

>-- > ERROR: will type + rather than * <<<
return n + fact (n-i);

end if;
end;

ACE>
ACE>
ACE> put (fact (4));
Error: could not find a valid subprogram specification: put
ACE>
ACE> -- The above error is due to the fact that we have not yet
ACE> -- acquired direct visibility of the Put operation from the
ACE> -- package AceIntegerIo within TextIo.

ACE>
ACE> -- Use these packages

ACE> use textio;
ACE> use aceintegerio;
ACE>
ACE> put (fact (4)); New-Line;

Ii

ACE>
ACE> -- Fact produces an erroneous result.

ACE> -- Invoke the edit and re-interpret ADT to fix the
ACE> -- erroneous statement in the Fact function.

ACE>
ACE> edit-and-interpret ("fact");
Spawning a window for editing /sun/ace/src/fact.tmp

-- At this point, the editor is brought up and the
-- "+" is changed to a "*". The changes are written

-- out and the editor is terminated.

ACE> -- Display the revised Fact function

ACE> list ("fact", both);
function fact (n : in integer) return integer;
-- Form => " 819"

function fact (n : in integer) return integer is
-- Form => " 819"

begin

Page 132

29 October 1990 STARS-RC-00980/001 /00

if (n = 0) then
return 1;

else
return (n * fact((n - 1)));

end if;

end fact;

ACE> Put (Fact (4)); New-Line;
24

ACE>
ACE> Put (Fact (5)); NewLine;

120
ACE>
ACE> -- Fact routine is now working.
ACE> -- Define a package into which Fact will be placed.
ACE>
ACE> package Math-Routines is

I end;
ACE>
ACE>
ACE> -- Using the Program-Unit abstract data types and operations,. ACE> -- define a package object and a subprogram object.
ACE>
ACE> package-object package-type;
ACE> function-object subprogram-type;
ACE>
ACE> -- Associate the package object with Math-Routines;
ACE> -- associate the function object with Fact-
ACE>
ACE> open (package-object, out-prog-unit, "MathRoutines");

ACE> open (function-object, in-progunit, "Fact");
ACE>
ACE> -- Place the function object into the package object,
ACE> -- with the implementation of the function being placed
ACE> -- in the body of the package and visible in the package
ACE> -- specification.
ACE>

ACE> put (function-object, package-object, in-body, visible);
ACE>
ACE> -- Display the package object, both spec and body
ACE>
ACE> list (package-object, both);
package math-routines is
-- Form -> " 825"

Page 133

29 October 1990 STARS-RC-00980/001/00

function fact (n : in integer) return integer;

end math-routines;
package body math-routines is

function fact (n : in integer) return integer is

begin

if (n = 0) then
return 1;

else
return (n * fact((n - 1)));

end if;

end fact;

end math-routines;
ACE>
ACE> -- Store the Math-Routines package in an external file
ACE>
ACE> put-file (Name(packageobject), "", "math.package.ada");

ACE>
ACE> -- End of ACE session

ACE> exit ace;

10.3 Interfacing with Host O/S (UNIX)

% ACE
Ada Command Environment; Revision: 6.0 Date: 89/12/14 14:51:30

Processing environment definition...
ACE> -- Example of interacting with external Ada compilation
ACE> -- system and the underlying host operating system
ACE>
ACE> -- Define a program text object
ACE> program-object : program-text;

ACE>
ACE> -- List out the contents of the current working directory
ACE> list;

Test-Cases requirements
a.out math-package.ada
ada.lib test-data.find.primes.a
ACE>

Page 13-1

29 October 1990 STARS-RC-00980/001/00

. ACE> -- Associate the program text object with the file

ACE> -- find-primes.a

ACE>

ACE> open (program-object, in-object, "find-primes.a");

ACE>
ACE> -- List out the contents of the program-object

ACE>
ACE> list (program-object):

with TextIo;
procedure Find-Primes is

function Is-Prime (n : in integer) return Boolean is

local : integer := 3;

begin
if n rem 2 = 0 then

return False;
end if;

while local ** 2 <= n loop

if n rem local = 0 then

return False;
end if;
local := local + 2;

end loop;

return True;
end Is-Prime;

package IntIo is new TextIo.IntegerIo (Integer);

begin
Text-lo.PutLine ("PRIME NUMBERS FROM 2 64");

for i in 2 .. 64 loop

if Is-Prime (i) then

IntIo.Put (i);
TextIo.PutLine (" is a prime number");

end if;
end loop;

end Find-Primes;
ACE>

ACE> -- Submit the program text object to the external Ada

ACE> -- batch compilation system (Verdix VADS), where

ACE> -- Find-Primes is the name of the main compilation unit. ACE> -- and the executable image will be stored into the file

ACE> . "find-primes.exe"

Page 135

29 October 1990 STARS- RC-009S0/00 1/00

ACE>
ACE> compile (program-object, "FindPrimes", "find-primes.exe");

Compiling -M Find-Primes -o findprimes.exe /johndoe/find-primes.a

ACE>
ACE> -- Define a program binary object and execute it

ACE>
ACE> load-image : program-binary;

ACE> open (load-image, in-object, "findprimes.exe");

ACE>
ACE> execute (load-image);

PRIME NUMBERS FROM 2 .. 64
3 is a prime number

5 is a prime number

7 is a prime number

11 is a prime number
13 is a prime number
17 is a prime number
19 is a prime number
23 is a prime number
29 is a prime number

31 is a prime number
37 is a prime number
41 is a prime number

43 is a prime number

47 is a prime number

53 is a prime number

59 is a prime number
61 is a prime number

ACE>

ACE> -- End of ACE session

ACE> exit ace;

Exiting ACE

Page 1:36

. Index
pkg. def. 25 Binary Files 16

pkg. def. 25 Binary Objects 19, 47
"+" pkg. def. 25, 30 bindings.ace 23

-" pkg. def. 25, 30 Break pkg. def. 39

"/" pkg. def. 25 built-in 17
"/=" pkg. def. 24-25, 28 Cais Routines 19, 23, 59

" pkg. def. 24-25, 28, 30 CAIS-A 59

"i" pkg. def. 24-25, 28, 30 cais.ace 23
"" pkg. def. 24-25, 28 CaisNodeKinds 59
"" pkg. def. 24-25, 28, 30 Cais-RelationshipiKinds 59
Z=" pkg. def. 24-25, 28, 30 Calendar 18, 30

"abs" pkg. def. 25 CallbackProcedure-Pointer pkg. def. 75
"and" pkg. def. 24 Character lo 33

"mod" pkg. def. 25 Check-Style pkg. def. 61
"not" pkg. def. 24 Clear-Break pkg. def. 39
"or" pkg. def. 24 Clear-Window pkg. def. 56
"rem" pkg. def. 25 Clock pkg. def. 30, 6:3
"xor" pkg. def. 24 Close pkg. def. :32, 42, 47
"&" pkg. def. 28 Close 14

abstract data types (ADT) 2-3, 8, 12-17, Col pkg. def. 33
23, 109 Column control 32

abstract data types and a command lan- command applicability 15

guage 13 command environmemt 13

Ace Adt 37 command extensibility 16

Ace Integer lo 33 command language 1, 15-16, 23, 123
Ace User X Window System 19, 57 command language commands 20, 36
Ace X Window System 19. 56 command line editing 23

ACE 4 command line historv 23

ace-ada 4 command specialization 15

Ace-Adt 19 command structure 14
ace-edit 4 commands.ace 23

AceJntegerIo 18 compilation units 2

Aceio 18 Compile pkg. def. 37, 45

Ace-Standard 18 complete command 4
ActionProcedurePointer pkg. def. 75 consistency 14

ActionProcedurePointer 114 consistent objects and operations 15

Ada Iangu ag st.nd..d 1,, Continue pkg. def. 39

Ada-oriented environment 18 Continue-Prompt 4, 7
ADT Philosophy 12 Copy pkg. def. 41
AppendToCaisArg-list pkg. def. 60 Copy 16

applications 12 CountFeatures pkg. def. 61. Ascent pkg. def. 64 Count-Statements pkg. def. 61

ASCII 18 Cpu Time 20, 23, 63

137

29 October 1990 STARS-RC-00980/001/00

. cputime.ace 23 DoGotoEndOfHistorv pkg. def. 54
Create pkg. def. 32. 12. 47. 57. 72. 112 DoGotoEndOfLine pkg. def. 54
create ACE 5 DoGotoStart _OfHistory pkg. def. 51
Create 1-4-16 DoiHistory-Back pkg. def. 54
CreateCaisArgumentList pkg. def. 60 DoHistoryYorward pkg. def. 54
Create-Window pkg. def. 56 DoInsert.Ascii pkg. def. 54
Current.AceInput pkg. def. 35 DoInsertString pkg. def. 54
Current.AceInput 3 DodnterpretString pkg. def. 54
CurrentAce-Output pkg. def. 35 DoiKill-Line pkg. def. 54
Current-Directory pkg. def. 43 Do-Move-Left pkg. def. 54
Current.Input pkg. def- 32 DoMove.Right pkg. def. 54
Current-Output pkg. def. 32 DoQuotedInsert pkg. def. 54
data abstraction 12-13 DoRefresh-Current.Line pkg. def. 54
Day pkg. def. 30 DoRefreshCurrentLineAndPrompt pkg.
Debugger 7-8, 19, 39 def. 54
declarations 2 DoRewriteCurrent-Line pkg. def. 54
Default Io files 32 DoRewriteCurrentLineAndPrompt pkg.
Delete pkg. def. 32, 37-38, 47-48, 57 def. 54
Delete 14, 16 DoSelfInsert pkg. def. 54
Delete-File pkg. def. 41 DoSetiHistoryLimit pkg. def. 54
derived subprograms 15 DoShow.History pkg. def. 54

* Descent pkg. def. 64 DoShowHistoryLimit pkg. def. 54
Destroy-Window pkg. def. 56 Draw-Dashed.-Line pkg. def. 58
Deuse pkg. def. 38, 48 Draw-Line pkg. def. 58
development approach 13 Draw-Rectangle pkg. def. 58
Diana-Browser pkg. def. 61 DrawRectangleBuiltin pkg. def. 58
DianaCleanlib pkg. def. 61 Draw-Text pkg. def. 58
DianaCreate-PredefinedEnv pkg. def. 62 dynamic 2
DianaFrontEnd pkg. def. 61 Edit pkg. def. 44
DianaNlake-PredefinedEnv pkg. clef. 62 EditAndInterpret pkg. def. 4.5
DianaMklib pkg. def. 61 Edit-File pkg. def. 44
DianaRmlib pkg. def. 61 EndOfFile pkg. def. 32
Difference pkg. def. 63 EndOfLine pkg. def. 32
Directory Files 16 EndOf-Page pkg. def. 32
Directory Objects 19, 42 environment customize and tailor 12
Display pkg. def. 39 environment initialization 4
DisplayCurrent.Statement pkg. def. 39 environment 2
Display-Next pkg. def. 39 error messages 123
Display-Previous pkg. def. 39 evolution 16
DoBeg-Of-Line pkg. def. 54 Example of Interactive Ada 130
Do-Delete pkg. def. 54 Example of Interfacing with Host OS 131
DoDeleteThisChar pkg. def. 54 Example of Manipulatind Ada Components
DoGetCurrentCharacter pkg. def. 55 131

* Do-etCurrent.Column pkg. def. 55 Example of Xt 117
DoGetCurrentLLine pkg. def. 54 Example of multiple line input 4

Page 138

29 October 1990 STARS-RC-00980/001/00

example of nesting commands 15 Invoke-Process pkg. def. 59
example of For-m parameters and overload- lo Exceptions 1s. 29

ing 9 IsOpen pkg. def. :32. 43. -IS
example startup.ace file 10 Key Bindings 19, 23, 51, 119
Execute pkg. def. 47 Length pkg. def. 36
execute ACE 5 library files 8, 14, 23
execution of ACE 4 Line Counter 19
existing environments 8 Line control 32
Exists pkg. def. 41 Line length 32
exit Ace 3, 111 Line pkg. def. 33
exit Ace-Level 3 Line.Length pkg. def. 32
exit Ace.Main 3 List Mode 35
exit 3 List pkg. def. 39, 43-44, 49, 51
File Management 32 List 9
file object 14 List_Breakpoints pkg. def. 39
file system 7, 16, 19, 41 List-File pkg. def. 44
Form parameter 8, 14 ListSymbolTable pkg. def. 39
Form pkg. def. 32, 43, 48 locality 12-13
general file 16 logical grouping 14
Get pkg. def. 33, 35, 72-73, 112 Low Level lo 18, 30
Get-File pkg. def. 44 Main-Prompt 4, 7
Get-Line pkg. def. 33 Make Bindings 119
Help pkg. def. 50 Make-Binding pkg. def. 52
help 7, 19, 50 Make..XtString pkg. def. 67
hierarchical command environment 16 Manipulate Scope 19, 38
home directory 9 Measure__MccabeComplexity pkg. def. 61
Home.Directory pkg. def. 43 Method of Execution 35
Host Os 19, 38 Mode pkg. def. 32, 48
Host pkg. def. 38 modularity 12-13
host environment support tools 17 Month pkg. def. 30
host operating system 7, 17, 19, 38 Name pkg. def. 32, 43, 48
Hp Widgets 20, 84, 109 nested subprograms and packages 14
incomplete command 4 New-Line pkg. def. 32
information hiding 12-13 New-Page pkg. def. 32
inheritance 16 NullCaddrT pkg. def. 66
input and output 3, 14 Null-Widget pkg. def. 66
interactive 1-2 NullWidgetClass pkg. def. 66
interfaces 16 NullXrmOptionList pkg. def. 67
Interlisp 1 Null.XtArg.List pkg. def. 67
Interpret pkg. def. 37 Object Lister 19, 50
Interpret 9 object-oriented design 13
interpreted 7, 9, 16-17 Objects 2-3, 5, 18, 24
Interpret-File pkg. def. 37 observe.window.icn 5. Interpret-File 12 Off 5-7
Intrinsics 20, 66 On 5-7

Page 139

29 October 1990 STARS-RC-00980/001 /00

* Open p~kg. def. :32. 412. 47 Set-Aceinput 3
Open S. 14 Set-Ace-Output pkg. def. 33
Operationis 2-3. 1:3 Set-Break pkg. def. 39

overloaded suprograms uniql identiie Set-Col pkg. def. 32

8 Se-C urrent-Cais -Node pkg. def. 59
overloading 15 Set-Directory pkg. def. 43

package ADT 8 Setinput pkg. def. .32
packages 13 Set-Line pkg. def. 33
Page control 32 Set-ine-Length pkg. def. 32
Page length 32 Set-Output pkg. def. 32

Page pkg. def. 33 Set-Page-Length pkg. def. 32
Page-Length pkg. def. 32 Set-Up pkg. def. 62
pragma, Continue-Prompt 7 Skip-Line pkg. def. 32
pragma. Debug 6 Skip-Page pkg. def. 32

pragma, Dump 6 Slice pkg. def. 36
pragma, Echo 6 Smalitalk 1
pragma, List Statement-Numbers 6 software engineering 12

pragma Main-Prompt 7 Spawn-Process pkg. def. 39
pragna, Observe 5 Split pkg. def. 30
pragma Trace 6 standard packages 23

pragma, 3 Standard 18, 23-24
* pramga Builtin 7 standard's paradigm 14

pre-compiled 7 standard.ace 23
Prefix-o-Cais-.Arg-List pkg. def. 60 Standard-Aceinput pkg. def. 35

Print pkg. def. 44 Standard-.Aceinput 3
Program Objects 19, 45 Standard-Ace-.Output pkg. def. 35
Program Text Objects 19, 46 Standard-Ace-.Output 3
Program Units 19, 47 Standardinput pkg. def. 32

Put pkg. def. 33, 35, 49, 72. 112 Standard-Output pkg. def. :39
PnitCais-ile-Node-HostN\aime pkg. def. Stars Tools 19. 61

60 startup.ace 4, 9, 18
Put-Current-Cais.Node pkg. def. 59 StartLXt pkg. def. 111

Put-C urrent-Directory pkg. def. 43 statement database 37
Put-File pkg. def. 44 statement number 8
Put-Line pkg. def. 33 Statements 2, 5
Put-Time pkg. def. 63 Step pkg. def. 39
rapid prototyping 8 String lo 33
Rename pkg. def. 41 Strings 18, 28, 36
Rename 16 strong typing 15
Renamed Xlib Types 20, 65 subprogram ADT 8
Rteset pkg. def. 32,.142, 57 Subprograms 5, 13
runtime efficiency 17 Sun workstation 5

* Seconds pkg. def. 30 system decomposition 13
session 3 System 18
SeL-Ace-Input pkg. def. 35 system- dependent 8

Pa1ge 1410

29 October 1990 STARS-RC-00980/001/00

technology 16 XtSetArg pkg. def. 68-72, 77-78. 96-107.
TemnporaryName pkg. (lef. 41 109
TestCaseGenerator pkg. def. 62 XtSet-Arg 112
Test-Comparator pkg. def. 62 XtSetValues pkg. def. 73
Test-ProceduresGenerator pkg. def. 62 Xw.ArrowWidgetClass pkg. def. 92
TestResultsAnalyzer pkg. def. 62 XwAsciiSinkCreate pkg. def. 95
TestLUpdater pkg. def. 62 XwBulletinBoardWidgetClass pkg. def.
Text Files 16 92
Text Objects 19, 44 XwBulletin.Widget-Class pkg. def. 92
Text.Jo 3, 8, 31 XwButton-WidgetClass pkg. def. 92
Text-Width pkg. def. 64 XwCascadeWidget-Class pkg. def. 92
Time-Of pkg. def. 30 XwDiskSourceCreate pkg. def. 95
traditional view 7 XwDiskSourceDestroy pkg. def. 95
Undelete pkg. def. 38 Xw.FormWidget-Class pkg. def. 92
uniformity 14 XwImageEdit-Widget_-Class pkg. def. 92
visibility 2 XwListrow-Col-Widget-Class pkg. def. 92
Widget Package 20, 67 XwListWidgetClass pkg. def. 92
widget 109 Xw vManagerWidget-Class pkg. def. 92
Window Draw Routines 19, 58 XwMenubuttonWidgetClass pkg. def. 92
Window Objects 14, 19. 56, 109 XwlenumgrWidgetClass pkg. def. 92
window environment 5 XwMenupaneWidgetClass pkg. def. 92
windowing 8, 19, 23, 56 Xw_.Menu-utton-Widget-Class pkg. def.
windows.ace 23 92
X Window System 5 XwMenu.Sep.-Widget-Class pkg. def. 92
X Windows 20, 23, 64 XwMoveFocus pkg. def. 95
Xt Stringdefs 20 XwPanelWidgetClass pkg. def. 92
Xt toolkit 63, 109 XwPopupmgrWidget-Class pkg. def. 92
Xt.AddActions pkg. def. 75 XwPopupMgrWidget-Class pkg. def. 92
XtAdd-Lctions 114 XwPrimitiveWidgetClass pkg. def. 92
XtAdd-Callback pkg. def. 73-74. 11:3 XwPushButtonWidget-Class pkg. def.
XtAppNext-Event pkg. def. 75 92
XtArgList 114 XwRow-ColWidgetClass pkg. def. 92
XtAugmentTranslations pkg. def. 75 XwSashWidgetClass pkg. def. 92
XtCreateManagedWidget pkg. def. 74 Xw.ScrollbarWidget-Class pkg. def. 92
XtCreate.Widget pkg. def. 74 XwScrolledWindowWidgetClass pkg. def.
XtDefault.AppContext pkg. def. 75 92
XtDestroyWidget pkg. def. 74 Xw-ScrollBarWidget-Class pkg. def. 92
XtDispatchEvent pkg. def. 67, 75 XwSrasterWidgetClass pkg. def. 93
XtGetValue pkg. def. 73 XwStatictex tWidgetClass pkg. def. 93
XtInitialize pkg. def. 67, 110 XwStaticRasterWidgetClass pkg. def.
XtMainLoop pkg. def. 7.1 93
XtOverrideTranslations pkg. def. 75 XwStaticTextWidgetClass pkg. def. 93
XtParseTranslationTable pkg. def. 75 XwStringSourceCreate pkg. def. 95
XtRealizeWidget pkg. def. 74 XwStringSourceDestroy pkg. def. 95

Xw..SwindowWidget-Class pkg. def. 93

Page IIl

29 October 1990 STARS-RC-00980/001/00

. XwTextedit_\Vidget_Class pkg. def. 9:3
XwText Clear_-Buffer pIkg. dlef. 93
XwTextCopyBuffer pkg. def. 93
XwTextCopy.Selection pkg. def. 93
XwText-EditWidgetClass pkg. def. 93
XwTextGet-InsertPos pkg. def. 95
XwTextGet -LastPos pkg. def. 94
XwTextGet_-SelectionPos pkg. def. 94
XwTextInsert pkg. def. 94
XwTextReadSubString pkg. def. 94
XwTextiRedraw pkg. def. 94
XwTextReplace pkg. def. 94
XwTextSetInsertPos pkg. def. 95
XwText_-Set_-Selection pkg. def. 94
XwTextSet-Source pkg. def. 95
Xw_-Text_Unset-Selection pkg. def. 94
XwTextUpdate pkg. def. 94
XwTitlebarWidgetClass pkg. def. 93
XwTitleBarWidgetClass pkg. def. 93
X wvToggleWidget-Class pkg. def. 93
Xw_Valuator_Widgc,_Class pkg. def. 9:3
XwWorkSpaceWidgetClass pkg. def. 93
XTextWidth pkg. def. 75
Year pkg. def. 30

Page t.12

