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For a dispersive, non-magnetic, electrically conducting medium, Maxwell's

equations for the propagation of electromagnetic waves are given in terms of

dimensionless variables by

VxE = - t VxH-D , (1)

D - (E +P) (2)

The vectors D(x,t), E(x,t), H(x,t) and P(x,t) are proportional to the electric

displacement, the electric field strength, the magnetic field strength, and

the polarization vector, respectively. The constitutive properties of the

medium, which are experimentally determined give the polarization vector in

(2) as a linear functional of E. A general expression is given by the

differential constitutive law,

N
P(x,t) - Z P.(x t) (3a)

-- j=l- -

r anP s amE
Z _ - Z 0 mj j = 1,2 .... N (3b)

n nj atn m-O atm

The specified constitutive coefficients, ani and ml m = 01, ... s,

n - 0,1,..., r and j = 1,2,...,N are experimentally determined.

More generally, we express P as a linear functional of E by the heredity -

integral, 
Z GO

P (x, t) E E(x, t) f tE(x,t')c(t-t')dt' ,(3)

where the "memory" function, c(r), which is experimentally determined, 0

vanishes for r < 0. 
0

We have first analyzed the propagation of finite jump discontinuous

solutions of the system (1)-(3) using both the method of weak solutions 
(l,2 10n/

ty Cdes

and progressing wave expansions [1,3] for the Debye (4] model of the , Cdes

~ Speolal
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dispersive medium. This model is believed to be a good approximation of the

dispersive properties of biological materials. Thus, each P. satisfies a

first order ordinary differential equation

Se. + p - jE j -,2 N (4)at -j Jj j.. .

The "constitutive" coefficients al,a 2 1 .... an and fl'l2 .... )n are to be

determined experimentally, or from quantum mechanical calculations. Then,

rt -ca (t-t')
P. - fE(x t')p ject Jttl dr' (5)

N -Q.(t-t')

and P - ftE(x,t) Z f.e J dt', so that the memory function for the Debye
- -0 j-l J

model is given by the linear combination of exponentially decaying functions,

N -ar
e - jZ1 68

j-l J

The progressing wave expansion for the solution of (1),(2) and (5) is a

representation in the form

E- Z fm[O(x,t)]Em(x,t) , H - Z fm[O(x,t)]Hm(x,t)
m-0 m-O

(6)

P. -Z f [O(x,t)]pm(x,t)
-3 m-0 m -

where f0 (0) is an arbitrary function of the single variable O(x,t) and

flff2 ..... are required to satisfy,

- m-,2 (7)fm M-1

Then we insert (6) into (1), (2) and (4) and use (7) for the derivatives of

fm By equating to zero the coefficient of each function fm(0), we obtain a

m m m
sequence of equations to determine 0, E , H and P . For example, if we set
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(x,t) - t - (x), then 0 satisfies the eikonal equation of geometrical

optics,

2IV2 1 (8)

0 1
and the coefficients E , E , etc., satisfy transport equations, which reduce

to first order partial differential equations along the characteristics of

(8). Solving the transport equations explicitly, shows that E0 and H0 decay

exponentially along the rays.

The choice of the waveform f0 (0) is determined by the type of

discontinuity to be analyzed, and the form of the pulse. For example, to

recover the results of our previous analysis of the propagation of jump

discontinuities, we select f0 to be the Heaviside step function i.e.

f = H(t-V)

For the Lorentz model [41 of dispersion the polarization vector is given

by (3a) where the P. now satisfy-J

2a P. ap.
.t 2 + a 3 + 7j P. E , (11)

and the constitutive coefficients aj, Ij and 6 are to be experimentally

determined. By solving the transport equations for the amplitude of the

progressing wave expansion of Maxwell's equations using the Lorentz model, we

find that the amplitudes do not decay exponentially along the ray. Thus, we

are now studying more general models of the dispersive media, e.g. (3), to

determine the qualitative features for which the amplitudes do, or do not

decay exponentially. Preliminary results suggest that a classification of

dispersive media is obtained depending on the relative orders of the

differential operators on the right and left sides of (3.3b).
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Finally, using the progressing wave expansion, we have determined the

scattering of pulses from dispersive half spaces and from dispersive targets.

A paper entitled "Progressing Wave Expansions for Temporally Dispersive

Electromagnetic Waves and the Classification of Dispersive Media" is currently

in preparation.
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