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I Chapter 1

INTRODUCTIONI
* 1.1 Objective

This study is concerned with the processing of radar signals using higher

order spectra. The purpose of radar signal processing, in general, is to

extract useful information about target scattering mechanisms. Such infor-

mation may be used for classification of unknown non-cooperative aircraft

I targets.

Two main factors can be used to evaluate any radar signal processing

m technique: 1) the significance of the extracted features in terms of providing

a better understanding of the scattering mechanisms that can lead to more

I accurate description of the target geometry, and 2) the robustness of the

extracted features with respect to noise contamination, changes in target

position, minor changes in the target physical structure and so on.

The goal in this study is to define the advantages and limitations of

the prucessing of radar signals using higher order spectra and to evaluate,

when possible, the utility of such techniques. Although, the final goal

is to detect and classify unknown radar signals, the use of the proposed5 proccssing tehn ih,.in identifying scatteri'g mechanisms in the laboratory

for canonical objects and model targets is also addressed in this study. The

* focus is on the interpretation of the responses that result from higher order

I



spectral processing in terms of the scatterinig features of radar targets.

A radar target recognition system that uses higher order spectral re-

sponses as features is shown in Figure 1.1. The catalog consists of noise-

free backscatter data for several aircraft at different aspect angles. The

"impulse response" and the "bispectral response" of the unknown target

are computed and then compared with those of the catalog targets and the

decision regarding the identity of the unknown taiget is based on the com-

parison. This report is concerned with analyzing the relevant features and

performances of the target recognition system shown in Figure 1.1. The

proposed radar signal processing technique is tested over a wide spectrum

of target models and frequency bands.

Higher order spectral processing of radar signals belongs to the class of

time-domain mechanism extraction techniques [1,2]. Further, this research

effort can be considered as a part of the automatic target recognition prob-

lem. A summary of the numerous contributions to the radar target iden-

tification problem is reported in (75]. These contributions include studies

in the VHF and UHF frequency bands of a variety of scattering objects.

Although, the emphasis in [75] is on time-domain analysis (including po-

larimetric studies), numerous efforts on feature selection and statistical

analysis and evaluation in the frequency-domain are also summarized. Key

results in these investigations relevant to the problem at hand are given

in [75].

1.2 Overview of The Radar Target Recogni-
tion Problem

Automatic recognition of radar targets has been extensvelynlre Stigated

during the last three decades 1,241. In a large number of these investigations,

and i. many current and proposed target identification radar systems, the 3
2



I
I

I

[ Unknown
i I Target

Backscattered
I Signal

I _

Bispectrum

Cawaog Rso

i Extraction
Bispectrum & Selection
& Impulse -

* Response

Featur Classification
I Extracti on i -&Selection

DecisionI
Figure 1.1: Block diagram of proposed target identification system.

I3I
I3



radar operates at stepped frequencies. The recorded data are either cali-

brated scattering coefficients (complex valued) or normalized radar cross-

section (RCS) at each of the stepped frequencies. The radar cross section of

a target is proportional to the magnitude squared of the ratio of received to

incident complex electric (or magnetic) fields and is independent of target

range. In [65], the radar cross-section is defined as

(4rr).(power per unit solid angle scattered towards the receiver)
power per unit area of the incident wave at the target

(1.1)

The recorded radar cross-section data (amplitude and phase), form the

frequency response of a radar target. The impulse response is the inverse

Fourier transform of the measured frequency response if an infinite number

of samples is available. When only band-limited frequency response data

are available, which is always the case in practice, the corresponding time-

domain representation is known as the band limited transient response of

a radar target [1,2,3]. Scattering mechanisms can be determined from the

transient response [1,2].

The primary objective for any radar target recognition system is to re-

liably and efficiently discriminate between classes of targets using features

extracted from the target responses in either the frequency or time do-

main. Classification of radar signals can be entirely based on the raw data

in the frequency domain. Numerous approaches have been followed for the

purpose of classification of unknown radar targets based on the measured

band-limited frequency response [26,37,39,68]. Furthermore, a limited num-

ber of responses at discrete frequencies can be properly selected (feature

selection as in [26]) in order to reduce the dimension of the problem without

sacrificing considerable loss of information about the target.

Classification techniques in the frequency domain are divided into two

categories: parametric and nonparametric. If prior information about the

4
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1 probability of occurence of each target and the likeliho'jd function of the

measured noisy frequency-domain samples are knowu, then it is possible

to use an optimal parametric classification technique that minimizes Bayes

risk [38]. In some cases, classification is based on more than one frequency

sample, thus improving the percentage of correct recognition. The num-

ber of samples may be fixed (Bayesian tests with fixed sample size [181)

or may vary depending on the probability of misclassification (sequential

probability ratio tests [37]). If the parameters of the underlying distribu-

tion of random observations are unknown, then they can be estimated using

* learning techniques [38].

An alternative to estimating the parameters of the underlying distribu-

I tion is to adopt a nonparametric classification approach [38]. Nonparamet-

ric classification is often based on linear discriminant functions [20] or on

I nonlinear functions as in neural network algorithms [25]. Also, in [39], a

language theoretic approach to classification of radar targets is developed

that uses syntactic recognition algorithms where each target is represented

by a finite set of strings. Relational graph matching for the purpose of

recognizing radar signatures is reported in [76].

* Classification of radar signals can also performed in the time domain

using both parametric and nonparametric decision-theoretic techniques.

* Time domain features include transient response (using classical Fourier

algorithms), high resolution spectral processing (using autoregressive mod-

* eling [8]), and transient polarization responses (using both Fourier [75] and

AR modeling [66]. Nonparametric classification of time domain features is

* more common simply because it is difficult to parametrize the underlying

distribution, especially if nonlinear processing (such as autoregressive mod-

I eling) is used. Time-domain features, however, can be associated with the

geometry and orientation of the target and may provide valuable informa-

*5



tion about the scattering mechanisms of the target.

The performance of any target recognition system is dependent on the

type of features used. The decision to adopt a certain set of features is

based on the noise distribution, knowledge of the target azimuth position,

and computation.

1.3 Organization of the Report I
The remainder of this report is organized as follows. A background on some I
of the time-domain mechanism extraction techniques is provided in Chapter

II. Also, a review of some of the existing radar signal processing algorithms

and feature extraction techniques is presented there. A summary of the

key features of higher order spectra (HOS), particularly the bispectrum, is

also given in Chapter II.

Chapter III introduces the birange profile as an additional way of dis-

playing radar signatures. Properties of the birange profile, estimation pro-

cedures, and interpretations in terms of scattering mechanisms are dis-

cussed. Examples of birange profiles for hypothetical targets, canonical

objects and scaled aircraft models are presented. The validity of some of

the assumptions needed to compute the bispectrum is tested. Also, Chap-

ter III includes a study on the effect of unwanted signals (such as noise) on

the birange profile. Finally, a characterization of radar targets in terms of

a finite set of scattering centers and birange responses is presented.

The results reported in Chapter III are based on a classical bispectral es-

timation technique that use a Fourier transform methods. It is known [601

that classical signal processing of band-limited data using Fourier tech-

niques, especially in two dimensions, yields responses with limited resolu-

tion. In Chapter IV, a parametric approach to birange pr.,file is investi-

gated. The focus in Chapter IV is on estimating the birange profile via

6
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autoregressive modeling of radar returns. The advantages and disadvan-

* tages of this approach are discussed.

Some of the statistical properties of the birange profile are discussed

in Chapter V. Further, nonparametric classification of radar targets based

on the birange profile is presented. Different nonparametric classification

* algorithms are compared in terms of performance and efficiency.

I
I
I
I
I
I
I

I
I
I

I
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Chapter 2

BACKGROUND

The research subject to be investigated in the following chapters is con-

cerned with time-domain representations of radar target signatures using

higher order spectral analysis. The scattering data (usually noisy) cor-

responds to calibrated radar returns at uniformly spaced frequencie'. A

general description of the radar system that provides the raw data, and a

description of the nature of the measured data, are given below. Higher

order spectral processing of radar signatures, similar to classical spectral

analysis of radar data, produces signatures in the time domain that are

related to the geometrical shape of the target. A background on spectral

processing of radar signatures with emphasis on time-domain techniques is

also given. Finally, an introduction to bispectral analysis of real-valued sig-

nals, properties, and estimation techniques are summarized in this chapter.

We extend some of the properties of the bispectrum of real-valued signals

to complex-valued signals.

2.1 Stepped Frequency Radar Measurements

The radar data considered in this study (obtained from the Ohio State

University compact range) consist of coherent radar cross section measure-

ments at a number of uniformly stepped frequencies. These measurements

8



I
are in units of dBm 2 , which is the radar cross section of the target, relative

to 1 square meter, and correspond to multipolarization modes HH (hori-

zontally polarized transmit and horizontally polarized receive), HV, VH,

and VV [64]. The data is calibrated so that all system related parameters

are removed. A detailed description of the measurement process and data

* base can be found in [68].

The radar system simulated in this study operates mostly in the 8-

58 MHz frequency range. This range of radar frequencies corresponds to

the case where the size of the target is about 1-10 times the wavelength

I (resonant region). It was shown in [22] that this range of frequencies con-

tains sufficient information about the shape of the target and can be used

efficiently for target identification purposes. Furthermore, the target signa-

tures over this frequency range are relatively robust with respect to changes

in aspect angle. Other frequency ranges (S-band) are also considered in this

* study.

2.1.1 Scattering Regions Suited for This Study

The application of the bispectrum in radar signature analysis studies re-

quires that the target scattering behavior includes significant multiple in-

teractions. This requirement imposes some constraints on the frequency

band to belong to a specific scattering region. A brief description of the

three major scattering regions as a function of frequency is given below.

* The ratio of the target size to the radar operating wavelength can be

used to categorize the scattering properties of the target. The scattering

I region targeted in this study is mainly the resonance region where the

scattered returns include multiple interactions.

* The range of frequencies where the wavelength is large compared to

the object dimensions is denoted by the Rayleigh region. The radar cross-

I9
I
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section in this region is proportional to the square of the frequency. The I
range of frequencies where the size of the target is of the order of a wave-

length is the resonance region.

The range of frequencies where the wavelength is small compared to

target size is the called the high frequency or optical scattering region. The

coupling between currents in different parts of the body is insignificant and

the scattering is more localized in this region. Scattering in this region is

mainly due to specular returns in addition to diffracted returns from edges

and other surface discontinuities.

2.2 Processing of Radar Signals H
Radars transmit short pulses of electromagnetic waves and receive echoes U
from any reflector in the path of the transmitted waves. The range R to the

electromagnetic waves reflector (target) is related to the time At elapsed

between transmission and reception of echo.

cAt (2.1)

where c is the speed of light (the 2 accounts for the two way path of radar

signals). The range resolution 8R, which is the minimum distance for re-

solving two scatterers, when the transient response is obtained using Fourier

techniques, is inversely proportional to bandwidth B.

R=c (2.2)
2B

For stepped frequency radars with an increment Af (distance between fre-

quency samples), an echo is expected within a time interval [-T/2, T/2

where T is given by 1 (
T = -- (2.3)

Af

10



I

I which corresponds, in units of distance, to a range r,r = cT/2. Thus, for

a target of length L, the maximum frequency increment Afma (maximum

I distance between samples in frequency domain) should satisfy

3 Aa (2.4)

This is Nyquist sampling criterion to avoid aliasing of target responses. The

same criterion is sufficient to obtain unaliased bispectral responses [50].

3 The measured scattering coefficients at frequencies wt to Wh are samples

of the target transfer function (frequency response) H(w). which, for a

single point target, can be written as

3 H(w) = A(w) exp {j(b(w) - wT)} (2.5)

where w is the radian frequency and T is the time required for the radar

Isignal to propagate to the target and back. The amplitude A(w) of the

returned signal may depend on w, and similarly for the electric phase 7h

(this is a phase change introduced by target scattering). The range to the

target is simply R = 'Tr It is convenient to measure the range from a

fixed point at the center of the target. Then, R = R0 + r where R0 is the

distance to the fixed point on the target. Similarly, the propagation time

delay is Tr = To + t where To 2. Then the actual transfer function is

I H'(w) = exp (-jwTo)H(w). (2.6)

A target may consist of P scattering points (or can be modeled as such). If

there are no interactions between various scattering points then the transfer

3 function is
P

H(w) = Ai(w) exp {j(Oi(w) - wTi} (2.7)

where Ai,?Pi, T, depend only on the ih scattering point. Multiple inter-

3 actions between scattering points introduce extra terms that characterize

I 11
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the coupling between the two scatterers and do not correspond to a true

physical scattering object. Therefore a more accurate model of scattering

from a radar target is
p

H(w) = _,A(w) exp {-j((w) -wT)}
i-'l

P P

+ Ak (w) exp {-J(?bkl(W) - w(Tkl))
k=l 1=1

+ . -- (2.8)

Usually the magnitude Aki of the scattered signals due to an interaction be-

tween two specular scattering centers is small compared to either Ak or Aj.

However, this is not always the case, especially for certain classes of canoni-

cal targets [71]. Conventional radar targets such as aircraft, ships, or tanks

are complicated to the extent that one can no longer exclude the possibility

of a significant number of interactions with relatively large magnitudes. It

is likely, but not necessary, that the interactions between scatterers become

smaller in magnitude as the number of interacting scatterers is increased.

One focus of this study is to investigate the use of the bispectrum for

discrii.,dnating between specular scattering and multiple interaction scat-

tering. The use of the trispectrum and even higher order spectral analysis

can also be related to more complex scattering mechanisms. In this study

we consider only the bispectrum.

Signal processing techniques can be applied in either the time or fre-

quency domain. The measured frequency response has important intrinsic

characteristics that permit the extraction of important features such as

complex natural resonances (CNR) [70]. Such features are extracted by

applying spectral processing techniques to the recorded data over finite

bandwlidth. Althou0-gh th1-e ernphlasicE in this report is on time -domain radar

signal processing, a summary of spectral analysis studies when applied to

frequency-domain data is given below. It will be shown later that the same

12
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I
spectral estimation techniques can be applied to either time or frequency

dlrnain representations of target responses and the difference is only in

the characteristics of the extracted features. Therefore, the application of

higher order spectra is not limited to time-domain waveforms but may have

important applications in the frequency domain as well.

2.2.1 Signal Processing of Radar Signatures: Frequency-
Domain

The transient response properties of scattering objects are characterized

by their complex natural resonance. The number of natural resonances of

scatterers is infinite. Kennaugh [2] suggested that it is possible to approx-

imately characterize the transient responses of scatterers at longer times

with a finite number of low-frequency natural resonances. The complex

natural resonances can be determined using an iteration process which

searches for the zeros of the impedance determinant of the object in the

frequency domain [72]. Chuang and Moffatt [72] used the Prony method to

extract complex natural resonances from approximate backscattered ramp

responses of radar targets.

If a plane wave Ei = Eo exp {j(wt - kr)} is transmitted to illuminate

a target, then the backscattered field is E, = Eoc1 exp {j(wt - 2kr)}

where If(w) is the transfer function seen by the radar and r is the range

to the target. If a ramp signal tu(t) (where u(t) = 1 t > 0,0 otherwise) is

transmitted, then the ramp response is related to the frequency response

as follows

hR(t)=-f H(jw) exp {jwt}dw (2.9)

T...-.~ sps ,kt) can then be itn, using Fouricr scrics expan-

sion, as
hRWt =H: n o + On) (2.10)

n=1,3,.... rn

13



where 0,, is the phase of H(jw) at w = 7rn/T [72]. If one considers the

first few terms in the above expansion (which is a reasonable assumption

because as the coefficients of the Fourier series are weighted by n') then it

is easy to notice the resemblance to the function

N

f(t) = FAiexpJ{yit} (2.11)
i=1

where the parameters Ai,, 7can be estimated using the Prony method [72].

The poles y extracted using Prony method represent the dominant natu-

ral resonances of the target. The complex natural resonances (CNR's) of

a target are aspect independent and therefore have been proposed as an

aspect insensitive method for discriminating between targets. The Prony

algoiithm is sensitive to noise contamination [72] and may produce inac-

curate CNR's. The extraction of complex natural resonances from noisy

radar signals remains an active research area.

For electrically small objects, the CNR's can be obtained from an in-

tegral equation formulation and numerical search [73]. For targets with

complicated geometry the extraction of the CNR's is from either measured

scattering data or from measured surface currents. The Prony method,

like most high resolution techniques, requires prior knowledge of the model

order (N in equation (2.11)).

Frequency domain target identification studies focus on the extraction

of complex natural resonances that are aspect independent features. No

information, however, about the scattering mechanisms of a radar target

are directly evident from the frequency response data.

2.2.2 The Impulse Response

Theiormatio, about target shape, size, and orientatioi, resides in the

measured backscattered frequency response. Such information can be ex-

14 H
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I tracted by examining the target scattering mechanisms that are displayed

in the target impulse response.

In general, electromagnetic scattering from most objects tends to be

localized at specific areas. In [70], the individual scatterers are represented

as specular reflection, edge diffraction and creeping wave mechanisms. It

* is often convenient to separately quantify the scattering cross section of

each mechanism, particularly for experimental purposes. This can only

be accomplished if the response to each individual scatterer is separable

and is often done by processing windowed scattering spectrum using the

fast Fourier transform (FFT) [5]. The FFT of the band-limited frequency

response H(w) is the bandlimited transient response. A thorough discussion

I on the application of transient and impulse response in scattering studies

can be found in [2].

I The relationship between the impulse response and radar cross section

can be described as follows. If an impulsive plane wave Ei is reflected by a

Ilinear scatterer [70] then the scattered field h(t), is defined as the impulse

* response and its Fourier transform H(w) is the transfer function of the

target as seen by the radar. If a monochromatic plane wave (exp {jwt})

strikes an object, then the phasor response H(w) is related to a transverse

component of the scattered electric field, E'(t - ) at large r by [70]

R [H(w) exp (jw(t - ~ .( _ r) (2.12)

where r is the range from scatterer to radar and c is the speed of light, and

R denotes the real part operation. The radar cross section of the target 0r

* is related to H(w) as [70]

" = limr 4irr2 (2.13)

=I c7rIH(w)1 (2.14)

A more concise definition of the impulse response, [70] is: The im-

* 15
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1
pulse response waveform is the time-dependent electromagnetic field inten-

sity produced at a fixed point in space when a plane electromagnetic im-

pulsive wave otrikes an object. If the impulse response is known, then the

scattered signal for any incident pulse shape can be predicted [70]. The

impulse response concept (or the time-domain profile) is widely used for

scattering analysis [2,5,8,10] because it adds insight to the complex rela-

tion between the shape of the target and its reflectivity [70]. To further I
emphasize the importance of the impulse response (or transient response)

in electromagnetics research, it is claimed in [70] that such techniques make

it possible to integrate all existing information concerning an object into a

single characteristic function, thus combining the best features of several

approximate methods such as Rayleigh theory, physical optics, geometrical

theory of diffraction, etc. into a single waveform given a specific aspect and

polarization [70]. 3
2.2.3 Signal Processing of Radar Signatures: Time-

Domain I
The problem concerned with the extraction of scattering mechanisms of a

radar target in order to acquire some information about the target size and

geometry has been investigated by numerous researchers during the last 3
three decades. There are two aspects to this problem:

9 Resolving two closely spaced peaks in the impulse response or discrim-

inating two distinct mechanisms that are spaced by small increment

in time.

9 Associating each mechanism in the transient response with a physical i
scatter n phenomno,-n. Tht is, reSolving the integration of all scat-

tering mechanisms into classes of mechanisms (specular, interactions, •

creeping waves, etc... ). 1

16 Il
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U The first aspect of the problem is a signal processing problem where the

resolution of two closely spaced peaks is limited by the bandwidth of the

measured frequency response if the transient response was obtained using

Fourier transform technique. Some studies suggest using high resolution

spectral estimation techniques in order to overcome the bandwidth lim-

itation constraint. The second aspect of the problem is related to the

electromagnetic scattering behaviour and depends, not only on the band-

3 width, but on the range of frequencies used for measurements (Rayleigh,

resonance, optical, etc..).

I Improving the resolution will generally have positive impact on the

mechanism identification problem. One should be careful, however, that

I some of the techniques used to improve the resolution are prediction based

techniques that implicitly extrapolate the spectrum outside the measure-

ment window. The extrapolated spectrum using signal processing tech-

niques may differ from the true spectrum. This could result in false scatter-

ing mechanisms that cannot be associated with the geometry of the target.

3 Thus, a compromise between achieving a high resolution transient response

without grossly changing the target scattering features is required.

3 This study is concerned with both sides of the time-domain signal pro-

cessing problem. We will use higher order spectra (HOS) to help in solving

3 the mechanism identification problem and we will also study the use of

parametric HOS to help solve the bandwidth limitation problem. Several

3 approaches to obtain high resolution transient responses are summarized

below. These techniques, slightly modified, may be used to obtain high

I resolution bispectral responses.

1
I
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I
Autoregressive modeling of radar signatures U
The key to the estimation of high resolution transient responses is to as-

sume that the scattering data satisfies a certain model. Autoregressive

modeling of frequency response is one possibility. In [7] it is assumed that

the measured scattering coefficients y, at the nth frequency satisfy the au-

toregressive model I
P

Yn= _aiy._i + en (2.15)i=1 I
where ai is the ih AR coefficient {en} is a zero mean Gaussian distributed

random signal with variance p, and p is the model order. Autoregressive

modeling of frequency-domain target signatures permits the estimation of

the transient response scattering centers in terms of the zeros of the above

difference equation satisfied by the data. The model order is assumed to be

known a priori and this means (when translated to electromagnetic terms)

a prior knowledge of the number of scattering mechanisms. The autoregres-

sive model for radar data is physically intuitive because responses at one I
radar frequency can be approximately expressed as a linear combination of

responses at other frequencies. Autoregressive modeling can be sensitive to

noise contamination because of implicit nonlinearities. In [7], this model

was used for identification and classification of commercial aircraft tran-

sient responses. The results in [7] indicate that the above model produces

satisfactory performance for SNR above 10 dB.

Autoregressive moving average modeling (ARMA)

Autoregressive (AR) modeling assumes that the transient response of a

scattering object consists only of peaks at different points in time, and no

nulls. More accurate modeling of radar signatures would include both peaks

and nulls (poles and zeros). Thus, autoregressive moving average modeling

is an alternative choice.

18
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I In [8], the measured scattering coefficients at the nth frequency is as-

sumed to satisfy the following ARMA modelII p

y(fn) - - Z aiy(f,-i) + E cje(fn-j) (2.16)I i=j=

where e(*) is zero mean white noise and p, q are the model orders. The

* target impulse response is given as

_ C (exp {j7r(1 - 2t/T)}) (2.17)
* Y(t) = A (exp {jwr(1 - 2t/T)})

where C(*),A(*) are polynomials given as

H A(x) = 1 + aix +...+ apx (2.18)

C(X) = 1 + c1, + eqX q

The orders p and q may be chosen a priori, or can be estimated from the

data. One of the findings in [81 is that only 20 samples are needed to

generate an impulse response that includes the mechanisms extracted by

Fourier techniques using 150 samples. Noise is a problem, especially at low

SNR's, but this method may be useful in a low noise environment where

the main objective is to study scattering mechanisms. Although, both p

and q have to be specified (while in the AR modeling case, only p is needed)

it is claimed in [8] that ARMA modeling produces more accurate results

I than AR modeling.

Impulse response estimation via maximum entropy method

The maximum entropy method (MEM) can be u.ed to obtain high reso-

lution transient responses [5,91. The MEM estimation technique does not

* require the data to be stationary or the samples to be uniformly spaced but

it requires the exact values of the autocorrelation function of the data [62].

According to Jaynes [62], the estimation of the autocorrelation function
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does not yield an accurate transient response, especially if the data is noisy,

and it does not necessarily maximize the entropy of the data. Unfortu-

nately, in tile target identification problem, only estimates of the autocor-I

relation of thle frequency response are available.

In 15], the MEM transient response estimation technique is comnpared

to Potirie'r methods. It is shown that closely spaced scatterers of sonme

(:aI10IlicaI ob~jects are easily resolved using maximum entropy methiod eveni
thoughi the data, is umistaticniary. As in the AR case, the model order sbl)l

l)e ktiowii a p~riori iii order to apply the MEN\' technique. Furthierniore, it, is

iiiportwit to avoid the line splitting problem in MIJ.M which hidt~icatecs the

existence of two closely spacedl scafterers where thevre is only one scatterinig

mcli a iiism .3

r1UratisieInt resp~onse using MUSIC algorithmi

'Ill(- MI it Signal Classification algorithini (MUSIC) is used ini 17] to ob~tain

highi resolutLion estimates of scattering mnechanisms. T'he MUSIC algoritim)

prodt(ices satisfactory results wvhen thle ineasired scattering coefficienits -are

noisy. Th~e scattering (data is assumed to be sinusoidal witht a iniforiiily

distrib)uted randomn phase (the electric phase 4'). The covariance nm1atrix of

the noisy data is given as

,P(w) = E{H'(w)II'(w)} (2.19)I

= JI (w)IHF*(w) +-- 21I (2.20)

= EZAieieT (2.21)

where II'(w) = H(w) + n(w), o-' is the noise variance, and I is the identityI

matrix. The eigenvalues and eigenvectors of the covariance matrix 4) are

denoted by Ai and e, respectively. The matrixl) is Hermitian and the space
spanined by its cigenvectors can be divided into two subspaces, one spanned3
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I by noise and the other subspace is spanned by eigenvectors associated with

scattering mechanisms. Details of the algorithm can be found in [7].

This algorithm assumes that 0 is uniformly distributed over [0, 27r]. It

is possible to avoid this assumption by manipulating the data in H'(w)

and.thus randomizing 4. This is done by dividing the measured data into

subbands with subband covariance matrices. Then the covariance matrix

P is simply the average of all subband covariance matrices [7].

In addition to high resolution estimation of scattering centers, the MU-

SIC algorithm also requires less data than conventional Fourier techniques.

The main disadvantage of the MUSIC algorithm as well as AR, ARMA,

MEM techniques, is the loss of information about the amplitude of scatter-

ing mechanisms. These algorithms are mainly used to estimate the location

of scattering mechanisms in time.

I Extensions of the MUSIC algorithm to higher order spectra are derived

in [30]. Unfortunately, the computational burden becomes significant and

the dimensions of the covariance matrix incrcase rapidly.

I Transient response estimation using Prony based models

One may argue that all the above techniques are based on statistical spec-

tral estimation theory; however, in the RTI problem the data may consist

3 of a deterministic signal corrupted by additive noise. Furthermore, the

stationarity of the radar scattering data is not a strictly valid assumption.

Therefore, a more appropriate radar data model should be based on a deter-

ministic modeling approach. The Prony method is a deterministic approach

to modeling of radar data. In [67], the transient response is estimated using

an improved version of the Prony method.

i In the Prony method the scattering y,, at the n 1h frequency is modeled

I
*!2



as
M

y= dip! (2.22)

where m is the number of scatterers (known a priori). This data satisfies

the AR model m

y. i- aiy,+i = 0 (2.23)

The poles pi are estimated using the same equations as AR parameter

estimation methods where the covariance matrices are replaced with data

matrices and the amplitudes di are then estimated directly from the data

in terms of the estimates of the poles pi. Singular value decomposition

of an associated data matrix results in improved estimation of the poles

especially for noisy backscattered signals. Although it is necessary to know

the model order a priori, it seems that this method is less sensitive than

other parametric techniques to changes in model parameters and frequency

band employed [67].

2.3 Introduction to The Bispectrum H
The focus in this report is on the processing of radar data (treated as a time I
series) using higher order spectral analysis techniques and the bispectrum 3
in particular. The application of 1OS in radar scattering analysis is novel

and the goal of this study is to investigate the benefits, if any, of applying 3
HOS to target signatures. There is no doubt that HOS processing of any

set of data provides additional knowledge about the hidden characteristics 3
of the data. Higher order spectra, and the bispectrum in particular, are not

commonly used in the radar community. For this reason, a brief summary 3
of the bispectrum in a signal processing framework is given below. In this

summary, we investigate some properties of the bispectrum of complex- 3
valued signals.

22
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I Signal processing using higher order spectra was suggested by Brillinger

and Rosenblatt in [121. The bispectrum has long been considered a valu-

able tool for analyzing nonlinear processes, and there are numerous ap-

3 plications of the bispectrum in a wide variety of nonlinear problems and

disciplines [111. But the interest in the bispectrum as a general signal pro-

cessing technique is recent. The reason is that the bispectrum is computa-

tionally expensive technique with limited rewards. That is, the additional

3 knowledge provided by the bispectrum has not justified the increased com-

putational burden. Also, the mathematics of the bispectrum are far more

3 complicated than for other spectral analysis techniques, and the physical

insight of the bispectrum is not fully understood. Today, with the develop-

I ment of fast computing facilities, more attention is given to the bispectrum

and its applications. The main problem that remains unsolved is the in-

tuitive interpretation and understanding of bispectral processing of a time

series.

Currently, there are three main applications for higher order spectra in

signal processing. These applications are stated in [111 as follows: 1) to

extract information about deviation from Gaussianness (normality) [11],

2) to estimate the phase and amplitude of a non-Gaussian parametric sig-

nals [11], and 3) to detect and characterize the nonlinearities of mechanisms

in a time series [11]. The first application is based on the fact that for a

Gaussian signal all polyspectra of order greater than two are identically

zero. The second application is based on the fact that the bispectrum pre-

serves the phase information of non-Gaussian parametric signal [111. The

3 third application is due to the fact that HOS plays a key role in detect-

ing and characterizing nonlinearities from the output data of a nonlinear

system [11].

Recently, the interest in the bispectrum as a signal processing tool has

3 23
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moved into different research areas and disciplines. There are numerous I

papers on the bispectrum in analyzing data structures such as electroen-

ceplhalogram (EEG) data [30], seismic data [491, ocean gravity waves [511,

sonar data [11], underwater acoustic transients [50], and bioelectric data.

There are also several applications of the bispectrum in texture discrim-

ination, reconstruction of shift and invariant objects, tomography, image

reconstruction, non-Gaussian image modeling 159]. Cumulants and bispec-

tra are also used to separate stochastic processes and in training of neural

networks and adaptive antenna arrays and detection problems [59]. In [441

Bartelt et. al. propose an algorithm to estimate the phase and amplitude

of the original signal from its triple correlation using bispectral process-

ing. Signal reconstruction using the bispectrum is also investigated in [49]. I
Furthermore, two sub-optimal detection schemes using both spectra and

bispectra are proposed in [56,57].

To our knowledge, there does not exist any published literature on the

bispectrum of radar signals other than our recent work in [21,52]. The

following chapters address this novel problem of bispectral processing of

radar signals and its impact on identification of scattering mechanism and

target classification.

2.3.1 Definitions

Real-Valued Random signals:

Higher order spectra are defined in terms of cumulants (often called cumu- I
lant spectra) [11]. Given a set of n real random variables {X1 ,X 2 ,... ) ,1J

the joint cumulants of order r = k1 + k2 +... + k, are defined as i

/, .r ! ( ,..(2.24)19-" 1 194
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I where

| (W .... ,W) = E{exp [j(w x +... + w X,)]} (2.25)

The joint moments of order r of {x,} is given as

i mk,... , = ( -w .. w-)),,=...=,,= (2.26)ki xOk(2 ... ,

E{x 1 2 ... nn (2.27)

The joint cumulants are related to the joint moments. For example, if the

first moment is zero then assuming that we have a single random variable
* ai {111

Cio...o = 0 (2.28)

C 2 0 ... 0 = M20...o

C30...0 = M 30...0

C4o...o = M 40 ...0 - 3m2o...o

I For a zero mean process the third order moment is equal to the third

order joint cumulant. A random process {JX}1L- is stationary to order
M = k1 + ... + kn, if

I~k ... Xk} l= k i~2 ... Xk}1 2 n "-- z'lq 2+i n+iJ"

If the random process {Xk}=1 is stationary with zero mean then the second

and third order joint cumulant (identical to second and third order joint

I moment) are given as

Cio...o(k, 1) = E{x(k)x(1)} or (2.29)

C2(m) = E{x(k)x(k + m)}

I C11 o...o(j,k,t) = E{x(j)x(k)x(t)} or (2.30)

C3(m,n) = E{x(k)x(k + )X(k-+n)}

* 25
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Notice that the fourth order cumulant is not identical to fourth order

moment. If the process has non-zero mean then the cumulant Clo...o =

Covariance{x(k)x(I)}. The general relation between moments and cumu- I
'lants have been derived by Leonov and Shiryaev [14] as

E{X1 ... X} = E C('Y)C( 2)... C(,Yp)
71 , ...,)'YPI

where the summation extends over all partitions -i of the integers (1.... , n);

and C(.) are the cumulants of {x,}. The following examples (given in [14])

are based on this theorem

E(xk} = C(k) U
E{X1kX1} = G(k)C(1) +C(k,l)

E{XjXkXl} = C(j)C(k,l) + C(k)C(j, ) + C(I)C(j,k) + C(j,A,I)

If we assume E{zx} = 0,V i, then we obtain the relation [14] U
E{xjIxxlx} = C(j,k)C(1,m) + C(j,I)C(h,?n) I

+C(j,m)c(k,1) + C(j, k,,m)

If xk is a Gaussian random variable then C(j, k, 1, m) = 0.

The following are few important properties of cumulants (taken from I
[13,14]),

" Cumulant(aiax,a 2 X2 ... ,anXn) = ala2...an Cumulant(xl,...,)X).

* If the random process can be partitioned into two disjoint sets that I
are independent from each other, then Cumulant(x1,... , X,) = 0.

• Cumulant(xl + Y,... .,X + y,,) =Cumulant(xl,. .. , )+

Oumulant(yi + ... ,yn), where {xn} and {yn} are two independent

random processes. This relation does not hold for moments.

I
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The spectrum and bispectrum are defined as the Fourier transform of the

second and third order joint cumulants respectively [11].

S(W) = - C2(m) exp {-j(wm)} (2.31)
M-00

B(wI,w 2) = Z C3(m,n)exp{-j(wim+w2 n)} (2.32)
mn=-oo n-co

Unlike the spectral density, the bispectrum is generally complex. A suffi-

cient condition for the existence of the bispectrum is that the third order

cumulant is absolutely summable.

The bispectrum is also defined for a continuous time signal x(t) as [11]

C3(-ri,r 2) = E{x(t)x(t +r1)x(t +r2)} (2.33)

B(wl,W2 ) = C3("l,r 2 )exp {-j(WIl + w 2 r2)}drl dr2(2.34)

I Little insight is provided from the above definition of the bispectrum.

Intuitively, using equation (2.32), a spiky bispectrum is the result of flat

triple correlation and therefore the time series x(t) changes slowly over time

intervals. A flat bispectrum, however, implies that the time series changes

rapidly over short intervals of time.

An alternative definition of the bispectrum is based on the Cramer (or

Fourier-Stieltjes) spectral representation dZ(w) [111, where the time series

* {x(k)} can be written as

* x(k) = .J exp {jwk} dZ(w) (2.35)

where dZ(w) is random process with

E{dZ(w)} = 0 (2.36)

Ef EdZ(w1)dZ*(C02)J = 2irS(w)dwo, W1 = W2=

E{dZ(wl)dZ(w2)dZ*(wa)} = B(wI,w 2)dwldW2, w1 +w 2 = w (2.37)
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then I
0

x(k) = E X(w) exp {jwk} then (2.38)
W=00

S(w) = (X(w)X*(w)) and

B(wi,w2) = (X(wI)X(w 2)X*(wl +w 2)). (2.39) I

where () denotes the ensemble average. The above definition of the bis- I
pectrum is more insightful than the cumulants based definition. This def-

inition implies that the bispectrum at a particular frequency pair (wi,wj) I
(or bifrequency) is nonzero if at least one of the three spectral responses

X(wi),X(wi), and X(wi + wj) is correlated with the other two.

Real-Valued Deterministic signals I
The definition of the bispectrum given in the previous section is based on

the expectation of the triple product of a random signal. In many practi-

cal deconvolution and filtering problems the signal is deterministic. Also,

the addition of noise to the deterministic signal produces a nonstationary

random signal. The expectation based definition of the bispectrum is not

applicable for time varying deterministic signals even if these signals are

embedded in noise. The following definition of the bispectrum is applicable I
if the measured time series has a deterministic time varying component

added to a random component such as noise. The distinction between de- I
terministic and time varying signals, however, is only in the statement of

the problem and not in the estimation procedure. I
Bispectrum of Real-Valued Energy signals [79]:

If {x(k)} is a real energy signal i.e.,

E= E Ix(k)12 < o (2.40)

28



I

I then, the spectrum of {x(k)} is given as
Co

X(w)==- x(k) exp {-jwk} (2.41)

and the second and third moments are given as

M2(m) = E X(k)x(k + m) (2.42)
I k=-00

AMC(m,n) = x(k)x(k+,n)x(k+n)
-Co

the spectral and bispectral densities are respectively

SSO(w) = X(w)X*(W) (2.43)

Bx(w,,W2) = X(WI)X(W 2 )X*(WI +W2)

U Notice that the bispectrum for deterministic signals is defined in terms of

moments and that of random signals is defined in terms of cumulants. Also

notice that the estimation procedures for both third order cumulants and

3 third order moments are identical.

Bispectrum of Real-Valued Periodic signals [79]:

If the sequence {x(k)} is periodic, i.e., x(k+N) = x(k) then x(k) is a power

signal with finite average power given by S- = -L jx(k)12. The line

spectrum of {f(k)} is obtained using discrete Fourier transform defined as

I N-1
x (k) = - E X(n) exp {j27rkn/N} (2.44)

N-1

X(n) = E x(k) exp {-j27rkn/N}
k=O

where X(n) is also periodic with period N. The second and third order

I moments are given as

1 N-i

k=O

RO(m, n) = 1 (k)x(k + m)x(k + n)
k=O

I
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and the spectral density and bispectrum are, respectively

S (P) = 1 (P)X*(p) (2.46)

B'(p, q) = NX(p)X(q)X*(p + q)

The estimation of polyspectra of periodic signals is similar to that of energy

signals with finite data lengths.

2.3.2 Properties of The Bispectrum of Real-Valued

Signals I
The cumulant C(m, n) of a real stationary random sequence {x(k)} has six

symmetry regions in the two-dimensional time domain. These symmetry

regions are defined by the following equations [11]

C(m,n) = C(n,m) (2.47)

= C(-n,m*-n)

= C(n - m, -m)

= C(m - n,-n)

= C(-m,n - m)

Therefore it suffices to compute third order cumulant in one region, and

the other sectors can be generated using the above relations. Figure 2.1

shows how these symmetry regions are distributed in the (me, n) plane.

Notice that with this type of skewed symmetry, the correspondence between

data points in one sector is not a twofold symmetry in the other sector. I
Figure 2.2 shows how the data is arranged in different sectors of the (m,n)

plane. For example, samples that are distributed horizontally in the sector I
m,m> 0, m > n are the mirror image of the sector mn , , m < n

but they are arranged vertically in the sector m < O,n > 0. The arrows in

Figure 2.1 indicate the arrangement of cumulant samples (from c to b) in
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each symmetry sector of the third order cumulant plane. All sides of the

symmetry triangles are labeled accordingly for all symmetry regions (see

Figure 2.1). Furthermore, the data samples oil the axis m > 0 has a mirror

image on the axis n > 0 but the third image is on the diagonal defined by

m,n < 0, and m = n. Therefore a set of responses on the axes m > 0, or

n > 0 may look similar but less dense on the third axis m = n, m, n < 0.

The bispectrum B(w 1 ,w 2) of a real stationary sequence x(k) has twelve

symmetry regions. The twelve sectors in the two-dimensional frequency

domain are related as [11]

B(wl, W 2 ) = B(w 2 ,wl) (2.48)

= B*(-w2, -WI)

= B(-oW, -W)

= B(-w, -W 2,w2)

= B(wi, -w1 - W2 )

= B(W 2 , -WI - W2 )

The bispectrum is generally complex with an amplitude and phase. Also,

for discrete signal processing, the bispectrum is doubly periodic with period

27r.

B(wi,W 2) = B(wi + 2k7r, + 21r). (2.49)

Figure 2.3 shows the twelve symmetry regions of the bispectrum. The

principle triangle in the first quadrant of the (Wl,w 2) plane is defined by

W1 > w2 and w1 < 7r. There is an additional triangle that is adjacent to the

principle triangle and is defined by 7r/2 < tW1, W2 g 2/37r. The two triangles

combined define the first of the twelve sectors of the bispectrum. As in the

cumulant case, the knowledge of the bispectrum in one sector is sufficient

to determine the other sectors using the above relations. Also, because

of the skewness of symmetry regions, one should be careful when trying
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to read the bispectral responses. Figure 2.4 shows a data arrangement

in the bispectral plane where the solid lines represent the boundaries of

the symmetry regions. Notice that the data is arranged parallel to these

boundaries as indicated by the arrows (from side c to side b) in each of

the six major symmetry regions. Each of these six symmetry regions has I
twofold symmetry along an axis S where S E {w 2 = Wl,W2 = -w 1 ,w2 =
-2w,w 2  = -lwi} (see Figure 2.4).

Due to the hexagonal shape of the bispectrum, it is a bit difficult to

follow its periodicity in the w1 ,w2 plane every increment of 27r in each

frequency axis. Figure 2.5 shows how the (WI,W 2) plane is subdivided into

hexagons of bispectra with period 27r.

Aliasing in the bispectral domain occurs in the triangle abf (see Figure

2.5) adjacent to the principle triangle oaf [50]. Notice that if a rectangular

display of bispectral signatures is used then the responses in the triangles

{abc, cgb, bgd, bde, bef, abf} (see Figure 2.5) are all symmetric with different

data arrangements. The reason for this symmetry is that the triangles

{abc, abf} belong to the first bispectral hexagon centered at (0, 0), the

triangles {cgb, bdg} belong to the hexagon centered at (27r,0), and the

triangles {bde, bef} belong to the hexagon centered at (0,27r). The same

symmetry is repeated in the third quadrant of the rectangular display of

bispectral signatures. Estimates in these regions are unreliable because

they may be due to an overlap of bispectral responses in the three adjacent

bispectral hexagons.

An important property of the bispectrum is that it vanishes when {x(k)}

is a zero mean stationary Gaussian signal. Also, if the waveform x(k) has a

bispectrum B(wl,w 2 ), then the shifted signal x(k - n) has the same bispec-

trum. Thus, the bispectrum as well as the spectral density are unaffected

by a linear phase shift of the spectrum of {x(n)}. Further, if e(k) is white

I
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non-Gaussian noise defined such that E{e(k)} = 0, E{e(k)e(k + rn)} = o-2

and E{e(k)e(k + m)e(k + n)} = f66(m,n). The bispectrum of e(k) is con-

stant over the (wl,w 2) plane with magnitude ft.

In many practical situations, the waveform {x(k)} is bandlimited where

X(w) is defined over the frequency interval [WL,,WH]. The bispectrum of

x(k), BX(w,,w 2 ) is then nonzero only in the triangle wL < w1 ,w 2 < WH, w1 +

W2 < Wt (49]. Figure 2.7, shows the bispectrum of a bandlimited signal.I
2.3.3 The Bispectrum of Complex-Valued Signals:

I The above definitions and properties of the bispectrum are limited to real-

valued signals. Little information can be found on extensions of these def-

initions to complex-valued signals [76,43,441. However, for the radar signal

processing problem, the bispectrum of complex signals is needed. Below

we discuss definitions and properties of the bispectrum of complex-valued

* signals.

If the data {x(k)} is a complex stationary process, then the second

order cumulant is defined as C2(m) = E{X(k)X(k + m)}. It is also pos-

sible to alternate the conjugate so that C 2(m) = E{x(k)x*(k + m)}. For

the third joint cumulant case, the conjugate can be placed either on one

or two entries of the triple product in (2.30). Only one In fact, plac-

ing the conjugate in a particular position defines which one of the six

symmetry relations given in (2.48) remains valid. In general, the bispec-

I trum of complex signals has twofold symmetry about an axis S such that

S e{w1 = w2, w2 = -2wl, w1 = -'w 2, w1 = -w 2}. Figure 2.6 shows

the configuration of the bispectral response with respect to its symmetry

* axis for all possible positions of the complex conjugate in the cumulant

(as designated in each symmetry region in Figure 2.6). If the first quad-

rant wO,w 2 > 0 is preferred then the third order cumulant is defined as
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C3 (m,n) = Ef'x(k)x(k + m)x(k + n)}.

The following relations define the bispectrum of complex-valued signals

for all possible positions of the complex conjugate.

El{ (k)x(k + m)x(k + n)} (X(wi)X(W2)X(w + W2 ))

with the symmetry relation B(wi,w 2 ) = B(w2 ,wI)

Elx~(k)x*(k + m)x(k + n)} "r) (X*(-Wl)X(W2 )X(-wi -. W2))

with the symmetry relation B(wi,W2) = B (w, w)

Elx(k)x(k + m)x*(k ± n)} (X(Wl)X*(-W 2 )X(-Wl W2))

with the symmetry relation B(wl,w 2 ) = B(-wi - w2 ,w2 )

E{x(k)x*(k + m)x*(k + n)}J + (X*(-wi)X*(-w 2)X(-Wi - w2 ))

with the symmetry relation B(wl,w 2 ) = B(w ,wl)

Efx*(k)x*(k +m)x(k +n)} f (X*(-wi)X(W2)X*(w' + W2))

with the symmetry relation B(wi,w 2) = B(-w 2 - wI,w 2)

Efxi(k)x(k + ,)x*(k + n)} - (X(Wl)X*(-W 2 )X*(WI + W2))

with the symmetry relation B(wi,w 2) = B ,-wi, - w) I

The symmetry properties for each position of the complex conjugate can 3
be easily derived from the above equations. Note that it is possible to ob-

tain one bispectral response from other bispectral responses using cumulant 3
transformations. For example if RI(m,n) = E{x*(k)x(k+m)x(k+n)} and

R 2(m,n) = E{x(k)x*(k + m)x(k + n)} then RI(m,n) = R2(-m,n - m). I
Similarly, if R 3(mn) = E{x(k)x(k+m)x*(k+n)} then R,(m,n) = R3(m-

n,-n), and R,(m,n) = R (-m,n - m) where R 4(m,n) = E{a(k)x*(k + I
m.)x*(k + n)}. Other relations can be obtained similarly. -

I
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2.3.4 Examples of Interpretation of The Bispectrum

Some of the properties of the bispectrum are better understood in the

light of the following examples. For this reason, the following examples

are common in the bispectrum literature [11,48], and are mentioned here

because of their relevance to bispectral processing of radar signals.

Example 1 [11]: Quadratic phase coupling of two harmonic components

of a random process due to quadratic nonlinearities. The signal

Xi(k) = COS(0 1k -I- +$ 1) + COS(0 2k + 02) + COS((0 1 + 02 )k + q 1 + 0'2) (2.50)

where 01 and 0 2 are random variables, uniformly distributed over [0, 27r].

The bispectrum of x(k) is a single impulse at (01,902),

B-'(w,IW) = 16(w, - 01)W2 - 02) (2.51)

This example demonstrates that the bispectrum is useful in detecting quadratic

phase coupling between harmonic components [11]. 1
Example 2 [48]: If {x(k)} is a zero mean non-Gaussian stationary random

process which is the input into a linear filter (with imp-lse response h(k))

then the bispectrum of the output signal y(k) is given as

B"(wl,w 2) = B'(wj,w 2)H(wi)H(w2)H*(wi + w 2) (2.52)

The special case, where x(k) is white non-Gaussian (B"(wi,W2) =1), is3

useful for parametric estimation of the bispectrum [421, where the bispec-

trum of the filter output is simply H(wi)H(w2 )H*(w + w2 ). i
Example 3 [11]: Let

y(k) = x(k) + aaX2(k) (2.53) I
where x(k) is a zero mean stationary Gaussian random process. Then

BY(w 1 ,w 2) = 2a{SO(w)S(w 2 ) + S(w 2)S(wi,w 2)} (2.54)

+ar(0){S-(wj)b(w2 ) + S (w2)S6(W)

+S'(W2 )6(WlW 2 )} + o(a3 ) (2.55)
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where S-(w) is the power spectral density. This example shows the role

3 of the bispectrum in analyzing nonlinear systems. Exploring the relation

between the bispectrum and the spectrum of y(k) may indicate the type of

nonlinearity applied to the process x(k), particularly for a < 1.

The above examples are basic examples of the major applications of

3 the bispectrum in signal processing. Additional examples can be found

in [11,12,42,48]. An extensive study on the analysis of bilinear systems

using bispectra can be found in [14,48].

2.3.5 Bispectral Estimation Techniques

The problem addressed in this section is the estimation of the bispectrum

* of the finite complex-valued data sequence x(1), x(2),.. , x(N). As in the

spectral estimation case, the notion of expectation if x(k) is random and

the notion of infinite summation if x(k) is deterministic can be replaced

by finite summation over the available data record weighted by the factor

1/N. The expectation of the triple product can be replaced by segmenting

3 the data records and then averaging the triple correlations of all segments.

Segmentation also minimizes the estimate variance, thus improving the

3 stability of the bispectral estimates.

The following techniques produce approximate estimates of the bispec-

trum and the true bispectral response is obtained only if the data record

is of infinite length (N --+ co). The estimation techniques given below

3 are classical Fourier based bispectral estimation procedures and can be im-

plemented using the fast Fourier transform. There are several parametric

3 estimation techniques that are based on modeling the data as an AR or

M ARMA process [11,14,27,28,32].

4
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I
Indirect method

The indirect bispectral estimation method [11] can be outlined as follows,

(this method is given in [11])

1) Segment the data into K records of M samples each.

2) Subtract the average value of each record (to get a zero mean record).

3) Estimate the third moment for each segment r(')(m,n), i = 1,...,k by:
1 l1a3

(i) - (NAt) M , j a,)'(I~x,)(l + ,m)d,)(l + n) (2.56)
M1=81

where s, = max (0, -m, -n), S2 = i {M - 1, M -1-rm, M - 1 -n)},

and At is the sampling interval. I
4) Average r(')(m, n) over all segments I

.A(m,n) = E Zr(')(m,n) (2.57)
i=l

5) The bispectrum is computed using two-dimensional discrete Fourier

transform (2DFT) of R(m, n).

m=L n=L
Bw,2= E~ E f?(m n)W(mn)x{-(j+W)} (2.58)

m=-L n-L

where L < M - 1 is the triple correlation lag and W(m, n) is a two-

dimensional window function that can be generated from a one dimensional

window d(m) as follows

W(m, n) = d(m)d(n)d(n - m) (2.59)

where d(m) = d(-m), d(0) = 1, and D(w) > 0 Vw. There are several

choices of d(m), [11,141. One popular choice is the Optimum Bias Supre-

mum window [11] defined as

d(m) (sin + - , L.0
7r Lcs± Lm (260

I
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Figure 2.8 shows the two-dimensional optimum bias supremum window

3 function in frequency and time domains. An impulse in the bispectrum

before windowing is convolved with the frequency response of the window,

thus producing an elliptically spread response. The window design criterion

is similar to the one dimensional case [11] but has to satisfy the symmetry

properties of third order cumulants.

The above method is similar to the Correlogram spectral estimation

3 method with the slight difference that we do not have to worry about

nonnegativity of the estimate. Van Ness [35], has shown that if the 12th

I moment of the sequence {x(k)}, E{lx(k)112} is finite, and all cumulants

of order less than or equal to six are also defined, then the estimates of

the bispectrum using the indirect method are asymptotically (N -* 00)

* complex normal.

Direct method

The direct method [11] is based on the definition of the bispectrum as

3 the ensemble average of the product X(wl)X(w 2)X*(wl + w2), and does

not require using the two-dimensional FFT. Further, bispectral estimation

3 as given below is similar to the periodogram spectral estimation method.

The direct method consists of the following steps (this method is outlined

3 in [11]):

1) Segment the data into K records of M samples each.

I 2) Subtract the average of each record.

3) Generate the DFT of all K records

I 1 M-1X(A) = -1ExI(k)exp{-j2rkA/M)} (2.61)

M k=o

I
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U,.I 4) Let M = Ml1 xN and M1 = 2L 1 +1. Also, assume that the time increment

between samples is At. Estimate the bispectrum of each segment using

Li L1= (NAt)2  le +(k1) (2.62)

kl=-Li k 2=-Li

Yi(2+ k2)Y(i)*(A 1 + A2 + k1 + k2)

5) The bispectrum estimate of x(k) is then given as

1k

f=o(W1,W2) E b)(wiW2 ) (2.63)
k =

where w,= 2-) A, and W2 = 2(.) A2.

Both direct and indirect bispectral estimation methods have high vari-

ance and therefore need a large number of data samples. The estimates

can be made smoother if more segments are used but this will decrease the

resolution of the bispectral estimates as a result of introduced nonstation-

arity problems [11]. In general, however, the above methods are easy to

implement using FFT algorithms.

Other Methods

There are other more elaborate methods for estimating the bispectrum.

Hinich [48] proposed another periodigram bispectral estimation technique.

His technique is similar to the direct method with slight modification.

Hinich's estimation method is generally useful for avoiding aliasing in the

triangle adjacent to the principle triangle although oversampling is another

way to avoid the aliasing problem. Statistical properties of the Hinich al-

gorithm can be found in [36,50].

Thompson, [63], used a multiwindow bispectral estimation method where

the information in a narrow band is summarized by the coefficients of its

expansion in Slepian (discrete prolate spheroidal) sequences. The bispec-

trum estimates are then computed by averaging over time or over a three
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dimensional element in the frequency domain. Details of this method can

be found in [63]. In general, this method is computationally more demand-

ing than the above methods. Thompson [63] claims that frequency domain

averaging over a three dimensional element is less sensitive to nonstation-

arity in the data than the conventional methods. The bispectral estimates

derived using Thompson's multiwindow techniques are consistent, unlike

the direct method discussed above [63], where consistency means that both

the variance and the bias of estimate approach zero as the number of data

points increases [60]. It is shown in [12] that the bias in the estimates

obtained using the direct method does not approach zero as N -- oo.

48



I
I
I

I Chapter 3

| THE BIRANGE PROFILE
I OF RADAR SIGNATURES
I

3.1 Introduction

The focus in this chapter is on interpreting and understanding the bis-

pectral features of radar targets. The goal is to provide an appropriate

interpretation of the bispectrum of radar signatures, and to identify the

I advantages and disadvantages of this type of radar signal processing. To

this end, we first investigate the role of the bispectrum in achieving a better

understanding of the scattering mechanisms of radar targets. Secondly, we

extract features that characterize the illuminated target. An investigation

of the role of the bispectrum in identifying radar targets is presented in

* Chapter V.

The type of signal processing addressed in this study is based on a

specified target scattering model. The model is that of equation (2.10),

where the scattered signal is a combination of specular scattering terms

from localized areas on the target and multiple interactions terms. The

scattering region of interest is the resonance region (in which the target size

is on the order of a wavelength). The bispectral signatures of measured (or

computed) scattering coefficients in the optical region are also examined.

The purpose of bispectral analysis of radar signals is to add to the
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knowledge that the transient response already offers. It is important to

emphasize that the bispectrum is not an alternative to conventional radar

signal processing (i.e., estimating the impulse response) but an addition

that may be useful depending on the prevailing circumstances such as data

conditions, noise statistics, and scattering region.

It is known that the scattering mechanisms of complex structures such

as airplanes and ships are far more complicated than what can be deduced

from the target transient response. The bispectral responses of such compli-

cated targets are also difficult to analyze. For this reason, it is constructive

to first consider synthesized targets and simple objects. Thus, the bispec-

tra of a synthesized target, a simple generic aircraft model and a tilted flat

plate are first examined. The bispectral responses of aircraft models are

also investigated.

Bispectral analysis of radar signatures, as implemented in this study,

has two major applications: 1) identification of multiple interactions, and

2) partial noise suppression. This chapter is primarily concerned with the

interpretations of target bispectra in terms of modeled scattering mecha-

nisms where the model in (2.10) serves as a basis for the interpretation.

The effect of additive noise on the bispectral response of radar signatures

is also investigated.

3.2 The Birange Profile: Definition and Prop-
erties

Target scattering features are more intuitive using time-domain signatures [2]

than using frequency domain responses. Further, the transient response is

an important representation of time-domain radar signatures. However:

it is often difficult to deduce accurate information about the target shape

using only the transient response because of the presence of multiple in-
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I teractions. In the following, the definition of the bispectrum in a radar

signature analysis framework is given. The bispectrum of radar signals, as

defined in this Chapter, can be used as a tool for discriminating between

multiple interactions and specular scattering.

In most signal processing problems, the data sequence consists of sam-

ples taken from a time-dependent waveform. Then the bispectrum, as de-

fined in Chapter II, is a function of two variables w, and w2 in the frequency

domain. The radar scattering data sequence, however, is not a time series

but recorded in the frequency domain. The triple correlation of the fre-

quency domain data is a two-dimensional profile in the frequency domain

and is defined as

1 R(wi,w 2 ) = E{H*(w)H(w + wl)H(w + w 2 )} (3.1)

The bispectrum is then given as

B(tlt 2) = E R(w,w 2)exp{-j(wjt +w 2t2)} (3.2)
W1 =-0 W2-00

Therefore, the bispectrum is a profile of target scattering signatures in

I the two-dimensional time domain and can be termed the "bi-time" pro-

file of radar targets. Further, the bispectrum can be expressed as a two-

dimensional profile in the range domain using the relation

t = 2r (3.3)I C
where r is the range from the radar to the target, t is the time needed for

the signal to propagate to the target and back, and c is the speed of light.

Therefore, the bispectruta as a function of range is given as

B(ri,r2 ) = R(f,f 2 )exp {-j47r/c(firi + f 2r.)} (3.4)
i h f2

where fi = wi/27r. This representation of the bispectrum corresponds to

a birange profile of the target. Hence, the birange profile is a bispectral
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display of target signatures in the two-dimensional range domain r1 and r 2

where the term "range" denotes the propagation distance along the target.

The birange profile of complex radar signals satisfies only one symmetry
property defined as

B(r1 ,r 2) = B(r2,ri). (3.5)

The definition of the birange is more insightful when expressed in terms of

the impulse response as

B(rir 2 ) = (h(rI)h(r2)h*(r1 +r 2 )) (3.6)

where h(r) is the impulse response as a function of range and ( indicates

the ensemble average. Defining the birange as such implies that a non-

zero bispectral response is the result of interaction between the responses

at r, and r2 which appears as a response at r, + r2 . Furthermore, the

bispectrum at (ri,r 2) is non-zero only if the responses at r, and r2 and

r, + r 2 are correlated. Notice that the definition of the birange as given in

(3.4) corresponds to the case where the triple correlation is computed using

(3.1); i.e. the conjugate is placed on the first element of the triple product.

3.2.1 Estimation of The Birange Profile H
The cl..si'al bispectrum estimation techniques, summarized in Chapter II

and slightly modified, can be used to estimate the birange profile. The

modifications are due to data conditions such as stationarity and data-

length. Stationarity requires that the third order cumulant of the measured

data be invariant with respect to the frequency band used. Also, having a

finite set of data imposes some constraints on segmenting the data without

reducing the resolution in the birange. The following bispectral estimation

algorithm is used throughout this chapter.

The birange profile can be estimated using either the direct method or

the indirect method (based on the triple correlation of the data). Estimates
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3 of the birange profile in the experimental part of the study are computed

using a slightly modified version of the indirect classical method. The

algorithm used for birange estimation given a finite set of data {H(w)}, is

outlined below:

1) Subtract the average value of the data. The purpose of this step is to

have a zero mean signal, which is needed to achieve noise suppression.

2) Estimate the triple correlation
I1 82

R(m, n) = W- 1 H'(l)H(l + m)H(l + n) (3.7)
l=0

where s1 = max (0, -m, -n) and s2 = min(N - 1,N- 1 -m,N- 1-nn).

The number of data points is denoted by N, and -L < m, n < L.

3) The birange is generated using

L L,

B = E E R(m,n)W(mn)exp{-j(wim+W2n)} (3.8)
m=-L n=-L

where W(m, n) is the window function defined in (2.62) and where L is

the triple correlation lag (usually chosen to be ; N/5). Because no data

segmentation is employed, high variance birange profiles are obtained par-

ticularly for large values of L. The reason for avoiding segmentation is

I that the data may not be stationary (because target scattering features

are dependent on the frequency band used) and segmentation introduces

potential non-station arities [11] and reduces the resolution of the bispectral

estimates [601.

The assumption that the scattering data are stationary requires that

the triple correlation is dependent only on the frequency increment, that is

E{X'(fi)X(fi)X(fk)} = E{X"(f)X(f+fi-fi)X(f+.fk-fi)} Vf (3.9)

In radar scattering, this assumption is not valid over a wide frequency range.

Therefore, the birange B(ri,r 2) is, in general, dependent on frequency. It is
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possible, however, to assume that the birange does not change significantly I
over small frequency bands. Further, by avoiding data segmentation and

large data bandwidths, it is possible to obtain an estimate of the birange

profile which is approximately frequency independent.

The definition of the triple correlation as given in (3.1) requires that the I
measured data have zero mean in order to exclude second order moments

from the definition of the third order cumulant. This constraint is par- I
ticularly useful to ensure suppression of additive Gaussian noise. There is

no guarantee, however, that this condition is satisfied. One can avoid this

problem by simply removing the mean of the data. But, when the sample I
mean is removed from the data, the birange may erroneously indicate the

presence of a response at time zero [60]. Furthermore, the scattering data

may include transient signals and removal of sample mean is undesirable [601

in this situation. On the other hand, if the average is not subtracted from

the data, then the third order cumulant differs from third order moment

and will include the second order moment of the data sequence. Further,

the addition of the second order moment to the cumulant introduces unde-

sirable noise effects because the second moment of additive Gaussian noise I
is not zero (see details in Section 3.8). Thus, for the radar application the

benefits of mean removal seem to outweigh the disadvantages. I

3.3 Interpretation of The Bispectrum of Radar I
Signatures

An interpretation of the bispectrum of radar signatures based on an as-

sumed scattering model is given in this section. The assumed model corre-

sponds to scate..-.,-,.n- the resonance region, and it is assumed the scattered

signal is composed of two major components. The first component is due U
to specular direct scattering from localized positions on the target. The
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I scattered signal due to the first component is given as
rtn

Hi(w) = E Ap(w) exp {-j(%b + wtp)} (3.10)
p=1

where m is the number of scattering centers and AP is the amplitude of

the scattered signal from the pth scattering center. The electric phase of

the pth scatterer is denoted by p, and tp is the propagation time between

the radar and the pth scattering subcomponent and back. Notice that the

* Iinverse Fourier transform of the above returned signal is given by

hi(t) = Ap exp {j i }6(t- t,) (3.11)
p= 1

assuming that the amplitude Ap and phase Vp are independent of frequency.

I The impulse response hi(t) thus consists of m impulses displayed at times

tpVp = 1,... ,m. Therefore, each peak in the impulse response is an in-

dication of specular scattering at time t. If either the amplitude Ap or

the phase ?kp is a function of frequency then the corresponding peak may

be displaced from tP and may have nonzero width; this phenomenon is a

* characteristic of frequency dispersive scattering.

The second major component that contributes to target scattering is

the effect of multiple interactions. This type of scattering occurs in sev-

eral ways. The interactions may include multiple propagation between two

3 or three scattering centers. Multiple interactions may also occur between

scatterers that are not collinear with the radar axis. In general, there is no

* defined rule for multiple interactions in terms of direction or magnitude.

The multiple interactions can be modeled as

* m n

H2(w) = A1 (W)exp -j(V¢p + V1q + w(tp + tq))} (3.12)

+ A' (w) exp {-j(¢p +,q + wtq)}
p=l q=1
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where Apq(w), A'q(w) indicate the amount of coupling between the pth and
qth scattering points. The distinction between Apq and A' is needed be-

cause some interactions of magnitude A' are not necessarily scattered at

tp + tq. The inverse Fourier transform of H2(w) is given by

h2 (t) = exp { _j OPP + 00)q} (A Pq#t - (tp + tq)) + A',q6(t - tp)
p=l q=1 (3.13)

and consists of impulses at times tp + tq, and tPq and p, q = 1,... , m assum-

ing that Apq, 7p', and 0q are independent of frequency. Furthermore, the

relations between Apq or A' and the pair (Ap, Aq) are not usually known.

Notice that while some interactions (indicated by multiple propagation of

the transmitted radar signal between scatterers) are received by the radar

at tp + tq, other types of interactions (mainly due to single propagation

between scatterers) are received at time tp 54 t + t.. Both forms of inter-

actions are modeled in H2(w).

A scattering model which includes both specular and interaction terms

is a combination of Hi(w) and H 2(w). Hence, the returned backscattered

radar signal can be modeled as

H(w) = HI(w) + H2(w) (3.14)

- p A(w)exp{j (p + wt)} (3.15)

p=I

+ E 1.Apq(w) exp {-j(kp + Vkq + w(tp + tq)}
p=I q=1

+ E E A',(w) exp {-j(k + q + Wtpq}
p=1 q=1

Based on the above model, which is more realistic than using Hi(w)

only, it is clear that conventional spectral analysis does not provide the

necessary distinction between specular scattering and multiple interactions.

Also, the Fourier transform or modern spectral estimation techniques of

the radar backscatter data cannot identify the coupling between interacting
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I subcomponents. Using the definition of the bispectrum given in Section I of

this Chapter, the bispectral response of a radar target whose backscattered

signal satisfies (3.15) is

B(tl,t 2) = (h(t1 )h(t 2 )h*(tj+t 2)) (3.16)
M m

= E ApAqApq{(t, - tpt2- q)+ 6(tl - tqt2tp)}
p=1 q=1

that is, the birange profile of H(w) consists of impulses at the pairs (tp, tq),

p, q = 1,... , m with magnitudes ApAqAp+q. Hence, the bispectrum of radar

signals will detect the interactions with Ap. terms, but will not detect inter-

actions with A'q terms. In otherwords, the birange profile detects multiple

interaction terms when the time delay is the sum of the two time delays of

the pth and qth specular scattering terms. Based on the above modeling of

radar signatures, it is reasonable to say that peaks in the birange (or bis-

pectrum) of radar signals are indications of multiple interactions between

scattering subcomponents. Furthermore, these interactions occur between

subcomponents whose distance to the radar is determined by the coordi-

nates of the peaks in the birange.

3 The intuition behind the identification of these interactions is that

the birange profile B(rl,r 2) (or bi-time B(t1,t 2)) is related to the im-

I pulse response using the Cramer spectral representation (2.41) B(tl,t 2) O

(h(tj)h(t2)h*(tj +t 2 )). Therefore, the birange exhibits peaks at (ti,tj) when

the impulse response has peaks at ti, tj, and ti+tj, and these peaks are cor-

related. There are two situations in which the impulse response may peak

at these points simultaneously: 1) when a multiple interaction of the form

given in (3.15) occurs, or 2) by coincidence when there are specular scat-

tering components at all three time instants. A method for discriminating

between these two possibilities is discussed in Section (3.3.3) below.

The above interpretation is valid for the interior regions of the birange

but not for the responses at the axes. In fact the responses on the time (or
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range) axes may not correspond to any interactions. The bitime profile on I
the time axes is given by

B(0,t 2) = B(t,0) = (h(O)Ih(t)12) (3.17)

Notice that the responses on the axes of the birange are proportional to

the power spectral density of the target signatures. Therefore, the infor-

mation provided by the bi-time profile is twofold: 1) multiple interactions

are displayed in the internal region between the axes, and 2) the square of

the magnitude of the impulse response is displayed along the time axes. If

the birange is estimated using only the real component of the radar signal

then the magnitude squared of the impulse response will be also displayed

along the line tl + t 2 =0. 3
The interpretation of the bispectrum of radar signatures as given above

is clarified by the following two examples. The identification of multiple I
interactions of real radar targets using the bispectrum is also demonstrated

using several examples of experimental radar scattering data. I

3.3.1 Example 1: Synthesized Target

The first example consists of scattering from a hypothetical three point-

scatterer hypothetical target. The purpose of this example is to present an

intuitive interpretation of the role of the bispectrum in identifying multiple

interactions as discussed in the previous section. For conceptual purposes

only, the first two point-scatterers correspond to the leading and the trail-

ing edges of a blade, and the third scatterer corresponds to the specular

scattering mechanism from a sphere.

Consider, as shown in Figure 3.1, a blade of width r, - r0 and a sphere

at a distance r2 - r, from the trailing edge of the blade. If one considers

I
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H only four ray paths, the backscattered signal (assuming r0 = 0) is

St(fj) = A, + A2 exp (j47rr L ) + A3 exp (~j4 7rr 2 )

3+A 4 exp (j47r(ri + r2)-). (3.18)

We have assumed that the amplitudes A1, A2 , A 3, and A4 (see Figure 3.1

I for the values of A1,A 2 ,A3 , and A4) are frequency independent and that

the sphere creeping wave terms are negligible.

The scattered signal from this target satisfies the complex exponential

* model of (3.15). The transient response of the blade and sphere target as

computed using Fourier transform with a Hanning window over a frequency

band from 1.5 GHz to 12 0Hz is shown in Figure 3.2. Note the one to

one correspondence of the first three responses with the geometry of the

target. The fourth response, however, is an interaction term and does not

correspond to any target components. The birange of the above signal in

the first symmetry region (defined by tI,t 2 > 0, tI +t 2 = 1/2Af where Af

is the sampling period) is

U Bs,(RI,R 2) 1 8 {A3(R, R2) + AA26(Ri- r, R 2) (3.19)

3 +AlA36(R - r2 , R 2) + AA46(RI - (r, + r2), R 2 )

+A 2A 3A 48(R - '2, R 2 - ri)}.

I Figure 3.2 shows this birange profile (with no windowing). Notice the

* response at (t, t2) = (1.6, 2.4) meters which is due to interaction between

the trailing edge of the blade and the sphere and is represented by the

term exp (-j47r(r: + r 2 - r0)-). Further, the response on the range axes

ri = 0, r2 = 0 and also along the line r, + r 2 = 0 is proportional to the
i magnitude squared of the transient response. Therefore, the birange of

the blade-sphere target includes information about multiple interactions at

(r1 ,r 2) as well as the magnitude squared of the transient response.
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I
Tapering the triple correlation function of the frequency response using aI

two dimensional-window (to avoid Gibbs sidelobe phenomenon) [14] results

,n the bispectral response shown in Figure 3.3. The window function used is I
the Minimum Bias Supremum given in [11]. Note that each impulse in the

original bispectrum is spread into an ellipse corresponding to the contour

of the window response in the time domain [14].

3.3.2 Example 2: Thin-Blade & Sphere Target

The scattering model in this case is similar to the previous example. The

width of the blade r, - re, (or the distance between the first two point-

scatterers), is reduced such that

ri -ro < ( (3.20)2(fh - fl)

where fh - fj = B which is the measurement bandwidth. The resolution

At of the transient response when estimated using Fourier transform tech-
niques is

1At = 
(3.21)

which is equivalent to range resolution I
6r = (3.22) 1

Therefore, due to this choice of blade width, the first two peaks of the tran-

sient response cannot be separated by Rk, tier processing because of resolu-

tion limitations. The transient response and the birange of this target are

shown in Figure 3.4. The first peak in the transient response corresponds

to a superposition of direct scattering from both leading and trailing edges

of the thin blade. The second peak corresponds to a superposition of direct

scatteringron lte sphere and t e, Interacton term. Thus, due to the lim-

ited resolution of the transient response, we are unable to detect the two

edges of the blade or the interaction term.
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Figure 3.2: Transient response and birange profile of blade-sphere target
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I Now consider the birange profile of this target (see Figure 3.4). Notice

that the birange exhibits a peak at (ri,r 2) as an indication of multiple in-

teraction. Also, notice that the magnitude square of the transient response

is no longer displayed along the axes. The reason is that the magnitude

of the birange at the range axis B(0,r) or B(r,0) is proportional to the

transient response at i = 0, and h(0) = 0.

Two conclusions can be drawn from this example: 1) the birange may

detect interactions that may not be displayed in the impulse response, per-

haps for resolution reasons, 2) the magnitude squared of the transient re-

sponse is displayed along the range axes only if h(O) 5 0 (if the data is

segmented, then h(0) 0 0 is not sufficient to obtain the spectral density

along the axes of the birange). Hence, this example shows that neither

the transient response nor the birange is sufficient to analyze scattering

mechanisms. A combination of both techniques is the key to time-domain

scattering analysis.

3.3.3 A Method for Detecting False Interactions

I A peak at rl + r2 in the transient response is possibly an indication of

interactions between two scattering subcomponents at r, and r2 along the

target. An alternative scenario however, is that the peak at r, + r2 is due

to two components; one is specular which is coincidently located at rl + r2

and the other is the result of multiple interaction between the scatterers at

r, and r2. The problem is, then, how to determine whether the response

at r, + r 2 is specular, or is the result of an interaction, or is a combination

of the two. This can be done by considering the bicoherence at the peak.

The bicoherence at (ri,r 2) is simply the birange at (ri, r 2), normalized with

i
I
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respect to the spectral density at ri,r 2 and r, + r2;

bicH(ri, r 2 ) = BH(rI, r 2 ) (3.23)
V§H(-r1 )SH(r2 )SHff(r, + r2)

where SH(v) is the spectral density of the target response H(f) at r. If

the bicoherence at (r,r 2) is equal to one, then the response at ri + r 2

is totally caused by an interaction. If the bicoherence is less than one,

then the response at r, + r 2 is due to a partially correlated interaction, or

due to both a multiple interaction and a specular scattering term. If the I
bicoherence is zero then there is no interaction at r, + r 2 and the response

is due to specular scattering.

As an example, consider the specular scatterers at rp, rq and rp + rq.

Assume that there is a multiple interaction between rp and rq that produces

a response at rp +rq in the transient response. Then, the frequency response

is given as

H(w) = Ap exp {-j 2 'i(rp) + ip} + Aqexp {j2'0(rq) + lkq}
c C

+Apq exp {-j2 "(rp + rq) + Op + kq}C|

+Ap+q exp {-j2- (rp + rq) + 1p+q)} (3.24)
c

The bispectrum of H(w) is then given as I
BH(rI,r2 ) = ApAqAp.(6(ri -r,r 2 -rq)+S(r, -,q,,r2 r)) (3.25)

and the spectral density of H(f) is

SH(r) = A28(r - rp) + A26(r - rq) (3.26)

+(A 2 + A 2q)6(" - (r, + ,))

T he ico" er.. .. of H at - - I A - : t- gv n as -
1. , icH,, 2 ) = Aq tv..,.

ric+(r ,A) A q (3.27)
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I where Apq is the magnitude of the interaction between Ap and Aq, while

Ap+q is the magnitude of direct specular scattering at rp + rq. Notice that

if Ap+q = 0, then, the bicoherence is equal to one. If there is no interaction

between scatterers at rp and rq, then Apq = 0 and the bicoherence is equal

to zero.

I 3.3.4 Example 3:

Consider the canonical scatterer shown in Figure 3.5. Assume that the

radar returns for this target satisfy (3.15), (i.e., they can be modeled as

a sum of complex exponentials). Further, assume that the backscatter

signals of magnitudes A and B correspond to scattering from the first and

the second edge of the arc, respectively. Also, assume that the backscatter

signal of magnitude C represents an interaction term and corresponds to

I propagation to the first edge then to the second edge and back to the radar.

The returned signal of magnitude D corresponds to specular scattering from

I the tip of the flat section connected to the arc. The geometry of this target

is chosen such that the time of arrival of the multiple interaction coincides

with the backscatter from the tip of the flat edge (see Figure 3.5 where

the dimensions are given in units of propagation time). The total returned

signal is given as (where w = 27rf, and f is in GHz)

H(w) = Aexp{-j(k +4w)}+Bexp{-j(z+16w)}

+C exp {-j(b + 02 + 20w)} + D exp,{-j(0 3 + 20w)}

The transient response of this target has three peaks; the first peak at 4 ns

of magriAude IAI, the second peak at 16 ns of magnitude IBI, and the third

peak at 20 ns of magnitude IC + DI. The birange of this target shows a
p k - 1 A 1 0%6j an d l t,,
p~ a -. nd (16,' ) I.he peak in the birange

is an indication of an interaction between the two edges of the arc. This

does not imply, however, that the peak at 20 ns in the transient response
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Figure 3.5: A canonical target whose specular scattering component of mag-
nitude D is received by the radar in the same time instant as the interaction
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is totally due to multiple interactions. Moreover, the bicoherence of the

peak at (4,16) ns in the birange profile is C/C-l + D1 which indicates

U the relative magnitude of the response due to the interaction compared to

the total magnitude of the response at 20 ns as displayed in the transient

response. This example shows that the bicoherences of the peaks in the

birange may be used to separate the responses due to multiple interactions

from the responses due to specular scattering when they coincide in the

* transient response.

Using the bicoherence to separate between interactions and specular

scattering is not as accurate as discussed above. The estimate of the bico-

herence is accurate if the scatteri'-, -' --n a radar target satisfies the model

of equation (3.15). It is often the case, however, that the scattering is

dispersive, so that the amplitude of specular scattering or interactions is

dependent on frequency. Then the bicoherence of a pure interaction at

(rp, rq) will not equal one. Furthermore, if neither interaction nor specular

scattering occurs at (rp,rq), the bicoherence may not equal zero, because

of residual values of the birange and spectral density at rp + rq. Neverthe-

I less, the bicoherence of radar targets can be used to quantify the level of

interactions between scatterers.

3.4 The Birange of Dispersive Scatterers

The scattering model given in (3.15), on which the interpretation of the bi-

range is based, does not include scattering from dispersive subcomponents.

In the following section we discuss the effect of scattering from dispersive

targets on the interpretation of the birange.

Physically, dispersion occurs when the interrogating signal (transmitted

* by the radar) loses energy gradually while propagating along the target. A

non-dispersive target scatters energy strongly at short time intervals rela-
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tive to the propagation time along the target. A dispersive target scatters

energy with lower magnitude but over longer periods of time.

An example of dispersive scattering behaviour is when the amplitude

A(w) changes with frequency as
pI

A(w) = Aoexp {-j -} (3.28)

where p is a constant. The measured frequency response in this case is

Hd(w) = exp{-j }H(w

= _Apexp{jw(P-+tp)-j'p} (3.29)
p= 1  W2

by ignoring the higher order terms. Notice that, with this form of dis-

persion, the signal that scatters at time tp for the non-dispersive case will

scatter gradually as a function of w. For high frequencies, scattering oc-

curs at time tp approximately, but as the frequency decreases the scattering

center is displaced away from tp. This corresponds to gradual energy loss

along the target when illuminated by the radar. This type of dispersion has

similar effects on both the transient response and the birange profile. Peaks

in the transient response and the birange become less localized because of

the gradual energy loss. In a special case, however, if an interaction oc-

curs between tp and tq where the the dispersion coefficients are such that

pP = -pq, then the positive displacement at tp is compensated by the neg-

ative displacement at tq, without displacing the position of the interaction

term at (tp, tq).

Windowing the measured scattering data and the triple correlation of

the data may reduce the effect of this type of dispersion on the transient

response and the birange profile. By windowing the frequency response

of the target, the peaks corresponding to non-dispersive scatterers are dis-

played over W seconds (where W is the width of the main-lobe of the
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I window used). The peaks corresponding to dispersive scatterers (of disper-

sion width 6 seconds), however, are displayed over W + 6 seconds. Thus,

by choosing W > 6, it is possible to reduce the disagreement between the

signature of a dispersive scatterer and that of a non-dispersive one.

As another example, consider the scattering from a small conducting

sphere as compared to scattering from a point scatterer. The amplitude

A(w) of the scattered signal from a sphere, when measured in the resonance

region, changes with frequency as [45]

A(w) = Ao (1 + a cos(jPw)) (3.30)

where a,#Q, and Ao are constants. Such a behaviour is a result of what

is commonly known as the creeping wave. The transient response of the

sphere peaks in two positions. The first peak corresponds to direct specular

scattering from the sphere; the second peak is caused by the creeping wave.

Therefore, the dispersive behaviour of the sphere as compared to a point

target is characterized by an additional peak in the transient response.

Assume that the three-point scatterer target in Example 1 is replaced by

* a three-sphere target where the amplitudes A(jw) are frequency dependent

as given in (3.30). The transient response and the birange of this target are

I shown in Figure 3.6 for a = .6,0 = .01, and A0 = 1 . Notice that there are

more peaks in the transient response due to creeping waves around each of

the three spheres. The birange, however, is unaffected by such dispersive

behaviour except for changes along the axes (where the magnitude squared

of the transient response is displayed). Hence, while the transient response

of the dispersive target has changed, the number of multiple interactions

in the birange remains fixed. The reason is that, in this example, the

responses corresnnA ring to fl. -pn A.vas ..do not Dlj . \

(h(tj)h(t2)h'(tj + t2)). However, it is possible, by changing I he dimensions

of the target for the creeping waves to introduce, by coincidence, false
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responses in the birange. In general, unmodeled dispersive behaviour cause

changes in both the transient response and the birange profile. The birange,

however, is less sensitive to these changes than the transient response.

3.5 Examples of the Birange of Experimen-
tal Targets

Examples 1 and 2 above provide an intuitive demonstration of the role of the

bispectrum in identifying multiple interactions. The interpretation of the

birange is also valid when scattering from a target incorporates unmodeled

dynamics such as frequency dependent amplitudes and dispersive behavior.

In the following, examples of the birange of experimental radar data are

given. The purpose of these examples is to examine the birange of real

radar signatures in terms of the interpretations given above.

This section considers some real radar targets whose frequency response

is either measured experimentally or derived theoretically. The reasons for

considering the following examples are: 1) To determine what can be ex-

tracted from the birange profile of canonical targets with known scattering

behavior. 2) To study the effect of various parts of a generic aircraft on

the birange. 3) To identify some of the scattering mechanisms from com-

plex objects (such as commercial aircraft). 4) To consider targets whose

backscattered data are measured in the S-band where the term Apq in the

scattering model of (3.15) has low magnitude.

The birange profiles that are displayed in the following examples only

show those responses with bicoherences > 40%. The reason for displaying

the birange profiles as such is to simplify the interpretation of the responses

in terms of the target substructures. The triple correlations of the scatter-

ing data used to compute the birange profiles are all windowed using the

Minimum Bias Supremum window function given in equation (2.45).

72

I



I

_*.0 -. 0 3O 0:0 2O ,0 0 ,0 ai . . - .. -. .nu, ,.. .: .... ..... .... .. .... i..........
It ................ ....! ".

""- 0 00 0 40

\II

n.b ..,. _.,, z.,, W ,0 0 4.D a o A D

II,-o- '

,, " . . *. \ '

;,1 -.... * % .,,,: ,;" ',

;/ "- • /

Figure 3.: Transientrnd p

S,,, -.7H,-R a n ge,, [ in ] ,,*% *% \- ..

I 
P73-...

I *%#
i, .o .. .oo ..o i , -. o ,. .o ., o



The following suggestions can be followed when examining the birange

of real radar targets.

9 Ignore any responses outside the prinr;p" 3 triangle of each sector.

The principle triangle of the first sector is defined by rl,r 2 > 0 and

rl + r 2 < c where Af is the sampling period of the measured fre-

quency response. For properly sampled radar signals (i.e., satisfying

the Nyquisit sampling criterion) no responses should appear outside

the principle triangle.

* It helps to display the target along each axis and rotated according

to its orientation angle with respect to the radar.

9 A peak at (ra, Tb) in the birange profile is an indication of interaction

between a scattering point on the target at a distance ra from the

origin and another scattering point on the same target at a distance

rb from the origin.

3.5.1 The Birange of a Canonical Scatterer

Canonical scattering objects are usually considered for mechanism iden-

tification problems, and are useful for compact range studies. Usually,

scattering from canonical objects is examined in the time domain using the

transient response. Because canonical scatterers have a small number of

scattering terms, their scattering responses are relatively simple and can

be studied in detail.

The Tilted Flat Plate

The canonical target considered is a 2ft x 2ft flat plate whose trailing edge

is tilted by 460 above the horizontal. In addition to specular scattering from

the edges of the plate, a few multiple interactions are also displayed in the
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I transient response (see Figure 3.8). A possible scenario of an interaction

of this flat plate is (see Figure 3.7) radar, to first corner, to second corner,

i to radar where the first and second corners are either on a common edge

(denoted by g) or diagonally opposite (denoted by c). Another possible

I scenario of interactions of this plate is radar, to first edge, to second edge,

to first edge, to second edge, to radar (denoted by d). Notice that the

time delay of the interactions that follows scenario g will be dependent

* on the width of the plate and not on the delay to each of the interacting

scatterers because the signal that encounters the interaction travels once

along the plate. However, the time delay of the interactions that follow

the second scenario is dependent on the propagation time to each of the

interacting scatterers. Therefore, it is expected that the birange will detect

the interactions that follow the second scenario.

The transient response and the birange profile of the flat plate at 50

azimuth are shown in Figure 3.8. The frequency band used is 2 - 18 GHz

with an increment of 20 GHz. Notice that in both figures only one interac-

tion is detected in the birange which can be interpreted, using the second

I scenario, as a double bounce between the leading and trailing edges of the

plate (denoted by d in Figure 3.7). This interpretation can be further jus-

I tified by the fact that the birange profile of the plate at 0' azimuth shows

the same interaction.

3.5.2 The Birange of a Generic Aircraft Model

U We first examine the scattering from a generic aircraft model with remov-

able parts (denoted by FWST (75] in Figure 3.9). The advantages of study-

ing a target with removable parts are: 1) to examine the contribution of
each part , , , ... to t,,, ... number of scattering mechanisms that

can be extracted, 2) :,o follow the changes in the transient responses or the

I
75I
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Figure 3.7: Scenarios of possible interactions for the tilted flat plate.
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I
birange profiles as more parts are added to (or removed from) the target.

The frequency band of the data used in this example is 2 GHz to 18 GHz

with a frequency increment of 100 MHz. The FWST model is 6 inches long

with a wing span of 4 inches. Figures 3.10-3.i2 show the birange profile

of different configurations of the aircraft parts. Notice that for the case

where scattering is from the fuselage only (see Figure 3.10), there is a

single response in the birange which could be due to scattering from the 3
nose and then the trailing edge of the fuselage.

If the horizontal stabilizer is added to the fuselage (see Figure 3.11),

then a multiple interaction between the leading edge of the stabilizer and

the nose (denoted by a in Figure 3.11) is detected. Also detected in the

birange, is an interaction (denoted by b in Figure 3.11) between the leading

edge of the stabilizer and the opening in the fuselage where the wing part

of the aircraft is inserted. Similarly an interaction (denoted by c in the

same Figure) is detected between the trailing edge of the stabilizer and

the same opening in the fuselage. The responses on the diagonal are not 3
well understood but may be due to scattering from the corners between the

front edge of stabilizer and the fuselage. 3
Figure 3.12 shows the birange profile and the transient response when

all parts of the aircraft are present. Notice that the response denoted by a is 3
an interaction between the trailing edge of the wing and the corner between

the wing leading edge and the fuselage. A similar interaction (denoted by 3
b) between the leading edge of the stabilizer and the wing-fuselage corner

is also detected. The response on the diagonal (denoted by c) is possibly

due to intera.ion between both ends of the wing (corresponds to scattering

from one end of the wing then scattering from the other end). Notice that

the interactions between the stabilizer and the opening ;n the fuselage that I
are shown in Figure 3.12 (denoted by b and c) do not appear in Figure 3.12
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I after inserting the wing into the fuselage.

The above examples of the birange profiles of the generic FWST aircraft

show that interactions between the edges of the stabilizer and the edges of

the wing are likely to appear in the birange. Further, the addition of parts

of large size relative to size of the fuselage (such as the stabilizer or the

I wing) yields significant changes in the birange profile of the generic target.

3.5.3 The Birange of Real Aircraft Models

In the following, we study the birange profiles of real airciaft models. The

birange profiles of the generic aircraft model studied in the previous section

may help examining the birange of real aircraft models. The major differ-

I ence between scattering from the generic aircraft and a real target model

is scattering from the engines. The engines are often major contributors to

I scattering from real radar targets [75]. Therefore, in addition to scattering

from the wing and stabilizers, interactions between the engines and other

scattering subcomponents of a real target are likely to be detected in the

birange profile.

There are two reasons for examining the birange profile of real aircraft

I models: 1) such targets are likely radar targets, and 2) their structures are

very complex and therefore consist of a broad spectrum of scattering mech-

anisms including multiple interactions. The goals of considering the birange

of real aircraft models are: 1) to attempt to identify some of the scattering

mechanisms in the birange, and 2) to discriminate between targets based on

their birange profiles. The discrimination problem is considered in Chapter

I V.
The birange profiles for scaie models of five commercial aircraft models

* are shown in Figures 3.13-3.17. Details of the radar measurements of these

targets can be found in [68]. The backscattered signals are in the frequency
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range (1.5 - 12) GHz which corresponds to the resonance scattering region i

for full scale targets. The polarization mode used is Horizontal transmit

Horizontal receive (HH). Notice that the dominant responses in each figure

correspond to scattering from the wing and engines. Additional responses

around the stabilizer-tail region are also recovered.

Figure 3.13 shows the birange profile and the transient response for the

Boeing 707 at 00. The birange of this target shows interactions between the

engines and the stabilizer (denoted by a), between both edges of the stabi-

lizer (denoted by b), and between the fuselage-tail corner and the leading

edge of the wing kdenoted by c). Figure 3.13 also shows other interactions i

of lower magnitudes. Figure 3.14 shows the transient response and the

birange profile for the Boeing 727. The interactions detected in this case

are between the engines and the wing-fuselage corner (denoted by a) and

between the wing tip and the front edge of the fuselage (denoted by b).

Some of the responses, however, cannot be explained easily (such as the

one denoted by c) and are perhaps due to interactions between the win-

dows of the airplane and other parts of the aircraft. Figure 3.14 also shows

other interactions of lower magnitudes. Figure 3.15 shows the interactions

detected in the birange profile of the Concord. These interactions are be-

tween the engines and fuselage front edge (denoted by a), between the tail

and the wing-fuselage corner (denoted by b), and between the tail and the

wing tip (denoted by c). The birange profile of the Boeing 747 (see Fig-

ure 3.16) shows interactions between the wing tips and the engines (denoted 3
by a) and between the stabilizer and the wing-fuselage corner (denoted by

b). Figure 3.17 shows the birange and the impulse response for the DC10 I
target model. Three interactions are detected in the birange of this target;

the first is between the engine and front edge of the fuselage (denoted by

a), the second is between the stabilizer and wing-fuselage corner (denoted
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I by b), and the third is perhaps between a window of the airplane and the

leading edge of the wing (denoted by c).

It is clear from the above figures that some aircraft models have more

significant interactions than other models. Hence, the birange is more infor-

mative for some targets than others. Also, it is clear from these figures that

different targets have significantly different birange signatures. Therefore,

the birange profile is a potential candidate for target classification.

After detecting the interaction terms (with bicoherence ; 1) in the

birange profiles of the above target models, the corresponding terms in the

transient responses were located. By examining the relative amplitude of

the interaction terms of real target models as they appear in the transient

I response, it is possible to conclude that these interactions have relatively

low magnitude compared to the magnitude of the responses that correspond

I to specular scattering. To quantify this result let SIR denote the ratio of

specular scattering to interactions in dB as they appear in the transient

response. The specular scattering component is computed as the average

of the magnitudes of the interacting scatterers (Ih(ri)l + Ih(v2))/2. The

magnitude of the interaction is given as Ih(r, +r 2)1 provided that no specular

scattering appears at ri + r 2 (bicoherence ; 1). SIR is then given as

SIR = 20 log J I + Ih(r2)] (3.31)
h(r, + r2)1 I

I After estimating SIR for several interaction terms in the above examples,

we observe that dB < SIR < 20 dB. 
(3.32)

This result indicates that the interaction terms are not always easily rec-

ognized in the transient response of real target models. Therefore, it is
reasonable to assume that most responses of comparable magnitudes il '"e

transient response of a real target model correspond to specular scatter-

ing. If the goal, however, is to search for interactions and the interest is
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in the type of scatterers that produced these interactions, then the above

result shows the importance of the birange profile in detecting multiple

interactions, especially those with low magnitudes.

3.5.4 The Birange of S-Band Scattering Data

In this section we examine the birange profile of an aircraft measured with

an S-band radar. The target size is about 200 times the operating wave-

length. The measurement frequency band is 3.1 - 3.4 GHz for a full scale

aircraft. The data consist of 64 frequency measurements corresponding to

a frequency increment of 4.1 MHz. The measurements were taken while the

aircraft was in operation and are therefore corrupted with noise. Details

on the calibration and motion compensation of thL data are given in [69].

Scattering at such high frequencies is very localized and highly spec-

ular [75]. In general, due to the large target-size to wavelength ratio,

the specular part of the signal is the most dominant in the transient re-

sponse [75].

Figure 3.18 shows the transient response and the birange of the A4

whose backscatter data were measured at S-band. It is clear that the bi-

range of such a target reveals the complex scattering mechanisms between

various subcomponents of the target scattering elements. Several inter-

actions are detected particularly between the engines and the stabilizer

(denoted by a), between the tail and the wing tip denoted by b), and be-

tween the fuel tank and the wing (denoted by c). A common feature of

all detected interactions is that the SIR is higher than that obtained for

scattering in the resonance region. The reason is that, while scattering in

the S-band is more localized and can be more easily resolved, compar, d

to scattering in the resonance region, the propagating short wave between I
interacting scatterers becomes weaker due to diminished electromagnetic
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coupling [711.

It is possible to extract many details about the target scattering behav-

ior in the S-band frequency range from the birange profile. These interac-

tions, however, are sensitive to changes in the target aspect angle because

of the large size of the target relative to the wavelength.

3.6 Extraction of Scattering Features Frem
The Transient Response and The Birange

The above examples of the birange of real aircraft models have shown that

some of the interactions can be detected using the birange concept. The

coordinates of the responses in the birange indicate the location of the

interacting scattering subcomponents. The accuracy of these coordinates

depends on the fast Fourier transform algorithms and the number of pixels

used to display the birange profile. It is also clear from these figures that

it is possible to characterize a radar target by a small number of features

extracted from both the transient response and birange profile. Therefore,

it is possible to reduce the data storage requirement of the birange pro-

file if the interactions shown in these examples are extracted and labeled

in terms of their coordinates and bicoherences. An algorithm for extract-

ing scattering mechanisms from the birange profile when estimated using

classical bispectral estimation techniques is given in this section.

It is possible to use the extracted features in a structural pattern recog-

nition machine that discriminates between targets using relational graph

matching techniques [76). Also, estimates of the locations of scattering

mechanisms (which are more accurate than the estimates given by the

FFT algorithm) can be obtained using the following feature extraction al-

gorithm. The following algorithm is a generalization of the peak search

algorithm used in [77] for estimation the location of the peak in the tran-
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sient response.

Feature Extraction Algorithm:

1- Estimate the birange profile and the transient response as given in Section

3.1. (Better results were obtained when the window function used is Gaus-

sian [77], possibly because the Fourier transform of a Gaussian function is

also Gaussian).

2- Search for local maxima in the birange where each selected peak occurs

among six adjacent points as shown in Figure 3.19. Tf (tli, t2j) indicates the

location of the selected peak, then

Btltjl= maxllB(tl~-_x),t2¢j-x))l, [B(tl(i,x,,2(j+l))[, (3.33)

I B( tli, t2¢j-1 ))1, I B(ti,, t2(j+l))1) IB( ti, t~j)lI

Also, search for the peaks in the transient response using the algorithm

given in [75].

3- Fit a Gaussian function to each set of data consisting of the selected

peak in the birange and the neighboring six minima. Let ti, and t2. denote

the coordinates of a local maximum. Then the Gaussian window function

is given as

w(tI,t 2) = Aexp{I-a(tl - ti.)2 -P (t2 - t2.) 21 (3.34)

Given the coordinates and the magnitudes of seven bispectral samples (see

Figure 3.20) including the maximum given using the FFT algorithm, we

need to solve for a, P, tl,, t2 , and A. Therefore, estimates of these pa-

rameters can be obtained using local least-squares fit on all seven samples.

The estimates of i: and t2, in the bispectral response can then be obtained

by the following

t. X + X2  (3.35)

2
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t2r X3 + X4
2

where 
X 

'( 
.6

X1-2r,(t(i....) - t1i) - 2(tl(i....) - t1i) (.6

= 2rl(tl(i....) - t1i) - 2(tl(i-..) - t1i)

= 2r2 (t2 (1.... ) - t23) -2(t 2 ( 3 lI) - t2j)

X4 = (r4 I 1)(t-1 -

and

=ln(IB(tu, t2 j) - ln( jB(tl(i), t2jJ))

r3 ln(IB(tuj, t21)I) - ln(IB(ti.) t2jl)I ) (3.37)
=ln(jB(tii, t2j)I) - ln( JB(t 1 i, t2(j+1I))I1)

r4 ln(IB(tl(i....), t 2(I+l))I) - ln(IB(tI(i-l), t2 j) (3.39)

r ' 2  ln(IB(t(i. 1), t2(j+l))I1) - ln(IB(tii, t2(U+))i) (3.40)

I 4- Fit a G aussian window to each set of data consisting of the selected peak

and the neighboring minima in the transient response [77]. The location tr

I of the peak in the transient response can then be estimated using

=2r(tk - tk...1) + 2 tk,+1 + 2 tk (3.41)

I where ik, and tk,+1, tk...1 denote the location of the selected peak as given

using the Fourier transform and the location of the adjacent values. The

*parameter ris given as

_ln(Ih(k)I) - ln(Ih(k +, ±)1)
* lr,(Ih(k)I) - ln( jh(k - 1)1) (3.42)

I 
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where Ih(k)l is the magnitude of the transient response at time k.

5-All detected maxima must satisfy the symmetry properties of the birange.

This condition is needed to detect any possible failures of this peak search

algorithm. If some peaks do not satisfy the symmetry properties of the

bispectrum then repeat the search starting from a different corner of the

bispectral hexagon.

6-If the measured data are noisy then, to eliminate noise peaks, ignore any

local maximum in the birange profile where the magnitude of the birange at

this maximum is such that IB(ri,r 2) < Ku where a is the noise standard

deviation and K is a constant (K = 1 is used in this study). Also, ignore

any local maximum in the transient response where the amplitude of the

response at this maximum is such that Ih(r)l <a

Experimental Results

Table 3.1 shows two examples of the e3timates of the coordinates of the

interaction term of the blade-sphere target using the above algorithm. The

true values of the coordinates and those given by the Fourier transform

algorithm are also shown. The range resolution is 6r = 0.015 meters, cor-

responding to 10 GHz frequency band. Notice that the estimates obtained

using the above algorithm are closer to the true values compared to those

given by the fast Fourier transform.

The features extracted from the birange profiles of five commercial air-

craft using the above algorithms are listed in Tables 3.2-3.3. Notice that

neither the number of scattering centers (extracted from the transient re-

sponse) nor the number of interactions (extracted from the birange) is the

same for both targets.
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Table 3.1: Comparison between bi-range estimates obtained using Gaussian
fitting technique, FFT algorithm and the true values.

Blade-Sphere Target 6r = .015 m

Locatien of Interaction Term

Examples True FFT FIT
Example #1, ri 0.1789 0.1715 0.1745
Example #1, r2 0.3111 0.3185 0.3168
Example #2, r, 0.0872 0.0725 0.0726
Example #2, r 2 0.3965 0.3869 0.4105

I
I

Table 3.2: Features extracted from birange profile and transient response
for a Boeing 707

I B '707 at SNR = 10 dB, 0 deg. Azimuth
Model length ; .32 m, Sr - .015 mn

Scatt. Centers Range [meters] Amplitude [dB]3No. 1 .0165 1.15
No. 2 .1213 2.14
No. 3 .1901 2.36
No. 4 .2372 2.03
Interactions Birange (r, r 2) Bicoherence
No. 1 (.1209,.2822) 47 %
No. 2 (.1933,.3185) 53 %

9
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Table 3.3: Features extracted from birange profile and transient response
for a Boe'.ag 727

B727 at SNR = 10 dB, 0 deg. Azimuth
Model length ;- _ .235 m, 6,r zt .015 m

Scatt. Centers Range [meters] Amplitude [dB]
No. 1 .0143 1.13
No. 2 .1036 1.69
No. 3 .1775 1.94
No. 4 .2249 0.90
Interactions Birange (rl, r 2) Bicoherence
No. 1 (.0673,.1106) 87 %
No. 2 (.0252,.1765) 44 %
No. 3 (.1841,.1093) 52 %

3.7 The Effect of Noise on The Birange Pro-
file

Radar scattering signatures are usually corrupted with additive noise and

clutter. In this section we investigate the effect on the birange profile of

additive disturbances to the frequency domain scattering data. The distur-

bance model used for noise and clutter is a stochastic model [45]. The noise

model is Gaussian (colored or white). Ksienski and White [22], described

the noise model of a radar system as being both additive and multiplicative,

where the additive part is due to thermal and shot noise, and the multi-

plicative part is due to measurement errors and is dependent on the signal.

According to [22], if none of the noise sources is dominant and by virtue

of the central limit theorem, the assumed noise model is zero mean white

Gaussian. The clutter model is either Gaussian (due to migrating birds and

weather, [17]) or non-Gaussian (due to ground clutter [17]). Combining the

two models, it is possible to classify disturbances into two groups: Gaussian

and non-Gaussian.
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1 3.7.1 Additive Gaussian Noise

The third moment of any zero mean random variable with symmetric dis-

tribution is zero. Hence, the triple correlation of a zero mean random

variable with symmetric probability density function is zero, which implies

that the bispectrum of a pure noise signal is zero. Let H'(f) denote the

I noise contaminated scattered radar signal at frequency f.

HI'(f) = H(f) + n(f) (3.43)

where n(f) is a zero mean Gaussian random variable, and H(f) is the noise-

less backscattered signal. Also, assume that the sample mean is removed

from both the noisy data H'(f) and the noiseless catalog data H(f), so

that E{H'(f)} = 0. Then the third order cumulant of H'(f) is

R' (fl,f 2) = E{H'(f)H'(f + fl)H'(f + f 2 )} = .RH(fl,f 2)(3.44)

= BH' (tlt 2 ) = B"(tt2)'

Therefore, the birange of noisy radar signals should be unaffected by ad-

I ditive Gaussian noise provided that an infinite number of data samples is

available. In practice, however, only a finite number of data samples is

available. Hence, additive Gaussian noise is not totally suppressed in the

birange profile.

Figure 3.21 shows the transient response and the birange profile of the

* hypothetical target of Example 1 where the simulated radar returns are

corrupted with additive white Gaussian noise at -10 dB signal-to-noise ra-

tio (SNR). Compare Figure 3.21 with the corresponding noiseless profiles

shown in Figure 3.2. Notice that, while it is difficult to identify some of

I the scattering mechanisms in the noisy transient response, it is possible to

do so in the noisy birange profile as shown in Figure 3.21. Thus, birange

processing seems to more effectively suppress the additive Gaussian noise
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than does transient response processing. This does not necessarily imply

that noisy radar targets can be classified with a lower probability of error

using the birange (see Chapter V).

Suppression of additive Gaussian noise is dependent on the number

of data samples used to estimate the triple correlation of the data. To

study the effect of noise on the birange profile when it is estimated using

either finite or infinite data sequences, it is appropriate to examine the

estimates of the triple correlations of noisy radar returns. The expected

value of the triple correlation of noisy backscatter data H'(f), denoted by

RH'(fl,f 2) and estimated using (3.7) is related to expected value of the

triple correlation of the noiseless data RH(fl, f2) by the following;

RH'(f 1 ,f 2) = R'(f1 ,f 2) (3.45)1 N N

IH*(f)H(f1 + fi)n(fi + f2) + H*(fi)H(f 2 + fi)n(fi + fl)

+ -N=Z H(f + f)H(fi + f2)n*(fi) + - H*(fi)n(fi+ fi)n(fi + f2)

N

1N  1 N

+ 7 H(fi + fi)n*(fi)n(fi + f2) + - H(f 2 + fi)n*(fi)n(fi + fi)

+- n*(fi)n(fj + fl)n(fi + f2).Ni=1

As N --+ oo the second, third, and fourth terms on the right hand side of the

above equation converge to [57] {rH(fl) + rH(f 2 ) + rH(fi - f 2)}En[} = 0

where rH(fk) = E{H*(f)H(f + fk)}, and E{n} = 0. Also, the fifth, sixth,

and seventh terms converge to 3u 2E{H} = 0, where 0,
2 is the noise variance

and E{ff} = 0 (due to subtracting the mean from the data). The last term

can be written as E{n3 } = 0. Segmentation or averaging over independent

records may be needed for convergence of these terms [571. Therefore, as

N --+ oo the estimate of the noisy triple correlation approache., the estimate
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I of the noiseless triple correlation, thus producing noise-free birange profiles.

lim RH'(fIf 2)- R"(ff 2) (3.46)I N---oo

An expression for the expected value of the error between the estimate

of the triple correlation using a finite sequence of noisy radar data and the

estimate using noiseless data is given below. This expression represents the

effect of noise on the birange profile when estimated using a finite number

of data samples N. Let a = rH(O). Then after algebraic manipulation of

products of the terms in (3.45), the following is obtained

I ERH'(f1 ,f 2) - RH(f 1 ,f 2 )12  [9a2a.2 + 45ao 4 + 15o "6] (3.47)

where a 2 is the noise variance. This means that the mean square error

between the noisy triple correlation RH' and the noiseless triple correlation

RH is dependent on the noise power and increases as a function of 'Y6.

Equation (3.47) can be regarded as a quantitative measure of the effect of

3 noise on the birange when estimated using finite data records.

3.7.2 Additive Non-Gaussian Noise

By virtue of the central limit theorem [22], the additive noise in the radar

scattering data are assumed to be Gaussian. Generally, the additive noise

is not Gaussian for two reasons: 1) The noise is partially multiplicative,

and so is only asymptotically Gaussian. 2) Clutter is often modeled as a

non-Gaussian disturbance added to the scattering data.

In this section we study the effect of additive non-Gaussian noise on the

birange. Consider the following,

H'(f) = H(f) + C(f) (3.48)

where H'(f) is the backscattered frequency response of a certain target

and C1 represents non-Gaussian noise. The triple correlation of the above
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[I signal (for infinite sequence of data) is given as

R H(fl,f 2) = E{H'"(f)H'(f + f1 )H'(f + f2)}

= RH(f,f 2) + RC(f 1 ,f 2).

Thus, the effect of non-Gaussian noise on the bispectral response of a zero

mean signal is represented by RC(f 1, f2), which is dependent on the third

*moment of C. Non-Gaussian disturbances (such as ground clutter) often

have non-zero first and third order moments [17]. For this reason, additive

non-Gaussian noise is not suppressed in the birange even for an infinite

number of samples.

For a finite data sequence, following the same derivations as in the

Gaussian noise case, the effect of additive non-Gaussian noise on the triple

correlation can be quantified as

E{.RH'(f 1 ,f 2) - R H(f 1 ,f 2)} 2 = (3.49)

- [9a 2E{C}2 + 9aE{C4} + 6aE{C}E{C3} + NE{C6}

where a = vH(0). Notice that if N -- co the mean square error between

noisy and noiseless triple correlations approaches E{C'}. Also, because

E{C} 5 0, and E{C'} 5 0, the term 6aE{C}E{C3 } contributes to the

mean square error. However, this result does not imply that classification

of radar targets in noisy environment (where the noise is non-Gaussian)

based on features extracted from the birange produces poor performance

compared to using other target representations. The reason is that non-

Gaussian noise has similar effects on other types of display of target fea-

tures.I
3.8 Summary

The birange profile of radar signatures was introduced in this chapter.

The definition of the birange as a display of target signatures in the two-
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dimensional time domain is based on the bispectrum. The introduction of I
the birange to radar signature analysis is motivated by the interest in iden- I
tifying multiple interactions, thus achieving a more accurate description of

the target scattering subcomponents and enhancing the target identifica- -
tion process. The birange of radar signatures, as defined in this chapter, is

based on a scattering model platform that includes specular scattering and

multiple interactions. The model used is a sum of complex exponentials at

frequencies related to the locations of scattering centers along the target.

The estimation of the birange is slightly different from conventional

bispectral estimation techniques. Details of an estimation algorithm are

given in this chapter. Also, the interpretation of the responses in the birange

is presented using two ,oxamples of synthesized targets. Means for detecting

false interactions in the birange profile are also discussed. Further, the

effect of unmodeled dyn.nmics in the backscattered signal on the birange is I
investigated.

The application of the birange profile as a radar signature analysis tech- -
nique is first examined using experimental radar returns for a canonical ob- I
ject with somewhat known scattering behavior. Then the birange profiles

of experimental radar returns from a generic aircraft model (with remov- -
able parts) are investigated. The detected responses in the birange profile

of several configurations of the parts of this aircraft are associated with the I
geometry of the aircraft.

The birange profiles of experimental radar returns from real aircraft I
models at different frequency bands are also examined in terms of the de-

tected interactions and the geometry of the targets. Also, a feature extrac-

tion algorithm to estimate the location of the interactions in the birange

profile is given. This algorithm is used to provide tabulated features ex-

tracted from both the transient response and the birange. The extracted
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I features can be used to identify radar targets using structural pattern recog-

nition algorithms without requiring large memory space. Finally, the effect

of additive Gaussian and non-Gaussian noise on the birange, when esti-

mated using either finite or infinite data sequences is investigated.

I
I
I
I
I
I
I
I
I
I
I
U

I
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Chapter 4

BIRANGE ESTIMATION
USING AUTOREGRESSIVE
MODELING

4.1 Introduction

This chapter is con. rned with the estimation of high resolution birange

profiles. The birange p. le of radar signatures as introduced in the previ-

ous chapter is estimated using classical Fourier transform techniques. The

res'lution of the estimated profiles is limited by the measurement band-

width. Furthermore, the two-dimensional window function used in Chapter

III has a wide mainlobe, which further limits the resolution in the birange.

If the birange is estimated without windowing the triple correlation, then

two-dimensional sidelobes will appear along each range axis. Therefore,

with finite sets of radar scattering data, resolution problems in the birange

when estimated using Fourier techniques are inevitable.

The key to solving the resolution problem is in avoiding the limita-

tions imposed by Fourier-based processing of finite length data records.

Instead, parametric modeling of the scattering data is employed. "Para-

metric" means that scattering as a function of frequency satisfies a certain

model whose parameters are estimated from the measured data. The main
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I madvantage of parametrization is the removal of the effect of limited reso-

lution, thus providing higher resolution than can be obtained with Fourier

I transform based methods. The limitations of parametrization arise because:

1) electromagnetic scattering at frequencies outside the measurements can-

not be easily predicted from the measured data, but depends on many

factors such as dispersion, scattering region, etc., and 2) model parameters

are often estimated using nonlinear algorithms, and thus, are sensitive to

noise in the data. If the measured backscatter has a high signal-to-noise

ratio and the target has a slowly varying frequency response, then these

limitations are small, and significant resolution improvements over Fourier

methods can be achieved.

* Parametric modeling of radar signatures has been treated extensively

in the literature [5,7,8]. A brief summary of the algorithms used and the

m results obtained is given in Chapter II. The methods used are based on

AR, ARMA, MUSIC, and Prony spectral estimation techniques. While the

I ARMA methods ignore any prior information about the target scattering

data, the MUSIC algorithm and the Prony method incorporate the a priori

m known exponential nature of the radar scattering data as modeled in (3.15).

The consideration of these parametric methods is motivated by the interest

in obtaining high resolution impulse responses.

There has been much recent interest in high resolution bispectral esti-

mation [11]. The routes that are being followed to achieve high resolution

bispectra can be classified into four categories: 1) maximum likelihood bis-

pectral estimation, 2) maximum entropy bispectral estimation 3) AR, MA,

and ARMA modeling, and 4) harmonic decomposition methods (MUSIC,

[ - etc.. ). Partial results have been obtained for the first two categories

[11,24,34], but those remain open problems. It is not yet clear whether

high resolution bispectral estimation methods that are based on a maxi-
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mum likelihood approach or on maximizing the entropy of the data can

be found. Unlike spectral estimation methods, bispectra estimated using

AR modeling are not linked to either maximum enttopy or maximum like-

lihood bispectra [11]. Hence, it is not possible to deduce one from the

other. Most of the recent results on high resolution bispectral estimation

are based on autoregressive (AR), moving average (MA), and autoregressive

moving average (ARMA) modeling techniques, and on harmonic decompo-

sition methods. In [30], a method based on the MUSIC algorithm and

incorporating triple correlations is proposed for high resolution bispectral

estimation purposes.

The estimation of the model parameters is in some cases related to the

urder of polyspectra under investigation. For example, when the spectral

response is needed, the model parameters are estimated using autocorrela-

tions or both triple correlations and autocorrelations. But when the bis-

pectral response is needed the model parameters are estimated using triple

correlations only.

In this chapter, an algorithm that adopts AR parametric modeling ap-

proach, where the AR parameters can be estimated using third order cu-

mulants, is devised and tested using experimental radar data. The goals

are: 1) to attempt to improve the accuracy of the extracted multiple inter-

actions from the birange profile, and 2) to obtain encoded birange profiles

of the targets of interest in terms of the model parameters. The purpose of

the present investigation is to investigate whether AR, modeling can be used

to generate high resolution birange profiles. The quality of the obtained

birange profiles is examined. The reason for discussing AR modeling in

particular is that the techniques used to estimate the AR parameters de-

pend on the order of the polyspectral response sought. Incorporating third

order cumulants into the estimation procedure is a major feature of the
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estimation algorithms.

4.2 Birange Estimation Algorithm Using AR
Modeling

Autoregressive modeling of radar signatures has physical basis related to

the nature of scattering data. Based on the exponential scattering model

of (3.15), the measured backscatter at frequency fk, denoted by H(fk), can

be modeled as

H(fk) = - EaiH(fk.i) + e(fk) (4.1)
i=1

where e(fk) is zero mean white noise with third order moment 8, and p

indicates the model order assumed to be chosen a priori. The AR system

that models the birange is assumed to be driven by white non-Gaussian

noise. The noise must be non-Gaussian noise because otherwise the bispec-

trum of the output is zero. The parameters {ai} are the AR parameters

and can be estimated from second or third order cumulants of the data

sequence {H(fk)}.

I 'h The inverse Z transform of H(fk), h(t) is the target impulse response.

Therefore, the impulse response of a radar target whose backscatter satisfies

* (4.1) can be expressed as [8]

h(t) = 1 + yP = ar exp {-jnr(1 - 2t/T)} (4.2)
P ci

E exp {jrr(1 - 2t/T)} - pi

where T = l/Af, and pi, ci are the partial fraction expansion coefficients.

The estimation of the birange profile using AR modeling is based on

the definition of the bispectrum using the Cramer spectral representation

(2.12). The birange B(t1 ,t 2) is given as

B(t, t 2) = h(t,)h(t2)h-(t, + t2 ) (4.3)
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Using (4.3), the birange is estimated as

B(ti,t 2) = I
Epp( _2tlt)j (4.4)

mk,-,=o akala* exp {j27r[k(1 - --L) + 1(1- t --

Hence, the birange is parameterized by the AR coefficients {aj}. These

coefficients are to be estimated from the cumulants or estimates of the

cumulants. The above method for estimating the birange profile using an

AR model has the following disadvantage: the birange as given in (4.3) is a

transformation of the impulse response from a one-dimensional profile into

a two-dimensional profile. For example, a single peak at tk in the impulse

response is mapped into three straight lines in the birange profile where

these straight lines satisfy {t1 +t 2 = tk, tI - t 2 = t k, t2 - tI = tk} because

by substituting the magnitude of the impulse response at these points in

(4.3) a birange peak of large magnitude (approaches infinity) is obtained.

A true peak in the birange profile, however, is the result of three peaks in

the impulse response at ti, tj, and tk = ti + tj, and all three peaks have

relatively large magnitudes.

AR Parameters Estimation Methods

There are several methods that can be used for the estimation of the AR

parameters from the cumulants of the data [27,28]. The following relation

is the basis for estimation,
P

-aiR(i-m,i-n) = 0 V m,n (4.5)
i=0

where the triple correlation is defined as

R(m, n) = E{H*(k)H(k + m)H(k + n)}. (4.6)

The above relation is easily derived [42] by multiplying both sides of (4.1)

by H*(fk - fm)H*(fk - fn), and taking the expected values. The relation
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given by (4.5) defines an over~letertnined set of equations that can, be used

to solve for the {ai} coefficielt .

The estimation of the A ctzefficients {ai} is a prerequisite for estimating

the birange profile. The lgoAithms used in this study for estimating the

birange (based on the met1aods tiven in [27,28,32,42]) are the following:

Algorithm # 1: Estimate the triple correlation R(m, n), r, n = 0,..., of

the measured data H(fk) thert stibstitute in

1(o,0) R(1,1) ... R(p,p)
R(-1,-1) R(o,O) ... (p- 1,p- 1) a,

.0(4.7)

R(-p,-p) R(-p + 1, -- F 1) ... 0(,0) La

which can be denoted as,

Ia O. (4.8)

Notice that the entries iri tlt inatrix R are chosen from only one slice

(R(m, m), r, = n) of the njji'ant plane.

Algorithm # 2: It is possiblf tc choose entries that belong to many slices

of the cumulant plane as givert below

1(o, 0) i(11) ... R(p,p)

I (0,-1) g(O) ... R(p,p- 1) 1

IR(- 1, 0) g(,) ... R(p -1, p)

ap

L R .-.,-P) R-P. .,I-p + 1) ... R(070)

where the f{ai}?v= are obtoiitle4 by solving an overdetermined set of linear

I equations. In both algorit~jv, the estimates of the birange at (4l, t2) are

computed using (4.5).

Unlike ui ule-atk. - a'cG o for ,tl . AR parameters

(where the autocorrelatioa to, trix is always full rank), the triple corre-

lation matrix is not necessuity full rank, particularly for algorithm #1.
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Estimates of the birange profile using AR modeling techniques exist if a

full rank triple correlation matrix can be found. However, if a full rank

triple correlation matrix exists under certain conditions, it is not guaran-

teed to remain full rank if the data conditions are changed (e.g., if the data

are contaminated by noise) [11].

4.2.1 Difference Between Modeling Using Triple Cor-
relations and Using Autocorrelations

In the previous section we developed algorithms which estimate the AR co-

efficients using third order cumulants. Alternatively, there are algoritlims

which estimate the AR coefficients of the same model (4.1) using second or-

der cumulants only [8]. These two approaches represent different modeling

philosophies, and below we discuss the differences between the two.

If the goal of the modeling procedure is to obtain parametric bispectral

estimates then only the third order cumulants should be used to estimate

the AR coefficients. The reason for not including second order cumulants is

to avoid any responses that are not bicorrelated even when the wavenum-

ber of one component is the sum of wavenumbers of two other components.

If only second order cumulants are used to estimate the AR parameters,

estimates of the target impulse response will be obtained, but the bicor-

relation terms in the birange profile cannot be obtained. If the goal is to

model the system including all time components (bicorrelated or not) then

one can use both second and third order cumulants to estimate the AR

parameters. Therefore, the system model that is derived using third order

cumulants exhibits time components that are engaged only in bicorrelation,

whereas the system model derived using second and third order cumulants

combined exhibits all time components of the signal. In this chapter, we

are concerned with modeling the birange profile, therefore we wil use third

order cumulants only.
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I As an example, let h(t) be the inverse Fourier transform of H(w) where

h(t) has eight responses only, i.e., h(t) = {h(ti), i = 1,... ,8}, where t5 =

g+ tO, and t8 = t6 + t. Assume also that the responses {h(t 3 ), h(t4 ), h(t5 )}

are bicorrelated. If H(w) is modeled using only third order cumulants then

only the time components h(t3), h(t4), and h(ts) are detected. Thus, the

birange profile will have a peak at (t3 , t4) and (t 4 , t 3 ), and be zero elsewhere.

However, if H(w) is modeled using second order cumulants then all time

components are detected. If the parametric bispectrum is generated using

second and third order cumulants then it will include peaks at both (t4, t4)

and at (t 3,t 4).

Notice that, while second order cumulants cannot be used to model the

bispectrum, third order cumulants may be used to model the spectrum (Lii

and Rosenblatt [78]) given that full rank cumulant slices exist.

4.2.2 Experimental Results

I Blade-Sphere Example:

Algorithm # 1 of Section 4.2 was used to estimate the birange profile of the

blade sphere target example of Chapter III. In this example, as in Chapter

III, 1000 data points were used to estimate the birange profile. Specifically,

from these 1000 data points we estimated the triple correlation R(k, k) for

k = 0,...,p using (4.6). We solved for the AR coefficients using (4.7).

Finally, the birange profile was obtained using (4.4). Figure 4.1 shows

the birange of the blade sphere target when estimated using an AR filter

with complex coefficients of orders 10 and 12. This figure shows that the

I birange, as estimated using the above algorithm is sensitive to model order

as indicated by the presence of spurious peaks (denoted by a, b, and c) in

the birange when the model is increased from 10 to 12. The estimates of the

coordinates of the interaction (see Table 4.1), however, are more accurate
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when the birange is estimated using the above algorithm than using Fourier

transform or even using Gaussian function fitting on the Fourier transform

(compare Table 4.1 with Table 3.1). For this example, using more than a

single slice (as in Algorithm # 2) to estimate the AR parameters has an

insignificant effect on the birange estimate of this target.

Figure 4.2 shows both the impulse response and the birange profile

of the blade sphere target using AR model of order 12. The purpose of

Figure 4.2 is to show the correspondence between the impulse response and

the birange of the blade-sphere target when both are obtained using AR

modelili8. Note that all the responses of the target are modeled in the

impulse response.

Scaled Model Target Examples:

The triple correlation matrix given in Algorithm # 2 was used (in a least

squares sense) to estimate the AR parameters and the birange profile for

each of the five model aircraft discussed in Section 3.6.5. The data were

decimated so that an unambiguous window of 6 nanoseconds is obtained,

and the triple correlations used to obtain the AR parameters were estimated

from the decimated data. The decimation rule followed is

Hd(fk) = (H(fk-) + 2H(fk) + H(fk+,))

where Hd(fk) is the decimated response at frequency fk. A triple correlation

lag of 21 data points was used. The data belong to the 1.5 - 12 GHz

frequency band with a frequency increment of 50 MHz. Algorithm # 1 was

also used but found to give inferior results, and are not presented.

Figures 4.3-4.5 show the birange profiles for three commercial aircraft

obtained using AR models of order 14 and using the Fourier transform; Fig-

ure 4.6 shows the impulse responses for three aircraft obtained using Fourier

transform; and AR modeling. Notice that both the impulse responses and

116



I

the birange profiles obtained using AR models do not correlate well with

those obtained using Fourier transform.

I The difference in the impulse responses may be due to the fact that

AR parameters estimated using triple correlations model the bispectrum

I(or birange) of the target and not its spectrum (or impulse response). We

have tried several experiments using different model orders and using dif-

ferent triple correlation lags; we have also tried incorporating singular value

3 decomposition into the AR parameter estimation process. The results in

4.3-4.5 represent the best results we could obtain using this algorithm. Fig-

3 ure 4.5 represents the most compatible and Figure 4.4 the least compatible

fit between AR and Fourier birange profiles of the five targets. It is also

clear from Figures 4.1-4.5 that the AR modeling algorithm given in this

chapter can reproduce the Fourier-based birange profiles using synthesized

3 data but has difficulty resolving closely spaced birange peaks using real

radar data.

Figures 4.7 shows how the impulse response, that models the birange

profile of the DO-10 aircraft, changes as a function of model order. Notice

I that, as the model order is increased, spurious peaks are obtained as shown

in Figure 4.7. However, a spurious peak at time tj in the impulse response

does not always produce a spurious peak in the birange profile unless there

are two other peaks (not necessarily spurious) at tj, t4 - tj, and tj - ti.

Figure 4.8 shows the birange profile of the DC-10 aircraft using the same

model orders as in Figure 4.7. Notice that, unlike the impulse response

shown in Figure 4.7, increasing the model order does not always introduce

3 spurious birange peaks (see the upper left plot in Figure 4.8 for AR(20)).

The parametric birange profiles obtained using third order cumulants

assume that the data sequence is random with hidden bicorrelations. If we

assume that the data is deterministic, then it is possible to model the signal

I
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using second order cumulants or autocorrelations. In this case the Fourier-

based birange profile can be obtained using B(tl,t 2 ) = h(tl)h(t2 )h-(t + t2)

and the AR-based birange profiles can be obtained using Yule-Walker equa-

tions [60]. Figures 4.9-4.10 show the birange profile and the impulse re-

sponse for the aircraft DC-1O obtained using Fourier transform and AR

modeling and using the same data and the same decimation procedure as

in the above experiments. These Figures show that when the data is as-

sumed to be deterministic, the birange profiles obtained using the Fourier

transform can be matched with higher resolution fidelity by AR based esti-

mates using second order cumulants. The reason for the agreement between

the Fourier-based birange profile and the AR birange profile is that both

are directly estimated from from the impulse responses using (4.3) and

there is an agreement between the impulse response obtained using Fourier

transform and using the AR parameters. This experiment suggests that

the difficulty in modeling the birange may be related to the fact that we

are using the triple correlation of complex-valued data to estimate the AR

parameters.

4.3 Discussion

The results obtained on modeling scaled model aircraft using the AR-based

algorithm proposed in Section 4.2 are not encouraging in the sense that no

closely spaced peaks in the birange are resolved and little compatibility

between Fourier-based birange profiles and AR-based birange profiles is

observed. This lead us to investigate certain modeling aspects related to

the type of scattering data that we are trying to model.

One of the key issues of the AR modeling procedure adopted in this

Chapter is that the radar scattering data are complex-valued. Unlike mod-

eling the spectral responses of complex-valued signals, there seems to be
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I a significant difference between modeling real-valued and complex-valued

data. This difference is explained by the following theorems where com-

I plex exponential signals with implicit bicorrelations are used as examples of

complex-valued data. The following theorems show that parameters of an

AR model of a certain order can be found such that they uniquely satisfy

equation (4.8) and yet they cannot be used to model the true bispectrum

of the complex-valued signal. Thus, these theorems suggest other possible

* reasons for discouraging AR modeling results.

1 4.3.1 On AR Modeling of Complex-Valued Signals

The estimation of the bispectrum using AR modeling requires the choice

of the model order. The model order is dependent on the number of peaks

in the bispectral response. If real-valued data is used and the birange has

I peaks in one symmetry sector, then the number of peaks in the impulse

response that models the birange is upper bounded by 3, which corre-

sponds to a model order of 61 (assuming real AR coefficients). This result

has been shown in [42] when modeling real-valued sinusoids with implicit

I bicorrelations.

Modeling complex-valued signals requires a different approach from that

used to model real-valued signals. The following theorems explain the mod-

eling aspect of complex-valued signals (complex exponentials used as an

example of complex-valued signals) and the model order needed. These

theorems show a fundamental difference between modeling real-valued sig-

nals and complex-valued signals.

Theorem 4.1: Let H(w) be of the following form
I

H(w) [exp {j(wti + O.)}

+ exp, j(wtbi + Obi)} + exp {j(w(tai + tbi) + Oai + Obi)N 4.lO)

where O ,Obi are uniformly distributed random variables over [0,27r]. Note
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that H(w) includes I implicit couplings as indicated by the third component

of (4.10). There is a unique set of complex AR coefficients {a7 1} 0, with

a0 = 1, such that
I

F anRH(n - k,n - 1) = 0. (4.11)
n=

However, when this set of AR coefficients is used in (4.2) and (4.3), the

result is in general not the true birange profile.

Proof: The triple correlation of H(w) is given as (replacing w1, and W2 by

k and I respectively.

I

RH(k, 1) = [exp {j(ktai + ltbi)} + exp {j(ktbi + Itai)}]. (4.12)
i= 1

and the birange profile is

I

BH(tl,t2) = j[6(t1 - tai,t 2 - tbi) + 8(tI - tbi, t2 - tai)] (4.13)

Then,

a, RH(,n - k,,n - 1)-
I I

E Ejan{exp {j(tai(t,,- k) + tbi(,l- l))}
n=O i=1

+ exp {j(tbi(n - k) + tai(n - l))}}] (4.14)
I

= E[(exp f -j(taik + tbil)}
i=1

I

+exp f -j(tail + tbik)}) E an exp {j(tai + tb,)n}]
n=0

This expression is zero if and only if (see [60]) the AR parameters {ail

satisfy

E anz n = II(z - exp {j(ti + tbi)}) (4.15)
n=l i=1

Therefore, it is sufficient to choose a model of order I to model I responses in

the bispectrum. The impulse response obtained using these AR parameters
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I has I peaks at t, + tbi, i = 1,... ,I, and is given as (using equation (4.2))

1 Ci3h(t) = E(.6
i=, exp {j7r(1 - 2t/T)} - exp {j7r(1 - 2(taj + tbi))/T} (4.16)

Then the birange is obtained using (4.3) as

B(t1 , t) = exp {j7r(1 - 2t1/T)} - exp {j7r(1 - 2(tai + tbi))/T})

1=exp {jir(1 - 2t 2/T)} - exp {j7r(1 - 2(ti + tbi)/T})

exp {-jr(1 - 2(t, + t2)/T)}- exp {-jr(i - 2(t.i + tbi))/T})

The birange shows a peak at (tj, tk) when either tj, tk, or tj + tk is equal

to tai + tbi. For example, if h(tj) = a, h(tk) = P3, (where a,/3 5 0, for

an all-pole model) and h(tj + tk) = - where limtj+tk..ti+t b{y} -4 oo, and

(tj + t k = tai + tbi),i = 1,... ,I, then the birange at (tj,tk) is given as such

I l m {B(t3 ,tk)} --* oo (4.17)
ti +tA:"+tai+tbi

Similarly, (4.17) holds Vt 1,tk 9 tj + tk = tat + tbi, tj - tk = tai + tbi, or

tk - tj = tai + tbi. Note that the true birange peak at (tai, tbi) belongs to

3 the straight line defined by {t1 + t 2 = tai + tbi}, however the magnitude of

this peak is comparable to the other peaks along the same line and cannot

3 be distinguished from the others. The only birange profile that can be

modeled correctly corresponds to the case where tai = tbi = 0, since in this

I case limt4,t2 -.o{B(t,t 2)} -* (oo)(oo)(oo).

Q.E.D.

Theorem 4.2: Let H(w) be of the following form
I

H(w) = "[exp {J(Wtai + Oai)}
i=1

+ exp {j(Wtbi + Obj)} + exp JAW(tai + tbi) + Oai + Ob)}4.18)

where Oai, Obi are uniformly distributed random variables over [0, 2r]. Then,

there is a unique set of complex AR coefficients {ann.r' with ao = 1, such
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that
31E a,t (n - k,n - 1) = 0. (4.19)

where

R'(k,I) = E{H*(n)H(n + k)H(n + I)

+H(n)H*(n + k)H(n + 1) + H(n)H(n + k)H*(n + (420)

These parameters uniquely model the true birange profile.

Proof: Using (4.20), the third order cumulant of the signal in (4.18) is

31

Rc1(k, 1) = E[exp {j(kta + Itbi)} + exp {j(kti + lt4 i)}
i=1

+ exp {j(k(tai + tbi) + ltbi)} + exp {i(ktbi + l(tai + tbi)}

+ exp {j(k(tai + tbi) + ltai)} + exp {j(kta, + l(tai + tbi))XD.21)

The proof then follows similar to that in [42] for real sinusoidal signals with

I couplings. The impulse response is then given as

h(t) =.= [exp {jir(1 - 2t/T)} - exp {j.r(1 - 2(tai + tbi)/T} +

Ci2

exp {jir(1 - 2t/T)} - exp {jir(1 - 2(tai)/T} +

exp {jir(1 - 2t/T)} - exp {j7r(1 - 2(tbi)lT}'

where cij 5 0, j = 1,2, 3. The birange is then obtained using (4.3). Using

this model, all responses at tai, t bi, and tai + tbi, i = 1,... ,I are modeled

in the impulse response and each set of {tai,tbi, tai + tbi} in the impulse

response produces a single peak in the birange such as

lim {B(tx, t2)} --+ (oo)(oo)(oo) (4.22)
I1 p 2" tai ,tbi

This peak can be easily distinguished from other peaks that are obtained

because of the transformation of (4.3. Q. E.D.

We have shown in Theorem 4.1 (using AR modeling of complex expo-

nentials) that although it is possible to obtain AR parameters that satisfy
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I (4.8), the derived system does not necessarily model the the true bispec-

trum. Theorem 4.2 presents an alternative approach to modeling complex

exponentials. The parameters obtained as described in Theorem 4.2 model

uniquely the true bispectrum of complex exponentials. Theorem 4.2, how-

ever, cannot be used to model all types of complex-valued signals, including

radar signals, but suggests that modeling complex-valued time series, using

third order cumulants, may differ significantly from modeling real time se-

ries. The reason that we cannot use (4.20) to model radar signals is twofold:

1) the electric phase 0 modeled in (3.15) is not uniformly distributed over

[0,27r] (however, we may assume so for mathematical reasons), and 2) the

model of (3.15) corresponds to point target scatterers and may not be ap-

propriate to model real aircraft targets. The reason that the birange of the

blade-sphere target model was recovered using third order cumulants-based

AR modeling is because scattering from the model is deterministic with a

response at zero time.

I Another aspect of modeling radar target responses is related to the

estimation procedure adopted in this study. Modeling the bicorrelated re-

sponses in the impulse response and then transforming the obtained impulse

response into a two-dimensional profile (the birange profile) produces ridges

that are formed by straight lines in the birange profile. These straight lines

do not belong to the birange profile but are the consequence of transfor-

mation from an all-pole impulse response into the birange profile. From

the outcomes of the experimental study and using such an argument, we

conclude that modeling the birange profiles of radar scattering data may

* benefit by using a two-dimensional AR model that models third order cu-

mulants directly instead of the one-dimensional modeling procedure (also

based on third order cumulants) adopted in this study.

I
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4.4 Summary

The purpose of this chapter is to devise and test an algorithm that can

be used to obtain high resolution birange profiles by modeling the mea-

sured frequency response using AR models. It is shown that the AR model

needed to estimate the birange may differ from the AR model needed to

estimate the impulse response. Algorithms based on third order cumulants

of the measured data were used to obtain experimental birange profiles

for different model orders. The AR birange profiles were then compared

to the Fourier transform based birange estimates. The results obtained

are not encouraging as indicated by the incompatability of Fourier-based

birange profiles and the AR-based birange profiles. This lead us to fur-

ther investigate the properties of (triple correlation)-based AR modeling of

complex-valued radar signals. The results of this investigation indicate that

modeling complex-valued exponential signals using third order cumulants

does not result in the true birange profile and a slightly different model-

ing strategy is required. Even when the birange is modeled correctly, the

cstimated birange profile from the impulse response exhibits false birange

peaks that belong to straight lines in the two-dimensional birange plane.

Such a disadvantage may be avoided by using a two-dimensional AR model

that is based directly on the third order cumulants. Henceforth, the model-

ing aspect of the two-dimensional birange profiles that are estimated from

complex-valued signals remains an open research area.
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Figure 4.1: Birange profile for the blade-sphere target using AR modeling
based on third order cumulants for models of order 10 and 12 (for compari-
son, the box in the lower left shows the birange profile generated by Fourier
tran.sform, and the box in the upper right corner shows the true location
of birange responses).
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Figure 4.2: Impulse Response and Birange profile for the blade-sphere tar-
get using an AR model of order 12 (based on third order cumulants).
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Figure 4.3: Birange profile for DC-10 using Fourier transform and ARi model of order 14 (based on third order cumulants).
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Figure 4.4: Birange profile for the Concord aircraft using Fourier transform
and AR model of order 14 (based on third order cumulants).
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Figure 4.6: Impulse response for three commercial aircraft using Fourier
transform and AR model of order 14 (based on third order cumulants).
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I Figure 4.9: Impulse response for the DC-10 obtained using Fourier trans-

form and AR modeling (based on second order ciimnlants).

I

i 133

I



L ARW - LI.I

\ "'.,.., I

%.4

/' DC1Ni
Two,,, Ift" ~/02 Fourier

and AR. modeling (ba-sed on second order cumulants).

134

II

N~l



I
I
I
I
I
I
I
I

Table 4.1: Comparison between AR and Fourier birange features of the
i synthesized target example.

Three-point target 6r = .015 m
Peaks AR Fourier True
r, .1752 .1715 .1789
r2 .3161 .3185 .3111
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Chapter 5

CLASSIFICATION OF
RADAR SIGNATURES

5.1 Introduction

The focus in this chapter is on using the birange profile as a basis for dis-

criiinating between target signatures and for classifying unknown airborne

radar targets. A radar target identification system is designed to distin-

guish birange profiles of unknown objects as belonging to one of a set of M

classes, with each class corresponding to a particular target. The goal is to

devise and test efficient algorithms that can be employed for classification

purposes.

Bispectral processing of radar signals has an inherent advantage over

spectral processing; namely the suppression of additive Gaussian noise or

any additive unwanted random signal with symmetric probability density

function. This advantage motivates our interest in using the birange profile

for target recognition purposes, particularly if the backscatter waveforms

are corrupted with disturbances that can be modeled as zero mean additive

Gaussian noise [22]. Therefore it is of interest to assess the reliability of

target identification when using the birange profile as a feature source.

Although total suppression of Gaussian noise is possible when the scat-

tering measurements are recorded over an infinite frequency range, in prac-
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I tice the radar measurement frequency range is limited. Therefore, some

noise components remain in the birange profile. Consequently, the percent-

I age of correct classification of radar targets, using the birange as a feature

source, is expected to decrease as the additive noise power is increased

or the signal-to-noise ratio (SNR) is decreased. To analytically study the

effect of the noise on classification performance, we need to know the un-

derlying distribution of the birange as a function of noise power ar2. This

I distribution is derived in Section 5.2.

The process of target classification is approached in two ways; paramet-

ric and nonparametric. The parametric approach requires the knowledge of

the underlying distribution of the birange profile and the a priori probabil-

3 ity of occurence of each target. Such an approach is useful for estimating

the optimal classification performance that could be achieved using the

birange as a feature. Due to the lack of knowledge of the a priori proba-

bilities of possible targets, and due to the computational burden imposed

I by parametric classification, it is often more appropriate to use simpler

nonparametric classifiers.

I Using the birange or other time domain profile in target classification

may be rewarding when nonparametric recognition methods are required.

If the underlying distribution of the scattered waveform is not known or if

the target probability of occurence is not known a priori, then one might

consider classification using processed radar signatures such as the birange

profile or the transient response. Target classification under these con-

ditions may lack optimality. TherAore, if parametric classification is not

possible due to certain conditions imposed on the data then both frequency-

domain and time-domain features should be considered. Hence, the birange

n profile can be considered as a feature source for nonparametric classifiers.

The focus in this chapter is on devising and testing the performance of
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some non-parametric classifiers. Such classifiers include cross-correlation

and nearest neighbor methods.

5.2 The Underlying Distribution of a Single
Response in the Birange

The underlying distribution of the birange profile of noisy radar signals is

an indication of the effect of additive Gaussian noise on the estimate of the

birange. The derivation of the likelihood function of birange estimates is

the first step in parametric classification studies. The likelihood function of

the estimate of the birange profile at a point (rk, r) given that this birange

profile corresponds to a target of class i is denoted as

p(B(k,1)/i) Vk,l { , ... , N} (5.1)

where N 2 is the number of pixels in the birange profile, where about .75N 2

pixels are used to display the birange (the birange hexagon is displayed

inside the square defined by N 2 pixels). Therefore, the likelihood function

of the birange profile is simply the joint likelihood function for all pixels.

Assume that the estimate of the birange is obtained using the direct

approach without segmenting the data. Then,

Bi(rk,rl) = Khkhlh (k+) (5.2)

where hk = hik + nik is the real-valued noisy impulse response of target

i evaluated using a discrete Fourier transform of the band-limited target

frequency response and K is a constant. If the impulse response hik is com-

puted without zero-padding the measured frequency response, then it can

be shown [75] that the transient response at range rk has a Gaussian distri-

bution with mean hik and variance r2. Note that {hikJN I are independent

identically distributed (i.i.d.) random variables. Therefore, the likelihood
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I function of the pixel (rk,rl) of the birange profile is just the likelihood

function of the product of three independent identically distributed (fid)

samples of the transient response (as given in (5.2) ). This can be done in

two ways; using a transformation of random variables, or using the Mellin

transform. Unfortunately, in either case it is difficult to derive a closed

form expression of the underlying distribution. These two approaches are

investigated below.

K A-Transformation of random variables:

It is possible, using the following transformation of the random variables

{hik} (where hik is the impulse response of target i at range rk) to a new set

* of random variables {zk}, to derive the likelihood function of the product

in (5.2) as the marginal distribution of the new random variable z3 =
I hikhlhi(k+l).

hik = Z1 (5.3)

hit -" Z2

I hi(k+)hilhik = Z3

The Jacobian for the transformation from hik to zk is IJI - . Then,
Zl Z2

the likelihood function of the birange at (rk,rt) is simply the marginal

distribution of z 3 given as:

p(B(lc, 1)/i) = Jc(2) 3 /2 0,3 z~(5.4)

- hk) (Z2 - hit ,) - h2(k+) d d
exp 2-2 z 2  J dzldZ2

where hik, hit, hi(k+) are samples from the noise free transient response at

* ranges

rk,ri,rk + rt for a target of class i. It is possible to solve numerically for

* p(B(k, 1)/i).
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B-Using the Mellin transform

The distribution for the product of n independent nonstandardized random

variables can be found as an infinite summation using the Mellin transform

and the complex residue theorem [19]. For n = 3, the likelihood function

of a single pixel in the birange is

p(B(k,l)/i) =A, Oro L8C J [In Bu I'- B (5.5)

±-A 2 F Bdkq -In 1 2-q

k=1/2 qO 0 
403

where = corresponds to :FB > 0, and where

e Ip Ej (h..)2] 56
A, = (27r)3/20r 3  (5.6)

A2 = 2/2. ft hj. (5.7)
O3j=l

The coefficients Cjq, dkq can be obtained using

cpq = _ (q)U (8,) (5.(j)8)
M=0 Mj=l

dkq = ( U_)(s + + (5.)+
- dq ( )( + b- p) (5.10)

8=-p, p=0,1,2,... (5.11)
135

s=-k, k= -

where

=(j) = hi ; (5.12)

2(j) = _,2 3 (5.13)

( az a(a+1) z 2

(;cZ) = 1! c(c + 1)2!+"" (5.14)
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I where hij is the noise free transient response at range rj, 1 < j < N for

target i. Also, the (q - m) th derivative of the function -) can be evaluated

using Leibnitz's rule as

(] (q-(5.15)

zzq-mn-
jl= j2= 0 "j = O 

in a 
a (n )

wherej(, c=1,2,...,nmustsatisfyjl+ 2 +...+j, =q-m.

The derivative of the function Ub'm) can be obtained using the following

* U+6)() = E() U6q)( )(8 ) (5.16)

where

I p-1
Vb)(s) = 310)(s + b + p) + E(-) '+'  (5.17)

/=0

x(1 + 1)!(s + b- 1 + i)-1-1

and where I()(s + b + p) is the digamma function, and V()(s + b + p) is

i the polygamma function given as for I > 1

T()(s + b + p) = (-1)'+11! Di + 1 + a)-(o+b+P) (5.18)

The above is the likelihood function for the birange profile at a point

I (k, 1), 1 < k, l, < N. In order to obtain the likelihood function for all points

k, 1 we need to compute the joint distribution for all pixels in the birange

domain. The birange pixels, however, are correlated (along vertical and

horizontal lines) i.e.,
E{Bi(k, I)B(k, n)} = E{h' huhinhi(k+ k+l)} (5.19)

* # E{Bi(k,1)}E{Bi(k,n)} (5.20)

where Bi(k,1) denotes the birange of target i at (rk,,ri). Also notice that

i the variance of a single response in the birange is

var(Bi(k,1)) = o- + o' + h 2 + h,2 ](5.21)
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+ .2 [h2kh 2 + h2 h 2k+l)+ h2 h2 k+l)I

This indicates that the variance is proportional to the third power of the I
noise variance and is also dependent on the data.

Figure 5.1 shows an example of the likelihood function (or conditional I
probability density function) of one pixel in the birange profile of noisy radar

signals. In this figure, the values hij for the noise free impulse response of

target i at ranges rj, j = 1,2,3 are given as hil = 1, hi2 = 1, hi3 = .4.

Notice, that the distribution is not symmetric, and its skewness 'iept 'Ids

on the nc se free values of the transient response at rl, r2, and ri + r2. The

distribution in Figure 5.1 corresponds to a = 1; therefore, a.4 = 06 = 1. If

a > 1 then the variance of the above distribution will increase rapidly with

..

Using the above likelihood function, it is possible to redefine the bi- I
range as a deterministic component, determined by the expected value of

B, added to a random variable with a probability density function as given I
in (5.4). This definition of the birange may be helpful in experimental tar-

get recognition studies where it is possible to obtain an estimate of the noisy I
birange by adding a randomly generated number whose probability density

function is as shown in Figure 5.1 to the triple product of transient re-

sponse samples. It is also possible, by assuming that t"he birange pixels are

uncorrelated, to obtain an approximate evaluation of a parametric target

classification algorithm based on the birange. Furthermore, a more accu-

rate expression of the probability of detection using the bispectrum can be

obtained by using the above distribution instead of the normal (asymptotic I
approximation) distribution used in [56,57].

I
I
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* Likelihood function for one bispectral sample
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I Figure 5.1: Likelihood function of a single response in the birange
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5.3 Classification Techniques

The classification of radar signals using the birange profile as a feature

source is developed in this section. The focus is on nonparametric classifica-

tion methods. Although it is possible to idesign a parametric classifier such

as Bayesian classifier using the likelihood function derived in the previous

section, it is very compulationally inefficient to do so. Further, there seems

to be no significant reasons for classifying targets parametrically using pro-

cessed radar data since optimal parametric classification performance can

be achieved using the measured data directly.

Three non-parametric birange-based classification methods are discussed

in this section. These classifiers are: the birange nearest neighbor classifier,

and the birange cross-correlation classifier. Employing any of these classifi-

cation methods is dependent on the available information about the target,

and in particular on the zero-time reference.

5.3.1 The Birange Nearest-Neighbor Classifier

The distribution of birange N 2-tuples in the feature space indicates that the

classes are distributed on convolved non-planer surfaces which cannot be

separated by hyperplanes except possibly in very localized regions. There-

fore, linear discriminants cannot be used to separate classes of radar targets

in terms of birange profiles. The nearest neighbor (NN) decision rule is a

less constrained classification method that can be easily employed to dis-

criminate between targets based on the birange profile. The NN rule has

performed satisfactorily when used for classification of frequency-domain

target signatures [26,37].

The nearest neighbor decision rule can be used to classify unknown

radar targets if the zero-time reference of the target with respect to the

radar is known a priori. Thus, the NN rule is used when absolute phase
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I information is available (zero-time reference is known). The NN rule in this

* case is given as,

Assign the unknown target u to class (i) if

U di=min{dj}, j=1,...,M where
3

=j ~/ (Bu(ti, t 2 ) - Bi(t1 , t 2 ))
2  (5.22)

where B,,(tl, t 2) is the birange profile of target x. Notice that this decision

rule is based on selecting the class whose Euclidean distance to the unknown

target prototype is the smallest. Therefore, it is necessary for the birange

profile of both, the unknown target and the catalog target to be displayed

exactly in the same position in the (tl,t 2) plane.

The lack of information about the target zero-time reference suggests

the use of a classification algorithm that takes into consideration all possible

positions of the target in the time domain. An alternative to using NN rule

I as discussed above is to include birange profiles of all possible positions of

the target in the catalog of each class. The decision rule, then, is based on

the nearest neighbor among all targets and among all possible positions of

each target. Thus, this algorithm assigns the unknown target to class i if

d,= minmin{jd}} j = I,...,M, 0 < (5.23)

I where Af is the frequency increment of the measured scattering data. The

birange of each target catalog must be known at all possible choices of

r. This classification algorithm is computationally inefficient because it

requires the computation of the birange profile of the catalog (or the un-

known) for each possible r.

When the target zero-time reference is unknown, an alternative ap-

proach to NN classification is to apply a linear shift r to the transient

response. This can be done either by shifting the transient response of the
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unknown target, or by applying a ramp shift (as a function of frequency)

with slope 7- to the phase of the measured frequency response H(f) as

H'(f) = H(f)exp{2rfr} VT < 1 (5.24)

Which corresponds to shifting the birange profile along the t1 = t2 axis. In

fact, applying a linear phase shift to the data corresponds to uni-directional

correlation between the two-dimensional birange profile and the catalog.

This form of cross-correlation considers all possible positions the zero-time

reference along the radar-target axis. Computationally, however, it is ineffi-

cient to compute the birange profile of the unknown target and the catalog

targets and then correlate in the time domain.

5.3.2 Cross-correlation Classifier

The classification of birange profiles using cross-correlation is developed in

this section. This classifier assumes that the target zero-phase reference is

known a priori. The focus in this section is on the definition of the cross-

correlation classifier. The goal of this algorithm is to find a catalog element

(i) that matches the bispectral response of an unknown target Bu(rl,r 2).

That is one wishes to minimize

min{j (r~ 2 - B.(ri, r2 )) 2 drldr2 } =(.5

min{ f Bi(r,r 2)drdr2 + J/BU(r,r 2)drdr2  (5.26)

- JBi(ri, r2)B,,(r,r 2)drldr2 }

If the first two terms in (5.29) are fixed, this entails maximizing

11LBj(ri,r 2)Bu(ri,r 2)dridr2  (5.27)

and since the target zero-phase reference is assumed to be known, then this

is equivalent to maximizing

riu(o, o) = (5.28)
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H f f ,, Bj(ri,r 2)Bu(ri,r 2) dr1 dr2

[fri fr2 IBu(ri,r 2 )12 dr, dr 212" [fr, f,, IBj(ri, r2 )Iddr]

where P1i(0, 0) is the normalized cross correlation of the catalog target

I birange profiles for i = 1,2,..., M and the test target response u. Using

Fourier transform identities and Parseval's theorem, we find that the cross-

I correlation can be written for the discrete frequency case as

P~1(0,0) = I2FFT{Rj(f, f 2)R (fl, f2)}[i>,( , o =, - R( :.I] 2] , 1 , U (:,:1] (5.29)

The test target is classified as target c if

r r(0,0) = x r, (o,0)I i = 1,...,M. (5.30)

5.4 Experimental Study

A comparison between the performance of the cross-correlation classifier

using the birange and the performance of other optimal and suboptimal

classifiers is given below. The comparison includes classification in additive

white Gaussian noise, additive colored Gaussian noise, and additive non-

Gaussian noise. Classification with azimuth ambiguity is also investigated.

Also, the effect of extraneous uncatalogued scatterers on the classification

performance is examined.

The probabilities of target misclassification at different signal-to-noise

ratios are estimated using Monte-Carlo simulations. When the a priori

probability of a target hypothesis is not known, then N test samples are

drawn randomly and then used to determine whether the classifier gives

the correct decisions for these samples or not. If the a priori probabilities

Pi, i =1,..., M (M is the number of hypotheses) are known then nj = PiN

samples are drawn from class (i), to which noise is added and then these

I samples are tested by the classifier.
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The classifiers simulated in this study are the following:

1- Nearest Neighbor rule based on the backscatter data without employ-

ing any signal processing. Given that the measured backscatter is H,, =

[H.(wI),... Hu(wK)] (where K is the number of frequencies used) then the

NN rule classify the unknown as target i if

(H - H,)T(H. - H,) = minn{(H. - Hj)T(H. - H)} = 1,... , M. (5.31)

2- Cross-correlation based on its one-dimensional time-domain response.

For this algorithm, target {i} is chosen such that

fi= max [ _khu(k)hj(k) ] ,j=1,... M (5.32)
[ j I V=m Ihu(m)12 E. Ihj()l1

Note that this is equivalent to maximizing the down-range cross-correlation

between the unknown target impulse response and the catalog impulse re-

sponse.

3- Cross-correlation of birange profiles as discussed in Section 5.3.3.

The performance of the cross-correlation classifier using the birange is

dependent on the birange estimation procedure (or the estimation of triple

correlation). The amount of segmentation used in computing the triple cor-

relatir,i, h a significant effect on the performance of the classifier. Over-

segmenting the data may result in a degraded classification performance.

The triple correlation lag used and the number of data points also influence

the performance of the classifier. Finally, removing the average from both

the unknown and the catalog improves the classifier performance.

A Monte-Carlo simulation was performed to evaluate the performance

of the classifiers mentioned above. The data base used in these examples

has been frequently used in radar target identification studies [6,7,8]. The

data base consists of experimental measurements in the frequency band

from 1 - 12 GHz of scale models of commercial aircraft. A photo with
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I corresponding names of these aircraft is shown in Figure 3.9. The scaled

data corresponds to measurements of the radar cross section (RCS) of full

I scale aircraft in the IF/VHF frequency band (8-58 MHz). Details of these

measurements can be found in [64].

Decision statistics for each target are computed at a fixed noise level,

and total statistics of classification error for all targets are obtained. One

hundred experiments were performed for each test target (for a total of 500

experiments). The entire test is repeated at different noise levels. Finally

the misclassification (error) percentage is plotted versus signal to noise ra-

tio. When classifying with the birange, the best performance was obtained

when the data is segmented into K = 5 records of M = 21 samples each

with a correlation lag L = 10 (see Section 2.3.4).

Figure 5.2 shows the classification performance for five commercial air-

* craft with complete azimuth information using additive white Gaussian

noise. The catalog consists of scattering data for five commercial aircraft

at 00, 100, and 20' azimuth. The performance of the nearest neighbor (NN)

algorithm is optimal for this case. The birange classifier is outperformed

I by the impulse response classifier. We also re-iterate that the performance

of the birange classifier is very sensitive to the triple correlation estimation

procedure. The performance of the birange classifier may degrade if the

number of correlation lags is altered or if the window function is changed

(the window used in this study is given in (2.60)). This performance figure

shows that birange profile estimates can be used effectively in radar tar-

get identification. Increasing the number of data samples and employing

an optimized classification scheme may improve the performance of the bi-

range classifier and reduce its sensitivity to the triple correlation estimation

* procedure.

Figures 5.3 and 5.4 show the classification performance when additive
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colored noise generated by passing white Gaussian noise through an AR or

MA filter respectively. The AR filter coefficients {ai}!0 are

[.5,.6,.7,.8,.7,.6,.5,0,0,.5,.6,.7,.8,.7,.6,.5] (see [61] for the autocorrela-

tion of the noise generated using this filter), and the MA filter has coeffi-

cients [1, .8]. The target azimuth is assumed to be completely known. The

NN rule (which may be suboptimal in this case) applied to the frequency-

domain data outperforms the time-domain classifiers. Also, the perfor-

mance of the birange classifier compares favorably with the performance

of the impulse response classifier. The degradation of the time-domain

classifiers compared to the nearest neighbor rule is slightly less for the ad-

ditive white noise case, which may suggest a comparable performance of all

classifiers under other colored noise conditions. . I
Figure 5.5 shows the classification performance when additive non-

Gaussian noise is used (the square root of a Weibull distributed random I
variable added to both the in-phase and quadrature components of the

data). The azimuth is assumed to be completely known. The performance I
of the birange classifier is improved and is comparable to the other classi-

fiers, which may indicate a significant role for the birange in classification

of unknown targets in a non-Gaussian noise environment.

Figures 5.6 and 5.7 show the classification performance when the az-

imuth is known only to within 410° (Figure 5.6) and ±20' (Figure 5.7).

Although the nearest neighbor rule is not optimal in this case, it outper-

forms the time-domain classifiers. Further, the performance of the birange

classifier degrades compared to the impulse response classifier when the

azimuth ambiguity range increases. In fact, if the target is assumed to be

known within ±300 (not shown in the Figures) then the performance of the

birange classifier degrades significantly compared to the impulse response

classifier. These figures show that the birange is sensitive to changes in
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target azimuth position. This sensitivity may be explained by the fact that

changing the azimuth may introduce additional multiple interactions and

U delete others. Although these interactions also affect the impulse response,

they more strongly affect the birange.

Figure 5.8 shows the classification performance when the classifier is

mis-informed about the target azimuth position with an error of =100.

That is, a target at azimuth A° is compared with the catalog targets at az-

imuth A0 + 100. This type of mismatch in design specifications affects the

classification performance of all classifiers including the birange classifier.

It is clear from Figure 5.8 that time-domain classification techniques out-

perform the nearest neighbor classifier in this case. Although the birange

classifier is sensitive to change "n target azimuth, Figure 5.8 shows that the

birange is less affected by inaccurate azimuth information than the nearest

* neighbor classifier.

5.4.1 Effect of Extraneous Scatterers

In the following, we discuss the effect of adding extraneous scatterers to the

unknown target frequency response (scatterers not included in the catalog)

on the performance of the classifiers under investigation. This type of clas-

sification problem may occur when clutter (in the form of point scatterers

with or without interactions) is detected, or when the catalog target model

is inaccurate or incomplete.

The effect of this type of disturbance is simulated as a set of additive

point scatterers with variable scattering magnitude located at different po-

sitions with respect to the target. The ratio of scattering from the target

plus extraneous scatterers to scattering from the extraneous scatterers only

is denoted by SER (Signal-to-Extraneous signal Ratio).

Tables 5.1-5.10 show classification results obtained for different scenar-
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I

ios of extraneous scatterers added at different positions with respect to the

target. The error rates shown in these tables represent the percentage of

I misclassification when scattering from extraneous point scatterers (these

scatterers are described in the captions) is added to the frequency response

I of all five targets. Also, scattering from unknown targets is assumed noise-

free since the purpose of these experiments is to evaluate the performance

of the birange classifier when backscattered signals include uncatalogued

3 responses. The extraneous scatterers used to generate the results in Ta-

bles 5.7 and 5.9 include an interaction whose response appears at -. 8 ns,

and those used to generate the results in Tables 5.8 and 5.10 include an

interaction whose response appears at 0 ns. The bicoherences for both

3 interactions are assumed fixed with a value of 40%.

The following conclusions can be drawn from those experimental results:

SFirst, classification with nearest neighbor rule is the most sensitive to the

presence of extraneous uncatalogued scatterers. Second, classification with

3 impulse response is less sensitive to extraneous scatterers than the NN

classifier but unaffected by changing the position of extraneous scatterers.

I Finally, we see that the birange is less sensitive to the presence of extraneous

scatterers than the nearest neighbor classifiers. The birange classifier is

even less sensitive to uncatalogued scatterers if the responses from such

extraneous scatterers do not coincide with the response of the unknown

target. This insensitivity may be due to the fact that while the presence of

3 extraneous scatterers produces additional peaks in the impulse response, it

takes three extraneous scatterers with interaction to produce a peak in the

3 birange profile of the unknown target.

Figures 5.9-5.10 show a comparison between classification results (plot-

j ted as probability of rn'sclassification versus the SER). It is clear from these

figures that classification using the birange profiles outperforms classifica-

I
159I

I



tion using the radar cross section measurements (using nearest neighbor)

even when the azimuth of the unknown target is partially known (or known

within a certain azimuth range). The extraneous signatures used in these

figures are three point scatterers where the location of the response due

to each scatterer is random and uniformly distributed over [-i, , where

T = , (where Af is the frequency increment of the measured data).

The locations of the responses of the extraneous scatterers are independent

identically distributed. Two hundred experiments including five targets (a

total of 1000 experiments) are simulated for each SER ratio.

Figure 5.11 shows classification results obtained when the frequency re-

sponses of nine extraneous scatterers is added to the frequency responses

of the five aircraft. The location of the response due to each scatterer is

random and uniformly distributed over [-!, I]. Figures 5.9 and 5.11 show

that classification using the impulse response outperforms classification us-

ing the birange when the number of extraneous scatterers is increased to

nine. This result can be explained since by adding the responses of nine

extraneous scatterers to the data, the likelihood of having a birange peak

due to extraneous scatterers is higher than that when only three extraneous

scatterers are present. Further, each of the five targets has less than nine

scattering centers, which indicates that if the number of the extraneous

scatterers exceeds the number of scattering centers then the impulse re-

sponse classifier outperforms the birange classifier by a significant margin.

Figures 5.9 and 5.11 also show that the performance of the nearest neigh-

bor classifier is inadequate whether the number of extraneous scatterers

exceeds the number of scattering centers or not.
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1 5.5 Summary

This chapter is concerned with studying the classification aspect of the bi-

range profile when used as a target recognition tool. The purpose of this

study is to investigate the feasibility of employing the birange as a feature

source in target recognition systems and to examine the conditions un-

der which the birange classifier performs satisfactorily. The classification

schemes suggested in this chapter are suboptimal in the sense of minimizing

I classification error. However, using these classification schemes, it is possi-

ble to identify a framework of application for the birange classifier in terms

of noise conditions and availability of a priori information about aspect

angle. The comparisons made in this study include the performance of the

nearest neighbor classifier, the impulse response cross-correlation classifier,

the birange cross-correlation classifier. The conditions investigated include

additive white Gaussian noise, additive colored Gaussian noise, additive

non-Gaussian noise, additive uncatalogued scatterers, and error in aspect

information.

The classification results in this chapter can be summarized as follows:

The nearest neighbor classifier outperforms both the impulse response and

3 the birange classifiers except for the case where the unknown target is mis-

represented in the catalog. An unknown target is misrepresented in the

catalog if the response due to extraneous scatterers is added to its fre-

quency response or if its aspect angle is not included in the catalog. The

I impulse response classifier outperforms the birange classifier except for the

case of non-Gaussian additive noise. When scattering from extraneous un-

catalogued scatterers is added to the frequency response of the unknown

* target then classification with the birange outperforms classification with

impulse response if the signal-to-extraneous scatterers ratio is low and if

the number of extraneous scatterers does not exceed the number of scatter-
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ing centers along the target. Finally, by considering the outcomes of this

study, we conclude that classification with the impulse response is more re-

liable than other classifiers (all circumstances combined). However, it may

be rewarding to use a joint decision rule that combines both the impulse

response and the birange classifiers.

II
I
I

I
I
I
I
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Table 5.1: Classification error rate when a single extraneous point target is
placed at -2 ns (within the nose area).

SER [dB NN TIME BIRANGE
1 0 0 0
-4 20 0 20
-9 40 20 40
-12 40 20 40
-15 60 40 40

I
Table 5.2: Classification error rate when a single extraneous point target is
placed at 0 ns (within the wing area).

SER [dB] NN TIME BIRANGE
1 0 0 0
-4 0 0 0
-9 0 20 20

-12 20 60 20
-15 40 60 40

I
Table 5.3: Classification error rate when a single extraneous point target is
placed at 1.2 ns (within the tail area).

3 SER [dB] NN TIME BIRANGE
1 0 0 0
-4 0 0 0
-9 40 40 0

-12 40 40 0
-15 60 40 20

1
U
I
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H Table 5.4: Classification error rate when two extraneous point targets are
placed at -2 ns and 0 ns respectively.

SER [dB] NN TIME BIRANGE
-2 0 0 0
-8 0 20 20
-12 40 40 40
-14 40 60 40
-16 60 40 60

I Table 5.5: Classification error rate when two extraneous point targets are
placed at -2 ns and 1.2 ns respectively.

I SER [dB] NN TIME BIRANGE
-2 0 0 0
-8 40 20 20

-12 60 20 20
-14 80 40 40
-16 80 40 40

Table 5.6: Classification error rate when two extraneous point targets are
placed at 0 ns and 1.2 ns respectively.

SER [dB] NN TIME BIRANGE
-2 0 0 0
-8 0 20 20
-12 40 60 40
-14 40 80 40
-16 40 80 40I

Table 5.7: Classification error rate when three extraneous point targets are
placed at -2 ns, 0 ns, and 1.2 ns respectively.

SER [dB] NN TIME BIRANGE
* -4 0 0 0

-10 60 20 20
-13 60 20 201 16 80 40 60
-18 80 60 60
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Table 5.8: Classification error rate when three extraneous point targets are
placed at -3 ns, 2 ns, and 3 ns respectively.

SEP. [dB] NN TIME BIRANGE I
-4 0 0 0

-10 20 20 20
-13 20 40 20
-16 40 60 40
-18 60 60 40

Table 5.9: Classification error rate when three extraneous point targets
are placed at -2 ns, 0 ns, and 1.2 ns respectively with partial azimuth
information (within 200).

SER [dB] NN TIME BIRANGE
-4 0 0 0

-10 20 30 20
-13 40 60 40
-16 60 60 60
-18 60 60 80

Table 5.10: Classification error rate when three extraneous point targets are
placed at -3 ns, 2 ns, and 3 ns respectively with partial azimuth information
(within 20*).

SE. [dB] NN TIME BIRANGE
-4 0 10 0-10 40 20 0

-13 60 30 20
-16 0 An 40
.18 601 40 40
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II Chapter 6

I! CONCLUSIONS
I
I 6.1 Summary of Results

This report has investigated the use of bispectral processing methods for

radar backscatter processing and for radar target identification. Bispectral

processing methods were adapted to the radar signature analysis problem,

and resulted in the so-called birange profile. Analysis of the birange pro-

file showed that it was able to detect interactive scattering terms in the

backscattered signal. This result led us to investigate whether this addi-

tional information could be effectively used as a discriminant for target

identification.

3 The state of the art in time-domain radar signal processing was briefly

described in Chapter II. Research on time-domain signature analysis is

* focused on the extraction of the major scattering components from the

impulse response of a radar target. High resolution spectral estimation

I techniques are also being employed to realize this goal. The focus in these

studies is on extracting important scattering characteristics from the im-

U pulse response. The present consideration of the bispectrum serves as a

tool that enhances the feature extraction process.

In Chapter III we studied the birange profile as a tool for detecting mul-

tiple interactions. A definition for the bispectrum of complex radar signals
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was introduced. Also, a birange estimation technique based on the "indi-

rect bispectral estimation method" with slight modifications and suitable

for radar signals was proposed and used in this report. An interpretation of

the birange based on a specified scattering model which is basically a sum

of complex exponentials with implicit couplings, is presented. Examples on

the birange of hypothetical targets were also given. The concept of birange

processing was tested using experimental measurements of scattering from

a tilted flat plate and a generic aircraft model with removable parts, then

using real aircraft models such as Boeing 707, 727, 747, DC 10, and the

Concord. Finally, a feature etraction algorithm based on Gaussian fitting

was used to locate the interactions in the birange profiles.

The extracted features were compared with the physical structure of the

corresponding target model and they support the claim that the bispectrum

may be used to detect multiple interactions. It is shown that it is possible

to detect many responses in the birange profile using scattering data at the

resonance and the optical scattering regions. Also, it is possible to detect

responses in the birange that are undetectable in the transient response.

However, not all interactions can be recovered from the bispectrum. It was

also shown that by using the "bicoherence", one may obtain an estimate

of the magnitude of interactions; thus the bicoherence is useful to separate

interactions from specular r;.sponses in the impulse response.

A birange profile estimation algorithm based on AR modeling of radar

signatures was introduced in Chapter IV. This algorithm was tested using

both synthesized scattering data and real data. The Fourier-based birange

profile of the synthesized target was reproduced using this algorithm, but

the Fourier-based birange profiles of real data were slightly incompatible

with those obtained using this algorithm. The reasons for incompatability

of the AR-based birange estimates with the Fourier-based estimates were
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investigated. It was shown that AR modeling of complex-valued signals may

produce birange estimates that are entirely different from those obtained

using Fourier transform. Furthermore, the transformation involved in the

birange estimation procedure (from a one-dimensional all-pole response to a

two-dimensional profile), produces ridges that do not belong to the birange

of the target in the birange plane. Therefore, we conclude that parametric

modeling of the birange may benefit from a two-dimensional AR modeling

approach.

Chapter V considered the effectiveness of birange profiles for target

classification. Tests were conducted using non-Gaussian noise, azimuth

ambiguity, and extraneous scatterers. In general, classification results using

the birange profile only were inferior to those using the impulse response

or nearest neighbor classifiers. There were some cases where the birange

classifier outperformed other methods. In the first case the additive noise

was non-Gaussian and in the second case the responses of three extraneous

point scatterers were added to the measured ;target frequency response.

In general, performance gains using the birange profile were slight. Also,

the computational needs of the birange profile are much higher than any

of the other methods considered. Based on this argument, these studies

suggest that the birange profile can provide modest classification perfor-

mance gain at the expense of a large increase in computation. However,

these results are based on initial studies using suboptimum classifiers, and

may not be true under other circumstances.

The birange as a time-domain profile is not an alternative to the im-

pulse response but an augmentative display of target signatures. If the

additional knowledge, provided by the birange, is weighted properly, then

A wil nave oositive impact on the radar target recognition problem. One

may argue that, because bcth the transient response and the birange pro-
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file are derived from the same data source, then neither one will enhance

the identification process beyond what is already achieved using the data

prior to any signal processing. The validity of this argument diminishes

when the parameters of the underlying probability density function are not

known a priori. Therefore, features extracted from the birange profile will

potentially enhance the identification process under special circumstances.

6.2 Continuation of Research in This Area

The following research objectives are likely candidates for continuing re-

search in this branch of radar signal processing.

Notice that the triple correlation for any limited data sequence has

a hexagonal shape inside a squared region (N x N). Furthermore, the

lhexagonal form of the triple correlation is admissable in the (t, t 2) plane,

where "admissable" means that a replica of the triple correlation can fill

the entire triple correlation plane without any gaps. Hence, it is possible

to compute the birange using hexagonal fast Fourier transform methods

(HFFT). By using the HFFT or hexagonal discrete Fourier transform of

the triple correlation to compute the birange, the number of data storage

and computations is reduced by about 25% compared to rectangular Fourier

transform computation techniques.

The assumed scattering model in this report does not include disper-

sive targets. As in the transient response, many forms of dispersion may

produce gradually decaying interactions as a function of time in the bi-

range profile. If the returned signal decays as a function of frequency or

loses energy at high frequencies, then, me triple correlation deceys even

fasIer. Sinilarly, if the returned signal is ga'ning strength at high frequen-

cies, then the triple correlation increases significantly when including high

frequency components. Therefore, it is important to adjust the lag of the
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I triple correlation estimate such that no significant information is lost at

higher frequencies.

It may be interesting to investigate the birange profile of a class of

canonical scatterers to gain additional insight about the nature of multiple

interactions. The outcomes of such an investigation can then be used to

* better understand scattering from real radar targets.

A common problem in bispectral processing is the storage of large ar-

rays of bispectral signatures. This problem can be avoided by employing

sophisticated bispectral feature extraction methods. This can be accom-

plished by a thorough investigation of the parametric modeling aspect of

the birange profiles. The extracted features can then be presented to a

* structural pattern recognition system to identify radar targets.

This report has focused on the extraction of second order multiple in-

I teractions using the bispectrum. Higher order multiple interactions can be

detected using higher order spectra such as trispectrum. An investigation of

this nature may have significant impact on target recognition studies, par-

ticularly because fourth order moments do not have the same shortcomings

as third order moments.

Radar signatures that are used in this study correspond to the hori-

zontal transmit horizontal receive polarization. An interesting problem is

to incorporate other polarization into the birange profile. Parameters such

as ellipticity and tilt of multiple interactions may be significant to radar

* scattering analysis [75].

I
U
I
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Appendix A

Generation of Noise

The experiments performed in this study require the simulation of additive

white Gaussian noise, colored Gaussian noise, and non-Gaussian noise. The

white Gaussian noise is simulated by adding twelve uniformly distributed

random variables xi where xi is uniform over [-.5, .5]. The distribution

of the total sum of these random variables is the twelfth convolution of a

rectangular pulse with itself which approximates a Gaussian function.

The colored Gaussian noise is simulated as the output of a stable linear

AR or MA filter whose input is white Gaussian noise. The coefficients

of the AR (or MA) filter define the form of coloring applied to the white

noise signal (these coefficients define the spectra of the generated colored

gaussian noise).

The distribution of a clutter random variable C can be modeled by a

Weibull distribution, where the random variable D = {(C - 77)/a}" has the

exponential distribution

pD(D) = exp(-D). (A.1)

Then the probability density function of C is

pC(C) = -/cxl(C exp [-{(C - 7)/a"] (A.2)

The standard Weibull distribution is obtained for 77 = 0 and a = 1 In this
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c E{C} = 1 - .57722/7 + .98905/7' (A.3)

VAR{C} = (7r'/67 ' ) ; 1.64493/-y'

In order to generate a random variable that has a Weibull distribu-

tion we need to generate an exponentially distributed random variable

D,PD(D) = exp(-D) then the clutter C can be computed from D

{(C- t/)/a}', where 77,1 and a are adjustable parameters.

The method used to generate an exponentially distributed random vari-

able is the following [16]. Let Xi,i := 0,1,... be a sequence of independent

random variables uniformly distributed over [0,1]. Define a random vari-

I able N for N > 0, and N odd, such that [16]

2 N-1 N

X1 <X0 , E-Xj<Xo,...,>-Xj<X0 , EXj>XO (A.4)
j=1 =1j=

Then let T be the number of sequences rejected before an odd N satisfies

the above conditions (T = 0,1,...) then the random variable D = T + X0

is exponentially distributed with a standard density exp (-D) [16]. The

random variable C can then be generated from D using D = {(C -

Finally notice that the paramcter 7 plays the role of to (the standard de-

viation) for a Gaussian distribution; thus reducing 7 results in increasing

I the energy of the clutter signal and decreasing the signal to clutter ratio

(SCR).

IU
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