WSTRISUTION STATEMENT A
Pigwovel foo gmbijc l‘.lcml.
L raton Uu'lmi%vﬁi_

T

AD-A223 350

TASK: UR20
CDRL: 01030
9 July 1990
INFORMAL TECHNICAL REPORT
For The
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Ada/Xt Toolkit
Interface Style Guide

STARS-RC-01030/001/00
Publication No. GR-7670-1150(NP)
9 July 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000 D S i

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

\ Di rxbu't’x\m Linfjted 13
;J S. éovernment tnd U.5. Go ernment .

i o

' Contrattors only

ﬁdmu&fstratl\he"(g Tuly 1990) 1\/

PP

I

S/

90 11 13 115

Y

% ELE CTé i#’{

&

TASK: UR20
CDRL: 01030
9 July 1990

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Ada/Xt Toolkit
Interface Style Guide

STARS-RC-01030/001/00
Publication No. GR-7670-1150(NP)
9 July 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

9 July 1990 STARS-RC-01030/001/00

Contents

1 Introduction
L1 Scope . . . e
1.2 Organization of this Report
1.3 Human Factors Issues

1.4 Related STARS Efforts

2 Styles of Interaction: Dialogue Models
2.1 Modalvs. Modeless

2.2 Direct vs. Sequential o
2.3 Object-Action Selection
2.4 Toolkit Component Support for Dialogue

2.4.1 Menu Selectors L

2.4.2 Radio-Button, Check-Box Selectors

2.43 Auxiliary Input Dialogues

3 Programmatic Style
3.1 Ada Toolkit Applications oL
3.1.1 Effective Use of Resources
3.1.2 Translationso
3.2 Extending the AdaToolkit
3.2.1 Adding New Resource Types.
3.2.2 Adding New Widgets
3.2.3 Widget Public Specification 0L

3.2.4 Widget Private Specification L0000

4 User Interface Styles and Standards

5 Summary of Recommendations

Page n

o

=~

23

9 July 1990 STARS-RC-01030,/001/00

List of Figures

1

2

10

11

IDraw Drawing Tool 5
XFig Drawing Tool 6
Widget Hierarchy for Menus 8
Menu Subparts e 9
Radio Button Selection oo oL 10
Check Box Selection 10
Athena Dialogue Widget 11
Screen Image of Sample Program 13
Widget Hierarchy for Sample Program 14
Resource-Modified Sample Program, ... 15
Sample Resource Type Specification e 20

List of Tables

1

Menu Forms e e 7

Accsession For
NTIS GRA&I ii;
DTIC TAB 0
Unannounced O
Justification |

By
r—-[-)— tribution/

Aveilability Codes

iAvail hné/ol;~
Srecial

Page iii

9 July 1990 STARS-RC-01030/001/00

1 Introduction
1.1 Scope

This Style Guide is an initial attempt to define conventions for the development of effective
human-application interfaces (i.e., “User Interface”). Its purpose is to facilitate experimenta-
tion with Ada/Xt!, and to foster the use of Ada/Xt for the development of friendly, effective
application interfaces.

This report is targeted to application developers who will be using the Unisys Ada/Xt toolkit
implementation. Because of the constraints on style specification imposed by any underlying

user interface component system, this report should be considered a companion to the June,
1990 release of the Unisys STARS Ada/Xt implementation?.

1.2 Ouiganization of this Report

A definition of “style” in Webster’s 7th Collegiate Dictionary provides motivation for the
structure of this report:

1. style [’sti-(*)] n ... 2b: manner or tone assumed in discourse 2c: the
custom or plan followed in spelling, capitalization, punctuation, and typographic
arrangement and display 4al: manner or method of acting or performing esp. as
sanctioned by some standard.

This definition addresses the three domains of “style” targeted by this report. Section 2
addresses styles of dialogue (discourse). Section 3 addresses conventions useful in develop-
ing toolkit-level applications, and in extending the toolkit to support development of user
interfaces in new application areas (conventions). Section 4 addresses the interplay of style
specification standards. both formal and informal.

Additionally, within this report various style recommendations are made. These recommen-
dations are highlighted in italicized text preceded by the keyword “Recommendation.” For
example:

Recommendation: Comply with all style recommendations.

The concluding section of this report will summarize all style recommendations made in this
report.

YAda/Xt is the Unisys/STARS Ada implementation of the MIT X Toolkit
2Ada/Xt version 2.0

Page 1

9 July 1990 STARS-RC-01030/001/00

1.3 Human Factors Issues

The concept of “style” is broad, and encompasses the full range of user interface development
activities, from preliminary design to coding. One goal of a style guide could be specification
of guidelines for the construction of user interfaces which support some well-defined notions
of interface effectiveness (determined empirically from human factors studies).

However, this report claims no special expertise in human factors. Also, such a guidelines
document would require in-place programming support for the specification. For example,
both [6, 2| style guides refer to extensive, in-place software component support abstractions.
At this stage of STARS User Interface component development, an insufficient number of
toolkit abstractions (“widgets”) are available to support a fully-defined, well-conceived, hu-
man factors-oriented style guide.

Recommendation: Adopt the MOTIF Style Specification

Rather than invent a new style specification, it is recommended that STARS draw upon
evolving industry consensus style guides (if not adopt one outright). For example, the
Open Software Foundation (OSF) Motif Style Guide [6] provides an excellent description
of a mature look-and-feel specification. Such a specification can be supported by non-Motif
widgets. The human-factors basis of well conceived style specifications such as [6] will provide
a sound foundation even if STARS should find that domain-tailored environments require
different interface guidelines.

1.4 Related STARS Efforts

The Boeing STARS effort (“BR21”) has worked on defining a higher-level programming
interface definition based upon the concept of user interaction tasks as opposed to user
interaction components. User interface tasks refer to classes of specific interactions, e.g.,
“object selection”, while user interface components refer to the concrete realization (look
and feel) of such interactions. Without necessarily agreeing with all the results of the Boeing
BR21 task, specifically the report [1}, it appears that such a distinction is well motivated.

This style guide can be considered a companion to [1], being focused more at the component
level than the interaction task level. This focus seems justified since the underlying compo-
nents which support interaction tasks to a large extent constrain and define the style of the
dialogue interaction.

2 Styles of Interaction: Dialogue Models
Although user interface construction has been a differentiated part of commercial software

development practices for many years, the advent of affordable, bitmapped workstations has
led to fundamental changes in end-user expectations concerning the quality and kind of the

Page 2

9 July 1990 STARS-RC-01030/001/00

human-application interface. The most fundamental change concerns the widespread use
of so-called modeless, direct manipulation interfaces. These concepts (modality, directness)
are closely related and somewhat overlapping. In fact, both concepts are part of the larger
concept of human-computer interaction, or dialogue. An extended discussion of dialogue
models and dialogue design tools and techniques can be found in {3].

Section 2.1 discusses the notion of dialogue modality. Section 2.2 discusses dialogue sequen-
tiality. Section 2.3 discusses a specialized style of direct, modeless interaction known as
object-action selection. Section 2.4 discusses Ada/Xt toolkit support for various models of
human-computer dialogue.

2.1 Modal vs. Modeless

An application interface is considered modal if its model of interaction can be described
as a state machine with more than one state, where each state describes a set of possible
interactions which are differentiated from other application states. For example, the popular
UNIX editor “vi” is a modal editor, consisting of at least three states: an insert state, a
keyboard state, and a command-line state.

Modes are application states which constrain the permissible choices of human-computer
interaction. The modern trend is away from modal interfaces, or at least to minimize the
degree to which the human-computer interaction is modal. Modal interfaces should be
discouraged because modes generally imply some context sensitivity, and greater reliance on
modes imposes more requirements on the end-user to keep track of the current context of
the application dialogue. Even worse, in some situations the end-user will need to anticipate
and plan navigation through several application modes in order te enter into some desirable
state. This sort of end-user navigation can be tedious in applications with many modes.

In practice, no interface is completely modeless. In some cases it is desirable or necessary
to impose modality. Modal interactions are highly useful for focusing user attention on
critical, narrow tasks, e.g., prompting the end-user whether data changes should be saved
prior to application termination. Even within otherwise modeless interfaces, commonplace
user interface abstractions impose modality. For example, pop-up menus constitute a kind
of modal interaction, since some forms of pop-up menu focus user input to either the menu
contents, or else require that the menu be “popped-down™ before other human-application
interactions can occur.

2.2 Direct vs. Sequential

Closely related to modality is sequentiality. Sequential dialogues are definable as those dia-
logues that require a strictly linear sequence of human-application interactions. One common
example is found in automatic teller machines. In general, tools and applications which have
a primarily linguistic interface (e.g., command-line processors, batch-oriented tools) tend to
be sequential. In contrast, direct dialogues are those in which the application is a passive

Page 3

9 July 1990 STARS-RC-01030,/001/00

entity, and the end-user engages in a potentially non-linear sequence of user-application in-
teractions, freely interleaving interactions that are germane to potentially different tasks.
A common example of direct dialogue can be found in many interactive drawing tools for
bitmapped workstation environments. Direct dialogues imply a style of programming known
as “event-driven” programming, which is a paradigm well supported by the Ada/Xt toolkit.

The modern trerd is towards direct dialogues wherever possible. The goal of direct dialogue
applicaticns is to “empower the user” [6], to make the application subservient to the user’s
demands, and not the other way around. There are obvious similarities between the con-
cept of modeless interface and direct dialogue, and in fact one generally implies the other.
However, it is conceivable to have direct dialogue interfaces (also called direct manipulation
interfaces) modified by application mode. For example, in a hypothetical graphical drawing
tool, it is conceivable that various operations would be disabled if an existing drawing were
being viewed in “read-only” mode.

2.3 Object-Action Selection

Both [6, 1] discuss a style of interaction known as “object-action selection” interaction.
Essentially, this refers to a style of dialogue in which the application user selects an object
which is to be the target or focus of some action, and then selects the appropriate action.
For example, an iconic representation of a file could be selected (e.g., with the left mouse
button), and then an action appropriate for this object type can be selected from a pull-down
menu (e.g., print the file).

Note that toolkit support for object selection generally takes the form of default translation
tables supplied with various “selectable” widgets. For example, the Athena command widget
by default supports selection with a left mouse button-down event. By exporting these
translation tables as widget resources, an application can allow end-users the luxury of
tailoring the application to respond to different input events as selection events. On the
other hand, such flexibility can result in widely dissimilar personal working environments.

Recommendation: Applications should implement object-action selection.

Figures 1 and 2 provide illustrations of two interactive direct manipulation drawing tools
which support different styles of object-action selection. Idraw (figure 1) directly implements
thie object-action selection; in this figure, the upper rectangle has been selected by a left
mouse button down event, and its selection is indicated by the grab-boxes at the rectangle
corners.

Page 4

9 July 1990 STARS-RC-01030/001/00

selectors.ps
File Edit Structure Font Brush Pattern Fglolor Bglolar Rlign Option
Hove
»
Scale
3
Stretch, I[Cnnﬁrm ” [[Cancel I
&)tauk
o, (o]
cheice 1 ehoice 2 ehoice 3 ohelee ¢
Hagnify
z
Text Radio Button Selection
N
\, [Cntim]
h
O, AL
D r chelce 1 choice 2 choice 3 cholce ¢
g Check-Box Selection
G -3
2o
000 <

Figure 1: IDraw Drawing Tool

Recommendation: Provide visual feedback for all user interactions.

With this type of object selected, various operations located in the pull-down menus located
across the top-most horizontal bar of the application can be executed. *

Xfig (figure 2) supports object selection differently. Instead of directly selecting objects,
various operations introduce a mode which affects the display and semantics of mouse in-
teraction with on-screen objects. For example, as depicted in the figure, the delete-object
action has the effect of selecting all of the objects on the display (indicated by grab-boxes
on all visible objects); the user then selects (with the left mouse button) individual objects
for deletion. In effect, the delete operation puts the application into an “object selection”
mode.

Another interesting distinction between these interfaces is their means of action-selection.
Idraw chooses pull-down menus, which represents a compromise between screen real-estate
and burden on end-user memory. Xfig chooses an iconic representation for all operations.
This choice makes the Xfig application more unwieldy on the workstation display, but pro-
vides continuous cues to application functionality. On the other hand, it is not as natural
to introduce keyboard accelerators in the Xfig model of action-selection as is the case with
Idraw. Note however that it sometimes difficult to devise meaningful iconic representations
for particular operations: do all the icons in figure 2 have an obvious meaning to the reader?

3Unfortunately, this application does not dim operations and menus not pertinent to the selected object.

Page 5

9 July 1990 STARS-RC-01030/001/00

[FRCIUTTY FOR_IMIGWCTTW, GG TO OF FIGOS V. 2.0 Protocol V. 14-TTX Feccn Lov. ¢ DAY
an 4
] |nln|||u|u|fu|l||lllululflnl|nxhnnninlnvlu-lullnllnlhuhn?nujulnnm T

At s il oids e il g

Default REMOVE objects

3 o o = = o

Figure 2: XFig Drawing Tool

It is impossible to say which application has a better interface, which is really the heart
of the matter when considering specification of user interface style guides. In short, style
guides must be rigorous enough to enforce some similarity among different applications, or
different applications within the same class (e.g., drawing tools); style guides must also be
flexible enough to support expression of new ideas in human-tool interaction.

2.4 Toolkit Component Support for Dialogue

As should be apparent, large, real-world applications tend not to be exclusively modeless,
or exclusively direct-manipulation. In practice, some mixture of these dialogue models are
present, and it is important to know what the consequences of diffcrent dialogue styles are
in order to assess the impact of interface design decisions. For example, menus provide
a commonly used technique for implementing action selection. Different forms of menus
impose unique characteristics on the overall interface: pop-up menus conserve application
“real-estate” since they take up no room on the display until some user event triggers the
pop-up action, but provide no visual cues about their availability or meaning (in contrast
to pull-down menus). Also, pop-ups tend to be modal, requiring either selection of an
option from the pop-up menu, or else abandoning the menu-dialogue without selection; no
interleaving of menu/non-menu activities is typically permitted.

The application developer needs to be aware of the toolkit component-level suppoit provided

Page 6

“

9 July 1990 STARS-RC-01030/001/00
[Menu Kind | Modeless | Modal | Direct | 5equential |
Pop-Up Stay-put, no focus | focus all forms | cascading
Pull-Down Tear-away, no focus | focus all forms | cascading

Table 1: Menu Forms

for implementing various forms of user interface task in order to make reasonable tradeoff
decisions. As a result, the quality and maturity of the underlying toolkit defines, to a large
extent, the quality of dialogues supported by the application. At the time this report is being
written, the Unisys Ada/Xt toolkit implementation requires an enhancement of its current
set of user interface components (“widgets”) for various important forms of dialogue. Two
important classes of widget described in [6] are not yet implemented as Ada/Xt widgets:
menu selectors, and radio-box and check-box controllers.

The following section shows how these forms of dialogue are implementable in the Ada/Xt
toolkit for a narrow class of user interaction tasks.

2.4.1 Menu Selectors

The most commonly used action selection device is the menu. Menus come in a variety
of forms, each tailored for a particular kind of dialogue style. The Motif style guide, for
example, devotes twenty one pages to menu interactors 4.

For the puposes of this report, two basic kinds of menus are defined: pop-up and pull-down
menus. Pop-up menus are invisible until some user action causes them to be “popped”-up
into visibility; some other user action will cause the menu to be popped-down. Pull-down
menus, in contrast, are always visible (or at least their titles are always visible). Thus, these
menus provide visual cues to the end-user, at the cost of some application real-estate.

Ada/Xt Toolkit menus always implement a direct form of dialogue; various forms can in
addition provide modal, modeless, and (partial) sequential dialogues. Table 1 provides a
cross section of menu types and dialogue stvles. In table 1 “focus” refers to a toolkit feature
which allows the application to cause all input events occurring outside of the focus widget
to be discarded. Thus, to create a pop-up, modeless menu, an application would need to
select a stay-put, pop-up, non-focused variety of menu. The pull-down variety of modelness
menu could be implemented as tear-away menus. In the table, we designate cascading menus
as menus which support a nuxed-mode of direct and sequential dialogue; cascading menus
provide hierarchies of menus which refine selection choices as the mouse “walks” through the
selection list.

Although the current release of Ada/Xt does not provide menu widgets, the effect can be
achieved via composition of existing widgets, and use of various intrinsics calls, as illustrated

*Interactors are dialngue implementation devices, such as toolkit widgets.

Page 7

9 July 1990 STARS-RC-01030/001/00

command 2

Figure 3: Widget Hierarchy for Menus

below in figure 3. Since the construction of menus is a straightforward process, it 1aight be
questioned whether widgets should be constructed, or whether convenience routines would
he a better choice. In fact, Ada/Xt widgets should be constructed for STARS in order to
enforce a common look-and-feel. Figure 4 provides a good indication of the complexity of
even simple dialogue interactors, such as menus.

Figure 3 depicts a simple widget hierarchy which can be used to implement pop-up and
pull-down menus. The predefined intrinsics widget popup._shell is the parent widgc.; the HP
widget bulletin_board widget is used as an aggregation mechanism, and the Athena command
widget i1s used as the selectable menu items. Since the command widget is a subclass of
the Athena label widget, it can support both textual and iconic labels. The translations
defined on command widgets are also resources, so the default interaction behaviors can also
be tailored by either the application or end-user (if the application chooses to make such
tailoring available).

To pop-up or pull-down menus, the application calls the intrinsics operation zi_popup with
the parent popup shell widget as one argument, and the grab kind as the second argument.
The grab kind initiates various forms of event focusing to support modal or modeless menu
interactions.

Note that this widget hicrarchy does not address issues such as menu-dimming, command
grouping, keyboard equivalents. or cascading menus. It is these kinds of subtle features that

Page S

9 July 1390 STARS-RC-01030/001/00

-+——— mandatory title

Command 7K | = keyboard equivalent

Command

Command

SUBMENU TITLE —| <+ cascading indicator
I, <—— selector grouping

Command

-«—-— insensitive indicator

Figure 4: Menu Subparts

argue for the construction of a family of menu widgets.

Recommendation: Build a rich family of menu widgets.
Recommendation: In the interim, model menus after figure 4.
2.4.2 Radio-Button, Check-Box Selectors

While menus are sufficient for implementing dialogues for tasks requiring single item se-
lection, they are not particularly useful for interactions requiring multiple selections. For
example, selections requiring multipl< ~hoice, where the choices can be combined or are mutu-
ally exclusive, are not naturally exj.essed in menu form. For this purpose, a more elaborate
aggregation of widgets is required. The current Ada/t release provides the Athena dialogue
widget; however, this widget is really not sufficient for more than ve.v primitive forms of
multiple selection dialogue.

Radio-button dialogues® car be implemented in Ada/Xt similarly to menus: as a sequence
of command buttons inserted into a bulletin board whose parent is a pop-up shell. The
semantics of radio buttons is that selections are mutually exclusive. Check-box dialogues
can also be implemented in Ada/Xt in a similar way, with the semantics that selections are
not mutually exclusive. Figure 5 provides a sample depiction of radio-hutton, and figure
6 provides a sample depiction of a check-box dialogue. Note the visual cues provided for

-

5Radio and Checkboxes are called “Controls™ in Motif

Page 9

9 July 1990 STARS-RC-01030/001/00

Confirm Cancel

O] 1O O

choice 1 choice 2 choice 3 <choice 4

Figure 5: Radio Button Selection

Confirm Cancel

VIV v

choice 1 choice 2 <choice 3 choice 4

Figure 6: Check Box Selection

item selection. As is apparent, these interators are fairly complex, and require a more
sophisticated geometry management capability than primitive menus do. For this reason,
each of these kinds of interactors should also be implemented as special purpose widgets.

Recommendation: Build a rich family of controller widgets.
Recommendation: In the inlerim, model controller after figures 5 and 6.
2.4.3 Auxiliary Input Dialogues

Auxiliary input dialogues represent a grab-bag of interactors which support ad hoc com-
munication between application and end-user. For example, warning messages, confirmer
dialogues, and simple input dialogues fall into this category.

The Ada/Xt release provides support for these simple dialogues with the Athena dialogue
widget. Figure 7 illustrates the general form of an Athena dialogue. In the ncar term, this
widget should prove adequate. However, in the long term, a more sophisticated widget will
be necessary, since the component geometry management provided by the Athena dialogue
widget is rather constraining. That is, from a human factors perspective the grouping and
ordering of the constituent parts of ad hoc dialogues (actually, for the earlier mentioned
dialogue interactors as well, but the argument has already been made to construct new
widgets for these) should be under application control; this is not supported by the Athena

Page 10

9 July 1990 STARS-RC-01030/001/00

INPUT PROMPT MESSAGE:

string text editor

Bution Button Button Button

Figure 7: Athena Dialogue Widget

dialogue widget.

Recommendation: Build a rich family of dialogue widgets.
Recommendation: In the interim, model dialogues after Motif-style dialogues.
3 Programmatic Style

Considering the current level of maturity of Ada/Xt and the total lack of existing, real-
world Ada/Xt client applications, it is appropriate to address issues of programming style.
In this context, programming style applies both to Ada/Xt techniques which can foster the
development of effective, flexible, reliable and maintainable application interfaces, and pro-
gramming techniques to extend the toolkit itself. This section of the style guide describes
useful conventions and techniques from the perspective of an application programmer, and
from the perspective of a toolkit component designer. The former is concerned with devel-
oping effective application user interfaces; the latter is concerned with extending the Ada
toolkit.

3.1 Ada Toolkit Applications

Two programming issues arise in developing Ada/Xt applications: how to structure the code
to create internal application cohesion, and how to use Ada/Xt to create external application
cohesion. Internal cohesion refers to the intrinsic quality of the Ada program; external
cohesion refers to how well the application behaves in the enclosing software environment.
This report is concerned only with external application cohesion.

3.1.1 Effective Use of Resources

From the application user’s perspective, an Ada/Xt application provides a window-based
interface and a modeless, direct manipulation style of interaction. The MIT X Toolkit itself

Page 11

9 July 1990 STARS-RC-01030/001/00

provides additional support for user tailoring of the look and feel of application interfaces via
resource management. The toolkit resource manager supplies a rich variety of “hooks” which
allow application writers, system administrators, project administrators, and end-users the
opportunity to tailor the interface of an application to suit their own purposes. To a very
large extent, constructing an externally cohesive toolkit application is an exercise in making
effective use of the toolkit resource manager.

Resources: A quick overview

The toolkit consists of a set of user interface abstractions (“widgets”), and a set of generalized
services (“intrinsics”) which applications use to define their user interfaces. Each widget
manages a collection of resources whose values are specific to each widget instance: these
resources control the appearance and behavior of the widget. Resources can be thought
of as named data fields within widget instances. That is, the toolkit provides, via toolkit
intrinsics, operations to get and set widget resources by specifying the widget and resource
name. This extra level of interpretation allows the toolkit to provide an elaborate system
of widget resource initialization, at widget creation time, which includes a fairly complex
search of environment-defined resource files. An externally cohesive Ada/Xt application
fully exploits these environment-defined resource files.

Resource files consist of a sequence of name:value pairs which identify resource names and
values. Within a resource file, resource names can refer to specific resources within specific
widgets, or to entire classes of resources common to many widgets, or some combination of
the two. Syntactically, resource names are specified with respect to the widget tree which
represents the structure of an application interface. For pedagogical purposes, the simple
iconic browser depicted in figure 8§ will be used in the following examples. The application
structure for this browser is depicted in figure 9.

Thus, to set the border Width resource of buttonl, the resource file entry could be specified as:

demo.viewport.bboard.buttonl.borderWidth : 0

Alternatively, a wildcard notation can be used as follows:

demo*buttonl.borderWidth : 0

The wildcard notation is preferred, stylistically, since it makes the resource file more or less
insensitive to changes in the application interface structure (assuming buttons on a bulletin
board are always leaf widgets).

If one wishes to set the border width resource to 0 for children of the bulletin board, one

Page 12

9 July 1990 STARS-RC-01030/001/00

li—il demo

B

button?2

buttonl

Figure 8: Screen Image of Sample Program

could use the class notation as follows®:

Demo*BulletinBoard*borderWidth : O

A more complete discussion of resources can be found in [4], provided in the standard X
distribution. Note that the class names used in the above resource file fragment are defined
by the toolkit.

Resource Search Paths

The toolkit initializes widget resources by first searching the environment for resource files,
then examining resource initialization specified on the command line for the tool invoca-
tion, and finally by examing the arguments to the programmatic call to create the widget.
Specifically, the resource search path and logic is as follows:

1. Search the directory Jusr/lib/X11/app-defaults for a resource file named CLASS-
NAME, e.g., “Demo”.

6The class name for this application is determined by the class name argument to the intrinsics routine
xt.app-create shell.

Page 13

9 July 1990 STARS-RC-01030/001/00

-——— ApplicationSheil

“viewport" | <— ViewPon

~—— BulletinBoard

‘71 Command

Figure 9: Widget Hierarchy for Sample Program

o

Search the directory specified in environment variable “$XAPPLRESDIR™ if this vari-
able is set; otherwise search in the “SHOME” directory for a resource file named

CLASS-NAME.
3. Use display defaults, if any; otherwise scarch for the file “SHOME/.Xdefaults™.

4. Use resources specified in environment variable “SXENVIRONMENT" if this variable
1s set; otherwise search for the file “SHOME/. Xdefaults-SHOSTNAME".

5. Search command line for resource specifications.

6. Use arguments to intrinsics widget creation routine.

The effect of this search list is that name.value pairs found later in the search overrides pairs
found earlier in the search. Thus, providing resource values for widgets programmatically
prevents any resource file or command line tailorability.

As a result, the following Ada/Xt application style recommendations are made:

Recommendation: Use programmalic resource specification sparingly.

A generalization of this recommendation is that resource values should be specified in the
most flexible way possible; programmatic resource initialization is the least flexible of all.

Page 14

9 July 1990 STARS-RC-01030/001/00

[88) demo

Iigure 10: Resource-Modified Sample Program

There are reasons to set values programmatically, e.g., for setting the x and v coordinates
of a tiled application (if specific component geometries are vital to the application).

Implementing generalized non-programmatic resource initialization in applications often re-
quires considerable extra programming effort, but the benefits make the effort worthwhile.
For example, the sample program above implements a node-layout mechanism which is based
upon the values of widget resources, rather than some hard-coded coordinate set. Thus. it
is possible to change the fonts or bitmaps of icons in the browser without “breaking™ the
layout appearance. See figure 10 for an example, where the visnal presentations of buttonl
and button2 have been changed dramatically.

Recommendation: Choosc widget names wisely.

The widget name specified programmatically to zt_create_widget (and its variants) provides
the essential and most commonly used resource file hook for setting widget resource values.
Well chosen widget names can enhance the flexibility of an application’s resource file specifi-
cations. For example, in the demonstration program illustrated in figures 8 and 10, imagine
that the command buttons lving on the bulletin board are nodes in a point-and-shoot iconic
browser. If all nodes of a specific underlying node type (e.g., directory node) share the same
name, then all instances of directory nodes can be given the same (differentiating) iconic
representations with one line in a resource file:

Page 15

9 July 1990 STARS-RC-01030/001/00
*directoryNode.bitmap:folderIcon

Similarly, distinct translations could also be applied to different node types via resource
specifications.

Recommendation: Define application classes.

To take advantage of the toolkit resource file search logic, applications should be grouped
by classes, with common interface styles represented by the same class of application. For
example, a generic, reusable iconic browser abstraction is being developed by the Unisys
STARS program; all instantiations of this reusable browser should, programmatically, be
specified as belonging to class “Browser” (or something similar). In this way, the resource file
“/usr/lib/X11/app-defaults/Browser” can provide default behavior for all browser instances.

Recommendation: Use environment variables spaiingly.

Installations should not require the use of environment variables for the location of resource
files. However, the use of environment variables can be extremely useful in preparing demon-
stration versions of software. For example, using the hypothetical browser discussed above,
for a demonstration using overhead projectors it would be reasonable to override default
font sizes to a larger size. Use of the SXAPPLRESDIR environment variable for specifying
special-purpose resource defaults is appropriate in such circumstances.

3.1.2 Translations

Translations are a specialized feature of the toolkit which provide limited end-user flexibility
in the “feel” of applications. That is, translations allow the user specification of a mapping
between sequences of events and application functionality. For example, the resource speci-
fication:

demo*bboard.translations : #override :<Key>Q:quit()\n
Demo*BulletinBoard*Command.translations : #override <Key>P:print()

specifies that uppercase ‘Q’, when typed onto the bulletin board widget, will cause the
invokation of the application-defined function, “quit.” Also specified is that ‘p’ and ‘P’ will
cause browser nodes to be printed. Of course, this requires that the application has provided
such functions, as well as a mapping from the string “quit()” and “print()” to these functions;
a toolkit warning message will be generated otherwise. For further details consult [35].

Page 16

9 July 1990 STARS-RC-01030/001/00

Recommendation: Provide access to functions via the translation manager.

In order to make use of translation management, applications need to define primitive appli-
cation functions in terms of translation management action procedures. In doing so, and by
providing an external specification of the events to actions mapping, the application insu-
lates itself from changes to drivability standards (i.e., which mouse button performs object
selection tasks). A second benefit of translations is that it enables expert users to define
keyboard equivalents to frequently uscd operations.

3.2 Extending the Ada Toolkit

Since the toolkit is extensible and since Ada/Xt is still quite new, it is anticipated that a large
number of new toolkit widgets and resource types will be constructed in the near future. One
of the most troublesome aspects of the toolkit implementation is the proliferation of types,
and the sometimes baroque interactions between types. In order to manage the complexity
of the system, strong guidelines are necessary in order to ensure that toolkit extensions are
made in a uniform, controlled way. The following sections describe the programmatic style
which is recommended for extending the toolkit with new resources and widgets.

3.2.1 Adding New Resource Types

This section defines a “cookbook” style for adding new resources. Each resource should be
defined in a separate Ada package, whose name is “resource name”_resource. For example.
the mask resource is defined in the package “mask_resource.”

Resource Package Specification

The package specification for resources has five major components:

1. String definitions {. resource name, class, and type.

o

Ada resource type definitions.
3. Constants for default resource values.
4. Instantiation of generic resource interfaces.

5. Useful Ada type converters.

Figure 11 provides the complete package specification for the mask example discussed, below.

String definitions for resource name, class, and type. This section defines string
constants needed by the toolkit. application programmer, and end-user to access widget
resources.

Page 17

9 July 1990 STARS-RC-01030/001/00

The resource manager is a kind of type interpreter which manages types as raw data; a
substantial part of this interpretation is driven by type converter functions “registered” to
convert from and to resources of various types. Resource types are specified as string values,
as are resource classes. The package rt_stringdefs provides the definition of the pre-defined
toolkit resources. New resources wili need to introduce their own constants.

For example, the mask resource could be defined as:

xt_n_mask_32 : constant string := "mask32";
xt_c_mask_32 : constant string := "Mask32";
xt_r_mask_32 : constant string := "Mask32";

The rt_n prefix denotes a resource name constant; the rf_c prefix denotes a resource class
name constant; rt_r denotes a resource tvpe name constant. There is no restriction that
the actual string names be identical, though in practice this is recommended. Note that
class and type names begin with an uppercase letter, resource names begin with a lowercase
letter. Also note that the class name value is the string users will specify in resource files

(i.e., “Mask32").

Ada resource type definitions. This section defines the Ada types used by application
and widget programmers.

These types define the concrete representation of types in widget instances. Because of the
way Ada/Xt implements inheritance, it is vital that the actual resource type have a known
size at compile-time. For example, in the current release of Ada/Xt an assumption is made
that access types are all of some known, constant size. So the mask resource is defined as
follows:

subtype mask_array is x_windows.boolean_array (0 .. 31);
type mask is access mask_array;

For other resource types, c.g., discrete integer types, the Ada LRM [8] cliapter 13 type
representation features must be used.

Constants for default resource values. This section defines values used by the resource
manager to initialize widget resources when no default values are provided programmatically
or from resource files.

For the mask resource example, the following is used:

null_mask_array : constant mask_array := (others => false);
null_mask : constant mask := new mask_array’(null_mask_array);

Page 18

9 July 1990 STARS-RC-01030,/001/00

The constant null.mask_array, strictly speaking, is not necessary in the specification.

Instantiation of generic resource interfaces. This section defines the generic instanti-
ations for programmatic manipulation of resources. This is straightforward, as illustrated:

mask_size : cardinal = 0;
package mask_interface is new resource_interface (mask, mask_size);

Useful Ada type converters. Finally, this section provides useful type converter functions
for programmatic manipulation of resources. In particular, these functions are targeted for
conversion among resource types and the base, raw data type, caddr_t:

function to_mask is new unchecked_conversion(caddr_t, mask);
function to_caddr_t is new unchecked_conversion(mask, caddr_t);

It is only an implementation artifact that unchecked conversion is used here. Actually, any
arbitrarily complex type mapping can be performed instead, assuming source and target
representation sizes are preserved.

Resource Package Body

Resource types require package bodies only if the resource type introduces new type convert-
ers which the toolkit will automatically call to convert between resource types. The most
commonly required conversion is from string representation to Ada type representation, since
this is the transformation required when reading resource values from resource files.

The actual conversion function need not be (and should not be) made visible in the package
specification; rather, it should be implemented within the body of the package, and then
installed via the intrinsics utility zt_add_converter. This installation should be done in the
begin..end elaboration block of the resource package body’

3.2.2 Adding New Widgets

Adding new widgets to the toolkit is a specialized, intricate code development task. The
details of implementing widgets is far beyond the scope of this report. However, the top-level
packaging aspects of widget development require consistent treatment. In particular, it is
necessary to define widgets in two packages: the public, and the private packages.

The details of widget subclassing and packaging can be found in the Ada/Xt (7] design
report. Key aspects of these conventions are reprised, below.

"Note: this requires the resource package body to elaborates the intrinsics package.

Page 19

9 July 1990 STARS-RC-01030/001/00

with ...;
package mask_resource 1is

~-- resource class and name constants, if necessary (see xt_stringdefs_.a):

-- xt_n_text_options : constant string := "textOptions";
xt_c_options_32 : constant string := "Options32";
xt_r_options_32 : constant string := "Options32";

-- resource data representation:
subtype mask_array is x_windows.boolean_array (0 .. 31);
type mask is access mask_array;

-- constants for default resource values:
null_mask_array : constant mask_array := (others => false);
null_mask : constant mask := new mask_array’(null_mask_array);

-- resource interfaces from generic instantiation:

mask_size : cardinal = 0,

package mask_interface is new resource_interface (mask, mask_size);
-~ useful conversion operations

function to_mask is new unchecked_conversion (source => caddr_t,

target => mask);

function to_caddr_t is new unchecked_conversion (source => mask,
target => caddr_t);

-- Resource converters
end mask_resource;

Figure 11: Sample Resource Type Specification

Page 20

9 July 1990 STARS-RC-01030/001/00

3.2.3 Widget Public Specification

The public specification is used primarily by toolkit clients, 1.e., application programs. This
interface defines:

1. Resource documentation: names and semantics.

(o)

. Widget and widget class Ada type marks.

(O]

. Widget class function.

o

. Publically available, widget-specific operations (subprograms).

Resource documentation: names and semantics. This section of the specification
provides a description of widget resources that are accessible programmatically o, through
resource files. For example, from the Athena Scrollbar widget:

-- Name Class RepType Default Value
-- Dbackground Background Pixel White
-- JjumpProc Callback Function NULL

Note that the public specification should document the interfaces of all callbacks in terms of
their usage from an Ada program. Such documentation is needed because of the raw-typed
interface (i.e., caddr_t) for callback client and call data. Again, from the Athena Scrollbar
widget:

-- jumpProc(w : widget; client_data : caddr_t; call_data : xt_float);
-- client_data 1s client defined;
-- call_data 1s the position of the thumb, in range 0.00 .. 2.00

This documentation is suflicient for the ap)liCRtiOH program to perform necessary conversions
I =) | R
between the caddr_t typ(} and the actual paral'neter typ(.‘.

Widget and widget class Ada type marks. This section of the specification provides
Ada type marks. The current release of Ada/Xt employs a subtype hierarchy which parallels
the widget subclass hierarchy. Later releases of Ada/Xt may incorporate use of a derived
type hierarchy for widget types®.

8The class hierarchy will still be subtype oriented, since parallel derived type hierarchiss introduce in-
trinsics operator visibility problems.

Page 21

9 July 1990 STARS-RC-01030/001/00

Widget class function. The Ada/Xt implementation defines the subclass constant as a
parameterless function returning the type of widget class defined above. This is an imple-
mentation decision.

Publically available, widget-specific operations. This section of the specification de-
fines the interfaces to widget-specific operations. For example, the Athena TextEdit widget
implements several operations for accessing the state of text editor widget instances. The
only stylistic point to note i1s that the implementation of these operations should all verify
that the actual widget parameter to the operation is indeed a subclass of the widget which
introduced the operation. In this way toolkit dynamic typing can catchi, albeit at run-time,
simple type mismatch errors. The previously mentioned derived widget type hierarchy may
make such testing unnecessary in future releases of Ada/Xt.

3.2.4 Widget Private Specification

The private widget package specification is used solely by the intrinsics: toolkit clients should
never depend upon the contents of the definitions in the private package.

The purpose of the private specification 15 to define the concrete representation of Ada/Xt
widgets. This concrete representation includes manually compiled inheritance relations
which require considerable usage of Ada LRM chapter 13 features. The reader is advised
to consult {7] and sample widgets in the Ada/Xt release before attempting to define a new
widget.

4 User Interface Styles and Standards

With the move to open systems, the formal standards bodies (IEEE and ANSI in the U.S))
have recognized the need for program presentation and drivability standards. In IEEE
Window Systems Application Portability Group Drivability subgroup (P1201.2) work has
begun on drivability standards to address the following problems:

error provoking inconsistencies

misleading expectations about the results of user actions

e gross inconsistencies in the high level user model or metaphor

incompatible motor control tendencies

Areas currently under examination by P1201.2 are

e keyboard

Page 22

9 July 1990 STARS-RC-01030/001/00

o feedback

e menus

e buttons

¢ pointing devices
e tasks and actions

e window

The result of the P1201.2 work will be a recommended practices standard. The intent of
P1201.2 is not to produce a “look and feel” guideline, but to address problems in consistency
of behavior among a diverse set of window system based applications on a variety of hardware
platforms.

In addition to the P1201.2 work ANSI through X3V1.9 is working with humans factors
organizations to develop “look and feel” standards for all aspects of the user interface. They
have submitted work on icons to ISO, and are working on cursor control and keyboards.

Another group within ANSI, Human Computer Interaction (HCI), is taking a broader view
of user interface standards beyond window syster ° .rface This group is also feeding
guidelines to ISO. Current work is on menu dial.gues.

Several industry groups have developed standard “look and feels” for the open system en-
vironment. Open Software Foundatior 'NSFEF) developed its “look and feel” standard from
the Presentation Manager Style Guide and requires Motif compliant applications to adhere
to this style. Unix International, led by AT&T and Sun, have developed a competing “look
and feel” standard, Open Look. Competition between Motif and Open Look is fierce as each
tries to establish its style as the standard. Current estimates have Motif dominating with
70 to 80 percent of the market for windows system based applications.

5 Summary of Recommendations

Below is an itemized list of key reccommendations made in this report:

e Adopt the Motif Style Specification.

Applications should implement obje~t-action selection.

Provide visual feedback for all user interactions.

Build a rich family of menu widgets.

e In the interim, model menus after figure 4.

Page 23

9 July 1990 STARS-RC-01032/001/00

¢ Build a rich family of controller widgets.

e In the interim, model controller after figures 6 and 5.

e Build a rich family of dialogue widgets.

e In the interim, model dialogues after Motif-style dialogues.
e Use programmatic resource specification sparingly.

e Choose widget names wisely.

e Define aprlication classes.

e Use environment variables sparingly.

e Exploit the translation manager.

Page 24

9 July 1990 STARS-RC-01030/001/00

References

{1] The Boeing Company, Boeing Acrospace Division. Programmer’s Guild for [BOEING]
STARS User Interface Toolkit, January 1990.

[2] Apple Computer. Inside Macintosh Volume 1. Addison-Wesley, ISBN 0-201-17731-5,
1987.

[3] Hix Deborah H. Rex Hartson. In ACM Computing Surveys, Human-Computer Interface
Development: Concepts and Systems. ACM Press, 19389.

[4] MIT X Consortium. Using and Specifying X Resources, April 1958.

[5] MIT X Consortium. X Toolkit Intrinsics - C Language Interface, July 1988.
[6] Open Software Foundation. OSF/Motif Style Guide, July 1989.

[7) Unisys Defense Systems. Ada/Xt Architecture: Design Report, December 1989.

8] United States Department of Defense. Reference Manual for the Ada Programming Lan-
9)
guage, February 1983.

Page 25

Form Approved

REPORT DOCUMENTATION PAGE _ OMB No 0704.0188

PuDiIre f6OC™ G SUrder 107 Ty ICHECTION St AICIMatIOr '3 SSUMBTIEC IC Av€r3Ge * “Our DEr “#30073€. "NIUAITS TRE LIME 10 feviewing INSITUCTIONS. SEATCNING 13t~ 0312 sOuUrces
Jatherng NG MAATAINIAG TNE 412 NELTRY. ANC COMD'EUING 3NQ feviewing TRE (CHIECTION Of INTOrMaLION SENa COMMents Tegaraing thry burden EsLIMAate O any SINer 330eCt O thi
CONBCUIN -¢ NIGIMATCR. NCGUBING SuGFEINIONS 10f FECUAING this DUrGEN (S WashINGIOn Hessouarters Services. Directorate for info-mation Operations and Reports. 1215 Jefterson
Dassrigtaay. Suite 1204 Arhington VA 222024302 and tc the O ice of Management ang Buage: Paperwors Reduction Project (0704-0188), Washington, DC 22503

1. AGENCY USE ONLY (Leave dlank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

2 November 1990 Final
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Ada/X Interface Style Guide

STARS Contract

F15628-88-D-0031
6. AUTHOR(S)
Kurt C. Wallnau
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Unisys Corporation
12010 Sunrise Valley Drive GR-7670-1150(NP)
Reston, VA 22091

9. SPONSORING - MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC) 01030
Hanscom AFB, MA 01731-5000

11. SUPPLEMENTARY NOTES /' — - r .) -
\\\ x‘ “ :!(L/ L3E T WA ‘/, ‘,P'x;-, ' ﬁ. N ’.'.i‘;,(- d\///."r) ‘:‘4(—- ’T,.:)‘ |

—a

ndm—

12a. DISTRIBUTION . AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

|
j

Approved for public release; j
distribution is unlimited '

13. ABSTRACT (Maximum 200 words) /’
/

defines conventions for development of
effective applicatfon user interfaces. The guide is intended for
use by applicatiof developers and user interface developers using
the Unisys STARSNAda/X User Interface Software. The intent is to
produce a consistent style among Ada applications. The Style Guide
addresses three areas of style:

7 This technical repo

!
_o Il application/user interactions or dialog?es,
.o :'.onventions for developing applications, and ;”,;\\
o - 'formal and informal user interface standardization efforts. ()
P
14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada/Xt Toolkit Applications 22
. 16. PRICE CODE

-

18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION]20. LIMITATION OF ABSTRACT

17. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

OF REPORT
Onclassified

Unclassified Unclassified SAR

