
.4

ARI Research Note 90-53 OTIC FILE COPY

0 Intelligent Support Systems for
Hyperknowledge

Nd Gerhard Fischer

University of Colorado

for

Contracting Officer's Representative
Michael Drillings

DTIC
ELECTIE

SEP28190

Michael Kaplan, Director

July 1990

United States Army
nebearcr institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited

.9G &.

U.S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W. BLADES
Technical Director COL, IN

Commanding

Research accomplished under contract for
the Department of the Army

University of Colorado

Technical review by

Michael Drillings

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical
Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

UNCLASSIFIED
:URITY CLASSIFICATION OF THIS PAGE

IForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
iclassified

* SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

* DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited.

PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ARI Research Note 90-53

* NAME OF PERFORMING O GANI AIION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
_partment or Uompu er cience (If applicable)
id Institute of Cognitive U.S. Army Research Institute
zience, University of Colorado I

. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
niversity of Colorado 5001 Eisenhower Avenue

ay pus Box B-19 Alexandria, VA 22333-5600

Dulder, CO 80309

• NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION .. Army Research ('if applicable)

nstitute for the Behavioral MDA903-86-C-0143
nd Social Sciences L PERI-BR
. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

001 Eisenhower Avenue PROGRAM PROJECT K WORK UNIT

lexandria, VA 22333-5600 ELEMENT NO. NO. N/A A
61102B 74F N/A]N/A

I. TITLE (Include Security Classification)

ntelligent Support Systems for Hyperknowledge

L PERSONAL AUTHOR(S)
ischer, Gerhard

Ia. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

nterim 1 FROM 96/(8 TO-9LDa I 1990, July I 2

i. SUPPLEMENTARY NOTATION

ontracting Officer's Representative, Michael Drillings

COSATI CODES I 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Problem solving \om -e t-. programminj

_ _ _ _ _ Knowledge representationy uman-computer interaction.A

(Continue _&Mchine learn ing1 ..

), ABSTRACT (Continue on reverse if necessary and identify by block number)
Computer systems can assist in searching, understanding, and creating knowledge in

reative problem-solving. We have explored this idea in the context of building a variety
f intelligent support systems for high-functionality computer systems, emphasizing the
ollowing specific issues: representation of programs as knowledge networks where the code,
he documentation, and visual representations are external representations generated from the

ame complex internal knowledge structure; user-definable filters to give users control of
he parts they would like to see; constraint mechanisms to maintain consistency between

nternal and external representaLions; different browsing systems to explore hyperknowledge

paces and design kits as prototypes of hyperknowledge assistants. To increase the usefulness

f high-functionalty computer systems, they should be constructed as hyperknowledge systems

here the intelligehL support systems are an integral part of the overall design.

D. DISTRIBUTION/AVILAbIL.II, OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

I1UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

!a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Michael Drillinvs (202) 274-87221 PERI-BR

) Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

INTELLIGENT SUPPORT SYSTEMS FOR HYPERKNOWLEDGE

CONTENTS

Page

INTRODUCTION 1

HYPERKNOWLEDGE 2

Expectations about Hyperknovledge 2
The Role of Structure 3
User Control 4

INTELLIGENT SUPPORT SYSTEMS 5

DESCRIPTION OF OUR SYSTEMS 6

Support Tools to Explore Hyperknowledge Spaces 6
Computer-Supported Documentation Systems 10
Hyperknowledge Assistants 11

CONCLUDING REMARKS 15

LIST OF FIGURES

Figure 3-1. An architecture for intelligent support systems 6

4-1. The OBJTALK-BROWSER 7

4-2. The OBJTALK-NAVIGATOR 8

4-3. HELGON 9

4-4. A sample function description 11

4-5. Definition of a filter using the filter kit 12

4-6. Initial state of WIDES 13

4-7. The window and its associated icon 13

4-8. Adding a button to the title bar. Acd*esfo Yor" . . . 14

ITIS GRA&I o"
DTIC TAB 0
Unannounced [3
Justifloatlon

By f

iii *Distrbut'onI

Availability Codes

Avall aid/or
Dist Speolal

INTELLIGENT SUPPORT SYSTEMS FOR HYPERKNOWLEDGE

1. Introduction

Modem computer systems are best understood not in their capacity to compute but to serve as
knowledge stores. And because there is lots of knowledge around, we should not expect that the sys-
tems will be small and simple, but they will be large and complex (examples are UNIX systems, usP
machines, etc.; for a quantitative analysis see [Fischer 87a]).

Systems offering such a rich functionality are a mixed blessing: in a very large knowledge store it is much
more likely to find something related to what we need, but it is also much more difficult to find something
specific. Our empirical investigations indicate that the following problems prevent many users and desig-
ners front successfully exploiting the potential of these high-functionality systems: they do not know
about the existence of tools, how to access tools, when to use the tools, they do not understand the
results that tools produce for them, and they cannot combine, adapt, and modify tools to their specific
needs. A consequence of these problems is that these systems are underused and the broad
functionality is of little value. We are strongly convinced that what is needed is not quantitatively more
information but qualitatively new ways to structure and present information.

We claim that in future computer systems, a high percentage of the computational power should be used
to make these systems usable, manageable, and useful. Making complex systems useful and usable is
not only limited by our inability to produce effective descriptions, but there are inherent limitations in doing
this with paper. In the case of program documentation systems, we have argued [Fischer, Schneider
84] that program documentation produced as a separate document by a word processing system has the
following disadvantages:

* It is impossible to provide pieces of information automatically.
" It is impossible to maintain consistency between the program and its documentation

automatically (or at least semi-automatically).
* It is impossible to generate different external views dynamically from one complex internal

structure (e.g., to read a documentation either as a primer or as a reference manual).
" It is impossible to create links between the static description and the dynamic behavior.

Similar arguments apply to form systems [Fischer, Rathke 87] where paper representations also have
major shortcomings. In forms on paper, al/cases (e.g., married or not married, employed or unemployed,
citizen or foreigner) must be explicitly represented, and paper is incapable of propagating values trom one
part of a form to another one.

Over the last eight years, we have built systems in the following application domains:
" design environments for high-functionality computer systems [Delisle, Schwartz 86; Fischer,

Lemke 87a],
" abstraction hierarchies for specific problem domains to support "human problem-domain

communication" [Fischer, Lenke 87b] and reuse and redesign [Fischer 87a; Fischer, Lemke,
Rathke 87],

" education (e.g., electronic encyciopedias [Weyer, Boming 85; veyer 87], help systems
[Fischer, Lemke, Schwab 85], and critics [Fischer 87]),

" personal information systems (e.g., the MEMEX as envisioned by [Bush 45]; the DYNABOOK,
serving as the vision for the development of personal computer systems, innovative inter-
faces, and the SMALLTALK language [Kay 77]; our own effort to develop a conceptual
framework ana a osign for a personal information environment (Fischer, Nieper 87]).

V.

2. Hyperknowledge

Hypertext is in general defined as an approach to information management in which text is stored in a
network of nodes connected by links, and this network is meant to be viewed and manipulated inter-
actively. If the nodes do not only contain text, but graphics, audio, video, and other forms of data, the
representation form is often called hypermedia. We have chosen to use the term "hyperknowledge" to
indicate that the individual nodes can have a rich internal structure and can be linked in a variety of
different ways (e.g., our 3bject-oriented knowledge representation formalism OBJTALK (Rathke
851 supports multiple inheritance, constraints, coreference, metaclasses, etc.). 1

Hyperknowledge (similar to knowledge-based systems) has to address three major problem areas: ac-
quisition of knowledge, representation of knowledge, and utilization of knowledge. There are currently a
variety of systems (e.g., the dynamic books constructed by [Weyer 821, the DOCUMENT EXAMINER on the
Symbolics usP machines [Ehdich, Walker 87]), which only address the third problem: they provide
powerful accessing and retrieval methods to a written documentation (produced as a conventional book)
to support a variety of access paths to the information store.

2.1 Expectations about Hyperknowledge

Knowledge acquisition, representation, utilization, and dissemination is not independent of the media
used in carrying out these objectives. There are various metrics of costs associated using different
media. Examples of such metrics dealing with knowledge are the cost of learning, the cost of creating,
the cost of comprehension, and the cost of modifying. If a variety of media exist, one has the freedom to
choose the one which fits the task best - eliminating the force to use the same medium for all tasks
(hyperknowledge systems are an important step towards the goal that a document or a representatio, fits
the information, not vice versa; hybrid knowledge representation schemes [Stefik et al. 831 try to achieve
a similar goal in the area of knowledge representation). As indicated before, paper has severe limitations
to represent complex systems. Following we briefly describe a number of problem areas where we
expect hyperknowledge representations can make important contributions.

User-centered representations. A user-centered system should support features like: to easily
generate personal notes from general documentation, to filter out irrelevant items, to mark important
things to remember, and to put the information in a unique perspective, satisfying demands which the
designers are unable to anticipate. In order for a system to take the users' needs into account, it has to
incorporate information about the users' preferences, skills, and what they have previously looked at. The
user should be able to communicate intentions so the system can highlight and prioritize what's important
and hide connections and details which are considered irrelevant for the task at hand.

Dynamically generated Information, Hyperknowledge architectures should allow information to be
generated "on the fly." The visualization tools in our software oscilloscope (Boecker, Fischer, Nieper
86] all share this property; they can take the actual working context into account and visualize the struc-
tures the user is working on. This provides a qualitatively different level of support compared to "canned"

'Hyperknowledge representations are not too different from semantic nets: one difference is that automatic processing was a
more prominent design citeria in the case of semantc nets whereas hyperknowledge spaces should be more supportive towards
exploration by humans.

2

visualizations stored on a video disc. Information on a video disc has to be preselected and cannot take
the actual working context into account. The possibility of generating structures dynamically supports an
economy of representation by allowing different external representations (e.g., primers or reference
manuals) to be generated from the same complex internal knowledge structure, and it makes it it easier to
maintain consistency and to update information structures.

Views of reduced complexity. The system should support mechanisms to generate views of reduced
complexity. Filter mechanisms, where the filters can be defined by the user, allow the generation of views
of reduced complexity showing only the information which is relevant for a specific user at a specific time
(for an example see section 4.2). If the system is responsible for the generation of the views, knowledge
about relevancy must be incorporated (examples are: "fisheye views" [Furnas 861 and the display heuris-
tics ubed in KAESTLE, a system to visualize list structures [Boecker, Fischer, Nieper 86]).

Support Systems to find information. Powerful features are needed to locate information in a hyper-
knowledge system. Browsers and navigators (see section 4.1) have turned out to be useful tools for
systems organized as inheritance networks. But how do we find out about things in cases where we do
not even know that they exist? The retrieval paradigm of incremental query specification [Williams
84] (see section 4.1) augments browsers by helping users with examples to incrementally specify their
questions.

Turning systems Into coaches and critics. In addition to being just information stores with powerful
search mechanisms, hyperknowledge systems should assist the users in carrying out their tasks and
solving their problems. Active systems (e.g., acting as critics and consultants [Fischer, Lemke, Schwab
85; Fischer 87b]) are needed which volunteer help in appropriate situations rather than responding to
explicit requests. In order to volunteer information, the system needs some understanding of what the
user is doing. They should allow users to conjecture, create, and experiment with information instead of
just retrieving it (an exampie being electronic encyclopedias [Weyer, Boming 85]).

Situation models versus system models. A shortcoming of many existing information retrieval systems,
like manuals, is that access is by implementation unit (e.g., usP function, UNIX command) rather than by
application goal on the task level. Current support information is designer-oriented rather than user-
oriented. Documentation and help information is structured to describe the system, not to address the
problems experienced by the user. We claim that this is the main reason that human assistance, if
available on a personal level, is still the most useful source of advice and help. Learners can ask a
knowledgeable colleague a question in an infinite variety of ways; they get assistance in formulating the
question, and they can articulate their problem in terms of the situation model rather than being required
to do so in terms of a system model[Fischer, Nieper 87]. A knowledge store trying to cover situation
models must incorporate user constructs, user-oriented organizations of knowledge, and a presentation
component which presents information in the user's concepts and words.

2.2 The Role of Structure

In a recent workshop about personalized intelligent information systems [Fischer, Nieper 87] where many
relevant questions about hyperknowledge systems were discussed, the role of structure was identified as
a major challenge in system design. The discussion centered around the question "Is structure desirable:
yc: " '- " " 2, "T!. to be forced to generate structures. In early problem solving stages the

3

enforcement of structure may get in the way when people start to do something. Different approaches
towards this problem are taken by these systems:

" NOTEPAD [Cypher 87) postpones the necessity for creating a structure and requires only a
minimal amount of structuring;

" SPATIAL THOUGHT DUMPER [Lewis 87] uses spatial relationships as the only clue;

" Note,. ards [Halasz, Moran, Trigg 87; Trigg, Suchman, Halasz 86] requires substantial struc-
turing:

" EUCLID (Smolensky et al. 87] is based on the assumption that argumentation benefits from
being structured.

The major design tradeoff is: we would like to take advantage of many structuring principles to retrieve
and use information, but we are much less willing to take the overhead into account which is necessary to
generate this structure (in Artificial Intelligence systems this questions is often discussed under the head-
ing whether processing should be done at "read-time" or at "question-time"). We don't want to structure
information explicitly, but we do want to retrieve information using structural properties.

Other questions which were discussed:

" If we impose a structure, which form should it take: hierarchies, inheritance networks, as-
sociations, ...?

" Is a structure statically given or generated on demand [Kintsch, Mannes 87]?

" How can effective restructuring be supported?

To be able to cope with large hyperknowledge systems, structuring principles play an important role (see
for example Simon's ideas about the architecture of complexity [Simon 81D. For many interesting areas,
a structure is not given a priori but evolves dynamically. Because little is known at the beginning, there is
an almost constant need for restructuring. Despite the fact that in many cases users could think of better
structures, they stick to inadequate structures, because the effort to change existing structures is too
high.

2.3 User Control

The rationale for hyperknowledge systems is to give the user more control. But control does not come for
free, and the questions "how much control should users have?" and "how much control do users want to
have?" are serious ones. There is no doubt that taking away the control from users in cases where they
did not want to have it is regarded as progress in technology (e.g., the automatic transmission in
automobiles). Questions which one has to ask are:

* Does end-user modifiability (or customizability) make systems more or less complex? Poten-
tially both possibilities exist: laws are so complex, because they have to anticipate all pos-
sible situations and cannot be adjusted dynamically. Forms on papers are complex (with an
elaborate branching structure) because they have to cover many different cases. Electronic
form systems in which forms are generated dynamicaiy based on users profiles can greatly
reduce complexity [Fischer, Rathke 87].

* Should end-user modifiability be achieved by adaptive (i.e., the system itself changes its
behavior based on a model of the user and the task) or adaptable systems? Do we have to
choose?

4

" In adaptable systems, how can end-user modifiability be achieved? Is programming neces-
sary for it? Which set of constrained design processes can be supported [Fischer, Lemke
87a] which would eliminate the need for a user to learn details about a system?

" The question to be asked about control should in many cases not be "how much customiza-
tion is possible?" but rather "how little customization is necessary?"

Using systems like GUIDE 2 or the INFO system for EMACS show that flexibility can be confusing for the

producer and the consumer of information. Reading and writing sequential text may put (independent of

the fact that we are used to it) a smaller cognitive burden on the user than organizing complex networks.

3. Intelligent Support Systems

Today's software environments require a substantial amount of knowledge to make effective use of their
tools and systems. The most common approach in making these systems usable has been to reduce
their functionality. Rather than "watering down" the capabilities of these systems, we address with our
research the problem of how these systems can be augmented to support their usage. In future com-
puter systems, a high percentage of the computational power should be used to make these systems
usable, manageable, and useful. Our system-building efforts are based on the belief that the intelligence
of a complex computer system must contribute to its ease of use. Truly intelligent and knowledgeable
human communicators, such as good teachers, use a substantial part of their knowledge to explain their
expertise to others. In the same way, the intelligence ol a computer should be applied to providing
effective communication.

We need an architecture to support a coherent design strategy that treats intelligent support systems not

as add-ons to existing systems but as integral parts of a user-centered design approach. In Figure 3-1
we illustrate a system architecture that we have developed in response to this design criterion.

Over the last few years, we have constructed the following systems belonging to the outer ring:

1. WUsP: a user interface toolkit [Fischer 87a];
2. OBJTALK: an object-oriented, frame-based knowledge representation language [Rathke 861;
3. OBJTALK-BROWSER and OBJTALK-NAVIGATOR: navigational tools which help the user to locate

specific items in complex information spaces [Fischer 87a];
4. DoxY- a computer-supported documentation system [Fischer, Schneider 84];
5. PASSIVIST and ACnVIST: prototypes for passive and active help systems [Fischer, Lemke,

Schwab 85];
6. USP-CRITIC: an example of a critic system [Fischer 87b];
7. ,AESTLE: a visualization tool which supports the dynamic generation of graphical represen-

tations of usP data structures [Boecker, Fischer, Nieper 861;
8. WIDES and TRIKIT: two prototypical design kits to assist users in exploiting the functionality of

wusP [Fischer, Lemke 87a; Fischer, Lemke 87b.

A hyperknowledge approach seems to be well suited to support this architecture. In the long run, our

perspective of programming as the main activity of creating computer systems will change. Desiqlners

2GuiE is a system manufacured by owt. Inc.. Bellevue, WA and is marketed as "hypertext for the Macintosh."

5

Vs ualiztion eg
COm ponont Kits

SExplanation iumentattol

System System

Figure 3-1: An Architecture for Intelligent Support Systems

and users will create knowledge stores, where the executable part (i.e., the code) is just one perspective
of it.

4. Description of our Systems

In this section, we will briefly describe three research areas of hyperknowledge in which we have built
specific systems:

* support tools to explore hyperknowledge spaces (e.g., browsers, navigators, and incremental
query specification);

* representation of programs as knowledge networks where the code (the program listing) is
just one external representation, including user-definable filters to see selected parts of a
complex internal knowledge structure;

e hyperknowledge assistants which support users in relating the information to their goals and
tasks.

4.1 Support Tools to Explore Hyperknowledge Spaces

Over the last years, we have developed OBJTALK (Rathke 86], an object-oriented extension to LISP.

OB. rALK has been used to model a number of problem domains (e.g., wusP, a user interface toolkit
(Fischer 87a]) by creating a large number of abstractions and embedding them in a multiple inheritance

network (a specific instance of a hyperknowledge space). The OBJTALK-BROWSER and the
OBJTALK-NAVIGATOR are two tools to explore this space.

The OBJTALK-BROWSER [Rathke 86] allows the user to "look around" in a system with an unfamiliar struc-
ture and search for building blocks (Figure 4-1). It displays the inheritance structure of a system, By
selecting a oomponent, its slot descriptions, defaults, triggers, and methods can be analyzed in more
detail. Similar tools exist in the programming environment for SMALLTALK [Goldberg 84].

6

inside-region; os-winds
add-window: subwindowsdel ete-w indow : top-menu

totop-w! ndow:

robot t om-w I ndo
bury-window:
reposition-win
erase-window:

Sw-MIU up-wlndow:

down-wi ndow:
me-11C W ___ MfaI S11PU- e move-window:

WMu pdate-content
edl splay-subw

PRK-Pwl SPR-111MdeexRje:I E
bg-screen

screen-mi xl n
Rcrol I-ianager

Figure 4-1: The OBJTALK-BROWSER

The OBJTALK-NAVIGATOR. The OBJTALK-BROWSER does not provide any support for locating the inherited
slots or methods. Over the last several years working with OBJTALK and wusP, we have observed that
there is a design trade-off in the design of inheritance systems: the goal of reusing building blocks as
much as possible leads to a wide distribution of information throughout the inheritance nehvork which can
be a major problem in understanding a specific behavior of the system. The OBJTALK-NAVIGATOR is a tool
that helps to locate functionality regardless of where it might be defined in the hierarchy.

In addition to the BROWSER, the NAVIGATOR (Figure 4-2) shows all inherited slots and methods, enables
the user to selecthely view any subset of the inherited slots and methods, and allows the user to go
directly to the superclass containing the inherited slot or method without traversing the entire hierarchy.
All inherited slots and methods are presented in a scroll menu in the "Inherited Slots" and
"Inherited Methods" windows. The "inherited From" window is initially empty until a slot or

method is selected, and then the superclass(es) which contain this slot or method is (are) displayed. In
addition the user can specify keywords for searching for all methods or slot names containing this
keyword.

It is interesting to note (in the context of reuse and redesign) that the NAVIGATOR was built as an extension
of the BROWSER, providing further empirical evidence for the reuse and redesign possibilities offered by
our object-oriented approach.

Information Retrieval by Incremental Query Specification and Reformulation. HELGON [Nieper 871 is
an information retrieval system based on ARGON [Patel-Schneider, Brachman, Levesque 841 and RABBIT
[Williams 84). The basic principle of these systems is incremental query specification by reformulation.

The query is created incrementally, the set of instances matching the current query is shown in one

7

%C

MMlM M A i GUI-41 ftoirectory-ico

unct I on-boun
bject -bound-
i ndow-bound-

actlon center-te~t: icons:basic-tent-nixin
a I on-feedback? display-text (2) Icons:texi-mixin
ad ot-text-frame? no ve-temt-f~r.,e:
adapt-to-char? set-text-frapte:

background text-font
bg- Id uncenter-text:

bg-lnits
C-W

center-text?
char

char Roecode

Figure 4-2: The OBJTALK-NAVIGATOR

window, one example instance is shown in another window (Figure 4-3). All information shown can be
used to modify the query (e.g., by requiring or prohibiting a certain value, or by selecting an alternative
value from a menu). Thus users who are not familiar with the knowledge base (e.g., with relation or
attribute names) or who do not know exactly what they want can be guided towards the appropriate
information.

A shortcoming of ARGON and RABBIT is that it is not obvious to the users that the frames are organized in a
hierarchy, and it is easy to get lost if this hierarchy is not visible. The (currently) major addition of the
HELGON system is a graphical display of the frame hierarchy that can be used to add frames to the query.

A major shortcoming of the BROWSER, the NAVIGATOR, RABBIT, and ARGON, which we have partially over-
come with HELGON, is that they support only the viewing of information; the user cannot add, change, or
delete information at the same interaction level. What we try to achieve with HELGON is to allow opera-
tions to add frames or individuals (using existing lramestindividuals as templates), to edit existing frames
or individuals, to restructure the frame hierarchy (through direct manipulplion in the graphical display),
and to delete frames or individuals, without forcing the user to learn the underlying knowledge-
representation language to update the information network.

In general, it is not possible to show the whole frame hierarchy at once. The amount of information
presented to the user can be restricted through filters. The system can start out with the hierarchy
displayed to a certain depth only and allow the users to zoom in on parts of interest to them. If infor-
mation is classified along several orthogonal schemes, one of those schemes can be filtered out, and in

8

S.

HELGON
Restart Retrieve

Matching Individual
IHIIG
DOCUMENTATIONI
TOPIC

- ,. UINDOWS
WINfDO.ISELECTIOI

FRAMES-AtID-PRMES
MET140D

:DESELECT

DESCRIPTION: this message is sent to a selectable windo.
DEFIMINIG-FLRVORS: TV: SELECT-lIX.MI TV:SRSIC-FRRME

Tuery 5 Matching Individuals Bookmarks of Individuals
T14M :DESELECT :DESELECT
uD0EFIM-SELECTIOM :NEME-FOR-SELECTION :SEtECT-PWf

EFIrI rG-FLVORS : TV: SELECT-MIMIII : SELECT :AL1RS-FOR-SELECTED-AHDO/uS
:SELECT-RELRTrVE Tv:ET-SE-CX.[DI.yD-Gi
TV: SELECT-IIN :.E

T V: CRR V *UD~r-R, AS -Z XXN

rtv:aGRAY- yo
: R Y Y- RP, YJ y-F OR -1,W E R, DR-c

:RCTI/RTE-P

keO.. c o-a- t~

X.mon V n,..mg:

Mon ,a? l .1 :5i:II1 Sceer.reo Opy CL-UbtR: Usee Input

Figure 4-3: HELGON

this way the information can be viewed from different perspectives. Because individuals may be instance
of more than one frame and therefore may have slots that are not applicable to all of those frames, slots
presented to the user can be fittered depending on the frame that appears in the query.

In an application of the HELGON system, we are modeling the FLAVOR system of the Symbolics usp
machine in an effort to enhance the usability of the existing information and provide alternative access
paths in addition to the DOCUMENT EXAMINER (see Figure 4-3).

The DOCUMENT EXAMINER and Its Extensions. The Symbolics DOCUMENT EXAMINER [Ehrlich, Walker
87] is the online delivery interface for the complete Symbolics documentation. It is based on an hypertext
StyIU l ;J ,.i1;fferent delivery interfaces provide the capability to generate a set of inter-

9

esting surface structures. The standard Document Examiner (as offered by Symbolics) tries to retain
some of the good aspects of paper sources (e.g., familiarity of the user with books, performance to find
information in a book, feeling where you are, skipping around with bookmarks, etc.) with the capabilities
of a powerful computing system (e.g., powerful access mechanisms, mouse-sensitive links to other
topics).

In our work, we extended the DOCUMENT EXAMINER in two directions. Informal empirical investigations
have shown that even after users found some information, there is no guarantee that they are able to
understand this information, use it, and modify it to their own needs. Active examples [Young
871 augment the DOCUMENT EXAMINER to allow the users to

" execute program code found in the context of the information retrieval process,
" experiment with the example to deepen their understanding,
* explore alternatives and to use them in their own programs.

The second extension augments the DOCUMENT EXAMINER with a RABBIT/ARGON/HELGON style interface to
its information base. FLAVARGON uses incremental query specification to support the user in finding a
flavor in the huge store of existing flavors (there are more than 2500 flavors in the Symbolics software).
Both system components are still in an early stage of development but they have provided us with
enough evidence that both of the extensions would make the DOCUMENT EXAMINER a better tool by exploit-
ing unique features of the computer which cannot by offered by a paper-based documentation facility.

4.2 Computer-Supported Documentation Systems

Programs and its associated documentation can be seen as two external views of the same internal
structure: the code and other interpretable structures primarily being for the computer and the descriptive
elements augmenting the code being directed to the human. If the program and its documentation are
both generated from the same source [Knuth 83] then it is much easier to maintain consistency between
them. Conventional documentation was designed exclusively to be read by the human, and it was once
defined as printed matter that describes or explains how a system of some kind works or should be used.

In the design and implementation of our program documentation system [Fischer, Schneider 84], the
knowledge base contained all of the knowledge about a system combined with a set of tools useful for
acquiring, storing, maintaining, and using this knowledge (a sample function description is shown in
Figure 4-4). The knowledge base was in part interpreted by the computer to maintain the consistency of
the acquired knowledge about structural properties, and it supported the users in debugging and main-
taining their programs. Other parts of it were not directly interpretable by the machine which served only
as a medium for structured communication between the different users.

Program documentation can be further enhanced by offering users control which parts they want to see,
serving aifferent groups (clients, designers, programmers, and users) trying to perform different tasks.
The amount and structure of the information offered to these groups of people has to be different, but all
external views are generated by using different filters attached to the same knowledge base. Based on
the difficulty for the designer to anticipate which view users might be interested in, a fixed set of
predesigned filters is too restricted. In our system we have designed a filter kit, where the user can
design a specific filter with simple selection processes (Figure 4-5; for details see [Fischer, Schneider
84]).

10

(defobject prem
(name prem)
(superclass function-description)
(status ANALYZED)
(code
(def prem (lambda (keyl key2)

(let ((i (phashit keyl key2)) (a nil))
(setq a (passociation i keyl key2))
(cond (a (store

(In-package pputget)
(Is-called-by)
(calls PASSOCIATION PHASHIT)
(type function)
(parameter ((keyl) (key2)))
(local-variables (i (TYPE NUMBER)) (a (TYPE NUMBER)))
(free variables)
(see-also (pputget-description))
(history

((DEFINED 10/14/1983
(programmer HDB)
(reason -))

(MODIFIED 12/12/1983
(programmer HDB)
(reason "prem didn't work if the property to be deleted

was the CAR of the appropriate bucket'))))
(vers on 2)
(side-effects (PUTACCESS PUT-GET-HASH-TABLE))
(purpose 'removes properties from the hashtable')
(description "this function removes the appropriate association-list entry

from the hashtable

Conventions:
a) bold: slot names of the knowledge structure
b) typewriter font: data that can be interpreted, used, and updated by the system
c) normal font: knowledge interpreted, used, and updated by the user
d) CAPITALS: system generated information

Figure 4-4: A Sample Function Description

The program documentation can also be enhanced with the help of the graphical display of data struc-
tures generated dynamically with KAESTLE [Boecker, Fischer, Nieper 861.

4.3 Hyperknowledge Assistants

Support for information retrieval alone is not good enough - it gives users no support to relate found
information to their problem solving tasks. Our own work has shown that complex construction kits (i.e.,
sets of building blocks that model a problem domain) by themselves are not good enough to assiit the
user to solve meaningful problems. To provide additional assistance, we have constructed design kits
wh.ci. ~ ,L-j ; .. ;co: struction kits in that they bring to bear general knowledge about design that is useful

11

system-
package:
function:

in-packages
callers '"

in-packages
callers
callees
purpose
description
code "*
see-also

callees
purpose
description
code "°*
see-also

paper:

Conventions:
a) bold: slot names of the knowledge structure
b) typewriter font and marked with *": parts to be shown
c) normal fcnt: pans to be omitted

Figure 4-5: Definition of a Filter Using the Filter Kit

In the example given, the user wants to see information about cailed functions by looking at their code.

for the designer (e.g., which meaningful artifacts can be constructed, how and which blocks can be
combined with each other).

Design kits are an instance of intelligent support systems (Figure 3-1) and should be integral parts of
future computer systems. Each system that allows user modifiability should have an associated design
kit. Design kits can contribute to (at least partially) resolving the basic design conflict between generality
and power versus ease of use. Design kits provide prototypical solutions and examples which can be
modified and extended to achieve a new goal instead of starting from scratch; they support a "opy&edit"
methodology for constructing systems through reuse and redesign of existing components [Fischer,
Lemke, Rathke 871.

In the following WIDES [Fischer, Lemke 87a; Fischer, Lemke 87b], a design kit for the construction of
window systems using wusp win be described in greater detail. The goals of WiDES are to reduce the
knowledge required to use the components, to support the learning process and to provide guidelines to
structure a toolkit in such a way that useful work can be done when only a small part of it Is known. WIDES
provides a safe learning environment in which no fatal errors are possible and in which enough infor-
mation is provided in each situation to make sure that there Is always a way to proceed. The design kit
allows users to create simple window types for their applications.

12

Description Of WIDES. The initial state of the system is shown in Figure 4-6. It is a window with four
panes:

" a codfe pane that displays the current definition of the window type as program text,
* a menu of suggestions for enhancements of the window type.
* a history list,
" a menu of general operations.

a&s wilnaow-c ass renew: , ,soe.wno-class777
(superc ,basic-window))

SIMP11 y: maii-an-insfance:
name- It: undlo:

add-buttons: sve-on-fi'le:
add-title: hsoy
aid-border:

associate-icon:

Figure 4-6: Initial State Of WIDES

Figure 4-7 snows a window and an icon of the selected type. 'Me history list s?**ws the operation~s
carried out by the user. The contents of the suggestions pane changes dynamically, and it lists only
those operations which are meaningful at a specific time in the design task. The code pane shows the
generated code.

(as widowclas rnew: test-w ndow
(descr (partner-icon

(default (ask document-icon instantiea: (view-of a ,self)))Y
(title (default "Nessages"))

(superc ,window-tcon-mixin ,staple-window))

assoc ate-oiL-wcon: tne
specify-border-size:uno

simplify: save-on-rile:
add-buttons:

f. Ittoe added

3. bold:, added
4. E*oMj aI.. # II to OP.Cl*I

V. do#..IT lCon ts rVPuooceed

S.icn joa cho t4.d to: dec..Gn,-Icof

Figure 4-7: The Window and its Associated Icon

13

A more complex modification is demonstrated in Figure 4-8. Windows can be associated with push
buttons such as those in the upper right corner of the window design kit window. Clicking the button with
the mouse causes a message to be sent to the window. As an extension of the push buttons in the title
bar supplied by default (the two right-most ones), a button for burying the window is to be added. After
selecting "add-more-button-to-t itle -bar:" from the suggestions menu, the user is asked to
choose a button icon and a message from two menus. The bury button appears as the leftmost button in
the 'UMe3ages" window in Figure 4-8. The 'save-on-f ile:" operation may be used to save the final
definition for later use.

1 115

(ask winoow-class renew: test-window
(methods
(default-tltle-buttons: *)>>

(cons '(buttons/bury bury:)

(default (ask docuent-1con instantiate: (view-of a ,self)))>
(title (default "Nessages")))

(superc ,title-button-mlxln ,window-1con-sixin ,simple-window))

ad-oL-btons-to-i it e-a male-an- instance.

add-buttons-to-right-margin: undo:

specify-border--,nde.

simplify: .. dl, .e.tt tol dedE

message

5. g s it icon Ty~pe associates

t b u p lo a d :
P . but s Speed to04 S T It l 4 ba

,kill:

-Ie-ot:e::

fnews ha pe:

FIgure 4-8: Adding a Button to the Title Bar

Although not much code is being generated by the system because it can use many high level building
blocks (see the code panes in the various stages of the design process), having WIDES represents a
significant advantage for the user. In order to construct a new window type, Rt is no longer necessary to
know what building blocks (e.g., the class "sinzple-vildow") exist, what their names are, and how they
are applied. It is no longer necessary to know that new superclasses have to be added to the "superc"
description of a class. Also, WiDES determines their correct order. The system knows what types of icons
are available, how an icon is associated with a window, etc.

User interface techniques like prompting and menus make ht easy to experiment in the domain of window
construction. The system makes sure that errors are "impossible." This does not mean that these
techniques make sure that users always understand what they are doing.

Methods ike this can quite easily be appied in well structured domains like the present one. There are
two prt~rrs, however, that need to be addressed. The first one is the understanding problem. Seeing

14

an option in a menu does not imply that its significance is obvious. What does "associate-icon:"
mean'? What is the function of a window's icon? Another problem may be the sheer number of options.
We did not look into this problem because it does not occur in this relatively small system, but future
3ystems may offer hundreds of choice points. For these design kits, a system of reasonable defaults may
provide some help i it is combined with a set of predefined samples that are already rather specific
starting points.

5. Concluding Remarks

The development of a conceptual framework for hyperknowledge systems and the instantiaticn of some
aspects with actual system building efforts have shown that there is potential to achieve some of the
expectations discussed earlier. The research area opens up a large number of interesting cognitive and
pragmatic issues. There is no rhetoric how to produce effective material with a hyperknowledge ap-
proach.

A critical question is whether designers are willing to spend the extra effort to provide not only one
structure (as in linear text arrangements) but a wealth of information about a meta-structure which allows
the system or the user to generate a specific structure on demand later on. It also has to be seen
whether users are excited about the opportunity to generate a structure by themselves or whether they
regard this as an additional demand on their cognitive resources which they would rather not have to do
themselves.

There will always be a need for complex systems. The challenge for innovative system designs is to hide
complexity from the user while retaining a rich function set. Hyperknowledge architectures promise
unique and largely unexplored opportunities to break the "conversation law of complexity" and to create
systems which are useful and usable at the same time.

Acknowledgements

I would like to thank my colleagues and students at the University of Colorado, Boulder, especially
Andreas Lemke (who developed WIDES and contributed to the development of the program documen-
tation system), Helga Nieper (who developed HELGON), Olivier Brousse and Barbara League (who
developed the FLAVARGON system), Emilie Young (who developed the "active examples"), Christian
Rathke (who developed OBJTALK and the OBJTALK-BROWSER), and Jim Sullivan, who developed the
OEJTALK-NAVIGATOR. Without their contributions, the described research effort would not have been pos-
sible.

I would also like to thank all participants of a workshop (jointly organized by W. Kintsch and myself in
January 1987; see [Fischer, Nieper 87D which contributed many interesting thoughts to the topic dis-
cussed in this paper. My special thanks go to Stephen Weyer who for many years has pointed out to me
interesting questions in relation to hypertext systems and whose research about dynamic books has
influenced my own thinking.

The research was supported by: grant No. DCR-8420944 from the National Science Foundation and
grant No. M DA903-86-C0143 from the Army Research Institute.

15

References

[Boecker, Fischer, Nieper 86]
H.-D. Boecker, G. Fischer, H. Nieper, The Enhancement of Understanding through Visual
Representations, Human Factors in Computing Systems, CH1'86 Conference Proceedings
(Boston, MA), ACM, New York, April 1986, pp. 44-50.

[Bush 45 I. Bush, As we may Think, Atlantic Monthly, Vol. 176, No. 7, July 1945, pp. 101-108.

[Cypher 871
A. Cypher, Thought-Dumping, in G. Fischer, H. Nieper (eds.), Personalized Intelligent Infor-
mation Systems, Report on a Workshop (Breckenridge, CO), Institute of Cognitive Science,
University of Colorado, Boulder, CO, Technical Report No. 87-9, 1987, ch. 20.

[Delisle, Schwartz 861
N. Delisle, M. Schwartz, Neptune: A Hypertext System for CAD Applications, ACM SIGMOD'86
Proceedings, May 1986, pp. 132-143.

[Ehrlich, Walker 87]
K. Ehrlich, J.H. Walker, High Functionality, Information Retrieval, and the Document Examiner, in
G. Fischer, H. Nieper (eds.), Personalized Intelligent Information Systems, Report on a
Workshop (Breckendge, CO), Institute of Cognitive Science, University of Colorado, Boulder,
CO, Technical Report No. 87-9, 1987, ch. 5.

[Fischer 87a
G. Fischer, Reuse and Redesign -- A Cognitive View, IEEE Software, Special Issue on
Reusability, July 1987.

[Fischer 87b1
G. Fischer, A Critic for LISP, Proceedin s of the 10th International Joint Conference on Artificial
Intelligence (Milano, Italy), August 1987

[Fischer, Lemke 87a]
G. Fischer, A.C. Lemke, Constrained Design Processes: Steps Towards Convivial Computing, in
R. Guindon (ed.), Cognitive Science and its Application for Human-Computer Interaction,
Lawrence Eribaum Associates, Hillsdale, NJ, 1987.

[Fischer, Lemke 87b]
G. Fischer, A.C. Lemke, Construction and Design Kits: Steps Toward Human Problem-Domain
Communication, Paper Submitted to the Journal 'Human-Computer Interaction', Department of
Computer Science, University of Colorado, Boulder, CO, 1987.

[Fischer, Lemke, Rathke 87)
G. Fischer, A.C. Lemke, C. Rathke, From Design to Redesign, Proceedings of the 9th Inter-
national Conference on Software Engineering, Computer Society Press of the IEEE,
Washington, D.C., March 1987, pp. 369-376.

[Fischer, Lemke, Schwab 85]
G. Fischer, A.C. Lemke, T. Schwab, Knowledge-Based Help Systems, Human Factors in Com-
puting Systems, CHI'85 Conference Proceedings (San Francisco, CA), ACM, New York, April
1985, pp. 161-167.

[Fischer, Nieper 87G. Fischer, H. Nieper (eds.), Personalized Intelligent Information Systems, Report on a

Workshop (Breckenridge. CC), Institute of Cognitive Science, University of Colorado, Boulder,
CO, Technical Report, No. 87-9, 1987.

(Fischer, Rathke 87
G. Fischer, C. Rathke, Beyond Spreadsheets, Paper Submitted to CHI88, Department ut Com-
puter Science, University of Colorado, Boulder, CO, 1987.

[Fischer, Schneider 841
G. Fischer, M. Schneider, Knowledge-Based Communication Processes in Software
Engineering, Proceedings of the 7th International Conference on Software Engineering (Orlando,
FA), March 1984, pp. 358-368.

16

[Furnas 861
G. W. Furnas, Generalized Fisheye Views, Human Factors in Computing Systems, CHI'86 Con-
ference Proceedings (Boston, MA), ACM, New York, April 1986, pp. 16-23.

[Goldberg84][. Goldberg, Smalltalk-80, The Interactive Programming Environment, Addison-Wesley Publish-

ing Company, Reading, MA, 1984.

[Halasz, Moran, Trigg 8
F.G. Halasz, T.. Moran, R.H. Trigg, NoteCards in a Nutshell, Human Factors in Computing
Systems and Graphis Interface, CHI+GI'87 Conference Proceedings (Toronto, Canada), ACM,
New York, April 1987, pp. 45-52.

(Kay 77] A. Kay, Microelectronics and the Personal Computer, Scientific American, 1977, pp. 231-244.

[Kintsch, Mannes 871
W. Kintsch, S.M. Marines, Generating Scripts from Memory, in J. Hoffmann, E. van der Meer
eds.), Festschrift for F. Klix, North-Holland, Amsterdam, 1987, also published as Technical

Report No. 87-3, Institute of Cognitive Science, University of Colorado, Boulder, CO.
[Knuth838.E. Knuth, Literate Programming, Technical Report STAN-CS-82-981, Department of Computer

Science, Stanford University, September 1983.

Lewis 8.H. Lewis, NoPumpG, EXPL, and Spatial Thought Dumper, in G. Fischer, H. Nieper (eds.),

Personalized Intelligent Information Systems, Report on a Workshop (Breckenridge, C), In-
stitute of Cognitive Science, University of Colorado, Boulder, CO, Technical Report No. 87-9,
1987, ch. 13.

[Nieper 871
H. Nieper, Information Retrieval by Reformulation: From ARGON to HELGON, in G. Fischer,
H. Nieper (eds.), Personalized Intelligent Information Systems, Report on a Workshop
(Breckenridge, CO), Institute of Cognitive Science, University of Colorado, Boulder, CO, Tech-
nical Report No. 87-9,1987, ch. 19.

[Patel-Schneider, Brachman, Levesque 841
P.F. Pater-Schneider, R.J. Brachman, H.J. Levesque, ARGON: Knowledge Representation
Meets Information Retrieval, Fairchild Technical Report 654, Schlumberger Palo Alto Research,
September 1984.

[Rathke 86]
C. Rathke, Ob/Talk: Repraesentation von Wissen in einer objektorientierten Sprache, PhD Dis-
sertation, Universitaet Stuttgart, Fakultaet fuer Mathematik und Informatik, 1986.

[Simon 8A"
Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1981.

(Smolensky et al. 871
P. Smolensky, B. Fox, R. King, C.H. Lewis, Computer-Aided Reasoned Discourse. or, How to
Argue with a Computer, Technical Report CU-CS-358-87, Departments of Computer Science
and Linguistics, University of Colorado, Boulder, CO, February 1987.

[Stefik et al. 831
M.J. Stefik, D.G. Bobrow, S. Mittal, L. Conway, Knowledge Programming in LOOPS: Report on
an Experimental Course, Al Magazine, Fall 1983.

[Trigg, Suchman, Halasz 86)
R.H. Trigg, L.A. Suchman, F.G. Halasz, Supporting Collaboration in NoteCards, Proceedings of
the Conference on Computer-Supported Cooperative Work (CSCW'86), MCC, Austin, TX,
December 1986, pp. 153-162.

[Weyer 821
S A. Weyer, The Design of a Dynamic Book fur Information Search, International Journal of Man
Machine Studies, Vol. 17, No. 1, July 1982, pp. 87-107.

17

[Weyer 87)S.A. Weyer, As We May Learn, Multimedia in Education: Interfaces to Knowledge, Education
Advisory Council Conference Proceedings, Apple Computer, April 1987.

[Weyer, Borning 851
S.A. Weyer, A.H. Boming, A Prototype Electronic Encyclopedia, ACM Transactions on Office
Information Systems, Vol. 3, No. 1, January 1985, pp. 63-88.

[Williams 84]
M .. Williams, What Makes RABBIT Run?, International Journal of Man-Machine Studies, Vol.
21, 1984, pp. 333-352.

[Young 87)
E.A. Young, Using the Full Power of Computers to Learn the Full Power of Computers, in
G. Fischer, H. Nieper (eds.), Personalized Intelligent Information Systems, Report on a
Workshop (Breckenridge, CO), Institute of Cognitive Science, University of Colorado, Boulder,
CO, Technical Report No. 87-9, 1987, ch. 6.

18

