BTiC FILE COPY
AD-A229 076

RADC-TR-89-142
In-House Report
October 1989

DERIVATION AND APPLICATION OF
DUAL-SURFACE INTEGRAL
EQUATIONS FOR THREE-
DIMENSIONAL, MULTI-WAVELENGTH
PERFECT CONDUCTORS

Arthur D. Yaghjian and Margaret Woodworth

DTIC
g:VEQ 1990 D

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

on




This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RADC TR-89-142 has been reviewed and is approved for publication.

APPROVED:

J Lo Frinion

J. LEON POIRIER
Chief, Applied Electromagnetics Division
Directorate of Electromagnetics

APPROVED:

Gurde s

JOHN K. SCHINDLER
Director of Electromagnetics

FOR THE COMMANDER:

e 01,85

JOHN A. RITZ
Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify RADC
(EECT) Hanscom AFB MA 01731-5000. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires that it be returned.




REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reparting for this collection of information is estimated fo average 1 hour per response, including the time for reviswing instructions, searching exieting date sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thie
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22212-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Weshington, DC 20503,
1. AGENCY USE ONLY {Leave blank} 2. REPORT DATE

October 1989

3. REPORT TYPE AND DATES COVERED
In-House Jan 88 to Dec 88

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS
Dertvation and Application of Dual-Surface Integral Equations for

PE 61102F
Three-Dimensional, Multi-wavelength Perfect Conductors PR 2305
TA J4
6. AUTROR(S) wu 10

Arthur D. Yaghjtan and Margaret B. Woodworth

7 PERFORMING ORGANIZATION NAME(S} AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER
Rome Alr Development Center

RADC/EECT RADC-TR-89-142
Hanscom AFB
Massachusetts 01731-5000

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION-AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE
Approved for public release, distribution unlimited

13. ABSTRACT (Maximum 200 words)

> We derive the dual-surface electric- and magnetic-fleld integral equations for 3-D perfectly
electrically conducting bodies, prove that they produce a unique solution at all real frequencies, and

demonstrate their applicability to mulii-wavelength bodies by solving the dual-surface

magnetic-field integral equation for a rectangular scatterer using the method of conjugate gradients.

o e oo o e et A A
. "y - J - =~ —
( "vx ey, AU rj" .
14 SUBJECT TEAMS - N 15. NUMBER OF PAGES
»Scattering Conjugate Gradient Method , ¢ { 40

Surface Integral Equations

16. PRICE CODE

1?7 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassifled Unclasslitied Unclassified SAR
NSN 7540-01-280-5500

Standard Form 298 (rev. 2-89)
Prescribed by ANS! Std Z39-18
298-102




~

CONTENTS

INTRODUCTION
DERIVATION OF DUAL-SURFACE INTEGRAL EQUATIONS

UNIQUENESS OF SOLUTION OF THE DUAL-SURFACE INTEGRAL
EQUATIONS

NUMERICAL SOLUTION TO THE DUAL-SURFACE MAGNETIC-FIELD
INTEGRAL EQUATION BY THE CONJUGATE GRADIENT METHOD

i




+;cossion For !
L , NTIS GRASI
- ~:!4l"'~‘>‘ DTIC TA% - i

I Unannounced O
Justification

By
Distridution/

Availability Codes
Avail and/-r
Dist Special

Al

ILLUSTRATIONS

Geometry of a Perfect Conductor with Current Surface S and Parallel
Surface 55. 9

Total Radar Cross Section Versus Perimeter of a Perfectly
Conducting Cube as Computed with the Conventional Magnetic-field
Integral Equation (4a). 16

Total Radar Cross Section Versus Perimeter of a Perfectly
Conducting Cube as Computed with the Dual-surface Magnetic-field
Integral Equation (5a). 17

CPU Time Versus Side Length to Wavelength Ratio for Dual-surface
Magnetic-field Integral Equation Solution for Scattering From a
Perfectl); Conducting Cube. The number of unknowns N is given by
75 (s/A)", since two-fold symmetry of the cube was used to reduce
the number of unknowns by a factor of four and the fixed patch
density i1s 25 per square wavelength. The conjugate gradient and
Gaussian elimination times shown here would be reduced by a

factor of about two and five, respectively, if the coefficient

matrices could be stored in central memory rather than in direct
access files, that is, if the CPU time were computed from Eqgs. (32)
and (31) instead of Eqgs. (34) and (30). 27




TABLES

. Number of Complex Operations for N X N Matrix Solution Using Geussian
Elimination and the Conjugate Gradient Method. 22

. CPU Time Required for Complex Operations on Our 32-Bit, 1.3 Megaflop
Linpack-Performance-Rated Computer. 22

. Number of Iterations (I) and Actual Total CPU Time Using Conjugate
Gradient Method on Our 32-Bit, 1.3 Megaflop Linpack-Performance-Rated
Computer. 23

vii




DERIVATION AND APPLICATION OF DUAL-SURFACE
INTEGRAL EQUATIONS FOR THREE-

DIMENSIONAL, MULTI-WAVELENGTH PERFECT
CONDUCTORS

I. INTRODUCTION

The numerical solution of dual-surface integral equa.tionsI applied to three-
dimensional (3-D), multi-wavelength, perfectly conducting bodies can be obtained with
readily available computers in a central processing unit (CPU) time proportional to
approximately (s/A)* In (s/A) using the conjugate gradient method® and direct access
memory files' (s is the dimension of the body and A the wavelength). Specifically, for
a given incident fieid and aspect angle, the induced cuirent and far field over 4n

. . . . 4 .
steradians of a perfectly conducting cube 5 wavelengths on a side is computed” in about

(Received for Publication 5 Oct 1989)

Tobin, A.R., Yaghjian, A.D., and Bell, M.M. (1987) Surface integral equations for
multi-wavelength, arbitrarily shaped, perfectly conducting bodies, Digest of the
National Radio Science Meeting (URSI), Boulder, CO, p. 9.

Sarkar, T.K. and Arvas, E. (1985) On a class of finite step iterative methods
{(conjugate directions) for the solution of an operator equation arising in
electromagnetics, /EEE Trans. Antennas and Propagat. AP-33: 1058-1066.

Woodworth, M.B. (1988) Large Matrix Solution Techniques Applied to an Electro-
magnetic Scattering Problem. RADC-TR-88-268. ADA206917

Cote, M.G., Woodworth, M.B., and Yaghjian, A.D. (1988) Scattering from the perfectly
conducting cube, IEEE Trans. Antennas Propagat. AP-36: 1321-1329.




1.5 hours of CPU time [utilizing two-fold symmetry of the cube: see Eq. (34)] on a VAX
8650 computer with a "32-bit Linpack benchmark performance rating” of 1.3 megaﬂops.5
The same computer would take about 11 hours of CPU time for this 5A cube if the matrix
of the dual-surface integral equation were solved using, instead of the conjugate
gradient method, Gaussian elimination, which requires a computer time proportional to
approximatelv (s/)»)s. [Gaussian elimination CPU time with direct access files can be
cstimated from Eq. (30) with N = 75(8//\)2.] If the two-fold symmetry of the cube were
not used to reduce the number of unknowns by a factor of 4 these CPU times using the
conjugate gradient and Gaussian elimination methods would increase by factors of
approximately 22 and 64, respectively, that is, from 1.5 and 11 hours to about 33 and
700 hours (30 days) of CPU time for a SA scatterer. This latter CPU time of 30 days
confirms that scattering or radiation from arbitrarily shaped 5A, 3-D bodies cannot be
determined in a reasonable amount of computer time, using conventional Gaussian
elimination, by a computer with a Linpack performance rating on the order of one
megaflop. It becomes necessary to use faster matrix solution schemes, such as the
conjugate gradient iterative method, when the integral equations are applied to
progressively larger bodies, regardless of the speed of the computer.

Herein, we derive the dual-surface electric and magnetic-field integral equations for
3-D perfectly electrically conducting bodies, prove that they produce a unique solution
at all real frequencies, and demonstrate their applicability to multi-wavelength bodies
by solving the dual-surface magnetic-field integral equation for a rectangular scatterer
using the method of conjugate gradients.

Magnetic-field surface integral equations for perfect conductors appeared in the
literature as early as 1931°%, and both electric and magnetic-field surface integral
equations were derived in Maue’s definitive 1949 Zeitschrift Fur Physik pape:r.7
However, only in the last ten years or so have digital computers become fast enough to
solve these surface integral cquations for arbitrarily shaped, 3-D, multi-wavelength
bodies.

Dongarra, J., Martin, J.L., and Worlton, J. (1987) Computer benchmarking: paths and
pitfalls, IEEE Spectrum, 24: 38-43.

Murray, F.H. (1931) Conductors in an electromagnetic field, Am. J. Math., 53:
275-288.

Maue, A.W. (1949) On the formulation of a general scattering problem by means of an
integral equation, Z. Phys., 126(7/9): 601-618.




Unfortunately, as Murray and Maue noted, the original electric and magnetic-field
integral equations (EFIE and MFIE) fail to produce a unique exterior solution at
frequencies equal to the resonant frequencies of the corresponding interior cavity.

Since the density of cavity resonant frequencies increases rapidly beyond the first
resonant frequency, which occurs whein the dimension of a full-bodied 3-D scatterer
equals about one wavelength, the numerical solution of 3-D, multi-wavelength bodies is
severely hampered by these spurious resonances.

In Reference” it was proven that the original integral equations allow spurious
solutions at the cavity resonant frequencies because at (and only at) these frequencies

the MFIE does not restrict the tangential electric field to zero on the surface of the
scatterer and the EFIE does not restrict the tangential magnetic field to K x f on the

surface of the scatterer. (IZ is the surface current and 7 the outward unit normal to the
scatterer. Interestingly, the MFIE result was also proven in the early paper by

Murray.(’) Among the alternatives that have been proposed for eliminating the spurious

. P . . . 19, 10, 11
solutions from the original integral equations, the combined-field” ™’ = or

12, 13, 14

combined-source integral equation, and the augmented electric or magnetic-field

Yaghjian, A.D. (1981) Augmented electric and magnetic-field integral equations, Radio
Science, 16: 987-1001.

Mitzner, K.M. (1968) Numerical solution of the exterior scattering problem at
eigen-frequencies of the interior problem, Digest of Fall URSI Meeting, Boston, MA,
p. 75.

10 Poggio, AJ., and Miller, EKK. (1973) Integral equation solutions of three-dimensional
scattering problems, in Computer Techniques for Electromagnetics, edited by R. Mittra,
159-264, Pergamon, New York.

Mautz, J.R. and Harrington, R.F. (1978) H-field, E-field, and combined-field
solutions for conducting bodies of revolution, Arch. Elektron. Ubertragungstech.
(Electron. Commun.), 32(4). 157-164.

'? Panic, 1.0. (1965) On the solvability of exterior boundary-value problems for the wave

equation and for a system of Maxwell's equations, Uspehi Mat. Nauk, 20(1):
221 226.

P Brakhage, H. and Werner, P. (1965) Uber das Dirichletsche Aussenraumproblem fur die
Helmholtzsche Schwingungsgleichung, Arch. Math., 16: 325-329.

" Mautz, J.R. and Harrington, R.F. (1979) A combined-source solution for radiation and

scattering from a perfectly conducting body, /EEE Trans. Antennas and Propagation,
AP-27. 445-454,




integral equation8 appear the more generally applicable and effective in numerical
practice. However, for arbitrarily shaped, 3-D, multi-wavelength bodies, the combined
and augmented integral equations also have their drawbacks. The combined-field and
combined-source equations involve the operators of both the magnetic-field equation and
the electric-field equation, which takes considerably more programming ingenuity and
computer time than the original MFIE to achieve the same accuracy of solution. The
augmented MFIE involves only the magnetic-field operator, but the augmented integral
equations require a special procedure to eliminate all the spurious solutions from

bodies of revolution.

Thus, we begin the integral equation solution for arbitrarily shaped, 3-D,
multi-wavelength perfect conductors with the derivation of dual-surface electric and
magnetic-field integral equations that differ only slightly from the original electric
and magnetic-field integral equations, yet eliminate all spurious solutions. The
dual-surface magnetic-field integral equation was given in Reference 1, but the
derivation and proof of uniqueness of the dual-surface magnetic and electric-field
integral equations have not appeared previously. Recently, Toyoda et al.’ presented an
"extended integral equation formulation” for 2-D scatterers that used additional
surfaces near the surface of the scatterer. Their formulation for perfect conductors
applies an extended integral equation to an interior surface and requires the interior
surface to move with frequency to maintain uniqueness of solution. The derivation of
the dual-surface magnetic and electric-field integral equations, (5a) and (5b), in the
following section requires the introduction of a second surface interior and parallel to
the surface of the scatterer, but the resulting integral equations have a unique

solution at all real frequencies and are applied to the single surface of the scatterer.

2. DERIVATION OF DUAL-SURFACE INTEGRAL EQUATIONS

A time harmonic [exp (-iwt), ® real and > 0] electromagnetic field (Einc' ﬁinc)

incident in free space upon the surface S of a perfectly electrically conducting

15 Toyoda, 1., Matsuhara, M., and Kumagai, N. (1988) Extended integral equation

formulation for scattering problems from a cylindrical scatterer, [EEE Trans.
Antennas and Propagat. 36: 1580-1586.




scatterer excites a surface current K. (Let S be coincident with the surface current

K.) Since the total field inside the scatterer is zero, the scattered fields equal the
negative of the incident fields inside S, and one can write the "interior" or "extended”

integral equations,

; Hl.nc(?) = J K(r') x V'y(r,r’)dS’ (la)

S

(; inside S)

()= e [ [ Ry - Ry s (1b)
] A

where k(=w/c=2n/A) is the free-space propagation constant, € is the permittivity of free
space, and ¥ (r,r') is the free-space Green's function exp ('ﬂ(];-;’})/Mt];-;'].

Let the observation point r in Egs. (la) and (1b) approach the surface S of the
conductor from inside S, and convert the surface integrations in Eq. (1) to circular
principal-value integrations using the following formula (derived by a straightforward

. . . . 8
integration near the singularity of y'):

) (2)

NS>

Jv'w s’ = ﬁl V'y dS’ -
S(r »$)

where §; denotes the principal-value surface integration evaluated by excluding the
S -
singular point, r’= r, of the integrand by a limiting circular "principal area" centered
on r, and N is the outward unit normal from the surface S at r. Eqgs. (1) then
. . . ~ . . R
yield the augmented magnetic anu electric-field surface integral equations™ for the

exterior scattering problem:




oy = _ 1. A = = ’ ’
-H ()= o W xK+ K x V'y dS
S (38)
(r on §)
_ (VKON _ _
_ S | 2 ’ ’ ] o7 (3h)
G e ﬂk Ky - (VoK)V'y s’
0 o
S
Taking f cross these overdetermined Eqgs. (3) reduces them to the original even
determined MFIE and EFIE,
/\ 11 — I e A { v I 4
"XHinc"z"K'“xff’KXVWdS (4a)
S -
(ron S)
A= A ) .
nxE = e X § [k Ky - (VS-K)V \l/]dS. (4b)
S

As mentioned in the Introduction, the original integral Egs. (4) are plagued by

spurious solutions for K at the resonant frequencies of the cavity formed by the surface
S. Although either of the augmented Eqgs. (3) eliminate the spurious solutions for most
shapes, they must both be used, in general, to eliminate all the spurious resonances
when the surface S is a body of revolution. The combined-field integral equationq‘ 0.

eliminates the spurious resonances by adding Eq. (4a) to -aﬁ crossed into Eq. (4b), and

12, 13, 14

uniqueness of solution of the combined-source equation follows from its operator

14

being the adjoint of the combined-field operumr”‘ (The real constant a, is often

chosen equal to the free-space wave admittance.)
To derive the dual-surface integral equations, return to the extended integral

equations (1). The current K(;) in Eq. (1a) or (Ib) is uniquely determined at every

6




~ s . .o N . 16 .
frequency if Eq. (la) or (1b) is satisfied for all r inside S, Conceivably, one could
determine the current K by solving namerically the vastly overdetermined set of extended

integral equations that results from Eq. (la) or (1b) applied to points r separated by a
small fracuon of a wavelength throughout the volume enclosed by S. Or one could
supplenient the surtace integral equations (4) with the extended integral equations (1)

. G 1T IR 1Y
applied at selected poimnts r within S.

The former approach introduces a
prohibitive number of equations for multi-wavelength bodies, and in applying the latter
approach one has no convenient, reliable criterion for selecting the number and position
of the interior points at which the extended integral equations (la) and (lb)must be
satisfied to assure Egs. (42) and (4b) produce the correct unique current K at all

2

. . o s . 20,21,22 .. . .
frequencies. (The modified Green’s function method for eliminating the spurious
solutions from the original surface integral equations (4) suffers from a similar
uncertainty in choosing the proper number and onigin of eigenfunctions in the

‘ . . X . .oon
representation of the modified Green's function.™)

" Waterman, P.C. (1965) Matrix formulation of electromagnetic scattering, Proc. 1EEE,

53: BOS-812.

""" Schenk, H.A. (1968) Improved integral formulation for acoustic radiaiion problems, J.

Acoust. Soc. Am., 44 41-58.

" Klein, C.A. and Mittra, R. (1975) An application of the "condition number” concept to

the solution of scattering problems in the presence of the interior resonant
frequencies, IEEE Trans. Antennas and Propagat., AP-23: 431-435.

" Morita, N. (1979) Resonant solutions involved in the integral equation approach to

scattering from conducting and dielectric cylinders, IEEE Trans Antennas and
Propagat., AP-27: 869-871.

Roach, G.F. (1967) On the approximate solution of elliptic, self adjoint boundary
value problems, Arch. Ration. Mech. Anal., 27(3): 243-254; (1970) Approximate Green's
functions and the solution of related integral equations, 10c. cit., 36(1): 79-88.

' Ursell, F. (1973) On the exterior problems of acoustics, Proc. Camb. Phil. Soc.,

T4(1): 117-125.

2 Jones, D.S. (1974) Integral equations for the exterior acoustic problem, Q./. Mech.

Appl. Marh., 27(1): 129-142.

Brandt, D.W., Eftuniu, C., and Huddleston, P.L. (1985) Electromagnetic scattering by
closed conducting bodies: the problem of internal resonances, /1EE Conference Publication
248, 434-437, ICAP 1985.




If, however, the extended integral equations (la) and (1b) are incorporated at points

r on a surface 55 parallel to, and a small distance & > 0 inside the current surface S
of the perfect conductor (see Figure 1), by adding aft cross Egs. (1a) and (1b) at these
points to the original MFIE Eq. (4a) and EFIE Eq. (4b), respectively, one obtains the
"dual-surface” magnetic and electric-field integral equations:

(5a)
fx H( = L K - fx 35 K(r') x Vy (1,1)dS’
S
(r_on S)
A = {]\ 2 C
n x Eo(r) ioe X (.# [k K\yo - (_VSK)V wo]dS.
S
(5b)
where EO, ﬁo and vy, are defined as
EO(?) = E.mc(?) + o éinc(? ) (6a)
e = oA
Ho(r) = H.mc(r) + o H.mc(x - om) (6b)
\uo(?,?’) = Wr,r') + o W(r - 8, ). (6¢)




Figure 1. Geometry of a Perfect C  {uctor with Current
Surface S and Parallel surface SS'

These dual-surface magnetic and electric-field integral equations, (Sa) and (5b), although
identical in form and comparable in complexity to the original MFIE (4a) and EFIE (4b),

provide a unique solution for K at alt real frequencies as long as the constant o is
imaginary and the positive real constant & is less than about A/2. (In the numerical
solutions of Eq. (5a) described in Section 4 below we choose a equal to i and & equal to
the smaller of about A/4 or [/4 the breadth of the scatterer along the normal at the

point r. Using a's of +.5i, #i, and *1.5i. and varying & from A/8 to 3)\/8 did not
significantly change the computed solution, although the number of iterations required
by the conjugate gradient method to attain the same value of normalized residual error

varied somewhat with o and 0.)




3. UNIQUENESS OF SOLUTION OF THE DUAL-SURFACE INTEGRAL
EQUATIONS

Uniqueness of solution for the dual-surface magnetic- and electric-field integral
equations can be proven by considering the fields radiated by the solution currents.
Concentrating on the dual-surface MFIE first, let I?IS(;) be the magnetic field radiated

by the solution K to Eq. (5a); specifically

H (1) = J K(r) x V'y(r,r)dS’ (r not in S). 7
S

If K were the correct unique current for this scattering problem, I?IS(;) in Eq. (7) would

be the correct scattered field for all r not in the surface current. However, since we
do not know at this point that the solution K to Eq. (5a) is the correct unique

solution, Eq. (7) simply defines an unknown magnetic field ITIS(;).
Taking the curl of Eq. (7) twice reveals that this unknown magnetic field satisfies

the homogeneous vector wave equation for all r not in the surface current K, that is,

VxVxﬁs-kzﬁs=0 (r not in S). (8)

Letting r approach S in Eq. (7) from the inside of S, and using the principal-value
formula [Eq. (2)], we obtain

H(r-) = LA x K(n) + 35 K(rxVy(r,r') dS  (r on S), 9)
S

S 2

where r— in ﬁs(;-) indicates the field evaluated just inside the surface current. Since

Eq. (7) holds for all r inside S, we can express I?lq on the parallel surface SS as

10




H(r -3f) = 3§ K(r'<Vy(r - 8. 1S’ (r on S). (10)
S
Add Eq. (9) to Eq. (10) multiplied by o and take @) cross the result, to get
A T T N I T re T T
n x [(Hs(r-) + (ng(r - onm)| = — . K(r) + n x 3C Kiryx V \yo(r,r s’ (1)
S (r onS)
Comparing Eq. (11) with Eq. (5a), which K must also satisfy, reveals
~ T T N (1 ;. SO 11 A _ -
n x [(Hs(r—) + Hmc(r)) + « (Hs(r—ﬁn) + Hinc(r—ﬁn))J =0 (r onS) (12)
The incident magnetic field also satisfies the vector wave equation
VxVxH_ -kH_ =0 (13)
nc nc
Thus, we can add Eq. (8, to Eq. (13), and rewrite Eq. (12) to arrive at the interior
boundary value problem,
VxVxH-kKH=0 (rinside S) (14a)
(14b)

A x [Q(F) + o H(T - 59)] =0  (r S from inside),

where the total magnetic field H(r) is given by the sum of P_{.mc(;) and ﬁq(;).

The final steps of the uniqueness proof consist in showing that the boundary value

problem defined by Eq. (14) has only the trivial solution, H(r) = 0, for the total field

throughout the volume enclosed by the surface S, provided the constant o is imaginary

11




and the positive real constant § is smaller than about A/2. To show this, rewrite the
boundary condition of Eq. (14b) explicitly for the magnetic field tangent to the

surface S

Ht(?) + o Ht(? -8M) = 0 (r—>S from inside). (15)

The tangential magnetic fields, Ht(;) and Ht(; - 80), are complex numbers that can be

expressed in the form of a magnitude and phase

- (16a)
= 7)1 10(r)
Ht(r) = ]Ht(r)]e
(r—S from inside)

H(T - 8) = [‘Ht(;)‘, + AHt(?,S)]ei [o(r) + Ad(r.8)] (16b)

where AHt and A¢ are the differences between the magnitudes and phases of Ht(;) and

H(r - 8f). Insert H(r) and H(r - 8f) from Eq. (16) into Eq. (I5) to get

IH,| +a[|Ht| +AHt][cos A + i sin A9| = 0, 17

Because |Ht
number(io., ), the real and imaginary parts of Eq. (17) equate separately to give

, AHt’ and A¢ are real numbers, if we let the constant o be an imaginary

H,| - “i[’”t' + AHt] sin A = 0 8a)

“i['”t' + AHt] cos Ap =0 . (18b)

12




Ok

For small 8, A¢ will be smull - certainly not £ 90 - and thus Eqs. (18) imply
'H- = 0 and AH[ = 0, or

Ht(;) = (19a)

(r »S from inside)

Ht(F - 8h) = 0. (19b)

In other words, when the constant o is chosen imaginary and O is not large, the two
separated tangential fields in the boundary condition of Eq. (14b) are each zero. That
is, the tangential magnetic field on both the surface S and 85 are zero.

The boundary condition of Eq. (19a) restricts the nonzero solutions of Eq. (14a) to
the resonant modes of the cavity formed by a perfectly magnetically conducting surface
S. These modes, which exist for a given cavity only at discrete frequencies, form
standing waves within the cavity with magnetic and electric fields that can be chosen
real and imaginary, respcctively.24 In particular, the tangential magnetic field near

the surface S can be expressed approximately as

H(r . rn) = A(rs, rn) sin , (20a)

where (r_.r ) are the coordinates tangent and normal to the surface S, y is a positive

real propagation constant with a value equal to or less than the propagation constant k

of free space, and the wmplitude A(rq, rn) varies with rnslowly compared to the
vartation of sin yr_. (With respect to the r direction the cavity can be considered a

shorted waveguide with varying cross section.) If we let r, = {) on the surface S, the

*The one exception would be if there were a zero of H‘ near the surface S or 88' In
that case we can expand the boundary condition of Eq. 15 along the normal direction D
in a Taylor series about the zero to show that ('lHt/arn must also vanish at the zero of Ht

for imaginary o and small é. Since Eq. (20a) shows that no cavity can support modes
with both the tangential field and its normal derivative zero on its surface, the
solution to Eq. (14) is unique in this exceptional case as well.

Borgnis, F.E. and Papas, C.H. (1958) Electromagnetic waveguides and resonators, Encvclo-
pedia of Physics, 16 Ed. S. Flugge, Springer-Verlag, Berlin.

13




boundary condition of Eq. (19a) is satisfied by (20a). The boundary condition of
Eq. (19b) applied to (20a) requires that

YO = mn (20b)

for m equal to a positive integer. (We assume that there will be some portion of the

surface S where A will not be zero. For if the tangential magnetic field were zero

throughout the volume between S and SS‘ the fields would be zero throughout the cavity.

Also, if degenerate modes exist, we assume their H ¢ fields will be linearly independent

over the surface 56 and thus Eq. (20b) will still hold. Because the maximum value of y

is k = 2n/A, the condition of Eq. (20b) cannot be satisfied for \

0<d<N2. 21) \

The approximate sign is included in the right side of the inequality in (21) because
(20a) is an approximate expression for the standing wave field near the surface. If we
look specifically at the resonant cavity formed by shorting the ends of a waveguide of
arbitrary uniform cross section, we find (20a) applies exactly with A equal to a
constant. Thus, the inequality of (21) holds exactly for a shorted waveguide cavity.
For a spherical cavity the fields vary radially as spherical Bessel functions of the
first kind. For asymptotically large spheres, (20a) again holds exactly, and for all
spheres large enough to sustain resonant modes, (20a) holds to a good approximation near
the surface - thereby confirming the approximate inequality [Eq. (21)] for spherical
cavitics.

In summary, the only solution to Eq. (14) for o imaginary and 0 < & < A/2 is the

trivial solution, ﬁ(?) = P—l.mc(;) + }—ls(;) = ( throughout the volume enclosed by S. Since

E =V x Hfiwe , the electric field E(r) = E._ (r) + E (r) within this volume is also
identically zero. And, as mentioned in Section 2, it is a simple matter to provemthat
the current that produces the negative of the incident electromagnetic fields throughout

the volume enclosed by S is the correct unique current for the exterior scattering

problem. (Namely, E and H equaling zero inside S implies A xE=0and i x H =K for

the fields just outside S -- the conditions required for uniqueness of solution of the




exterior pt‘«wlvlc11135.) Since this unique solution has been derived from the solution
current of Eqg. (5a), the dual-surtace magnetic-tield integral equation (5a) has a unique
solution.

Beginning with the solution current of the dual-surface electric-field integral

equation (5b), and detining the electric field

E 1y = - e J [k: Ky - (V;- K)V'\U]dS' (r not in S) (22)

y

r

initially, instead of the magnetie field Eq. (7). we obtained the same mnequahty (21) as
the sufficient condition for the uniqueness of solution of the dual-surtace
electric-field itegral equation (Sh).

In numerical practice, we suggest choosing « equal to 1 to weight the fields on S and
56 equally in the boundary condition [Eq. (14b)] by an imaginary constant.  Likewise, we
suggest choosing & equal to about A/4, to keep the surface S5 about an equal distance
between the two critical values, 6 = 0 and A/2  The dual-surface integral equations
allow spurious solutions at & = 0 where they reduce to the original integral equations
(4), and at § equal to or greater than about A2 where the dual-surface boundary
condition [Eq. (14b)] no longer insures uniqueness of solution. When the breadth of the
scatterer along the normal is less than A, one can choose & equal to 1/4 the breadth
instead of A/

A numerical demonstration of the ehimination of the spurious resonances by the
dual surface magnetic-field integral equation s given in Figures 2 and 3. Figure 2
plots the total (integrated) radar cross section versus the perumeter of a perfectly
conducting cube of side length s as computed using the conventional magnetic field
integral equation (4a).  The spurious resonances begin to contaminate the MFIE solution
m Figure 2 near the first resonance of the cube at 4s/A = 2.8 and continue to distont
the solution at an increasing rate commensurate with the increasing density of resonant
frequencies. Figure 3 shows clearly that the dual-surface magnetic-field integral

equation (Sa) eliminates the spurtous resonances from the MEFIE solution in Figure 2.

Muller, C. (1969) Foundations of the Mathematical Theory of Electromagnetic Waves.,
Springer-Verlag, New York, Theorem 71
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Figure 2. Total Radar Cross Section Versus Perimeter of a
Perfectly Conducting Cube as Computed with the Conventional

Magnetic-Field Integral Equation (4a).
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Figure 3. Total Radar Cross Section Versus Perimeter of a
Perfectly Conducting Cube as Computed with the Dual-Surface
Magnetic-Field Integral Equation (5a).




4. NUMERICAL SOLUTION TO THE DUAL-SURFACE MAGNETIC-
FIELD INTEGRAL EQUATION BY THE CONJUGATE
GRADIENT METHOD

The similarity of the dual-surface integral equations (5) to the original integral
equations (4) allows them to be solved numerically by a minor modification to existing
MFIE and EFIE computer programs. One merely adds the values of the incident field and

free-space Green’s function (each multiplied by a) at the points r - 80 to their

respective values at r used in the computer programs of the original integral equations.
In particular, we consider 2 straightforward numerical solution to the dual-surface
magnetic-field integral equation (5a) for scattering from the perfect conductor S.

Divide the surface S of the scatterer into M patches, assume the current is a
constant vector over each patch, approximate the value of the Green’s function V’\yo over
each patch by a constant vector equal to the value of V'\jl0 at the center of the patch,
and apply the integral equation (5a) at the center of each patch. In short, approximate
the integral in Eq. (Sa) by the summation

M

A 1 /=y — ' o, A\ s ’ - -

n, x Ho(ri) = —Z-K(ri) - 0, x_z K(rj) X V\yo(ri,rj)ASj 23)
=1 i =12,.... M
(j#l)

where AS. is the area of each patch, and the self-patch (i = j) in the summation is
taken as the "principal area"*excluded by the principal-value integral in Eq. (53). (In
the language of the method of moments, we have used puls. oasis functions and delta

testing functions.)

For each patch there are two complex unknown components of surface current K and
two complex scalar equations. Thus, Eq. (23) represents a simultaneous set of 2M
linear complex equations for 2M complex unknowns, and can be written in tensor notation

a.x.=b, i=12, ..N=2M, (24)
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where the xj are the complex unknown components of surface current, the a,. are the
elements of the given coefficient matrix, and the bi are the given incident-field
values.  Summation from | to N over the repeated index j in Eq. (24) is, of course,
implied.

In solving Eq. (24) for three-dimensional bodies on readily available computers, one
quickly encounters the problem of limited central or virtual memory and excessive
computer time as the size of the body is increased beyond a wavelength. For example,
we have found that the dual-surtace MFIE requires a minimum of about 25 patches per
square wavelength* to achieve reasonable accuracy in the computed currents and far

fields. A cube of side length s thus requires about M = 150 (s/A)’ patches or

N = 2M = 300(s/A)° (25)

complex unknowns, and a memory of

(20)

il
[
Z

W

real words W to store the complex N x N matrix with elements aij' On our VAX 8650
with an allotted virtual memory of one million words, the solution of Eq. (24) is

limited to cubes less than about 1.5 wavelengths on a side. (Paging time became
excessive as the amount of virtual memory used approached a million words; and allotting
more virtual memory to the computer was not as efficient an alternative as using direct

. . . .26
access files for increasing computer storage capacity.”) Moreover, we found that

* This requirement of about 5 linear divisions per wavelength to get reasonable
accuracy is not surprising if one considers that the current and the Green’s function in
the surface integral equation varies along the surface of the scatterer with a maximum
spatial frequency equal to about one cycle per wavelength. This means that the product
of the current and Green's function in the integral of the integral equation has a
maximum spatial frequency of about 2 cycles per wavelength. The sampling theorem
would then require about 4 samples per linear wavelength to accurately approximate the
integral of the current times the Green's function by a summation.

26

Perty, T.S. and Zorpette, G. (1989) Supercomputer experts predict expansive growth,
IEEE Spectrum, 26: 26-33.
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solving Eq. (24) using Gaussian elimination on this computer with a 32-bit Linpack
performance rating5 of 1.3 megaflops took a CPU time "‘ou given approximately (for large
N) by

T =22x10" N (27)
GE

minutes, which becomes prohibitive for cubes greater than about 2 wavelengths on a side.
Incorporating two-fold symmetry of the cube to reduce N by a factor of 4 still did not
allow us, in a reasonable computer time, to solve for scattering from cubes larger than
about 4 wavelengths on a side using Gaussian elimination on the available computer. The
fastest available computers (those with 32-bit Linpack performance ratings of about 100
megaflops) would take many hours of computer time to solve Eq. (24) using Gaussian
elimination for general 3-D scatterers larger than a few wavelengths across. Even with
massive vector parallelism it is difficult to conceive of digital computers extending
appreciably the formidable restriction on s/A presented by the (s/A)° dependence of the
computer time in Eq. (27) for solving Eq. (24) using Gaussian elimination.

To extend the limits of computer storage and processing time on the available
mainframe, we made use of direct access memory files on disk and solved Eq. (24)
iteratively using the conjugate gradient method rather than Gaussian elimination.” A
direct access file was used to store the rows of the N x N complex matrix. The file
could be either opened, written to, or read from by a single Fortran command, and
increased our available memory from | million to 30 million words. (Of course, with
iterative solvers one can greatly reduce computer storage requirements by generating the
coefficient matrix during each iteration. However, this greatly increases the required
CPU time.)

The drawbacks of using direct access files are the necessary additional computer
programming, the somewhat greater CPU time, and possibly a large increase in
input/output time. Use of direct access files roughly doubles the CPU time required to
solve Eq. (24) using the conjugate gradient method. Gaussian elimination CPU times are
either roughly doubled or multiplied by a factor of about 10, when using direct access
files, depending on whether or not a round-off error check is included in the Gaussian
elimination algorithm. (We shall discuss this later in conjunction with Tables 1
and 2.) The extra input/output time associated with the direct access files may
dominate computer tumn-around time on our computer system when the matrix is solved

using the conjugate gradient method. Meaningful input/output times are elusive,
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however, on central computers since they depend so strongly on the particular direct
access system, the way the system s tuned, and the number of users sharing the machine.

We tound the conjugate gradient iterative method an efficient alternative to Gaussian
elimmation for solving the large system of equations (24) penerated by the dual-surface
magnetic-tield integral equation (Sa)y applicd to 3-D multi-wavelength bodies. It
converges 1 a finite number of steps for any mitial guess. as long as the matrix is
not singular and round-oft crrors are kept negligible.  The flexibility of accepting any
initial guess permits the user to stop the iteration and start using the current
estimate for the solutton as the new imtial guess.  This restarting eliminates the
accumulated round-off errors, but requires an extra matrix multiplication, slows
convergence. and increases the run time. Thus, restarting should be done only when
necessary to reduce the round-off errors. For solving the dual-surface equations
(23-24) on our 32-bit computer. it was sufficient to restart only once before the final
step. even when N owas as large as 3468, (Wang and Duhl‘»crlc‘y“‘7 discuss this restarnt
problem.)

We used a verston of the conjugate gradient method referred to as "Case A" in
Reference 2. We applied the conjugate gradient algorithm to the matrix with elements
& in Eq. (24) rather than directly to the operator of .. -ivid-saitece magnetic-field
integral equation (53).  Some justification fo. (s may be found in the recent
puperx‘w"w where it 1s concluded thuai sterative techniques applied directly to the
operator and impleniented numericany cor.... o anptieir discretization and, in many
cases, a corresponding moment method interpretation. It is interesting that. as early
as 1943, Hotelling ' in his review of some new methods in matrix calculation commented
that, "The combination of this device [Mallock electrical caleulating machine] with the

iterative method. ..

Wang, JJ.H. and Dubberley, J.R. (1989) Computation of electromagnetic fields in large
hiological bodies by an tterative moment method with a restart technique, /EEE Trans.
Microwave Theory and Technigues, MTT-37: 1918-1923

AL

Ray, S.1.. and Peterson. AF. (1988) Error and convergence in numerical
implementations of the conjugate gradient method, [EEE Trans. Antennas Propagat. 36:
1824-1827.

Sarkar, TK., Yang, X . and Arvas. E. (1988) A limited survey of various conjugate
gradient methods for solving complex matrix equations arising in electromagnetic wave
interactions, Wave Motion 10(6Y: 527-546

Hotelling., H. (1943) Some new methods in matrix caleulation, Annals of Math. Stat
f4cdy 1-34,




offers what seems at present [1943] the best hope for the systematic inversion

[solution] of large matrices.”

Table 1 compares the number of major complex operations required to solve large

matrices by means of Gaussian elimination and the conjugate gradient method, when using

direct access memory files.

32-bit, 1.3 megaflop Linpack-performance-rated VAX 8650 computer.

‘1table 1. Number of Complex Operations Required for N x N
Matrix Solution Using Gaussian Elimination and the Conjugate
Gradient Method.

Table 2 shows the associated CPU times required by our

METHOD NUMBER OF OPERATIONS
Elements | Elements
Multiply Add Subtract Do Loops Written Read If
Gaussian Elim. 2n° 0 pEN 153 158 3N3 IN°
(total) 3 3 3 2 2 3
Conjugate Grad. oN? IN? 0 ON> 0 IN? 0
(per iteration)

Table 2. CPU Time Required for Complex Operations on Our 32-Bit,

1.3 Megaflop Linpack-Performance-Rated Computer.

OPERATION CPU Time (1076 sec)
Complex Add 0.84
Complex Subtract 0.96
Complex Multiply 2.03
Complex Divide 13.09

If 15.09

Do Loop 0.67

Read per complex element (for 2.30

large N)

Write per complex element (for 2.41

large N)
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The CPU times for the complex operations in Table 2 can be inserted into Table 1 to
estimate the total CPU times, t _ and t_, for this computer to solve Eq. 24 by Gaussian

elimination and the conjugate gradient method. Specifically,

193 x 107 N (28)

i

1.95 x 107 NI (29)

—

minutes. where N is, as usual, the dimension of the complex matrix, and I is the number
of iterations needed for convergence using the conjugate gradient method. Comparing the
estimated CPU time [Eq. (28)]. for the solution to scattering from the cube by Gaussian
elimination, with the actual CPU run times (for the whole program) given approximately
by the formula (27). one finds that the estimated time [Eq. (28)] is about 90 percent of
the actual total CPU run times. Likewise, Eq. (29) gives an estimated CPU time for the
conjugate gradient method that is about 75 percent of the actual total CPU times for
scattering from large cubes (see Table 3). The additional 10 percent and 25 percent CPU

times are taken mainly by matrix-fill, complex conjugate, and miscellaneous overhead

operations.

Table 3. Number of Iterations (I) and Actual Total CPU Time Using the

Conjugate Gradient Method on our 32-Bit, 1.3 Megaflop Linpack-

Performance-Rated Computer.

CPU Time

s/h N Patches/A2 I I/N (h:m:s)
0.75 48 28 35 .73 0:00:04
0.75 108 63 39 .36 0:00:12
0.75 192 112 42 .22 0:00:32
1.5 192 28 61 .32 0:00:45
1.5 432 63 62 .14 0:03:08
1.5 768 113 61 .08 0:10:47
24 432 25 83 .19 0:04:29
2.4 768 44 82 11 0:13:53
2.4 1200 69 88 .07 0:35:15
3.0 768 28 90 12 0:13:30
3.0 1200 44 92 .08 0:33:21
3.0 1728 63 93 .05 1:09:44
5.0 1728 23 118 07 1:25:47
50 3468 46 119 .03 6:23:10
6.75 3468 25 141 .04 7:28:34
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The time estimates Eqs. (28) and (29) reveal that, for our typical computer, the
solution to Eq. (24) by the conjugate gradient method will take less computer time than
Gaussian elimination if the number of required iterations I is less than N. This
conclusion holds whether or not direct access files are used, because including the
write and read siatements from Table 1 due to the use of direct access files roughly
doubles, as mentioned above, the computer times for both Gaussian elimination (with
round-off error check) and the conjugate gradient method.

It is important to note, however, that the logical IF operations and one half the
multiplication operations listed in Table 1 for Gaussian elimination are produced by the
round-off error check in our Gaussian elimination algorithm. If this round-off error
check is omitted, the revised Gaussian elimination CPU time téE estimated from Tables 1

and 2 is given by

o -7 3
tg = 10" N

(30)

minutes, about one half the CPU times given by Eq. (27) or (28). Comparing Eq. (30)
with Eq. (29) shows that the conjugate gradient method becomes faster than Gaussian
elimination without the round-off error check when the number of iterations I is less
than about N/2.

If in addition to omitting the round-off error check from the Gaussian elimination
algorithm, all computations could be done in central memory without using direct access
files, the write and read operations would be eliminated from Table 1, and CPU times
{Egs. (28) and (29)], would be replaced by

° =02x10" N’

GE 3D
o _ T a2
tCG = 1.2 x 100" N7 32)

minutes. Comparison of Eqs. (31) and (32) reveals that, if all computations can be

handled in central memory, the conjugate gradient method is faster than Gaussian
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elimination (without a round-off error check) when the number of required iterations is
less than about N/().‘l

Table 3 lists the number of iterations and actual CPU tunes using the conjugate
gradient method for the dual-surface magnetic-field equations, (23-24), applied to
plane-wave scattering from a perfectly conducting cube.! The plane wave was incident
broadside upon the cube of side length s, and the parameters o and & in the dual-surface
magnetic-field integral equation (5a) were set equal to i and 316 A, respectively. The
initial value taken for the solution vector in the conjugate gradient algorithm was
zero, and the iterations were terminated when the ratio of the magnitude of the residual
vector to the magnitude of the source vector became less than 10%. Two-fold (xy)
symmetry of the cube was used to reduce the number of unknowns N in Table 3 by a factor
of 4, so that N equals 75(s/A)° rather than 300(s/A)° [see Eq. (25)] for N in terms of
the side-to-wavelength ratio (s/A) of a cube with 25 patches per square wavelength, the
minimum number needed to achieve reasonable accuracy in the computed surface currents

and far fields.

Table 3 reveals that the number of required iterations depends mainly on the
side-to-wavelength ratio of the cube, and hardly at all on the number of patches per
square wavelength or, equivalently, hardly at all on the number of unknowns N for a
fixed s/A (assuming a reasonable minimum number of patches per square wavelength are
used). This independence of the number of conjugate gradicnt iterations on the celi
density has also been observed in the solution to two-dimensional scattering

323 Since the CPU time is proportional to the total number of patches, the CPU

problems.
time for the conjugate gradient solution is minimized by choosing the least number of
patches per square wavelength sufficient for the desired solution accuracy (approxi-
mately 25 patches per square wavelength tn our case).

The number of iterations 125 required for convergence with the conjugate gradient

method as a function of the number of unknowns N, when using the minimum patch density

Y Wheeler 111, J.E. and Wilton, D.R. (1988) Comparison of convergence rates of the

conjugate gradient method applied to various integral equation formulations, Diges! of
the IEEE AP-S Symposium, Syracuse, NY, pp. 229-232.

Peterson, A'F. and Mittra, R. (1986) Convergence of the conjugate gradient method
when applied to matrix equations representing electromagnetic scattering problems, /EEE
Trans. Antennas Propagar. AP-34: 1447-1454.

Peterson, A.F., Smith, C.F., and Mittra, R. (1988) Eigenvalues of the moment-method
matrix and their effect on the convergence of the conjugate gradient alrorithm, /EEE
Trans Antennas Propagat. 36:1177-1179.
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of about 25 per square wavelength [N ~75(s/A)’], appears from Table 3 to approach a
logarithmic function of N as N gets large; specifically

Izs = 33 In(.02N) = 66 In(1.25 s/A). (33)

Substituting 125 for I in Eq. (29) [divided by .75 since Eq. (29) gives a predicted
value that is about 75 percent of the actual CPU run time] gives

T, = 85 x 10° NAn(.02N) = .1(s/A)* In(s/) (34)

minutes, as an estimate of the CPU time required to solve for scattering from large
cubes by the conjugate gradient method on our 32-bit, 1.3 megaflop Linpack-
performance-rated computer. (Interestingly, Catedra et al.> also found a CPU

time dependence proportional to the right side of Eq. (34) when solving 3-D scattering
problems using the conjugate gradient fast Fourier transform method applied to a volume
electric-field integral equation.) Because the logarithmic function is so slowly vary-

ing, Eq. (34) implies that the CPU time for solving full-bodied, 3-D, multi-wavelength
scatterers with well-behaved surface integral equations increases roughly as the fourth
power of the electrical size of the scatterer.

In Figure 4 the conjugate gradient and Gaussian elimination CPU times vs s/A for
scattering from the cube are plotted from Eqs. (34) and (30) [with N = 75(s/M)°] by the
solid and dashed lines, respectively. Even though two-fold symmetry of the cube has
been utilized to reduce the number of unknowns N by the factor of 4, Figure 4 confirms
that Gaussian elimination CPU time becomes prohibitive for cubes larger than a few
wavelengths across, and that conjugate gradient iteration allows one to determine

scattering from considerably larger bodies.

¥ Catedra, M.F., Gago, E., and Nuno, L. (1989) A numerical scheme to obtain the RCS
of three-dimensional bodies of resonant size using the conjugate gradient method and
the fast Fourier transform, IEEE Trans. Antennas and Propagat., 37: 528-537.
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Figure 4. CPU Time Versus Side-Length to Wavelength
Ratio for Dual-Surface Magnetic-Field Integral Equation
Solution for Scattering from a Pertectly Conductmg
Cube. The number of unknowns N is given by 75 (s/A)%.
since two-fold symmetry of the cube was used to reduce
the number of unknowns by a factor of four and the fixed
patch density i1s 25 per square wavelength. The conjugate
gradient and Gaussian elimination times shown here would
be reduced by factors of about two and five, respectively,
if the coefficient matrices could be stored in central
memory rather than in direct access files, that is,
if the CPU time were computed from Egs. (32) and (31)
instead of Eqs. (34) and (30).
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We emphasize that the formula (34) for the conjugate gradient CPU time as a
function of the number of unknowns and electrical size of the scatterer is an
approximation obtained by solving for scattering from the perfectly conducting cube
using the magnetic-field dual-surface integral equation. The formula holds for a patch
density of about 25 patches per square wavelength and a normalized residual of 10°.
Since the number of iterations is nearly independent of patch density, higher patch
densities will increase the CPU time proportionately. The CPU time will decrease if the
normalized residual is chosen greater than 10°; in particular, we found that the number
of iterations and thus CPU time halved when the normalized residual was increased from
10° to a value between 107 and 102 As mentioned in Section 2, the number of
iterations and CPU time will also vary somewhat with the chosen values of the parameters
o and d in the dual-surface integral equation, but this variation was not large for
values of o between £1.5 i and & between A/8 and 3A/8.

We also applied the magnetic-field dual-surface integral equation to rectangular
boxes with side-length ratios that differed considerably from the value of unity for the
cube. For some rectangular boxes, the required number of iterations and CPU time were
appreciably larger than the values predicted by Eqs. (33) and (34) for a cube of the same
surface area, but TOG in Eq. (34) was never larger than 8.5 X 10° N2, Although the
incident plane wave always propagated normally to the xy face of the rectangular boxes
(broadside incidence), it is unlikely that the N-dependence of T in Eq. (34) would
change dramatically with the direction of the incident plane wave, because the
formulation took advantage of the xy symmetry that results from the broadside incidence
to reduce the number of unknowns N in the coefficient matrix by a factor of 4.

Finally, in hopes of reducing computer time further, we experimented with three
variations of the conventional conjugate gradient method, namely the "biconjugate”
gradient method, the "augmented” conjugate gradient method, and the "modified” conjugate

. 9,35
gradient method. 2

We found that for the three dimensional, multi-wavelength problem
solved with surface integral equations, these three variations converged more slowly

than the conventional conjugate gradient method, regardless of the initial guess, or
whether they were used alone or in conjunction with the conventional conjugate gradient

method.’

Y Sarkar, T.K. (1987) On the application of the generalized biconjugate gradient

method, J. Electromagnetic Waves and Applications, 1(3). 223-242.
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