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THE APPLICATION OF HOPFIELD NEURAL
NETWORK TECHNIQUES TO PROBLEMS OF

ROUTING AND SCHEDULING IN PACKET
RADIO NETWORKS

1.0 INTRODUCTION

Two of the most important facets of multihop packet radio network design and control are

routing and channel access. These network functions are highly interdependent. For example, the

choice of routes determines the amount of traffic that must be carried over each of the network's

links, and thus determines the communication requirements that must be satisfied by the channel-

access mechanism. Despite the intimate relationships that exist between these network control

mechanisms, they are almost invariably addressed separately, resulting in network operation that is

far from optimal. In this report we make a step toward the development of schemes for the joint

control of routing and channel access by making use of the recently-developed Hopfield neural

network (NN) method for the solution of combinatorial-optimization problems.

We assume the use of a contention-free form of channel access, which is alternately known

as "link activation" or "scheduling." Under this channel-access mechanism, the nodes are assigned

non-interfering, periodically recurring, time slots in which to transmit their packets. In generating

these transmission schedules, it is possible to take advantage of the spatial separation of the nodes,

thus permitting two nodes separated by a sufficiently large distance to transmit simultaneously. In

spread-spectrum code-division multiple-access (CDMA) systems, it is also possible for several

nodes in the same vicinity to transmit simultaneously, provided that they use different frequency-

hopping patterns. The determination of optimal schedules, i.e., schedules that satisfy the traffic

demand in the minimum number of time slots, is a difficult combinatorial-optimization problem. In

fact, some versions of it are NP-complete (i.e., cannot be solved by an algorithm of polynomial

complexity). Thus heuristics are generally used to produce suboptimal link-activation schedules.

A discussion of link-activation methods, with an emphasis on CDMA considerations, is presented

in [1].

An alternate approach to the link-activation problem is the use of a Hopfield NN to generate

good, although not necessarily optimal, communication schedules [2]. Under this approach, the

scheduling problem is transformed into a graph-coloring problem, with the objective being the

determination of a coloring of the graph that requires the minimum number of colors, where each jj

color corresponds to a time slot. A Hopfield NN is then designed to solve the corresponding [
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coloring problem. As a result of the successful application of this method to the scheduling

problem, we decided to extend it to the joint routing-scheduling problem as well. Our approach

fits well into the currently widening interest of the research community in the application of NN

methods to communication and control problems (see e.g., [3] and (4]). We note that a NN

approach for a different version of the routing problem is discussed in [5].

Like the pure scheduling problem, the joint routing-scheduling problem can also be posed

as a combinatorial-optimization problem. Our study is, in fact, the first formulation of the joint

routing-scheduling problem as a problem of combinatorial optimization. The objective is now to

coordinate the choice of routes and schedules so that communication requirements are satisfied in

the minimum number of time slots. Because of the size of the NN needed for the joint routing-

scheduling problem, we have found it advantageous to consider separately the routing and

scheduling components before implementing a NN to solve the entire problem. Although these

problems are not independent, addressing them separately is expected to provide reasonably good

performance and to provide insight into the design of the NN for the combined problem. Toward

this end, we have implemented a NN that chooses routes, based on the criterion of minimizing

congestion. The routes chosen by such a NN may then be used in conjunction with a NN that

schedules packets over these routes. Ultimately, we hope to be able to design a NN for the

complete problem.

1.1 A Hoplield NN for the Minimization of Congestion

The problem we address is as follows. Given the connectivity graph of a radio

communication network, a set of source-destination (SD) pairs, a specified level of traffic between

each SD pair, and a set of paths connecting each SD pair, select a single path between each SD pair

so that network congestion is minimized.

The first step in the development of a NN model is the definition of neurons that

correspond to binary variables in the system that is being modeled. Most of this report focuses on

a path-neuron NN model, in which one neuron is defined for each path between every SD pair.

We define an energy function that reflects the desired goal of minimizing congestion and that

incorporates the constraints that are associated with the activation of a single path per SD pair.

Connections, which may be either inhibitory or excitatory, and whose values are based on the

energy function that is to be minimized, are established between all pairs of neurons. The NN

evolves from some initial state to a final state that represents a local (but not necessarily global)

minimum of the energy function. The evolution of the NN is simulated in software. Although

such software solutions are extremely time consuming, they verify the soundness of the use of the
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Hopfield NN approach for optimization problems of this type, and suggest that hardware

implementations (which provide convergence to a final state almost instantaneously) may be

worthwhile.

The Hopfield NN methodology is rather different from more-traditional approaches to

combinatorial-optimization problems. For example, this approach involves the embedding of a

discrete problem in a continuous solution space. The search for an optimal solution proceeds

through the interior of a continuous region, until the output voltages of the neurons ultimately

converge to binary values that satisfy system constraints and that provide a good, although not

necessarily optimal, solution. Background material on the Hopfield NN model is provided in

Appendix A.

We take a rather "evolutionary" approach in the description of our model. In doing so, we

explain the major issues that arise in the implementation of Hopfield NNs and the methods that we

have developed to overcome a variety of problems. The most critical issue in the design and

simulation of a Hopfield NN model is the choice of the coefficients used in the connection weights.

To determine good values for these coefficients, we have used the method of Lagrange multipliers,

a technique that permits the coefficients to vary dynamically along with the evolution of the system

state. This approach provides a great improvement over the trial-and-error methods used in most

studies of Hopfield nets, a process that is tedious at best, and often ineffective. We provide

extensive simulation results that demonstrate the effectiveness of our Hopfield path-neuron NN

model in large, heavily-congested networks.

We also present an alternative link-neuron NN formulation, in which a set of paths between
every SD pair is again defined, but a neuron is defined for each link of every such path. Although

the solutions obtained by this model are typically not as good as those produced by the path-neuron

model, the link-neuron model does, in fact, represent a significant advance in our study of NN

models of network problems. In particular, the ability of this model to supply the excitatory

connections that are needed to generate complete paths from individual links may be viewed as a

first step toward the more general, and more difficult, routing problem in which candidate paths

between each SD pair are not specified in advance. In that case, the NN must piece together

complete paths from individual links that are not a priori associated with each other, a situation that

makes it much more difficult to establish the excitatory connections that are needed to guarantee

complete paths. The link-neuron model may also be viewed as a first step toward our ultimate goal

of solving the joint routing-scheduling problem, in which the time slot for the activation of each

individual link along every path must be determined.

3



1.2 Outline of the Report

In Section 2, we address the fundamental issues associated with the joint routing-
scheduling problem, and we discuss the few attempts that have been made to solve this problem.

In Section 3, we present our basic path-neuron Hopfield NN model for the minimization of
congestion. We begin by defining the optimization problem, and we show how an energy function
is derived that incorporates the objective function as well as the system constraints. We then show
how the corresponding NN connection weights and bias currents are determined from the energy
function. We conclude by presenting the resulting equations of motion in an iterative form that is
appropriate for simulation in software.

In Section 4, we present extensive simulation results for the path-neuron model. In doing

so, we discuss the many issues that have arisen in the simulation of the equations of motion and

the methods we have developed to overcome a variety of problems. In particular, use of the

method of Lagrange multipliers, under which the coefficients in the connection weights evolve
dynamically along with the system state, is shown to provide highly-robust operation in large,
heavily-congested networks.

In Section 5, we introduce an alternate NN model in which a neuron is defined for each
link of each path between every SD pair. Our studies demonstrate the ability of this NN model to
provide the excitatory connections that are needed to activate complete paths.

Finally, in Section 6, we discuss our conclusions from this study, and we indicate what we
feel are promising research directions.

2.0 ROUTING AND SCHEDULING PROBLEMS IN PACKET RADIO
NETWORKS

The basic problem that motivated the work described in this report is the rather
fundamental, and yet quite neglected, property of multihop radio networks that couples the
problems of channel access and muting. Here, we are interested in networks with point-to-point
communication requirements, i.e., networks that support the delivery of traffic between specific
source-destination (SD) pairs over multihop paths.1 In all types of communication networks, it

This report does not address broadcast i-tworks, in which the same information is to be delivered to all network
members.
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has been a common practice to break up the enormous total network design problem into

subproblems, each of which can be studied in isolation. This partitioning usually follows the
"layered" structure of the OSI architecture (see e.g., [6]). Thus, even though it is recognized that

problems, issues, and design choices that reside in separate layers are, in fact, interdependent, they

are addressed separately; only at the final "integration" stage is there an occasional attempt to
recognize their influence on each other.

However, it is increasingly being recognized that in certain cases the interaction between

two or more factors from different layers may be so fundamental and strong that their joint effects
must be studied simultaneously. One such case arises in multihop radio networks. In such
networks there is a clear need to maintain and update routing tables for point-to-point traffic (a

layer-3 OSI issue) and, at the same time, to resolve the multiple-access contention for the channel

resource among neighboring node terminals (a sub-layer of layer-2 issue). It is quite clear that if
the routing tables direct a lot of traffic through a portion of the network that is shared by many

nodes, the broadcast nature of the radio medium will force the use of a channel-access mechanism
that might introduce substantially more delay in the overall end-to-end transmission process than an
alternate set of routes through sparser portions of the network would, even though those routes
might be longer. Thus what is best for a given radio network, as far as routing is concerned,

depends on the channel-access protocol that is used, and need not be the same as for a nonradio,

"wire"-linked network of the same topology, in which there is no issue of channel access.

It is important to distinguish between the two major philosophies of channel access

mechanisms. These are (i) contention-based, and (ii) scheduled transmissions. In the first

category we have all variants of ALOHA, Carrier-Sense Multiple Access (CSMA), Conflict

Resolution Algorithms, etc., while in the second category we have basically contention-free

schemes such as Time-Division Multiple Access (TDMA), Frequency-Division Multiple Access

(FDMA), orthogonal Code-Division Multiple Access (CDMA), and reservation-based methods.

Also, many hybrids of these schemes have been developed in recent years. Studies have shown

that in single-hop applications, contention-based schemes perform well when traffic is bursty and

traffic rates are low. Scheduled-access schemes perform well when traffic patterns are regular,

e.g., periodic. However, it is difficult to make definitive conclusions on the performance of

channel-access schemes in multihop environments.

Contention-based schemes suffer from the possibility of excessively long and unpredictable

delays, especially during surges in the volume of traffic. To some degree, by using strictly-

contcolled forms of contention protocols, it is possible to mitigate these disadvantages. However,
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in multihop radio environments the effects of contention can multiply rapidly across the network,

and may be difficult to control. In fact, the only versions of controlled contention protocols that

have been studied concern single-hop networks. For this reason, and although we do not rule

them out for later consideration, we exclude such protocols from our further investigations in this

report. Many of the issues associated with channel-access methods in multihop radio networks

were discussed in greater detail in [1], where it was concluded that contention-free channel access

methods are best for most broadcast networks. It was not possible to reach a definitive conclusion

for point-to-point networks, such as those being considered here, and the question of which

approach is preferable remains controversial. However, based on the considerations discussed

above, the use of scheduled channel access appears to be a reasonable approach to this problem.

Therefore, we choose to focus on scheduled transmissions as the channel-access

mechanism in this report. In particular, we consider a time-division implementation (although it is

possible to introduce a limited degree of nonorthogonal CDMA in our approach to permit the

simultaneous activation of neighboring links). The main virtue of time-division based scheduled

transmission protocols is that they are conceptually more attractive than the equivalent forms of

their frequency- or code-based counterparts and that, although not necessarily better than the

contention-based ones in terms of performance (that is the unresolved issue just discussed), their

performance an be assessed. The conceptual attractiveness of the time domain lies mainly in the

natural and fundamental features of time and the sequential form of transmission control.

Thug we consider now the fact that the choice of routes for point-to-point traffic in

multihop radio networks interacts with the choice of transmission schedules in each portion of the

network where neighboring nodes must multiplex their transmissions in time. For example, we

may consider a system in which the routes are specified in advance. In this case, the choice of

routes determines the amount of traffic that must be carried over each of the network's links, and

thus determines the communication requirements that must be satisfied by the channel-access

mechanism. Alternatively, we may consider a system in which the schedules are specified in

advance, in which case the problem becomes the determination of routes that use the predefined

schedules. The capacity of a link is then proportional to the number of times the link is activated in

one complete cycle of the schedule. The resulting set of link capacities can then be used as the

basis for the determination of an optimal set of routes. Both of these approaches assume that

something (i.e., either the routes or a transmission schedule) is specified in advance. In general,

these problems are not separable. Thus nonoptimal solutions are obtained by attempting to solve

them separately. In the true routing-scheduling problem, neither is specified a priori; both are to be

determined by the optimization process.
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Despite the intimate relationships that exist between these network control mechanisms,

they are almost invariably addressed separately, resulting in network operation that is far from

optimal. As stated earlier, the recognition of the importance of the coupling between these two

problems is relatively recent. In fact, the problem of best-schedule determination alone (without
considering the effect of routing) was only recently studied by a number of authors [7, 8], and it
was determined that, in almost all of its forms, it is a combinatorial-optimization problem of high
complexity (NP-complete). It has been referred to as the pure scheduling problem. In complexity

theory, the term NP-complete describes the property that there is no known algorithm of

polynomial complexity that can solve the problem. If, for example, each node has a single
transceiver and if a single frequency is used across the network (or alternatively if nonorthogonal

CDMA codes are used), the pure scheduling problem is indeed NP-complete. For more details on

the complexity of other forms of the pure scheduling problem, see [9].

Some instances of the pure scheduling problem are equivalent to the well-known problem

of graph coloring or finding matching sets of nodes (or links) in a graph. Both are well
understood and have been extensively studied in complexity theory. For example, a pure
scheduling problem can be posed as follows: letfi be the average traffic flow rate on link i, which
is given as a result of a separate solution of the routing problem. We would like to find a schedule,
i.e., a set of pairs (Tj, rj), j = 1, ..., N, where Tj is a set of links that can be activated

simultaneously without violating interference constraints2 and rj is the number of slots (or, simply,

the total amount of time) for which the links in Tj are allowed to transmit. The length of the

schedule is defined as

N
t = 'j.

j=1

The problem is to find the schedule with minimum length such that the given flows fi can be

accommodated in the network. A solution to this problem was provided by Hajek and Sasaki [81,
and further studied by Tassiulas and Ephremides [10]. The solution in [8] is not practical and has

only academic value (although it is crucially important to the subsequent development of the joint
routing-scheduling problem).

2 Interfere= constraints can be variously defined depending on the number of ransceivers at each node, the form of
signaling used (e.g., CDMA), etc.; in their plainest form they require simply that no two links adjacent to the same
node be allowed to transmit simultaneously.
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Thus, in [2], an effort was made to develop a heuristic solution that is based on a Hopfield

neural network (NN). The inspiration to do so came from the observation by Hopfield and Tank
[11] that combinatorial-optimization problems similar to the famous Traveling Salesman Problem
(see Appendix A) could be solved efficiently by means of NNs of a certain special form. The
results in [2] were encouraging, and pointed us in the direction of using NNs for the overall
problem of joint routing and scheduling. In addition to the reasonably satisfactory performance
results reported in [2] for the pure scheduling problem, the nature of the algorithm that the
Hopfield NN implemented in that instance was such that it could be amenable to distributed

implementation. We want to make note of the fact that distributed implementations of algorithms
for routing and scheduling in radio nets are very important and desirable. Of course, not all
algorithms can be implemented distributedly. In fact, the ones that are described in this report are

not. Distributed implementation remains an important goal for scheduling problems. Although

distributed algorithms have been developed for scheduling, the goal of developing an optimal

distributed algorithm remains an elusive goal.

The next step in considering the joint optimization problems of choosing both the schedule

of transmissions and the routes for the traffic was the definition of the network evacuation

problem. This problem considers an initial amount of information residing at each node of the

network that needs to be delivered to a single, common destination. The desire is again to find a

schedule (as defined earlier) that accomplishes this delivery in minimum time. Implicit in the

definition of this problem is the selection of routes and its interaction with the transmission

schedules. This problem was studied in detail by Tassiulas and Ephremides in [101].

It turns out that, first of all, this problem is not as restricted as it may seem in the

beginning, since it is equivalent to the problem of sustained operation under steady (nonrandom)

traffic flow generation at the source nodes. In other words, the specified traffic levels may be

interpreted as periodic communication requirements (instead of simply quantities of traffic that

must be eliminated from the network), in which case the schedule developed for the evacuation

problem could simply be repeated periodically. Secondly, it turns out that the joint optimization

decomposes into two separate problems, one of schedule optimization and one of flow
optimization (i.e., routing) that are weakly coupled. Specifically, it is known that the value of the
length of the optimal schedule is equal to the maximum nodal degree in the network, where the

degree of a node is defined as the total amount of flow into that node plus the total amount of flow
out of that node. Thus, minimizing the maximum degree by choice of the flows solves the routing
part of the problem in a way that couples it to the scheduling problem.
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This nice and encouraging result was based on a pivotal graph-theoretic observation first

made by Hajek and Sasaki [8] and then put to use by Tassiulas and Ephremides [10]. However,

the solution to the scheduling coml.nent of the problem remained as impractical as that in the

original pure scheduling problem. A somewhat further discouraging observation is that the

extension of the result to multiple destinations, although certainly possible, seems to be

substantially difficult and has not been accomplished to date. Also, this result is based on the

assumption that all links have equal capacity. If they do not, new complications arise.

The formulation of the routing-scheduling problem that gave rise to even these limited
results also contains another important simplification, namely that the traffic flow is a continuous

variable and that the schedule lengths have arbitrary real values from a continuum rather than

integer values (multiples of a slot length). The practical version of the problem in which the units

of transmission are fixed-length packets has not been directly simplified in a manner analogous to

the methods used by Hajek and Sasaki [8] and Tassiulas and Ephremides [10] for the non-

quantized case.

Finally, the ultimate joint routing-scheduling problem requires consideration of random

traffic generation patterns and not simply constant deterministic flows. Although this case lies
beyond the scope of our report, we wish to mention that it har been considered in some of its

simpler forms (single tandem topology, immediate neighbor destiaation, and some others) in [91
and gives rise to two types of questions. The first type relates to stability and simply asks whether
there exists a schedule such that the queues in the network do not increase without bound (for

given average rates of exogenous [i.e., externally generated] traffic injected into the network). The
second type relates to optimality in the sense of determining that schedule for which the usual
weighted average delay performance measure for end-to-end delivery is minimized. Preliminary
results have been obtained for both questions by L. Tassiulas in his Ph.D. Dissertation that is

underway at the University of Maryland. By and large, however, the case of random traffic inputs

remains a very complex problem that is a subject of additional future research.

The conclusions that can be drawn at this point for the joint routing-scheduling problem are

that the problem remains basically unsolved, although it has been "dented" appreciably at various

corners. In this report we outline our effort to effect another dent at a corner that, so far, has

remained untouched. Namely, instead of approaching the joint problem by first determining the

schedule of transmissions and then introducing the routing component in it (which is the way the

problem has been approached so far in [8, 10] and has not yielded a successful resolution to the

joint problem), we considered doing the reverse. So we proposed to look at the route selection

9



problem first, and to bring in the scheduling aspect next. Of course, the plain routing problem has

been extensively studied in the literature, and is considered basically solved. There exist a plethora

of algorithms and variants of them for determining good (or, indeed, optimal) routes under various

conditions of changing environments and limited information. However, in considering the

routing problem here, we propose a version of it that already incorporates in some measure (albeit

only implicitly) the role and effect of the scheduling component. Namely, we assume that routes

that result in nodes with a high degree (i.e., routes that include nodes that are multiply shared by

other routes) are aggravating the scheduling problem, and are bound to introduce longer scheduling

delays. Therefore, we would like to strike a balance between routes that are "short," in the

traditional sense of route quality,' and "disjoint" to the extent possible (i.e., sharing as few nodes

as possible). We consider this to be a first step toward approaching the combined optimization
problem from the "other end," namely that of routing.

As will be seen in the next section, in which the specifics of our model are introduced, we

generally adopt the viewpoint that, for a given graph that represents a multihop radio network, each

source-destination pair is assigned a prespecified set of possible routes. These routes mesh with

each other in the graph, and each choice we make results in different numbers of shared nodes

amongst them. Clearly, we prefer to choose routes that are short (the pure-routing component of

the problem) and such that the number of shared nodes is small (which relates to the scheduling

aspect). It can be seen rather easily that in this formulation the problem becomes one of

combinatorial optimization. For a network with J source-destination pairs and K routes per pair,

an exhaustive search would entail scanning through KJ possible solutions; e.g., for K = 5 and J =

20, a problem of moderate size, there are 9.5 x 1013 solutions. Although we have not formally

proven it, we suspect strongly that this problem is NP-complete. Thus we are naturally led to

considering a Hopfield neural network for its solution. Indeed, we have developed such a NN and

applied it to several variations of the model described above. In fact, we believe we have exploited

the full strength of the Hopfield NN approach by using several variations and improvements of the

basic technique. In particular, we have obtained excellent results in large, heavily-congested

networks by using the method of Lagrange multipliers to determine system parameters

dynamically. We have also investigated the use of simulated annealing and a variety of heuristic

methods for performance improvement. Background material on these methods is provided in

Appendix A. In Sections 3,4, and 5 we describe in detail the models we have developed and their

performance analysis and evaluation.

3 Usually, the "length" of a link in routing problems reflects a measure of message delay on that link that
incorporates propagation. transmission, processing, and waiting times. Frequently, it is taken to be a constant, in
which case, we refer to the problem as "minimum number of hops" routing.
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3.0 A HOPFIELD NETWORK TO MINIMIZE CONGESTION

As noted in the previous section, we have found it advantageous to consider separately the

routing and scheduling problems before implementing a neural network (NN) for the complete

joint scheduling-routing problem. Although these problems are not independent, addressing them

separately is expected to provide reasonably good performance and to provide insight into an
eventual design of a NN for the combined problem. Toward this end, we have implemented a NN
simulation that chooses routes based on the criterion of minimizing congestion, and that takes into

account the factor of link scheduling effects indirectly. The development of this NN model and its
simulation in software is the primary focus of this report. Once these routes are chosen, schedules

can be generated either by using NN methods that are applicable to pure scheduling problems as

developed in [2], or by means of some (preferably distributed) heuristic such as those developed in

[12].

In this section, we present a Hopfield NN model for the selection of paths between several

source-destination (SD) pairs in a packet radio network, and in Section 4 we demonstrate its

effectiveness in large, heavily-congested networks. We start by presenting the basic energy

function and equations of motion that we have developed for the NN model of this problem.

Then, in the course of discussing the simulation process, we explain many of the design issues that

have been encountered and the techniques we have used to improve performance. For the reader

who is not familiar with Hopfield NNs, we strongly recommend that Appendix A, which provides

a discussion of the use of Hopfield NNs for combinatorial-optimization problems, be read at this

point to provide the necessary background material for this section.

3.1 The Problem

Given the connectivity graph of a radio communication network, a set of Nsd SD pairs, and

a set of paths connecting each SD pair, select a single path between each SD pair so that network

congestion, as defined below, is minimized. Minimizing congestion encourages the activation of

paths that do not share many common nodes, and thus reduces the delay effect that the

interference-free scheduling of the link activation induces. For simplicity, we first consider a

network in which equal traffic is specified between each SD pair.

In the future, we hope to investigate the more difficult routing problem in which paths

between the SD pairs are not specified in advance. Here, we comment that the existence of

predefined sets of paths is not unreasonable, and is actually similar in principle to the predefinition

of virtual circuits that may be activated as needed in response to traffic demands.
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3.2 Neural Network Model

The first step in the formulation of a Hopfield NN model is the definition of neurons that

correspond to binary variables in the system that is being modeled. In this section, we consider a
Hopfield NN in which one neuron is defined for each path between every SD pair.' For example,
Figure 3.1(a) shows a very simple six-node network with two paths between each of two SD
pairs, and Figure 3.1(b) shows the corresponding path-neuron model. A double index is used to

specify the neurons, e.g., neuron ij represents the jth path between SD pair i. The neurons are
analog devices, which are characterized by an input-output relation that has the sigmoidal form

where uij and Vii are the input and output voltages, respectively, of neuron ij, and uo is a parameter

that governs the slope of the nonlinearity. Since in every valid solution, one path is chosen for
each SD pair, exactly one of the Vij 's is equal to I for every value of i (which means that the
corresponding path is chosen), and the others are 0. In practice, since analog neurons are used, a
valid solution will have one neuron per SD pair with an output voltage value close to 1, while the

others will be close to 0. We remark here that the main advantage of the use of analog neurons is

that they permit the embedding of discrete optimization problems in a continuous solution space,
which results in the capability of finding better solutions than are generally possible in a discrete

solution space, as is discussed in Appendix A.

t Alternate approaches are possible. In fact, in Section 5 we discuss a Hopfield NN formulation in which a neuron

is defined for every link of each path between all SD pairs.
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Path between SD pair 2
Pij =* jth path between SD pair i
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(b)

Figure 3.1. An example network, (a) shows a six-node communication network, and (b) shows
the corresponding path-neuron NN model

Connections, which may be either inhibitory or excitatory, are established between all pairs

of neurons. The NN evolves from some initial state to a final state that represents a local (but not
necessarily global) minimum of the Lyapunov energy function, which may be written in the

following generic form:

N, Nw N~i) Ndk) N., N~i)

Ed= - j 1~ 1:7 ik i A : Vij Iij (M2 = i.IA.I j i .It i I j1

System evolution follows a trajectory of monotonically decreasing energy. In Eq. (*), TijX is the

strength of the connection between neurons ij and ki (it is positive if the connection is excitatory
and negative if it is inhibitory), iij is the bias current applied to neuron ij, and N,(i) is the number
of paths between SD pair i. The total number of neurons, N, is given by
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N - N(i

Thus an N x N connectivity matrix T can be defined, whose elements are the connection weights

Tij, which specify the strength of the connection between neurons ij and ki. Convergence to a

stable state is guaranteed as long as the connections are symmetric (i.e., Tijkl = TkJ,ij), and

provided that Tijij = 0 [Il]. Although these conditions are not strictly satisfied in our problem

formulation (nor, in fact, in Hopfield and Tank's NN formulation of the TSP), reliable

convergence has, in fact, been achieved. In our problem, the strengths of these connections are

chosen to discourage the sharing of nodes by many paths (i.e., limit congestion), while

encouraging the correct number of path activations (i.e., exactly one neuron turned on per source-

destination pair). We soon discuss how the connection weights and bias currents are chosen to

solve our problem.

More complicated forms of the energy function have also been considered in the literature,

e.g., those that include connection weights for triplets of neurons (e.g., Tijk connecting neurons i,

j, and k, which results in a term of the form TijkViVjVk). However, they are generally much more

difficult to implement, and it is not clear that they offer an advantage; thus we did not consider

them in this study.

The NN is "programmed" by implementing the set of connection weights and bias currents

that correspond to the function that is to be minimized. An analog hardware implementation of a

Hopfield NN will normally converge to its final state within at most a few RC time constants, thus

providing an extremely rapid solution to a complex optimization problem. In our studies (as in

most studies of this technique) we have simulated the system dynamics in software. Although

such software solutions are extremely time consuming, they verify the soundness of the use of the

Hopfield NN approach for optimization problems of this type and suggest that hardware

implementations may be worthwhile. In fact, hardware implementation may be feasible for sizes

of the problem that exceed by far the ones that can be handled in software.

3.3 Congestion Energy

The class of objective functions that can be modeled by means of Hopfield NNs is

normally limited to those that can be expressed in the form of Eq. (*). This class includes

weighted sums of the products of pairs of neuron output voltages as well as output voltages taken

individually. The nongeneral nature of the Lyapunov energy function [ 11 ] often necessitates the
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use of creativity in determining a meaningful performance measure that can be modeled by the NN

and that reflects the desired behavior of the system that is to be optimized.

We noted in the previous section that, for the case of continuous traffic, the selection of
paths that minimize the maximum nodal degree2 in the network permits the generation of schedules

of minimum length. Clearly, this performance measure cannot be put in the form of the desired

Lyapunov energy function. Instead, we have chosen to minimize the following measure of

congestion, which is in the form of Eq. (*), as required:

2i=1 k=i j-1 1=
k*i

where

Pij = the jth path between SD pair i.

IPajC'P I = the number of nodes shared by paths Pij and P,.

To facilitate the interpretation of this "congestion energy" term, we first assume that a legal state

has been reached. In this case, the congestion energy corresponds to the sum of the number of

common nodes of all selected paths (one for each SD pair), taken on a pairwise basis.
Minimization of this congestion energy loosely corresponds to selecting a set of paths that may be
scheduled in a minimal number of slots. Before convergence is reached, the neuron output
voltages take on values in the continuum [0,1]; the congestion energy is the weighted sum of the
number of common nodes of all pairs of paths for different SD pairs in the network, where the
weights are the products of the corresponding neuron pair output voltages. As the system
converges to a legal state, the output voltage of exactly one neuron per SD pair approaches 1 while
that of the others approaches 0; thus the congestion energy approaches that of a legal state in which
one path is chosen per SD pair, as described above.

Note that Eb is actually minimized when all neuron output voltages are zero, which

corresponds to a state in which no paths are activated. The tendency of the Eb term to turn off all

of the neurons is manifested by contributions to the connection weight matrix that are purely

inhibitory, and whose strength is proportional to the number of shared nodes in the two paths.

2 Recall ta dh degree of a node is defned to be the sm of all flows into the node plus all flows out of the node.
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Thus constraints, which are discussed in the next subsection, are needed to ensure that the correct

number of neurons is activated.

By incorporating the constraints into the desired objective function, the energy function for

the minimization of congestion assumes the following form:

3 N., N,pQ)

Etow = bEb + X iEi- I vi. (,,)
izd ifl jr1

The first term represents the network congestion, and is the function that we would like to
minimize, as just discussed. The second term represents the impact of system constraints, each of

which adds zero energy when the corresponding equality constraint is satisfied and a positive state-

dependent energy when it is not. These equality constraints are incorporated into the objective

function by using the classical approach of Lagrange multipliers. In our initial discussions, the
values of the Xj's are assumed to be constants, whose best values are typically determined by trial-

and-error in Hopfield NN simulations. In Section 4.5 we exploit the full power of this method by

permitting the Lagrange multipliers to evolve along with the system state. The last term of Eq. (**)

represents the impact of additional bias currents, which in our problem formulation are applied

equally to all neurons to help with the satisfaction of system constraints. The coefficients b, Xi,

and I are all positive. Connection weights and bias currents are determined by transforming this

problem-specific form of the energy function into the generic form given in Eq. (*). This problem

formulation is quite similar to the one developed by Hopfield and Tank for the Traveling Salesman

Problem (TSP), which is discussed in Appendix A. Note that although Etotal follows a trajectory

of monotonically decreasing energy, Eb does not necessarily do so.

Later, in the presentation of our simulation results, we discuss another performance

measure for network congestion, which may appear to provide a more reasonable measure of

system performance than the Eb function defined above, but which cannot be put into the form of

the Lyapunov energy function. We show that the NN designed to minimize Eb, also provides

nearly optimal values of the other performance measure as well.

3.4 Incorporation of Constraints into the Energy Function

The problem constraints and the corresponding terms in the energy equation (which must

each be equal to zero when the constraints are satisfied) are summarized beiow. The effect of these

constraints is perhaps best understood if the neurons are initially assumed to take on only binary
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values. After examining the constraints from this viewpoint, we address their impact on a system

with analog neurons.

1. Activate (select) no more than one path per SD pair:

N, Nk) WOi

El = -II IViViz = 0.
2i--1 1=1 1=1

This term provides a positive contribution to the energy function whenever two or more paths

between the same SD pair have nonzero voltage. It represents purely inhibitory contributions to

the connection weights.

2. Activate a total of exactly Nsd paths in the network:

E2 = 1( 1VJi -Nd =0.

This term is zero when exactly Nsd neurons have output voltage values of 1. Its effect is excitatory

if an insufficient number of neurons is active and inhibitory ff too many are active.

3. Activate exactly one path per SD pair:

Md (N,(_)
E3 = 11 Vj -1) =0.

This term vanishes whenever exactly one path is chosen for each SD pair. Like constraint 2, it can

be either excitatory or inhibitory. Although this constraint would appear to be redundant (because

satisfaction of the first two constraints would guarantee that it is satisfied as well), its inclusion in

the energy equation is helpful in achieving convergence to valid solutions. The use of such

seemingly redundant constraints is common in Hopfield network models. Satisfaction of

constraint 3 alone (along with a mechanism to guarantee that all nodes take on binary values)

would actually be sufficient for our problem. However, constraint 2 is useful because it imposes a

greater penalty when an incorrect number of neurons in the entire NN are set to 1; this is because it

is a quadratic form centered about Nsd, whereas constraint 3 contains Nsd quadratic forms each

centered about 1.

Since the neurons are analog devices, whose output voltages take on values in the

continuum between 0 and 1, these constraints cannot be satisfied simultaneously until, and unless,
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a state is reached in which all output voltages take on binary values. It is possible for constraints 2

and 3 to be satisfied by a state in which more than Nsd neurons are partially active (i.e., have

output values less than 1). This is why constraint 1 is needed to discourage the (even partial)
activation of more than one neuron per SD pair. Thus, although the system evolves through the

interior of an N-dimensional hypercube, the incorporation of these constraints into the energy

function encourages the system to evolve to "legal states," which are binary states in which the

constraints are, in fact, satisfied. Whether or not convergence to legal states is achieved, depends
on factors such as the Xi coefficient values, the initial state of the system, the slope of the input-

output nonlinearity, the time constants used in the iteration, etc. All of these factors will be

discussed later in this section and, in more detail, in Section 4.

3.5 Determination of Connection Weights and Bias Currents

Substitution of the expressions for Eb and the Ei's into Eq. (**) yields:

N., N (A) NAk) N., N ,) Ni)

Ettl= k 1I 1 Pii P IVjVUa + . VijV a

ki L*j

2 XVi - Nsd +Vi-

To determine the connection weights, we compare Eq. (***) with the generic form given in Eq.

(*). The energy function contains both quadratic and linear terms. The coefficients of the

quadratic terms, which involve products of the form VijVkd, correspond to connection weights of
the form Tijj. Thus the connection weight Tijj is the sum of all coefficients that multiply the
product VijVkl in Eq. (***):

Tij = -bIPijriPk1(1- ,,) - XIQ - - .2 -X - 3j8,

where 8jk is the Kronecker delta symbol.

Similarly, the coefficients of the linear terms, which involve the Vjj's one at a time,

correspond to the bias currents. Thus Ii is the sum of the coefficients that multiply Vij.

We have observed in our simulation studies that an insufficient number of neurons are

typically activated, a problem that can be mitigated by increasing the bias currents. Hopfield and

Tank [11] observed the same behavior in their studies of the TSP, as is discussed in Appendix A.
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The need for additional bias currents stems, at least in part, from the purely inhibitory nature of the
congestion energy's contribution to the connection matrix T. Thus additional bias current is

needed to, in effect, adjust the neutral positions of the amplifiers. We have incorporated the
additional bias current into constraint 2, which may now be expressed as follows:

E2" (XX Vai - aNsd 0.

Setting the parameter a to a value greater than 1 provides the additional excitation bias. A typical
value that we have used is a = 1.5, which is equal to the one used by Hopfield and Tank [11] in

their solution of the TSP. Incorporation of the additional bias currents in this manner permits us to
set I = 0 in Eq. (**). The resultant expression for bias currents is:

Iii = X.2aNd + X 3.

3.6 Equations of Motion

The evolution of the input voltage at each neuron is characterized by an equation of motion

that is obtained by differentiating the energy function with respect to the output voltage at that

neuron. Thus

duiL - _ - . , N N,(k)= _ Etotl = u__ + 1: 7 Tij.klVkl + lij,

& avii A= 1 1= 1

where c = RC is the time constant of the RC circuit connected to the neuron. As the system

evolves from an initial state, the energy function decreases monotonically until equilibrium at a

(local) minimum is reached. Since only a local minimum can be guaranteed, the final state depends

on the initial state at which the system evolution is started. The equations of motion may be

expressed in iterative form as follows:

u =+t u4~t) -AtuiAt) - Ab 7, Pijr)Pk I k - At1 Vi5

1Mj

IV., Nsi) Nii

uA X I VU aNsd)AtX I (V -) + A t.
k=1 =1 1=1
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This form is customary and appropriate for computation. A number of issues arise when

these equations are simulated in software. The most apparent is the need to choose the coefficients
in the weight matrix, i.e., b and the )ki's. Also important are the bias current parameters a arid I.

Somewhat more subtle is the impact of the step size At and the nonlinearity parameter uo. The

ability of the state to converge to a good solution, or even to a legal solution, depends strongly on

these parameters. A complete discussion of these and other issues that have arisen in the

simulation process is presented in Section 4. At this point, we remark that it is difficult to develop
"cookbook" procedures for the choice of specific fixed values of these parameters that will produce

high-quality performance for a wide variety of networks. However, we note that we have obtained

excellent and highly robust results by using the method of Lagrange multipliers, a technique that

permits the connection weights to vary dynamically along with the evolution of the system state.

4.0 PERFORMANCE EVALUATION USING THE PATH-NEURON MODEL

Before describing our simulation results, we remark that additional background and

explanations are required to explain our approach fully, and will be provided as needed. Unlike

typical well-defined algorithms that are evaluated by simulation, NN-based algorithms are, to a

large measure, still in a stage of development. For example, we noted at the end of the previous

section that the choice of system parameters is critical to the ability of the NN simulation to

converge to good, or even valid, solutions, and that it is difficult to develop cookbook procedures

that guarantee convergence to good solutions.

In this section we take somewhat of an "evolutionary" approach that outlines the major

steps in our development of what has turned out to be a rather effective and robust method for

obtaining solutions to our problem. We start with a discussion of the often-used trial-and-error

method of choosing system parameters, and illustrate how this approach can be improved through

the use of mean-field-annealing techniques. This sets the stage for our discussion of the method of

Lagrange multipliers, which permits the coefficients in the connection weight matrix to be

controlled dynamically as the system state evolves. In the course of this development, issues

related to convergence and performance evaluation are addressed, and we attempt to share the

insight we have gained into the use of Hopfield NNs for optimization problems.

We discuss the application of our method to several networks. First, a rather modest-sized

network with 24 nodes (including 10 SD pairs and a total of 52 paths) is considered. After

demonstrating the effectiveness of our approach on this network, we discuss a 100-node network
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with 40 SD pairs and a total of 327 paths. This example was augmented further by imposing a

traffic requirement of three units between each SD pair, which necessitated the definition of three
neurons per path, resulting in a total of 981 in the network. In all of these examples, convergence

to good solutions is obtained 100% of the time. Therefore, we are confident that this method can

be extended to even larger and more complex problems.

4.1 Basic Simulation Issues

The NN model described in Section 3 was simulated using a program written in C++,

which was run on Sun-3 and Sun-4 workstations. The program reads a file that lists the nodes
traversed in each of the predefined paths. This information is used to build the path-neuron NN

model, i.e., the neurons are defined and indexed such that neuron ij represents the jt path between

the ith SD pair, the weight matrix T is created, and the bias currents are defined. The system

parameters used in determining the coefficients in T and the bias currents are contained in a
separate file to facilitate their modification as necessary. The initial input voltage to each neuron ij
is set so that the output voltage is equal to the inverse of the number of paths between SD pair i.

That is, to obtain an initial output voltage of Voy(O) = 1/Np(i), we set

uV() = u. tanh- -2 -- - 1).

A small perturbation is then added to the initial input voltage of each neuron; addition of this

perturbation avoids a totally symmetric initial state, which is an undesirable condition, as is

discussed in Appendix A. The perturbation is a random deviate drawn from a uniform distribution

on [-0.1uo, 0.luo], and is different for each neuron. The equations of motion are iterated,
allowing the NN to "relax" to a minimal energy state. It is important to note that system evolution

is deterministic. The only randomness in the model is that which is associated with the choice of

the initial state.' Since the system evolution follows a trajectory of monotonically-decreasing

energy, the initial condition determines which portion of the solution space is actually searched,

and thus which final state is reached.

The iteration is terminated when all neuron output voltages are within some specified value
e of the output voltage limits 0 and I (event of convergence) or when a "time-out" is reached (event

of no convergence by a specified number of iterations). If convergence is achieved, those neurons

'Later we discuss the use of simulated annealing in conjunction with our NN model, a technique in which noise is
added to the system throughout its evolution to permit the escape from local minima, with the goal of eventually
finding the global minimum.
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that have output voltages within e of 1 are declared to be on, which means that their corresponding

paths are activated. The remaining neurons are declared to be off, and their corresponding paths

are not used. A convergence is valid (a legal solution) if the constraints are satisfied, i.e., if

exactly one path is activated for every SD pair. Examples of invalid solutions are (1) the activation

of two or more paths between a SD pair, or (2) the failure to activate any paths between a SD pair.

Monte-Carlo type simulations were performed. For a particular set of parameter values, the

NN was run from 100 different initial states (random number generator seeds), and the results

were evaluated in terms of valid convergence percentage (number of valid convergences / number

of attempts) and the quality of convergence based on congestion energy Eb or some other related

metric of the valid solutions.

Throughout this report, each set of paths between every SD pair has been chosen to be

maximally node-disjoint. A set of n maximally node-disjoint paths between a SD pair consists of

the n paths between the SD pair that have the fewest nodes in common. These paths have been

obtained from the network connectivity matrix by means of Dijkstra's algorithm [13], which is

described as follows.

Given an N-node network connectivity matrix and a SD pair, Dijkstra's algorithm attempts

to find a set of n maximally node-disjoint paths by iteratively finding n lowest-cost paths. The cost

of a path is defined as the sum of the weights of the nodes traversed in the path. Initially, all nodes

are assigned a weight of 1, with the exceptions of the source and the destination nodes which are

assigned a weight of zero. Then a breadth-first search (see [14]) of the network is used to discover

and list a lowest-cost path between the SD pair. As a result of the equal initial weights of all the

intermediate nodes (nodes that are neither the source nor the destination), the first listed path is also

a shortest (hop) path. The weights of all the intermediate nodes in the listed path are then increased

by N, thus completing the first iteration of the algorithm. The iteration (which consists of the

breadth-first search, listing of the lowest-cost path, and augmentation of the weights of the

intermediate nodes of that path) is repeated n times. At each iteration, the weighting scheme causes

the lowest-cost path listed to share the minimum possible number of nodes with the previously

listed paths. However, it does not preclude duplicate listings. Any duplicate paths and paths that

contain previously listed paths are discarded.2 This is the reason for the nonuniform number of

paths between different SD pairs in the examples presented in this report.

2 Table B.1 in Appendix B does include one example of a path, path 7, that contains a previously listed path, path 6.
The redundant path 7 has never been selected in any of the simulations with this network.
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Before we present our numerical results, it is useful to describe and comment on the

various initiatives that we took to correct some of the shortcomings of the NN behavior as it was

observed in the initial stages of the performance evaluation.

4.1.1 Obtaining Valid Convergences

Preliminary experimentation with the path-neuron model using constant coefficients for the

connection weights and small communication networks revealed that obtaining valid convergence

is a nontrivial task. There was actually little problem in obtaining convergence. The difficulty was

in obtaining convergence to valid states. Examples of convergence to nonvalid states included both

those with no path selected for a SD pair and those with two or more paths selected for a SD pair.

A great deal of parameter adjustments led finally to valid convergence approximately 50 to 70% of

the time. The resultant parameter sets were problem specific; changing the topology required

finding a new set of parameters. Although the early results were not particularly good, a great deal

of insight into the NN behavior was gained. It was noted that very rapid convergence (< 10

iterations) indicated that the time constant At was too large. This resulted in overly large changes in

system state from one iteration to the next, which permitted minima to be missed. Time constants
on the order of 10- 4 worked well for a broad range of networks. A bias-current parameter of a =

1.5 (with I = 0) generally provided acceptable performance.

4.1.2 Mean Field An-ealing

In an effort to increase the percentage of runs that converge to valid solutions, a form of

mean field annealing (MFA), similar to the method described in [15], was examined. It involved

gradually steepening the slope of the nonlinear neural input-output relationship by gradually

decreasing uo. Recall that the input-output relationship is Vij = 0.5(l+tanh(u1;iu0 )). The

nonlinearity parameter uo is changed as a function of time: uo = l0/(c+t/') while uo > uo°. The

parameter c sets the value of uo at time t = 0, % controls the rate at which the nonlinearity is

steepened, and uo' is the minimum allowed value of uo (which results in the maximum slope of the

nonlinearity). Once the value of uo reaches uo, it remains fixed at that value for the remainder of
the iteration. Typical values we have used for c, ru, and uo' are 10, 1, and 0.1 respectively. The

initial use of a smaller slope in effect permits one to make preliminary vague decisions on the states

of the neurons, thus postponing the final decision until a more thorough search of the interior of

the hypercube has been performed. The use of a steeper nonlinearity in the later stages results in

neuron output voltages that are closer to binary values. Thus it is more likely to reach a valid low-

energy (although not generally globally optimal) solution.
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We remark that our method of MFA differs slightly from that of Van den Bout and Miller

[15]. In their studies, uo was changed in larger steps and held constant at each value until

equilibrium was reached.

The introduction of MFA improved the percentage of convergence to valid solutions.

Although the parameter sets still had to be found by trial and error, a good set of parameters in

conjunction with MFA typically gave valid convergence percentages of 80 to 100%. The

successful use of MFA motivated examination of larger, more interesting communication

networks.

4.1.3 A Binary Interpretation of the Analog State: An Instantaneous State

Description

A special feature of our problem is that exactly one path (neuron) must be selected for each

SD pair. This property can be exploited by declaring the neuron with the largest output voltage in

each SD pair to be on, regardless of its actual output voltage.3 Thus, at any time in the NN

evolution, a valid solution may be obtained from the analog system state by picking a binary state

in this manner. We refer to this state as the "instantaneous" state of the system. Tracking the

instantaneous state permits the observation of the set of chosen paths as it evolves over time. (The

actual system evolution proceeds in a continuum within the hypercube, however. This mapping

from an analog state to a binary one at each step of the iteration is simply for the purpose of

assigning a binary interpretation to the state before convergence has been reached.) Ties (i.e.,

equal output voltages) can be broken arbitrarily, e.g., by choosing the lowest numbered neuron in

such a set.

On Tracking System Performance

We have found it advantageous to use the above binary interpretation of the analog state to

define a "hypothetical congestion energy," which is the value of Eb that would correspond to the

selection of the neurons chosen in this manner. Thus it is possible to track the evolution of the

energy of the binary state chosen by the NN from the initial state until convergence is reached.

Recall that although Etowa decreases monotonically throughout system evolution, neither the actual

nor hypothetical values of Eb are necessarily monotonically decreasing.

3 This criterion can be applied only to certain types of problems. For example, it cannot be applied to the Traveling
Salesman Problem, which requires that the set of neurons satisfy the permutation matrix condition, as discussed in
Appendix A.
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An Early Terminaton Criterion

Observation of the evolution of these instantaneously valid solutions revealed that the final

state is usually reached relatively early in the simulation. Typically, many more iterations are then
required for all neurons to reach values within e of their binary values, and thereby allow

termination based on the criterion specified earlier. This observation permits the simulation to be

stopped when the set of chosen neurons does not change for a sufficient number of iterations

(typically several hundred). Our experiments using Lagrange multipliers that evolve along with the

system state (to be discussed in Section 4.5) have confirmed that, although the output voltage of a

selected neuron may be significantly less than 0.5 when this criterion is satisfied, continued

iteration beyond this point will eventually lead to a network in which that voltage approaches 1
very closely. This early termination criterion is used in all except our early simulation examples.

4.2 Alternative Metrics

A metric is needed to measure the quality of solutions, and thus to allow comparison of

different simulations. Given valid solutions, the best solution is the one that provides the lowest
level of congestion. As mentioned earlier, the NN formulation is based on a congestion measure,

Eb, which measures the NN's performance based on the sum of the pairwise path congestion.

Since the connection weights and bias currents are determined by the expression for Eb (and the
constraint terms), the quantity Eb is precisely what the NN is programmed to minimize. As just
discussed, the hypothetical congestion energy can be determined at each step of the iteration by
making a binary decision on which neuron is chosen for each SD path.

Alternative metrics may also be considered. In fact, in Section 4.9 we introduce Eb', an

alternative measure of congestion that permits the direct comparison of results obtained using the
path-neuron model with those obtained using the link-neuron model of Section 5.

Unfortunately, certain types of desirable metrics cannot be implemented directly using

Hopfield NNs. For example, we noted in the previous section that under certain conditions, under

which the routing and scheduling problems are separable, a minimum-length schedule can be

achieved if the maximum nodal degree in the network is minimized. It is not possible to

incorporate such a performance criterion into the Lyapunov energy function framework, which

consists of weighted sums of the product of pairs of neuron output voltages and single neuron

output voltages. A node-based performance measure cannot be directly mapped to the individual

neurons in the network because each neuron corresponds to a complete path. However, we do

evaluate this quantity in some of our simulation results.
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An alternate node-based metric that also penalizes heavily congested nodes is the following:

N'I -
i=I1

where

N = the number of nodes

Q(t) = max (number of paths that use node i, 1).

Thus nodes that do not belong to any chosen paths do not contribute to 4r. Our simulation results

show that performance under the Vi criterion tracks quite well that based on the NN's natural

criterion of Eb. Clearly, the values of these performance measures are not the same, and

minimization of one does not necessarily minimize the other. However, there appears to be a

nearly monotonic relationship between them.

4.3 Exhaustive Search as a Means to Assess System Performance

Since we do not possess an algorithm that guarantees the discovery of solutions with

minimum congestion (under any of the metrics we have discussed here), the only way to determine

whether a solution generated by the NN is, in fact, the minimum-congestion solution (or even a

good solution) is to perform an exhaustive search over the entire binary solution space. Such an

exhaustive search is possible only for relatively small problems. For example, it is possible for the

first 24-node network example we have studied (discussed in Section 4.4), which has

approximately four million different valid solutions, but clearly not practical for the 100-node

network (discussed in Section 4.7), which has approximately 5 x 1035 different solutions.

4.3.1 The Shortest-Path Heuristic

Since it is generally not possible to determine the minimum possible value of congestion, it

is difficult to assess the quality of the NN solutions. Thus we have also considered a "shortest-

path" heuristic, which appears to provide reasonably good solutions to our problem. The quality

of the NN solutions can then be compared to those produced by this scheme. The shortest-path

heuristic is simply an exhaustive search that includes only those paths between each SD pair that

are of shortest length. For example, if a particular SD pair is connected by three paths of length 5,

two paths of length 6, and two paths of length 7, only the paths of length 5 are included in the

search. Although the use of only shortest paths does not guarantee optimum solutions, our studies

have shown that the shortest-path heuristic performs reasonably well in many examples where a
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comparison with the exhaustive search is possible. More importantly, as we show in this report,
our NN solutions are generally somewhat better than the shortest-path solutions, thus

demonstrating the ability of our NN approach to provide good solutions to complex problems.

4.4 Initial Simulation Results for a 24-Node Network

The first network of significant size that we studied in detail was the 24-node network

shown in Figure 4.1. A set of ten SD pairs that required the use of multihop paths was selected
from this network. The SD pairs are enumerated in Table 1. The paths for each SD pair were

generated via Dijkstra's algonthm for finding maximally node-disjoint paths; the paths connecting

SD pair 7 are shown in Figure 4.1, and a complete listing of the 52 paths between the SD pairs is

given in Appendix B. Approximately four million different valid solutions are possible for this

example. An exhaustive search of these solutions found that there are 48 different optimum

solutions, which all have congestion energy Eb = 45. The best solution found by the shortest-path

heuristic has Eb = 47. Thus the shortest-path heuristic produces good (although nonoptimal)

results in this example. However, our latest NN simulations (see Section 4.6) have been able to

produce optimal solutions for this network in almost all runs from different random seeds.
Typically, and especially for larger heavily-congested networks, we show that NN solutions can

be significantly better than the best solution obtained using the shortest-path heuristic. Our NN
simulation studies are discussed in the following subsections.

Simlation 1: Mean Field Annealing and Constant Connection Weights

Our first simulations of the 24-node network included the use of MFA and constant values

of the connection weights. After a period of trial-and-error evaluation of different parameter sets,
it was found that the following parameter values yield the highest percentage of valid convergence:

X, ).2 X,3 b I I c ; u 0 ' U At E
550 500 200 95.5 1.5 0 1 1 0.1 10-4  0.4

The generous value of e was needed in order to obtain valid convergences. With this value of c,

convergence was usually obtained at about the same time that the nonlinearity reached its maximum
steepness, i.e., at 110 iterations. When a more stringent convergence criterion was used (c < 0.3),

the NN failed to converge within the span of 15,000 iterations.

In simulations from 100 different initial states, 100 convergences were obtained, 61 of
which were valid. The invalid solutions resulted from the failure of the NN to activate a path for

one of the SD pairs. Of the valid solutions, the best one had a congestion-energy value of E, = 45;
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this value was shown, in fact, to be optimum by means of an exhaustive search of the solution
space. Four other solutions had Eb = 47, the same congestion measure as the best solution found
with the shortest-path heuristic. The remaining 56 solutions had congestion energy ranging from
48 to 59.

Paths between SD Pair 7([1,10]:

-P 7,1
-IVMP 7 .2

-P7 ,3

- P7,4

Figure 4.1. A 24-node communication network

Table 1. A listing of SD pairs associated with the network of Figure 4.1

SD pair 1: [4,24]
SD pair 2: [7,17]
SD pair 3: [9,16]
SD pair 4: (1,19]
SD pair 5: (5,11]
SD pair 6: [21,6]
SD pair 7: [1,10]
SD pair 8: [3,18]
SD pair 9: [2,12]
SD pair 10: [14,8]

The results of these simulations are graphically presented in Figure 4.2, where they are

compared with the solutions obtained by the shortest-path heuristic. In this figure, the y axis gives
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the probability of obtaining a solution with the congestion-energy value given by the x axis. Note

that the histogram of the results of Simulation 1 includes the results only of the 61 valid solutions.

0.20
N Simulation I (const. b)

0.15- E Shortest-Path Heuristic

0.105

0 .0....

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 6465
Congestion Energy Eb

Figure 4.2. Histograms of the valid MFA results and shortest-path heuristic results

Simulation 2: MFA and Linear Ramping of the Congestion-Energy Coefficient

In observing the evolution in time of the neurons' output voltage, it was noticed that there
was an initial global trend toward zero. This trend was apparently caused by the initial thrust of the

congestion-limiting b term. The initial output voltages of all neurons are approximately equal; thus

all neurons are partially active. This gives the appearance of a large amount of congestion, and

initially lends overly large emphasis to the b term, which drives the NN to a state from which it is

difficult to obtain valid convergence. In order to minimize this undue emphasis, it was found that

ramping the congestion-limiting parameter b linearly from 0 to its final value in approximately 100
iterations increased the percentage of runs that converged to valid solutions without significantly

sacrificing the congestion-limiting performance of the NN. Congestion can be trivially, albeit

illegally, minimized by not activating any paths. Ramping b reduces the tendency toward the trivial

minimization and allows the constraint terms to select a preliminary set of paths that form a valid

solution.

A Monte-Carlo simulation of the 24-node network, from the same set of 100 different

initial states as used in Simulation 1, was run using the parameter values of Simulation 1 in

conjunction with MFA and ramping b linearly in 110 iterations to its final value of 95.5. This run
yielded 100% convergence and 80% valid convergence. Most convergences occurred in about 110
iterations. Again, invalid solutions resulted from the failure of the NN to activate a path for one
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SD pair. Using congestion energy Eb as the metric, one optimum solution was found and a total of

three solutions were found that were as good as or better than the best shortest-path heuristic

solution.

The valid solutions obtained from Simulations 1 and 2 are compared in Figure 4.3. This

figure shows that, on the basis of the congestion energy of valid solutions, better quality results

were actually obtained using a constant value of b. However, an examination of the cumulative

mass functions of the two simulations, shown in Figure 4.4, permits the evaluation of our results

from a different perspective. Although both simulations have about the same likelihood of finding

an optimum solution, ramping b linearly gives a much higher frequency of valid solutions. Also

shown in Figure 4.4 is the cumulative mass function resulting from exhaustive search. Its

inclusion shows that (when valid solutions are found) both simulations produce results much better

than those obtained by randomly selecting a valid path set. A total of 61% of the valid solutions

obtained through the NN simulations are among the best 1.4% of all legal states, and all of the

valid solutions are among the best 28% of all legal states.

0.25
U Simulation 1 (const. b)

0.20 ..... El Simulation 2 (ramp b)

• 0.15 . .-

.10

Congestion Energy Bb

Figure 4.3. Histograms of the valid solutions from Simulations I and 2
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Figure 4.4. Graph of the CMF of Simulations I and 2 and the results of exhaustive search

4.5 Use of the Method of Lagrange Multipliers to Determine Connection Weights

All the constraints in this problem are equality constraints. Therefore, as suggested by

Wacholder et al. [16], the energy expression corresponding to each equality constraint may be used

to update the corresponding connection coefficients dynamically by the method of Lagrange

multipliers (LM), as discussed in Appendix A. With this method, each of the constraint connection
weights Xi becomes a variable coefficient (Lagrange multiplier) that, at each iteration, is increased

by an amount proportional to its corresponding constraint energy evaluated in the previous
iteration. That is, at the (n+l) st iteration, Xj(n+l) = Xj(n) + (At);EI(n), where (At);L is the LM time

constant, which may or may not be different from the global NN time constant At. Note that, since
Ei 0 0, the quantities Xg are monotonically increasing. Typically, the Lagrange multipliers are

assigned initial values of 1.

Since the use of LM requires equality constraints, it is no longer appropriate to include the
additional bias current term in the second equality constraint.' Thus we set a = 1 and include an

additional constant bias current term !, which is positive, in each of the equations of motion.

4 Recall that the parameter x was introduced for this purpose. Since the Lagrange multipliers change (they are

monotonically nondecreasing), a value of a greater than I would result in time-varying bias currents.
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4.S.1 An Alternate Formulation with Multiple Lagrange Multipliers

Examination of the third constraint energy term E3 suggests that it may be advantageous to

define a separate Lagrange multiplier for the constraint applied to each SD pair. Doing so would

increase the LMs associated with only those SD pairs that were having trouble in turning on exactly

one neuron. We call this the method of "multiple Lagrange multipliers" (MLM).

The third constraint formulation

E3 =.Xk Vi- 1) =0

may be rewritten as

E3 = e3i =0,
i=lI

where each of the terms of the form

2)

is an equality constraint specifically for SD pair i. Now Lagrange multipliers are defined to

correspond to each of the e3i's, and they evolve as follows

X3fn+l) = X34n) + (At)\e3i(n),

where (At). is the Lagrange multiplier time constant. Then the total energy is given by

2 N.9 N, Ni)

Etal = bEb + XiE + X3ie3i-I Vii,
i i-i i1ffi

and the iterative equations of motion are
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N.1 Ni) Ni)

ujt+At) = - AtuiAt) - AtbY Y lPinPk'iVk - AtX1 , V
k=l1 1=1 I-

kIi L*j

In preliminary work with the LM formulation, it was found that setting (At). = At did not

allow the LMs to grow rapidly enough; the optimization term tends to drive all neurons toward zero

output voltage, and the slow growth of the LMs was inadequate to compensate. By establishing a

separate and faster time constant for the LMs, the constraint coefficients evolve to meet the

optimization term, and the NN relaxes to a state that simultaneously satisfies the constraints and

minimizes the congestion energy.

Unless otherwise noted, we have used initial LM values of unity. Limited experimentation
with non-unity initial values indicates that the NN is relatively insensitive to the initial value. An

abnormally large or small initial LM will be compensated for in the evolution of the entire set of
LM values.

The use of Lagrange multipliers allows the connection coefficients to evolve with the NN,

and thereby adapt to topological peculiarities and to the remaining constant parameters. It greatly

reduces the number of parameter values that must be found by trial and error, thereby making the
NN less problem specific. Furthermore, our simulation results demonstrate that the quality of the
solutions determined by using this method are typically superior to those obtained where the

coefficients are obtained by trial-and-error approaches.

4.6 Simulation Results of a 24-Node Network Using the Method of Lagrange
Multipliers

Oscilladn

In preliminary experimentation with the use of LM, it was found that the speed of
convergence is greatly reduced. This was anticipated since the constraint coefficients must be
allowed the time to grow, and thereby force valid convergence. Efforts to speed convergence,

such as increasing both the NN time constant and the LM time constant, met with some success.

However, very large time constants are undesirable because they can sometimes produce a

resonance effect in the NN, which results in wild oscillations of neuron output voltages and
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consequently of the energy terms. The energy oscillations drive the corresponding LMs to

excessively large values, which eventually dampen the oscillation but typically result in poor

solution quality. Figure 4.5 shows an example of the oscillation of E2 , the constraint-energy

component that corresponds to the activation of exactly Nsd paths in the network, when the 24-

node network with 10 SD pairs is overdriven.5 Figure 4.6 shows the corresponding growth of X2 .

2.0,

94 1.0,

0.5,

0.0' 1 ,9 " 1- I.I I. .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 4.5. An example of constraint energy oscillations

60

50

40

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 4.6. Evolution of X2 corresponding to the energy of Figure 4.5

The parameter values used in this simulation were: initial Xi = 1.0. b = 5.0,1 = 21.0. At = 0.005, (At)), m 0.01.
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To explain this oscillatory behavior, we recall that the connections associated with the E2

energy term may be either excitatory or inhibitory, depending on the average neuron output voltage
in the NN. If the average voltage is too low (corresponding to a condition in which an insufficient

number of neurons are active), the connection becomes excitatory. If the average voltage is too

high, the connection becomes inhibitory. The change in the input voltage at each iteration is

proportional to the time constant. Therefore, if an overly-large time constant is used, large swings
in the input voltages may occur when constraint 2 is not satisfied, which result in oscillations of the

output voltage.

The best method found to prevent the oscillatory state is to keep the time constants small

and allow more iterations to obtain convergence. Alternatively, larger time constants may be used,

and any subsequent oscillations may be dampened by incrementally decreasing the time constants.
This approach allows rapid convergence (if it is possible for the given system parameters and initial

state) and dynamically determines good time-constant values when oscillations are detected. This
"oscillation damper" has been used in all the remaining NN simulations, although in most of the

simulations its presence was not required.

Simulation 3: LM and the 24-Node Network

The 24-node network (Figure 4.1) with 10 SD pairs (Table 1) was examined using LM and
the following parameters N O) is used to denote the initial Lagrange multiplier value):

l(O) ;L2(0) X3(0) I b I At (A)X.I uo C1.0 11.0 1.0 10.5 1.0 -2.1 .005 0.01 0.1 0.01

With the use of the method of Lagrange multipliers, we have found that, if given sufficient time,

we are virtually guaranteed valid convergence. Furthermore, the instantaneous state usually

reaches its final value relatively early in the simulation, although the convergence criterion based on

the quantity e is usually not satisfied at that time. Thus, use of the early termination criterion,

which was described in Section 4.1.3, is indicated. In this and the following simulations, we

terminate a run after 500 iterations without a change in the instantaneous state, or when all the
neuron output voltages reach values that are within e of binary values. The use of the small e value
listed in the table prevents premature termination of the simulation, which might result in a poor-

quality solution.

Simulations from 100 different initial states (again, the same initial states as in Simulations

1 and 2) resulted in 100% valid convergence. All of the solutions were better than the best one
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found using the shortest-path heuristic (for which Eb = 47); 97% of the solutions were optimum in
terms of congestion energy (Eb = 45), and the remaining 3% were worse by only one unit. In the
97 optimum solutions, 6 different states (sets of selected paths) were found. Two different states
were found that had Eb = 46.

The fact that several different optimum solutions were found further confirms that the use
of different random seeds results in the search of different regions of the state space. We noted in
Section 4.4 that there are actually 48 different optimal solutions out of the approximately 4 million
total valid solutions for this problem.

The evolution of the constraint energies and the Lagrange multipliers from one of the
simulations is shown in Figures 4.7 and 4.8.6 In Figure 4.7, all three constraint energies initially
decrease rapidly, with E1 (which corresponds to the activation of no more than 1 path per SD pair)
reaching a value very close to zero in about 250 iterations. After 250 iterations, the NN state is
relatively stable, and the rate of decrease in the values of E2 and E3 slows to an asymptotic
approach toward zero. Figure 4.8 shows that the high initial constraint energies cause rapid initial
growth of the Lagrange multipliers. The growth of X1 virtually ceases when the corresponding
energy reaches a value close to 0. The asymptotic decay of E2 and E3 continues to cause X2 and X3

to grow slowly throughout the duration of the simulation.

1.5
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0.3

0.0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Figure 4.7. Constraint energy evolution

6 This simulation was forced to run through 10,000 iterations so that the evolution of the constraint energies and the
Lagrange multipliers could be observed. The use of the early termination criterion would have allowed the
termination of the run after 775 iterations.
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Figure 4.8. Lagrange multiplier evolution

Simulation 4: MLM and the 24-Node Network

Simulation 3 was repeated using MLM with the initial value of each of the -3i set to 1.0.

Figure 4.9 presents the results of this sim "ation compared with Simulation 3 and the valid

solutions of Simulation 1. In Figure 4.9(a) the comparison is on the basis of congestion energy.

The figure shows that the use of MLM produces slightly worse results than those obtained in

Simulation 3. Simulation 3 found a lowest congestion-energy state 97 times in the set of

simulations from 100 random seeds, and the remaining states had congestion energy one unit

higher. Simulation 4 with MLM found a lowest energy state (Eb = 45) 96 times, two solutions

were one unit higher than the optimum value, and the remaining two solutions had Eb = 47. The

most important conclusion from these results is that the use of LM or MLM, besides giving 100%

valid convergences, yields significantly higher quality solutions than those obtained with MFA in

conjunction with constant constraint coefficients.

Figure 4.9(b) compares the quality of the same results measured with the V/ metric

discussed in Section 4.2. Under this metric, the use of MLM provides the best results, and again,

the use of either form of Lagrange multipliers gives much better results than those found in

Simulation 1.
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Figure 4.9. H1istograms of the results of Simulations 3 and 4 and the valid solutions of Simulation
I in term of (a) congestion energy, and (b) the V metric (optimum V = 62)

Simulation 5: LM and a Random Network

In an effort to verify that the NN model using the method of Lagrange multipliers is

effective in solving the congestion-midnimization problem for a broad class of topologies, a series

of random networks were generated and analyzed. Five 24-node random networks and one 100-
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node random network were created. The results of NN simulations of the five random networks

of the same general scale as that of Figure 4.1, i.e., 24 nodes and mean nodal degree of about 3.8,

were compared with the best solutions obtained by means of the shortest-path heuristic. With

minor adjustments of the bias currents and the time constants, the NN found better solutions than

the shortest-path heuristic for each of the networks. A detailed discussion of the simulation results

for one of these 24-node random networks follows. The 100-node network is discussed in Section

4.7.

Thirteen SD pairs were arbitrarily selected in one of the randomly generated 24-node

networks. A total of 132 paths were listed when the sets of maximally node disjoint paths

connecting the SD pairs were found. The resultant network has 8.8 x 1012 valid solutions, making

exhaustive search prohibitive. The best solution found by the shortest-path heuristic, both in terms
of congestion energy and N, had Eb = 49 and 41 = 67.

Little parameter optimization was done for this network other than increasing the additional

bias current (I) to 10 (to overcome a trend toward under-activation) and decreasing the time
constants (At = 9 x 104 , (At). = 10-3) to allow a more detailed search of the more-complex energy

landscape. Otherwise, the parameter values were the same as those used in Simulation 3.

Simulations from 100 different initial states found 100 solutions with Eb = 47 and N' = 62.

The best Eb and V values are not known, but in three of these runs interim NN solutions had

congestion values as low as 'W = 59 and Eb = 45. The interim solutions are the different

instantaneous states observed as the NN evolves toward its final solution. We have observed that

the occurrence of interim solutions with better quality measures than the final solution is a relatively

infrequent phenomenon. However, this event is not unexpected since, although Etotal is

monotonically decreasing, Eb is not necessarily monotonic. In this set of 100 simulations it

occurred three times. Each time the high-quality instantaneous state was discovered, it was within

the first 25 iterations when the neural state was still highly unstable.

We observe that the ability of our simulations to track the instantaneous state actually

permits the selection of the best interim state, rather than the final state, of the system as the

solution for that particular simulation run. This property is based on the fact that all instantaneous

system states are valid solutions to the problem, as discussed in Section 4.1.3.

We conclude from these studies that our NN model is quite robust. With little or no

parameter optimization, it can choose paths with low levels of network congestion in a variety of

networks of similar proportions. In the next section, the results of simulations using a much larger
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and more complex network further reinforce our confidence that this paradigm is applicable to a

broad class of topologies.

4.7 Simulation Results of a 100-Node Network Using the Method of Lagrange

Multipliers

Simulation 6: LM and a 100-Node Network

The 100-node network shown in Figure 4.10 was used to evaluate the NN's ability to
handle larger networks. The network, which was randomly generated, has a mean nodal degree of

4.5 and a diameter of 9. A set of 40 SD pairs was arbitrarily selected, and sets of maximally node-

disjoint paths were found for each SD pair. A total of 327 paths were found, yielding a network

with approximately 5 x 1035 different valid solutions (see Table B.2 in Appendix B for a listing of
the SD pairs). Since an exhaustive search of this network is prohibitive, a random search of 2 x

106 samples was performed to give a reference performance level for NN evaluation. The best
solution found by the random search had a congestion energy of Eb = 567. The best solution

found by the shortest-path heuristic had Eb = 313.

Preliminary simulations were run using LM, the parameter values of Simulation 3, and the
early termination criterion. The solutions typically had congestion energy of 310. It was found
that decreasing At to 9 x 10-4 and (A)). to 10-3 allowed a more thorough search, which consistently

resulted in solutions with Eb = 303. However, this slight decrease of the time constants caused a

significant increase in the number of iterations required, and made it more difficult for the neuron

output voltages to reach values sufficiently close to 0 or 1. Increasing the LM time constant back
to its original value (0.01), besides helping drive the system state to a corner of the hypercube, also
improved the solution quality. The lowest congestion energy found was 291.7

7 Similar efforts with the 24-node network of Simulations 3 and 4 were unsuccessful. Apparendy, decreasing the
time constants with that network allows the search to find highly-suboptimal inescapable local minima, which are
jumped over when faster time constants are used.
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The results of the simulations are compared in Figure 4.11. The largest congestion energy value

found using either LM or MLM was 303, which is 10 units less than the best solution found by the
shortest-path heuristic. The best solution found by any method had Eb = 291 and was found using

the LM NN. The shaded paths in Figure 4.10 represent 3 of the 40 paths selected in this solution.

Although the LM and the MLM NNs yield results in the same range, Figure 4.11 shows that the

use of a single LM for the third constraint yields slightly better results than the MLM formulation.
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Figure 4.11. Results of Simulation 6 with and without MLM

Simulation 7: LM, MFA and the 100-Node Network

The two primary techniques that we have used to improve NN performance are mean field

annealing (MFA) and Lagrange multipliers (LM). The benefits realized from these techniques
suggest that it might be advantageous to use them simultaneously. However, there is apparently
no synergistic relationship here. Efforts to couple Lagrange multipliers with simulated annealing

yielded at best solutions slightly worse than those obtained using either method independently.

The extended search of the interior of the hypercube allowed by MFA causes the neuron

output voltages to linger away from the output voltage limits (0 and 1). This delays the approach
of the constraint energies toward zero and, in turn, causes the Lagrange multipliers to become
excessively large. Slowing the Lagrange multiplier time constant alleviates this effect somewhat,
but it also allows the congestion-limiting term to dominate. Such undue initial emphasis on the
congestion energy drives the system toward the trivial state of minimum congestion in which no

paths are activated, as was noted in the discussion of Simulation 1. When the LMs finally force
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convergence to a valid solution, it is highly suboptimal because of the initial domination of the

effects of the congestion-energy term. This was verified through simulations with different values

of b, which are presented later in thi- section (Figure 4.13).

The following demonstrates the futility of coupling LM and MFA. Recall that MFA

involves steepening the nonlinearity parameter according to Uo = 10/(c+t/u) while uo > uo'. A

simulation of the 100-node network using both LM and MFA was run repeatedly from the same

initial state, varying c so that uo(0) (the initial value of uo) took values ranging from 0.2 to 10.0.

The duration of the MFA (the number of iterations required for uo to go from uo(O) to uoI') was

fixed at 500 iterations by changing u as needed. The other parameter values were:

)LI(O) )L2(0) X3(0) b a I At (AO)X (At)X U0"
(t<500) (t500)

1.0 1.0 1.0 0.85 1.0 5.0 10-4  0.001 0.01 0.1 0.01

The smaller LM time constant during MFA was used to prevent the constraints from

overwhelming the optimization term. Note that if uo(O) = uo', there is no MFA and the NN uses

pure LM. Figure 4.12 shows a plot of the resultant congestion versus uo(O). Clearly the best

results are obtained as the effects of MFA diminish.
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Figure 4.12. Attempted coupling of MFA and LM

Additional efforts to discover lower-energy states through parameter optimization were

attempted by varying the congestion-limiting parameter b. A seemingly reasonable way to

decrease congestion is to increase b. However, experimentation with this hypothesis revealed that
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it is not necessarily true; although increasing the value of b does place increased emphasis on

optimization, it does so at the expense of constraint satisfaction. The system is initially driven
toward illega!-' !tes with minimum congestion energy. The illegal states cause large constraint

energies and rapid Lagrange multiplier growth. By the time the LM are large enough to force

convergence to a legal state, the optimization term has driven the NN far from a state that is
simultaneously legal and optimal. Descent from this state to a comer of the hypercube yields a

highly-suboptimal solution. Thus, the magnitude of b must be such that the system state can

evolve toward a congestion-energy minimum, while at the same time satisfying the constraints

closely.

Conversely, extremely small b allows convergence to a valid solution based almost solely

on constraint satisfaction. Once again, highly-suboptimal solutions are generally found. Thus,

there is an optimal range for b. This was demonstrated by means of simulations using LM, MFA,
and b values ranging from 0.5 to 3. The MFA parameters were c = 10.0, 't = 5.55, and uo' -

0.1. All other parameters were the same as in the previous simulation. The results are shown in
Figure 4.13. For this particular network and these NN parameters, the optimal range of b is [0.79,

0.95].

335

330

325-

320

315 OO/

310

305

0.5 1.0 1.5 2.0 2.5 3.0
b

Figure 4.13. Congestion energy vs. b

In conclusion, all efforts to use Lagrange multipliers and MFA simultaneously seem to

require the temporary neutralization or dilution of the effects of one or both methods; even when

this is done, results of only fair quality are generally obtained. We conclude that the use of

Lagrange multipliers alone produces better results than the combined use of these two methods.
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4.8 Non-Unit Traffic and Alternate Routing

Thus far, it has been assumed that a single route is selected to carry the entire amount of
traffic between each SD pair, and that the traffic requirements are uniform, i.e., the same between
each SD pair. Thus, in our problem specification, it has been sufficient to require the delivery of a

single unit of traffic between each SD pair. It is known, however, that alternate routing, i.e.,
splitting of the traffic over two or more routes, can be advantageous. To permit alternate routing,

we may divide the basic unit of traffic into m subunits, which can then be divided between two or

more paths.

In an effort to demonstrate the benefits of alternate routing, the traffic requirements between

each SD pair in both the 24-node network (Figure 4.1) and the 100-node network (Figure 4.10)
were increased. To accommodate m units of traffic on the ill SD pair, m replicates of each of the

neurons ij, j = 1, ..., Np(i), which represent paths between SD pair i, were created and treated as
distinct paths between new, independent clones of the same SD pair. With the additional neurons

installed, the problem has been transformed back to the unit-raffic routing problem, for which we
have already developed a simulation model. The same constraints and optimization connections

used for the unit-traffic example are used here as well.

4.8.1 Triplicate 24-Node Network

Three units of traffic were placed on each of the 10 SD pairs in the 24-node network of

Figure 4.1. The resultant NN, which consists of 156 neurons, was simulated from 10 different
initial states using LM and the following parameter values:

XIl(O) X2(0) X,3(0) b a I At (At);L UO E

1.0 1 ..0 1.0 0.5 1_0 5.0 0.0009 .1 .1 .

The congestion-energy values of the solutions ranged from Eb = 547 to 552. Nine of the
NN solutions to the 3-unit traffic problem resulted in traffic splitting at 3 SD pairs. The tenth

solution split the traffic at 4 SD pairs. At each instance of splitting, two units were sent on one

path and one unit sent on another. Table 2 shows how the traffic was split in representative

solutions.

To verify the advantage of alternate routing, these solutious were compared to the one

obtained by sending all three units of traffic along a best-solution path set obtained in Simulation 3.
For example, if three units of traffic are sent on each path in the path set (0, 6, 11, 12, 20, 23, 36,
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42, 45, 50) (see Table B.1 in Appendix B for a listings of the paths that correspond to the

numbers in this set), one of the optimum solutions to the unit-traffic problem, the resultant

congestion energy is 554.8 Thus all ten simulations of the triplicate network performed better than
the simple triplication of the best solution for a unit-traffic example.

Table 2. Traffic splitting in the 24-node network with 3 units of traffic on each SD pair

Solution SD pair 3 SD pair 7 SD pair 8 SD pair 10
with: P3.3 4 P7.2 P7 4 P8.1  P 8.4  P1O.1 PO.2

Eb= 547 1 2 1 2 1 2 0 3

Eb = 550 1 2 1 2 1 2 1 2

Eb = 551 2 1 1 2 2 1 0 3

E,=551 1 2 0 3 1 2 1 2

Eb = 552 2 1 1 2 0 3 1 2

4.8.2 Triplicate 100-Node Network

A similar evaluation was performed for the 100-node network (Figure 4.10). Three units

of traffic were placed on each of the 40 SD pairs, resulting in a NN model consisting of 981

neurons. Preliminary simulations were performed with time constants that were too large (At = 9 x
10-4), and gave solutions with all the neurons output voltages equal to 0. This would not be

noteworthy, except in that we were using the early termination criterion, which broke the output

voltage ties by selecting the lowest numbered path between each SD pair. As a result of the

method used in enumerating the paths between each SD pair, the lowest numbered path between

each SD pair is the first path between that SD pair found by Dijkstra's algorithm, and, as such, is a

shortest path. Hence, selecting the lowest numbered path between each SD pair effectively routes

all three units of traffic on a given SD pair along one of the shortest paths between that SD pair.

The congestion energy of this set of paths is Eb = 4002.

Again, it would be desirable to determine the best shortest-path solution, which could serve

as a benchmark against which to compare our NN solutions. Unfortunately, the number of

shortest-path solutions in this example makes an exhaustive search of them prohibitive; there are

15552 shortest path solutions for the unit-traffic problem, which results in 155523 = 3.76 x 1012

shortest-path solutions to the triple-traffic problem. However, a useful benchmark is the

performance achieved by sending all three units of traffic on the set of paths determined by the best

' If path 10 is used instead of path 11 (another optimum solution to the unit traffic problem), the resultant

congestion energy resulting from 3 units of traffic is 558.
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shortest-path solution to the unit-traffic problem. The congestion energy of this solution is Eb -

3543.

An acceptable time constant was found, and simulations were run from 20 different initial

states using LM and the following parameter values:

M) -2(0) X3(0) b I At (At)x UO o
1.0 1-1.0 1.0 0.5 1.0 5.0 0.0001 0.01 0.1 10.01

The triple-traffic solutions had congestion-energy values Eb that ranged from 3349 to 3417.

In the best triple-traffic solution, the NN split the traffic at 7 SD pairs. The splitting that occurred

at SD pair 38 used 3 different paths; the remaining 6 SD pairs sent 2 units of traffic on one path

and the third unit on another path.

To determine whether any benefit was actually obtained by the triplication of neurons, these

results were compared with those obtained using the unit-traffic formulation. First, we considered

the simple triplication of the best unit-traffic solution. Doing so resulted in a value of Eb = 3381.
Eight of the 20 solutions obtained by the triplicate network had lower values of Eb, once again

demonstrating the benefits of alternate routing.

The results of the triple-traffic NN model were also compared to those obtained by

combining three of the unit-traffic solutions. A search of all possible combinations of three

solutions obtained from the NN with unit traffic (only solutions with the lowest value of Eb were

considered, and duplicates were permitted) resulted in a best solution that had a congestion energy

of Eb = 3368. Although this was better than the best solution obtained by simply triplicating the

best solution for the unit-traffic model, it was still not as good as that obtained by the NN that was

progammed for three units of traffic.

Although the improvement obtained by triplicating the neurons in the network was not of

dramatic proportions, it is significant in that we are unaware of other methods to find better sets of

paths. Perhaps even more noteworthy is the ability of the NN model to handle such a large

network and to provide good solutions for a reasonably large percentage of the initial states.

The results of this and the previous section show that the Hopfield network can be used

successfully to select good sets of paths and to split traffic in a beneficial manner when uniform

traffic (i.e., the same amount of traffic between each SD pair) must be supported by the network.

However, in an actual communication network, the case of nonuniform traffic (i.e., non-equal
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traffic requirements for the SD pairs) is more likely than these uniform scenarios. This issue is

addressed next.

4.8.3 Nonuniform Traffic in the 100-Node Network

In order to assess the ability of the NN model to route nonuniform traffic so that congestion

is minimized, an arbitrary number of units of traffic were placed on each of the 40 SD pairs in the

100-node network (Figure 4.10). The NN model was expanded to handle greater than unit traffic

as described in Section 4.8.

Two different nonuniform network loadings were created. Both had traffic levels of 1 to 4

units on each SD pair. In the first example, a total of 100 units of traffic was specified, resulting in

a total of 823 neurons. In the second example, the total traffic was 105 units, resulting in 872
neurons (see Table B.2). Both of the loadings were briefly analyzed using the NN model with LM

and the parameter values listed in Section 4.8.2. The solutions did contain traffic splitting, and

gave lower congestion energy than would have been obtained by placing all traffic on the best unit-

traffic solution paths.

The case of nonuniform traffic is considerably more interesting than that of uniform traffic.
First, this case is more likely to arise in practice. More importantly, it does not appear that good

results are often obtained by simply using the single paths obtained for unit-traffic requirements,

although this approach worked fairly well for the uniform-traffic example. Since the demands
placed on the network by nonuniform traffic are quite different from those of uniform traffic, it

appears that they cannot be satisfied well unless these traffic requirements are programmed into the
NN formulation.

4.9 A Modified Form of the Congestion-Energy Function

The development of a NN model that defines a neuron for each link of every path, which is

discussed in Section 5, has motivated our examination of a minor modification to the method used

for the calculation of Eb. It was observed that it is not possible to make a direct comparison

between the results obtained under the path-neuron and link-neuron models when the original

formulation of Eb is used because the measures used to define congestion energy are not totally

consistent with each other. Thus a modified performance measure, which is denoted as Eb', has

been developed. When Eb' is used as the performance measure, the resultant congestion energy

for any particular solution under the path-neuron formulation is directly proportional to that under

the link-neuron formulation, thus permitting a direct comparison of the solutions obtained using

these two approaches.
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Recall that the path-neuron congestion energy formulation used to this point is given by

N, N., NAi) NVk)

Eb = Y , I Pgjr-kPuIVi.,Vk1
ji- =l - 1=1

kgi

where

Pij = thejth path between SD pair i.
I Pijr¢"Pkj I = the number of nodes shared by paths Pij and Pi.

The modified calculation uses a slightly more involved method of counting shared nodes
that weights each occurrence of a shared node according to the "node type." A node that is shared
by two paths is one of three types:

1) A type-1 shared node is an intermediate node (i.e., neither a source nor a destination) in
both paths, and receives a weight of 1.

2) A node that is an end-node (a source or destination) for one path and an intermediate
node in the other path is labeled a type-2 node, and receives a weight of 0.5.

3) The type-3 node is an end-node for both paths, and is given a weight of 0.25.

Thus Eb' has the same form as Eb, except that IPijr.%PuI is now defined as follows:

jPjjrP, , = the number of type-i nodes shared by paths Pij and Pu
+ 0.5 (the number of type-2 nodes shared by paths Pij and Pu)
+ 0.25 (the number of type-3 nodes shared by paths Pij and Puj).

This weighting scheme is somewhat arbitrary, but it appears to be reasonable because it assigns a
heavier weight for nodes that require more slots; in particular, it reflects the fact that intermediate
nodes must support both input and output flows, whereas the source and destination flows support

only one or the other. Thus Eb' may, in fact, be a more appropriate performance criterion than Eb.
In addition, as noted earlier, the use of Eb' permits the direct comparison of the path-neuron and

link-neuron models, as is demonstrated in Section 5.

An exhaustive search of the 24-node network (Figure 4.1) based on the modified
congestion energy metric (Eb') found that the best solutions have Eb' = 33.25. The best solutions
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based on the original metric are characterized by a congestion energy of Eb = 45.9 The best

shortest-path heuristic solution, based on the Eb' critc.ion, resulted in Eb' = 36.75. Based on the
original metric, the best shortest-path heuristic solution had Eb = 47. Note that different states are

optimal under the two metrics. A retrospective evaluation of the solutions obtained in Simulation 3
using the modified congestion metric found that 55 of the 100 solutions have Eb' = 33.75, 43 have
Eb'= 34.25, and 2 have Eb ° = 35.25. Of course, the model used in Simula:ion 3 was

programmed to minimize Eb rather than Eb', so the performance in terms of the modified metric is
not expected to be good as that obtained under the programmed metric (97% optimum solutions
with Eb = 45, and 3% with Eb = 46). Note that with this particular 24-node network (i.e., for the
particular topology and set of SD pairs) and the modified congestion metric, all the solutions have
Eb' values that are odd quarters, i.e., Eb' = (2i-1)/4, where i is an integer greater than or equal to
67.

The modified congestion-energy formulation was installed in the path-neuron LM NN
model, and simulations of the 24-node network were run. Using the parameter values of
Simulation 3, simulations from the same set of 100 different initial states used in Simulation 3 gave
solutions of which 86% had Eb' = 33.75. The remaining solutions had energy values of 34.25 to
35.25. Parameter values were then varied in an effort to obtain improved results. Our best results
to date were obtained using the following parameter values:

XI1(0)1 2(0) X3(0) b a II At (At), IUoI e
1.0 11.0 1.0 - 0.5 1.0 5.0 [_(0001 0.01 _0.1 00

In a series of 100 runs, all of the solutions were one of two different states that both had Eb' -

33.75, which is greater than the optimum value by 0.5.

The 24-Node Random Network Revisited

Simulations of the 24-node random network of Simulation 5 were performed using the Eb'

LM NN model (i.e., connection weights based on the Eb' formulation) and the same set of

parameters and 100 initial states used in Simulation 5. In 96 of these runs, the congestion energy
was Eb'- 24, which is 2 units better than the best shortest-path heuristic solution under the new
metric (Eb'= 26). One NN solution had Eb' = 26, and the remaining three solutions had Eb' < 28.
Perhaps of more interest is the fact that 96 of the solutions'0 had Eb = 45 and N4 = 59. Recall that

9 Congestion energy is lower under the new metric because type-2 and type-3 nodes are weighted less than type- Inodes.
1o The solutions generated using the Eb' model were reevaluated using the Eb cost function.
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in Simulation 5 all the solutions had Eb = 47 and V = 62, but interim solutions were found with Eb
= 45 and 41 = 59. Thus, 96% of the Eb and V values obtained under the Eb' formulation are
actually lower than any of those found using the original Eb congestion-energy formulation despite
the fact that - original formulation was designed specifically to minimize Eb.

Thus, the Eb model performs slightly better for this randomly generated network than the
Eb model, based on the Eb congestion-energy formulation. However, in the 24-node network of
Figure 4.1, the original model was able to find a global minimum of Eb in a large fraction of the
simulations. The new model has yet to find a global minimum of Eb.

The inability to find a global minimum using the modified congestion energy formulation
motivated exploration of the use of simulated annealing. The results of the application of Gaussian

simulated annealing to our problem are discussed next.

4.10 The Gaussian Machine

Akiyama et al. 117] have developed a form of simulated annealing (see Appendix A) that
uses additive Gaussian noise (AGN) with diminishing variance in conjunction with a mean-field-
annealing (MFA) type of nonlinearity steepening.

The use of GSA has no direct effect on the NN energy formulation. Its presence is
reflected in the equations of motion only by the additive noise term as follows:

i' = Uq + TI,

where uy is the input voltage in the absence of noise. This may also be written as

U,(A u-t) - A( - N,(k) + 71,
k=1 1=1

where uij' is the input voltage in the presence of AGN, and the noise term TJ has a zero-mean
Gaussian distribution with variance y2. The variance is decreased according to a "cooling"

schedule given by

o_ kTO
1+1tT "

where k = "lgr, To is a parameter that controls the initial value (temperature) of the variance, and
TT is the annealing time constant which controls the rate of cooling.
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Since good results were obtained by using the method of Lagrange multipliers, it was

hoped that a modified form of GSA could be developed that included the benefits of the use of LM.

As discussed in Section 4.7 (Simulation 7), the simultaneous use of LM and MFA is generally

detrimental to NN performance. Therefore, it was decided to evaluate the use of LM in place of
MFA in the GSA paradigm. The use of Lagrange multipliers has an effect similar to that of MFA

in that the small initial values of the Lagrange constraint coefficients tend to slow the initial

movement through the solution space, as does the initially flatter MFA sigmoid function.

4.10.1 Simulation Results for a 24-Node Network

The 24-node network of Figure 4.1 was used in evaluating the use of GSA in conjunction

with the use of LM. A constant value of the nonlinearity parameter uo was used in these runs.

After a period of trial-and-error adjustment of the parameters, simulations from 100 different initial

states were run with the two different parameter sets that had produced the best performance in

preliminary runs. The two parameter sets differed only in the initial noise temperature To, as

shown in the following table.

X1(0) X2(0) X3(0) b Ot I To tT At (At), Uo E
1.0 1.0 .7 1.0 5.0 0.025, 200 0.005 0.01 0.1 0.01

10.00625 I

The results of these simulations, in terms of congestion energy Eb, are presented in Figure

4.14. For the first time in our studies using the new performance metric Eb, an optimum solution

(Eb = 33.25) was found. Figure 4.14 shows that, although the use of the larger initial noise

temperature (To = 0.025) produced one solution with the optimum congestion energy, the use of

the smaller initial noise temperature (To = 0.00625) gave near-optimum solutions more frequently.

A total of 84% of the solutions obtained using To = 0.00625 were better than the best solution

found by the shortest-path heuristic (Eb° = 36.75), whereas only 40% of the solutions obtained

using the larger noise temperature were better than this reference value. Note that as To approaches

zero, the NN approaches the pure LM model.

Since the simulations using GSA with LM did not produce uniformly good results,

simulations using GSA with MFA and constant constraint coefficients were run. The results of

simulations from 100 different initial states, which are shown in Figure 4.14, were obtained using

the following parameter values:
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1 1 X2 1X3 b aI I TO I 'T I c I I o'1 A P. I
* 550 1500 200 95.5 1.0 40 1 0.021 100 9.091 1001 0.11 5xOs-5 0.01

0.45

0.40 - GSA w/LM (To =0.00625)
0.35 - 3 GSA w/LM (To = 0.025)

.0.30 U GSA w/MFA

0.25 --------

2 0.20

0.15 ,
0.10
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33.25 33.75 34.25 34.75 35.25 35.75 36.25 36.75 37.25 37.75 38.25 38.75 >39
Congestion Energy Ej

Figure 4.14. Results of Gaussian simulated annealing with (1) LM and no MFA, and (2) MFA
and noLM

In Figure 4.14, the results of the use of GSA with MFA (and constant constraint

coefficients) are compared with the solutions obtained through the use of GSA with LM (no

MFA). The figure clearly indicates that better results were obtained in the simulations that use

GSA with LM. Only 25% of the solutions obtained using GSA with MFA were of better quality

than the best shortest-path heuristic solution.

Several modifications were evaluated in an attempt to improve performance. One such

effort was the limiting of neuron input voltages. The idea was to establish hard limits on the

neuron input voltages to keep them near the steep region of the nonlinearity, and thus to prevent

extreme input voltage values that were relatively unaffected by the application of noise.

Simulations using neuron input-voltage limiting and LM found that the limiting allowed the GSA to

be effective for a larger number of iterations, as shown by continuing state changes. However, no

appreciable improvement in the solution quality was obtained.

A second modification that was tried was to vary the Lagrange multiplier time constant in

time. The schedule used was essentially the inverse of the cooling schedule, i.e., (At);. =

(A:) (l+t/ ). By applying the LM time constant schedule, the Lagrange multiplier growth was

slowest when the noise magnitude was the largest. As the magnitude of the AGN decreased, the
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rate of growth of the LM increased, gradually forcing convergence to valid solutions. Again, no
appreciable improvement in the solution quality was obtained.

In conclusion, the application of Gaussian simulated annealing to our problem has provided
mixed results. With its use, an optimal solution was indeed found under the Eb" formulation,

whereas none were found by any of our other NN models. However, the vast majority of the

solutions found using GSA were much worse than those obtained using the method of Lagrange
multipliers. The results of these studies suggest that GSA may be a suitable approach for our
problem, if it is possible to run a very large number of simulation runs. Although most solutions

will generally not be as good as those obtained using the method of LM (without GSA), it is
possible to use the best solution that is found. However, generally robust performance is obtained
using the LM method alone.

4.11 Conclusions on the Path-Neuron Model

We have demonstrated the power of our path-neuron Hopfield NN model to choose sets of
paths that provide low levels of congestion in relatively large, heavily-congested networks. In
many of our examples, optimal or nearly-optimal solutions were found. The presentation in this
section has been somewhat evolutionary, in that it has discussed a variety of methods we have
used to improve system performance, some of which have been extremely successful, while others
have not. In this concluding subsection, we summarize our results qualitatively, and we attempt to
put our studies of the path-neuron NN model into perspective.

The most critical issue in the design and simulation of a Hopfield NN model is the choice
of the coefficients used in the connection weights. In our early studies, they were determined by
using a tedious trial-and-error approach. It was found that the use of mean-field annealing (a
gradual increasing of the slope of the neurons' input-output nonlinearity) provided greatly

improved performance over the performance achieved using a nonlinearity of constant slope.

However, a solution with a global minimum energy was found only once in a series of 100 runs
from different random initial states, and only four other runs performed as well as the best solution
found by the shortest-path heuristic. Furthermore, the need to determine a new set of coefficients
for each network configuration, and our inability to find a method to automate the procedure for

determining these coefficients, limit the general applicability of this method.

Instead of attempting to determine a good set of constant coefficients, we have used the
method of Lagrange multipliers, which permits the coefficients to vary dynamically along with the
evolution of the system state. Use of this method has provided optimal or near-optimal solutions
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in many of our examples. For example, in our studies of a 24-node network with 10 SD pairs and

a total of 52 paths, a global minimum value of the congestion energy was found in 97 out of 100

runs from different random initial states.

The robustness of our NN paradigm was demonstrated by applying it to several randomly-

generated networks. For example, in a 24-node network with 13 SD pairs and 132 paths,

solutions better than those obtained by using the shortest-path heuristic were found in all 100 runs.

A 100-node network, with 40 SD pairs and 327 paths, was then considered. In a series of 50

runs, convergence to a solution better than that produced by the shortest-path heuristic was again

obtained in every case. The global-optimum solution for either of these problems is not known,

however, because the total number of states makes an exhaustive search prohibitive.

Although some adjustment of system parameters was necessary when studying different

networks under the LM method, such adjustments were typically limited to time constants and bias

currents, for which acceptable values were determined relatively quickly. We noted above that the

choice of the coefficients in the connection weights is the most critical feii are of Hopfield NN

design. With the use of the LM method, these values are determined dynamically. In the early

stages of a simulation run, the congestion-limiting component dominates the connection weights,

guiding the search toward a region of low congestion. As the run progresses, the impact of the

constraints guides the solution toward a valid state with binary neuron values. In particular, the

LMs associated with unsatisfied constraints increase at a rate proportional to the current value of

the corresponding constraint energy. When, ultimately, a particular constraint is satisfied (in

which case the corresponding constraint-energy reaches a value of zero), the corresponding LM

remains constant. The use of dynamically-varying LMs provides better performance than would

be possible through the use of an optimal set of constant connection-weight coefficients because of

this ability to emphasize congestion control in the early stages and constraint satisfaction later on.

The ability of our NN model to handle larger examples was demonstrated by increasing the

traffic requirement from one unit to three units of traffic between every SD pair. Studies of the the

100-node network with this triple-traffic requirement represent the largest NN we have simulated

to date, i.e., 981 neurons. In a series of 20 runs, eight produced solutions with lower values of
Eb than that obtained by simply triplicating the best solution obtained for the unit-traffic case.

Thus the benefits of alternate routing were shown, while demonstrating the ability of our NN
model to provide good solutions for large, heavily-congested networks. Nonuniform traffic

requirements (of one to four units of traffic per SD pair), which resulted in a NN model of

comparable size, were also considered. This is perhaps a more useful application for the NN
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model than uniform traffic, since the paths chosen by unit-traffic solutions do not necessarily

perform well under highly nonuniform traffic requirements.

The LM technique has clearly been the most effective technique we have found to improve

system performance. Our attempts to combine this approach with mean-field annealing have

shown that these two methods do not work well together. The apparent reason for this lack of

synergism is that the LM technique works well only when a relatively steep input-output

nonlinearity function is used. This is because use of a small slope results in a large region of input

voltage values that do not produce (nearly) binary output values; consequently it is more difficult to

satisfy the system constraints.

We also attempted the use of Gaussian simulated annealing, which produced extremely

variable results. Although an optimum solution was found once in a series of 100 runs (the only

time it was found under the E' performance criterion), most results were not as good as those

obtained using the LM technique alone.

The fact that global minima are not always found, a common characteristic of Hopfield

NNs, is typical of heuristic algorithms for the solution of difficult combinatorial-optimization

problems; in many such problems, optimal solutions cannot be guaranteed without exhaustive

search. However, the inability to guarantee a global optimum is mitigated by the fact that repeated

runs ae possible from different initial conditions; thus the best solution that is found can be chosen

as the solution to the problem. Although the simulation runs begin in random initial states, this

method is not simply one of random search; system evolution is guided by the equations of

motion, which are derived from the energy function, which in turn is based on the objective

function and the system constraints. The fact that most of our solutions are so close to the

optimum value in such a large fraction of the cases studied demonstrates the robustness of our

models, and suggests that they may perform well in considerably larger examples as well.

In conclusion, we have demonstrated the effectiveness of our Hopfield NN model for the

minimization of congestion in large, heavily-congested networks. In particular, the use of the

method of Lagrange multipliers, under which the coefficients in the connection weights evolve
dynamically along with the system state, provides highly-robust operation. Ultimately, our goal is

the development of NN models for the joint routing-scheduling problem. As a step toward this

goal, in Section 5, we discuss an alternate NN model in which a neuron is defined for each link

along every path in the network.
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5.0 A LINK-NEURON NN FORMULATION FOR THE MINIMIZATION OF

CONGESTION

Ultimately, it would be desirable to develop a NN model for the complete joint routing-

scheduling problem. Such a NN would not only choose paths between each SD pair, but would

also determine the particular time interval in which each link along a selected path is to be activated

so that desmctive interference does not occur. Thus system modeling must reflect the behavior of

each individual link, a level of detail that the path-neuron formulation discussed in Sections 3 and 4

does not provide. In a step toward this goal, we have developed an alternate formulation of the

congestion-minimization problem, in which neurons are defined for each link along every path,

rather than one for each complete path. We also note that the link-neuron formulation may be

viewed as a first effort toward the solution of the more general routing problem in which paths

between each SD pair are not specified in advance, in which case the NN must piece together

complete paths from individual links.

The link-neuron formulation of this problem is similar to the path-neuron formulation in

that the same basic constraints hold and the optimization goal is again to minimize congestion.

However, system modeling and simulation is somewhat more difficult because the interactions

among individual links, rather than those among complete paths, must be taken into account. The

most obvious complication is the much greater number of neurons and interconnections that are

needed to model the system. A further complication is the need to ensure that complete paths are

formed.

In this section, we reformulate the congestion-minimization problem by developing a link-

neuron Hopfield NN model. The development follows the same basic procedure as that for the

path-neuron model. An energy function is derived that incorporates both the minimization of

congestion and the problem constraints. The method of Lagrange multipliers is again used to

determine the connection weights dynamically. Performance results demonstrate the soundness of

our approach. Studies of the same 24-node network considered in Section 4 show that complete

paths are formed reliably, and that good, although not optimal, solutions are usually found.

5.1 The Basic Link-Neuron Model

In the link-neuron model, a neuron is defined for each link of every path. Figure 5.1 (a)
shows the same example six-node network with two paths between each of two SD pairs used in

Section 3.2 to describe the path-neuron model. The corresponding link-neuron NN model is

shown in Figure 5.1(b). A triple index is used to specify the neurons, e.g., neuron ijk represents
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the kth link in the jth path between SD pair i. The input and output voltages of neuron ijk are

denoted uijk and Vijk respectively. Several neurons may correspond to the same physical link in

the NN model. For example, neurons 221 and 122 in Figure 5.1(b) both represent the physical

link connecting nodes 4 and 5. The connection weights shown in the figure are discussed in

Section 5.4.
SS1, 212 D2

- -Link between SDpair 1
121 2 12 - - - Link between SD pair 2

/1,3 I y Indicates the third link in the

second path between SD pair 2

(a)

= Neuron representing link 123
Connection Weight Legend:

Duplex Asymmetric Connections

L(in) L(i)
X2 connections which are present between

all pairs of neurons are not shown.
Duplex Symmetric Connections

-2b
(b)

Figure 5.1. An example network, (a) shows a six-node communication network, and (b) is the
corresponding link-neuron model

Following the same basic procedure used in the development of the path-neuron model in

Section 3, the generic form of the Lyapunov energy function may be rewritten as

N-, Nj N,(s) N,,() L~iSj) 1 ,,a) N., N' 0 Lis

=70t - - 1 1 TjmoVjkVmo~ Y,7,Y IikVijk.()
2 n-I u j=1 X-1 k-I o-1 i-I j_-i k=1

Here, Np(i) is the number of paths between SD pair i, L(iJ) is the length in hops of the jth path

between SD pair i, Tijknm is the connection weight between neurons ijk and mno, and 'ijk is the

bias current applied to neuron ijk.
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As in the path-neuron model, the link neurons are interconnected in a manner that enforces

the problem constraints and that tends to reduce congestion. The connections are derived from an

energy formulation in a manner similar to that of Section 3. However, the particular characteristics

of the link neurons are taken into account. The total energy can again be expressed as the weighted

sum of the congestion energy, the energies associated with the constraints, and energy resulting

from additional bias currents as follows:

4 N. N,(i) L(ij)
Etotal = bEb + X jiEi- IY Y F Vik. (*)

i=1 i= jl k=l

Again, b is a constant coefficient that weights the relative priority given to optimization, as
compared to constraint satisfaction. The X, are the connection coefficients for the constraint terms.

They may be constants or, since all the constraints are equality constraints, they may be variables

that are dynamically updated by the method of Lagrange multipliers. The additional bias (I) term,

as in the path-neuron formulation, is used to provide a neutralizing shift in the activation level.

After a discussion of congestion energy and the system constraints, we present the

resulting expressions for the connection weights and bias currents. Then we present our

simulation results.

Although some preliminary studies of the link-neuron model used mean-field annealing and

constant coefficients to weight the neuron connections, it was found that much better results were

again obtained using the method of Lagrange multipliers. Therefore, the development presented

here focuses on the LM implementation of the link-neuron model. As before, we first discuss the

congestion energy, and then the constraints that must be satisfied.

5.2 Congestion Energy

Recall that in our studies of the path-neuron model, we considered two congestion energy

functions, Eb and Eb. Under the Eb criterion, the strength of the component of the inhibitory

connections resulting from the congestion-energy term is proportional to the number of common

links in the two paths. Under the Eb' criterion, a distinction is made between intermediate and

terminal nodes along the paths to reflect their different requirements for transmission slots.

In the link-neuron NN model, interaction takes place between individual links on a pairwise

basis, rather than between entire paths (as was the case in the path-neuron model); thus congestion

enters the system dynamics in terms of the pairwise interaction of individual links.
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The expression for the congestion energy in the link-neuron formulation is essentially the

same as that in the path-neuron formulation, i.e.,

N-, N., NA) NOOm) L(i) L(mn)

Eb" III I I I AArnIijknm ~kVnno
2= m=1 j-i X=1kioi

m*i

where

Aijk = the kth link in the pht path between SD pair i.

IA #knA.w I = the number of nodes shared by links Aij, and A,

Note that AijCkAf, I can take on only the values 0, 1 and 2. This quantity is 2 if the links Aijk

and Apm share the same physical link (in which case they share two nodes), and it is 1 if the links

share a single common node. These two situations are illustrated in Figure 5.2. When the two

links have no common nodes, IAijkrjA,,. I = 0. Based on this model, it is straightforward to

determine the contributions to the connection weights that are associated with the congestion-

energy term (which again represent inhibitory connections), where the coefficient b is again used to

weight the congestion-energy term. If two neurons from different SD pairs share the same

physical link, an inhibitory connection of strength 2b is established between them because they

have two nodes in common. If two neurons from different SD pairs represent links that have one

node in common, an inhibitory connection of strength b is established between them. Note that

since the system constraints, which will be discussed in Section 5.3, discourage the selection of

links in different paths between a common SD pair, the congestion-limiting connections need only

be created between links in paths between different SD pairs.

\ Ajik(! Ak+

A-%
lf M i, IAiik n A,4= 2, andlIAi&+i cAmw4= IA,t+l r-iA,I =1.

Figure 5.2. Illustration of adjacent links and links that share the same physical link

The basic difference between the expression for Ebt and that given earlier for Eb under the

path-neuron formulation is that, since interactions between neurons now correspond to the
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interactions of individual links, the summation must be taken over all possible such interactions.

The corresponding contribution to the equation of motion term is found by taking the partial
derivative of Eb with respect to Vik:.

I Na N#(m) LUmn)-:E.= -x1 XI :AijkAnorrno
iVijk m=l nfIWl o=I

m*i

S.2.1 Path-Neuron Congestion Metric vs. Link-Neuron Congestion Metric

Recall that the path-neuron congestion formulation was modified to make it comparable to

the link-neuron formulation, as discussed in Section 4.9. Now that the congestion measure has
been defined for the link-neuron model, we can demonstrate the relationship between the two. The
three types of shared nodes that were defined in the path-neuron modification are shown in Figure

5.3.

A23 1

A22 A 212  A 1

Type-i Node Type-2 Node Type-3 Node

Figure 5.3. Examples of the three types of shared nodes

A type- I node is an intermediate node in both paths and receives a weight of lb in the path-

neuron model. In the link-neuron model, each of the four links in the two paths sharing this type-I

node is inhibited by two adjacent links. For example, link A113 in Figure 5.3 is inhibited by links

A222 and A223. Thus, the sum of the congestion energy resulting from these adjacencies on this

type- I node is Eg = 8b/2 = 4b. A path-neuron type-2 shared node is an end-node for one path and

an intermediate node in the other, and is given a weight of b/2. In the link-neuron model one of the
three links incident on the type-2 node is the first or last link in a path and is inhibited by two

adjacencies, e.g., link A131 in Figure 5.3 is inhibited by links A212 and A213 . The remaining two

links are each inhibited by only one adjacency (A2 12 and A2 13 are each inhibited by AI31), giving

the node a link-neuron congestion energy contribution of Ee = 4b/2 = 2b. A type-3 shared node is
an end-node in both paths and is given a weight of b/4 in the path-neuron model. A similar

arrangement in the link-neuron model finds the two links incident on the end-node each inhibited

by one adjacent link, yielding a congestion energy of Eb = 2b /2 = b.

61



Thus the contribution made by each of the three types of shared nodes to the total
congestion energy is exactly four times greater under the link-neuron model than under the path-
neuron model. Since the total congestion energy under either model is the sum of the contribution
associated with each node in the network, the ratio of the total congestion energy under the two

models is also four. Therefore, we have

Eb = 4Eb'.

This proportionality relationship permits a straightforward comparison between the solutions

obtained by the path-neuron and link-neuron NN models; e.g., performance measures of Eb" = 36

and Eb-= 144 represent solutions of identical quality.

5.3 Incorporation of Constraints into the Energy Function

We have established four constraints for the link-neuron NN model. The first three
correspond directly to the constraints used in the path-neuron model. The fourth has been added to
ensure the activation of complete paths. Again, all are equality constraints, and the corresponding
energies are zero when the constraints are satisfied. We discuss next each of these constraints and

its corresponding contribution to the equations of motion.

1. Activate (select) links from no more than one path per SD pair

N~d NQ) NQj) L(ij) L(im) l'ijkVimn o
" i I j- = I . =l I1 L(im)

,,*j

N,(s) LUim)" EI I Vimn

aVijk t a -IL

M'aj

This constraint supplies an inhibitory connection between all pairs of neurons that represent
links that are in different paths that correspond to the same SD pair. The normalization with

respect to path length has been introduced to remove the tendency of this type of constraint term to
favor long paths. The need for this normalization can be visualized best by examining the

corresponding term in the equation of motion. This term, when weighted by the connection

coefficients, corresponds to summing across a row of the weight matrix T. Without the path-
length normalization, longer paths (corresponding to states with the same average neuron output

voltage) would apply greater inhibition than shorter paths (because more neurons are supplying the
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inhibition). This effect is most evident in the first few iterations, since initially all neurons

associated with a SD pair are approximately equally activated. For example, consider SD pair i for

which two paths are defined of lengths L(il) = 2, L(i2) = 4. The initial output voltage of all 6
neurons in this SD pair will be approximately 1/2.' If there were no normalization of El, at the
first iteration both neurons in path il would receive a total inhibition of 4 XI/ 2 from the neurons in

path 2 while the neurons of path i2 would receive an inhibition of only 2XIt2 from path il. Thus

the longer path 12 would be inherently favored. With the normalization, at the first iteration all 6
neurons receive equal total inhibition of XI/2. This allows the NN to select paths on the basis of

the constraints and the congestion metric, independently of path length.

We remark that the normalization associated with this constraint, as well as constraints 2

and 3, results in asymmetric connection weights. Although symmetric connection weights may be
needed to guarantee convergence (see [11]), the lack of symmetry in our problem formulation has

not prevented convergence, as will be discussed later. However, it is possible that the asymmetry

is a factor in our inability to find globally optimal solutions.

2. Activate a total of exactly Nsd paths in the network:

VIk-Nsd'

:-E 2  -l N N( ) L(M )

Lvjk j) m=1 O, =, L4mn)

This constraint specifies that exactly Nsd paths shall be completely activated. In this term,

the normalization is required to maintain the equality constraint. Any path that is completely

activated will contribute the value one to the triple sum. The triple sum may also be viewed as the

sum of the mean path output voltages, where the mean path output voltage is defined to be the

mean voltage of all neurons that belong to that path. Again, any path that is completely activated

will have a mean path output voltage of one. Note that, as in the case of path neurons, it is

possible for this constraint to be satisfied when a larger number of paths have their mean neuron
output voltages somewhat less than 1. In the present case of link neurons, we may also have

situations in which portions of paths are fully activated; e.g., for a given SD pair, half of the nodes

in each of two different paths may have output voltages of I and the remainder may have output

In general, if there we J paths between a given SD pair, the initial output voltage of each neuron of all J paths will

be given an initial output voltage of approximately l/J, independent of the path length.
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voltages of 0. Thus a separate constraint (i.e., constraint 4, to be discussed shortly) is needed to

ensure that complete paths are formed.

3. Activate exactly one path per SD pair.

E3 = Nj_ j Vij -1) 0

-- -1E3 No L( VimVijk LQim)1.

~V~k Lj m=1 n=1

This constraint is essentially a reformulation of the second. As in the case of the path-

neuron formulation, it is helpful although it is redundant. It specifies that exactly one path shall be
completely activated between each SD pair. (The above discussion of partially-activated paths

applies here as well.) As with the path-neuron model, E3 may be broken up to create multiple

Lagrange multipliers. The squared expression in parentheses gives the energy that drives a
Lagrange multiplier for each SD pair.

4. Activate complete paths:

N3 NP L(ij) L(i ijkVi 0

i=1 j--I! k=1 m=1 Li) L(i) 1)
m*k

L(ij) Vjm-: -vE= __vi__l

aVijk M=1 LJij). (L(ij 1)
~M~k

This constraint is unique to the link-neuron model. It specifies that if any neurons in a path

are active, all neurons in that path shall be active. The constraint is enforced by creating excitatory

connections between all neurons that form a path. Again, normalization is required to express this

requirement in terms of an equality constraint. Since the sum takes the pairwise product of the

output voltages of all neurons on a path, there are ( ) = L(ij).(L(ij)-l)12 products added for

each path ij. Thus, normalization by L(iJ).(L(if)-l)12 allows each active path to contribute unity to

the sum.

In contrast to all other constraint-energy formulations examined, E4 may assume negative

values if excess activation occurs. This means that the corresponding Lagrange multiplier is no
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longer necessarily monotonically increasing. It appears that in extreme cases of excessive

activation, the LM A4 may become negative, causing the E4 connections to become inhibitory so

that the level of activation is reduced. However, in all simulations run, the value of E4 was always

greater than or equal to zero. Later we consider a modified version of this constraint, under which

the square of the expression for E4 is used, thus eliminating the need for these concerns.

5.4 Connection Weights and the Equations of Motion

The total energy is obtained by taking a weighted sum of the congestion-energy and

constraint-energy terms, which were given in Sections 5.2 and 5.3, as specified by Eq. (**). The
connection weights and bias currents are then determined by transforming the resulting expression

into the form of Eq. (*). Doing so yields

n-XI) si._Sj - X2 + .38im + '4 -8jm~jn-bjAjt A.",l"8im),

L(mn) L(ij) L(if). (L(i - 1)

where 8& is the Kronecker delta. The external input bias currents are

lijk = )2Nsd + X3 + I.

The equation of motion for neuron ijk is obtained from the energy equation by taking the

negative partial derivative with respect to the output voltage Vijk. After discretization in the time

domain, the equation assumes the following computable form:

N., N,(m) L(mn)

uij(t+At) = uij:(t)- Atuji(t) - Atb Y I X Aij#kFAmno IVmrgo
m=I R=1 o=1
m~ti

N,() L(,im) (Nd N,(m) L(,n)

- &OIVin X Vm " 0 Nd
1 2LUim) ij5 1 0  L~mn)M=l R=1 fil o= 10-1

m*j

JNO' U(im) L(ij)
L(LA)1 A/

L(ifi)) m f L(ij) .(L(ij)- 1)
m*k

As mentioned earlier, the results presented here focus on simulations where the Lagrange
multipliers (the Xj's) are updated dynamically along with the system state. Typically starting with

an initial value of 1, the Lagrange multipliers are modified at each iteration by an amount
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proportional to their corresponding constraint energy. At the (n+l)st iteration, the new value of ).j

is given by

ki(n+l) = )jIn) + (At) Ei(n)

where (At);. is the LM time constant, which may or may not be different from the global NN time

constant At.

5.5 Simulation Procedure

Simulation of the link-neuron model was performed by means of a computer program

written in C++ and run on Sun workstations. A listing of the paths in the network to be analyzed,

similar to that shown in Table B. 1 in Appendix B, gives the information needed for the program to

create the NN model. The initial input voltage to each neuron ijk is set so that the output voltage is
equal to the inverse of the number of paths between SD pair i. A small random perturbation 8

(independently chosen for each neuron) is again added to the input to avoid the effects of a totally

symmetric initial state. The perturbation is uniformly distributed on [-0.1uo, 0.1uo]. An iteration

of the equations of motion is then performed until one of three termination criteria is met. The

iteration is terminated if (1) the NN reaches stable convergence, (2) the NN state (the set of
selected paths) remains unchanged for a specified number of iterations, or (3) a time-out is

reached.

Termination Criteria

Stable convergence is declared when all the neuron output voltages are within some
specified E value of the output voltage limits. In all of the link-neuron model simulations presented
here, a value of E = 0.01 was used. With this value, stable convergence occurs when all neuron

output voltages are greater than 0.99 or less than 0.01.

Before explaining the termination criteria further, let us define valid convergence

specifically for the link-neuron model. A valid convergence is a stable convergence that satisfies

the problem constraints. As in the path-neuron formulation, all neuron output voltages must be
within e of the output voltage limits. In addition, complete paths must be formed, i.e., the set of

neurons that are within e of 1 must be the set that corresponds to all the links in exactly Nsd paths,

one of which connects each SD pair. Note that stable convergence does not necessarily imply valid

convergence. A stable convergence may occur when all neuron output voltages are zero, clearly

violating the constraints.
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Unlike the path-neuron model, the link-neuron model does not allow an instantaneous

solution to be obtained by simply interpreting the neuron with the largest output voltage of all

neurons associated with a SD pair as the chosen neuron.2 In the link-neuron model, sets of

neurons are used to represent individual paths. For a path to be activated, all of the neurons in the

set representing that path must be active. In order to apply the second termination criterion, we use
the following method to determine the instantaneous NN state (the set of prematurely chosen paths
at any instant in time). We declare the path ij to be the only active path between SD pair i if

L (ij) V Na (LaL(bj) V iikN=) k 1) Vin)

That is, the path with the largest average neuron output voltage is declared the active path between

its associated SD pair. With this instantaneous interpretation of the NN state, the second
termination criterion may be restated as: Terminate the iteration if the instantaneous state remains
unchanged for a specified number (typically several hundred) of iterations.

The use of the second termination criterion (termed the early termination criterion in the
path-neuron model development) implies acceptance of the instantaneous state as a valid solution,
even though some link-neuron output voltages in a selected path may be very close to 0. It has
been found that continued iteration usually leads to valid convergence to the declared state. Hence,

it is reasonable to accept the instantaneous state as the solution if it remains unchanged for a
sufficiently large number of iterations.

The termination criterion that actually causes termination of a simulation is largely a
function of the three parameters that characterize each of the three termination criteria: e, Nc, and

Nmax, where Nc is the number of iterations specified for the second criterion, and Nn=x is the
maximum number of iterations allowed, i.e., the time-out value of the third termination criterion.
In preliminary exploratory simulations, both Nc and Nm= were typically set equal to 15000, and
termination usually occurred as a result of satisfaction of the first criterion. Once a suitable set of
parameters had been determined, Monte-Carlo type simulations from multiple initial states were run
with Nc - 500 iterations, and terminations usually occurred as a result of satisfaction of the second
criterion. Termination based on the third criterion typically occurred only when the value of Nmax
was small relative to the other termination parameters.

2 The instantaneous state of the system was defined in Section 4.1.3.
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Network Description

All of the simulation results presented here are based on the 24-node network shown in

Figure 4.1, which we studied earlier using the path-neuron NN model. Table B.1 in Appendix B

gives a list of the 10 SD pairs and 52 paths in the network. An exhaustive search of the

approximately 4 million valid solutions has shown that the lowest possible value of Eb is 133; this

is, of course, exactly four times the value of Eb'= 33.25, evaluated under the path-neuron

formulation. To provide a measure of the quality of our NN solutions, we note that the best

solution found by application of the shortest-path heuristic to this network yielded El = 147.

5.6 Simulation Results: The Need for Additional Bias Currents

It was originally hypothesized that the inclusion of the excitatory connections provided by

the E4 formulation would eliminate the need for any additional bias currents. In efforts to verify

this hypothesis, a set of three simulations from 100 different initial states3 were run with three

different levels of additional bias 1: 1 = 0, 1 = 3.0, and! = 5.0. The other parameter values were as
follows:

-1(0) X2(o) ),3(0) )4 (0) b a & (At) Iu ,
1.0 11.0 -1.90 1.0 10.5 1 0 0.001 10.0-1[ 0.1-I 0.011

The results shown in Figure 5.4 indicate that the original hypothesis was erroneous. The

best solutions found in simulations without additional bias had Eb= 151. With additional bias of

3.0 or 5.0, solutions were found with Eb= 135.' Analysis of the evolution of the excitatory fourth
Lagrange multiplier indicates that elimination of the additional bias places unnecessary stress on

by requiring it to provide sufficient stimulation to activate the appropriate number of neurons.
With the additional bias term included, the fourth Lagrange multiplier is free to evolve as needed to
enforce its corresponding constraint. Figure 5.5 shows the evolution of A4 for the cases of I = 0
and 5. For approximately the first 400 iterations, A4 is essentially the same for these two cases.
At that time, the additional bias has allowed the fourth constraint to be very nearly satisfied,
resulting in small E4 values and very little continued growth of X4. Without the additional bias,

however, A4 must continue to grow in order to provide sufficient stimulation to drive the selected

neurons toward 1.0, and thereby to satisfy the fourth constraint.

3 The same set of 100 different initial random seeds was used for each of the three values of I.
4 As a result of the topology of this network and the method of calculating congestion energy, all E[ values will be
odd integers.
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Figure 5.4. Results of simulations with and without additional bias
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Figure 5.5. Comparison of the growth of the fourth Lagrange multiplier with and without
additional bias (I)

As a result of these simulations, the additional bias current term was used in all subsequent

simulations of the link-neuron model. Although much improvement has been obtained in the

quality of the solutions by the use of the additional bias, the results remain inferior to those

obtained using the path-neuron model. With the path-neuron model, we were able to find

solutions with Eb'= 33.75 (which corresponds to Ef- 135) virtually 100% of the time. A
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reasonable explanation for the inability to find optimal solutions is that the link-neuron model

contains a much larger number of neurons and interconnections, and thus a much larger solution

space must be searched. Another possible factor may be the use of asymmetric connection weights

that result from the first three constraints, as was discussed in Section 5.3.

In an effort to improve the NN performance the use of multiple Lagrange multipliers

(MLM) for the excitatory connections was examined next.

5.7 Simulation Results: The use of MLM for the "Complete-Path" Excitatory

Connections

As was done in the path-neuron formulation, we again considered the use of multiple

Lagrange multipliers to implement the fourth constraint, which encourages the activation of

complete paths. This constraint may be easily reformulated in the MLM format by writing

E4 = e4i = 0,
i= 1

where

N,(I) L~ij) LMij)v

e~i -1 1 1 ijkVijm 0j-1 = 1 L(0' (140j- 1)
onk

Then, as in the path-neuron model, Lagrange multipliers are defined for each SD pair as follows:

i(n+ 1) = X4,n) + (At)Xe4i(n).

The fourth-constraint MLM may be used in place of, or in conjunction with, the E4 term from

which they were derived. In the simulations discussed here, we replaced the E4 term with this

formulation. The total energy is then given by

3 N. Nd N(,I) L(ij)

Eo bEb + +X e4i - l Y V
ift1 i I i. I - I k=lI

and the equation of motion is modified by replacing A4 with %4i.

The results of simulations using MLM, the parameter values of Section 5.6, additional bias

I = 5.0, and the set of 100 different initial states used in Section 5.6, are shown in Figure 5.6.
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Also shown for comparison purposes are the best results from section 5.6. The results indicate

that the use of MLM in this setting is actually detrimental to the NN performance. The NN with

the original E4 formulation found 39 out of 100 solutions with congestion energy as low as or

lower than the best solution found by the shortest-path heuristic (E = 147). Using MLM, the NN

found only 36 out of 100 solutions with E < 147.
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Figure 5.6. Results of simulations using MLM for the excitatory connections

5.8 Simulation Results: A Modified Formulation of the Complete-Path Constraint

"Me next effort involved a modification of the fourth constraint. As mentioned in the

discussion of this constraint, the original implementation of the excitatory connections admits E4

values less than zero. However, in all of the simulations run to date, the value of E4 has always

remained greater than or equal to 0. As discussed in 5.3, the occurrence of negative values of E4 is

not expected to present additional problems, but the effect of such an event is uncertain. An

alternate energy formulation of the fourth constraint, which precludes negative values, is obtained

by squaring E4, i.e.,

24 j. I~d y . ,140 -(40 = o.
Met

'Me corresponding equation of motion term is given by
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--E _ a N L ) Lm) Vm p V j k

(I ,i = 1 p L(n) mn) n)- 1) = I1 L(ij). (L(if) - 1)
p*o k

Although the squaring operation produces fourth-order terms in the constraint term and third-order

terms in the equations of motion, it did not introduce any new problems into our simulations.

Despite the form of the expression, fourth-order neuron interconnections are n=t needed since the

original energy term in effect becomes a coefficient (with the same value for all neurons at any step

of the iteration) in the new expression. When this constraint is satisfied, E4' = 0 and the effect of

the corresponding equation of motion term vanishes because the first factor goes to zero. When

the constraint is far from satisfied, the first factor of the equation of motion term enhances the
effect of the E4' term, resulting in faster movement toward a valid solution.
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Figure 5.7. A histogram of the results of simulations using E4 and E4

In Figure 5.7, the results of simulations using the squared fourth-constraint formulation are

compared with the results obtained using the original formulation. The parameter values and the

set of 100 different initial states of the previous simulations were again used. With the

modifications, 10 solutions were found for which Eb= 135. The original NN found only 4

solutions with this measure of congestion. Another way to compare the performance of these two

models is to compare the number of solutions that do better than the best solution found using the

shortest-path heuristic. Both models performed approximately equally using this criterion.

Comparing the solutions of the E4 ' and E4 models to the best solution found with the shortest-path
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heuristic, 38 of the E4' solutions and 39 of the E4 solutions had Ef < 147. Thus, the E4' model

does not produce significantly better results, nor does it degrade the NN performance. However,

since a significantly larger number of best NN solutions were obtained, and since monotonically-

increasing Lagrange multipliers are guaranteed, the E4' formulation was used in the remaining

simulations.

5.9 Methods to Overcome a Detrimental Preference for Short Paths

By means of the modifications discussed in Sections 5.6 and 5.8, the performance of the

link-neuron paradigm was improved. However, the quality of the solutions remained far below

that obtained with the path-neuron model The link-neuron model was re-evaluated in an attempt to

find the reasons for this performance. It was discovered that the energy expressions

corresponding to the fourth constraint (E4 and E4) contain a subtle bias in favor of shorter paths,

which made it difficult to find minimum-energy paths.

Recall that, in order to maintain E4 as an equality constraint, the sum of the pairwise

products of the output voltages of all the neurons that form a path was normalized by the number

of pairs, (4J'). The normalization is carried through the partial derivative to the equation of

motion term, which is rewritten here for convenience.

--aE4 = Vii,.
a VL(ij) Vij - 1)"

m~k

Thus, at each iteration, the excitation applied to neuron ijk as a result of the connections associated

with the fourth constraint is the sum of the output voltages of all the other neurons that form path

ij, divided by [L(ij) 2 - L(ij)). It is this quadratic denominator expression that favors shorter

paths. For example, consider two paths, il and i2, between SD pair i with lengths L(il) = 3 and

L(i2) = 5. If the output voltage of all the neurons that form these two paths is v, the total E4

excitation applied to each neuron in path il is 2v/6 = v/3. The total E4 excitation applied to each

neuron in path i2 is 4v/20 = v/5. Clearly, since v/3 > v/5, the shorter path il receives more

excitation than the longer path. The same phenomenon is evident in the E4' formulation.

Although the best solutions produced by the shortest-path heuristic are usually of

reasonably good quality, as discussed in Section 4, a built-in preference for short paths in the NN

model is not desirable because it limits the search space. Consequently, better solutions that use

longer paths may be overlooked. Two different methods were devised to eliminate, or at least

73



reduce, the innate short-path preference of the 4 formulation. The first method artificially forces

all paths between a SD pair to have the same length by adding "dummy neurons" to the shorter

paths. The second method adds a "compensatory bias" to longer paths to minimize the short-path

preference. Both methods are fully discussed, and simulation results are presented, in the

following subsections.

5.9.1 The Use of Dummy Neurons to Eliminate Short-Path Preference

We first consider a method that equalizes the lengths of all paths between a SD pair by

adding dummy neurons as needed. Let M() denote the length of the longest path between SD pair

i. For each path ij, with length L(ij) < M(O), we create MQ) -L(ij) dummy neurons whose output

voltage is given by

L(ij)

V(liju+M) 1,i mi = 1,..., M(i) - L(ij).J=lL(ij) '

That is, the output voltage of dummy neurons ijn (n = L(ij)+l, ... , M(i)) is equal to the mean

output voltage of real neurons ijk, k = 1, .. , L(ij). These dummy neurons are used only in the E4'

expressions and their corresponding equations of motion terms;5 they are, in effect, invisible to all

other terms of both the energy equation and the equations of motion. The fourth-constraint

expression, with dummy neurons, becomes

EINd NQj) M(j) M(i) V i. 2

4, 1 Nd,- I I 1 -0,2 t-= I =l )Ki). (M~i)- 1)
m*k

where the sums are extended to include the dummy neurons. The sums are similarly extended in

the corresponding equation of motion term:

-Nad - Nd N,(mt) M(m) M(m) \MOM I M(I) jA= E sd- I I I I I~. vj
aV--jk =  M=l ,,ffl owl1 A4lMm)i (l 04M) - 1) h-IM(I) - MO - 1)"

PO h*k

The results of simulations using dummy neurons are presented next.

The dummy neuron approach is equally applicable to the original E4 formulation. However, as mentioned
previously, we have decided to focus on the use of the E4 ' model.
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Dummy-Neuron Simuladon Results

The use of the dummy-neuron formulation results in a marked improvement, as shown in

Figure 5.8. As usual, simulations were run from the 100 different initial states used in Section

5.8. Seventeen solutions were found that had congestion energy of Eb= 135. The quality of the

solutions found by the dummy-neuron model was better than that of the best solution found by the

shortest-path heuristic in 49 of the runs; 12 solutions were found that had congestion-energy

values equal to that of the best shortest-path heuristic solution (147).
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Figure 5.8. Results of simulations using dummy neurons ;ompared with best previous results

The parameter values used in the dummy-neuron simulations were:

E I(0) )L2(0) X0) WO40) b I CE At (At) uI £s E
10 1.0 1.0 1.0 10.5 1.0 1.0 0.001 0.005 10.1 0.01

S.9.2 The Use of Compensatory Bias to Minimize Short-Path Preference

An alternative method to reduce the short-path preference in the NN is to give longer paths

an additional "compensatory" bias. Since the short-path preference is most evident when the
neuron output voltages are equal, the amount of compensatory bias has been set to a value that

exactly neutralizes the short-path preference at iteration zero (assuming no initial perturbation). To
formalize this concept, we introduce the following notation: Let m(i) denote the length of the

shortest path between SD pair i. Let n(ij) denote the number of hops by which path ij is longer
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than the shortest path between SD pair i, i.e., n(ij) = L(ij) - m(i). Denote the amount of

compensatory bias added to each neuron on path y by F, where

= n(ij)
Np(i).m(i).L(ij)

The compensatory bias is included in the equations of motion as an additive term and is combined

with the additive bias term of the energy equation.

Simulation Results with Compensatory Bias

Using the compensatory bias described above in conjunction with the E4 ' formulation,

simulations were run from the same set of 100 different initial states used previously. The
parameter values were the same as used in the dummy-neuron simulations with the exception that I

- 5.0. The results are compared with those from the dummy-neuron simulations and simulations

with no effort to compensate for the short-path preference in Figure 5.9. The use of compensatory

bias yields improved performance, but not by as much as the use of the dummy-neuron model.

Twelve of the compensatory-bias solutions had congestion energy values of E6= 135 and 41

solutions had E, < 147, the congestion energy of the best solution obtained using the shortest-path

heuristic.
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Figure 5.9. A histogram of results using compensatory bias
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5.10 Use of Simulated Annealing with the Link-Neuron Model

In an attempt to improve performance further, Gaussian simulated annealing (GSA) was
also attempted. The implementation details are exactly the same as presented with the path-neuron
model in Section 4.10; a decaying additive Gaussian noise term is included in the equations of
motion. As in efforts with the path-neuron model, the time-dependent variation in the slope of the
nonlinearity was not implemented. Instead, a constant slope was used in conjunction with
dynamically-varying Lagrange multipliers.

In limited experimentation with different cooling schedules, solutions were found with

congestion energy values ranging from Eb= 155 to 217. These poor results, combined with the
highly mixed results of GSA when applied to the path-neuron model, prompted us not to pursue
this approach any further.

5.11 A Reformulation of the Complete-Path Constraint

In the formulation of the complete-path constraint discussed thus far, excitatory
connections are placed between every pair of neurons that represent two links in the same path. It
appears that this formulation may excessively restrict the NN's search of the state space by
coupling the rtates of all neurons corresponding to any given path too early in the search, thereby
limiting the region of the search space that can actually be explored. This observation has led to the
hypothesis that a more thorough search may be obtained by establishing excitatory fourth-
constraint connections only between neurons that represent adjacent links in a given path, rather
than between all the neurons that represent links in that path. Regardless of whether or not this

hypothesis proves to be valid, this approach would significantly reduce the number of connections
required in longer paths, thereby reducing the complexity of the calculation in software simulations

as wel as the connectivity that must be incorporated into hardware implementations.

The adjacent-link formulation of the fourth constraint is given by:

( Vjij..+Vijk+0) 2

2 2 1 40 - )
where we define

{ik- 0, k =l , Vijk+1 0 , k=LODj'

Vik-i, otheAwise Vk+ l , otherwise
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As the equation for E4" indicates, the use of excitatory connections between only those

neurons that correspond to adjacent links on a path results in a normalization constant of 2(L(ij) -
1). The corresponding equation of motion term is given by

-- E"= (Nsd-_1 Nd N,(m) Llmi) Vmn ino-1 + VrM'O+i) yajk-I +V _____

2 k 1 1 L(mn)- I 2(L()- 1)C)V ijk ,,=1 M- =

Examination of this expression indicates that the problem of short-path preference remains

in this formulation. In fact, the short-path preference is more strongly manifested here than in the

previous model. To see this, consider two paths, il and i2, between SD pair i with lengths L(il)

and L(i2), L(il) > L(i2), and assume that all neurons in both paths have identical output voltage

levels. Under the E4' model, the excitation applied to a neuron in the shorter path i2 will be

L(il)/L(i2) times the excitation applied to a neuron in path il. Under the E4 " model, the excitation

applied to neurons in the shorter path will be [L(il)-l]/[L(i2)-l] times the excitation applied to

neurons in the longer path. Since L(il) > L(i2), it follows that [L(il)-l]/[L(i2)-l] > L(il)/L(i2);

therefore, the short-path preference is stronger in the E4 " model.

As discussed in Section 5.9.1, the use of dummy neurons (DN) in the E4' model has been

effective in mitigating the effects of the innate short-path preference. Hence, their use in

conjunction with the E4" model has been also studied. The implementation details are essentially

the same as described in Section 5.9.1. One of the reasons for developing the E4" model was to

allow a broader search by initially focusing the decision process on successive link interaction

rather than on entire path interaction. The use of DN in conjunction with the E4" model teuds to

defeat the purpose of the E4" model by shifting the emphasis back to path interaction through the

averaging effects that the use of DN entails. Therefore, simulations were performed both wit. and

without DN to determine the impact of DN on the E4 ' model. In Figure 5.10, the results of these

simulations are compared with the results of Section 5.9.1 (the E4 ' model with DN). Each of the

simulations was run from the same set of 100 different initial states using the following parameter

values:

X,() 2(0) ).3((0) WO4() b I At (,&t),,
Durumy Neuos 10 1 1.6. .13.5 -T.0 0.001 00

No Durmy, Neurons, 1.0 1. 1.0 1 .0 0.5 170 0.00 O0.0

The results show that the use of excitatory connections between only adjacent links yields

slightly degraded NN performance relative to the fully-connected E4' model. However, some

compensation for this performance sacrifice is obtained by the reduction in the number of
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excitatory connections; it has thus been shown that the reasonably good results can be achieved,

even though less information is incorporated into the model. In the simulations using the E4"

model without DN, 10 solutions were found with 4 = 135, while the model with DN found only

6 solutions with this value. However, the DN model found 55 solutions with Eb < 147, the best

shortest-path heuristic solution congestion-energy value. Without DN, only 44% of the solutions

had congestion energy less than or equal to 147. No significant short-path preference was evident

in either model; both models activated approximately the same number of non-shortest paths as the

E4' model with dummy neurons.
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Figure 5.10. Results of simulations of the E4 " model both with and without dummy neurons and
the E4 ' model with dummy neurons

5.12 A Distributed Implementation of the Link-Neuron Model

The performance of the adjacent-link fourth-constraint formulation described in Section

5.11 suggests that further reductions in the NN complexity may be possible without excessive

performance degradation. In this section, we describe a "distributed" NN model and present

results of its simulation.

Typically, in a distributed network protocol there is no central controller with access to

global network information. Dccisions are made at each node based solely on local information,

i.e., information obtained solely from one- or two-hop neighbors. A NN model with neural

interconnections between only those neurons that represent adjacent links bases its decisions solely

on information from no further than two hops away, and therefore a distributed implementation of
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its function is perhaps possible. However, the practicality of such a distributed implementation is

questionable. In simulations of the algorithm, the lack of a central controller with global

knowledge rules out the use of the early termination criterion, resulting in the need for many mome

iterations of the equations of motion. Furthermore, the large number of iterations, each of which

requires information to be passed between neighboring nodes, generates such a large quantity of

communication overhead that a purely-distributed implementation of the NN algorithm in a

communication network is virtually precluded. Another disadvantage of a distributed model arises
because low-energy solutions cannot be guaranteed, a property that has required the simulation of a

large number of runs for each set of system parameters. In a distributed setting, it is not possible

to determine the quality of a solution based on only local state information.

Nonetheless, we have addressed the question of distributed operation further for the

purpose of decreasing the network complexity through a reduction in the number of neuron

interconnections, while maintaining reasonably good results. In Section 5.12.1, the constraints are

restated in a distributed form. In Section 5.12.2, the results of simulations of the distributed model

are presented. Throughout both sections, deviations from a "purely" distributed model are noted.

5.12.1 Distributed-Model Constraints

In this subsection, we review each of the four centralized link-neuron model constraints

and discuss their reformulation as part of a distributed model. A fifth constraint is also introduced

to aid in the formation of complete paths.

1. Activate (select) links from no more than one path per SD pair.

N.d Np(1) Np( L(ij) L(im) VijkVimn = 0
E =1 1 rn1 k1 n=1 L(im)i=1 j=1fil on=i k= I =1

M*j
Np(s/) Um

a~it ,,ffl filL(im)"

This constraint requires inhibitory connections between all links in different paths between

a SD pair. This constraint may be partially enforced in a distributed manner by establishing

inhibitory connections between neurons corresponding to all the "first" links of the paths between

the same SD pair; similarly, inhibitory connections can be established between neurons

corresponding to all the "last" links of the paths between the same SD pair. These connections
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discourage the activation of more than one source link and one destination link at each SD pair. A

problem with this approach is that the active source link may be on a different path than the active

destination link. Also, the behavior of intermediate links is not reflected at all in this constraint.

However, the fourth constraint (activate complete paths) should ensure that the activated source

and destination link as well as the intermediate links are all elements of the same path.

The normalization that was required in the centralized formulation to eliminate

discrimination on the basis of path length is not required in the distributed formulation because

each neuron is connected only to adjacent neurons rather than to all neurons along the path. Since

each neuron is allowed only local information, multiple Lagrange multipliers (MLM) are required.

Therefore, a Lagrange multiplier is defined for each source and for each destination. These

considerations lead to the following reformulation of the first constraint:

N.,
El -E (ed5 +e5) = o.

&-.1

where

N,() Np() Np() N,()

ef I = iIi 0, and f1i I I VyLj~L)Vi.,L(ijm) =0,
2j M=1 2 M=

and the superscripts f and I refer to first and last, respectively. The corresponding equation of

motion terms are

fNP(i) f /I(i)

-Pief ~Vil, k=1 -aVji(j., 1) k=L(ij)
= 1 . and - m=1

C)us *j PiY~jk m*j
0, otherwise 0, otherwise

2. Activate a total of exacdy Nsd paths in the network.

E2=t,(s)>Nd 
Vi0-

--E2  - N W N,(m) -

a i j) M-mI M- 1 0-m 1)
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This constraint requires connections between all links. We did not see a way to reformulate

this constraint that would result in a reduction in network complexity or would allow it to fit hito a
nearly-distributed model. Therefore this constraint is not used in the distributed model.

3. Activate exactly one path per SD pair.

N (i) L(ij)
E3-ly (XIZ __l) =0

2 i-- ) j--- Ic'(O 40)

--E 3 ( N,_(. ') V m ° -
SI (im)

aVijk ,ij R= 1 4im)

This constraint may be distributedly implemented in a manner similar to that used for the

first constraint, i.e., use MLM to define 2Nsd Lagrange multipliers, one for each set of neurons

that represents a set of links incident on a given source node, and one for each set of neurons that
represents a set of links incident on a given destination node. Thus, the connections established by

the first constraint will be additionally weighted by the third constraint MLM. Again,
normalization by the path length is unnecessary. Therefore, the distributed energy formulation is

given by:

=' - = 0,

a-1

where
[N,() )2 N ,() )2

2 Vji) = 0, and e =1(X ViL(j-) =0.

The corresponding equation of motion terms are:J N,(9) N,()1 V.1, k=1 , and -l -m .Vwj-(')p k"=L(ij).

t 0 otherwise 0, otherwise

This formulation, like the distributed formulation of the first constraint, recognizes only the

constraint violations that involve the activation of two or more first links, or two or more last links,

in paths between a given SD pair.
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4. Activate complete paths:

N .,Nd N,() L(ij) L(ij)i~lj~l lm .=1 VijkVijm -=0

i=1 j=1 k=1 .I .L(i) (L(iJ)- 1)
m*k

- L)E4 Vijm
vo 't L(ij). (L(i)- 1)

m~tk

As discussed in Section 5.11, this constraint may be implemented in a less-centralized

fashion by removing all the neuron interconnections established by the centralized fourth-constraint

except the ones between adjacent links. However, since the reformulation of Section 5.11 was

applied to the E4' expression, it retained the summation of the product of the output voltages of all

adjacent links in each of the paths between a given SD pair, both in the energy term and in the

equation of motion. To obtain an expression of this constraint that allows a purely-distributed

implementation, we apply the reformulation of Section 5.11 to the original centralized fourth-

constraint energy term E4 , rather than applying the reformulation to the energy term E4'. The

constraint energy E4 was introduced in Section 5.3 and is shown again above. This reformulation

yields

N.d

E4 e4i = 0,
i=1

where

N,(i) 4aj) Vii4Vjk-I + vik+i) = 0--i= 1 -1v -1_2r_ j- I.(k)- I

and we define

{ O, k=l 0Vijk+l 0, k=LiJ)

Vik..1 =Vijt-i, otherwise Vijk+, otherwise'

The corresponding equation of motion term is

-"ae4i = Vi t-I + Vijk+I

aVijk 2(Lgij)- 1)
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To maintain a strictly-distributed model, the quantity e4i may not be used to define fourth-

constraint Lagrange multipliers because calculation of the energy e4i, which would be needed to
update the Lagrange multipliers, requires knowledge of the output voltages of all the neurons that
represent links in paths between SD pair i. A constant coefficient for the fourth constraint retains
the purely-distributed implementation. It also removes the equality constraint requirement, and,
therefore, allows omission of the normalization which was required to obtain an equality
constraint. Our experience has shown that this constraint, by itself, does not guarantee the
formation of complete paths. Therefore, we have supplemented it with the following additional
constraint.

5. Adjacent links in a path shall all be activated or shall all be off.

NI
5E3 d e5,t = 0,

where N is the total number of neurons, and

k( -"j - ) - 0 k j

2 =k 1=k-
e5k =

1(n R 2 - Y).(2 V j 0, k =1, L(if)

Ifk = 1, the upper limit of the summations is k + 1; ifk = L(ij), the upper limit of the summations
is k - 1. Thus, a Lagrange multiplier is defined for each neuron and, at each iteration, is increased

by an amount proportional to the corresponding e5k.

The corresponding equation of motion term is

k+1I
7e Vijs- 1 , k *l,L(ij)

-- es._._ _ ,=k-12

1:Vij,- I1, k = 1, L(ij')

f=k

This constraint has been added to the distributed model to encourage the formation of

complete paths and discourage the activation of partial path segments. Variations of this constraint
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form have been examined in conjunction with the centralized link-neuron model with little success.

In that setting this "binary-forcing" constraint tends to lock the NN state into the legal state nearest

to the initial random state, thus severely limiting the quality of the search of the state space.

However, it has been necessary to incorporate this constraint into the distributed model because of

the difficulty of ensuring the activation of complete paths.

Congestion-limiting (b-term) considerations

It has been necessary to change the congestion-energy term somewhat from that used in the

centralized link-neuron model because the constraints in the distributed model do not capture as
much of the desired behavior as those of the centralized model. In particular, in the centralized
link-neuron model, the first constraint established inhibitory connections between all link (neuron)
pairs that included links from different paths between the same SD pair;, i.e., inhibitory connections
were placed between all neuron pairs [ijk,imn], where i = 1, -.., Ns, j, m = 1 --., Np(i); j * m; k =

1, ..., L(if); n = 1, ..-, L(im). Therefore, inhibitory b-type connections were not installed between

adjacent links in different paths between the same SD pair in the centralized model. However, in

the distributed model it is appropriate to establish inhibitory b-type connections between these
adjacent links because the distributed formulation of the first constraint applies inhibitory
connections only between first links and between last links. Also in the distributed model, b-type
connections are established between adjacent links in paths between different SD pairs in a manner

similar to that used in the centralized modeL

5.12.2 Simulation Results of the Distributed Link-Neuron Model

Simulations of the purely-distributed model have yielded extremely poor results.

However, a significant performance improvement was obtained when the complete-path constraint

formulation E4" of Section 5.11 was used instead of the distributed fourth constraint formulation

Ed (Section 5.12.1). In fact, 3% of the solutions had the optimum congestion-energy value in

simulations of this model. Therefore, the following discussions focus on the results of simulations
of an almost-distributed NN model, which we call the QDI (Quasi-Distributed Implementation)

model, that uses the distributed formulations of constraints 1, 3, and 5 as described in Section

5.12.1, and the "less-centralized" fourth constraint formulation E4" described in Section 5.11.

In a strictly-distributed setting, the use of the early termination criterion and the

instantaneous state interpretation is precluded by the lack of global knowledge of the NN state.
However, since a strictly-distributed implementation of the NN algorithm is impractical, and since
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the QDI model is not a strictly-distributed model, we have used the early termination criterion in

simulations of the QDI model and taken the instantaneous state interpretation of the results.

Results of Simulations of the QDI Model

Preliminary simulations of the QDI link-neuron model were performed to obtain a set of

parameter values that performed reasonably well. Then simulations from 100 different initial states

were run using the 24-node network of Figure 4.1 with the set of paths listed in Table B. 1. Again,

the initial states were the same as those used in the simulations of Sections 5.6 - 5.9. The

parameter values that were used are listed in the following table.

W(0) X1(o) )6(0) (At)ko (At) , (At)\4 At b I NC E
X.2(0) X3(o) (AO) 2  (At)

X.5(0) I( tOX5

1.0 0.0 40.0 0.01 10-4 1.0 1 1.2 1.0 104 0.01

Here, ko(0) denotes the initial value of all the first-constraint first-link Lagrange multipliers that

correspond to the energies ei, XI(O) is the initial value of the first-constraint last-link Lagrange

multipliers that correspond to the energies eli, and X2(0) and X3(0) are the initial values of the

third-constraint first- and last-link LM that correspond to the energies ei and eii, respectively.

Again, Nc is the termination parameter that was defined in Section 5.5.

The results of the simulations are shown in Figure 5.11. The results obtained using the

centralized model described in Section 5.9.1, which used the E4 ' formulation of the complete-path

constraint in conjunction with dummy neurons, are also shown. We refer to this centralized model

as the CI-DN (Centralized Implementation-Dummy Neurons) model. The CI-DN model clearly

provides the best results. Although the distributed model does not perform as well as the

centralized one, it does find solutions with congestion energy Eb < 147, the energy of the best

shortest-path heuristic solution, in more than 40. of the simulations. Given the significant

information limitations of the distributed implementation, the performance degradation found in the

distributed model is not unexpected. Furthermore, the achieved significant reduction in the NN's

complexity, which resulted from the reduced number of neural connections, may make the

performance degradation acceptable.
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Figure 5.11. A comparison of the results of the QDI model to the results of the centralized link-
neuron model CI-DN

Results of Simulations using a Larger Initial Value of .4

A second series of simulations of the QDI model were run using a larger initial value of the

complete-path constraint Lagrange multiplier (14(0) = 200.0) in conjunction with a smaller fourth

Lagrange multiplier time constant ((At)x = 0.01). The simulations were run from the usual 100

different initial states using the following parameter values:

WO(0) X1(O) A4(0) (M)L (At)). At b I Nc
X.2(0) X.30) (AO)X2 (A0%3

))5(0) 00M (W)h5

1.0 0.0 200.0 0.01 107 10-4  1.2 12.5 5x10 3  0.01

The results of these simulations are compared with the CI-DN model simulation results in Figure

5.12. Although it is based on the availability of only limited information, the QDI model (using

these parameters) has provided results that rival the best obtained from any of the link-neuron

models. In fact, three of the solutions from this set of runs had the optimum congestion-energy

value of 133, a result that actually surpasses the performance of the path-neuron model.' In Figure

5.13, the cumulative mass functions of the results of these simulations are compared with the CI-

DN results from Section 5.9.1 as well as the solutions resulting from the use of a smaller initial

6 Although optimal solutions were routinely found using the path-neuron model under the original (Eb) criterion.
they were not found under the alternate (Eb) criterion, except in one run in which Gaussian simulated annealing was
used, as discussed in Section 4.10.
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value of A4 (4(0) = 40) in the QDI model. The figure shows clearly that, when using the QDI
model, better results are obtained through the use of the larger initial value of X4. With X4(0) =

200, 90% of the QDI model solutions had lower congestion energy values than the best shortest-

path heuristic solution. The CI-DN model found solutions with congestion energy E < 147 in

only 49% of the simulations.
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Figure 5.12. Histograms of the results of simulations of the QDI model
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Figure 5.13. Cumulative mass functions of the results from the QDI model with two different
values of X4(0) and the CI-DN model
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These simulations of the QDI model indicate that a nearly-distributed link-neuron NN

model achieves a reduction in the number neuron interconnections, and hence a reduction in the

number of required calculations at each iteration of the equations of motion, with little performance
degradation. In fact, the additional degree of freedom obtained by emphasizing link interactions

rather than path interactions has allowed the first discoveries (without simulated annealing) of
optimal solutions for the 24-node network. However, it was found that the emphasis on link
interactions must be somewhat tempered by a large initial value for X4(0), which enforces the

complete-path constraint. The large value of X4(0), besides preventing the activation of largely-

disjoint sets of links in different paths, provides a cohesion among the neurons (links) that form a
path. This cohesion allows the congestion and constraint information to be propagated to all
neurons corresponding to links on the same path by means of the link interactions on the path.

Without such cohesion, both the increased congestion resulting from the activation of conflicting

links and the constraint violations caused by the activation of intermediate links in different paths

between a SD pair may go virtually unnoticed.

5.13 Conclusions on the Link-Neuron Model

In this section, we have presented a link-neuron NN model for the solution of the

congestion-minimization problem, and we have shown that it is capable of determining reasonably

good solutions to this problem. This model is quite similar to the path-neuron model discussed in

Section 4, except tiiat interactions between individual links are taken into account. This results in a

much larger number of neurons and interconnections than were needed in the path-neuron model.

A further complication is the need to add excitatory connections between neurons corresponding to

links on the same path, to ensure that complete paths are formed.

Again, we used the method of Lagrange multipliers to determine the coefficients in the
connection weights dynamically. After discovering a bias toward the selection of shortest paths,

which interfered somewhat with the selection of minimum-congestion sets of paths, two methocs
were implemented in an attempt to improve performance. In the first, dummy neurons were added

so that the resulting lengths of all paths between a given SD pair would be equal. In the second,

additional compensatory bias was added to the neurons corresponding to links on non-shortest

paths, so that the bias in favor of the shortest-path solutions would be eliminated. Both of these

methods improved results; the dummy-neuron model performed somewhat better than the

compensatory-bias model.
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After considering a centralized link-neuron model, we investigated a distributed

implementation. The practicality of a purely-distributed implementation is questionable for several

reasons, which include the large quantity of information that must be exchanged among

neighboring nodes, the inability to use the early termination criterion, and the inability to assess the

quality of a solution without global knowledge of the states of the other neurons. However, our

studies of a quasi-distributed implementation (QDI) have demonstrated that good performance can

be achieved even when only incomplete information is made available to the neurons. The

advantage of such a system is that fewer connections are needed, thus resulting in greater

efficiency in software simulations.

Although the solutions obtained by the link-neuron NN model are typically not as good as

those produced by the path-neuron model, the link-neuron model does, in fact, represent a

significant advance in our study of NN models of network problems. In particular, the ability of

this model to generate complete paths by means of excitatory connections between neurons on the

same path may be viewed as a first step toward the more general, and more difficult, routing

problem in which the paths between each SD pair are not specified in advance; in this case, the NN

must piece together complete paths from individual links. It may also be viewed as a first step

toward the solution of the joint routing-scheduling problem, in which the time slot for the

activation of each individual link along every path is to be determined. These problems are the

subject of future research.

6.0 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Although the issues of routing and scheduling in packet radio networks are highly

interdependent, few studies have addressed them jointly. In this report, we briefly reviewed the

major issues associated with the joint study of these problems, and we addressed the problem of

routing for the minimization of congestion as a first step toward the solution of the joint routing-

scheduling problem. We have posed this as a combinatorial-optimization problem, and we have

demonstrated the ability of Hopfield neural network (NN) models to provide good solutions for it.

Much of this report has focused on the path-neuron NN model, in which a neuron is

defined for each path between every SD pair in the network. The assumption that paths are

predefined is often reasonable, and corresponds to the prespecification of virtual circuits that may

be activated as needed. We have also developed and evaluated a link-neuron model, in which

individual links, rather thari complete paths, are the basic units for system modeling.
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The Hopfield NN methodology is rather different from more-traditional algorithmic or
simulation approaches to combinatorial-optimization problems. For example, this approach
involves the embedding of a discrete problem in a continuous solution space. The NN is
"programmed" by implementing the set of connection weights and bias currents that correspond to

the "energy" function that is to be minimized. This energy function is a linear combination of the
desired objective f'wction (which in our problem is directly related to a measure of congestion) and

energy components that are related to the constraints that must be satisfied by valid solutions; these
constraints enforce the condition that exactly one path is chosen between each SD pair.

An analog hardware implementation of a Hopfield NN will normally converge to its final
state within at most a few RC time constants, thus providing an extremely rapid solution to a
complex optimization problem. In our studies (as in most studies of this technique) we have
simulated the system dynamics in software. Although such software solutions are extremely time
consuming, they verify the soundness of the use of the Hopfield NN approach for optimization
problems of this type, and suggest that hardware implementations may be worthwhile. In fact,
hardware implementation may be feasible for problem sizes that exceed by far those that can be
handled in software.

The most critical issue in the design and simulation of a Hopfield NN model is the choice
of the coefficients used in the connection weights. To determine good values for these
coefficients, we have used the method of Lagrange multipliers (LM), which permits the
coefficients to vary dynamically along with the evolution of the system state. Most studies of
Hopfield NNs have used trial-and-error methods to determine acceptable values for the connection
weights, a process that is tedious at best, and often ineffective. We have demonstrated that,

especially for the path-neuron model, the LM approach consistently produces high-quality
solutions to fairly large problems. In fact, the use of the LM method provides better performance
than that which is possible using a set of optimal constant connection weights. This is because the
congestion-limiting component dominates the connection weights in the early stages of a simulation
run (when the LMs are small), guiding the search toward a region of low congestion. As the run
progresses, the LMs increase as necessary, and the impact of the constraints guides the solution
toward a valid state with binary neuron values. Although some experimentation is often needed to
determine good values for system parameters such as bias currents and time constants, our studies
have shown that acceptable values for these parameters are generally found rather quickly when the
LM method is used.
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The analog nature of the Hopfield NN model is, in fact, a crucial feature of this approach.

By permitting the search for an optimal solution to proceed through the interior of a continuous

region, better solutions are usually found than are possible with strictly-digital processing
elements. System evolution relaxes from some initial state to a final state that is a local minimum

of the energy function. Only a local, rather than a global, minimum can generally be guaranteed
because the system follows a trajectory of monotonically-decreasing energy. Since the evolution

of the NN is deterministic,' the search of different portions of the region requires the use of
different initial states. Typically, in our examples, we have simulated 100 runs from different

initial conditions in our effort to find globally optimal solutions.

To assess the performance of our NN models, a benchmark is needed against which to
compare them. In our smaller examples, such as the 24-node network with 10 SD pairs, an

exhaustive search of all possible solutions has been possible. In some of our studies of this
network, globally optimal solutions were, in fact, found in almost all runs; in other examples,

near-optimal solutions were found most of the time. Although it has not been possible to
determine the optimal solution for our 100-node network by exhaustive search (because the
number of possible states makes doing so prohibitive), it is significant to note that all of the

solutions produced by our NN model are better than the solutions found by our shortest-path
heuristic. The largest example we have considered consists of the 100-node network with three

units of traffic between each SD pair, which has resulted in a NN that consists of 981 neuroas. Of

the 20 simulation runs for that example, eight performed better than the best solution obtained by
simply triplicating the best solution found for the unit-traffic example, thus demonstrating the

benefits of alternate routing as well as the ability of our model to handle large, heavily-congested

networks.

The fact that global minima are not always found, a common characteristic of Hopfield
NNs, is typical of heuristic algorithms for the solution of difficult combinatorial-optimization

problems; in many such problems, optimal solutions cannot be guaranteed without exhaustive
search. However, the inability to guarantee a global optimum is mitigated by the fact that repeated

runs are possible from different initial conditions; thus the best solution that is found can be chosen

as the solution to the problem. Although the simulation runs begin in random initial states, this
method is not simply one of random search; system evolution is guided by the equations of

motion, which are derived from the energy function, which in turn is based on the objective

I Although we have studied the use of Gaussian simulated annealing (GSA) in conjunction with our NN model, the
results obtained using that method have been rather inconsistent. Thus we limit our discussion here to the use of
system models without GSA.
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function and the system constraints. The fact that most of our solutions are so close to the
optimum value in such a large fraction of the cases studied demonstrates the robustness of our
models, and suggests that they may perform well in considerably larger examples as well.

Our results demonstrate the effectiveness of our Hopfield path-neuron NN model for the

minimization of congestion in large, heavily-congested networks. In particular, the use of the

method of Lagrange multipliers, under which the coefficients in the connection weights evolve
dynamically along with the system state, provides highly-robust operation. Ultimately, our goal is
the development of NN models for the joint routing-scheduling problem. As a step toward this
goal, we developed the link-neuron model, which also makes use of the LM technique.

Although the solutions obtained by the link-neuron NN model are typically not as good as
those produced by the path-neuron model, the link-neuron model does, in fact, represent a
significant advance in our study of NN applications to network problems. In particular, the ability
of this model to generate complete paths by means of excitatory connections between neurons
belonging to the same path may be viewed as a first step toward the more general, and more
difficult, routing problem in which the paths between each SD pair are not specified in advance; in
that case, the NN must piece together complete paths from individual links. It may also be viewed

as a first step toward the solution of the joint routing-scheduling problem, in which the time slot
for the activation of each individual link along every path must be determined. These problems are

the subject of future research. We now comment briefly on the application of Hopfield NN models
to scheduling problems.

6.1 Future Studies of Link Activation (Scheduling) and the Joint Routing-

Scheduling Problem

In the basic link-scheduling problem, one-hop communication requirements between
neighbviing pairs of nodes are specified, and the goal is to determine a link-activation schedule that
will satisfy this requirement in a minimum amount of time. In [2] this problem is posed as a
decision problem; i.e., for a given number of slots k, determine whether a schedule can be found

that satisfies the communication requirements, and if so, determine that schedule. In the NN
formulation, several neurons are defined to correspond to each link as follows. First, one neuron
is defined corresponding to every packet that must be transmitted over that link, each such neuron

is then mapped into one neuron for every time slot over which the schedule is to be defined. For

example, if a link must deliver three packets and a schedule of length k is being sought, 3k neurons

are needed to specify the operation of that link. We are looking for stable states of the NN in

which exactly one neuron corresponding to each packet is activated at some time during the

93



schedule. To achieve such minimum-energy states, inhibitory connections are placed between

neurons that correspond to interfering links, between neurons that correspond to the same node

transmitting two packet simultaneously, and between neurons that correspond to the same packet

being transmitted in two different time slots. A reward is incorporated into the energy function for

each link that is activated.

The link-activation problem formulation discussed in [2] is based on single-hop

communication requirements. We are presently developing methods to extend this model to one in
which communication requirements are specified between multihop SD pairs, rather than between
neighboring nodes. When the routes are specified a priori, and when the order in which the links

of a path are activated is deemed not important, this problem is equivalent to that of [2]. However,

in some applications it is desirable to ensure that the links along a path are activated in a sequential

manner, i.e., so that a link is not activated before it has received a packet from its upstream

neighbor. Such a mechanism can be implemented in a straightforward manner by means of the

incorporation of additional inhibitory connections that prevent such behavior. Ultimately, we

would like to extend our model to the complete joint-scheduling problem, in which both the paths

and the schedules are determined by the NN.

The main difficulty in implementing NN models for the joint routing-scheduling problem

results from the number of neurons that are needed. Corresponding to each time slot, one neuron

must be defined for each link of every path between every SD pair. Thus it will be difficult to

solve this problem for very large networks. However, our high degree of success with NN

models consisting of nearly 1000 neurons suggests that the simulation of considerably larger NNs

may be feasible. We note that there is no objective function to be minimized in the scheduling and

joint routing-scheduling problems. These problems consist solely of finding a state that satisfies

the system constraints, i.e., a state in which a complete set of links is activated in a non-interfering

manner. We expect that this aspect of the problem may permit the solution of larger problems than

we have studied thus far because of the demonstrated ability of the LM method to produce

solutions that satisfy system constraints.

We acknowledge that this discussion is far from complete. Its purpose is simply to indicate

the flavor of our future research in Hopfield NN methods for routing and scheduling problems.

Complete details of these NN models will be presented in a future report.
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APPENDIX A

HOPFIELD NEURAL NETWORKS AND THEIR APPLICATION TO

OPTIMIZATION PROBLEMS

Since the introduction of the use of neural networks (NN) for the solution of combinatorial-

optimization problems by Hopfield and Tank [Al], there have been many applications of that idea

to diverse optimization problems of high computational complexity. In this appendix, we review

the principles of Hopfield NNs, and we show why they are well suited to such problems. Our

discussion is based primarily on the traveling salesman problem (TSP), which was the application

originally considered by Hopfield and Tank, and which has been perhaps the most widely-studied

combinatorial-optimization problem. It is hoped that this appendix will provide enough

background material to facilitate an understanding of the NN models we have developed for

routing and scheduling problems.

A.1 Hopfield Neural Networks

A NN consists of a large number of elements that behave like simple analog amplifiers, and

which are highly interconnected in a manner that permits highly parallel and fault-tolerant

computation. These amplifier elements are called "neurons" because their behavior is similar to

that of biological neurons, which are also simple highly-interconnected analog devices. Each

neuron corresponds to a binary variable in the system that is being modeled by the NN. A

Hopfield NN is a NN with a special structure that can achieve a very rapid solution to a specific

optimization problem.' The generic combinatorial-optimization problem that is solved by a

Hopfield NN consists of determining which of the neurons should be "on" (i.e., have a value of 1)

and which should be "off' (i.e., have a value of 0), so that some cost function is minimized.

In a Hopfield NN, the strengths of the pairwise connections between neurons are chosen

so that the desired objective function is minimized. Appropriate choice of connection strengths

also ensures that any constraints that are present in the optimization problem are not violated. We

note at the outset that the solutions provided by Hopfield NNs are not necessarily optimal because

local rather than global minima may be found. Also, the class of objective functions that can be

'Other types of NNs are well-suited for learning applications, including a wide range of pattern-recognidon tasks.
General references on NNs include [A2] and [A3J.
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minimized by this method is somewhat limited. However, reliable convergence to good solutions
has been demonstrated for a number of difficult and important combinatorial-optimization problems

including those discussed in this report.

The neuron input-output relation typically has the sigmoidal form

Vi = g(ui) I+=n li1

as shown in Fig. A-1. Here, V5 is the output voltage of neuron i (which can take on values

between 0 and 1), ui is the input voltage to neuron i (which can range from -o to -), and uo is a

parameter that characterizes the slope of the nonlinearity. A key feature of these networks is, in

fact, the analog nature of these processing elements, which permits the embedding of discrete

problems in a continuous solution space. As we discuss later in this appendix, permitting the

search for an optimal solution to proceed through the interior of a continuous region yields better

solutions than are possible with strictly digital processing elements, and determines them very

rapidly when the NN is implemented in hardware.

1.0

0.5
0

0.0 14

Input

Figure A-1. Input-output nonlinearity

A portion of a Hopfield NN is shown in Fig. A-2. The output of each neuron is connected

to the inputs of a number of other neurons through resistors whose values are chosen to control the

level of interaction between the neurons. Each neuron has both normal and inverted outputs; thus

it can provide either excitatory or inhibitory synaptic connections as needed. Neurons normally

interact with evch other on a pairwise basis. In particular, a synapse between neurons i and j is

defined by a connection weight Tij (implemented using a resistor of value 1/Tii), whose value is
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positive ff the connection is excitatory and negative ff it is inhibitory. For example, assume that an

inhibitory connection is present between neurons i andj (i.e., T1 is negative). If neuron i is on it

will discourage neuron j from turning on, and conversely. Actually, since the output voltages take

on analog values between 0 and 1, the degree of inhibition applied to neuron j is proportional to the

output voltage of neuron i. In addition, bias currents may be applied directly to each neuron, e.g.,

Ii is applied to neuron i. These bias currents represent fixed inputs that are applied to the neurons,

and are independent of the state of the other neurons in the network. The combined effect of the

connection weights and bias currents encourages the NN to find a solution that minimizes the

desired function while satisfying a number of problem constraints, as we describe in the following.

'1 12

• ...

Neuron Neuron

+ Resistive Connection with Value 1A Tij I

V Apllifier V Inverting Amplifier

Figure A-2. Portion of a Hopfield NN

Hopfield NNs evolve from some initial state to a final state that represents a local (but not

necessarily global) minimum of the Lyapunov energy function

N N N
E =- 7X 1Tij Vi i I2 • "

2i-i j-1 i=1

where N is the number of neurons. Thus an N x N connectivity matrix T can be defined, whose

elements are the connection weights T 1. Convergence to a stable state is guaranteed as long as the
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connections art symmetric (i.e., Tij = Tji), and provided that Ti = 0 [Al]. These conditions are

satisfied in many problems of practical interest

In the above expression, the double summation represents the pairwise contribution to the

energy by all possible pairs of neurons (which are weighted by the connection weights Tij), while

the single summation represents the contributions that the neurons make on an individual basis

(which are weighted by the bias currents Ii). Note that the Tijs and Ii's represent the combined
impact of the function to be minimized and the constraints that are to be satisfied. More

complicated forms of the energy function have also been considered in the literature, e.g., those

that include connection weights for triplets of neurons (e.g., Tijk connecting neurons i, j, and k,

which results in a contribution of the form TijkViVjVk). However, they are generally much more
difficult to implement, and it is not clear that they offer an advantage; thus we did not consider

them in this study.

In the limit of high gain (i.e., a steep nonlinearity in the input-output relation of a neuron),

the minima of the energy function occur only at the corners of the N-dimensional hypercube, i.e.,
for neuron output voltages of Vi = 0 or 1. Thus, although the system state evolves over the
interior of an N-dimensional hypercube, the solution corresponds to a discrete system

representation in which one of the 2N corners is selected.

Clearly, the form of the energy function presented above is not completely general, and it is

not possible to define a Hopfield net that corresponds to all possible minimization problems.

However, a variety of interesting and diverse problems have been formulated by using Hopfield

networks. For example, Ramanujam and Sadayappan studied several graph-partitioning problems

[A4], Brandt et al. studied the list-matching problem [A5], and Foo and Takefuji studied job-shop

scheduling [A6, A7]. We note that when the function to be minimized is not of the form shown in

the above energy equation, it is often possible to define a related energy function that provides

good, although not necessarily optimal, performance for the problem of interest. We have, in fact,

done so in our studies of Hopfield NNs for the minimization of congestion in networks.

The evolution of the input voltage at each neuron is characterized by an equation of motion

that is obtained by differentiating the energy function with respect to the output voltage at that

neuron. Thus

N
du- aE = 1 + IV

aV i It ,,
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where Tc = RC is the time constant of the RC circuit connected to the neuron. As the system

evolves, the energy function decreases monotonically until equilibrium at a (local) minimum is

reached. Since only a local minimum can be guaranteed, the final state depends on the initial state

at which the system evolution is started.

The NN is "programmed" by implementing the set of connection weights and bias currents

that correspond to the function that is to be minimized. An analog implementation of a Hopfield

NN will normally converge within at most a few RC time constants, thus providing an extremely

rapid solution to a complex optimization problem. In our studies (as in most studies of this

technique) we have simulated the system dynamics in software. Although such software solutions

are extremely time consuming, they verify the soundness of the use of the Hopfield NN approach

for optimization problems of this type and suggest that hardware implementations may be

worthwhile.

To illustrate the considerations associated with the selection of these system parameters, we

now discuss the application of Hopfield NNs to the Traveling Salesman Problem (TSP). Since

some of the optimization considerations associated with our routing and scheduling problems are
similar to those related to the TSP, a discussion of the TSP provides useful background material

for the presentation of our model. It also permits us to highlight the differences between our

problem and the TSP, and thus to illustrate some of the novel contributions of our research.

A.2 The Traveling Salesman Problem-A Hopfield Net Formulation

The Traveling Salesman Problem is one of the classic NP-complete problems of

combinatorial optimization, and it provides a convenient vehicle to explain the use of the Hopfield
NN methodology. Although practical complications arise when the number of cities exceeds
values of around 50, recently developed techniques may extend the power of the Hopfield NN
approach to considerably larger problems. Fortunately, such limitations are not always
encountered; our methodology has permitted the simulation of rather large examples, which are

discussed in this report.

The TSP is defined as follows. A salesman would like to visit each of a set of n cities

exactly once and return to the city of origin, while minimizing the total distance traveled. He is

given the pairwise distances of separation di between cities i andj (1 5 ij < n; i *j). It is easy to
see that there are n! possible solutions, i.e., orderings of the cities. By observing that each

solution has a 2n-fold degeneracy (since the same tour can begin in any city and because reversal

of the order of tour does not affect the cost function), the number of distinct paths is reduced to
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n!/2n. However, this number is still far too great to examine by exhaustive search when n is large,
and heuristics are normally used to provide suboptimal solutions [A). Like these heuristics, the
Hopfield NN approach cannot be expected to produce the optimal solution at every attempt. A
reasonable expectation is the determination of good solutions a significant fraction of the time, as
we explain in detail later.

The TSP requires that we specify the sequence in which the n cities are visited. A natural

way to represent any particular solution is in the form of a permutation matrix, such as that shown
below for a five-city problem. In this array, the letters represent the cities and the numbers
represent the position on the tour. For example, city C is visited first because in row C a "1"
appears in the first column. Similarly, city A is visited second because in row A a "1" appears in
the second column. Continuing in this manner, the entire tour is specified by the sequence C, A,
E, B, D, C. Clearly, since each city must be visited exactly once, there is exactly one "i" in each
row. Similarly, since only one city is visited at a time, a valid solution has exactly one "1" in each
column. The length of the tour corresponding to this particular sequence is dcA + d. + dEB + dBD
+ dDC.

position in tour

12345
AO 1 000

city B 0 0 0 1 0

C 1 0 0 0 0
D 000 1
EOO0100

To formulate this problem as a Hopfield NN problem, a neuron is defined for each element
of the array. In general, the notation Vxj is used to represent the output voltage of the neuron
corresponding to city X being visited in the Jit position on the tour. Thus N = n2 neurons are

neeed to represent the state in a problem with n cities. The following energy function is defined

to reflect the desire to minimize the total path length while satisfying the constraints just described:

2 ~~X VxiVxJ + k2 v,1 vy, + -2C

X i ji iXY*k

2 dxyVx1(Vy5 '+i +y-X J'X i

The first three terms represent the effect of equality constraints, and each must be zero if these

constraints are satisfied. In particular, the first term is zero if and only if each city row contains no
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more than one "1;" i.e., each city must be visited not more than once. The second term is zero if

and only if each position-in-tour column contains not more than one "1;" i.e., only one city can be
visited at a time. Finally, the third term is zero if and only if there are exactly n "1" entries in the
entire matrix. The last term represents the total distance traveled, and is thus th- performance index
that we actually want to minimize. Note that the sub,'ripts are defined modulo n, so that the city n

is adjacent to both city n-I and city 1. In all cases, the factor of 1/2 is present because the

summations include all terms twice. Later in this appendix, we discuss some issues related to the

choice of the coefficients a, b, and c.

We emphasize that the neuron output voltages take on values in the continuum (0,1) The
permutation matrix condition is normally satisfied only when the system has reached equilibrium.

In the last few years, a number of alternative formulations of the enei -y function have been

developed for the TSP, under which diffe ent forms of the constraints are imposed on the system
and for which better performance is claimed; e.g., see [A51. However, we confine the present

discussion to Hopfield and Tank's energy function because the objective of this appendix is to

demonstrate the application of Hopfield NNs to constraint-satisfaction problems, and this can be

done without an exhaustive discussion of the totality of NN methods that have been developed for

this problem.

Given the above form of the energy equation, the form of the connection weights is easily

determined as follows:

Txi.r = - ayy(l-bij) - bij(l-6xr) - c - d dx.y(,i+ +

where 8ij is the Kronecker delta (i.e., 8ij = I if i =j and is 0 otherwise). The external input bias

currents are simply

'Xi - c nt.

The corresponding equation of motion for the input voltage to neuron Xi is:

dy ~ -& -a , X j -bI Vy X X i -' n) - dxy(Vy 1+,I + Vy*.i 1)dt T ji YiX \Xj / Y*eX

Recall that Vxi = 1 means that city X is visited in the ith position of the tour. Thus, a negative

value of duxjdt tends to turn neuron Xi off (discouraging the visiting of city X in the i h position),
whereas a positive value tends to turn it on. In numerical simulations, the input voltages are

updated synchronously as follows:
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y.= fd + [duXi] old

The new output voltages are obtained - ' passing the updated input values through the nonlinearity
Vi = g(ui). In their simulations of a ten-city TSP, Hopfield and Tank used the following parameter
values: a = b = 500; c = 200; d = 500; Uo = 0.02; and t = 1. The value of At was not mentioned in

[Al], but 10-5 appeas to be a reasonable value for use with these system parameters (see e.g.,
[A9]). If At is too I9rge, the system may evolve too rapidly, thereby missing optima and possibly

resulting in oscillations; if it is too small, then convergence takes an excessively long time. The

choice of system parameters for the connection weights and bias currents is a crucial aspect of the
NN design problem. Later in this appendix we discuss the issues associated with the choice of
these parameters, and th" consequent impact on NN design and performance.

The equations of motion have a satisfying intuitive interpretation. The firsL term simply
represents the RC decay of the input voltage to the neuron. The next three terms repreent the

impact of the system constraints on system evolution. We refer to each of them here by the
coefficient that multiplies them, i.e., as the "a," "b," and "c" terms. As discussed earlier, the "a"

term represents the constraint that city X be visited only once during the tour. Thus, if any of the
other Vxj'S are nonzero (which correspond to visiting city X in position j), the input voltage to

neuron Xi is reduced. Similarly, the "b" term represents the cons:mint that only one city be visited
in position i. Thus, if any of the other Vy's are nonzero (which correspond to visiting city Y in

position i), the input voltage to neuron Xi is reduced. Note that the "a" and "b" terms are purely
inhibitory, i.e., they cannot be positive. The "c" term represents the constraint that exactly n

neurons be turned on in the entire NN, and is excitatory if an insufficient number are currently on

and inhibitory if too many neurons are currently on. This term is the same for all neurons in the

network.

The "d" term, which represents the impact of the length of the tour on the input to neuron

Xi, is a purely-inhibitory term. It is less inhibitory when the distances between consecutive cities

are small and more inhibitory when they are large.

It is important to note that although the equations of motion reflect the constraints that must

be satisfied by valid TSP tours (which are characterized by neuron output voltages that are all O's

and l's and that satisfy the permutation matrix constraint), they are applied to a continuous system

in which the output voltages can take on values in the continuum (0,1). As should be clear from

the equation of motion, the impact of an inhibitory connection is proportional to the output voltage
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of the neuron that supplies it. Normally, the TSP constraints are not satisfied until an equilibrium

state is reached.

In the problem formulation, n is the number of cities. However, Hopfield and Tank

observed that when this number was used in the equations of motion, it was difficult to ensure that

a sufficient number of neurons were activated. A possible explanation is that it is difficult to

overcome the inhibitory effect of the "d" term, which was discussed above. Thus additional bias

current is needed to, in effect, adjust the neutral positions of the amplifiers. The bias current

appears in the equation of motion as the quantity cn. Without changing the size of the problem

(i.e., the number of neurons in the model), one can increase n in that equation to effect the desired

increase in bias current. This was done by choosing n = 15 for the ten-city problem.

An initial state must be chosen as the starting point for the iteration. Although we are

searching for a valid solution (i.e., one for which all neuron voltages are 0 or 1 and for which all

constraints are satisfied), it is not advisable to start the search from such a state. This is because it

is difficult to leave a state in which the constraints are satisfied, since doing so often results in an

increase in system energy. To permit a search over a larger portion of the N-dimensional

hypercube, a value in the interior of the search space is chosen as the starting point.

Nominal initial values of the neuron input voltages were chosen to be equal to the same

constant uoo, so that no tour would be preferred above any other a priori. For the ten-city problem

u00 was chosen so that

I I VX, = 10.
X i

This value is reasonable because it is the desired value of the summation when convergence has

been reached. However, it is inadvisable to start the iteration with all voltages exactly equal

because it is then difficult for the NN to break the symmetry and thus to choose a promising

direction for the search. Therefore, the nominal initial values of the neuron input voltages were

then perturbed by a small amount (a different random number, uniformly distributed between

-O.1uo and +O.1uo, for each neuron) before beginning the iteration. Typically, a large number of

simulation runs (e.g., 100) are performed, each with a different random seed. Although not all

solutions will necessarily be good (or even valid), the best solution from a collection of runs can be

chosen as the solution to the problem of interest. We note that system evolution from any given
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initial state is deterministic. The only randomness in this model arises from the use of a random
initial state.2

A key feature of the system evolution, as discussed earlier, is that the system state evolves

in the interior of the N-dimensional hypercube, whereas valid tours can be described only on the

comers. Thus the neuron voltages can be interpreted as solutions of the TSP only when

convergence has been reached (i.e., the permutation matrix condition of exactly one "1" per row

and one "1" per column is -satisfied). In practice, convergence can be declared as soon as there is a

clear "winner" in each row and column such that this condition is satisfied, although it is often

advisable to continue the iteration until relatively tight thresholds are satisfied because it is possible

for changes in system state to occur, e.g., voltages above 0.9 could correspond to "I" and voltages

below 0.1 could correspond to "0."

Hopfield and Tank have, in fact, demonstrated that the use of analog neurons provides

considerably better performance than the use of binary neurons. The same energy equation and

equations of motion were used in the simulation of a discrete system. However, a simple

threshold was used to determine whether each neuron's output voltage was 0 or 1. The solutions

that were found were of considerably poorer quality (i.e., greater tour length) than those obtained

using analog neurons. This is true because the use of binary neurons forces the search to make a

binary decision on the state of each neuron at each step of the iteration, thereby limiting the search

to the corners of the hypercube. In contrast, the use of analog neurons enables the solution to

follow trajectories of decreasing energy, thereby permitting decisions to be postponed until there is

a clear winner. In general, use of too steep a nonlinearity (too small a value of Uo) confines the

search to a region near the edges of the hypercube, and may thus prevent the finding of the best

paths. On the other hand, use of a linearity whose gain is too low will result in final states that are

not sufficiently close to 0 or 1.

A.3 On the Selection of Parameters for the Hopfield Neural Network

A difficult aspect of the design of Hopfield NNs is the choice of the parameters used in the

connection weights; for the case of the TSP formulation discussed here, we are referring to the

parameters a, b, c, and d. We noted earlier that each of the three constraint terms in the energy

function (which are multiplied by a/2, b12, and c/2, respectively) vanish when the problem

constraints are satisfied. Thus, in principle, it is possible to reach a minimum of the energy

2 Late in ths appendix we discuss the use of simulated annealing, which is a technique thal applies noise of
gradually decreasing power to help the searh escape from local minima, and thereby fird the global minimum.
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function for any values of these parameters. However, the relative magnitudes of these parameters

have a profound effect on the direction of system evolution throughout the N-dimensional

hypercube. Their choice is critical not only to the quality of the solutions that are obtained (i.e., the

tour length), but also to whether convergence to valid solutions (i.e., solutions for which all

constraints are satisfied) is, in fact, achieved.

The coefficients a, b, c, and d reflect the relative importance of the corresponding terms in

the energy equation. In Hopfield and Tank's studies, these parameters were chosen by trial and

error to determine the values that result in the best performance. We make the observation here that

use of an overly large value of d (in comparison to a, b, and c) may lead to solutions that do not

visit all cities; invalid states that may occur include those in which some cities are visited twice as

well as those in which no neurons are activated in a particular tour position. Such behavior may

arise because in this case the NN is concerned primarily with minimizing the length of the tour and

not with the generation of complete tours. Similarly, if d is too small, overly long tours may be

generated because not enough importance is given to the lengths of the tours. The values of the

coefficients that represent the equality constraints, i.e., a, b, and c, must also be determined

carefully.

Another important parameter is the bias current, which for all neurons is Ii = cn; we noted

earlier that Hopfield and Tank used a value of n = 15 in a network corresponding to 10 cities

bteause additional bias was needed to ensure that the correct number of neurons was activated.

The two other system parameters are the slope of the nonlinearity (Hopfield and Tank used uo =

0.02) and the time step size At (the value of which was not specified by Hopfield and Tank).

The choice of system parameters by trial and error is a tedious process. Moreover,

convergence to valid low-energy solutions is not guaranteed. For example, Wilson and Pawley

[A91, while acknowledging the fundamental importance of Hopfield and Tank's method, claimed

that they were unable to reproduce the low-energy solutions that Hopfield and Tank claimed they

found in their initial study. Most of Wilson and Pawley's runs did not converge to valid tours, and

those that did were only slightly better than randomly-chosen tours. After examining the use of

several heuristics to choose connection weights, they concluded that the basic method is unreliable.

A number of other researchers have also investigated the issues associated with the choice

of parameters for Hopfield-Tank TSP networks. For example, Hegde, Sweet and Levy [A 10]

claim to have developed a "cookbook" approach for the determination of these parameters, and

they provide an explanation of why these networks seem to be of decreasing usefulness as the

number of cities increases. Brandt et al. [A5] present an alternative energy function that they claim
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provides better results than the original formulation. Kahng [All] examines the strengths and

limitations of the Hopfield-Tank formulation, and summarizes a variety of heuristics that have been
proposed for NN implementations for the TSP. Although his assessment of the Hopfield-Tank

approach is more favorable than that of Wilson and Pawley, he notes that its lack of robustness

may limit its applicability.

Few studies of the Hopfield NN model have gone deeper than a study of the behavior of

the differential equations that determine the course of system evolution. For example, Aiyer,

Niranjan, and Fallside [A 12] analyze the igenvalues of the connection matrix for the TSP and the

geometry of the corresponding subspaces. They provide an explanation of the dynamics of the

Hopfield network, including a procedure for the determination of the coefficients in the connection

matrix. They claim convergence to valid solutions 100% of the time for problems with as many as
50 cities. Moreover, the average quality of the solutions for TSPs with up to 30 cities was at least
as good as those produced by the nearest neighbor algorithm [A8], which is a well-known

heuristic for the TSP. Although the 50-city problem is still small, in terms of the TSP problems
that can be solved by other (non-NN) methods, the results of this paper seem to indicate that the
Hopfield NN is applicable to larger combinatorial-optimization problems than previously believed.

A.4 The Use of Lagrange Multipliers to Determine the Coefficients in the

Connection Weights

All of the approaches discussed thus far have used constant values for the parameters a, b,

and c. Wacholder, Han and Mann (A 13] made the crucial observation that, since these parameters
are associated with equality constraints that have been incorporated into the energy function, they
can be modeled as Lagrange multipliers. This approach permits the connection weights to evolve
along with the system state and adapt to problem-specific parameters. The problem they addressed
was the Multiple Traveling Salesman Problem (MTSP), which is an extension of the standard TSP
problem. Under the MTSP, M salesmen are to start from a specified city and cooperatively visit
the remaining N-1 cities, such that each city is visited by exactly one salesman, all cities are to be
visited, and the total tour length is to be short.

We illustrate this method for the standard TSP (the details of the MTSP are not critical here)

by rewriting the energy function in the following form:

=0
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where Xi = a2, X2 = b2, and X3 = c/2. The Ei's represent the corresponding "constraint energy"

terms (all of which are zero for a valid solution), and Ep is the path length of the tour (the term
associated with parameter d). The iterative equation for the input voltages is the same as before,
except that the X's are used instead of the fixed values of a, b, and c. However, the Lagrange

multipliers also evolve as follows:

ait

The use of the absolute value here is based on a recommendation by Platt and Barr [A14] as a

means to encourage the satisfaction of the constraints. In iterative form, this is expressed as:

;Llew de+

where it is reasonable to set the initial values of the Xi's equal to 1. The Xi's thus increase in

proportion to the corresponding constraint energy. Thus, when a constraint is not satisfied, the

corresponding connection weights continue to increase, thereby encouraging movement in a

direction that will ultimately satisfy the constraint. Finally, when the constraint on Ei is satisfied

(in which case Ei = 0), Xi stops increasing.

The coefficient multiplying the tour length (i.e., d) cannot be determined in this manner

because this term in the energy equation is the quantity that is to be minimized; it does not represent

an equality constraint. A typical value for d would be about 1 (± 0.5).

The primary advantage of this method is that it eliminates the need to perform a trial-and-

error search for the best system parameters. Such a search is especially time consuming in large

networks because many (e.g., 100) runs with different random initial conditions are typically

needed to assess the performance achievable when a particular set of parameters is used. In

addition, based on our application of this method to routing problems, we suspect that the dynamic

nature of the Xi's provides better performance than the use of the best set of coefficients with

constant values. This is because the relatively small initial values of the Xi's permits the search to

emphasize somewhat the desire to minimize the performance index (tour length in the TSP and

network congestion in the routing problem) during the early part of the iteration. Toward the latter

part of the iteration, the increased values of the Xg's penalize more-heavily system states in which

the constraints are not satisfied; thus the neuron voltages move closer to binary values, and

equilibrium states are reached in which a valid set of neurons is active.
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Wacholder, Han, and Mann [A 13] successfully tested this method on problems with up to

30 cities and five salesmen, and claimed that the algorithm always converged rapidly to valid

solutions. Like the standard implementations of Hopfield networks for the TSP, it should be

possible to implement a system that incorporates the Lagrange multiplier method in hardware.

Therefore, this approach represents an important advance in the implementation of Hopfield nets

for combinatorial-optimization problems.

We have used the method of Lagrange multipliers in most of our NN studies, and have

concluded that this approach aids greatly in the reliable convergence to good solutions. In Sections

4 and 5 we discuss a number of issues that we have encountered in the application of this method
to our problems. For example, the time constant (At)x used for the iteration of the Lagrange

multiplier values should typically be greater than the value of At used for the evolution of system

state. Also, performance is somewhat sensitive to the coefficient in the energy equation that

represents system performance (the d in the discussion of this appendix) and to the additional bias

currents that are added (corresponding to Hopfield and Tank's use of n = 15 for a problem with 10

cities). However, despite the need for some parameter adjustments, it is relatively fast and easy to

determine good values for these parameters. Use of this method has provided considerable

improvement as compared with the trial-and-error method for determining system coefficients,

both in terms of the quality of solutions and the ease with which they have been obtained.

A.S Simulated Annealing and the Search for the Global Minimum

We have noted that the equilibrium states reached by Hopfield NNs are generally local,

rather than global, minima of the energy function. The reason that only local minima can be

guaranteed is that the equations of motion force the system state to follow a trajectory of decreasing

energy; thus it is normally not possible to escape from local minima.3 Simulated annealing (SA)

[A 15, A16, A17] is a probabilistic hill-climbing algorithm that facilitates the escape from local

minima so that the global minimum can be found. Under this technique, the energy function

normally follows a gradient descent; however, random perturbations are applied to permit

occasional transitions to states with higher energy. If these perturbations are large enough, it is

possible to escape the local minimum, thereby permitting the search by gradient descent to resume

in a new location in the search space. We first discuss the basic SA method, and then discuss its

use in conjunction with the Hopfield NN model.

3 It may be possible to move to a state with higher energy in a system in which the connection weights are time

vazying, such as in the Lagmnge-muliplir method discussed earlier.
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The terminology of simulated annealing is based on an analogy with the physical annealing

process, under which the material under study is first heated past the melting point, and then

cooled very slowly until it solidifies, to ensure that a minimum energy state is achieved when the

final temperature is reached. If the material is cooled too rapidly, random fluctuations that occur

during the cooling process will cause imperfections; e.g., a crystal grown with a large number of

defects, which corresponds to a state other than that of minimum energy.

We first consider the application of SA to a purely discrete optimization problem, in which

each of a number of binary variables is to be set to 0 or 1. At each instant in time, the value of a

variable that is chosen at random, is switched. If this switch results in a lower energy, the switch

is accepted and system evolution proceeds from this new state. If the switch results in a higher

energy, the switch is accepted with the Boltzmann probability:

Pr(uphill move = AE) = exp(-AE/T)

where T is a parameter that represents the current "temperature" of the system. Thus, when the

temperature is high, switches that increase the energy are accepted with relatively high probability.

As the temperature decreases, uphill moves are accepted with decreasing probability, until the

algorithm becomes one of pure gradient descent at very low temperatures. Whenever the

temperature is decreased, it must be held constant until thermal equilibrium is reached. Although it

has been proven that, under certain conditions, SA methods of this type eventually converge to the

global minimum, the time required to do so is often prohibitive. A binary NN model of this type,

known as the Boltzmann Machine, has been proposed by Hinton and Sejnowski [A 18]. Faster

convergence is claimed for the Cauchy Machine, proposed by Szu and Hartley [A 19], under which

the system is perturbed by noise with a Cauchy distribution.

Simulated annealing can be used in conjunction with Hopfield NNs to permit the escape

from local minima, as demonstrated by Levy and Adams [A20J and Akiyama et al. [A21]. Analog

neurons with a sigmoidal input-output function, such as that shown earlier in Fig. A-i, are again

assumed. Randomness is incorporated into the model by adding Gaussian noise to each of the

neuron input voltages. Initially, a relatively large noise variance is applied, corresponding to a

high temperature. The noise variance is then decreased slowly, permitting equilibrium to be

reached at each temperature, as described above. The slope of the nonlinearity is also varied

during the annealing process. During the early stages, when the temperature is high, a relatively

flat curve (corresponding to a large value of uo) is used. As the temperature decreases, the

sigmoidal curve is gradually made steeper. The use of a low-gain system in the early stages
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permits the search to spend more time in the interior of the hypercube, thus, in effect, postponing

the final decision on the state of each neuron; in the latter stages, it is desirable to have a sharp

nonlinearity to ensure that the corners of the hypercube are, in fact, reached. The annealing

schedule and sharpening schedule should be coordinated with each other; e.g., use of a high

variance noise process with a steep nonlinearity can be expected to cause oscillatory behavior (and

thus failure to reach equilibrium). On the other hand, noise of low variance will have very little

effect on a system with a relatively flat nonlinearity.

A noiseless Hopfield NN with a nonlinearity that steepens gradually as time progresses can

also be considered. Such an approach, which is essentially SA but without the noise, has been

called mean field annealing (MFA) [A22]. As in systems with noise, since hard decisions on the

neuron voltages do not have to be made at the early stages of the iteration, a better search can be

performed in some cases. However, MFA does not permit gradient hill climbing. Thus global

minima cannot be guaranteed.

We have applied both MFA and SA techniques to the Hopfield NN models used in the

solution of the routing problem. Detailed discussions of the specifics of our model and our results

are presented in Sections 3, 4, and 5.
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APPENDIX B

TABLES OF THE PATHS AND SD PAIRS ASSOCIATED WITH THE
NETWORKS OF FIGURES 4.1 AND 4.10

Ta e.I.isuinofa asorte 2C fl eenetworof 1i..1
SD Pair I[4,24

Path Nodes Traversed
V___ 1.__ 4 5 13 20 24 '

1, 4ZlL.. 4- 7 14 19 20 24
2, P1. 4 3 6 11 12 13 20 24

3 -4 4 7 13- 20 24
4.____ P4 5 14 19 20 24
5,F, 4 3 6 8 9 12 13 20 2

Path Nodes Traversed
9 .1 7 14 15 17

7P22 7 11 12 13 19 14 15 77

Pth Nodes Traversed
8""P3-1 9 11 7 14 15 16

9, 3- 9 8 6 5 14 15 16
J0 P3- 9 12 13 19 14 15-- 16

1,P1 9 12 7 14 15 16
D Pair 4[,9

Path Nodes Traversed
129____ 1 4 5 13 19

13 .2 1 2 3 6 7 14 19
1443 7 14 19

15 4 1 2 3 6 11 12 13 19
16, s 1 4 5 14 19

17 6 1 4 7 13 19
-1,1 2 3 6 8 9 12 13 9

4 1 2 3 6 5 14 19

Path Nodes Traversed

2,5 6 11

mm.m.~m 5 13 12 11
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Tabl BI.Lstinof pasor te 24no enetworof Fi.4.1 (continued)
SD Pair6 0]7,61

Path- Nodes Traversed
21 272 20 13 5 6

2 .2 21 24 20 19 14 7 6
25 21 22 20 13 12 11 6

2P64 21 24 20 13 5 6
2796. 21 22 20 19 14 7 6

289 .6 21 24 20 13 12 9 8 6
29'P. 21 24 20 13 7 6

30 69 21 22 20 19 14 5 6
31'P. 21 24 20 13 12 11 6

3, 10 21 22 20 13 7 6
23,1 24 20 19 14 5 6

12 21 22 20 13 12 9 8 6
SDPair 7 1,10] -

Path__ Nodes Traversed-

5 71 1 4 7 11 10
361 2 3 6 8 9 10

J 1, r733 1 4 5 13 12 9 10
38,PZ, 1 6 11 10

SD Pair 8 [3,181
Path Nodes Traversed

3. 4 5 14 15 18
-4, . 3--6- 7 14 15 18

41 . 3 6 11 12 13 19 14 15 18
42,p4 3 4 7 14 15 18

43,____ 3 6 5 14 15 18
84.6 3 6 8 9 12 13 19 14 15 18

SDPair 92,12
Pt Nodes Traversed

-4,2 3 6 11 12

47, 7___ 4 5 13 12
4, A 2 3 6 8 9 1

SD Pak 10 [14,81
Path Nodes Traversed

-49,P o 14 5 6 8

51PIO3 14 !19 13 12 9 8
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Table B.2. A listins of SD pain. number~ of p kis ad tlaf fic
associated with the 100-node network of Fig. 4.1&

Np~s)Nonuniform Traffic

--- " -----r 4:4,5---

SD ----- ir 5:--- I
pair "''': 61,1"6

--- "--r ------

-- Ti - -- -- ' -

_--T3 -- r ----
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