
I

o,,Ip

00 CENTER FOR SOFTWARE ENGINEERINGN
N ADVANCED SOFTWARE TECHNOLOGY

Subject: REUSE TOOLS TO SUPPORT ADA

INSTANTIATION CONSTRUCTION

Final Report DTIC
E -ECTE
0CT 3 01990

CIN: C02087KV000100 E LI
I JUNE 1990

DISTP '[-lease;

Ar:T7 ,' ,7",;, 7 ' rlue

REPORT DOCUMENTATION PAGE 1 0

Puic .paftV bu, w " V tc~tno I~ab do mom ien W - w a=, Ihowper igapoWu. biukg the g W ,4n*gkulu sand~i l "ae mev go"~ W4
MWrmgth dM neo'. JMd ?WW1~nqVi mft dh Wldwm~x COMf M wwtw mabu wft af WI m mopea at th Colo 01 amYY~I i~
Im vudCX, Vtbae~ mbg, eqamSeeit. okamraet for No,In M=W~Wm~ 1215 Jduuc Davi Ho". Suft 120. AftqW1o. Vh == to
toe Otim ItNamn a. Maneralut w4d BudgP No0ton4 DC 208

1. AGENCY USE ONLY (L"" BWk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 Jun 90 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Reuse Tools to Support Ada Instantiation Construction DAALO3-86-D-0001

0. AUTHOR(S)

Patrick J. Merlet

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Software Productivity Solutions, Inc. REPORT NUMBER

122 N. 4th Ave. 1293
Indialantic, FL 32903

9. SPONSORINGWMONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGMONITORING AGENCY

US Army Research Office REPORTNUMBER

P.'. Box 12211 89037
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

JNLINITED

13. ABSTRACT (Maxmum 200 words)

he primary objective of this effort was to investigate the feasibility of developing a
eneralized component comstruction capability, building on the concepts and experiences of
he CAMP effort. This report provides a detailed analysis of the CAMP project and
omponent constructors. A broad investigation of alternative approaches is presented,
long with a detailed investigation of reuse environment integration. Software adaptation
s identified as an essential aspect of reuse. A detailed approach is proposed for the
evelcpment of a domain-specific adaptation and reuse capability, with specific recommen-
ations for future R&D.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Adaptation and Reuse, Programming Language Evolution, CAMP, 100
Component Construction, Ada, Composition 16. PRICE CODE

17. RERT 8 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMrTATION OF ABSTRACT
OF RE PORT OF THIS PAGE OF A D!: l,%AC; I

UNCLASSIF UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 Standard Form 298, (Rev. 2-89)

Pmea by ANSI Sid. 2M-l6
29"-1

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

3lock 1. Agency Use Only (Leave blank). Block 12a. DicRtribution/Availability Statement-
Denotes public availability or limitations. Cite

Block 2. Ro. ~ Full publication date any availability to the public. Enter additional
including day, month, and year, if availab!e (e.g. limitations or special markings ir, all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered.
State whether report iE interim, final, etc. If DOD - See Do--: 5230.24, Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Ttl.andSubtittfl. A title is takun from DOE - See authorities.
the part o' the report tf ct provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank.

Block 5. Fundin, Numbers. To include contract DOE - DOE - Enter DOE distri:..tion categories
and grant numbers; may include program from the Standard Distribution for
element number(s), project number(s), task Unclassified Scientific and Technical
number(s), and work unit number(s). Use the Reports.
following labels: NASA - NASA - Leave blank.

NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA - Task F.iock 13.Abtract Include a brief (Maximum
PE - Program WU- Work Unit 200 words) factual summary of the most

Eiement Accession No. significant information contained in the report.

Block 6. Author(s). Name(s) of person's)
responsible for writing the report, performing Block 14. SubjectTerms. Keywords or phrases
tne research, or credited with the content of the identifying major subjects in the report.
report. If editor o, -ompiler, this should follow
the name(s). Block 15. Number of Pages Enter the total

Block 7. Peforming Organization Name(s) and number of pages.
Addre~zs~es Self -explanatory. Block 16. rice Coe Enter appropriate price

Block E. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications
performing the report. Self-explanatory. Enter U.S. Security

Block 9. S~_o g!nitorin Agen Classification in accordance w.:n U.S. Security
NameIs) and Address(ec> Self-explanato. Regulations (i.e., UNCLASSIFIED). If t.rm

contains classified informatior, Stamp
Block 1C. Sponsori g/Mon itoring Agency classification on the top and bottom o; the page.
Report Number. (If knrwn)

Block 20. Limitation of This blockBlock ", ". Supplementary Notes. Enter must be completed to assign a limitation to the
inform..;on not included elsewhere such as: mast e eter to (unlimit) o AR
Prepared in cooperation with...; Trans. of...: To abstract. Enter either UL (unlimited) or SAR
be published in.... When a report is revised, (sam' as report). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is a:sumed to be unlimited.

Standa-d Form 298 Eack (Rev. 2-89)

Reuse Tools to Support Ada
Instantiation Construction

Final Technical Report

Prepared by
• ,) .,;~ Y r

Patrick J. Merlet ..,S GRAM,

toJ0 O Ps Is''Etif icaqtion_

Bys bto

Software Productivity Solutions, Inc. , ,t: Codes

122 4th Avenue , , ./o-
Indialantic, FL 32903

Prepared for

U.S. Army Communications-Electronics Command (CECOM)
Center for Software Engineering
ATTN: AMSEL-RD-SE-AST-SS
Ft. Monmouth, NJ 07703-5204

June 1, 1990

Contract No. DAAL03-86-D-0001
Delivery Order 1293

Scientific Services Program

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

Executive Summary

The purpose of this research project is to investigate the feasibility of
developing Reuse Tools to Support Ada Instantiation Construction, building
on the experiences of the Common Ada Missile Packages (CAMP) program.
The work has been performed by Software Productivity Solutions, Inc., of
Melbourne, Florida for the U.S. Army Communications-Electronics
Command ,(CECOM).

While meeting the objectives of this project, we did not strictly adhere to
the four tasks outlined in our approach to meet these objectives. Our primary
objective was to investigate the feasibility of developing a generalized
component construction capability that relieves some of the problems of
domain-dependence and part maintenance, building on the concepts and
experiences of the CAMP effort. Our secondary objective was to investigate
the integration of component construction technology with existing and
emerging software development environments.

The four tasks (see Section-.2) were specified as follows: 1) analyze the
CAMP methodology, 2) define the requirements for a generalized constructor
capability, 3) investigate development environment integration, and 4)
demonstrate the feasibility of the generalized constructor capability. Towards
the end of Task 1, we began to investigate alternative generalized constructor
approaches, in effect opening a Pandora's box.>Although thought to be a
relatively straightforward exercise, we were faced with the realization that /
selecting an appropriate alternative approach was infeasible. - .

There are several reasons why we were unable to select an alternative
generalized approach, all of which stem from unexpected research findings.
First, we learned that the CAMP constructors were hard-coded. This was a
real surprise. It was generally assumed that there was a knowledge-based
component schema representation and rule-based component construction
foundation upon which we would be able to refine and build upon.
Secondly, it was assumed that the selected approach would be a matter of
choosing an appropriate constructor-constructor type strategy to solve the
maintainability problem, and incorporating and encapsulating domain
knowledge where appropriate to relieve the domain-dependence problem.
Once we began to explore alternative approaches outside of the CAMP arena,
we gained a new perspective of constructors. We learned of the central
importance of adaptation (and how little we know about it), the implications
of programming languages and their evolution, and the necessity of a
domain analysis for the development of a domain-specific adaptation and
reuse capability. As a result of all of this, it was not possible to proceed with

ii

Task 2. However, our newfound insight provided us with a better
understanding of constructors and their generalization.

We then proceeded to Task 3, the investigation of developm'lent
environment integration. The expert system investigation led us to the
conclusion that we have yet to develop a sufficient understanding of the
expertise necessary to adapt reusable software components for specific
applications. If, after developing the GCC requirements and/or a GCC
specification, it becomes clear that some aspect(s) of the GCC are best suited for
an expert system, then it would be appropriate to impose expert system
implementation requirement(s).

The reuse environment investigation turned out to be surprisingly
interesting and educational. Our previous work (from Task 1) had taught us
of the synergy between the GCC, adaptation, and reuse. During Task 3, we
built upon this observation, learning that not only was there a good
integration between the GCC and reuse environments, but that reuse
environments have a much needed automated adaptation capability. This
investigation grew to include a detailed operational scenario and a significant
amount of analysis. Thus, while we have not addressed Task 4 in the
manner originally planned, we believe that this effort (Task 3) serves as a
demonstration of the GCC's feasibility.

As far as defining the GCC requirements (as called for in Task 2), we
believe that the scope of the requirements definition was larger than
anticipated, and additional research is required. We have observed that there
is an enormous amount of basic research in progress which is potentially
applicable to the autumated adaptation and reuse of software components.
While promising, none yet have demonstrated the capability to scale-up to
the demands of software engineering in-the-large.

We strongly recommend that CECOM continue to fund this research and
development effort. We consider the current effort to have been a necessary
but preliminary effort. Domain analysis h"s bz.-'n identified as essential to the
development of a domain-specific adaptation and reuse capability, while
adaptation has been identified as essential for software reuse in general. In
addition, continued R&D of specific programming languages/systems holds
great potential for achieving advanced software adaptation and reuse.

A new strategy is proposed for developing the GCC. The new approach
includes a significant amount of research and detailed study, including the
following three major thrusts: a C2 domain study; exploratory software
adaptation research; and a detailed study of programming languages/systems.
We believe this level of effort is necessary to successfully derive the GCC
requirements.

iii

Table of Contents

1 Introduction .. 1

1.1 Problem Statement .. 1
1.2 Objectives and Approach .. 3
1.3 Format of the Report ... 4

2 Common Ada Missile Packages (CAMP) Analysis 5

2.1 CAM P Background ... 5
2.1.1 External Interfaces ... 7

2.1.2 User Interface ... 7

2.1.3 Internal Data ... 8

2.1.4 Constructor Processing .. 8

2.1.5 Outputs ... 9

2.1.6 Development Methodology .. 9

2.1.7 Use of Expert System Technology .. 10

2.2 Analysis of the CAM P Approach ... 13
2.2.1 Conclusions and Recommendations of the CAMP Developers 13

2.2.1.1 Concerning the Ada Programming Language 13

2.2.1.2 Concerning Ada Compilers ... 14

2.2.1.3 Concerning Ada Parts and Part Catalogs 15

2.2.1.4 Concerning Component Constructors .. 16

2.2.2 Analysis of the CAMP Parts .. 18

2.2.3 Analysis of the CAMP Component Constructors 21

2.2.4 Modification Required to Support Another Domain 32

2.2.5 Adaptations within CAMP ... 34

2.3 CAM P - Phase 3 ... 35

3 Generalized Construction Approaches 38

3.1 Software Composition and Construction Technology
Assessment .. 41

3.1.1 Software Composition Mechanisms ... 41

iv

3.1.2 Software Construction Research ... 43

3.1.2.1 Programmer's Apprentice ... 44

3.1.2.2 G ist ... 46

3.1.2.3 D raco .. 47

3.1.2.4 ASLs and the SSAGS ... 48

3.1.2.5 Frarze-Based Software Engineering ... 50

3.1.2.6 Meld ... 51

3.1.2.7 CAMP .. 52

3.1.2.8 Prototype System Description Language (PSDL) 52

3.1.2.9 Software Templates .. 53

3.1.2.10 Software Construction Mechanisms ... 54

3.2 Composition and Construction of Ada Components 55

3.3 The Evolution of Computer Programming Languages 57

4 Development Environment Integration 66

4.1 Expert System Development Tools 66

4.2 Reuse Environments ... 68
4.2.1 Automated Reusable Component System (ARCS) 68

4.2.1.1 Reuse Library System (RLS) ... 68

4.2.1.2 Checkout Tools (CTs) .. 70

4.2.1.3 Reuse Library System/Checkout Tool Protocol 72

4.2.1.4 Operational Scenario .. 74

4.2.2 The Integration of the GCC within Reuse Environments 81

5 Conclusions and Recommendations 85

5.1 Summary of the Conclusions ... 85

5.2 Summary of the Research Effort .. 87

5.3 Recommended Future Directions 90
5.3.1 Software Adaptation Research ... 93

5.3.2 C2 Domain Study .. 93

5.3.3 Programming Languages/Systems Study .. 94

References ... 95

V

Appendix A -Glossary of Acronym's99

vi

List of Figures

Figure 1-1 Overview of the AMPEE System .. 2

Figure 2-1 Kalman Filter Constructor - High-Level View 10

Figure 2-2 Overview of a Schematic Part Constructor 11

Figure 2-3 Assembling [Composing] an Autopilot Application 21

Figure 2-4 CAMP Schematic Construction ... 23

Figure 2-5 Classes of Schematic Construction ... 25

Figure 2-6 Example Subsystem Composition ... 26

Figure 2-7 Example Component Generation .. 27

Figure 3-1 Research Summary--Gaining a New Perspective 39

Figure 3-2 Technological Evolution .. 58

Figure 3-3 Evolution of Computer Programming Languages 59

Figure 3-4 Constructors are Evolutionary Vehicles 60

Figure 3-5 What Constitutes a Constructor ??? ... 62

Figure 3-6 Constructor Implementation Spectrum 64

Figure 4-1 Reuse Library System External Interfaces 69

Figure 4-2 Reuse Library System/Checkout Tool Protocol 73

Figure 4-3 Operational Scenario ... 75

Figure 4-4 Component Dependencies ... 76

Figure 4-5 Library Classification Scheme ... 78

Figure 4-6 Operational Scenario ... 79

Figure 4-7 Operational Scenario (cont.) ... 81

Figure 5-1 A Domain-Specific Adaptation and Reuse Strategy 89

Figure 5-2 Developing C2 GCC Requirements ... 91

vii

List of Tables

Table 2-1 Example CAMP Parts/Packages Structure 19

Table 2-2 Characteristics of the CAMP Component Constructors 29

Table 3-1 Ada Construction Techniques ... 56

Table 3-2 Adaptability and Reusability of Ada Components 57

viii

1 - Introduction l'age 1

1 Introduction

The purpose of this report is to investigate Reuse Tools to Sup.iort Ada
Instantiation Construction, and the feasibility of developing a generalized
component construction capability, building on the concepts and experiences
of previous research. The following sections identify the problem, describe
our objectives and approach, and specify the format of the report.

1.1 Pr.blem Statement

The Common Ada Missile Packages (CAMP) project (primarily funded by
the STARS Joint Program Office, sponsored by the Air Force Armament
Laboratory, and performed by McDonnell Douglas) produced methods, tools,
and software parts to support the construction of missile systems using
reusable software technology. A primary result of this effort was the
development of a prototype automated parts composition system, called the
Ada Missile Parts Engineering Expert (AMPEE) system.

According to the CAMP developers, the AMPEE "alleviates many of the
problems associated with software reuse by providing the user with an expert
assistant to advise him on the availability and relevance of CAMP reusable
Ada software parts to his application, and to aid in the development of
software systems by automatically generating the required code for particular
operations or subsystems of the application." While the CAMP developers
admit that "much of the AMPEE system is CAMP-specific, the underlying
principles are applicable to a variety of domains." [MCN88a]

It would be advant.: geous to the Army to acquire the AMPEE capabilities
developed by CAMP and apply them (if feasible) to its domains of interest,
such as command and control (C2). Figure 1-1 [MCN86b] provides an
overview of the AMPEE system.

Reuse Tools to Support Ada Instantiation Construction

1 - Introduction Page 2

M slo---any
DEC VAX

(AMPEE) Easy t use
System '' i

Easy io add io

Pas Pas Usage PaG r Source Codae g[ist Inst ructnon Aot a Paros

Tofindapproprialesoiwt pa ealy To find ou all ileftmeaon &bouL the TogeneralesOJStol I
in oOM to facitate trade-ostues., Pari (.e.. aplication &M , sofw re

0ost estimtes. siz5ginfiming aiwsis * To manage the pans data base OWlOnts romst;.. Josans

Missile System Engineer Software Engineerr

Ee Missile System Design Phase soft e D Phe I Software Coding Phase

Figure 1-1 Overview of the AMPEE System

The AMPEE is composed of the following three major subsystems
[MCD85a]:

Parts Catalog Subsystem - provides the user with a means of
entering, modifying, deleting, and disseminating information about
reusable software parts

Parts Identification Subsystem - assists the user in the early
identification of software parts that may be relevant to his particular
application; provides the capability of mapping high level user
requirements to software parts

Component Construction Subsystem - provides the user with a
means of generating customized software components from
tailorable software parts that are available in tthe parts catalog; also
provides for the regeneration (i.e., generation based on modified
tailoring requirements) of software components

Reuse Tools to Support Ada Instantiation Construction

1 - Introduction Iage 3

Out of these three subsystems, the Component Construction subsystem
shows the most promise for being "extended to another domain." [SOW] In
fact, portions of this subsystem were intentionally designed to be domain-
independent, and may be directly applicable to the development of Army
software in other domains. However, many of the CAMP constructors are
highly domain-dependent. Besides being highly domain-dependent,
maintenance is also a potential problem for the CAMP constructors because
they are intimately tied to the software parts they support. [MCN88a]

1.2 Objectives and Approach

The primary objective of this effort is to investigate the feasibility of
developing a generalized component construction capability that relieves
some of the problems of domain-dependence and part maintenance, building
on the concepts and experiences of the CAMP effort. Another objective of
this effort is to investigate the integration of component construction
technology with existing and emerging software development environments.
The following four tasks outline our approach to meeting these objectives.

1) Analyze the CAMP methodology. Of particular concern are the
effort required to move the CAMP constructors to another domain,
and the potential constructor maintenance problem which the
CAMP developers have identified. Recommendations will be made
regarding the use, potential modification, or non-use of the CAMP
parts composition method and component constructors. Alternate
software composition and component construction methods will be
investigated, postulated, and compared to the CAMP approach.
Based on this analysis, methods appropriate for the C2 domain will
be selected for further investigation.

2) Define the requirements for a generalized constructor capability.
Based on the methods selected in Task 1, the requirements for a
Generalized Constructor Capability (GCC) will be defined.
Operational, information, processing, and interface requirements
will be addressed. Quality goals and design constraints will also be
identified.

3) Investigate development environment integration. Approaches
and implications of integrating the GCC within software
development environments will be investigated. In particular, the
suitability of commercial off-the-shelf (COTS) software to support
the GCC implementation will be determined. This investigation
will be focused on expert system development environments and
reuse environments.

4) Demonstrate the feasibility of the generalized constructor capability.
The feasibility of the GCC will be demonstrated by first developing a

Reuse Tools to Support Ada Instantiation Construction

1 - Introduction Page 4

prototype design for the GCC, and then providing an appropriate
proof-of-concept. The proof-of-concept may consist of developing
and analyzing operational scenarios which illustrate the application
of the GCC within a given C2 environment.

During the course of this STAS, we were forced to modify our approach to
meeting the primary objectives. Specifically, Task 2 has been deferred until
additional research can be conducted. The format of the report (detailed in
the following section) has been modified to reflect the actual approach which
was taken in meeting the primary objectives. (For additional information,
see Section 5.2.)

1.3 Format of the Report

Section 2, Common Ada Missile Packages (CAMP) Analysis, contains a
detailed analysis of the CAMP project (Phase I and 2). Particular emphasis is
placed on the CAMP constructors. A brief and preliminary analysis of the
Phase 3 effort (still underway) is also provided.

Section 3, Generalized Construction Approaches, contains an assessment
of software composition and construction technology, including a review of
several research and development projects. This is followed by an
investigation of the composition and construction of Ada components in
particular. The section concludes with an historical account of the evolution
of programming languages, and how this is related to component
constructors.

Section 4, Development Environment Integration, documents our
investigation of the integration of the GCC with both expert system
development environments and reuse environments. The reuse
environment investigation includes a detailed operational scenario which
demonstrates how the GCC will impact future reuse library systems.

Finally, Section 5, Conclusions and Recommendations, summarizes the
conclusions reached during this effort, the research effort itself, and then
presents our recommendations for future research and development.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 5

2 Common Ada Missile Packages (CAMP) Analysis

This section of the report documents our analysis of the CAMP
methodology, with emphasis placed on the CAMP component construction
approach. After providing the background of the CAMP effort, we then
analyze the CAMP Phase 1 and 2 projects in detail, followed by a more brief
analysis of the latest developments from the CAMP Phase 3 project.

2.1 CAMP Background

CAMP identified three kinds of parts that could be used to implement an
application system: simple parts, generic parts, and schematic parts. A simple
part is an Ada software unit which can be reused "as is." A generic part is an
Ada software unit which allows tailoring through the use of Ada's generic
facilities. Kinds of tailoring permitted by Ada generics includes: importing
application-specific data types, data objects, and subprograms. A schematic
part is a template with a set of rules for generating Ada software units.
Schematic parts handle types of tailoring not supported by Ada generics. The
rules for program generation are generally very application-specific, and the
generated code will "custom fit" those specific needs.

Simple and generic parts are intended for use during detailed design and
coding. Schematic parts represent design-level information, and are intended
for use during the requirements and design phases. [MCN86b] A key feature
of CAMP parts is their open architecture. The user has full visibility into
underlying or contextual parts defining a given part's environment. Pre-
defined and/or application-specific objects, types, operations, and packages can
be selected by the user to define a part or its environment. [MCN88b]

CAMP developed two types of tools (called constructors) to support the
tailoring of software parts: generic instantiator and schematic parts
constructor. A generic instantiator assists the part user in instantiating Ada
generic parts, and a schematic parts constructor assists the part user in
generating Ada code from schematic parts. Using questions specified by the
part designer, both types of constructors have a dialogue with the reuser to
collect necessary application-specific inputs and create the appropriate Ada
code. [MCN86b] Whether the part is a generic or schematic part is transparent
to the reuser. The parts constructors can be used for "what if" analysis as well
as code generation. [MCN88a]

A custom constructor is developed for each and every schematic part, and
for those generic parts deemed "suff-iciently complex." Many of the CAMP
generic parts had complex interfaces. Complexity can be hidden from the
reuser through the use of defaults, but the defaults may need to be
overridden. [MCN86b] The complexity metric used to determine if a

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 6

constructor was needed was the number of generic parameters of the part.
Parts with a small number of parameters are called "simple generics," and are
instantiated without the use of a constructor. [MCN88a]

The constructors are part of a system called the Automated Missile Parts
Engineering Expert (AMPEE) system. Despite the fact the code is generated by
the AMPEE system, it is very important to note that the AMPEE primarily
supports a parts composition approach to software reuse (as opposed to a
program generation approach). A parts composition approach builds new
application systems using actual code components, while a program
generation approach generates the code for the new application system
entirely from scratch.

The CAMP developers believe that universal code generation technology
is not yet feasible for real-time embedded applications. In order to meet the
efficiency requirements of the CAMP parts, the AMPEE constructor
capaoilities are very part-specific. Although the parts and constructors are
domain-specific, "the top-level design of all of the constructors follows the
basic paradigm of inputs-processing-outputs." [MCN88a]

Based on various CAMP documentation, we have extracted constructor-
independent requirements for the CAMP part constructors. They are
intended to give a feel for, and provide an understanding of, what an AMPEE
constructor does. The requirements are organized as follows:

" External Interfaces, describing the external software required to
support the constructor.

* User Interface, describing scenarios of system-level and constructor-
specific user interaction to perform a construction task.

" Internal Data, describing the information stored internally and
manipulated locally by each constructor.

" Constructor Processing, describing the processing performed by
every constructor, divided into analysis and code generation phases.

" Outputs, describing the outputs of a constructor.

• Development Methodology, describing the method for developing a
part constructor.

" Use of Expert System Technology, describing the use of expert
system technology in implementing AMPEE and the constructors.

These topics are addressed in more detail in the following sections.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 7

2.1.1 External Interfaces

The AMPEE requires the use of an expert system shell and a higher order
language (HOL) to implement the constructor and support its run-time
execution.

Interfaces to the host file system are used to access fixed code fragments
used in part construction, and to write the generated part code to source files.
This capability is handled using the input/output facilities of the HOL.

Interfaces to a parts catalog subsystem are used to acquire the locations of
"fixed" portions of part code. The catalog schema also contains other part
information used by the constructor.

Other interfaces to host system are used to acquire user identifications and
time stamps, both of which are used to tag constructor schema information.

The AMPEE also interfaces with the screen management facilities of the
host system. Most of its user interface capabilities are provided through the
expert system shell, although a few are accomplished via an HOL interface
direct to the host system.

Finally, the AMPEE includes interfaces to an Ada compilation system for
compiling the parts.

2.1.2 User Interface

The user interface to the AMPEE can be divided into system-level
interaction capabilities, and interaction with constructors. The system-level
interaction follows the following scenario:

" Log the user onto the system. (The system verifies validity of the

user requesting services.)

* Solicit identity of the part to be constructed. (The system verifies
that a constructor for the part exists.)

" Obtain the name of the file where the constructed Ada part code is
to be written.

* Transfer control to the specific parts constructor and return after
generation is completed.

Interaction with individual constructors follows the next scenario:

Prompt the user for required inputs. (The constructor formats the
inputs and checks conformance to input constraints. For example,
some inputs may be required to be valid Ada identifiers). CAMP

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 8

used both menu-based and forms-based mechanisms to collect the
input. Requests are made using a domain-oriented language.

" The user must have a knowledge of Ada to provide appropriate
information for generating certain code, and must have a
knowledge of the application domain to produce meaningful
outputs.

" For generic instantiations, the user may have the option of selecting
among pre-defined objects, types, operations and packages from the
parts base, or of providing user-defined objects, types, operations
and packages.

2.1.3 Internal Data

The specific user requirements are captured and stored in schema (called a
"response schema" in [MCN86b] and "requirements sets" in (MCN88a]).
These schemas are permanently stored for future browsing, updates, and
regeneration of code.

Various intermediate data structures are used in constructing the
component. Local facts are used to control the firing of rules. For generic
parts, knowledge is encoded which supports part instantiation. For schematic
parts, knowledge is encoded about the component blueprint, Ada coding
procedures, and efficiency issues.

2.1.4 Constructor Processing

The processing performed by a constructor can be divided into two phases:
an analysis phase, and a synthesis phase.

During the analysis phase, the AMPEE collects part-specific data and
options, and analyzes the user inputs (part requirements) for completeness
and consistency. The user inputs (part requirements) are converted into an
intermediate form for further processing.

During the synthesis phase, the AMPEE generates Ada code according to
the part template and user requirements. "In general, the data type
definitions are generated first, followed by instantiations of CAMP parts
and/or production of new code.... [Clomplexity varies considerably among
constructors." [MCN88a]

Capabilities are also provided with each constructor to browse and modify
requirements previously specified for a part, and to "regenerate" a component
using the new requirements.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 9

2.1.5 Outputs

Outputs from Pach AMPEE constructor consists of the code implementing
the part, and a header for that code. The contents of a header are custom-
generated for each kind of part. For generic parts, the generated code does not
just include the instantiation of the generic, but also includes code providing
context for the generic.

2.1.6 Development Methodology

The following methodology is defined for developing a constructor using
the CAMP approach (MCN88a].

Prior to developing a constructor, there must be "an intensive analysis ...
to determine if there is sufficient demand for such a constructor to warrant
the non-trivial development cost. For example, the Kalman Filter
Constructor comprises some 8000+ lines of Lisp/ART code a id has access to
another 2700 lines of code in common utilities."

Once the decision is made to implement a constructor, a constructor
developer works with a part developer to define their respective
requirements. Two kinds of graphical representations are developed in
support of the requirements definition of the constructors: screen flow
diagrams and constructor high-level view diagrams.

Screen flow diagrams are used to define a user dialogue. Their definition
can help "point out omissions in the requirements and misunderstandings
between the intent of the Ada part designer and the constructor designer."
Note, while there are other examples of screen flow diagrams, there are no
constructor screen flow diagrams within the CAMP documentation.

Constructor high-level view diagrams depict the CAMP parts that will be
used, packages to be provided by the reuser, and packages that will be output
by the constructor. It also shows the major options available to the reuser, or
decisions the reuser must make. Figure 2-1 provides the only constructor
high-level view diagram we found within the CAMP documentation.
[MCN88a] The diagram shows that the reuser has choices to make regarding
the provision of data types and operations, and must select betwecA
alternative CAMP Kalman filter parts. The output of the constructor consists
of a data types package and the actual Kalman filter component.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 10

User Inputs I CAMP Parts

IKF KF KF KE
Default Common Compact H Complicated H

Data Types Parts Parts Parts

User-Provided
Data Types -O

Data Type automato
Requirements

[Data Types Component

Figure 2-1 Kalman Filter Constructor- High-Level View

2.1.7 Use of Expert System Technology

A key aspect of the Phase s CAMP automation research was in the
applicability of expert systems technology, where the researchers concluded
that oexpert] systems have a high potential in the automation of the software
parts engineering process ... and would be the best vehicle for building the
schematic part constructors.

To be more specific, CAMP Phase 1 proposed the use of an expert system
shell to build the AMPEE. An expert system shell provides mechanisms for
expressing and storing domain knowledge, and an inferencing mechanism to
process that knowledge. Domain knowledge is usually expressed in terms of
facts and rules. The result is a domain-specific expert system, of which the
AMPEE is an example. In this way, the CAMP developers hoped to focus on
techniques for construction, and not for building expert systems. Figure 2-2
[MCN86b] illustrates the CAMP approach for using an expert system for

component construction.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 11

Missile
UserSoftware

RequirementsSystem

Constructor

Customized
. Software

nComponent

Knowledge Base The knowledge base contains the

descnption of the schematic part
SFat and a set of construction rules

SSchemata used to generate an applicationi~i
-- s..-...... specific software component from

Expert e m ,,. the schematic part.

Figure 2-2 Overview of a Schematic Part Constructor

The use of an expert system over conventional software design approaches
was preferred by CAMP for the following reasons [MCN86b]:

They are better suited than conventional systems when the
processes being implemented are evolutionary in nature. An expert
system need only change the knowledge base when the process
changes. With a conventional approach, the code must be
modified.

They are very powerful symbolic processors, requiring only a small
number of rules to implement a schematic constructor.

Most expert systems have powerful facilities for building user
interfaces.

CAMP Phase 1 concluded that there are lots of capabilities where expert
systems technology could be specifically applied to the parts construction
system. "Expert features" that can be provided by constructors include
[MCN86b]:

* Providing the expected format of input data to reusers.

* Optimizing user provided inputs (an example constructor-specific
optimization is elimination of redundant state transitions from the
Finite State Machine (FSM) constructor inputs).

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 12

* Checking for input correctness (an example constructor-specific
check is testing for non-determinism in state transitions irom the
FSM inputs).

* Selecting target code constructs (for example, choice of using the
"case" versus "if-then" statements).

CAMP selected the Automated Reasoning Tool (ART) and Common Lisp
to support the AMPEE development and operation. The Phase 1 effort was
hosted on a microVAX since VAX equipment is widely available, but various
problems led to a rehosting to a Symbolics 3620 for Phase 2 (in particular, the
poor performance of VAX Lisp, and a rehost of VAX ART to the C language).
[MCN88a] ART was originally selected as the expert system for the AMPEE
because it is a commercial product and is available on the VAX.

After Phase 2, the CAMP researchers concluded that "for the most part an
expert system was not required." [MCN88a] As they developed the CAMP
parts and the AMPEE system, they found sequential solutions for problems
originally thought to be non-deterministic.

Actual usage of the ART expert system shell was for "data structuring (via
the ART schema system), ... consistency checking and interface control (via a
small number of simple forward-chaining rules), and for display of the
missile software hierarchy." Many features of ART were never used by
CAMP. [MCN88a]

Among the disadvantages of using an expert system shell cited by CAMP
(in particular, the ART) are:

• Limited portability (ART must be available on the user's processor)

• Prohibitive cost (ART is a high-end expert system)

• Achieving and maintaining compatibility with the current version
of host operating systems

* Poor startup performance (the AMPEE must be reloaded and its
state reconstructed on every use of the system)

° Poor response time performance (the ART can leave the user
hanging in the middle of an operation)

Early on, the CAMP developers recognized that a traditional database
management system could be used for the parts library, but in their desire to
share information among the AMPEE subsystems, they decided to implement
this capability using ART as well. [MCN86b] However, the degree of
interconnectivity of the CAMP subsystems turned out to be less than desired.
[MCN88a]

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packaizes ICAMP) Analysis Page 13

2.2 Analysis of the CAMP Approach

This section provides our analysis of the CAMP parts composition and
component construction approach. We begin by reviewing the conclusions
and recommendations provided by the CAMP developers. We then perform
a detailed analvsis of the CAMP parts, parts composition, and component
constructors. Next, we explore the implications of modifying the CAMP
constructors to support other domains. Finally, we look at the kinds of
adaptations provided by CAMP.

2.2.1 Conclusions and Recommendations of the CAMP Developers

Having conducted a multi-year research program to demonstrate the
feasibility and value of reusable Ada software parts in real-time embedded
(RTE) applications, the CAMP developers carefully documented their
"lessons learned" in the CAMP Phase 2 Final Technical Report (FTR).
Conclusions and recommendations are given concerning the Ada
programming language, Ada compilers, Ada parts and part catalogs, and
component constructors. Within this wealth of information, the CAMP
developers provide a self-critique of several aspects of their research, suggest
alternate approaches, and postulate directions for future investigation.

This material is presented here as a prelude to our analysis of the CAMP
approach. Except where otherwise noted, the source of all the material in the
following subsections is the CAMP-2 FTR. [MCN88a, Section VIII]

2.2.1.1 Concerning the Ada Programming Language

With respect to reusability, RTE applications, productivity, and
programming-in-the-large, the CAMP developers reached the following
conclusions concerning the appropriateness, effectiveness, and inherent
efficiency of the Ada programming language:

" With a few minor exceptions (see the recommendations below),
Ada achieves its reusability design goal.

* Ada is an effective language for real-time embedded applications.

* There appears to be no Ada features which are inherently
inefficient, however, there are Ada features (e.g., Ada generic units)
which require a global optimizer to be sufficiently efficient for
severely constrained RTE applications.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis I'age 14

" The use of Ada results in improved development productivity:

[Tihe productivity experienced during CAMP parts development was
approximately 61% greater than that predicted by COCOMO [a software
cost estimating modell for embedded software development. IMCN88a;
Section III

* Ada's support for programming-in-the-large is one of its chief
advantages from a management perspective.

From the perspective of reusability, the CAMP developers recommend the
following changes to the definition of the Ada language:

* Allow address objects to be passed as generic parameters.

• Allow representation clauses to be defined within a package body.

* Allow a single, unmodified Ada specification to be used with
multiple bodies within a single application.

" Require a compiler to support separate compilation of generic units
and subunits.

* Allow procedural data types.

2.2.1.2 Concerning Ada Compilers

With respect to reusability and RTE applications, the CAMP developers
reached the following conclusions concerning the effectiveness and efficiency
of Ada compilers:

* A full implementation of the Chapter 13 features of Ada is essential
in RTE applications.

* Ada compilers do exist which are effective for RTE applications (e.g.,
the 1750A Ada compiler used on the CAMP 1 1 th Missile
Application).

" Ada compilers do exist which are effective for applications that
want to use reusable software components, i.e., handle Ada generic
units effectively (e.g., DEC VAX Ada compiler).

" CAMP data indicates that the current generation of Ada/1750A
compilers do not support generic units well and this lack of support
will hinder RTE applications that want to use reusable software
components.

" CAMP data indicates that current implementations of Ada tasking,
generics, and exceptions, are sufficiently inefficient to cause concern
in severely constrained RTE applications.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages tCAN1P) Analysis iPage 15

• With the exception of the inefficiencies due to generic u:z:s,
tasking, and exception handling, current Ada compilers a-'ear to

have efficiency equivalent to other HOL compilers used in RTE

applications.

• The ability of Ada compilers to perform global optimizations is
critical to the successful use of Ada and the reuse of Ada parts in
RTE applications.

The CAMP developers recommend the following enhancements and
precautions concerning the maturity and efficiency of Ada compilers:

* The DoD needs to enhance its Ada validation process (too many
validated Ada compilers have detectable errors); during the next
few years, DoD mission-critical RTE Ada projects should establish a
contractual relationship with their compiler developer to reduce
risk.

* The Ada validation suite must be changed to incorporate tougher
tests on generic units (e.g., such as those within the CAMP
benchmarks (see MCN88c]).

" Ada compilers should be able to alternate between single body and
multiple body generic implementation based on either implicit or
explicit information.

2.2.1.3 Concerning Ada Parts and Part Catalogs

The CAMP developers-having developed 454 parts consisting of over
16,000 lines of operational code and another 27,000 lines of Ada test code-
reached the following conclusions concerning the use of Ada in the
development of reusable parts:

* The use of strongly typed software parts has significant benefits to
the parts user, but complicates the development of parts:

One of the primary decisions ,h2 CAMP team had to make very early
in the development of the CAMP parts was how extensively to use data
typing. The chief advantage of making the parts strongly typed was the
high degree of protection against misuse of the parts such typing would
provide. The disadvantage of using strong typing was the increased
complexity of developing the parts. The interactions between types and
generics are much more complex than they appear to a casual user of Ada.

Initially, we had some doubts about the use of strong typing. Was it
worth the extra effort to avoid data typing errors? We surveyed some of
our on-going missile projects 3nd asked them if data typing errors were a
problem. Somewhat to our surprise, we found that the misuse of data was
considered to be a significant problem area. Given the large number of
different types of data used in missile applications, programmers
sometimes made "stupid" mistakes (e.g., mixing radians and degrees) and

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 16

these types of errors were frequently not detected until the software was
tested; at this point they were very difficult to isolate. Based on this
information, we decided to use strong typing in the development of the
CAMP parts. After all, the parts would be developed once, but used many
times.

* It costs more (5-10%) to develop reusable parts than to develop
customized software.

" Software parts for RTE applications must be developed to be semi-
abstract.

" The use of Ada software parts can increase productivity (by up to
15% [see MCN88b, Section 1111).

* Cataloged Ada parts should be classified by logical operations, not
physical Ada units:

The CAMP parts catalog was implemented so that the basic units being
cataloged were Ada units. Upon reflection, and after having used this
catalog, we believe this approach has two significant disadvantages.

" When viewing parts, the user gets entire Ada units and then has to
locate the portions of interest; this is less than optimal.

* Too many entities are cataloged under the current scheme. This can
lead to user frustration and result in the parts not being used.

We believe that a better approach would have been to catalog the
logical parts, not the physical Ada code units. For example, the catalog
should tell the user that it has an entry for a unbounded LIFO queue, not
that it has a package specification called LIFOQUE and a package body
with the same name. Using this paradigm, the user would search for
logical parts and then, if needed, the user could examine the Ada structure
of these parts.

* The taxonomy(ies) used by an Ada parts catalog should be soft-
coded.

The CAMP developers recommend the following organizational method
of developing reusable parts:

* Parts should be developed by a parts development team driven by
project needs.

2.2.1.4 Concerning Component Constructors

The CAMP developers cited the following conclusions and
recommendations concerning the cost-effectiveness of capturing schematic
commonality:

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analvsis Page 17

Some important types of commonalitv cannot be captured in Ada:

Early in the CAMP program, we realized that there were types of

commonality that existed within most domains that either could not be
captured using Ada alone, or could not be captured efficiently using Ada
alone. We refer to this type of commonality as schematic commonalitu. To
capture this type of commonality requires a tool which can build Ada code
when given the requirements of a particular application. We refer to these
tools as schematic component constructors...

* Schematic component constructors have high value:

Based on the number of lines of code generated by the Kalman Filter
Constructor for the 1 1th Missile Application, we estimate that a 28%
productivity improvement could be obtained just from using the Kalman
Filter Constructor.

* More research needs to be performed to develop an approach for
building schematic component constructors:

Although we believe that the utility of schematic component
constructors is high, the current approach to their construction requires a
large development effort and the resulting tool is not easily modified.
[MCN88a, Section VIIII

The approach used in the AMPEE system ties the constructors (for
complex generic parts) intimately to parts that they utilize. This can be a
problem if the part(s) on which the constructor is based change in areas
that are relevant to the production of code by the constructor.

An alternative that bears further exploration is the concept of a
constructor constructor, i.e., a generalized software constructor that would
generate specific constructors. One way to do this would be by embedding
commands within the reusable parts themselves that would indicate the
information that would be required from the user in order to generate the
tailored Ada components that are needed. The parts could then be run
through a preprocessor to produce the appropriate user queries. Code
generators and facilities to permit data type definition or provision outside
of the constructor would also be required. In essence, this would be a smarter
constructor, where less of the information is hard-coded in the constructor
itself. [MCN88a, Section IV]

This is somewhat similar to the approach used by the Development Arts
for Real-Time Software (DARTS) program generation system, developed by
General Dynamics. [MCF85] In DARTS, software is genericized by embedding
domain language statements in existing source code. These statements are
used to direct software generation by referencing system knowledge bases.
The user enters system specifications in some domain language, and through

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page IS

a series of transformations, the specifications are translated into customized
application code. To support all of this, a domain language and translator
must be developed, as well as the requisite knowledge bases. [MCN86b]

2.2.2 Analysis of the CAMP Parts

The CAMP developers identified three types of parts: simple, generic, and
schematic. In addition, the term meta-part is used in association with the
component constructors. A meta-part is defined as either a complex Ada
generic or a schematic part. Each constructor in the AMPEE system is said to
be based on a CAMP meta-part, and meta-parts are said to be reusable, and
exist in the Parts Catalog. [MCN88a]

At best, these statements are confusing. Our investigation leads us to
believe that within the Parts Catalog are non-generic parts, simple generic
parts, and complex generic parts, but neither meta-parts nor schematic parts.
These terms will be discussed in more detail within the CAMP constructor
analysis of the following section. The remainder of this section provides an
analysis of the CAMP parts and Parts Catalog, and the CAMP parts
composition approach.

The following criteria were used to identify the Ada parts which were
developed during the CAMP program [MCN88a]:

1) A part is a package, subprogram, or task.

2) A part must be usable in a stand-alone fashion.

3) Organizational packages are not parts; and package bodies are never

parts.

Furthermore, a CAMP part may be a Top Level Computer Software
Component (TLCSC), a Lower Level Computer Software Component
(LLCSC), or a unit. A TLCSC is an outer level package or procedure - one
that is not nested within another package. An LLCSC is a package that is
nested within some other entity, generally another package. Units are nested
procedures, functions, or tasks.

These criteria have led to a Parts Catalog which contains many (non-part)
organizational packages. As a result, many parts are dependent (both
explicitly and implicitly) upon other parts and non-parts. This organization is
clearly less than desirable. Table 2-1 provides an example of the structure of
the CAMP parts and packages within the Parts Catalog.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 19

Table 2-1 Example CAMP Parts/Packages Structure

Name Level Type Encapsulates

CoordinateVector_ TLCSC package I following 4 generic
MatrixAlgebra packages and 3 generic

functions

Vector-Operations LLCSC generic type Vectors, and 8
package functions, e.g., "+", "

DotProduct

Matrix-Operations LLCSC generic 6 functions
package

VectorScalar_ LLCSC generic 3 functions
Operations package

MatrixScalar_ LLCSC generic 2 functions
Operations package

CrossProduct unit generic
function

MatrixVectorMultiply unit generic
function

MatrixMatrixMultiply unit generic
function

The CoordinateVectorMatrixAlgebra TLCSC of Table 2-1 is a package
of generic packages and generic functions which define and/or operate on
coordinate vectors and matrices. It is not a part. The four LLCSCs within it
are not parts either, but the 19 functions encapsulated within them are all
parts. Finally, the remaining three "miscellaneous functions" (e.g.,
CrossProduct) are also parts. Thus, the total number of parts within the
TLCSC is 22.

As a result of this structure, CAMP entities (parts and non-parts within the
Parts Catalog) have both explicit and implicit contextual dependencies. A
CAMP entity may explicitly depend on other CAMP entities through the Ada
context clause (i.e., the Ada with statement). In fact, most of the CAMP
entities are with-dependent on other entities. For example, the
CoordinateVectorMatrixAlgebra package (from above) explicitly depends

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 20

upon two packages (GeneralPurposeMath and Polynomials), neither of
which are parts.

In addition, a CAMP entity may also require types or objects that have
been encapsulated with it, but not within it. These are implied contextual
dependencies. For example, there are 8 functions encapsulated within the
Vector-Operations LLCSC; each is a part. The functions require the data type
Vectors, also defined within the LLCSC Vector-Operations, and are therefor
implicitly dependent upon the LLCSC, which is not a part.

In summary, numerous organizational packages exist within the CAMP
Parts Catalog which are not parts. Therefore, through explicit and implicit
dependencies, CAMP entities frequently rely on other parts, and even non-
parts.

The CAMP developers concluded that their Parts Catalog approach had
organizational deficiencies, and that it also resulted in too many entities. As a
result, they recommended cataloging logical parts instead of physical Ada
code units. We feel that this is primarily a parts retrieval issue, and that Ada
code units may make good parts. Logical units probably make better parts and
should be in the Parts Catalog as well. Furthermore, we believe (in contrast to
the CAMP criteria) that organizational packages (e.g.,
CoordinateVectorMatrixAlgebra) should be parts, thus serving to
eliminate implied contextual dependencies.

As for too many entities, a better approach may be to explicitly represent
nested parts in a hierarchy. One way to do this would be to classify the parts
by their level (i.e., TLCSC, LLCSC, unit). While this would not decrease the
number of parts, it would provide for their effective management (i.e.,
improving access form logical to physical parts). For example, if the LLCSC
package Vector-Operations was identified as a part, then the 8 functions
within it may be identified as nested parts, each with an explicit dependency
on their encapsulating part.

In summary, the CAMP parts can generally be characterized as:

" strongly typed (floating point based)

* highly inter-dependent

* built upon low-level encapsulation of data types and operations

* highly generic (some very complex)

* supporting complex Ada generics through pre-defined default
generic parameters (including subprograms)

The CAMP developers used the term semi-abstract to describe their parts
composition approach to developing reusable Ada parts for RTE applications.
The semi-abstract approach is a part design method based on Ada generics in

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 21

which a part is designed to provide the user with both an abstract interface
and a mechanism for directly accessing the internal structure of the part. The
semi-abstract method yields a combination of high-level generic parts with
lower level support packages providing actual types and operations, leading
to the creation of a complete environment for use of a part. These pre-
defined structures of high-level parts with supporting lower level parts are
called bundles. The semi-abstract approach also provides the user with an
open architecture - the ability of the user to supply his own data types and
operators. Thus, the user may tailor a bundle, overriding aspects of the
bundle by supplying other CAMP parts or his own parts.

Actually, bundles are informal schematics of high-level subsystems. In
fact, there are a set of CAMP constructors which facilitate the composition of
an entire subsystem based on a bundle of CAMP parts. Figure 2-3 [MCD87a]
illustrates the composition of an autopilot subsystem, and depicts the
underlying CAMP parts. These concepts will be discussed in more detail in
the following section.

Signa" Gen"'11-_

P ro c s s " Va P C36 0 S T T ,i U n v C o u

TypesirAupooI_

LimUrru & Fitw Packages

Figure 2-3 Assembling [Composing] an Autopilot Application

2.2.3 Analysis of the CAMP Component Constructors

The Component Construction subsystem of the AMPEE prototype parts
composition system is composed of a set of 12 component constructors. Each
of the constructors is identified and briefly described below:

Kalman Filter - supports the construction of a tailored Kalman
filter subsystem, including the data types and operatioi:" needed to
support Kalman filter operations

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 22

* Pitch Autopilot - supports the construction of a tailored pitch
autopilot subsystem, including the required data types, filters, and a
limiter

" Lateral/Directional Autopilot - supports the construction of a
tailored lateral/direction autopilot subsystem, including the
required data types, filters, and limiters

0 Navigation Component - supports the construction of a set of
individually tailored navigation computation components

" Navigation Subsystem - supports the construction of a tailored
navigation subsystem composed of a set of integrated navigation
computation components

* Finite State Machine - supports the construction of a tailored
component which implements a finite state machine, including the
Mealy and Moore varieties

* Data Bus Interface - supports the construction of a tailored
component which provides a general-purpose interface to a data bus

* Data Type - supports the construction of a tailored package of Ada
data types, including discrete types, arrays, records, and access types

" Time-Driven Sequencer - supports the construction of a tailored
sequencer which implements a time-driven sequence of actions

* Event-Driven Sequencer - supports the construction of a tailored
sequencer which manages an ordered set of events whose
occurrence is prerequisite to some action

* Task Shell - supports the construction of a set of individually
tailored task shells which implement asynchronous process (e.g.,
periodic, continuous, data driven, or interrupt driven)

* Process Controller - supports the construction of a tailored process
controller which manages an integrated set of asynchronous
processes (i.e., task shells)

All of the CAMP constructors can be described as schematic constructors.
The common model of CAMP schematic construction is illustrated in Figure
2-4.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 23

CAMP
Component Constructor

user ,I......

Component dialog I component
Requirements shra---- . CsoieI i::i{:.ii:::; ;." .::::: :{ :i :": : [C om ponent

®LISP
Figure 2-4 CAMP Schematic Construction

As mentioned previously, what has been referred to as CAMP meta-parts
and schematic parts do not exist within the CAMP Parts Catalog, or anywhere
else. Looking back at Figure 2-2, it appears as though the CAMJP developers
originally intended to represent schematic parts within an expert system
knowledge base, along with a set ulf construction rules used to generate code
from the schematic part. However, as shown (by omission) in Figure 2-4, our
analysis has uncovered no significant application of AI technology within the
CAMP constructors. On the other hand, each CAMP constructor does
contain-in the essence of its design-the equivalent of a schematic part.
This is depicted in Figure 2-4 as the Component Schema.

We wish to strongly emphasize that there is no data structure, file,
knowledge base, or other realization which can be associated with the term
component schema. The same is especially true for meta-part and schematic
part, since these terms implied that they were parts. Likewise, be wary of the
terms blueprint, template, decision tree, skeleton, and bundle. All of these
terms refer to nothing more than the hard-coded knowledge incorporated
into the design and implementation of the constructors.

The CAMP constructors can be described as context-sensitive template-
driven code generators. The templates are hard-coded within the
constructors. They are complex, not like simple fill-in-the-blank templates.
As modeled in Figure 2-4, the schematic constructors elicit necessary
Component Requirements from the user, typically through a dialog, and then
generate the corresponding Customized Component. The component
schemas can also be thought of as decision trees which drive the dialog in
response to user inputs. The specification technique utilized for the
component requirements dialog is unique for each constructor, depending on
the nature of the underlying component. After all the necessary

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 24

requirements have been input, the customized Ada component is generated
and provided for the user.

Besides the customized Ada component, the CAMP constructors generally
produce two additional kinds of output: a requirements set and a help file.
The help file contains the names of all the files and Ada program units
generated by the constructor, and any other information the user may need to
locate and use the generated component. The requirements set is an internal
representation of the component requirements used to generate the
customized component. By storing the requirements sets, the constructors
are able to provide the user with the ability to modify previously entered
requirements and regenerate software components. The user is also provided
with the ability to delete existing requirements when they are no longer
needed. "Note that in some of the constructors the modify options are not
functional." [MCD87b]

The CAMP developers have classified the CAMP constructors as generic
instantiators and schematic part constructors. Some constructors are said to
combine elements of both types (e.g., Kalman Filter Constructor). In addition
to this, the CAMP documentation eludes to a general-purpose Generic
Instantiator Constructor in several places, including a draft version of the
AMPEE detailed design document. [MCD86I However, to the best of our
knowledge, such a constructor does not exist. Furthermore, we feel that the
generic instantiator classification does not accurately portray the constructors
in this category.

In our opinion, the CAMP schematic constructors generally fall into two
classes: subsystem composition and component generation. Figure 2-5
illustrates our classification of the CAMP constructors. The subsystem
composition constructors are the Kalman Filter Constructor, the autopilot
constructors, and the navigation constructors. The remaining CAMP
constructors are component generation constructors. The two types of
constructors are alike in that they are both a form of schematic construction;
they differ in their level of abstraction.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Fackages (CAMP) Analysis Page 25

Figure 2-5 Classes of Schematic Construction

Component generation is the schematic construction of a customized Ada
component. Component generation constructors generate low-level Ada

code (e.g., subprogram bodies), and do not rely heavily on parts. Subsystem
composition is the schematic construcion of a customized subsystem

composed of numerous Ada parts. Subsystem composition constructors
generate high-level Ada code dealing with the package structure of the
subsystem. To illustrate the differences between these two types of schematic
construction, Figures 2-6 and 2-7 provide an example from each category.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 26

with BasicDataTypes, Autopilot DataTypes, Signal-Processing, Autopilot;
use AutopilotDataTypes;

package <PA Component Package Name> is

package ADT renames AutopilotDataTypes;

- Data Subtypes
subtype PAFinDeflections is ADT.<Fin Deflection Customization>;

- Elevator Command Limiter
package CommandLimiter is new SignalProcessing.<Limiter Instantiation>;

-- Acceleration Filter
package AccelerationFilter is new SignalProcessing.<Digital Filter Instantiation>;

-- Pitch Rate Filter
package PitchRateFilter is new SignalProcessing.<Digital Filter Instantiation>;

- Pitch Autopilot
package PitchCommand is new Autopilot.<Pitch Autopilot Instantiation>;

end <PA Component Package Name>;

Figure 2-6 Example Subsystem Composition

As shown in Figure 2-6, the Pitch Autopilot Constructor generates an Ada
package specification, and its associated context and use clauses. By utilizing
the underlying CAMP parts, the constructor is able to compose a complete
pitch autopilot subsystem of a missile application. The example assumes that
the user has selected to use the AutopilotDatalTypes part, as well as parts
within the SignalProcessing package (to instantiate a limiter and 2 digital
filters). The purpose of the Autopilot-DataTypes subtypes is to allow range
and accuracy customization of the base autopilot data types. The limiter and
filter instantiations depend upon the customized data types and their
associated operations, as well as the customized limiter and filters. Finally,
the instantiation of the PitchAutopilot part - a complex generic with more
than a dozen generic parameters - completes the composition of the pitch
autopilot subsystem.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 27

with <Action Packages>;

package <FSM Component Package Name> is

type States is (<States>);

type Stimuli is (<Stimuli>);

function Current-State return States;

procedure Signal (Event: in Stimuli);

Invalid-Stimuli : EXCEPTION;

end <FSM Component Package Name>;

package body <FSM Component Package Name> is

PresentState : States := <InitialState>;

Event : Stimuli;

function CurrentState return States is
begin

return Present-State;
end CurrentState;

procedure Signal (Event: in Stimuli) is
begin

<State Transitions>
end Signal;

end <FSM Component Package Name>;

Figure 2-7 Example Component Generation

The package specification and body of Figure 2-7 illustrate the particular
Ada implementation of a finite state machine (FSM) which the Finite State
Machine Constructor provides. No other CAMP parts are referenced by the
generated component. The user provides the FSM's states, and transitions
between states. Transitions are represented as an ordered pair of states, and
one or more causal stimuli. The user also specifies an initial state, and any
possible actions which may be associated with transitions (Mealy machine), or
states (Moore machine). Actions are represented as parameterless procedures
(this is common throughout the constructors). If any actions are specified,
their encapsulating packages must be provided for the context clause. The

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Pape 28

user is provided with a function which returns the FSM's current state, and a
procedure which inputs a stimulus and processes it with respect to the
current state. The FSM constructor also checks the component requirements
for anomalies and optimizes the customized component for time and space
efficiency.

As suggested by the pitch autopilot example, generic instantiation plays a
major role within subsystem composition constructors. In this sense, it can
be construed that we are merely suggesting another name for the CAMP
generic instantiation constructors.

While subsystem composition does involve a great deal of generic
instantiation, it is primarily a form of schematic construction, as is
component generation. Constructors of both types access generic parts from
the Parts Catalog, and perform generic instantiation. Therefore, generic
instantiation should not be used to distinguish between the two types of
construction. Furthermore, we feel that subsystem composition and
component generation are more indicative of their function, especially in
terms of reuse.

Table 2-2 identifies the major characteristics of each of the CAMP
constructors, specifying their type of schematic construction, as well as their
CAMP and domain dependencies. A constructor is CAMP-dependent if it
depends on CAMP parts, packages, or other CAMP constructors. A
constructor is domain-specific if it has negligible utility outside of the missile
flight software domain.

Reuse Tools to Support Ada Instantiation Construction

2- Common Ada Missile Packages (CAMP) Analysis Page 29

Table 2-2 Characteristics of the CAMP Component Constructors

Component Subsystem Component CAMP- Domain-

Name Composition Generation Dependent Specific

Kalman Filter S

Pitch Autopilot I

Lateral / Directional
Autopilot

Navigation Component

Navigation Subsystem 1 _ 0 0

Finite State Machine

Data Bus Interface

Data Type

Time-Driven Sequencer I 0

Event-Driven
Sequencer

Task Shell

Process Controller

The Kalman Filter Constructor is primarily a subsystem composition
constructor. However, embedded within it is the component generation
construction of (statically and dynamically) sparse matrix components. The
Kalman Filter Constructor is dependent on. numerous CAMP parts, and
generates a Kalman filter subsystem which is specific to missile systems.

The Pitch Autopilot Constructor and the Lateral/Directional Autopilot
Constructor are separate subsystem composition constructors Lhat share much
of the same user interface and processing. [MCD87b] These constructors both
depend on numerous CAMP parts and generate autopilot subsystems which
are specific to missile systems.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 30

The Navigation Component Constructor and the Navigation Subsystem
Constructor are also separate subsystem composition constructors that share
much of thc same user interface and processing. [MCD87b] These constructors
both depend on numerous CAMP parts and generate navigation computation
components specific to missile systems (e.g., missile velocity and position
computations).

The Finite State Machine Constructor is a component generation
constructor. As shown earlier, it is not CAMP-dependent; nor is it domain-
specific. In fact, this constructor is potentially applicable to any domain.

The Data Bus Interface Constructor is a component generation constructor
which also performs some low-level generic instantiation. The constructor
generates an integrated set of package specifications and bodies consisting of
numerous data types, objects, and subprograms which facilitate the sending
and receiving of messages. The constructor is dependent on the CAMP
generic queue parts, which are customized by the user (e.g., bounded or
unbounded FIFO buffer, circular buffer). The package bodies generated by the
constructor contain application-specific subprograms with null bodies (i.e.,
code templates). The subprogram bodies must be completed by the user. This
constructor is not domain-specific, and may be applied to numerous domains
which favor distributed systems.

The Data Type Constructor is a low-level component generation
constructor. It may be used to generate a package specification of various Ada
types. The constructor is dependent on the BasicData-Types (BDT) part, and
other CAMP packages. It utilizes these packages to facilitate the definition of
customized floating point types and special-purpose array (e.g., vector, matrix)
types and operations. The constructor is applicable to any domain.

The Data Type Constructor is also utilized by other constructors (e.g.,
Kalman filter, autopilot, navigation, data bus interface) to allow definition of
needed types: "Other constructors incorporate parts of the Data Types
Constructor..." It should also be noted that the constructor "currently
provides capabilities only to define scalar types (i.e., discrete and floating point
types)." [MCD87b]

The Time-Driven Sequencer Constructor and the Event-Driven Sequencer
Constructor are separate component generation constructors which generate
general-purpose sequencers. The Time-Driven Sequencer Constructor
generates a package specification and body that performs the time-driven
sequencing specified by the user. In order to use the part, the user must
declare an object of the type Delays, defined by the constructor; the data object
supplies the delays which are used to drive the sequencer. This constructor is
dependent upon the ClockHandler CAMP part. The Event-Driven
Sequencer Constructor generates a package specification and body with an

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 31

embedded task that manages the event-driven sequencing specified by the
user. This constructor is not CAMP-dependent. Neither constructor is
domain-specific.

The Task Shell Constructor and Process Controller Constructor are
separate component generation constructors which generate Ada tasks for
specified asynchronous processes. Both constructors are dependent upon and
instantiate task shells (i.e., generic packages with embedded tasks). It is
assumed that these constructors share much of the same user interface and
processing. The Task Shell Constructor generates a set of independent task
shell instantiations. The Process Controller Constructor generates a package
specification and body with embedded task shell instantiations, as well as an
inter-task coordination procedure which controls task activation, execution,
and termination. Neither constructor is domain-specific.

In summary, subsystem composition constructors, as used in CAMP,
generally have the following characteristics:

* provide automated assistance with the customized composition of a
pre-defined structure of CAMP parts

" perform simple and complex generic instantiation

• exhibit medium to high complexity

" depend on numerous CAMP parts

* apply only to the missile flight software domain

In contrast, component generation constructors, as used in CAMP,
generally have the following characteristics:

* facilitate the automated generation of customized Ada program
units (including code bodies)

* perform simple generic instantiation

* exhibit low to medium complexity

• depend on few CAMP parts

* can be applied to many domains

In conclusion, we believe that both types of schematic construction
promote reuse and increase productivity. However, we feel that the CAMP
subsystem composition constructors are less attractive than the CAMP
component generation constructors. In comparison to the component
generation constructors, the subsystem composition constructors are
generally less cost-effective because they are:

* more expensive to develop due to relative complexity

* more difficult to maintain due to part coupling

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 32

* more domain-specific

The component generation constructors do not suffer as much from the
drawbacks of the subsystem composition constructors. There are, hcwever,
some CAMP-dependencies within these constructors which may lead to
maintenance problems. Also, since these constructors are mostly domain-
independent, their modifiability/extensibility is an important concern. These
issues will be addressed in the following section.

2.2.4 Modification Required to Support Another Domain

According to CAMP, the characteristics of a domain will impact what parts
are designed, how the parts are designed, and also how the parts fit together.
Characteristics of the missile systems domain which affected the CAMP parts
and constructors indclude [MCN86a]:

" Very high degree of data flow inter-connectivity

* Complex decision-making

* Large number of mathematical data transformations

" Little data movement

* Relatively simple data structures

* External interfaces with special purpose equipment

" Processes that have rigid temporal relationships

" High use of intermediate results of calculations

• Asynchronous time-driven processes

Compa. - these characteristics to some of those representative of C 2

systems [QUA88]:

* Support for distributed operations

* Substantial amount of parallel processing

* Data-driven approach to function implementation

* Management and transfer of large amounts of data

* Data analysis and decision support

* Management of secure data

• Relatively less stringent performance requirements

" Asynchronous event-driven processes

" Trend to COTS hardware and software

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 33

The amounts and kinds of data transfers between parts in this domain
would be very different from CAMP parts. The process scheduling
mechanisms for this domain are also generally very different. Distribution
and parallelism would influence the partitioning of parts and their
interaction mechanisms, although the newer missile systems also must
address these issues. Efficiency of the generated code (both in terms of timing
and sizing of parts) is not a major consideration.

After having analyzed the CAMP parts and Parts Composition System
(PCS), and having considered the implications of the C2 domain, we are now
ready to draw conclusions and provide recommendations regarding potential

PCS support within other domains, especially C2 . Specifically, we will address
the existing CAMP constructors, as well as constructor candidates which may
serve to extend the domain-independence of the PCS.

The five CAMP subsystem composition constructors seem to have the
least potential benefit in terms of modifiability and support of another
domain. To begin with, these constructors are primarily domain-specific, as a
result of their underlying subsystems (parts). For example, a CAMP Kalman
filter subsystem may have some potential in an avionics application, but is
probably not applicable to a domain such as C2 .

For the sake of analysis, lets assume that one of the subsystem
composition constructors is applicable to some other domain of interest. Of
course, this implies that the constructor's underlying parts are applicable to
the new domain. If the parts are directly applicable (i.e., requiring no
modification) or only slightly altered, then the constructor would most likely
require little or no modification as well. If the parts are substantially altered
to accommodate the new domain, then a decision is to be made on whether
or not to modify the constructor too. Under such circumstances, if the
subsystem is not expected to be reused a great deal, then modifying the
constructor would not be cost effective, since the subsystem can be composed
manually.

The seven CAMP component generation constructors, being primarily
domain-independent, have a much higher potential for reuse in other
domains. Some, however, do have CAMP dependencies. In this case,
modification may be desirable in order to eliminate future maintenance
problems. Other modifications may be desirable as well. For example, to
enhance their capabilities, or to alter their underlying component schema
(e.g., algorithm modification).

Finally, it may be possible to extract domain-independent constructors
from within complex CAMP domain-specific constructors. There are three
such constructor candidates that have been identified:

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 34

1) Matrix Constructor

2) Digital Filter Constructor

3) Integrator/Limiter Constructor

Actually, the Matrix Constructor was identified as a separate constructor in
earlier CAMP documentation. [MCD85a] It may be cost effective to extract it
from within the Kalman Filter Constructor and perform the modifications
necessary to make it an independent constructor.

Likewise, a Digital Filter Constructor and/or an Integrator/Limiter
Constructor may be extracted from the CAMP autopilot constructors. It
appears as though the processing within the autopilot constructors would
facilitate this extraction.

2.2.5 Adaptations within CAMP

One measure of the goodness of a reusable software part is its ability to
adapt to a wide range of user requirements. By being able to adapt in this
fashion, a part stands a greater chance of being reused.

An adaptation requirement is a statement specifying a particular kind of
adaptation expected of a part. Adaptation requirements are independent of
the design and implementation of a part, and are stated in terms of the part's
requirements. Low-level adaptation requirements are generally concerned
with programming primitives (e.g., data, operations). Higher level
adaptation requirements are generally related to the part's environment (e.g.,
number of users, external interfaces).

An adaptation mechanism is a means by which a part facilitates an
adaptation requirement. For a given adaptation requirement, there may exist
several possible adaptation mechanisms.

For example, consider an Ada part which provides a stack object and
operations. An obvious adaptation requirement for a stack part is the ability
to adapt to different data types for the stack elements, since stack operations
are not dependent on the element type. Naturally, the Ada generic facility is
the logical adaptation mechanism for this requirement. In particular, the
formal generic type parameter is the mechanism which could facilitate this
adaptation requirement. Thus, a generic Ada part could be developed which
utilizes a formal generic type parameter as an adaptation mechanism to
satisfy this adaptation requirement.

There are, however, some adaptation requirements for which the Ada
language provides no suitable adaptation mechanism. For these adaptation
requirements, automated assistance is necessary to provide adaptable Ada

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages iCAMP) Analysis Page 35

parts. Thus, by identifying the adaptation requirements and mechanisms
which do and don't require automated assistance, we will gain a better
understanding of the requirements of the Generalized Constructor Capability,
and more importantly, reuse engineering in general.

Analyzing the CAMP parts and constructors in this perspective has taught
us that separating adaptation requirements from adaptation mechanisms is
very complex, and difficult. However, we believe that doing this is essential
to the specification and engineering of reusable software parts, and is a critical
aspect of this research effort.

From our investigation of the CAMP parts and constructors, we have

identified the following low-level adaptation requirements:

* algorithm selection (from pre-determined alternatives)

* data type selection (from pre-determined alternatives; implying an
underlying algorithm selection)

* personalization of identifiers within components

• customization of data types (range, precision)

* default object initialization values

And the following adaptation mechanisms:

default generic subprogram parameters (Many CAMP generic parts
have formal generic subprogram parameters. For each such part,
there are lower level support packages which provide default
subprograms for these generic parameters. By specifying the
support package in the appropriate with clause, a convention has
been followed which provides this adaptation mechanism.)

* the specification of parameterless procedures for actions - similar
to procedural data types

As our research progresses, we will continue to identify adaptation
requirements and mechanisms, and attempt to classify them and understand
their implications on reuse and the GCC.

2.3 CAMP - Phase 3

The CAMP - Phase 3 (CAMP-3) project is approximately a two-and-a-half
year effort scheduled for completion in early 1991. Three of the known
objectives of the CAMP-3 effort are to update the CAMP parts; re-engineer
the Parts Composition System (PCS) in Ada; and continue the component
construction research and development.

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 36

In January of 1990, we received a copy of the Parts Engineering System
(PES) catalog developed on the CAMP-3 project. This system is the result of
the PCS re-engineering effort mentioned above. Included in the shipment
was a PES User's Guide. As described by McDonnell Douglas:

One of the problems associated with software reuse in the past has been the
lack of information about reusable parts. The PES catalog is designed to
alleviate this problem by providing the user with a means to obtain
information on the availability and relevance of reusable software parts. The
PES catalog is intended for use by both software engineers and application
engineers.

The PES catalog is based on the Ada Missile Parts Engineering Expert
(AMPEE) system catalog developed during CAMP-2. The AMPEE system
catalog was written in LISP and ART, and was hosted on a Symbolics 3620. The
PES catalog is the result of a re-engineering effort to create a catalog with
enhanced capabilities, written in Ada, and hosted on a VAX running VMS. [PES
shipment letter, December 19891

From reviewing the PES User's Guide, it appears that the catalog system is
very much improved. The following list identifies the major enhanced
capabilities:

" interactive, batch, and callable interfaces

" multiple domain and project capacities

" improved query and search capabilities

* additional and improved management of catalog entities such as
project names, domain taxonomies, keywords, etc.

* provisions for site-specific tailorability and extensibility

Of particular interest is the new classification of part types. The PES
catalog User's Guide identifies the following four part types [MCD89]:

1. Operational - the reusable functions and procedures, and
"occasionally" packages, that can be incorporated into a user's
application code

2. Bundle - an entity that contains operational parts or other bundles

3. Constructor - a software system that facilitates the development of
application software by producing software components based on
user requirements; each constructor is based on either a complex
Ada generic unit or a schematic part

4. Schematic - a "part blueprint or template of the part's structure"

This new and improved parts classification scheme gives much credence
to our analysis of the CAMP parts and constructors (see Sections 2.2.2 and

Reuse Tools to Support Ada Instantiation Construction

2 - Common Ada Missile Packages (CAMP) Analysis Page 37

2.2.3). Notably, there is an absence of any "generic" types, and there is the
introduction of the "bundle" type. We are still skeptical of the "schematic"
type. It is interesting to note, however, that constructors themselves are now
considered to be parts. Other than this, it is yet unknown what the CAMP-3
developers nave accompiished in terms of component construction.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 3S

3 Generalized Construction Approaches

One of the key results of the CAMP project (phases 1 and 2) was the
development of a prototype parts composition system, including a set of Ada
coinponert constructor's. It has been shown that some of these constructors
(almost half) generate components which serve to compose large, complex
subsystems from a predefined, adaptable bundle of CAMP parts. Other CAMP
constructors generate lower level components which are primarily stand-
alone units. Our research outside of the CAMP arena has provided us with a
better understanding of these two types of constructors. As a result, we have
readied the following conclusions:

1) There will always be some form of reusable software "parts,"
driving the need for comparable software adaptation and
composition facilities.

2) The repeated application of a programming language to similar,
"difficult" problems will always drive the need for advanced
software construction facilities.

This section of the report-Generalized Construction Approaches-will
cover the research we have done outside of CAMP (see Figure 3-1), providing
much supporting evidence of our conclusions. Our research has provided us
with the insight that constructors are a part of the natural evolution of
programming languages, and that we must take many factors into
consideration before allocating resources to their development.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 39

4Automatic
Programming

Programmer's
Apprentice

~ASLs and

~C SE .:: ;:i: :i:iii ::! ::: .. Fram e-Based

• "oftware Engineering
oTmplates

~Meld
7 Software

/ Object-Oriented CANT,.

increased programming assests

Figure 3-1 Research Summary-Gaining a New Perspective

Working definitions of several relevant and driving terms are now in
order:

A software part or component is a reusable software entity. Components
are typically cataloged in a reuse library and made available for browsing
and/or retrieval. Any reusable software entity may be considered a software
component (i.e., not just program code).

Software composition is the piecing together of software components into
a larger software system. (Note: composition is a form of construction, to be
defined below.) Software composition mechanisms are the various means-
manual or automated-in which components may be connected. Software
composition models represent the characteristics and structure of the glue
which holds together and connects the components of a software siystem.

Reuse Tools to Support Ada lnstantiation Construction

3 - Generalized Construction Approaches Page 40

A software component often must be customized or modified before it can
be reused within some application. This form of preparation is called
adaptation. A software component which has been engineered for reuse
should be able to adapt easily to different requirements; within reason. This
ease of adaptation is called adaptability. Engineered adaptability is specified by
adaptation requirements and are facilitated by adaptation mechanisms.
Tailorability, extensibility and portability are all forms of adaptability.
Abstraction also promotes adaptability. As advocated by Biggerstaff and
Richter of the Microelectronics and Computer Technology Corporation, we
too believe that adaptation and its automation are key to software reuse:

The modifying process is the lifeblood of reusability. It changes the
perception of a reusability system from a static library of rock-like building
blocks to a living system of components that spawn, change, and evolve new
components with the changing requirements of their environment.

It is overly optimistic to expect that we can build a reusability system that
allows significant reuse without the need to modify some portion of the
components. However, modification is largely a human domain. There are few
tools that provide any measure of help in modifying components. [BIG87]

Software construction and generation are terms used to describe the
production of software products-primarily program code. In a general sense,
they are synonymous. However, construction may be manual or automated,
whereas generation implies automation. In addition, generation usually
implies the production of a relatively large body of software (e.g., application
generation vs. component construction). One aspect of software
construction--of primary significance-is reuse; the utilization of previously
developed software components within the construction of a larger software
system.

Software construction mechanisms are the facilities provided by a
programming environment which specifically support the production of
software. As with composition mechani.ms, construction mechanisms may
be manual or automated. Examples of automated construction mechanisms
are the macro facilities of assembly languages, and the Ada generic
instantiation facility. It is evident, especially from the Ada generic example,
that construction mechanisms and adaptation mechanisms are closely related
and have overlapping domains.

A software construction technique is the systematic application of a set of
software composition and construction mechanisms. These mechanisms
may be manual and/or automated. A construction technique is therefore the
active sense of a composition model. For any given software construction
technique, the scope of construction may be a single component (e.g.,
algorithm, subprogram, ADT, object), a subsystem of an application, an entire

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 41

application, all applications within a specific domain, or within the entire
omniverse.

Obviously, software composition and construction are very much related.
In fact, they must be synergistic to be effective: a component must be
consistent with a software system's model of composition in order to be
efficiently composed within the system. In other words, reusable software
components may be useless-as is-in a software system utilizing
significantly different composition mechanisms. In this respect, composition
models are of primary importance when considering automated construction
approaches. In light of this, we have taken a step back from the CAMP work
to assess the current technology of software composition and construction.

3.1 Software Composition and Construction Technology Assessment

This section provides an assessment of the current technology of software
composition and construction. Included in this section are manv references
to previous technology, providing an evolutionary perspective.

The software composition assessment covers the spectrum of software
composition mechanisms, proceeding from lower to higher level
mechanisms.

The software construction assessment includes many research projects
(identified in Figure 3-1), as well as low-level construction mechanisms.
This section proceeds from the larger research efforts down through the
construction mechanisms.

3.1.1 Software Composition Mechanisms

Assembly-level composition mechanisms include interrupts, subroutines
(call and return), and various forms of branching (e.g., conditional,
unconditional, direct, indirect). Most high-level programming
environments provide analogous low-level composition mechanisms and a
set of higher level composition mechanisms which-as a whole-imply a
nominal composition model for that environment. The remainder of this
section presents several higher level composition mechanisms.

The UNIX pipe mechanism [KER84] is a frequently cited example of serial
or dataflow composition. Serial composition is a very weak form of
composition-the components are connected only in the sense that they are
executed one after the other, with the output of one component being the
input of the next.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 42

Procedural composition is typified by PL/I and Pascal. Procedural
invocation is based on the assembly-level subroutine concept, with variations
concerning formal and actual parameters and recursion.

Functional composition builds upon procedural composition with the
addition of a returned value. This allows function invocations to be nested
within expressions. LISP and 'C' strongly advocate the functional model of
composition.

Modular composition supports the encapsulation of data types, objects,
and operations into a single program unit. Modula-2 modules and Ada
packages are good examples of such composition mechanisms. Modules may
also support information hiding via separate interface specifications and
implementations. Both Modula-2 modules and Ada packages provide this
composition mechanism as well.

Modules may be utilized to create Abstract Data Types (ADTs) which
provide a data type and the operations available for objects of that type. The
object-oriented paradigm is based on the concept of ADTs. Within the object-
oriented paradigm, a single program structure is both an ADT and a type.
This structure was originally called a class in Simula 67-the pioneer object-
oriented programming language. [MEY87]

The object-oriented paradigm provides several composition mechanisms
for objects (i.e., instances of a class type). The most obvious is message
passing, somewhat similar to the procedural composition mechanism.
However, dynamic binding allows message passing to be much more flexible.
Inheritance is another powerful composition mechanism, tying together
classes (and indirectly, objects) into an inheritance hierarchy.

Constraints provide a powerful method of connecting components.
Simply stated, a constraint is an "enforced relationship." [EGE89I As implied
by Leler, the object-oriented paradigm provides an appropriate foundation for
constraints:

In constraint languages, programming is a declarative task. The
programmer states a set of relations between a set of objects, and it is the job of
the constraint-satisfaction system to find a solution that satisfies these
relations. [LELS8

Constraint satisfaction involves problem solving. As a result, constraints
have long been a part of Al research (e.g., Sketchpad, Steele's Constraint
Language, TK!Solver). In addition, constraints have been applied to various
software systems-mostly object-oriented-for their expressiveness and
power, and their ability to represent behavioral specifications (e.g., ThingLab).

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 43

Two additional examples-discussed in the following section-are Gist and
Meld.

Another mechanism rooted in Al which can be used to compose
components is logical inferencing. Logic programming languag2s (e.g.,
Prolog), theorem proving systems, and some applications of knowledge
representation (e.g., expert systems), all utilize some form of logical
inferencing based on facts or assertions and logic rules. Expert svstemc -

which combine knowledge bases, facts, rules and inference engines-have
become very popular, even commercially, due to their automated reasoning
capabilities. In a programming environment, facts and rules can be used to
invoke components, providing a powerful component composition
mechanism.

3.1.2 Software Construction Research

In a sense, automatic programming represents the ultimate form of
software construction. Over the years, the term automatic programming has
come to represent the elusive goal of a kinder, gentler world in which:

There will be no more programming. The end user, who only needs to know
about the application domain, will write a brief requirement for what is
wanted. The automatic programming system, which only needs to know about
programming, will produce an efficient program satisfying the requirement.
Automatic programming systems will have three key features: They will be
end-user oriented, communicating directly with end users; they will be general
purpose, working as well in one domain as in another; and they will be fully
automatic, requiring no human assistance. [RIC88aJ

Judging from the current state-of-the-art software construction systems, we
are a long way from realizing this dream. By categorizing the approaches
being taken to this end, we can develop a better understanding of the problem
at hand and the progress being made:

1) Programming Language

2) Narrow Domain

3) Transformational Implementation

4) Semi-Automated

The programming language approach starts with the current level of
programming technology and advances from there. This approach sacrifices
end-user orientation. In the past, this approach has led from machine-level
to assembly-level to high-level programming. The current goal is very high
level (fourth generation) general-purpose computer programming languages.
The narrow domain approach sacrifices generality for success within limited

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 44

domains. This approach has led to the advent of application generators and is
being extended to cover wider domains. The transformational
implementation approach attempts to bridge the gap between end-user
requirements and program implementation with a series of transformations.
Each transformation (possibly requiring human guidance) is designed to be
function and correctness preserving. The semi-automated approach sacrifices
full automation while attempting to provide as much automated assistance
as possible over as much of the software development process as possible.
Much of the commercial effort in terms of integrated softwar- development
tools and CASE products fall in this category.

3.1.2.1 Programmer's Apprentice

One of the largest and most well-known automatic programming efforts is
the Programmer's Apprentice project at MIT. [RIC88b] [WAT86] [WAT85] The
Programmer's Apprentice is "basic research at the intersection of artificial
intelligence and software engineering[,] ... a collaboration involving students,
faculty, and staff over several years." [RIC88b] This automatic programming
project is one of the few with an approach that can be placed in a single
category-the semi-automated approach. Unlike the more conventional
semi-automated efforts such as CASE, this project is driven by the assistant
concept, viewing the automation not as a software tool, but as a capable,
intelligent, cooperating agent:

A provocative example of the assistant approach was proposed by IBM's
Harlan Mills in the early 1970s. He suggested creating "chief programmer
teams" by surrounding expert programmers with support staffs of human
assistants, including junior programmers, documentation writers, program
librarians, and so on. Productivity was thereby increased because the chief
programmer could apply full effort to the most difficult parts of a given
software task without getting bogged down in routine details that currently use
up most of every programmer's time[!]. Experience has shown that this division
of labor can be very successful. Our goal is to provide every programmer with a
support team in the form of an intelligent computer pogram called the
Programmer's Apprentice. IRIC88b]

Their primary goal is to have the Programmer's Apprentice eventually
span software development activities from requirements acquisition and
analysis through implementation. Their approach has been to develop
prototypes of parts of the Apprentice, and then connect the prototypes and
rebuild on the basis of what is learned. KBEmacs (Knowledge-Based editor in
Emacs) is a completed prototype which covers the implementation part of the
Apprentice. Work has begun on both the Requirei, ents Apprentice and the
Design Apprentice. The project also includes other investigations, outside of
the prototypes, which are based on the sane underlying technology. As
described by Rich and Waters, their formal representation of programs and

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 45

cliches-commonly used combinations of primiLive elements with familiar
names-form a cornerstone of their research:

In general, a clichd consists of roles and constraints. The roles of a clich6 are
the parts that vary from one occurrence of the clich6 to the next. The
constraints are used to specify fixed elements of structure (parts present in every
occurrence), to verify that the parts that fill the roles in a particular occurrence
are consistent, and to compute how to fill empty roles in a partially specified
occurrence of a clich6 ...

Given a library of cliches, it is possible to perform many programming tasks
by inspection rather than by reasoning from first principles ...

Cliches and inspection methods are theoretical (and perhaps
psychological) concepts. To apply these ideas, cliches need to be represented in
a concrete, machine-usable form. A cornerstone of the Programmer's Apprentice
is a formal representation for programs and programming cliches called the
Plan Calculus ...

To a first approximation, the Plan Calculus can be thought of as combining
the representation properties of flowcharts, dataflow schemas, and abstract
data types. A plan is essentially a hierarchical graph structure ... [with] a
formal semantics used for reasoning. [RIC88b]

In addition, they have developed a system to support the desired
reasoning capabilities of the Apprentice-reasoning about structured software
objects and their properties. Cake is "a hybrid knowledge representation and
reasoning system ... that we have developed and are using for all current
work in the project." [RIC88b] Cake is a layered system, with each layer
building on the facilities provided by the layers below it. From top to bottom,
Cake is composed of the Plan Calculus, frames, algebraic reasoning, and
propositional logic.

The Programmer's Apprentice project, while still in its infancy, has
already resulted in noteworthy achievements. Their work in the
development of cliches, the Plan Calculus, and Cake, provides many
interesting and valuable lessons with respect to adaptable, reusable
components, and the automation of their adaptation, composition and
construction. They have successfully developed cliches and demonstrated
KBEmacs' capability with both LISP and Ada. One drawback of their current
approach is that the capabilities of the Apprentice is totally dependent upon
its underlying requirements, design and implementation cliches. In this
sense, it can be anticipated that future Apprentices will be limited by the
number (and quality) of available clichds, and therefore restricted to narrow
domains-as are the current prototypes. Another current drawback of the
Apprentice is that the user must reference the cliches by name. These
deficiencies are mutually antagonistic. In order for an Apprentice to be
generally effective, it must be supported by a substantial clichd library. But, as
this library develops to maturity, it will become increasingly harder for the
user to effectively reference cliches by name. This is a form of the classical

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 46

reuse library retrieval problem. From an outsider's perspective, it is
somewhat surprising that such a hotbed of Al research has not identified
these issues for further investigation.

3.1.2.2 Gist

Another well-known automatic programming research effort is
represented by the Gist formal specification language, developed by the
Information Sciences Institute's (ISI) Software Sciences Division at the
University of Southern California. [BAL87] [BAL85] [BAL82] The Gist effort
took an approach which combined a transformational front-end with a
programming language back-end:

Automatic programming has traditionally been viewed as a compilation
problem in which a formal specification is [compiled) into an implementation.
At any point in time, the term has usually been reserved for optimizations
which are beyond the then current state of the compiler art. Today, automatic
register allocation would certainly not be classified as automatic programming,
but automatic data structure or algorithm selection would be.

Thus, automatic programming systems can be characterized by the types of
optimizations they can handle and the range of situations in which those
optimizations can be employed ...

Hence, there are really two components of automatic programming: a fully
automatic compiler and an interactive front-end which bridges the gap between
a high-level specification and the capabilities of the au#omatic compiler.
[BAL85]

The ISI researchers determined that the front-end must first convert from
an informal high-level specification to a formal high-level specification, and
then translate from high-level formal to low-level formal. But, "because a
suitable high-level formal specification language did not exist ... [they] decided
to embark on a 'short' detour (from which we have not yet emerged) to
develop an appropriate high-level specification language. The result of this
effort was the Gist language." [BAL85]

The Gist language is an object-oriented specification language,
incorporating knowledge based reasoning and constraints. It is also
operational, although "the evaluation of Gist specifications [is] intolerably
slow." [BAL82] This inefficiency is due to the specification freedoms provided
by the language; non-deterministic behavioral specifications are restricted to
allowable behaviors by constraints. Surprisingly, the language was
determined to be unreadable, which promoted additional research concerning
Gist specification validation: paraphrasing, symbolic evaluation, and
behavior explanation. On the transformation side, most of the research effort
focused on the required technology, rather than actual transformations-and
met with limited success.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 47

Consequently, the ISI researchers began to focus on using Gist as an
operational prototype-shifting from the transformational and programming
language approaches to the semi-automated approach-in an effort to specify
(i.e., bootstrap) an automated software development environment. By
repeatedly developing improved prototypes, they have reached "the next-
generation operating system." [BAL87] Apparently, the key features of the
current prototypes are a persistent object-base, associative retrieval (i.e., the
ability to access objects via a description of their relationships with other
objects), and constraints. The constraints in these systems may extend beyond
object relationships to include general object-base processing. By continuing
to enhance the capabilities and efficiency of their operational specifications,
they have seemingly created another approach towards automatic
programming-perpetual prototyping. Interestingly, their current
specification language is simply an extension to LISP: "a set of macros and
subroutines, plus some simple extensions to the LISP evaluator." [BAL87]
Thusfar, this research has evidently resulted in great success, but at a
relatively low level of application software development (e.g., object-oriented
user interface, electronic mail, object browser/editor). Application in
increasingly larger domains and continued prototyping will provide answers
to questions regarding its potential general-purpose effectiveness.

3.1.2.3 Draco

Draco is a software construction approach-accompanied by an
experimental prototype-which has been developed primarily by James
Neighbors while at the University of California, Irvine. [FRE87] [NEI84] In
Neighbors' words: "It has been a common practice to name new computer
languages after stars. Since the approach ... manipulates special-purpose
languages it seemed only fitting to name it after a structure of stars, a galaxy."
[NEI84] The Draco approach is mostly transformational implementation.
While it is geared at software reuse rather than automatic programming, it
has the flavor of automatic programming. The Draco approach is also very
domain-oriented, increasing from narrow to broad domains by building upon
(i.e., reusing) its smaller domain capabilities:

The objects and operations in a domain language represent analysis information
about a problem domain. Analysis information states what is important to
model in the problem. This analysis information is reused every time a new
program to be constructed is cast in a domain language. Further, we propose
that the objects and operations from one domain language be implemented by
being modeled by the objects and operations of other domain languages. These
modeling connections between different domain languages represent different
design possibilities for the objects and operations in the domains. Design
information state how part of the problem is to [be] modeled. This design
information is reused each time a new program to be constructed uses one of the
given design possibilities. Eventually, the developing program must be

Reuse Tools to Support Ada Instantiation Construction

3- Generalized Construction Approaches Page 48

modeled in a conventional executable general-purpose language. These
comprise the bottom level of the domain language modelling hierarchy.

[NE1841

The Draco approach is object-oriented, but not in the sense of object-
oriented programming languages-each of the components developed in
Draco is essentially an abstract data type. The approach centers upon domain
analysis, capturing the analysis information in reusable components, and the
iterative transformation of higher level domain language specifications into
lower level specifications, "until the entire specification is expressed in the
desired target domain (usually one whose language is executable) or
appropriate refinements cannot be found ... " [FRE87] Peter Freeman, also
from the University of California, Irvine, provides the following aescription
of Draco and its capabilities:

Draco is intended for use in situations in which numerous, similar systems
will be created oveti t:me ...

For a given application domain ... an analysis of this domain must be made
and defined to Draco before it can be used to generate programs in the domain...

From the standpoint of software technology, Draco can be viewed as a
system that provides two main functions: 1) the definition and implementation
of languages of various types (properly viewed as specification languages) and
2) assistance in and partial automation of the task of refining a specification of
a desired system (given in one of the languages known to Draco) into another
language, presumably more concrete or executable, (also known to Draco). Draco
provides assistance in optimizing the programs produced, managing the
libraries of languages and their implementations, and performing other
housekeeping detai' ,FRE87]

Draco has provided much insight into many related areas of computer
science and software engineering. The prototype is being applied to realistic
examples so that objective comparisons and conclusions may be made. Other
related investigations are also continuing. One conclusion which has been
reinforced is that "domain analysis and design is very hard." [NE184] Most of
the Draco domains which have been built so far are relatively low-level,
pertaining to the Draco infrastructure (e.g., parser generation, transformation
library construction, pretty printer generation). It remains to be seen whether
the Draco approach can be applied to larger and more general-purpose
domains.

3.1.2.4 ASLs and the SSAGS

Unisys has been researching the implications of reuse on the software
lifecycle, and in particular, has been developing a particular technical
approach to reuse based on an attribute grammar-based generative capability.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 49

[SIMSS] In effect, thev have combined the programming language and
narrow domain approaches to automatic programming:

At Unisys, our technical approach to software reusability is founded on the
use of application-specific languages, or ASLs-very high-level non-
procedural specification languages that employ syntax and terminology
suitable for a specific, narrow-band domain of application. We have produced
a number of ASL processors for diverse domains such as computer system
configuration and message format translation/validation. These processors
translate specifications written in an ASL to efficient, maintainable high-
level language code.

Generation of high-level code from ASL specifications has proved a better
approach to software reuse than libraries of reusable components in these
domains, due to many factors. Besides the productivity gain obtained from use
of a concise, declarative description, ASLs permit the generated code to be
driven by the specification in a far more complex way than is permitted by
parameterization in a general-purpose programming language (even Ada, with
features such as default parameters designed to be particularly supportive of
reuse). Semantic checks peculiar to the application domain can be incorporated
into the structure of the ASL; moreover, by embedding domain-specific
algorithms and expertise in the code generation component, generated high-
level source code can be of comparable efficiency to a hand-written
implementation. This makes ASLs potentially more viable in the near term
than general-purpose 'automatic programming' systems; such systems tend to
employ highly formal, abstract syntax, and cannot draw as readily on efficient
application-specific code generation techniques. [SIM881

In addition, Unisys has developed an operational system-the Syntax and
Semantics Analysis and Generation System (SSAGS)-which "enables many
portions of an ASL language processor to be generated from a formal
specification of the ASL." [SIM88] With this system, they have "significantly
reduced the effort required to develop, maintain, and retarget ASL
translators." [SIM88]

The Unisys researchers have launched a two pronged attack: 1) manually
developing domain languages (ASLs) and their processors, and 2) automating
(via SSAGS) the development of the domain language processors. By making
use of the domain language technology from their first effort, they are
proceeding to develop SSAGS through a bootstrapping process. This strategy
is an effort to prepare for the future transfer of their technology into other
domains. Their success is currently limited to narrow, low-level domains.
This seems to be a recurring phenomenon. However, the SSAGS is mostly
domain-independent, and their overall approach is well founded in known
computer programming language technology.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 50

3.1.2.5 Frame-Based Software Engineering

Netron, Inc., based in Ontario, Canada, is advocating a frame-based
approach to software reuse. [BAS87] This technology-not to be confused
with Al frames-is firmly based upon the concept of adaptable, reusable
components. Bassett provides a very eloquent discussion of reuse
engineering via automated adaptation and composition:

Frames ... provide a basis for a rigorous software-engineering discipline.
Generally speaking, a frame is any fixed theme plus the means to accommodate
unforeseen variations on that theme ...

[Clonsider manufacturing: In about 20 minutes you can order a new car that is
as unique as your fingerprints. In principle, every car on the assembly line can
be one of a kind. How can they be made in high volume and quality at
reasonable cost? When you tour an automobile plant, the first thing you notice
is that every car on the line looks the same. Of course, you are looking at the
frames. The unique results are obtained from the combinatorial explosion of
options that can be bolted, sprayed, and welded onto the frame. And because
the frame is engineered for such options, hundreds of millions of dollars can be
invested in automatic assembly equipment such as robot welders.

Programs are variations on themes that recur again and again. A software-
engineering frame is a model solution to a class of related programming
problems containing predefined engineering change points. [BAS87]

Netron has developed a frame formalization which facilitates the use of
language-independent frames. The frame syntax is described with a modified
Backus-Naur Form (BNF) grammar, and the semantics are said to be a form
of macros. Netron reports extensive experience with COBOL applications,
and some with LISP and Ada. Netron's parent company has apparently
developed and installed 20 million lines of custom COBOL, forming
numerous application programs, "composed from 30 input/output frames, 38
application-oriented frames, about 400 data-view frames (defining more than
10,000 data fields), screen and report frame generators, and one custom
specification frame per program." [BAS87] Frame-based software engineering,
as described by Bassett, hinges on the specification frames:

Of pivotal importance are the specification frames. Each program
corresponds to one specification frame, which is the root of a frame hierarchy.
The specification frame controls the hierarchy's composition of the program
and stores all its custom aspects. Specification frames typically contain less
than 10 percent of a program's source code-and specification frames are the
only Cobol frames for which application developers are ever responsible.

Specification frames are created from template specification frames. A
template defines a default frame composition for an application domain and
provides all the important options, with explanations to guide the choices.
The two-dimensional hierarchy of options is flattened into a linear list. The

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 51

application engineer, unaware of the underlying tree structure, customizes a
renamed copy of the template. The resulting specification frame, with the
underlying frames, is processed automatically (including a compile and link) to
produce an executable load module. [BAS871

Applications within the Management Information System (MIS)
domain-typically implemented in COBOL-have long been a catalyst for
advanced reuse technology, due to their relative stability and high degree of
commonality. [SIM881 Netron's frame-based technology is vet another case in
point. While some experience in Ada has been reported, only an internal
'reusability analysis' technical report is referenced. [BAS87] Although the
evidence provided is very attractive, it is completely unknown if this
technology can be applied effectively outside of the MIS/COBOL arena.

3.1.2.6 Meld

Meld is an object-oriented, declarative language designed to facilitate the
composition of software systems from reusable building blocks. [KA1871
Meld is an outgrowth of work done on the Gandalf project at Carnegie
Mellon University. Meld has two essential aspects that set it apart from other
object-oriented languages, features and action equations:

Features. Features are reusable building blocks. Like Ada packages, their
interfaces are separate from the implementation. A feature bundles a collection
of interrelated classes in its implementation. The interface exports a subset of
these classes and a subset of their methods. In effect, a feature is a reusable
unit larger than a subroutine, on approximately the same scale as an Ada
package, that permits the reuse of the glue among subroutines (methods) and, in
fact, among abstract data types (classes) ...

Action equations. Unlike classes, however, features can combine, as well as
augment and replace, inherited methods. This is accomplished by writing
methods as action equations. Action equations should not be confused with
mathematical equations. They were developed to extend attribute grammars
for semantics processing of programming environments.

Action equations define (1) the relationships that must hold among objects
and among parts of objects and (2) the dynamic interaction among objects and
between objects and external agents (such as users, the operating system, and
utilities). [KA1871

Action equations consist of methods-in the object-oriented sense-and
unidirectional constraints. In terms of automatic programming, Meld
follows the programming language and transformational approaches. The
Meld implementation translates the (language-independent) features and
action equations into a conventional programming language, and supports
the execution of such systems with a special run-time environment. The
translation algorithms were derived from previous work on software

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 52

generation. The run-time environment supports object and external agent
primitives, and provides a constraint satisfaction system. The Meld system
has been evolving over several years, and is currently being bootstrapped
from the previous implementation. It is reported that the previous system
"has been used to implement demonstration-quality, multiple-user
programming environments for small subsets of Modula-2 and Ada." [KA187]

This research is another example of applying constraint technology to the
object-oriented paradigm; evidently a powerful combination. As with Gist,
the resulting declarative nature of the system has led to bootstrapping and
perpetual prototyping. As far as capabilities, Meld provides a means for
creating reusable components which are clusters of objects. This is an
interesting capability and may prove to be of value for object-oriented reuse
libraries. Meld's action equations also provide a more powerful composition
mechanism than object-oriented methods.

3.1.2.7 CAMP

The CAMP component constructors were analyzed in detail in Section 2.
From the automatic programming perspective, the CAMP effort obviously
followed the narrow domain approach. In addition, the CAMP constructors
can be viewed as an effort to extend the capabilities of the Ada programming
language; following the programming language approach.

3.1.2.8 Prototype System Description Language (PSDL)

Researchers at the Naval Postgraduate School have been developing a
Prototype System Description Language (PSDL) for investigating knowledge-
based support for rapid software prototyping. [LUQ88] Luqi describes the
unique aspects of their research through a comparison with the
Programmer's Apprentice KBEmacs prototype:

Our approach differs from other knowledge-based approaches to program
construction by (1) the scale of its knowledge base, and (2) its computer-aided
retrieval of reusable components based on specifications. The Programmer's
Apprentice project aims at speeding up the programming process via a library of
reusable components. Reusable components implemented in the KBEmacs
version of the Programmer's Apprentice-components known as "clich6s"-
represent algorithm fragments rather than complete modules. Using algorithm
fragments, KBEmacs focuses on supporting the assembly of a module's
implementation rather than assembling systems from complete modules; the
scale of examples reported is a few hundred lines of code. We aim to produce
software system prototypes larger by several orders of magnitude, and seek to
avoid considering the internal structure of reusable components. ILUQ881

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized' Construction Approaches Page 53

A large portion of the PSDL research is focused on retrieval based on
specification. We will not address these issues here. However, this system
combines reusable component retrieval and adaptation in a very interesting
manner which attempts to alleviate the problems caused by finite and rigid
component libraries:

We can provide transformations that adapt or combine components
explicitly stored in the software base [the knowledge-based equivalent of a
component library] to accommodate a class of small variations, thereby
alleviating this problem. Systems performing such transformations as part of
the retrieval process have a .nuch better chance of successfully retrieving a
specified component from the software base than do systems that can only
return components explicitly stored in the software base. This capability also
reduces the need for designers to manually adapt reusable components after
retrieval ... [LUQ88I

This effort seems to be directed at solving the perceived problems of the
Programmer's Apprentice clichd libraries. It is reported to be in the very early
stages of development. The concepts being explored are indeed very
attractive. One negative aspect of the project is that they have restricted their
research to the dataflow and functional decomposition models of software
composition.

3.1.2.9 Software Templates

Researchers at the Oregon Graduate Center have developed an approach
to reusable components which is based on the separation of algorithms-
embodied in software templates-and (primitive and abstract) data type
implementations. [VOL851 Software templates "are defined over values of
abstract data types whose implementations are specified separately and
catalogued. When a template's data types are bound to catalogued
implementations, the template is automatically translated into a component
tailored to the chosen implementations ..." [VOL851 Biggerstaff and Richter
describe this research as:

An interesting approach to the prob. .:ns of composition ... By separately
choosing an algorithm and its implementation decisions for the data types
used, the system generates a customized implementation of the algorithm, often
producing a significant code expansion. It remains to be seen how far this work
can be pushed. IBIG871

Thusfar, a prototype system has been developed, with a small library of
implementations (written in 'C' and Pascal), and an enhanced version of the
prototype is reportedly under development.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 54

3.1.2.10 Software Construction Mechanisms

From the above discussion, it is evident that numerous research projects
are exploring new and innovative methods of software construction. This
research will eventually lead to enhanced state-of-the-practice programming
environments. Relatively speaking, today's programming environments
provide a number of low-level construction mechanisms.

For example, object-oriented systems provide inheritance, specialization
and generalization. Specialization and generalization are manual
construction mechanisms. The combination of inheritance and
specialization are especially effective software construction mechanisms.
Using this technique, new capabilities can be developed incrementally and
with ease; reusing previously developed classes and building from them.
Generalization is the creation of a new class from two or more previously
developed classes. Generalization actually provides an indirect construction
benefit: two or more classes are merged together in this manner when the
resulting class is expected to provide a better source for inheritance, thus
promoting reuse and future construction.

Thusfar, we have expounded the object-oriented mechanisms in terms of
composition and construction. These same mechanisms also support
adaptation. The inheritance mechanism facilitates adding, deleting, and
restructuring classes within an inheritance hierarchy. In addition, dynamic
binding allows such restructuring without necessarily having to modify the
effected classes. When examining the suite of object-oriented mechanisms-
in terms of composition, adaptation and construction-it becomes obvious
why this software paradigm is so powerful.

Generics-as provided by Clu and Ada-are primarily adaptation
mechanisms. However, the associated instantiation capabilities can be
considered construction mechanisms. With a predefined generic component,
this mechanism facilitates the automatic construction of executable software
components.

Macros provide a similar but less strict form of construction. As with
generics, there are two sides to macro facilities: macro definition and macro
expansion. Macros can be used as adaptation mechanisms, but they are
primarily used as construction mechanisms. LISP macros are especially
powerful. A LISP macro "is given a piece of program and computes a new
piece of program from it. Thus MACROs exploit the fact that LISP programs
and data have the same form." [WIN81]

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 55

3.2 Composition and Construction of Ada Components

Software construction has long been compared to computer hardware
fabrication which consists of printed circuit boards and integrated circuits
(chips). This analogy has often been criticized because of the inherent
differences in hardware and software, but it is useful nonetheless. In both
cases, large complex structures are constructed, in part, by composing smaller
well-defined components.

In the case of hardware, these components have become so well-defined
that they are abundantly available commercially. Hardware engineers
routinely browse through thick catalogs of components and are able to pick
and choose among components which possess some desired specifications.
While this has become standard hardware activity, 5oftware reuse is merely
an emerging technology.

Ada provides a wealth of fundamental programming mechanisms which
imply a coherent composition model. This includes procedures, functions,
tasks, exceptions, packages, renaming, overloading and generics. However, as
with other high level languages, this model of software composition has its
limitations. Table 3-1 illuminates these limitations by comparing
increasingly powerful Ada construction techniques with the corresponding
hardware analogy.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Avproaches Page 56

Table 3-1 Ada Construction Techniques

Ada Construction Hardware Adaptation &
Technique Analogy Reuse

Customized - program chips and board are custom systems are built using the
control structure and software built for each application facilities provided by the
components are custom built currently available
for each application formalized level of

abstraction (e.g., Ada,
hardware fabrication tools)

Bottom Up - program control custom board is built to a set of building blocks may be
structure is built around accommodate commercial or available which provide
existing software components otherwise available chips complete or at least

substantial coverage of a
given domain

Top Down - existing program semi-populated commercial sets of similar components-
.ntrol structure drives the board is completed with the providing coverage of specific

adaptation, selection, and/or selection and/or configuration but narrow domains-may be
creation of software of commercial chips available for selection and/or
components parameterization

Generics - abstract, commercial board components which have been
parametenzed program (populated) is tailored to a designed for maximum
control structures and specific application via DIP adaptability (as facilitated
software components are switches (e.g., port selection, by the current level of
utilized as much as possible timer configuration) abstraction) are available for
in the construction of a the construction (through
specific avplication adaptation and composition)

of specific applications

Table 3-1 also analyzes the level of adaptability and reusability which is
accomplished with each construction technique. In fact, the power of these
construction techniques can be mostly contributed to the level of adaptability
provided by the corresponding components. Table 3-2 explores the
increasing levels of adaptability and reusability of Ada software components.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 57

Table 3-2 Adaptability and Reusability of Ada Components

Level of Adaptability Level of Reusability

singular (customized) use as-is if directly applicable; modify if partially
component applicable; or don't use

multiple components select from finite set of similar components

Ada components may provide multiple bodies for
a given specification and/or multiple specification
and body pairs

subprogram parameters provides dynamic tailorability (within limits of
data types)

generic parameters provides static tailorability; can also be thought of
as providing an infinite selection of similar
components

construction (i.e., provides adaptation /abstraction capabilities
requiring specialized beyond those of the current programming
automation) language

Table 3-2 provides a simplified view of the adaptability and reusability of
Ada software components. However, it is enlightening to view the
increasing levels of adaptability in relation to the underlying programming
language capabilities. The Ada programming language-in particular the
Ada generic facility-does not provide reuse engineers with a sufficient
adaptation capability. The CAMP project provides evidence to support this.
In order to achieve the desired level of adaptability, conventions were
adopted and constructors were deveioped. Construction (or generation) is the
automated means to achieve a level of adaptability not available using a base
programming language.

3.3 The Evolution of Computer Programming Languages

We are evolving towards a higher level programming language. What
happened on the CAMP project is a well-documented snapshot of this
evolution. In each case, the CAMP constructors provide a level of
programming which is more powerful than that of the Ada programming
language. For example, the CAMP constructor dialogs are actually a form of
computer programming language, providing a higher level, declarative, and
interactive programming capability. The problem with the CAMP

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 58

constructors is that they are very specific, narrow, and ad-hoc enhancements
of the Ada programming language. Nonetheless, they do provide
programming capabilities beyond those of Ada.

This is a clear progression towards a higher level of abstraction which has
happened time and again. Figure 3-2 illustrates the cyclic nature of this
evolutionary process.

Yet Another Higher Level Language (YAHLL)

Figure 3-2 Technological Evolution

In terms of computer programming, once the reuse of a concept is
formalized/standardized, it is eventually incorporated in a programming
language. The concept may be incorporated as an extension, a modification,
or as the basis of a new, evolutionary language. CAMP started with specific
constructors and is now (CAMP-3) moving towards more generalized
approaches. The constructors provide the programmer with a higher level of
abstraction in which to work with. In turn, this increases one's expressive
and reasoning power, leading to more compact, understandable, and
maintainable programs. The net result is increased software productivity.
Figure 3-3 provides a historical view of the evolution of computer
programming languages.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Avproaches Page 59

special-purpose languages I

VLscomain application construcos

machine codesruor

machin e omuer)t

l Velslanguages generatorsam nglanguage_ _ - ---
I HL.s (e.g. Ada)

I assembly

machine (computer) i

Figure 3-3 Evolution of Computer Programming Languages

Over the years, we have progressed from machine code computer
programming through high level computer programming languages such as
Ada. At this point, it is unknown what the next generation, i.e., very high
level language (VHLL), general-purpose computer programming languagewill be; technological evolution tends to advance at a snail's pace. Of course,
this is our view, since we are in the midst of it. In actuality, the technological
evolution of computer hardware and software has been moving forward at
warp speed in comparison to other technologies -past and present.
Currently, domain languages, application generators, and constructors (i.e.,
special-purpose languages) are serving to push the frontier of general-purpose
computer programming languages. In this sense, constructors can be viewed

as evolutionary vehicles, as shown in Figure 3-4.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 60

Ada => CAMP. Classic-Ada. Dragoon

LISP => Gist

C => C++,Objective-C

Pascal => Modula-2, Object Pascal

macro assemblers => HLLs

Figure 3-4 Constructors are Evolutionary Vehicles

There are several examples of this phenomenon, from the structured
programming macro assemblers of yesteryear to the more recent Ada
"constructors": Programmer's Apprentice KBEmacs and cliches, CAMP
constructors, Classic-AdaTM, and Dragoon. Classic-Ada is a CASE tool
developed by SPS that suppots object-oriented design and implementation
with Ada. Dragoon is a similar product being developed in Europe, but is not
yet commercially available. Classic-Ada provides extensions which support
the object-oriented programming mechanisms of (single) inheritance and
dynamic binding. The Classic-Ada tools generate highly portable, DoD
standard Ada code.

Viewing constructors in this new light, we may now revisit the CAMP
project for a deeper understanding of the CAMP constructors. First, we will
take a fresh look at the CAMP subsystem composition constructors. These
constructors primarily served to provide assistance in the composition of
existing CAMP parts. The backbone of these constructors is the Semi-Abstract
method (i.e., the convention of default generic subprogram parameters)
which was used to develop the underlying reusable parts. This is an example
of how reusable components, in order to actually reach a significant level of
reusability, are becoming increasingly adaptable.

But what happens when we reach the next level of computer
programming language? Will this new computing power make reusable
components obsolete? The answer is no. We believe that there will always
be some form of reusable software components. Currently, the technology of
reusable, adaptable components is moving faster than that of programming

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Aoproaches Page bl

languages. Reusable components are becoming increasingly adaptable, and
are steadily being applied to eariier software development phases-up
through domain analvsis. As wc rcpeatcdly develop more and more
advanced software components, we will correspondingly need to address
more advanced adaptation and composition of these components. In this
sense, the research and development of adaptable and reusable components is
fueling the evolution of programming languages. The CAMP subsystem
composition constructors are an example of this phenomenon.

Secondly, we will take another look at the CAMP component generation
constructors. These constructors vary greatly in detail. However, each
provides an enhanced programming capability over the Ada programming
language. For example, the Data Type constructor provides a general-purpose
capability which offers a very limited-but distinct-increase in
programming power. On the other hand, the Finite State Machine
constructor provides a significant increase in programming capability, but is
much less applicable in scope. Each of the CAMP component generation
constructors was driven by situations in which Ada alone could not capture
some recurring programming concept, although "most software engineers
have a good idea of how ... [the component] can be implemented." [MCN88]

But what happens when we reach the next level of computer
programming language? Will this new computing power make component
generation obsolete? Again, the answer is no. Computer technology is
forever being applied to more challenging problems. What today is regarded
as a straightforward application of computing technology was unthought of
just a few years ago. By the same token, programming concepts which are
well-understood and considered tedious today (e.g., finite state machines) will
someday be abstracted away into more powerful and yet still general-purpose
programming languages. Then, after applying this new programming power
to even more challenging problems, the need for component generation will
arise once again. As we repeatedly apply programming languages to more
and more challenging problems, we will correspondingly need to address
more advanced software construction capabilities. The CAMP component
generation constructors are an example of this phenomenon.

Having gone full circle, beginning and ending with the CAMP
constructors, we are now ready to address the initial task: generalized
construction approaches. But first, we must reconsider just what constitutes a
constructor. Ironically, this most basic of questions presented a difficult
challenge throughout this research effort. Figure 3-5 provides a graphic
illustration of our new outlook on constructors.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 62

C

00 T
T

R

C

Constructors are T A constructor is a conceptual vehicle which:
driven by users R

who find • enhances a base programming language
themselves
repeatedly * supports programming which is more:
applying a base e sic i
programming - expressive, concise
language to \ /slaa to- declarative, irtuitive
similar, \

"difficult"
problems. - understandable

p lBase Prormning L guage

Figure 3-5 What Constitutes a Constructor ???

We can answer this question by examining the constructor from the
perspectives of the reuser and the developer. Ideally, the reuser is a domain
expert wha is not required to understand the component's design,
implementation, or even the implementation language. The reuser only
needs to know the external behavior of the component, in terms of the
domain. The reuser considers the constructor to be an adaptable, reusable
component (of varying size and complexity). In order to use the component,
the domain expert simply supplies the domain-level specification
information necessary for the component's adaptation to a particular
application.

On the other hand, the developer of a constructor is a software engineer.
The developer views the constructor as a program, or software tool, which

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 63

generates a customized software component. The sottware component it is
responsible for generating has a well understood design and implementation.
However, the component must accommodate several domain related
variances. These variances cannot be captured using the implementation
language alone. The goal of the constructor is to eliminate the tedious
manual work of constructing the component for use in specific applications.
The constructor is to inout the component's customization data and generate
the appropriate source code.

We now have a better understanding of constructors and the issues
concerning their generalization-programming languages and their
evolution, software adaptation & reuse, and the fundamental programming
mechanisms: composition, adaptation, and construction. With few
exceptions, the CAMP constructors (represented by the left half of Figure 3-6)
were designed and implemented as individual entities; without cohesion. As
a result, generalizing the CAMP constructors would do nothing more than
ease the burden of creating similar constructors. For the CAMP project-
faced with the maintenance and evolution of the AMPEE system and Parts
Catalog-this may be a worthwhile effort. The CAMP constructors have the
potential to significantly increase software productivity and reliability, but
only within a very limited scope. The CAMP constructors should be viewed
as a set of ad-hoc solutions to a set of very specific software development
"problems."

Moreover, the basic notion of generalized constructors-even outside of
CAMP-does not address the real issues at hand. From the perspective of
computer programming languages, constructors are evolutionary vehicles.
Constructors are primarily short-term solutions; eventually to be replaced by
more systematic, integrated and/or general-purpose programming
capabilities. Merely by their existence, constructors are admittedly separate
entities from their underlying programming languages. From the standpoint
of integrated, seamless programming environments, this is an obvious
disadvantage.

Thus, generalizing constructors themselves only solves part of the
problem. Generalized constructors would be more cohesive and integrated,
but they would still be separate entities, and they would still be separate from
the base programming language. A good example of this phenomenon is
DARTS (see Section 2.2.1.4 and (MCN86b]). The DARTS technology includes
an extendable specification language called AXE. Once extended to support a
particular application domain, AXE statements are embedded within the
source code of existing components. Utilizing these genericized components,
the DARTS system is able to generate customized components from domain-
level specifications.

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 64

.P Programming Lan.uag. Z Lguage

sp .ecial- purinpos.. e-.. d-hocw W... sstem -ati-c. e nhancemnent of the
Sibas~e lnguage: capabilities

domain-specific (with respect tomtrad
the base p grmig langae *~~eral pqr ose

Figure 3-6 Constructor Implementation Spectrum

DARTS is a generalized constructor; a single system which is capable of
generating numerous components. However, the generalization is not an
enhancement of the base programming language. In fact, AXE statements can
be embedded in any programming language. At first, this seems like a
desirable characteristic for generalized construction approaches. DARTS'
developer, General Dynamics, even planned to make the technology
commercially available. This never happened. After some use internally,
General Dynamics is now using only pieces of the DARTS technology (not
including the AXE language). We believe that one of the reasons for DARTS
demise is the fact that the DARTS approach, though generalized, is not an
integrated enhancement of base programming language capabilities. DARTS
users have to combine the syntax and semantics of two completely separate
languages into a single software component. Embedding foreign constructs
within the nooks and crannies of software components is equivalent to
crafting individual component constructors. Any generalized construction
approach which utilizes programming formalisms detached from the base
programming language (e.g., DARTS, constructor-constructors) will result in
the development of reusable components which suffer in terms of

Reuse Tools to Support Ada Instantiation Construction

3 - Generalized Construction Approaches Page 65

understandabilitv and maintainability, and will be entirelv dependent upon
the associated special-purpose software system.

Our new understanding of constructors has led us to the conclusion that
truly generalized constructors are implemented such that the fundamental
programming mechanisms of the base programming language are enhanced,
illustrated by the right half of Figure 3-6. In this manner, constructors can
form a more seamless integration with the programming language, while
also promoting its eventual enhancement and/or evolution.

We believe that constructors are vital to the evolution of programming
languages. We also believe that constructors can be valuable in the here-and-
now. Especially in domains with a large degree of commonality, constructors
have the potential to promote reuse and to significantly affect productivity
and reliability. In fact, the following section presents a promising scenario of
how the GCC may be integrated within future reuse environments.

Reuse Tools to Support Ada Instantiation Construction

4- Development Environment Integration Page 66

4 Development Environment Integration

One of the objectives of this effort is to investigate the integration of the
Generalized Constructor Capability with existing, commercial software
development environments. Two kinds of development environments of
primary importance are expert system development environments and
software reuse environments; these are addressed in the following sections.

4.1 Expert System Development Tools

This section evaluates tx e suitability of using an expert system
development environment to implement the GCC. In particular, we will
recommend whether or not the Automated Reasoning Tool (ART), or a
similar expert system tool, should be applied to the GCC.

Although CAMP Phase I concluded that expert system technology should
be applied to the constructor problem, CAMP Phase 2 found that, for the most
part, an expert system was not required. Despite the fact that the Automated
Missile Parts Engineering Expert (AMPEE) system was implemented with
ART, "[t]he Parts Identification subsystem is the only portion of the AMPEE to
use ART for anything more than data structuring." [MCN88a] While ART
provided a convenient prototyping environment, the functionality of
AMPEE could be accomplished using other more conventional techniques.
In fact, the Parts Composition System (PCS) has been re-engineered in Ada as
part of the CAMP-3 project (see Section 2.3).

Although originally conceived as an expert system, AMPEE makes only
limited use of ART functionality:

It is used throughout the AMPEE system for data structuring (via the ART
schema system (which includes inheritance]), and within the Parts
Identification subsystem for consistency checking and interface control (via a
small number of simple forward-chaining rules), and for display of the missile
software hierarchy within the Missile Model Walkthrough function. ART
provides many more features that are not used in the AMPEE system, such as
backward chaining rules and the ability to explore alternative scenarios...
[MCN88a]

The CAMP developers warn that the use of complex expert system
development environments such as ART impose limitations on the final
system, including portability, cost, and compatibility. (There are, however,
fairly powerful shells and tools that are implemented in standard
programming languages and run on conventional platforms.) They suggest
that "before utilizing such a tool, it would be beneficial to determine which of

Reuse Tools to Support Ada Instantiation Construction

4 - Development Ei,vironment Integration Page 67

its features are likely to be needed, and determine if some or all of the needed
features are available in a simpler and more portable package or language."
[MCNSSa]

However, expert system implementations of young and emerging
technologies, such as an automated parts composition system, are capable of
easily accommodating advances and evolution of the maturing technology.
This was one of the reasons that expert system technology was originally
recommended for AMPEE, and is a definite advantage of a (good) expert
system implementation.

Even so, we do not currently recommend the use of ART, or a similar
expert system tool, for the development of the GCC. Expert systems, as the
name implies, are capable of modeling specialized problem-solving expertise.
As evidenced by the lack of requirements specified during this effort, we have
yet to develop a sufficient understanding of the expertise necessary to adapt
reusable software components for specific applications. If, after developing
the GCC requirements and/or a GCC specification, it becomes clear that some
aspect(s) of the GCC are best suited for an expert system, then it would be
appropriate to impose expert system implementation requirement(s).

On the other hand, the object-oriented paradigm offers an increasingly
attractive means of achieving the same flexibility requirements. Our
corporate experience leads us to believe that the object-oriented paradigm is
well suited for the implementation of the GCC-as well as its specification
and design. We believe that an object-oriented implementation would
provide the needed adaptability and extensibility (as expounded upon in
Section 3.1.2.10). It is for these same reasons (e.g., inheritance, dynamic
binding) that prototypes and simulations are often implemented in object-
oriented languages. In addition, the object-oriented paradigm provides an
excellent framework for modeling and classifying reusable software
components (more on this in the following section). Finally, specialization
provides a very powerful adaptation mechanism for software components,
even though we don't yet understand the specific kinds of adaptation which
the GCC will need to support. In addition to all of this, the continued
maturity of object-oriented programming languages and environments
would ensure good productivity and quality for the GCC development effort.
It should also be noted that there is a continued merging of the object-
oriented paradigm with knowledge representation and reasoning systems.
Thus, if aspects of the GCC do indeed lend themselves to an expert system
implementation, it will be easy to integrate the object-oriented modeling with
the expert system's reasoning capabilities.

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 68

4.2 Reuse Environments

Another aspect of this task is to investigate the implications of reuse
environments in supporting the Generalized Constructor Capability. The
GCC must necessarily be tightly integrated with the part definition and parts
storage and retrieval capabilities provided by its reuse environment. Given
the current lack and immaturity of the tools in this area, we will limit our
investigation to using the Automated Reusable Component System (ARCS)
as a platform for the GCC.

4.2.1 Automated Reusable Component System (ARCS)

ARCS is a Small Business Innovation Research (SBIR) program for which
Software Productivity Solutions, Inc. (SPS) has recently been awarded a Phase
II contract with CECOM (Contract No. DAAB07-89-C-B920). SPS is in the
process of developing a production-quality reusable software component
library management system with the following features:

" powerful information query and browsing

" multi-window user interface

* support for multiple user roles

* flexible classification scheme definition and management

* extensible component submittal and extraction

* support for the integration of extraction/adaptation tools

* usage auditing and reporting

The following sections provide a more detailed description of the ARCS
library management system. In particular, the ARCS concept of external
support tools and their integration and cooperation is presented. It should be
noted that the following sections represent work-in-progress and as such are
subject to change.

4.2.1.1 Reuse Library System (RLS)

The ARCS library management system is called the Reuse Library System
(RLS). Figure 4-1 shows the Reuse Library System and its external interfaces.

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 69

User

Reuse Library System Cooperating
Reuse

i i_ _Tools

User's Software Engineering. Environment:

Figure 4-1 Reuse Library System External Interfaces

Users of the RLS have three primary roles: classifier, cataloguer, and
searcher. Classifiers derive and maintain the component classification
scheme. Cataloguers add components to the library. Searchers find and
extract components from the library.

A distinguishing arid innovative feature of the RLS is that it utilizes an
object-oriented component classification scheme for the organization and
management of the reusable components. The classification scheme is a
component class hierarchy which specifies the kinds of components that can
be described and searched for in the RLS. The classifier defines component
classes and their associated attributes. Component classes inherit attributes
from their superclasses. The following types of attributes may be defined:

" Single line of text - used for simple, short text values such as
name, author, location, etc. Classifier can specify that values
provided be unique.

" Multi-line text - used for large text values such as prose
descriptions, source code, etc.

" Facet - controlled vocabulary (values must be one and only one of
the approved terms defined for facet).

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 70

* Kevwords - list of single line of text values, typically used for
application keywords, project keywords, etc.

" Integer - for metrics-based criteria

• Fixed point - for metrics-based criteria

• Date

* Link - used to describe relationships between components, has
specified cardinality.

Components are uniquely identified collections of attribute values that
represent objects that have been catalogued and can be searched for,
examined, extracted and reused. A component is an instance of a component
class and is catalogued by providing values for the attributes which are
defined by the component's class.

A component set is a collection of components produced as the result of a
query. A keep set, on the other hand, is a collection of components which
have been identified by the user for subsequent extraction.

The RLS supports user-defined layouts of components for cataloguing,
browsing and searching purposes. A layout identifies specific attributes to be
displayed/used and their general arrangement on the display. The searcher
can display, file and print only those attributes of interest.

4.2.1.2 Checkout Tools (CTs)

As shown in Figure 4-1, there is a class of tools which have been
identified in the RLS specification called Cooperating Reuse Tools. These
tools support the reuse process, but are external to the RLS. They have the
ability to communicate concurrently with the RLS, with each other, and also
with the user.

The concept of Cooperating Reuse Tools is based upon a layered
communication system composed of a low-level communication facility (e.g.,
TCP/IP), sockets, and an object exchanger. Sockets provide a means for
concurrent communication amongst processes (i.e., tools). The object
exchanger-part of the RLS-handles the exchange of encoded, typed objects
to and from the RLS. All of these together allow the RLS user to interact with
the RLS, as well as any Cooperating Reuse Tools, in a seamless, coordinated
fashion.

Of particular interest are a special class of Cooperating Reuse Tools called
Checkout Tools (CTs). The term checkout refers to the act of component
extraction. Thus, Checkout Tools are responsible for the extraction of
components from the searcher's keep set, including any necessary adaptation

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 71

(e.g., automated construction/generation). Indeed, it is envisioned that
Checkout Tools will be largely responsible for the adaptation of components
to suit the requirements specified by the searcher (i.e., the requirements
imposed by the target application). Thus, Checkout Tools play a significant
part in reuse by searchers who use the tools to extract and adapt components.

Checkout Tools are associated with the RLS component classes. Each
component class may have at most one associated Checkout Tool. Checkout
Tools are inherited-with overriding-through the component class
hierarchy. Checkout Tools are registered by the Classifier. If no Checkout
Tool is specified for a particular component class, then that component class
inherits the Checkout Tool of its superclass. In this fashion, each Checkout
Tool is responsible for the set of components which are instances of the
corresponding component class(es).

With respect to component extraction, the following requirements have
been allocated to the Reuse Library System, the Checkout Tools, the classifier,
and the searcher:

* Reuse Library System

- manage the keep set

• Checkout Tools

- manage the extraction/adaptation of sets of components

* Classifier

- register Checkout Tools (in accordance with the component
classification scheme)

• Searcher

- iterate through the keep set (selecting, browsing, and
deleting/extracting components)

The RLS will insure the keep set to be persistent over multiple user
sessions. Duplicates within the keep set will not be allowed.

Checkout Tools will manage any component extraction ordering and/or
other component dependencies, as well as multiple session extractions.
Dependencies will be managed by: 1) extracting a component and all of its
dependents, and 2) placing component dependents in the user's keep set for
their eventual extraction. Checkout Tools which engage in searcher dialogs
will need to remember the answers to "common" questions (i.e., questions
which pertain to the adaptation of more than one component).

The classifier will take the Checkout Tools into consideration when
deriving/maintaining the classification scheme. The searcher will be
responsible for iterating through the keep set. This allows the searcher to

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 72

keep intellectual control over the extraction process, choosing which
components to extract and when to extract them.

Checkout Tools represent the Generalized Constructor Capability within
the Reuse Library System. Therefore, our investigation of the integration of
the GCC within reuse environments has focused upon the Checkout Tool.
This effort has resulted in the development of a protocol defining the
communication between the RLS and the Checkout Tools. This protocol is
presented in the following section. The protocol is then followed by an
operational scenario, providing an in-depth look at the integration of the
Checkout Tool with the Reuse Library System.

4.2.1.3 Reuse Library System/Checkout Tool Protocol

Figure 4-2 specifies the Reuse Library System/Checkout Tool protocol.
The protocol shown assumes a single user. The communication of user IDs
may be needed in order to facilitate multiple users.

Reuse Tools to Support Ada Instantiation Construction

4- De%,eloument Environment Inteeration Page 73

Searcher

checkout request

checkout/adaptation
dialog

invocation & checkout request

Reuse library query/response - Checkout

Library Tool

System 0 add to keep set

checkout reauest
to other tools

checkout reauest
to other tools

_.checkout complete

Figure 4-2 Reuse Library System/Checkout Tool Protocol

Figure 4-2 shows a searcher communicating with both the Reuse Library
System and one or more Checkout Tools. On the user's display, this
communication will take place in separate "windows." Depending on the
look 'n feel of the Checkout Tool(s), the searcher may believe to be
communicating with a single, coherent, reuse library system.

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Inteizration Page 74

Typically, the searcher will select one or more components from the keep
set and requests to check them out from the library. During the checkout
process, the searcher mav become involved in a dialog concerning the
extraction and/or adaptation of certain components. Fcr c-mple, if a
relativelv time consuming extraction--especially of dependents-is about to
be performed, then the searcher may be queried as to whether the extraction is
to be performed now, or at another time.

Once a searcher has made a checkout request, the RLS will establish
communication (via a socket) with the appropriate CT(s) and issue the
corresponding checkout request(s). A set of component names will
accompany this checkout request. From this point, the Checkout Tool is
responsible for the checkout, and the RLS is passive until acknowledgement
of checkout complete.

Checkout Tools may receive checkout requests from the RLS, or from
other Checkout Tools. in the event that a CT needs to invoke another CT (an
example of Cooperating Reuse Tools), a socket will be used to establish direct
tool-to-tool communication.

During the act c; checking-out components, the CT will most likely
communicate with the RLS to :equest certain attributes of a component (e.g.,
source code, dependencies). As mentioned earlier, the CT may also enter a
dialog with the searcher, soliciting adaptation requirements or other
information. If a component needs to be added to the user's keep set (e.g., if
the extraction of a dependent component has been deferred), then the CT may
direct the RLS to do so. Upon completion of a checkout task, the CT will
notify the RLS and provide a list of all the components, including subsequent
dependencies, which have been checked-out.

The operational scenario of the next section will provide addition detail
concerning the Reuse Library System/Checkout Tool protocol.

4.2.1.4 Operational Scenario

The following operational scenario provides a useful perspective from
which to analyze and reason about the integration of "constructors" within
the Reuse Library System's environment. The scenario is centered around a
hypothetical Classic-Ada (see Section 3.3) component class, and its associated
Checkout Tool.

The scenario is concerned with the creation of a simple user interface
application as depicted by Figure 4-3. The application being constructed is a
primitive demonstration of a user interface management system (UIMS)
called Classic-Looks Classic-Looks is a commercial product which SPS is
currently developing. Classic-Looks is a collection of reusable components-

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 75

implemented mostly in Clacsic-Ada-for building object-oriented user
interraces. Classic-Looks includes high-level facilities for building and
manipulating windows, menus, forms, various kinds of graphics, etc.

Classic-Looks Demo Version 1 QE-1

Do The Righit Thing

Xi.

Done

Figure 4-3 Operational Scenario: A Classic-Looks Demo

This particular version of the Classic-Looks demo displays a window with
a text string at the top, and two buttons, each having a text string within
them. The text string at the top is a title identifying the window as the
Classic-Looks demo and providing the version number of the demo. The two
buttons also have associated actions that are performed when they are
"1pressed." Other than their existence, the actual actions associated with the
buttons are not relevant.

This scenario was chosen for several reasons. As mentioned earlier, we
view Classic-Ada as a "constructor." As a softwvare development tool, Classic-
Ada provides capabilities which extend the base Ada programming language.
Here at SPS, we have several software development activities which involve
the use of Classic-Ada and Classic-Looks. In particular, and by no accident,
numerous Classic-Looks components are frequently reused in the
construction of user interfaces. Our engineers have found themselves
repeatedly performing the same actions necessary to identify, retrieve, and
adapt these components. As a result, we were able to devise an operational.
scenario which is complete (a]#-hough relatively simple), detailed, and based
on actual experience. While specific to the Reuse Library System and Classic-
Ada, we believe the scenario is generally applicable to the integration of the
GCC within reuse environments. In fact, the Checkout Tools themselves
perform a GCC function (i.e., automated adaptation).

In reasoning about our experience with reusing user interface
components, we hypothesized how the Reuse Library System (populated with
Classic-Looks components) and a Classic-Ada Checkout Tool (CA CT) might
automate this process. We believe that such a CA CT should, as a minimal

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 76

requirement, identify Classic-Ada related dependencies to other components.
The operational scenario presented here explores this in detail.

For this scenario, assume that the Classic-Looks components have been
catalogued within the RLS. Figure 4-4 illustrates the web of dependencies
between the various top level components of Classic-Looks and other
components necessary for this scenario. Figure 4-5 depicts the structure of
the associated component classification scheme.

searcher's initial keep set

message Ina message paage

SC

s sacaAdame keyboard

, string80

m ess igeii~i:iiii

ccla s

cla : Legend

.... ::; : iii, iii: ::::; .. c a{Ada package

Note: Arcs denote dependencies and their type. Arcs denoting
message dependencies do not imply direct!on of message traffic.

Figure 4-4 Component Dependencies

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 77

The components identified in Figure 4-4 are mostly self-explanatory.
gLIB is an X Window S,,stpm Ada library upon which Classic-I ooks is built.
UIMS is actually a misnomer. The UIMS component is an event dispatcher;
it is not the root class of the entire Classic-Looks system, as the name implies.
On the other hand, object is the root class of Classic-Ada, which explains why
so many components are dependent upon it.

There are three kinds of dependencies which are identified in Figure 4-4:
with, (super)class, and message. With dependencies are those found in Ada
in which a component may be dependent upon one or more AdL packages
explicitly through the with clause. Superclass dependencies are found in
Classic-Ada components and are very similar to with dependencies.
Superclass dependencies are explicit references to other Classic-Ada classes
and represent the inheritance hierarchy. Message dependencies are implicit
dependencies among Classic-Ada components. Unlike the with and
superclass dependencies, they cannot be uniquely determined by examination
of the source code. This scenario assumes that these dependencies are
catalogued by the classifier.

In Figure 4-4, the message dependencies all represent implicit Classic-
Looks protocol dependencies. For example, window is shown to have a
message dependency upon screen. The reason behind this particular
dependency is that screen (the Classic-Looks "engine") sends messages to
window.

Although not represented in the dependency web of Figure 4-4, "separate"
dependencies have also been identified as an additional type of dependency
among Ada components.

The four compuznents at the top of the Figure 4-4 represent the initial four
components which a searcher would identify for the creation of the Classic-
Looks demo described by Figure 4-3. From the Classic-Looks demo
requirements, the searcher knows that the components window, string8O
data, string80 rendering, and action are minimally required to implement this
application. Obviously, the searcher must have some knowledge of Classic-
Looks and Classic-Ada components. This knowledge may have been
provided through the RLS. However, the searcher may not be aware of the
various components which are required as a result of the dependency web
shown in Figure 4-4.

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 78

cattributes: name, class

class link attributes: with dependencies, separate dependencies

Classic-Ada checkout tool: Classic-Ada CT
class link attributes: superclass dependency, message dependencies

Figure 4-5 Library Classification Scheme

Figure 4-5 shows the library classification scheme which has been
developed for this scenario. Through inheritance, each component class (and
subsequently every component instance) will have a name attribute and a
component class attribute. There are two Checkout Tools identified; one for
Ada (Ada CT) and one for Classic-Ada (CA CT). Ada components are shown
to have link attributes for with and separate dependencies. Classic-Ada
components are shown to have additional link attributes for superclass and
message dependencies.

As mentioned previously, most Classic-Looks components are
implemented in Classic-Ada. Thus, these components are catalogued as
instances of the Classic-Ada component class. The remaining Classic-Looks
components are instances of the Ada component class. Note that neither of
the associated Checkout Tools has any explicit knowledge of Classic-Looks.

The scenario, illustrated in Figures 4-6 and 4-7, show the interactions of
the Reuse Library System, the Classic-Ada Checkout Tool, and the Ada
Checkout Tool. The essence of the scenario is that a given CT checks-out all
the components which it is responsible for, including dependencies. When it
can no longer process any more components, it then sends messages to the
appropriate CTs to process the remaining components.

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Inteszration Page 79

Classic-Ada
Reuse Library Checkout Tool

System (CA CT)

checkout reauest (window, strinz80 data,
stnngb) rendienng, action)

add component names to
the checkout set table

request source attribute for window

source for window

place source
code in user file

reuest detvendencv attributes (with, separate, n

Time superclass, message) ot winaow

(XLIB, screen, object)

request corresponding class attributes

(Ada, CA, CA)

add information to
the checkout set table

Figure 4-6 Operational Scenario

The scenario begins with a checkout request being sent to the CA CT for
the initial four components of the searchers keep set, as depicted in Figure 4-
4. The scenario assumes a checkout set table is maintained by the Checkout
Tool, containing component names and corresponding component class
names. After the component names are initially recorded, the component
window is processed first, the remaining are then processed in order (as
shown in the checkout request message).

The processing for window, and subsequent components, begins with the
retrieval of the component's source code, which is placed in a buffer (a
previously specified user file). In fact, this scenario covers nothing more than

Reuse Tools to Support Ada Instantiation Construction

4 - Development Environment Integration Page 80

the collection of the appropriate source code, including dependencies. More
advanced checkout capabilities may include the creation of a
translation/compilation command language file (i.e., a sequence of operating
system commands), the selection of variant specs and/or bodies, and of course
the adaptation or even generation of source code.

Once window's source code has been extracted, the RLS is queried for
window's dependencies. For each of window's dependencies, the RLS is then
queried for the corresponding component class. This information is added
(in the sense of sets) to the checkout set table. In this scenario, the checkout
set table would now contain:

Component Component Class

window CA
string80 data CA
string80 rendering CA
action CA
XLIB Ada
screen CA
object CA

After window is processed, string80 data, string80 rendering, and action
would be processed in the same manner. XLIB (a dependen: of window)
would not be processed by the Classic-Ada Checkout Tool. Continuing in this
manner, the CA CT would then process screen, object, data, graphic, and
finally UIMS. Eventually, all but XLIB, string80, and keyboard would be
processed by the CA CT.

Reuse Tools to Support Ada Instantiation Construction

4- Cvelotment Environment Integration Page 81

Classic-Ada Ada
Reuse Library Checkout Tool Checkout Tool

System (CA CT) (Ada CT)

the remaining
components in the

checkout set table must
be checked-out by their

associated Cls:

checkout reauest (XLIB.
string, keyboard)r

checkout complete (XLIB.
string, keyboara)

add checked-out
Time components to

checkout set table

checkout complete (window,
string8O data, string8O rendering,
action, XLIB, screen, object, string8O,
data, graphic, keyboard, UIMS)

Figure 4-7 Operational Scenario (cont.)

At that point, the Classic-Ada CT would issue a checkout request to the
Ada CT for the remaining components, as shown in Figure 4-7.
Independently of the CA CT, the Ada CT would then perform the checkout of
these three components, as well as any dependencies. It would then send a
checkout complete message to the CA CT with a complete list of those
components checkout-out. Likewise, the CA CT would add this list to its
checkout set table, and return the complete set of checked-out components to
the RLS. Notice the final set of checked-out components totals 12, compared
to the initial request for 4 components.

4.2.2 The Integration of the GCC within Reuse Environments

Adaptation is prerequisite to reuse. -l he prime directive for Checkout
Tools are to assist in the extraction and adaptation of reusable components

Reuse Tools to Support Ada Instantiation Construction

4- Development Environment Integration Page 82

from the Reuse Library System. Assuming that a searcher has already
identified a reusable component of interest, even if the component is a weil
encapsulated and cohesive unit of source code which needs no modification
whatsoever, the mere act of extraction and incorporation into the target
development is a form of adaptation. Furthermore, the required adaptation,
no matter how simple or complex, must be performed before the component
of interest is capable of being (re)used.

Identifying and managing inter-component dependencies is a reasonable
adaptation requirement for Checkout Tools. For example, the operational
scenario of the previous section demonstrated how a searcher requesting 4
components from the RLS resulted in the extraction of 12 components. The
additional 8 components were identified though inter-component
dependencies. Allocating this adaptation requirement to Checkout Tools
allows searchers without detailed knowledge of the underlying component
interdependencies to easily retrieve a complete set of components.

A more advanced adaptation requirement which might be imposed on a
Checkout Tool might be to generate a command language file to be executed
once a set of components have been extracted. The purpose of the command
language file would be to complete the adaptation of the components,
especially in terms of integrating the components irto the target
development environment. For example, the Classic-Ada Checkout Tool
from the operational scenario could be required to gene- ite a command
language file for the Classic-Ada processing and Ada compilation of the
checked-out components. In fact, our engineers believe this would be a
significant aide in the adaptation of reusable Classic-Ada components. We
believe that this type of adaptation is a feasible Checkout Tool requirement.

The Reuse Library System facilitates a very powerful Checkout Tool
capability. This is due primarily to its object-oriented component
classification scheme, and the concept of Cooperating Reuse Tools. Within
the RLS environment, Chekout Tools:

* inherently support sets (i.e., classes) of related component instances,

" are capable of supporting multiple (hierarchically related)
component classes,

* may just as easily perform "component construction" as "subsystem
composition" functions, and

" have visibility to external component classes and instances, yet are
cleanly separated and independent from them.

In the operational scenario, the Classic-Looks components were said to be
instances of the Classic-Ada component class (see Figure 4-5). An alternative
scenario might include a Classic-Looks component class and an associated
Classic-Looks Checkout Tool. Presumably, a Classic-Looks CT would be

Reuse Tools to Support Ada Instantiation Construction

4- Development Environment Integration Page 83

capable of advanced subsystem composition functions (in terms ot the CAMP
analysis). In fact, a sophisticated CT for the Classic-Looks components would
be equivalent to what is commonly referred to as a user interface framework
or development system. in more general terms, a "subsystem generator."
Thus, a Checkout Tool governing a comprehensive set of components may
house a subsystem/application generator, with the 7dditlonal benefit of being
one of many Cooperating Reuse Tools.

While a major criticism of the CAMP component constructors is their
CAMP dependencies and domain specificity, it seems reasonable within the
Reuse Library System to have Checkout Tools which are dependent upon and
specific to components within a given component class (or subtree of classes).
Indeed, it seems glorious, in comparison, to have a single tool which is
capable of adapting whole sets of components, and without being dependent
upon other tools or components. We believe that Checkout Tools will play a
significant role in the usability of the Reuse Library System, and in the
successful reuse of components catalogued within the library.

In summary, Checkout Tools represent the GCC within the Reuse Library
System. This technology can be described as object-oriented classification
based adaptation on retrieval. Adaptation on retrieval is not new. This form
of adaptation is typified by the reuser's, or domain expert's, perspective. Once
a reusable software component has been identified and selected for use, the
reuse system adapts the component to the reuser's needs. In addition to this
we add an object-oriented classification scheme; a flexible and extensible
classification scheme in which a component class hierarchy specifies the
kinds of components within the catalogue. We believe that this combination
is the best integration of the GCC within reuse environments.

Furthermore, we believe that 00 classification based adaptation on
retrieval provides the opportunity for a much more aggressive,
comprehensive, view of adaptation. For example, consider the following
scenario:

* domain analyses which include:

- a commonality study

- an investigation of adaptation requirements, mechanisms, and
implementations which enhance basic programming language
capabilities

- the development of a domain classification

" reuse environments which provide advanced adaptation support,
including:

- components organized into an object-oriented classification
scheme

Reuse Tools to Support Ada Instantiation Construction

4- Development Environment Integration Page 84

- components which are developed to take advantage of advanced
adaptation capabilities, as provided for their class

- adaptation capabilities which are inherited and specialized
throughout the classification hierarchy

- advanced adaptation capabilities for complex components, e.g.,
subsystems and generic architectures

- advanced inter-component adaptation, or synthesis

From this scenario, we get the feeling that the reuse environment has
come to life, providing the reuser with a sophisticated collection of reusable

components, subsystems, and even applications. We believe that 00
classification based adaptation on retrieval, as presented, incorporates the
essence of the GCC.

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 85

5 Conclusions and Recommendations

During the course of this STAS, we have analyzed several research and
development projects (both from academia and industry), we have
investigated expert system and reuse development environments, and we
have even rediscovered one of our own commercial products. The journey
has been one of investigation, of frustration (what is a constructor?), of
learning, and of tracing pieces of Computer Science history and evolution.
Drawing from all of this, we have come to several conclusions. They are
sprinkled throughout the body of this report. Our most significant findings
have been compiled into relevant categories and are presented below.

5.1 Summary of the Conclusions

Concerning the CAMP constructors:

" The CAMP component constructors are hard-coded; there are no
meta-parts or schematic parts within the CAMP Parts Catalog.

" To the best of our knowledge, there is no general-purpose Generic
Instantiator Constructor.

* The CAMP constructors generally fall into two classes: subsystem
composition and component generation.

* The CAMP constructors have limited applicability outside of the
armonics domain, are highly CAMP dependent, and exhibit low
modifiability.

We believe that the two classes of component constructors identified
within the CAMP analysis are due to the following fundamental truths:

* There will always be some form of reusable software "parts,"
driving the need for comparable software adaptation and
composition facilities.

• The repeated application of a programming language to similar,
"difficult" problems will always drive the need for advanced
software construction facilities.

Concerning adaptation and its significance to reuse:

• Adaptation and its automation are key to software reuse.

" While difficult, separating adaptation requirements from
adaptation mechanisms is essential to the specification and
engineering of reusable software parts.

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 86

* The oolect-oriented paradigm provides a powerful suite of
mechanisms which support composition, adaptation, and
construction.

Concerning "constructors" and their generalization:

* Constructors can be described by any of the following:

- reusable components which require special automation in order
to adapt to specific applications

- software programs which generate application-specific source
code when provided with customization data

- an automated means to achieve a level of abstraction or
adaptability not available using a base programming language

- a natural part of programming language evolution (e.g.,
language extensions such as Classic-Ada)

- special-purpose VHLLs (e.g., domain languages, application
generators)

* The issues concerning constructor generalization are:

- programming languages and their evolution,

- software adaptation and reuse, and

- the fundamental programming mechanisms: composition,
adaptation, and construction.

" Generalizing the CAMP constructors would do nothing more than
ease the burden of creating similar constructors, and has no benefit
outside of the CAMP arena.

* Truly generalized constructors are implemented such that the
fundamental programming mechanisms of the base programming
language are enhanced.

Concerning the integration of a Generalized Constructor Capability within

expert system development environments and reuse environments:

* We do not currently recommend the use of ART, or a similar expert
system tool, for the development of the GCC. This decision must be
postponed until we have developed a sufficient understanding of
the expertise necessary to adapt reusable software components for
specific applications.

" Extraction and adaptation tools will play a significant role in the
usability of future reuse library systems, and in the successful reuse
of components catalogued within the libraries.

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 87

0 Object-oriented classification based adaptation on retrieval is the
best integration of the GCC within reuse environments.

0 Future reuse environments providing comprehensive adaptation
support incorporate the essence of the GCC.

5.2 Summary of the Research Effort

While meeting the objectives of this STAS, we did not strictly adhere to
the four tasks outlined in our approach to meet these objectives. Our primary
objective was to investigate the feasibility of developing a generalized
component construction capability that relieves some of the problems of
domain-dependence and part maintenance, building on the concepts and
experiences of the CAMP effort. Our secondary objective was to investigate
the integration of component construction technology with existing and
emerging software development environments.

The four tasks (see Section 1.2) were specified as follows: 1) 1nalyze the
CAMP methodology, 2) define the requirements for a generalized constructor
capability, 3) investigate development environment integration, and 4)
demonstrate the feasibility of the generalized constructor capability. Towards
the end of Task 1, we began to investigate alternative generalized constructor
approaches, in effect opening a Pandora's box. Although thought to be a
relatively straightforward exercise, we were faced with the realization that
selecting an appropriate alternative approach was infeasible.

There are several reasons why we were unable to select an alternative
generalized approach, all of which stem from unexpected research findings.
First, we learned that the CAMP constructors were hard-coded. This was a
real surprise. It was generally assumed that there was a knowledge-based
component schema representation and rule-based component construction
foundation upon which we would be able to refine and build upon.
Secondly, it was assumed that the selected approach would be a matter of
choosing an appropriate constructor-constructor type strategy to solve the
maintainability problem, and incorporating and encapsulating domain
knowledge where appropriate to relieve the domain-dependence problem.
Once we began to explore alternative approaches outside of the CAMP arena,
we gained a new perspective of constructors. We learned of the central
importance of adaptation (and how little we know about it), the implications
of programming languages and their evolution, and the necessity of a
domain analysis for the development of a domain-specific adaptation and
reuse capability. As a result of all of this, it was not possible to proceed with
Task 2. However, our newfound insight provided us with a better
understanding of constructors and their generalization.

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 88

We then proceeded to Task 3, the investigation of development
environment integration. The expert system investigation led us to the
conclusion that we have yet to develop a sufficient understanding of the
expertise necessary to adapt reusable software components for specific
applications. If, after developing the GCC requirements and/or a GCC
specification, it becomes clear that some aspect(s) of the GCC are best suited for
an expert system, then it would be appropriate to impose expert system
implementation requirement(s).

The reuse environment investigation turned out to be surprisingly
interesting and educational. Our previous work (from Task 1) had taught us
of the synergy between the GCC, adaptation, and reuse. During Task 3, we
built upon this observation, learning that not only was there a good
integration between the GCC and reuse environments, but that reuse
,nvironment, havP a much needed automated adaptation capability. This
investigation grew to include a detailed operational scenario and a significant
amount of analysis. Thus, while we have not addressed Task 4 in the
manner originally planned, we believe that this effort (Task 3) serves as a
demonstration of the GCC's feasibility.

As far as defining the GCC requirements (as called for in Task 2), we
believe that the scope of the requirements definition was larger than
anticipated, and additional research is required. We have observed that there
is an enormous amount of basic research in progress which is potentially
applicable to the automated adaptation and reuse of software components.
While promising, none yet have demonstrated the capability to scale-up to
the demands of software engineering in-the-large.

A single organization such as CECOM cannot possibly conduct such a suite
of basic research programs. Instead, those efforts which seem most promising
need to be identified for further research and development. In addition, we
believe that no single technique will be appropriate and applicable to the
entire Command and Control (C2) domain, or any other broad domain. The
appropriate techniques need to be applied to the various subdomains,
subsystems, and components of the C2 domain. This can only be done by
analyzing the intended target applications, their commonality, and their
adaptation requirements. In addition to the continued basic research which is
applicable to Computer Science in general, we believe that any domain-
specific strategy needs to include a thorough investigation of the domain in
question.

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 89

Domain Analysis

Commonality

AdapttionAdaptation &
Requirements C ablt

Capabilit

(Adaptation

Mechanisms

Figure 5-1 A Domain-Specific Adaptation and Reuse Strategy

Figure 5-1 illustrates the necessary steps which need to be taken in order
to develop an adaptation and reuse capability specific to a large domain such
as C2 . Domain analysis has been identified as a key requirement. To insure
that the resulting components are adaptable, the domain analysis must
include a strong level of adaptation awareness. Commonality studies will
identify components, subsystems, and architectures which are candidates for
development and reuse. In conjunction with this, the careful specification of
adaptation requirements, followed by the selection and implementation of
the appropriate adaptation mechanisms, will insure the development of
highly adaptable and easily reused components.

Only this high level of adaptability, accompanied with the appropriate
automation, will allow components to be successfully reused. A careful
domain analysis is the only means by which to identify the necessary
components (of varying scope and complexity) and the associated automation
required to achieve sufficient adaptability. We believe that a domain analysis
is essential for the development of a domain-specific adaptation and reuse

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page90

capability. It is this adaptation and its automation wi-hich is the Generalized
Constructor Capability.

5.3 Recommended Future Directions

At the onset of this STAS, it was assumed that we would be able to pick a
desired approach from a small number of alternative component
construction approaches. This of course would be quite naturally followed by
the requirements specification of one or more corresponding reuse tools.
Unexpectedly, this strategy proved to be infeasible. In this section, we propose
a new strategy for developing the GCC. The new approach includes a
significant amount of research and detailed study. We believe this level of
effort is necessary to successfully derive the GCC requirements. This section
will detail our approach and provide specific recommendations.

We strongly recommend that CECOM continue to fund the research and
development of a GCC. We consider the current effort to have been a
necessary but preliminary effort. With the preliminary research complete, we
are now ready to embark on a journey towards the specification of the GCC
requirements. Our approach is illustrated in Figure 5-2. The three primary
elements of the approach are a C2 domain study, a languages/systems study,
and basic research on software adaptation. The adaptation research is the
central effort, overlapping both of the other studies. The domain study is a
top-down analysis, investigating the larger aspects of the C2 domain (e.g.,
generic architectures, subsystems). The languages/systems study is a bottom-
up analysis, investigating fundamental programming mechanisms,
constructs, and techniques.

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 91

Figure 5--2 Developing C2 GCC Requirements

The C2 domain study is a scaled-down version of a domain analysis. A

full domain analysis is not required to develop an initial GCC. As illustratedin Figure 5-1, the domain study should identify commoalities, adaptation
requirements, and adaptation mechanisms. An emphasis should be placed
on specifying the appropriate adaptation requirements. At this point, only

limited effort should be exerted on the specification of corresponding
adaptation mechanisms. The domain study should not proceed into the
development (implementation) of the compo &ents or the adaptation
mechanisms. The domain study is primarily a specificaton c fort. This willbe sufficient for the purposes of developing the initial GCC requirements.

The languages/systems study is an in-depth and focused continuation of
the current research effort. Most of the current effort has focused on
programming language issues, and specific R&D efforts and their
prototypical/operational systems. This preliminary investigation was broad
and shallow, and should be followed up with a detailed study of selected
topics. This study should focus on potential enhancements to the Ada
programming language and support environment. Constructs from other
programming languages and concepts/techniques from R&D systems should

be identified, analyzed, and evaluated.

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 92

The adaptation research is a broad N'ct focused basic research effort. One of
the most important results of the current effort has been the identification of
software adaptation as a central concern to software reuse. In order to benefit
from this realization, an in-depth research effort should be launched on this
topic. Our experience has taught us that this is a difficult topic to analyze, and
it is especially difficult to reason about software adaptation in isolation.
Adaptation is at the heart of both the domain study and the
languages/systems study. The three studies, conducted in parallel, will
support each other through overlapping boundaries.

The results of these studies should then be compiled and synthesized into
the GCC requirements (see Figure 5-2). The combination of the domain
study and the adaptation research should provide the necessary commonality
and adaptation requirements. The combination of the languages/systems
study and the adaptation research should provide the appropriate adaptation
mechanisms (and their implementation) for each specified adaptation
requirement. In addition, the languages/systems study should identify
specific programming language constructs and techniques which may be
appropriate for C 2 . From all of this, the GCC requirements should then be
synthesized through the assignment of specific adaptation requirements and
mechanisms to the appropriate components, subdomains, and/or generic
architectures. In addition, GCC requirements specifying programming
language enhancements, and/or specific tools to support the GCC should be
derived.

Clearly, it would be unwise to place restrictions and/or stipulations on the
format, structure or contents of the GCC requirements at this time. The next
phase of this R&D effort should be allowed the flexibility of responding to the
front-end investigative research which will be conducted prior to the
synthesis of the GCC requirements.

We believe that adopting and supporting the proposed approach will
result in the successful specification of the C2 GCC requirements. While the
C2 -specifics are yet unknown, we believe that a GCC is not only feasible, but
has great potential. A well-engineered GCC would undoubtedly have a
significant impact on software reuse, resulting in the increased productivity,
quality, and reliability of Command and Control software development
efforts.

Our specific recommendations for future R&D are presented in the
following sections. It should be noted that CECOM is already in the position
to take advantage of several ongoing research efforts which together cover
our recommendations:

* Adaptation Research/ARCS - Checkout Tools have been
conceptualized and may serve as a solid foundation for GCC

Reuse Tools to Support Ada Instantiation Construction

5 -Conclusions and Recommendations Page 93

implementation. Protocols, scenarios, and preliminary adaptation
requirements have been defined. As the program develops,
knowledge about object-oriented classification of reusable software
components and their adaptation will be gained.

* Domain Study/SEI C31 Domain Analysis - The level of intensity of
the domain study does not need to be intense. The SEI domain
analysis should provide a significant amount of information from
which to develop an initial understanding of the domain-specific
GCC.

* Programming Languages Study/Ada 9X - The Ada 9X project is
currently evaluating numerous language enhancements to the Ada
programming language. Eventually, the 9X version of Ada will
contain many new features/constructs/enhancements. It is possible
that the 9X version may have a significant impact on adaptation,
generic architectures, and reusability in general.

5.3.1 Software Adaptation Research

A basic research effort should be conducted to explore software adaptation.
In particular, the following aspects of software adaptation should be
specifically investigated:

* Adaptation requirements and mechanisms

" The adaptation of software components of varying size and
complexity (e.g., subsystems, generic architectures)

A study of adaptation requirements and mechanisms should minimally
include identification and classification tasks. Other relevant topics which
could also be investigated include multiple mechanisms (for a single
requirement) and mechanism implementations.

The adaptation of complex components and/or groups of components is
of special concern, especially considering the domain in question. For
example, Quanrud describes a generic architecture as "an adaptable
application." [QUA88] A special investigation should be made to explore this
type of adaptation and how it can be supported (e.g., by object-oriented
inheritance and specialization).

5.3.2 C2 Domain Study

A Command and Control (C2) domain study is essential to the

specification of the C2 GCC requirements, and to the eventual development
of a GCC. The level of effectiveness of the resulting GCC will depend upon
the scope and depth of the domain study. Specifically, the domain study
should include the following:

Reuse Tools to Support Ada Instantiation Construction

5 - Conclusions and Recommendations Page 94

* The identification of reusable C2 components, subsystems, and
generic architectures

* The specification of adaptation requirements and mechanisms
which are best suited for the reusablc C2 components

As the domain study is being performed, and especially after it has been

completed, the resulting work products should be analyzed for C2 -specific
reuse opportunities (e.g., potential C2 domain or subdomain languages).

5.3.3 Programming Languages/Systems Study

A detailed study of selected programming languages and R&D systems
should provide the technology to support an advanced adaptation and reuse
capability. Specifically, the following investigations should be performed:

* Consider adapting constructs from other programming languages
and incorporating them into Ada

* Conduct a detailed study of promising R&D and/or commercial
systems (e.g., Unisys' SSAGS, AT&T's Stage [CLE88], Classic-Ada)

Both of thesc studies must begin with a process of identification. Surveys
may be necessary to aid this process. Once the candidates have been
identified, they will be studied in detail. Candidates should be evaluated with
respect to their applicability to the C2 domain.

Close attention should be paid to the Ada 9X project. For example, support
for subprogram types is currently under 9X review. The suite of candidate
and/or approved Ada language issues needs to be monitored and taken into
consideration.

Finally, the object-oriented paradigm should receive particular attention.
As advocated by Quanrud, a key advantage of inheritance is that it provides
adaptation and extension capabilities "without changing the code of the
original reusable component and without anticipating the need to make any
of those changes." [QUA88] The object-oriented paradigm thus supports reuse
in a unique and very powerful way: it facilitates unforeseen adaptation.

Reuse Tools to Support Ada Instantiation Construction

References Page 95

References

[BAL82] Balzer, Robert M., Operational Specification as the Basis for Rapid
Prototyping, ACM SIGSOFT Software Engineering Notes, December 1982,
pp. 3-16.

[BAL85] Balzer, Robert M., A 15 Year Perspective on Automatic
Programming, IEEE Transactions on Software Engineering, November
1985, pp. 1257-1268.

[BAL87] Balzer, Robert M., Living in the Next-Generation Operating
System, IEEE Software, November 1987, pp. 77-85.

[BAS871 Bassett, Paul G., Frame-Based Software Engineering, IEEE
Software, July 1987, pp. 9-16.

[BIG87] Richter, C. and T. Biggerstaff, Reusability Framework, Assessment,
and Directions, IEEE Software, March 1987, pp. 41-49.

[CLESS] Cleaveland, J. C., Building Application Generators, IEEE Software,
Vol. 5, No. 4, July 1988, pp. 25-33.

[EGE89I Ege, Raimund K., Direct Manipulation User Interfaces Based on
Constraints, Proceedings of the 13t h Annual International Computer
Software & Applications Conference, IEEE Computer Society Press,
September 1989, pp. 374-380.

[FRE87I Freeman, Peter, A Conceptual Analysis of the Draco Approach to
Constructing Software Systems, IEEE Transactions on Software
Engineering, July 1987, pp. 830-844.

[GEV87] Gevarter, William B., The Nature and Evaluation of Commercial
Expert System Building Tools, Computer, Vol. 20, No. 5, May 1987, pp. 24-
41.

[KA1871 Kaiser, Gail E. and David Garlan, Melding Software Systems from
Reusable Building Blocks, IEEE Software, July 1987, pp. 17-24.

[KER84I Kernighan, Brian W. and Rob Pike, The UNIX Programming
Environment, Prentice-Hall, Inc., 1984.

[KOV891 Kovarik, Vincent J. Jr., Knowledge Base Assembler, Software
Productivity Solutions, Inc., SBIR Phase I Final Report, Contract No.
DAAA21-88-C-0142, U.S. Army AMCCOM, March 1989.

Reuse Tools to Support Ada Instantiation Construction

References Page 96

[LELSS Leler, Wm, Constraint Programming Languages, Their
Specirication and Generation, Addison-Wesley Publishing Company, 1988.

[LUQ88] Luqi, Knowledge-Based Support for Rapid Software Prototyping,
IEEE Expert, Winter 1988, pp. 9-18.

tMCD85a] McDonnell Douglas Astronautics Company, Software
Requirements Specification for the Ada Missile Parts Engineering Expert
System of the Common Ada Missile Packages (CAMP) Project, September
1985.

[MCD85b McDonnell Douglas Astronautics Company, Software Top Level
Design Document for the Ada Missile Parts Engineering Expert System of
the Common Ada Missile Packages (CAMP) Project, September 1985.

[MCD86] McDonnell Douglas Astronautics Company, Software Detailed
Design Document for the Ada Missile Parts Engineering Expert System of
the Common Ada Missdle Packages (CAMP) Project (Draft), August 1986.

[MCD87a] McDonnell Douglas Astronautics Company, User's Guide for the
Missile Software Parts of 7'e Common Ada Missile Packages (CAMP)
Project, October 1987.

[MCD871-] McDonnell Douglas Astronautics Company, Software Users
Manual for the Ada Missile Parts Engineering Expert System of the
Common Ada Missile Packages (CAMP) Project, November 1987.

[MCD89] McDonnell Douglas Missile Systems Company, Software User's
Manual for the Common Ada Missile Packages - Phase 3 (CAMP-3) Parts
Engineering System Catalog, November 1989.

[MCF85] McFarland, Clay and Terry Rawlings. DARTS: A Software
Manufacturing Technology, General Dynamics Data Systems Division,
Western Center, San Diego, California. Presented at the STARS
Application Workshop, April 1985.

[MCN86a] McNicholl, D., et. a]., Common Ada Missile Packages (CAMP)
Volume I: Overview and Commonality Study Results, McDonnell
Douglas Astronautics Company, May 1986.

[MCN86b] McNicholl, D., et. al., Common Ada Missile Packages (CAMP)
Volume 11: Sottware Parts Composition Study Results, McDonnell
Douglas Astronautics Company, May 1986.

[MCN86c] McNicholl, D., et. al., Common Ada Missile Packages (CAMP)
Volume III: Part Rationales, McDonnell Douglas Astronautics Company,
May 1986.

Reuse Tools to Support Ada Instantiation Construction I

References Page 97

[MCNSSaJ McNicholl, D., et. al., Common Ada Missile Packages - Phase 2
iCAMP-2) Volume I: CAMP Parts and Parts Composition System,
McDonnell Douglas Astronautics Company, November 1988.

[MCNS8b] McNicholl, D., et. al., Common Ada Missile Packages - Phase 2

(C.AIP-2) Volume II: 11 th Missile Demonstration, McDonnell Douglas
Astronautics Company, November 1988.

[M-N88c] Mc-Nicholl, D., et. al., Common Ada Missile Packages - Phase 2
(CAMP-2) Volume III: CAMP Armonics Benchmarks, McDonnell
Douglas Astronautics Company, November 1988.

[MEY87] Meyer, Bertrand, Reusability: The Case for Object-Oriented Design,
IEEE Software, March 1987, pp. 50-64.

[NEI84] Neighbors, James M., The Draco Approach to Constructing
Software from Reusable Components, IEEE Transactions on Software
Engineering, September 1984, pp. 564-574.

LQUA88] Quanrud, Richard B., CECOM Center for Software Engineeri'.g,
"Generic Architecture Study," C04-038NN-0001-00, Final Report
delivered by SofTech, Inc., January 22, 1988.

[RIC88a] Rich, Charles and Richard C. Waters, Automatic Programming:
Myths and Prospects, IEEE Computer, August 1988, pp. 40-51.

[RIC88b] Rich, Charles and Richard C. Waters, The Programmer's
Apprentice: A Research Overview, IEEE Computer, November 1988, pp.
11-25.

[SU1vf88I Simos, Mark A., The Domain-Oriented Software Life Cycle:
Towards an Extended Process Model For Reusability, Tutorial: Software
Reuse: Emerging Technology, edited by Will Tracz, IEEE Computer Society
Press, 1988, pp. 354-363.

[SOW] Statement of Work for Reuse Tools to Support Ada Instantiation
Construction.

[VOL851 Volpano, Dennis M. and Richard Kieburtz, Software Templates,

Proceedings of the 8th International Conference on Software Engineering,
IEEE Computer Society Press, August 1985, pp. 55-60.

[WAT85] Waters, Richard C., The Programmer's Apprentice: A Session with
KBEmacs, IEEE Transactions on Software Engineering, November 1985,
pp. 1296-1320.

Reuse Tools to Support Ada Instantiation Construction

References Page 98

[WAT86] Waters, Richard C., KBEmacs: Where's the Al?, The AI Magazine,
Spring 1986, pp. 47-56.

[WIN81] Winston, Patrick H. and B. Horn, LISP, Addison-Wesley
Publishing Company, 1981.

Reuse Tools to Support Ada Instantiation Construction

Appendix A - Glossary of Acronyms Page 99

Appendix A - Glossary of Acronyms

ADT Abstract Data Type

AI Artificial Intelligence

AMPEE Automated Missile Parts Engineering Expert [System] (CAMP)

ARCS Automated Reusable Component System (SPS)

ART Automated Reasoning Tool (Inference Corporation)

ASL Application-Specific Language (Unisys)

BNF Backus-Naur Form
C2 Command and Control

CAMP Common Ada Missile Packages

CASE Computer Aided Software Engineering

CECOM Communications-Electronics Command

COBOL Common Business Oriented Language

COTS Commercial Off-the-Shelf

CSC Computer Sciences Corporation
CT Checkout Tool (ARCS Reuse Library System)

DARTS Development Arts for Real-Time Software (General Dynamics)

DIP Dual In-line Package

FSM Finite State Machine

FTR Final Technical Report

GCC Generalized Constructor Capability

HLL High-Level Language

HOL Higher Order Language

ISI Information Sciences Institute (USC)

KBEmacs Knowledge-Based editor in Emacs (Programmer's Apprentice)

LISP List Processing (programming language)

LLCSC Lower Level Computer Software Component

MIS Management Information System

MIT Massachusettes Institute of Technology

PA Programmer's Apprentice (MIT)

PCS Parts Composition System (CAMP)

PES Parts Engineering System (CAMP)

PL/I Programming Language/One

Reuse Tools to Support Ada Instantiation Construction

Appendix A - Glossary of Acronyms Page 100

PSDL Prototype System Description Language (Naval Postgrad. School)

RLS Reuse Library System (ARCS)

RTE Real-Time Embedded

SBIR Small Business Innovation Research

SOW Statement of Work

SPS Software Productivity Solutions, Inc.

SSAGS Syntax and Semantics Analysis and Generation System (Unisys)

STARS Software Technology for Adaptable, Reliable Systems

STAS Short Term Analysis Service

TIM Technical Interchange Meeting

TLCSC Top-Level Computer Software Component

UIMS User Interface Managament System

VHLL Very High-Level Language (4th generation)

Reuse Tools to Support Ada Instantiation Construction

