
-,Educational Materials

* CMU/SEI-90-EM-3

Carnegie-Mellon University

- Software Engineering Institute

CD

N1[1 i-IL E Copy
00
N Reading Computer Programs:
CInstructor's Guide and Exercises

I Lionel E. Deimel
0VJ. Fernando Naveda

August 1990

$ $ DT1 '
ELECT!

S . O $..

i I i . II

T~auff-o SGTSIO
Lvra" 118Pa

Educational Materials
CMU/SEI-90-EM-3

August 1990

Reading Computer Programs:
Instructor's Guide and Exercises

Lionel E. Deimel
Software Engineering Curriculum Project

J. Fernando Naveda
University of Scranton

Approved for public release.
Distribution unlimited.

ISoftware Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER •2
OHN S. HERMAN, Capt, USAF

SEIJoint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright Z 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personncl, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA Cameron S.,,.,;n. AlexandriA, VA 9 9iA4-4145%

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, US. Department of Commerce,

Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

*Table of Contents

L Introduction 1
1.1. What Is Program Reading? 1
1.2. Overview of This Report 2

2. The Importance of Program Reading Skills 5
2.1. Growing Awareness of Program Reading Issues 6

3. How Do People Read Programs? 9
3.1. What Is Program Understanding? 9
3.2. Program Reading Strategies 11

4. Readability Factors and Tool Support 15
4.1. Factors Affecting Program Readability 15
4.2. Readability and Style 17
4.3. Tools and Techniques 17

5. Teaching Program Reading 21
5.1. Need Program Reading Be Taught? 21
5.2. Teaching Strategies 22
5.3. Some Additional Ideas 26

6. Constructing Reading Exercises, with Examples 29
6.1. Evaluating Program Reading Skills 29
6.2. Example Program Reading Questions 32

6.2.1. Knowledge-Level Questions 36
6.2.2. Comprehension-Level Questions 38
6.2.3. Application-Level Questions 39
6.2.4. Analysis-Level Questions 41
6.2.5. Synthesis-Level Questions 44
6.2.6. Evaluation-Level Questions 46

Annotated Bibliography 49

Acknowledgements 69

Appendix: Program Source Code Accession For 71

Diskette Order Form NTIS GRA&I 169
DTIC TAB
Unannounced 5
ITs tftt o

By
Distribution/

Availability Codoe

Avail alld/Cr
Dist Spbcia1

-a-I-

Reading Computer Programs:
Instructor's Guide and Exercises

Abstract: The ability to read and understand a computer program is a criti-
cal skill for the software developer, yet this skill is seldom developed in any
systematic way in the education or training of software professionals. These
materials discuss the importance of program reading, and review what is
known about reading strategies and other factors affecting comprehension.
These materials also include reading exercises for a modest Ada program and
discuss how educators can structure additional exercises to enhance program
reading skills.

1. Introduction

-This report has two main objectives: to convince teachers of future computer profes-
sionals of the importance of program reading, and to provide sample exercises to facil-
itate the teaching of program reading. We will review the literature relevant to pro-
gram reading, and discuss teaching approaches and techniques. A large part of the
report is devoted to the listing of an Ada program for which we provide reading ex-
ercises that fulfill a range of educational objectives.- The program and exercise ques-
tions are available on diskette from the Software Engineering Institute (SEI). An order
form for machine-readable versions of this material is provided at the end of the report. 7
Readers are encouraged to adapt the materials to their-n particular needs. . .-

Although the reading exercises are based on the Ada programming language, it would
be a mistake to view this as an "Ada report." Most of what we will say about program
reading is independent of any particular language, although we make no special at-
tempt to discuss languages other than high-level procedural ones. Ada is an attractive
vehicle to illustrate reading exercises because it contains good mechanisms for concur-
rency, information hiding, and the like. Exercises are provided to explor . tle e facil-
ities and to explore the Ada language generally. The reader whose students are not
using Ada can nonetheless benefit from the ideas we present, including our suggestions
for generating reading exercises from materials other than those provided here.

1.1. What Is Program Reading?

By program reading (or code reading), we mean the process of taking computer source
code and, in some way, coming to "understand" it. We mean to make no presupposi-
tions about whether or not the code contains internal documentation (comments) or
whether any form of external documentation (design, structure charts, etc.) is available
to the reader or can be easily created.

Presumably, some of what can be said about code reading also applies to attempts to
understand other documents--software specifications or designs, for example. We will

CMU/SEI-90-EM-3 1

not, however, attempt to generalize to these other life-cycle products, in part because of
their diversity of representation. Except where we note otherwise, we mean for our
remarks to be applied only to the realm of high-level procedural languages, although
much of what we will say applies to code outside this class.

We will have more to say about what we mean by "program understanding." For now,
it is important to realize that we do not often read programs for what might be intui-
tively described as "total understanding." We usually read programs for particular
purposes--to determine if they have particular properties such as correctness, or to dis-
cover how an enhancement can be made with minimal disruption to the program's cur-
rent functionality. When we speak of reading a program, we refer to a process that
aims to achieve whatever degree of understanding is needed to accomplish our partic-
ular objectives.

1.2. Overview of This Report

In the next chapter, we argue the importance of developing program reading skills
among software developers. We also mention educational issues associated with pro-
gram reading, issues we will deal with at greater length in Chapter 5.

In Chapter 3, "How Do People Read Programs?," we discuss theoretical and empirical
research on program reading, and examine proposed models of program comprehen-
sion. We try to answer questions such as: "What does it mean to understand a
program?" and "How do programmers ascertain the meaning of a program?" The chap-
ter provides useful background for the instructor who wants to teach program reading
skills. Some of this material should also be shared with students in lectures.

Chapter 4, "Readability Factors and Tool Support," discusses factors that affect the
ease with which a program can be understood. Much stylistic advice to programmers
in the literature is implicitly based on assumptions about what makes a program read-
able. Likewise, observations about factors that make a program readable imply cor-
responding style rules. In this chapter we look at the relation of empirical observations
to programming standards. We also discuss tools that can make program reading eas-
ier, now or in the future.

In "Teaching Program Reading," Chapter 5, we assert that program reading is a skill
that should be taught explicitly. We discuss what can be taught and how. We also look
at other uses of program reading in the classroom, whereby students can develop their
reading skills in the pursuit of other educational objectives.

Chapter 6, "Constructing Reading Exercises, with Examples," contains a discussion of
how to construct program reading exercises. The chapter also contains specific ex-
ercises targeted to a variety of educational objectives and based on the concurrent Ada
program listed in the Appendix.

We have included an annotated bibliography, which contains not only references cited
in the text, but also related literature. We have tried to indicate the significance of
each entry and suggest how it might be used in teaching. In most cases, we have sum-

2 CMU/SEI-90-EM-3

marized the content of the entry. These annotations often elaborate on ideas treated
only briefly in the text. The bibliography is by no means complete, but we believe that
interested readers can locate other reading-related papers and monographs that might
be of interest to them by reading the references we have included, many of which them-
selves have excellent bibliographies.

3
CMU/SEI-90-EM-3 3

4 CMU/SEI-9o-EM-3

2. The Importance of Program Reading Skills

The successful programmer must master a number of diverse skills. One that is often
overlooked is the ability to read and understand a program. Reading competence is
most obviously relevant to program maintenance, for which the programmer must gain
sufficient understanding of the code to design modifications that extend, adapt, or cor-
rect it, while retaining its logical, functional, and stylistic integrity. Since, typically,
more than half the resources devoted to a program over its lifetime is expended on
maintenance, and since reading the program can be an important step in the mainte-
nance process, lack of adequate reading skills among maintenance personnel can have
serious financial consequences.

But program reading ability is also important in non-maintenance activities. Effective
code verification and code reviews require reviewers to understand and analyze the
code under scrutiny. The expert reader is a valuable team member in such cir-
cumstances, as well as a resource to colleagues when they are having a difficult time
debugging.

Code reading provides an all-too-infrequent opportunity for programmers to share and
learn from one another's work. Code examined in formal reviews and in program
libraries and repositories; published programs; and code found in professional journals
all offer the programmer the chance to deepen his understanding of his craft and im-
prove his skills.1 Learning a new programming language is often facilitated by reading
existing code written in that language by more experienced programmers. Studying
programs in this way allows the programmer to gain a sense of proper idiom and style
more quickly and surely than does studying language reference manuals, style guides,
and coding standards.

A programmer who reads programs effectively can increase his code generation effi-
ciency. He is better able to find and evaluate code that can be reused or adapted than
are his less program-literate colleagues. This ability allows him to avoid a good deal of
coding altogether. When working on a large software system, a programmer needs to
be reminded of the details of code written so long ago that those details are no longer
fresh in his mind. Facility in reconstructi-.g such information from code, even one's
own, can therefore be a valuable asset.

Students in academic programs do get occasional opportunities to practice reading pro-
grams. They are presented with code in introductory and data structures textbooks,
and possibly in textbooks used in courses on other topics, such as analysis and design of
algorithms. Students are sometimes given example programs by their instructors and
may have to struggle to make sense of program units written by fellow students on
team projects, such as might be part of an introductory software engineering course.
Rarely, examinations require students to interpret code.

'We will follow the traditional convention of using masculine terms where the person
spoken of may be either male or female. No offense to female professionals-who are
distressingly underrepresented in the workplace-is intended, of course.

CMU/SEI-90-EM-3 5

Nonetheless, it is fair to say that the improvement of program reading skills is vir-
tually unknown as an explicit educational objective among those teaching future soft-
ware developers. Yet the available evidence suggests that our current neglect of the
topic cannot be justified by the argument that adequate program reading skills develop
naturally and without special encouragement in students otherwise well prepared to
enter professional practice.

We advocate that instructors undertake activities designed to teach and improve pro-
gram reading skills among their students. Although this suggestion is radical and
largely untried, substantial benefits might be gained. Not only is there potential for
graduating students better able to perform important tasks such as program mainte-
nance, but there is also a realistic hope that students will become better learners in
advanced courses by virtue of their greater ability to understand program examples
that illustrate specialized techniques. Such students should also be better learners on
the job. Classes of competent program readers can be given examination questions to
test their program-writing skills more reliably by means of questions based on program
fragments that must be read.

No doubt, many educators will obj ct to our suggestion of teaching program reading,
protesting either that educators have no idea how to carry out such a suggestion or that
they have no time to do so. We will try to counter these arguments by enumerating
techniques that can be used in the classroom, including activities that use program
reading incidental to achieving unrelated educational objectives. We must point out
that, although no one disputes the importance of teaching program writing skills, there
is hardly a consensus about the most effective way of doing it. Reading skills seem
equally important, and our lack of educational experience teaching them seems a poor
excuse for continuing to ignore program reading in the classroom.

2.1. Growing Awareness of Program Reading Issues

Program reading seem6 to be attracting increasing attention, largely because of its
pivotal role in maintenance. As early as 1971, however, Gerald Weinberg lamented the
decline in the practice of reading programs brought about by time-sharing [Weinberg7l].
He was less concerned with the role of reading in maintenance than with its potential
for teaching; programmers could learn a good deal from reading the programs of others,
as well as their own. In the preface to their well-known book, The Elements of Pro-
gramming Style, Kernighan and Plauger make a similar point about the educational
value of reading programs [Kernighan74]. Knuth was so taken with the benefits of pro-
gram reading that he designed a programming scheme, literate programming, that rec-
ognizes the human reader to be as important as the mechanical one [Knuth84]. He has
published two programs in this form, each of which is a sizable book [Knuth86a,
Knuth86bJ. David Moffat published a more modest collection of program readings in
Pascal for the beginning student [Moffat84] and suggested, with Lionel Deimel, that pro-
gram reading can play a central role in the teaching of programming generally
[DeimeI82).

6 CMU/SEI-90-EM-3

Much of the literature on program reading deals with program comprehension, which
encompasses both what it means to comprehend a program and the process by which
that comprehension is reached. Lukey [Lukey8l] lists three approaches to studying pro-
gram comprehension-the observational approach, the experimental approach, and the
artificial intelligence approach. Roughly, these approaches correspond to the study of
programmers reading programs to see what they do, the study of programmers reading
in situations where certain factors are fixed and others are allowed to vary in con-
trolled ways, and the production of tools that serve to mechanize or assist in the pro-
gram comprehension process. Papers describing each approach have not only increased
in number over the years, but also are now more likely to appear in such "mainstream"
computer journals as Communications of the ACM.

Of course, observations of what makes a program readable have implications for how
programs should be written and formatted. In addition to a number of books advo-
cating a certain programming style (e.g., [Kernighan8l]), some authors are making more
radical proposals affecting the visual display of programs [Baecker90, Oman9Oa,
Oman9Ob], or are looking to environments that support program reading in a more or-
ganic way [Goldberg87].

We consider it important and exciting that both the Florida/Purdue Software Engineer-
ing Research Center (SERC) [Wilde89] and IBM [Corbi89] have undertaken significant
efforts to study program comprehension and to explore tools to assist programmers in
reading programs effectively. We expect such tools eventually to become commonplace,
although they will not obviate the need for programmers to have good program reading
skills of their own in order to use these tools effectively.

CMU/SEI-90-EM-3 7

8 CMU/SEI-90-EM-3

P 3. How Do People Read Programs?
What do we know about how people read or should read programs? Several writers
have offered advice about how we should go about reading code. Through experimental
and observational studies, we have indications of how actual programmers behave
when trying to understand unfamiliar code. Finally, there have been many attempts to
construct models of program understanding, both to explain empirical findings and to
make useful and verifiable inferences about how program reading can be carried out
more effectively. Let us look at models of program understanding or, as they are
usually called, "program comprehension" models.

3.1. What Is Program Understanding?

If we are to construct a useful theory of program reading, we require a model to help us
explain how we come to understand a program, as well as what we can be said to know
when we do understand that program. 2 There must be a computer science component
in any such model, of course, but there are also behavioral and psychological compo-
nents. Many researchers in the field of program reading have approached their studies
from a cognitive psychology or artificial intelligence point of view. Although this is not
remarkable, we point it out to alert the reader that the study of program reading, while
important to software engineering, is not strictly an area of computer science research.

- Let us first look at what we know when we understand a program. Almost any pro-
grammer could generate a useful list. We understand what each statement means,
how flow of control passes from one statement to another, what algorithms have been
employed, how information is represented and transformed in data structures, which
subprograms invoke other subprograms, and how the program interacts with its envi-
ronment. Ruven Brooks has described all this information as a succession of
"knowledge domains" that bridge between the problem domain and the executing pro-
gram [Brooks78, Brooks82, Brooks83]. A knowledge domain is a collection of information
about objects of some sort and relationships among those objects. (One may think of
this in the mathematical sense of a set of objects, a collection of relations, and so forth.)
According to Brooks, the knowledge domains include (or may include): the problem
domain; the domain of some mathematical model for the real-world problem; an al-
gorithmic domain of abstract data structures and operations; an implementation
domain of arrays, assignments, and the like; and a domain of bit patterns stored and
manipulated in specific storage locations within the computer. (It is easy to argue
about the boundaries of these domains and whether there are more or fewer of interest.
Certainly the program structure domain-which includes objects like procedures, func-
tions, and tasks-deserves mention.) If one really understands a program, according to
this theory, one possesses the knowledge of each of the domains, as well as the ability,
through knowledge of inter-domain relations, to relate conceptionally adjacent domains

S 2We use the term "program" to mean any appropriate piece of code, be it a complete
program, a subprogram, or even an isolated segment.

CMU/SEI-90-EM-3 9

to one another. The process of understanding a program is one of constructing (or
reconstructing) the knowledge domains and relations among them from the code, com-
ments, and whatever other documentation is available.

Even in the absence of theoretical or empirical underpinnings, Brooks's model is intui-
tively appealing. It seems to capture succinctly most of what might reasonably be con-
strued as knowledge about a program, and it suggests particular ways in which our
knowledge can be incomplete. For example, we may understand a program perfectly
statement-by-statement, yet fail totally to comprehend, on a more abstract level, what
it does and why. Brooks has used his model to make inferences about documentation.
Effective documentation communicates information not explicitly present in the source
code itself (i.e., it adds to the information available to the reader). Therefore, lan-
guages like traditional FORTRAN may require more explanation of their code than
languages like Pascal, which allow direct manipulation of higher-level abstractions
[Brooks82].

Another point made by Brooks deserves special mention, namely that the code itself
(i.e., the actual source-language statements) is not the ultimate authority with respect
to program meaning. On one hand, this statement is surprising. A program designates
some computation, which may be taken to be its semantics or meaning. Therefore,
given a well-defined programming language and computing platform, a syntactically
correct program definitively specifies what the program does. It is this point of view, as
expressed by Kernighan and Plauger in The Elements of Programming Style
[Kernighan74], that Brooks attempts to counter. Kernighan and Plauger argue that a
program and its documentation provide multiple representations that are subject to in-
consistencies and that, therefore, "the only reliable documentation of a computer pro-
gram is the code itself." Brooks argues, in effect, that such a position ignores the larger
context in which programs exist. To begin with, a program's function is partly a matter
of the interpretation given the input and output, information perhaps only hinted at in
the code. Further, for purposes such as maintenance, explicit statements about as-
sumptions and design decisions that led to the source code may be more important than
the code itself for the programmer trying to understand the program.

Several authors have proposed models similar to that of Ruven Brooks. The differences
among these models seem mostly confined to minor details and nomenclature. In any
case, the layered structure of one's knowledge of a program is a common element in all
these theories.

Shneiderman and Mayer have proposed a "syntactic/semantic" model of programmer
behavior [Shneiderman79]. The model is intended to apply to writing programs, as well
as reading them, modifying them, and learning to program. The model assumes that
semantic and syntactic knowledge is stored in long-term memory and manipulated in
short-term memory and working memory. Program comprehension, they suggest, is
largely a matter of building up a hierarchy of semantic knowledge about the program,
with information about what the program does at the top of the hierarchy, and lower-
level information about statements and algorithms below. The representation is in
terms of abstractions (representing the function of groups of statements, for example)
derived from the program text. All the mental machinery of the syntactic/semantic

10 CMU/SEI-90-EM-3

model seems less useful than one might hope, as we simply do not know enough details
of how programmers perform. The state of understanding a program, however, seems
quite similar to that postulated by Brooks.

Letovsky refines some of Brooks's notions and speaks of the reader's knowledge base
(presumably the reader's syntactic and semantic knowledge) and mental model of the
program being read [Letovsky86a]. In referring to the reader as a knowledge-based
understander, he emphasizes what is implicit in Brooks's discussions but is more
prominent in the model of Shneiderman and Mayer, namely that the reader brings a
good deal of expert knowledge to his task. "Letovsky brings something of an artificial
intelligence perspective to what knowledge the reader has and what his mental model
looks like. According to him, when a reader has a complete understanding of a pro-
gram, he possesses a description of the goals of the program, the actions and data
structures of the implementation, and an explanation of how goals or subgoals are ac-
complished by the components of the implementation. His hierarchy is one of goals and
subgoals. All of these models, however, involve layers of knowledge that become
progressively more abstract and that are ultimately tied to larger and larger fragments
of the program.

3.2. Program Reading Strategies

The question "How do you read a program?" may seem strange to a beginning student.
Yet, the obvious answer, "from top to bottom," is hardly the correct one. To begin with,
the sequence of statements in the text of a program does not correspond in a
straightforward way to the order in which the statements are executed when the pro-
gram is running. This correspondence is complicated by the syntactic rules that deter-
mine the placement of subprograms and other definitions, and by statements that alter
the sequential flow of control. Additionally, the execution path through a program is,
in general, a function of the input data; it therefore differs from one invocation of the
program to the next.

These statements may seem unremarkable. Because we believe students should be
t-aught early how to read programs, however, it is important to make the statements,
lest students develop fundamental misconceptions at the outset. Programs are not
read like novels, nor is their meaning determined by seeing how they behave when run
or hand-traced using test data. Building from a program the layered abstractions that
become one's mental model of it-Letovsky calls the process assimilation [Letovsky86a]-
is a complex task that is only beginning to be understood. How does the program
reader construct a mental model of a program, whatever the exact nature of that model
might be?

To begin with, there are many factors that may simplify assimilation of a program or
make it more difficult: the knowledge and experience of the reader, the complexity of
the algorithms used, the programming language, the use of structured programming
techniques, the presence and quality of comments in the code, the availability of exter-
nal documentation, etc. We will discuss these factors briefly in Chapter 4. Insofar as
possible, we will gloss over them in the discussion that follows.

CMU/SEI-90-EM-3 11

Empirical evidence suggests that the human program reader is what Letovsky calls an
"opportunistic processor," capable of using multiple reading strategies [Letovsky86a].
The basic strategies people have written about, however, are top-down and bottom-up.

Top-down reading of a program is analogous to the more familiar top-down develop-
ment approach. One begins by gaining ananderstanding of the overall purpose of the
program, then tries to understand how that function is implemented by component
pieces. In carrying through this process, the reader forms hypotheses about these
pieces-they may be procedure calls, individual loops, or other fragments-which are
later verified or modified through Tecursive application of this method. Letovsky de-
scribes this approach as building a representation of the specification first and then
working down to the implementation level.

Reading bottom-up proceeds in the opposite direction. Understanding of small frag-
ments of code is aggregated into descriptions of larger pieces of the program until the
overall program function and strategy have been discovered.

It is worth noting here that two characteristics of a program have a dominant influence
on reading approaches that may be available: the degree of documentation and whether
the program is structured. Linger, Mills, and Witt point out that poorly documented
code generally must be read bottom-up, as the lack of documentation can make it
nearly impossible to devise hypotheses about what various sections of code accomplish
without examining those sections of code in detail. Well-documented code can usually
be read top-down [UInger79].

In explaining how the function of a structured program can be ascertained from an un-
derstanding of its primitive components, Linger, Mills, and Witt also explain why un-
structured programs are difficult to understand. Unstructured code cannot easily be
resolved into components that interact with one another in a limited number of simple
ways. Although the program comprehension literature discusses programs having
various levels of documentation, we are aware of virtually no work done on unstruc-
tured programs. Researchers advise readers to restructure their programs algorith-
mically and then read the newly structured program [Basili82, Linger79]. 3 Tools are
available to perform restructuring, at least for some languages, such as COBOL.

The bottom-up approach to understanding a program is perhaps the easier of the two
basic strategies to explain. It is the simpler and, in the sense that it can be applied
with success in the most situations, the most general. Basili and Mills show the appli-
cation of a bottom-up approach to program understanding in [Basili82]. Their approach
is very formal, but the formality is inessential to understanding the basic strategy. Af-
ter converting their program into a structured program, they begin to assign meaning
(function) to each prime program, each structured unit such as an if ... then ... else
(see [Linger79]). This assignment of meaning may be done through "direct cognition," or

3 Because much unstructured code still exists, we can ask if we should teach our stu-
dents how to deal with it. Probably advocating the procedure described here is the best
approach. Surely unstructured code can be read, and even maintained, but procedures
for reading and maintenance are necessarily ad hoc.

12 CMU/SEI-90-EM-3

it may require more deliberate analysis. Since a structured program is composed only
of sequenced and nested structured units, the function of larger fragments of the pro-
gram may be discovered by combining the functional descriptions of smaller program
components in standard ways. Carrying this process through, one arrives at a func-
tional description for the entire program, as well as additional information collected
along the way. Linger, Mills, and Witt call this strategy stepwise abstraction, and it is
certainly a process programmers carry out all the time, particularly for small segments
of code.

Shneiderman describes program comprehension as proceeding in a similar way, though
he substitutes the language of psychology for that of mathematics. He describes the
reader as recognizing the function of groups of statements as "chunks" and combining
these chunks to explain larger program fragments [Shneiderman79].

In Brooks's model, the primary assimilation process proceeds top-down. Brooks
obliquely acknowledges that people do use bottom-up strategies, but he dismisses them
as less powerful [Brooks83]. The process Brooks describes is one of repeated hypothesis
generation and verification. Knowing whatever he knows about the code, the reader
generates hypotheses about what the program does and how. He tries to verify these
hypotheses by examining the code. Evidence that feeds hypothesis generation comes
from the program text, program comments, and whatever additional documentation
may be available. If the reader sees a variable named DISTTBL, for example, he
might conclude that it probably stores a table of distances between locations. He would
then try to verify this hypothesis by further examining the code. Hypothesis gener-
ation begins with what is known about the overall function of the program, which often
by itself causes the reader to expect to see certain features in the program-sorts,
master and transaction files, and the like. Hypotheses tend to be non-specific and
therefore usually are not directly verifiable. Instead, they cause subsidiary hypotheses
to be generated in a hierarchical fashion until a level is reached at which hypotheses
can be directly verified or proven false. The reader scans the code in various ways
searching for clues in the text that bear on current hypotheses. In this scanning proc-
ess, he looks for "beacons,' which are typical evidence for certain structures or opera-
tions. Two nested loops might be a beacon for a sort, for example. The program is
understood when verified hypotheses have been bound to all code in the program.

Several empirical studies have added to our understanding of what programmers ac-
tually do when reading programs. Videotaped protocols of professional programmers
modifying a program are the basis of papers by Letovsky [Letovsky86a] and Littman,
Pinto, Letovsky, and Soloway [Littman86]. Both these papers contain extensive descrip-
tions and analyses of what Lhe subjects did. The data show quite clearly that they do
not employ pure top-down or bottom-up strategies, but freely mix the two. Insight into
why this should be so comes from Letovsky's paper, in which he classifies questions the
subjects posed to themselves. For example, a "how" question ("So let's see how it
searches the database.") is top-down in nature; a lower-level implementation is sought
for a goal. A "why" question ("It's setting IPTR to zero. I'd like to know why.") is look-
ing in the other direction; a goal is sought for a part of the implementation. Other
questions discussed in the paper are "what" questions ("I want to find out what field 7
is.") and "whether" questions ("Is this subroutine actually deleting a record or is it just

CMU/SEI-90-EM-3 13

putting a delete mark there, and the record is still there?"). Programmers are clearly
seen here engaged in the sort of activity Brooks describes. When seen in its detail,
however, the process is not simply characterized. Letovsky also describes particular
techniques programmers use to generate hypotheses (he calls them conjectures) to an-
swer their questions.

Littman, et al., emphasize a different aspect of reading strategy. They report that sub-
jects in their study used either what they call a "systematic" strategy or an "as-needed"
strategy. Subjects either tried to completely understand the program being modified,
or else they tried to gain just enough knowledge to make the change requested in the
program. This raise s the question of reading objectives; not always-perhaps not even
often-does the reader really need to know everything about a program. One's ap-
proach to reading is presumably conditioned by one's purpose for reading. This paper
provides a warning, however. Subjects who used the systematic strategy, employing
extensive symbolic execution of the code, successfully modified the program. Those
who cut corners with an as-needed strategy were unsuccessful at the modification task,
as they failed to detect critical interactions among program components. This is a dis-
tressing outcome, as truly large programs may not be amenable to total understanding.

Although the Letovsky and Littman papers suggest that actual comprehension strat-
egies are eclectic, 4 they do not cast doubt on the layered mental models discussed in the
last section. A similar message can be inferred from [Pennington87]. Pennington found
that readers who focus on both the problem domain and the program domain, as op-
posed to focusing on one or the other, are more successful, a result one might reason-
ably expect from, say Brooks's model of comprehension.

Several of the references contain brief but useful reviews of at least part of the program
comprehension literature. See, for example, [Baecker9O], [Corbi89], [Crosby90], and
[Wilde90].

4Students should understand both top-down and bottom-up strategies, and should be
familiar with descriptions of the eclectic processing that is apparently typical. Know-
ing about alternative strategies should help students select appropriate ones in partic-
ular situations.

14 CMU/SEI-90-EM-3

* 4. Readability Factors and Tool Support

In this chapter, we further examine the pragmatics of reading programs. What are the
factors-either internal or external to the program-that affect how difficult a program
is to read? How does the style with which a program is written affect its readability,
and how can observations about readability be translated into useful coding style
guidelines? We will also examine reading strategies in more detail and see how exist-
ing and future software tools can aid the program reader.

There is inadequate space here to treat these topics thoroughly. There are, however,
few actual facts to cite. Our knowledge is tantalizing and fragmentary, with most of
the obviously interesting questions having ambiguous answers (how long should a pro-
cedure be?) or none at all (what is the most readable programming language?). Yet
software development is a practical enterprise, not a theoretical one; we cannot wait for
the answers. We must look for credible insights wherever they are to be found, and
forge ahead.5

4.1. Factors Affecting Program Readability

The study of program comprehension naturally leads us to the question of what makes
a program readable. We do not have a complete theory that allows us to predict the
readability of a program, but it is not difficult to offer a list of parameters that might be
important. Some of these factors have been investigated systematically, some not.
(The recently published bibliography by Thomas and Oman contains references to
many of the factors discussed below [Thomas90].) We may classify these parameters
into the following categories:

1. Reader characteristics.

2. Intrinsic factors.

3. Representational factors.
4. Typographic factors.

5. Environmental factors.

It should be clear from the previous chapter that the reader has a great effect on how
successfully a particular program is read. Comprehension models suggest that the
reader's knowledge-of programming, of the programming language, and of the appli-
cation domain-as well as his reading strategy are important variables [Brooks83]. The
reading strategy is sometimes a function of the programmer's purpose in reading. For
example, the as-needed strategy in response to limited goals, described by Littman, et
al., in [Littman86], led directly to comprehension errors. In [Letovsky86b], Letovsky and
Soloway describe how the unwillingness of readers to search for information not imme-

5We did this in the case of structured programming, for instance. Although structured
programs have certain logical advantages over non-structured ones, we have never
proved that structured programming is superior. Even the hypothesis is ill-defined.

CMU/SEI-90-EM-3 15

diately near the code they are examining predictably leads to comprehension errors.
Perhaps because program reading skills have not traditionally been taught, more than
one study have included statements like the following from [Littman86]:

Finally, we note that there was virtually no relationship between years of
professional programming experience and either successfully performing the
enhancement task or the programmer's choice of study strategy.

Perhaps this is another manifestation of the well-known disparity in efficiency among
professional programmers.

It is reasonable to suppose that programs possess a greater or lesser degree of intrinsic
complexity, which affects their readability. It is difficult to say how to measure this
complexity, and, for this reason, the field of software metrics is controversial. Surely a
"hello, world" program is less intrinsically complex than the average program to com-
pute Bessel functions. Moreover, concurrent or real-time programs are probably more
complex than comparable programs without these characteristics, and very large pro-
grams are difficult to read simply by virtue of their size. Brooks notes that there are
abstruse problems that have simple programs as their solutions; the nature of the prob-
lem may still make these programs difficult to comprehend [Brooks83]. Shneiderman
discusses logical, structural, and psychological complexity of programs and their rela-
tion to comprehensibility in [Shneiderman80].

The term "representational factors" is deliberately broad. It is easy to subdivide,
though it can be difficult to make clear distinctions among the resulting categories. We
mean to include such parameters as the programming language, the nature and inclu-
sion of comments, the architectural structure of the program, the choice of identifiers,
and other choices that need to be made to generate the logical program, while exclud-
ing those choices involved with the relative placement of program characters, which we
put under "typographic factors." Many of these factors are discussed in [Shneiderman80].
Brooks [Brooks83] makes some interesting remarks about documentation, which apply
to internal comments. He suggests that:

* Different kinds of documentation are helpful at different stages of com-
prehension. In the early stages, high-level program descriptions are help-
ful, whereas in later stages, lower-level information is more useful.

" Different languages need different kinds of documentation.

" Too much documentation can obscure as much as it can illuminate.

Typographic factors include the use of upper- and lowercase, fonts, color, and white
space. We mean to distinguish between the logical program and the representation of
it presented to the user. This allows us to include in this category rearrangements of
the code such as that effected by literate programming systems [Knuth84]. Interesting
studies have been made concerning typographic factors. One of these was done by
Miara, Musselman, Navarro, and Shneiderman [Miara83]. In this carefully done study,
the authors concluded that indentation to show structure does enhance program
readability, though it is possible to have either too little or too much indentation.
Other studies can be found in the bibliography of this document, in [3hneiderman80], or
in the Thomas and Oman bibliography [Thomas90].

16 CMU/SEI-90-EM-3

Our term "environmental factors" is also somewhat of a catch-all. We mean to include
both the physical and the logical environment in which reading takes place. One may
place room temperature in this category for completeness, but we have in mind partic-
ularly factors, such as: the medium of the program (paper, CRT monitor); external doc-
umentation; and software tools, like editors and compilers. Interestingly, in this age of
high-definition workstation monitors, there are many circumstances in which program-
mers still prefer using paper listings, and presumably are more efficient workers for
doing so [Oman9Oa].

4.2. Readability and Style

A good deal has been written, much of it atheoretical, about programming style, a term
denoting an array of software-writing practices involving choice of identifiers, effective
use of language features, commenting conventions, indentation, use of white space, use
of case and font, and the like. To the degree that we learn about what makes a pro-
gram readable, we should be able to turn this knowledge around and make it into pro-
granming style guidelines that should produce more readable programs. Instructors
who want to teach program reading should be sure their students make this connec-
tion. The reader is directed to [Baecker9O], [Oman9Ob], [Shneiderman8O], and [Thomas90].

4.3. Tools and Techniques

As we have seen, actual program reading behavior is complex. Although we cannot
offer a general plan for reading programs, we can provide hints, suggest simple tools
that can be used, and catch a glimpse of automated support that might be available in
the future.

We begin with a list of ideas for program reading, designed more for suggesting what
sort of advice we can offer our students than as a complete bag of tricks. Readers can
no doubt add their own entries to our list:

1. Be aware that code and comments (or other documentation) may not
agree. The code may be correct and the comments wrong, or the reverse.
Both may be wrong. (The code may not accomplish what it is supposed to
do, and the comments may describe neither what should be done nor what
is done.)

2. Use indentation to help understand structure. However, incorrect inden-
tation (more likely to come from a human than a compiler or
prettyprinter) may be misleading.

3. Try to build a model of the style conventions used in the program. If, for
example, a consistent scheme has been used for identifiers, this knowl-
edge can be used to help understand the meaning of newly encountered
identifiers. It is important to read the program with the programmer's
conventions, rather than your own, in mind.

CMU/SEI-90-EM-3 17

4. Be wary of apparently analogous functions performed in non-analogous
ways. Arbitrary or stylistic differences may simply indicate programmer
inconsistency, but they may also signal modified code (a maintainer with
different habits has modified the code) or code whose functions are not as
analogous as they might at first appear.

5. Consider the possibility that the programmer did not know what he was
doing.

6. Watch out for code written to overcome compiler or computer limitations
or code containing apparently magic numbers.

7. Watch out for use of nonstandard language features. (Some compilers, for
example, initialize variables that other compilers do not.)

8. Use stepwise abstraction.

9. Odd-looking arithmetic operations may be required to maintain accuracy.
Consider possible roundoff implications.

10. Because changes to the code often introduce errors and inconsistencies,
look for evidence of changes. Look for change logs or comments about
changes imbedded in comments. Stylistic differences can indicate
changes by a programmer other than the author. If multiple versions of a
program exist, using a tool to find changes (e.g., UNIX di f f) can be help-
ful.

11. If, after a good deal of study, a piece of code is making no sense, ask
another programmer to look at it. Consider explaining to him what you
think you do know.

12. Search for information, particularly in documentation, that relates objects
in different knowledge domains, for example, comments that associate
variables with problem-domain objects.

13. Be wary of objects that have the same identifier but different scopes.
Reasoning about the wrong objects can be frustrating.

14. Be wary of objects having nearly the same names, particularly those
whose identifiers differ by a single character.

15. Particular code may be an artifact that no longer serves a function.

16. Be sure you make no inessential assumptions when reasoning about con-
current programs.

17. Be alert for variables that serve more than one function or that are used
inconsistently, as they can mislead the reader.

18. The effect of apparent bugs in the program can be undone by an inverse
bug somewhere else.

19. Use symbolic execution to determine function.

20. Use code substitution to verify or refine hypotheses. Substitute code for
what you think is being performed into the program, and examine how
your code differs from what code is actually there.

18 CMU/SEI-90-EM-3

21. Tracing code with test data, whether by hand or using a symbolic debug-
ger, will not by itself tell you what function the code performs. However,
it can help suggest some hypotheses and eliminate others.

22. Be alert for literals that are conceptually distinct but that happen to have
the same values. (The trouble usually begins when one tries to modify
such code.)

23. In languages that permit operator overloading, be sure the operator you
think you have is really the one you do have.

24. Be willing to abandon hypotheses for which there is insufficient evidence.

25. Use program slicing [Weiser81]. Throw out parts of the program irrelevant
to the particular function or state of the program of interest, in order to
study the program.

26. Use an editor or browser to traverse the code. Editors that support multi-
ple windows can show several parts of the program at once.

27. File search tools such as UNIX grep can be used to find identifiers that
may be in one of several files.

28. In the absence of tools like a cross-reference generator, such unlikely tools
as spelling checkers can be useful for listing the identifiers used in the
program.

29. Traditional debugging techniques can be used to read code. The addition
of print statements, for example, can be useful in verifying hypotheses.

30. Read programs with a cross-reference listing, structure chart, or similar
summaries of program information close at hand. It is sometimes useful
to generate such charts by hand if they cannot be obtained automatically.

Although programmers commonly use compilers, editors, and prettyprinters, in the fu-
ture, more sophisticated tools to assist with program reading may become available.
Prototype tools for viewing programs in different ways and exposing dependencies
among program components are described in [Cleveland89], [Paze189], and [Wilde89]. It
has even been suggested that stepwise abstraction may be automated to some degree.
Wilde (Wilde90] discusses kinds of program dependencies that may be of interest to the
program reader, as well as reading tools.

CMU/SEI-90-EM-3 19

20 CMU/SEI-90.EM-3

S5. Teaching Program Reading
In this chapter, we consider activities that educators can use to teach students how to
read programs, and help them to improve their program reading skills. We also con-
sider how program reading can be used in situations where teaching reading skills is
not the principal educational objective.

5.1. Need Program Reading Be Taught?

We argued in Chapter 2 that program reading skills are important to the software pro-
fessional. But need we, as educators, work consciously to develop these skills among
students, or may we assume that reading skills are somehow "picked up" along the way
to gaining program writing competence?

Although it is no doubt true that some students seem to develop reading skills effort-
lessly-as effortlessly and mysteriously as they achieve writing skills-we believe that
reading skills, in general, require cultivation. We have four reasons for this belief:

1. The nature of reading and writing skills.

2. The typical experiences of students.

3. Empirical evidence from published studies.
4. Our own classroom observations.

It should be obvious from our earlier discussion of comprehension studies that the acti-
vities one engages in when reading a program-recognizing, hypothesizing, verifying,
abstracting-are different from the tasks normally associated with writing programs.
There is no particular reason to expect these two sets of skills to be equally developed.

Students are probably called upon to read programs less frequently than they will be as
software developers. Not only do they write programs more often than they analyze
them, but also the programs they do write are seldom criticized in detail for style and
documentation. As a result, student programmers develop personal styles that seem
quite natural and correct, but which can be counterproductive when students are con-
fronted with code written by someone else who is equally individualistic.

Empirical studies show that experienced programme.-s tend to be better program
readers than novices are. Yet the studies also consistently show that reading strat-
egies employed by experienced programmers are diverse, and usually do not correlate
in any obvious way with experience [Crosby9O, Littman86, Pennington87]. Experienced pro-
grammers often adopt disastrous reading strategies [Littman86, Pennington87]. Presum-
ably, education can improve such performance, particularly because certain com-
prehension failures are systematic and, although they may not be totally preventable,
perhaps we can arm students with defenses against them. (See [Letovsky86b].)

Our observations of student behavior suggest that students do not particularly like to
read programs, possibly because doing so is difficult, possibly because it seems less cre-
ative or satisfying than writing code, certainly because students fail to grasp its impor-

CMU/SEI-90-EM-3 21

tance. In any case, students often skim program examples in textbooks, rather than
study them. Most students devote even less attention to sample programs distributed
by teachers and often perform quite poorly on examination reading questions. (See
[Deimel85c] for a simple example of this phenomenon.)

5.2. Teaching Strategies

Program reading is a complex, poorly understood cognitive activity. This surely makes
it difficult to teach, but not, we think, impossible. In this section, we suggest what we
believe to be useful teaching strategies for program reading. Although our remarks are
meant to apply mostly to undergraduate education, where we believe program reading
should first be taught, graduate educators and continuing education instructors also
should be able find ideas here that they can use.

It is not our intention to presume that program reading should become the subject of a
particular course. Instead, we believe that program reading should be discussed and
practiced throughout the curriculum. Because reading programs is a skill, like writing
programs, its mastery requires practice over an extended period.

A strategy designed to make students better program readers should have the following

components:

1. Motivation: Students need to know that reading skills are important.

2. Theory: Students can be taught what is known about program com-
prehension and about particular reading strategies and techniques.

3. Demonstration: Teachers should not only lecture about reading tech-
niques, but should also find opportunities to model reading behavior for
their classes.

4. Practice: Students must be given opportunities to exercise program read-
ing skills.

5. Reinforcement: Students must be encouraged, by feedback and grading,
to use and improve their reading skills.

We need not say much about the first two components. Previous chapters have dealt
with the importance of reading skills, our knowledge of program comprehension, and
reading strategies and techniques. This material can be delivered through lectures,
handouts, assigned readings, and offhand remarks in class. It is not necessary to
spend a lot of class time on these topics, but it should be clear that the instructor con-
siders them important. We believe that teaching about comprehension models, if only
informally, is important early on because it helps students formulate what it is they
need to know about a particular program, as well as the kind of knowledge they should
be acquiring about programs generally.

Somehow, hearing about how to do something is less compelling than actually seeing
the thing done. A teacher can demonstrate program reading by handing out a program
to students and reading it himself from overhead slides, demonstrating what he does
by thinking aloud. Since the skill he wants to demonstrate is program reading, not
acting, the program used should be credibly unfamiliar. A variation is to videotape
someone reading a program in this manner and show the videotape in class.

22 CMU/SEI-90-EM-3

Student assignments are a good source of programs with which tW demonstrate read-
ing. A program from a newly collected assignment or one from a previous term can,
after the programmer's name is removed, make excellent reading matter for a class. As
a bonus, the teacher can give valuable feedback to the class concerning stylistic prob-
lems likely to be especially meaningful to the students. This can be an important op-
portunity, as time seldom permits giving such feedback with any regularity. Both
"good" and "bad" programs can serve as examples. This will help students develop
judgement and taste. Teaching assistants or graders can sometimes sort through pro-
grams to find suitable examples.

Another possible source of programs to read is system utilities, such as those available
under UNIX. These programs can make good reading material, in part because stu-
dents seem to like looking behind the veil and demystifying familiar programs usually
regarded as primitives. The program in the Appendix is provided for reading, and the
SEI has other source code available as well. Of course, the choice of reading material
must be geared to the maturity of the students and the topics being covered in the
course.

Reading programs in class offers an interesting alternative to conventional lectures. In
advanced courses, in which students may be assumed to have at least modest program-
ming skills, there is often little reason to "develop" a program on the blackboard to
demonstrate, say, a new algorithm. Instead, the teacher can simply present a program,
and then analyze it as would a professional programmer trying to understand any un-
familiar code. This procedure has the following advantages:

" It can save valuable class time.

* It demonstrates reading skills and reinforces their importance.

* It stresses the analysis, rather than synthesis, of programs (which is often
the point of the lecture anyway).

" Since this can be done with code directly out of the textbook, it sends the
message that "you, too, can make sense out of textbook examples."

" It relieves the instructor of the need to demonstrate his superiority by
working out the program before the class off the top of his head.

There are many ways to give students practice reading programs, an essential part of
improving their skills. Many instructors regularly distribute their own versions of pro-
gram solutions to their classes after an assignment is due. These versions are usually
intended to serve as models for program writing, rather than as material for reading
practice. In principle, students should read these solutions and learn from them, per-
haps finding better ways of performing operations they found troublesome when they
were writing their own programs. Experience tells us, however, that students often
simply file these programs away somewhere, never to be used, except possibly as
tablecloths for late-night pizza. More incentive for reading is generally required. Here
are possible ways of providing such incentive:

• Have students correct errors in their own programs after they are
returned. Suggest they read the model program for ideas. This tactic ben-
efits some students more than it does others. Students who have no errors
to correct have no special incentive to look at the handout.

CMU/SEI-90-EM-3 23

" Allow students a few days to study the sample program and resubmit their
own, thus allowing them to improve their grades on the assignment. This,
too, benefits students unequally, however.

" Have students add or remove functionality from the model program. They
will already understand the application, and much of their efforts will be
devoted to decoding the details of the model program. In fact, the model
need not even be correct; students can be asked to find and remove a bug.
Of course, if this is done outside of class, there is no way to prevent stu-
dents from copying solutions from one another.

" Have students answer questions about the sample program. Although gen-
eral questions (e.g., "Write an essay explaining how this program performs
its function.") can work, more limited and specific questions may be more
effective at focusing students' attention.

Each of these strategies forces students to approach the program with particular objec-
tives in mind. A related idea is to have students exchange programs and answer spe-
cific questions about them or evaluate the programs against specific criteria. This pro-
vides both reading practice and feedback on programming style and readability.

Reading exercises need not be associated with programming assignments, of course. At
any time, the teacher can hand out a program listing or make available program files.
This should be done in conjunction with a specific exercise or set of questions the stu-
dents are asked to complete. Having students answer questions about programs is an
excellent way to teach them programming techniques and increase their sophistication
in thinking about programs. In fact, it can be a much more effective teaching method
than classroom lecture, as the students become active participants rather than passive
listeners.

Asking students to write essays about programs also provides an opportunity for stu-
dents to sharpen their technical writing skills. (See the SEI curriculum module
Technical Writing for Software Engineers [Levine90] for other suggestions to improve
students' writing.)

It is not necessary that students write formal essays. Questions requiring brief but
non-obvious answers can be quite effective in giving program reading practice and
teaching whatever it is the instructor wants students to learn about programming. In
fact, students should get experience handling narrow questions before being asked to
deal with complex, open-ended ones. The latter category offers attractive possibilities,
however. Students can be asked to compare alternative programs for the same task, or
to evaluate a proposed-and possibly problematical-modification to a program.

It is possible even to have a little fun with programs distributed to the class. Try con-
ducting a scavenger hunt with a program. Ask students to find as many odd features-
not bugs--in a program as they can. Such features can include pectiliar identifiers,
unreachable statements, useless assignment statements, and so forth. Prizes can be
offered to winners who find most oddities. Besides adding interest to the class, this
activity emphasizes that even working programs are not necessarily perfect ones.

24 CMU/SEI-90-EM-3

One of the authors has even offered a monetary bounty on any errors students could
find--even typographical ones-in programs he distributed. This never proved costly,
but perhaps the author was just lucky.

Other activities that might be tried with programs distributed to students include in-
class code reviews and class discussions of programs students have been asked to
study. Of course, code reviews should be part of any team project.

One of the authors regularly uses a type of assignment that combines program reading
and program writing exercises. Students are given files for an incomplete program,
which they are asked to finish. The program may include cnmplete but undocumented
procedures, procedures specified only by comments, and so forth. Students must read
and understand what they have been given in order to complete the code and documen-
tation.

Do not overlook the possibility of giving quizzes or examinations based on programs
students have been asked to read outside of class. Students may be less effective pre-
paring to answer unknown questions than ones given them in advance, however. On
the other hand, this situation is realistic, as maintenance programmers are often given
time to familiarize themselves with programs they are to maintain, even though they
cannot know what, exactly, they will be called upon to do with them.

Perhaps a more attractive alternative for quizzes and examinations is the idea of using
reading questions that do not depend on code studied in advance. Reading questions
can be used to test reading skills, as well as program writing skills, or at least knowl-
edge of programming techniques. (There is reason to believe there is some correlation
between reading and writing skills. Experienced programmers, for example, seem to
perform better in experiments involving program comprehension. See, for example,
[Crosby90].)

Now we come to the matter of reinforcement. Students are usually willing to spend
time learning a subject or performing a task only if there is some sort of tangible
reward involved, usually in the form of a grade. This is a fact of academic life, and we
can only accept it and use it to our advantage as educators. Students' grades must
depend in part on reading activities if we are serious about imparting reading skills.
Most of the activities we have mentioned can be graded in a straightforward way; they
should indeed have grades associated with them. After a time, students will come to
recognize improvement in their reading skills and their understanding of programming
generally, and will, one hopes, engage in reading activities more enthusiastically.

Because becoming a good program reader is partly a matter of learning how to think
about programs, instructors should explain what answers they were looking for in re-
sponse to reading questions. Reviewing exercises in class can be a helpful way to give
feedback, though students sometimes need personal comments as to why their answers
were not correct.

Reinforcement for the idea that reading is important can also come from the use of
programming style guidelines. If reading programs is important, so is writing more
readable programs. Oman and Cook warn against specific guidelines, and recommend

CMU/SEI.90-EM-3 25

teaching language-independent principles [Oman9Ob]. Teachers have to decide how
much stylistic freedom to allow their students, however. In any case, style guidelines
should be justified in terms of their implications for readability. Students can usually
be convinced of the utility of reasonable, well-thought-out conventions, even if the con-
ventions are not perfect. Upperclass students probably should be given more leeway to
experiment with programming style, though they should be held accountable for their
choices.

We are aware that most of the techniques suggested in this chapter require substantial
work by the instructor. Writing programs for students to read, and devising follow-up
projects, is not a simple matter. Because the benefits can be substantial, however, it
may be worthwhile to establish a department-wide plan to create reusable code and
program repositories where instructors can get (and place) software available for stu-
dent reading exercises.

In the next chapter, we discuss construction of program reading questions. We show
that a great deal of variety is possible and that questions need not be trivial. We also
offer a framework helpful for generating good program reading questions.

5.3. Some Additional Ideas

We want to mention a few ideas related to program reading that may be helpful to
educators, particularly those willing to experiment a bit with their courses.

We mentioned earlier the suggestion by Deimel and Moffat to restructure the intro-
ductory programming course by placing a heavy emphasis on reading. They recom-
mend in [Deime182] that a four-phase approach be used, in which students:

1. Use programs.

2. Read programs.

3. Modify programs.

4. Write programs.

The first phase introduces students to the kind of products they will later be asked to
create. It helps them to develop ideas about what makes software desirable to users,
independent of any understanding of how much work might be necessary on the part of
developers to achieve an appropriate level of quality. In the second phase, students
begin to learn a programming language. One hopes they develop intuition about how
code should look, so that they make fewer "silly" composition mistakes later on. One
also hopes they begin to see intelligent style conventions and internal comments in a
positive light-as aids to comprehension, rather than as obnoxious requirements. The
third phase lets students try their wings a bit and serves to emphasize the importance
of maintaining software. Finally, students begin writing programs independently.

The Deimel/Moffat approach has a decided software engineering slant to it, and it may
be an attractive strategy to try in undergraduate programs that have a serious commit-
ment to software engineering. No thoroughgoing attempt to implement this approach
-which would require a substantial body of materials-is known to the authors, how-
ever.

26 CMU/SEI-90-EM-3

Although learning one's first programming language through program reading is some-
thing of an offbeat idea, programmers commonly learn a substantial amount about sec-
ond and third languages by reading programs written in those languages. This idea
suggests a number of educational possibilities, including ways to make language sur-
vey courses more meaningful. Project courses often require students to use a language
with which they are unfamiliar. Providing students, in addition to the usual resources,
with sample programs in that language and meaningful reading questions, such as
those provided in Chapter 6, may ease the transition into use of the new language.

Finally, we suggest that encouraging students to do a serious read of their programs
after they are "finished" can have a salutary effect on their work. Code reviews work,
after all, because someone actually looks at the code, even if it appears to be running
satisfactorily. Carefully and objectively reading one's program, even without the bene-
fit of other reviewers, often uncovers previously unrecognized flaws. Students sen-
sitized to the importance of program readability can also improve the readability of
their own programs in this way. This is especially true with respect to internal com-
ments. Knowledge of what the reader typically wants and needs to know, along with a
detached assessment of whether or not the code succeeds at communicating that infor-
mation, can lead to programs that are much better documented than they otherwise
would be. Teachers skeptical that students will read their own programs may wish to
provide opportunities for students to review one another's code.

We are at least a little embarrassed for our profession in suggesting that students
should read what they write. No doubt an English composition teacher would find it
unthinkable that a student should submit a theme without having read it. But pro-
grams seem to be different. Whereas a theme cannot be evaluated except by reading it,
a program can be executed. And students seem disinclined to argue with the success of
a properly running program. We should encourage them to behave otherwise.

CMU/SEI-90-EM-3 27

28 CMLJ/SEI-90-EM-3

* 6. Constructing Reading Exercises, with Examples
To teach program reading, it is essential to construct exercises that require students to
answer questions about programs. In this chapter, we offer advice about framing indi-
vidual questions and assembling groups of questions.

Our notion of a "program reading comprehension question" is broad. If a question or
exercise requires understanding source code to answer it, that question fits our defini-
tion. In this sense, for example, a program maintenance exercise is a reading question.
Program reading comprehension questions test reading ability and provide reading
practice, which presumably builds reading skills. Questions must be about something,
however, so that they necessarily also test for other skills and knowledge, a major
reason to like reading questions, all other considerations aside. Rather than compli-
cate matters unduly, we will generally speak of measuring program comprehension, ig-
noring any other objectives a question might achieve.

In Section 6.2, we list a number of questions based on the program in the Appendix.
These questions are intended to be usable as they are, as well as to be suggestive of
others that might be created by teachers, either for the program we have provided or
for for other software.

6.1. Evaluating Program Reading Skills

A major problem of teaching program reading is that of evaluating students' under-
standing of the material. Program reading skills cannot be measured directly because
the product of program understanding is in students' heads. As we shall see, however,
a great variety of question types is available to us. Good comprehension questions can
be constructed with just a little effort.

Much of the remainder of this chapter is based on [Deimei84], [DeimeI85a], and
[Deime185c]. The reader should consult these papers for additional details and sugges-
tions.

In general, we are interested in questions that require students to understand a pro-
gram, proced-are, or program fragment. The code may be presented on paper, it may be
made available electronically, or it may even be executable. The code may contain
meaningful comments or not. External documentation of various forms may or may
not be available. We do not have space to explore these possibilities in detail. Clearly,
however, certain choices make the same question easier or harder to answer. Infor-
mation that is difficult to extract from raw source code can be very easy to find if pro-
vided directly in comments, for example. (More documentation is not always helpful,
however.) When developing questions, it is important to ask what knowledge and skills
we are trying to test. When evaluating a possible question, it is important to ask what
knowledge and skills students will have to use (and therefore demonstrate) in order to
answer it. These rales of thumb help us select questions and appropriate source
materials.

For this report, we did what instructors often do as we developed our questions for an

CMU/SEI-90-EM-3 29

exercise or examination, namely, made a few arbitrary decisions and took them as
given. Thus, we wrote a well-documented Ada program and developed questions for a
variety of educational objectives based on that program. The program can be provided
on paper or electronically, in whole or in part. Readers can select sets of questions from
those provided to test their students, or they can augment our questions with their
own. If there is reason to do so, they can remove comments, change statements, or
provide external documentation along with the source code.

Reading questions can be multiple-choice or free-response. One or more questions can
be asked about a single passage. It is also possible to ask students to select one of
several passages as the answer to a question. Possible forms of essentially the same
question are illustrated in the examples below, which are adopted from [Deimel85a]:

1. What is the apparent purpose of the code below?

TEMP : = A;
A B;
B TEMP;

2. What is the apparent purpose of the code below?

TEMP : = A;
A B;
B TEMP;

a. Set A, B, and TEMP all to the same value.

b. Sort the values of A, B, and TEMP.

c. Exchange the values of A and B.

d. Sort the values of A and B.

3. Which one of the following fragments correctly and efficiently exchanges
the values of A and B?

a. T1 A;
T2 B;
B T2;
A TI;

b.B A;
A B;

c. TEMP := A;
A B;
B TEMP;

d. T1 A;
T2 B;
A T2;
B Ti;

The first question is a free-response question; the second and third are multiple-choice.

30 CMU/SEI-90-EM-3

Multiple-choice questions have the advantage of being easy to grade and to grade objec-
tively. Writing good multiple-choice questions can be time-consuming, however, a fact
that may offset any scoring efficiency gained. Multiple-choice questions seem most de-
sirable if a large pool of them can be developed over time. We have included a few
multiple-choice questions among the exercises. Suggestions for making up such ques-
tions can be found in [DeimeI85a], which also discusses the assessment of how successful
particular questions are as evaluation instruments.

Various kinds of free-response questions are possible. Often, only a sentence or phrase
can provide the answer. Essay questions, however, require more extended composition
on the part students and expanded effort on the part of the instructor. Responses to
questions can be diagrams or other kinds of documents. Cloze procedure tests have
also been used for testing program comprehension. In a cloze procedure question, ele-
ments of the program are deleted (say, every nth statement or every nth operand or
operator), and students are required to supply the deleted elements. A simple example
might be:

1. Complete the fragment below, so that it exchanges the values of A and B:

TEMP := A;

B TEMP;

One of the most difficult aspects of generating reading comprehension questions is that
of producing adequately diverse questions. The classification scheme of Deimel and
Makoid [Deime184] is an effective tool with which to deal with this problem. Deimel and
Makoid suggest using a two-dimensional classification of question types. One axis
represents behavioral objectives in the cognitive domain (roughly speaking, the cog-
nitive difficulty of the operations required to produce the correct answer). The other
axis represents the knowledge domain or domains (in Brooks's terminology) about
which one must reason in order to answer the question. A set of questions representing
question types well distributed in this two-dimensional matrix should, in principle, be a
broad measure of reading comprehension. A set of questions that requires reasoning
only about individual statements, on the other hand, would likely measure overall
reading comprehension poorly.

The cognitive complexity axis uses Bloom's taxonomy of behavioral objectives in the
cognitive domain (Boom56, Boom71]. This is a classification of types of behavior we
might want to elicit from students. The taxonomy is hierarchical, at least in principle,
in the sense that performance at any level requires the performance skills at all lower
levels. The levels of the hierarchy are as follows (we offer brief explanations in the
domain of our interest):

1. Knowledge: Knowledge-level tasks call for definitions, recognition, etc.
The programmer is asked to respond with established facts about pro-
grams and programming methods, or to give back, more or less verbatim,
what he has read.

2. Comprehension: This level represents simple understanding. The pro-
grammer is asked to summarize or paraphrase what he has read, but is
not required to demonstrate deep understanding of it or its implication.

CMU/SEI-90-EM-3 31

3. Application: This level involves the use of abstractions in particular and
concrete situations. At this level, information becomes functional, not just
theoretical. The programmer might be asked to describe the behavior of a
program.

4. Analysis: This level is concerned with the organization of information
and the relationships among elements. The programmer may be asked
about program components, their organization, and how they work togeth-
er.

5. Synthesis: Synthesis is the putting together of parts to form a whole.
Writing a program or modifying a program are synthesis tasks.

6. Evaluation: The making of quantitative and qualitative judgements, re-
quiring measurement against criteria. The programmer might be asked
to evaluate program efficiency, readability, etc.

Deimel and Makoid in [Deime184] and [DeimeI85c] list several specific types of reading
comprehension questions for each level. We will not reproduce the list here, but we
discuss some of these types in relation to particular questions we provide in the next
section.

6.2. Example Program Reading Questions

We now present concrete examples of program reading questions based on the mul-
titasking Ada program provided in the Appendix. Our objectives are threefold:

1. To show that meaningful and varied reading questions are not difficult to
construct.

2. To illustrate particular kinds of questions to help educators write ques-
tions matched to their own particular educational objectives.

3. To provide actual questions and associated source code that can be as-
sembled by educators into exercises and examinations.

The questions are grouped by Bloom taxonomy level-roughly, in order of difficulty-
though perhaps one should not take this description too literally. This arrangement
facilitates both discussion of question construction and access by instructors, at least to
the extent that they think in terms of abstract educational objectives. The list is not so
long as to preclude a linear search for useful items. The questions are available on
diskette (an order form is provided as an attachment), so searches of the question set
can be made with a text editor.

We have not provided answers to questions. Although the reason for this has more to
do with the publication schedule than with anything more philosophical, the net effect
is not altogether bad. The lack of answers makes anyone who wants to use the ques-
tions look seriously at the accompanying code. This, in turn, helps one see the answers
students will be asked to discover, appreciate the process students will need to go
through to find them, and gain insight into the program-helpful for writing additional
questions--and into program reading generally.

32 CMU/SEI-90-EM-3

We should point out that these questions are not field tested. We encourage readers to
create exercises or examinations from them and to share their materials and experi-
ences with others through the Software Engineering Institute.

A few words are in order about the Ada program on which the questions are based.
The program is a well-documented, multitasking program of about 800 statements. It
is distributed among 11 files, whose combined length is about 3800 lines. The main
procedure is pdi, which can be found in file pdi.a. The program searches (possibly very
large) natural numbers in arbitrary bases to find what are called "perfect digital
invariants" (PDIs) and "pluperfect digital invariants" (PPDIs). (The nature of these
numbers is not important. The comments in the main procedure contain background
information and references.) Significant features of the program include:

* A multiple-precision integer arithmetic package, numbers.

* A user-interaction capability that accepts user requests while searches are
in progress.

* Automatic checkpointing and restarting, a useful feature, as searches can
go on for hours or even weeks.

Most of the work of the depth-first search is carried out by recursive procedure
numbers.search.dosearch. start search.select digits. Although the pro-
gram is not obviously implementation-dependent, its use of tasking and textio may
cause its operation to differ from one system to another when the program is run with-
out modification. Reports of both problems and successes will be appreciated.

In the lists of questions beginning in Section 6.2.1, we have inserted space between
items to allow the reader to make notes about individual questions. Questions at each
level of the taxonomy are in separate sections. Below, we comment on a number of
questions in order to give the reader a sense of what we have provided, to suggest kinds
of questions that can be asked, and to show some of the thought process that underlies
question construction. Note that the questions are not totally independent of one
another, and use of one question may reasonably preclude use of some other one.

The knowledge-level questions in Section 6.2.1 require the most basic knowledge to an-
swer. The questions shown can hardly be considered reading questions at all, relying
as they do mostly on the knowledge students bring to them. It is difficult at this level
to ask anything except basic Ada questions. Seldom, in fact, do we even want to ask
knowledge-level questions in reading comprehension tests, except possibly in those for
beginning students. Some items are arguably misclassified; question 1 is perhaps a
comprehension-level question. The classification is not so much an end in itself, but a
device for stimulating thought about reading questions, so there is no need to quibble
about fine points. Question 5 involves the sort of knowledge that lends itself nicely to a
multiple-choice question, as it is easy to generate candidate answers that differ slightly
and systematically from one another. Well-prepared students have difficulty with such
a question only to the extent that it takes a few moments to read the question and
recognize where the correct answer is. Students who are less certain in their under-
standing are sometimes misled by distractors (wrong answers).

CMU/SEI-90-EM-3 33

The comprehension-level questions in Section 6.2.2 require more understanding.
Deimel and Makoid call questions like question 1 interpretation questions, in which the
function of a statement or fragment is called for. Question 2 is also an interpretation
type. Notice dilat it has been written in such a way as to elicit a response in the proper
knowledge domain (in this case, the Ada statement domain). If a response were re-
quired in another domain (that of abstract data structures, for instance) this would
probably not be a comprehension-level question. Care should be taken to cue students
as to the kind of response being sought. In the absence of such a cue, students could
answer this question in a more abstract domain, using abstraction as a cover for vague-
ness about just what is going on here. Questions 3 and 4 are translation questions, in
which information needs to be transformed into another (in this case, graphic) form.
Alternative questions might offer multiple diagrams, out of which students are asked
to choose the most appropriate. Question 4 requires cognitive effort primarily in the
data structures domain; question 3 concerns overall program architecture.

Question 1 of the application-level questions in Section 6.2.3 deals with the knowledge
domains of numbers and operations on them (i.e., the problem space) and that of proce-
dures and functions. Question 1 requires a good deal of thought to answer, as alter-
native designs need to be worked out mentally. Good understanding of Ada visibility
rules and private types is required to get the correct answer by any means other than
guessing or magic. Questions such as this, which require students to relate different
knowledge domains to one another, are probably somewhat more difficult to answer
than comparable questions that do not do so. Question 3, a prediction question, is prob-
ably the sort of item most teachers would think of if asked to write a program reading
question. The question can be answered by hand-tracing the code. Experienced pro-
grammers, however, would build an abstract model of the algorithm, from which the
answer could be written down immediately, without step-by-step tracing. (It is a good
idea to try to anticipate all possible methods of finding the answer to a question. It
may be desirable to force or preclude use of a particular strategy.) Questions 5 and 6
are nearly identical, but they solicit different sorts of answers. The difference can be
stated in terms of knowledge domains, but it may be more useful to think of the ques-
tions as asking "what?" and "how?"

Analysis-level questions are usually easy to write; they are often quite difficult to an-
swer. Question 1 in Section 6.2.4 requires a clear understanding of both the problem
domain and the algorithm used by the program. A complete answer to question 2 re-
quires some specialized mathematical knowledge. (See the Deimel and Jones reference
mentioned in the program comments.) Question 3 is a justification question-why did
the programmer do what he did? (Question 6 deals with the same feature of the
program.) Question 5 asks for an explanation; students must relate the problem
domain terms in the question to lower-level program details, in order to give a correct
explanation. Question 8, at least in part, is a location, or "where" question. Question 9
requires students to infer programmer style conventions (not a difficult task in this
case). Questions 10 and 15 deal with Ada tasking. Note that answering most of the
questions in this section require a good deal of abstract reasoning.

The synthesis-level questions in Section 6.2.5 all require students to construct some-
thing new or add new parts to an existing artifact. Questions 1, 2, and perhaps 11 are

34 CMU/SEI-90-EM-3

particularly appropriate for a software engineering class. Most other questions involve
program modifications. Questions 9 and 10 are unusual, in that they ask that function-
ality be removed from a program-sometimes a trickier job than adding functionality.

Evaluation-level questions are found in Section 6.2.6. Question 2 requires, if not for-
mal methods, at least careful reasoning. Question 3 is a criticism question that makes
students think carefully about some readability issues. Question 6, like question I in
Section 6.2.3, requires firm understanding of Ada rules about packages. This question
demands a good deal more clear thinking, however. This question allows for more than
one answer to be correct. Such questions are a bit more complicated to grade than
single-answer questions, but they sometimes seem irresistible.

S

CMU/SEI-90-EM-3 35

6.2.1. Knowledge-Level Questions

1. Procedure numbers. .. ."perform subtraction contains two loops involving
position. Which one of the following statements is true?

a. There is no declaration for position.

b. There is no declaration for position, but there could be.
c. The position in the first loop designates the same object as that in

the second.

d. The declaration of position occurs outside numbers.' .

2. How many parameters has procedure numbers.perform subtraction?
What is the mode of each?

3. The line

SEPARATE (numbers.search)

occurs several times in the program. What does this line mean?

4. The type durat .on appears several times in procedure timekeeper. -
ori nr elapsed-time. Which statement is true of duration?

a. Type iura , is a built-in type of the Ada language, whose com-
plete semantics are described in the language reference manual.

b. Type :-r is imported from package calendar.

c. Type - is defined implicitly in package timekeeper.

d. Type is defined in package standard.

36 CMU/SEI-90-EM-3

5. What is the meaning of
WITH calendar;

at the beginning of package timekeeper?

a. Declarations in the body of package calendar are available within
timekeeper without qualification.

b. Declarations in the specification of package calendar are available
within timekeeper without qualification.

c. Declarations in the body of package calendar are available within
timekeeper, provided they are qualified.

d. Declarations in the specification of package calendar are available
within timekeeper, provided they are qualified.

CMU/SEI-90-EM-3 37

6.2.2. Comprehension-Level Questions

1. What is the purpose of the statement

FOR dosearchtype'storagesize USE 1_048_576;

in the specification of package numbers. search?

a. It specifies how much memory to allocate.

b. It specifies the address at which part of the object code is to be loaded.

c. It allows certain objects to be used without a qualifying identifier.

d. Using iteration, it performs initialization.

2. As literally as possible, explain what the two statements inside the loop in function
numbers. convert to string do. Be sure to discuss the use of the"' " notation.

3. Draw a Booch diagram showing the relations among the main procedure, tasks,
and packages of the program.

4. Draw one or more diagrams to show in detail the structure of sum-table in
numbers.search.do searoh.start search.

5. List all the operators the programmer has overloaded in this program.

38 CMU/SEI-90-EM-3

6.2.3. Application-Level Questions

1. Let package numbers be used in another program by means of a WITH clause. Sup-
pose it is necessary to multiply two 25-digit, base-19 integers together in a reason-
ably efficient manner, taking advantage of the operations defined in the specifi-
cation of numbers. Which one of the following is true?

a. The operation can be performed directly by numbers.

b. The multiplication could be performed if a function were provided to
extract the nth digit of a multiple-precision integer.

c. The required operation is impossible to perform in the absence of the
assignment operator for multiple-precision integers.

d. The operation is easily performed using numbers. " * " and
numbers."+"

2. In function numbers. .- " (binary minus), indicate which instances of operators are
overloaded by the programmer.

3. Assume numbers. search.do search.start search. initialize table is
called with parameters 4 and 3. List the numbers (i.e., the multiple-precision in-
teger values) stored in the elements of sum table in the order generated. Be sure
to identify which value is assigned to which element of sum-table.

4. Give a valid compilation order for the 11 program files.

CMU/SEI-90-EM-3 39

5. What happens when the user requests that input be taken from the normal input
file (i.e., not the checkpoint file or default input file) but that file does not exist?
State clearly what the program does, as seen by the user.

6. What happens when the user requests that input be taken from the normal input
file (i.e., not the checkpoint file or default input file) but that file does not exist?
State clearly what the program does and explain why it does it.

40 CMU/SEI-90-EM-3

6.2.4. Analysis-Level Questions

1. The program appears to frnd PDIs in descending order. If it always does so, ex-
plain why this is so. If not, explain why this might seem to be true.

2. What exactly is the significance of the number output when the program displays
"Number of combinations tested"? Is this number helpful to the user in determin-
ing how much of a search has been performed? How difficult would it be to display
a number that told, of the theoretically possible numbers that might be PDIs, how
many of them have definitely been eliminated as PDI candidates?

3. In task numbers. search. do search, two different data structures are used to
hold information about the combination of digits that has been selected. Why?

4. The data type dynamicstring appears a number of times in package numbers.
What is it, and how is it used?

5. How does the program avoid testing every positive integer of the desired length for
the property of being a PDI?

CMU/SEI-90-EM-3 41

6. What is the significance of the loop

FOR digit IN numeral LOOP
wideselectvector(digit) := selectvector(digit);

END LOOP;

in procedure numbers. search. do search. start search. -
recordcheckpoint? That is, why is this loop necessary?

7. What change to the program probably should result in a change of the 2 in proce-
dure numbers. search. dosearch.startsearch.printstate to some other
value?

a. A change in the value of numbers. maximum radix to 110.

b. A change in the value of numbers. maximum digitlength to 1.
c. A change in the value of numbers. maximum numberlength to 105.
d. A change in the value of numbers. maximum radix to 9.

e. None of the above.

8. What limitations are there on the PDI searches the program is able to perform?
Where in the code are these limitations established?

9. Describe the programmer's convention with respect to the use of upper- and lower-
case.

10. Under what circumstances, if any, can more than one task be making progress at
the same time? (Waiting for an entry call is not considered making progress.)

42 CMU/SEI-90-EM-3

11. How does the program know what checkpoint file to read? How does it know what
checkpoint record to read?

12. What are all the circumstances under which function numbers. "+" returns a
value flagged as erroneous? Can any such circumstances actually occur in this pro-
gram?

13. In procedure numbers. search. do search. startsearch, two functions from
package timekeeper are renamed. Where, if at all, are these functions actually
used?

14. Explain the operation of procedure numbers. search. do-search, start search
in terms of tasks, procedures, and functions.

15. Describe the overall operation of the program in terms of interacting tasks.

16. Explain the method used by the program to restart from a checkpoint, that is, to
reproduce a program state equivalent to the state of the program at the time the
checkpoint was written. The explanation should be general enough to allow the
reader to use the method in another, unrelated program.

CMU/SEI-90-EM-3 43

6.2.5. Synthesis-Level Questions

1. Write a test plan to determine how well the program handles all errors associated
with files input.dat and pdi.ckp.

2. Write a test plan to exercise all exception handlers in the program related to opera-
tions on files input.dat and pdi.ckp.

3. What is the significance of the literal 2 in procedure numbers. search. -
do search. start search.print_state? Replace this literal with an appropri-
ately named and declared constant.

4. Add a feature to the program to allow search parameters to be taken from the de-
fault input file (presumably the keyboard), in addition to the options currently of-
fered.

5. Rewrite function numbers. "+" with the intention of making it as time-efficient as
possible.

44 CMU/SEI-90-EM-3

6. Presumably, procedure numbers. search. do-search.start-search
selectdigits would be faster if implemented without recursion. Propose a de-
sign for such an iterative procedure. Describe in detail any necessary data struc-
tures and their use.

7. Presumably, procedure numbers. search. do-search. start-search. -
selectdigits would be faster if implemented without recursion. Implement a
design that eliminates the use of recursion.

8. Change the program to accommodate different line widths in the default output
file. In the modification, it should be easy to change the line width associated with
the program.

S 9. In order to increase the efficiency of searches, the program could be modified so as
to disable the user-interaction feature while a search is in progress. Describe ap-
proaches to doing this, assuming the code is to be changed as little as possible.

10. In order to increase the efficiency of searches, completely remove the user-
interaction capability that allows the user to interact with the program while a
search is being carried on. Be sure to change all relevant comments in the code.

11. Briefly summarize the programmer's indentation conventions in a style guide you
could give to another programmer.

4

CMU/SEI-90-EM-.3 45

6.2.6. Evaluation-Level Questions

1. Although the user's ability to interact with the program while a search is being
carried on is useful, it presumably creates some execution overhead. Explain the
nature of this overhead and what, if anything, the user can do to manage it.

2. Prove (possibly informally) that function numbers. "<=" performs correctly.

3. Explain the programmer's use (and non-use) of blank lines in the declarations at
the beginning of the specification of package numbers. Does this use enhance
readability of the declarations? If possible, suggest a rule about the use of blank
lines (or related formatting conventions) that would improve readability of these
declarations.

4. In what way is the manner in which the programmer has written Boolean expres-
sions unusual? Why do you think the programmer did what he did? Do you agree
with his reasoning?

5. Function numbers (binary minus) appears to have been written from
numbers. "+", or vice versa. Support or refute this possibility. Are the two imple-
mentations equally appropriate for their respective tasks?

46 CMU/SEI-90-EM-3

6. Arguably, package search is not most logically placed as part of package
numbers. Which of the following statements are true or probably true?

a. Package search is not syntactically necessary.

b. Task search. do search must be defined within package numbers
because an Ada task cannot stand alone.

c. Task search. do search is defined within package numbers pri-
marily so that identifiers do not have to be qualified.

d. Package search is defined within package numbers because both are
needed for conducting searches for PDIs and are unlikely to be useful
in any other context.

e. If the package search were defined outside of package numbers, the
inability to assign multiple-precision integers would complicate the
programming within search.

CMIJ/SEI-90-EM-3 47

48 CMU/SEI-90-EM-3

Annotated Bibliography

Baecker90
Baecker, Ronald M., and Aaron Marcus. Human Factors and Typography for More
Readable Programs. Reading, Mass.: Addison-Wesley, 1990.

The authors argue that the emphasis on writing, rather than on reading programs has
caused the visual (as opposed to logical) aspects of programs to be ignored. Attempts to
program in a more visual way (so-called "visual programming") have not been successful,
so the authors were led to examine program visualization. In particular, they have applied
graphics design principlc3 and techniques to the visual display of C programs. The result
is enlightening and striking. Their programs use multiple typefaces and font sizes,
elaborate spacing conventions, shading, color, and the like. Similar treatments could be
given programs written in other languages. The authors justify their design choices and
provide useful background information on program comprehension studies and the ele-
ments of typography.

This book is simil-.r in spirit to the work of Oman and Cook [Oman90a, Oman9Ob], though it
is more radical in its suggestions. The book is most helpful in suggesting possibilities
likely to be overlooked because we have accepted the technological limitations of the past
as givens. Persistence and familiarity with C are prerequisites to getting through this
substantial book.

Basili82
Basili, Victor R., and Harlan D. Mills. "Understanding and Documenting Programs."
IEEE Trans. Software Eng. SE-8, 3 (May 1982), 270-283.

Abstract: This paper reports on an experiment in trying to understand an unfamiliar
program of some complexity and to record the authors' understanding of it. The goal was to
simulate a practicing programmer in a program maintenance environment using the tech-
niques of program design adapted to program understanding and documentation; that is,
given a program, a specification and correctness proof were developed for the program. The
approach points out the value of correctness proof ideas in guiding the discovery process.
Toward this end, a variety of techniques were used: direct cognition for smaller parts, dis-
covering and verifying loop invariants for larger program parts, and functions determined
by additional analysis for larger program parts. An indeterminate bounded variable was
introduced into the program documentation to summarize the effect of several progran vari-
ables and simplify the proof of correctness.

The authors take a modest FORTRAN subroutine for finding roots of a function (ZEROIN,
which is fewer than 150 lines long including comments) and reverse engineer it to produce
a specification and correctness proof, documentation sufficient to answer several questions
posed about the code and, presumably, adequate to meet future maintenance needs. This
approach is consistent with the authors' belief that code and a correctness proof should be
developed from a specification in the first place.

The code is first restructured into one composed of prime programs (see [Linger79]), a proc-
ess requiring the duplication of several lines of code of the unstructured original.
Hypotheses are generated about the resulting components, which are then confirmed by
proving theorems. A table of data references is used to provide preliminary insights into
the semantics of the program. Results of individual theorems are combined until state-
ments can be proved about the entire subroutine.

This paper demonstrates something of a "brute force" approach to determining what a
program does and writing down the findings. This is more important than it sounds; the
goal of generating a correctness proof provides structure to the discovery process of learn-

CMU/SEI-90-EM-3 49

ing what the program does. The strategy this imposes on the reader is certainly used by
programmers, though in limited circumstances and with less formality. The authors are
more prescriptive than descriptive, however, and are not suggesting that programmers
actually follow their procedure.

It is too bad the authors offer only pages and pages of proofs as documentation and do not
suggest what comments they might actually insert into the restructured code. It should be
kept in mind, too, that the techniques demonstrated cannot capture certain pragmatic
information about how the program was intended to be used if this information is not
explicitly represented in the program.

Teachers and students should read this paper. It demonstrates well how we can reason
about code and is likely to provoke heated discussion about how much work is enough
when reading programs.

Bentley86a
Bently, Jon, and Donald E. Knuth. "Literate Programming." Comm. ACM 29, 5 (May
1986), 364-369. One of Bentley's "Programming Pearls" columns.

A nice description of Knuth's WEB system and his scheme of "literate programming." The
idea here is to free programming from the arbitrary restrictions of programming languages
and to produce essay-like texts for human consumption. A source file is prepared with
ordinary English text, programming language statements-Knuth's system is Pascal-based
-and imbedded TEX formatting commands. Ccnpilers WEAVE and TANGLE produce, on the
one hand, a hunian-readable program with commentary and, on the other, a thoroughly
unreadable program for machine use. The system allows the programmer to introduce and
annotate programming language statements in logical order, rather than some order dic-
tated by a language standard. A two-page example program is included as a sidebar, and
it communicates well the spirit of Knuth's programming method.

No programmer should miss this column. Even if literate programming does not seem to
you the wave of the future, Knuth's style of exposition is exceedingly thought-provoking.
(See also [Bentley86b].)

Bentley86b
Bently, Jon, Donald E. Knuth, and Douglas McIlroy. "A Literate Program." Comm.
ACM 29, 6 (June 1986), 471-483. Another "Programming Pearls" column.

This column is a follow-up to [Bentley86a]. It contains a nearly 8-page literate program by
Knuth, followed by a review (literary criticism, if you will) by Doug McIlroy. This is not
essential reading, but it is very interesting-for its literate program, programming criti-
cism, and use of a novel data structure.

Bloom56
Bloom, Benjamin S., et al., eds. Taxonomy of Educational Objectives: Handbook I: Cog-
nitive Domain. New York: David McKay, 1956.

Source of Bloom taxonomy of educational objectives in the cognitive domain.

Bloom7l
Bloom, Benjamin S., John T. Hastings, and George F. Madaus. Handbook of Formative
and Summative Evaluation of Student Learning. New York: McGraw-Hill, 1971.

Provides additional information on the Bloom taxonomy.

50 CMU/SEI-90-EM-3

Brooks78
Brooks, Ruven. "Using a Behavioral Theory of Program Comprehension in Software
Engineering." Proc. 3rd Int. Conf on Software Eng. New York: IEEE, 1978, 196-201.

Abstract: A theory is presented of how a programmer goes about understanding a pro-
gram. The theory is based on a representation of knowledge about programs as a succession
of knowledge domains which bridge between the problem domain and the executing pro-
gram. A hypothesis and verify process is used by programmers to reconstruct these domains
when they seek to understand a program.

The theory is useful in several ways in software engineering: It makes accurate predictions
about the effectiveness of documentation; it can be used to systematically evaluate and cri-
tique other claims about documentation, and it may even be a useful guideline to a pro-
grammer in actually constructing documentation.

In this paper, Brooks sets forth a model of program comprehension and relates it to the
nature of programs and their documentation. His basic ideas reappear in (Brooks82] and in
[Brooks83], where the process of comprehending a program receives greater emphasis. The
author argues strongly against the notion put forth by Kernighan and Plauger that "the
only reliable documentation of a computer program is the code itself' [Kernighan74]. He
offers intuitively appealing arguments for his theory, as well a very brief description of a
supporting experiment.

This paper is easy reading and likely to elicit a few "ahas" from anyone who takes pro-
gramming seriously. The most assailable part of Brooks's theory, his severely top-down
description of how people actually read programs, receives relatively little attention here.

Brooks82
Brooks, Ruven. "A Theoretical Analysis of the Role of Documentation in the Com-
prehension of Computer Programs." Proc. Conf on Human Factors in Computer
Systems. New York: ACM, 1982, 125-129.

Brooks describes his theory of program comprehension and uses that theory to draw in-
ferences about documentation. Brooks's most striking conclusion is that it is as important
to document the problem domain as it is to document the program itself. He concludes
that different programming languages require different kinds of documentation, and he
asserts that multiple forms of documentation are beneficial when they convey different
kinds of information.

The description of Brooks's theory is better developed in [Brooks83], although this paper
serves as a brief, readable introduction to it. This paper demonstrates the utility of the
theory, although readers may find themselves wanting more details. Teachers may want
to ask students to build on the inferences presented in the paper.

Brooks83
Brooks, Ruven. "Towards a Theory of the Comprehension of Computer Programs." Intl.
J. Man-Machine Studies 18, 6 (June 1983), 543-554.

Abstract: A sufficiency theory is presented of the process by which a computer programmer
attempts to comprehend a program. The theory is intended to explain four sources of varia-
tion in behavior on this task: the kind of computation the program performs, the intrinsic
properties of the program text, such as language and documentation, the reason for which
the documentation is needed, and differences among the individuals performing the task.
The starting point for the theory is an analysis of the structure of the knowledge required
when a program is comprehended which views the knowledge as being organized into dis-
tinct domains which bridge between the original problem and the final program. The pro-

CMU/SEI-90-EM-3 51

gram comprehension process is one of reconstructing knowledge about these domains and
the relationship among them. This reconstruction process is theorized to be a top-down,
hypothesis driven one in which an initially vague and general hypothesis is refined and
elaborated based on information extracted from the program text and other documentation.

This extended treatment of Brooks's ideas about program comprehension is intended to
provide an adequate descriptive model of how programmers understand programs. Accord-
ing to this model, when one understands a program, one has constructed a mental model of
successive knowledge domains bridging from the problem domain to the domain of the
program in execution. Each of these domains consists of objects, properties, relations, and
operations. The succession of domains may include the problem domain, the domain of a
mathematical model of the problem, the algorithm domain, the programming language
domain, etc. One must also understand the relationships that exist between adjacent
domains. The process of reading a program to understand it is one of constructing a model
of this sort or, depending upon one's reading objectives, constructing a part of one. Accord-
ing to Brooks, this process is largely top-down: the reader generates hypotheses about the
program, which he then attempts to verify from the code and whatever other documen-
tation is available. This verification task is aided by "beacons," code features characteristic
of recurring structures or operations. Hypotheses are generated hierarchically until
hypotheses can be bound to particular code segments. In this process, hypotheses are
frequently revised or replaced by more credible ones.

The paper concludes with a discussion of factors affecting comprehension, including the
nature of the problem, available documentation, programmer knowledge (both of program-
ming and of the problem domain), reading goals, and reading strategy.

Although not overtly based on empirical studies, Brooks's model seems both sensible and
serviceable. The model is somewhat dogmatic about programs being read top-down, how-
ever; and although the author acknowledges the bottom-up strategies illustrated in
[Basili82] and elsewhere, he dismisses them as less powerful and less important.

This is an important, well-written paper. It is particularly concerned with the process of
comprehension, however, and the reader wishing to better understand what it means to
understand a program should look at [Brooks78]. It may be worthwhile to ask students if
they believe people actually read programs as Brooks describes.

Cleveland89
Cleveland, L. "A Program Understanding Support Environment." IBM Systems J. 28, 2
(1989), 324-344.

Abstract: Software -raintenance represents the largest cost element in the life of a software
system, and the process of understanding the software utilizes 50 percent of the time spent
on software maintenance. Thus there is a need for tools to aid the program understanding
task. The tool described in this paper-Program UNderstanding Support environment
(PUNS)--provides the needed environment. Here the program understanding task is sup-
ported with multiple views of the program and a simple strategy for moving between views
and exploring a particular view in depth. PUNS consists of a repository component that
loads and manages a repository of information about the program to be understood and a
user interface component that presents the information in the repository, utilizing graphics
to emphasize the relationships and allowing the user to move among the pieces of infor-
mation quickly and easily.

This paper is a thorough description of the PUNS system developed at IBM. PUNS exists
as a research prototype for IBM System/370 Assembly Language. The PUNS repository
resides on an System370 30XX computer, while the user interface can reside on a worksta-
tion running Microsoft Windows. PUNS supports the program understanding task by or-
ganizing and presenting the program from many different viewpoints: a call graph for a

52 CMU/SEI.90-EM-3

collection of procedures, a control flow graph for a single procedure, a graph that relates a
file to the procedures that use it, a data flow graph, a use-definition chain for a variable.
The tool uses static analysis techniques to detect low-level relationships that exist within
the program. It consolidates and organizes these relationships and presents them in a
user-friendly environment. Prior to using PUNS, the user is required to structure a data-
base for the particular program to be investigated.

Several extensions are under way to make PUNS a more useful tool. Perhaps the most
important one reported in the paper is called a dynamic information updating facility. As
it stands now, PUNS requires the repository to be established before a user session can
begin. However, there is much to be gained by allowing the user to update information
during the session, since there are relationships that cannot be determined using the static
analysis employed when the repository is set up. Of course, as is discussed in the paper,
allowing for dynamic additions to the repository raises the question of accuracy of infor-
mation retrieved from the system. Attempts to extend PUNS to operate on higher-level
languages are not reported.

PUNS provides the user with a powerful tool to aid in understanding a program. Although
it is limited to assembly language programs, it suggests the kind of tool that may one day
become commonplace for use with high-level languages.

Corbi89
Corbi, T. A. "Program Understanding: Challenge for the 1990's." IBM Systems J. 28, 2
(1989), 294-306.

Abstract: In the Program Understanding Project at IBM's Research Division, work began
in late 1986 on tools which could help programmers in two key areas: static analysis
(reading the code) and dynamic analysis (running the code). The work is reported in the
companion papers by Cleveland [Cleve/and89] and by Pazel [Paze89] in this issue. The his-
tory and background which motivated and which led to the start of this research on tools to
assist programmers in understanding code is reported here.

The author makes a case for the study and development of program reading skills, both in
the workplace and in the classroom. The paper quotes a large number of authors who, for
the last two decades, have made predictions (some true, others not quite so) on software
development and maintenance. Certainly aging software systems are an integral part of
today's (and tomorrow's) software. Corbi stresses the point that program readers will be
needed in the 1990s, but that, unfortunately, program reading instruction is missing from
most computer science curricula. The paper suggests approaches to maintenance of exist-
ing systems and discusses current tools and their limitations. Finally, the author gives his
own view on software maintenance for the '90s.

This paper is recommended as a reading assignment for upperclass undergraduates. Fur-
thermore, anyone interested in program reading, both as a necessary professional skill and
as an activity within computer-related curricula, will find this paper most helpful. Instruc-
tors can find plenty of motivational statements to share with colleagues and students
alike. The paper contains a substantial bibliography.

Crosby9O
Crosby, Martha E., and Jan Stelovsky. "How Do We Read Algorithms? A Case Study."
Computer 23, 1 (Jan. 1990), 24-35.

The authors report on a study that examined eye movements of programmers reading a
Pascal version of a binary search, as well as their eye movements while studying slides
illustrating the operation of the algorithm. Nineteen low- and high-experience program-
mers, all but one a student, served as subjects. Subjects were given a pretest on the binary

CMU/SEI-90-EM-3 53

search, and cloze tests were used to measure comprehension. Fixation times and number
of fixations were gathered. Most of the results reported are qualitative, however, and the
"experiment" seems not to have addressed any particular hypothesis.

The authors claim support for the "immediacy theory" (that text is processed immediately,
as opposed to being stored in a mental buffer for later cognitive processing), but they report
no evidence for major systematic differences in reading strategy between novices and ex-
perts. High-experience subjects devoted more attention to "meaningful areas" of the code,
however. Reading strategies differed in the relative attention given to comments and code,
in the number of passes over the text, and in the degree to which subjects compared pro-
gram elements to one another rather than reading left-to-right and top-to-bottom.

This paper is most interesting for its graphic analysis of the data to discover patterns in
reading strategies. Although generalizations valid for really experienced programmers
and for realistic blocks of code are not readily apparent, the paper nonetheless suggests
interesting future work.

The paper is easy reading, though it is somewhat vague about details of the experimental
protocol.

Davis84
Davis, John S. "Chunks: A Basis for Complexity Measurement." Info. Processing & Mgt.
20, 1-2 (1984), 119-127.

Abstract: The state of the art in psychological complexity measurement is currently at the
same stage as weather forecasting was when early Europeans based their predictions on
portents of change. Current direct measures of program characteristics such as operator
and operand counts and control flow paths are not based on convincing indicators of com-
plexity. This paper provides justification for using chunks as a basis for improved com-
plexity measurement, describes approaches to identifying chunks, and proposes a chunk.
based complexity measure.

This paper focuses more on the uses of the abstraction eration of "chunking" as a means
of measuring program complexity than on how to extract chunks from programs. The
chunks Davis is concerned with are at the level of Letovsky's and Soloway's "plans"
[Letovsky86b].

Some of the earliest studies of chunking examined chess piayers. Experiments show that
master players can remember more than novices can from a quick scan of a chess board if
the chess board represents a meaningful situation. If, however, the pieces are randomly
arranged, non-master players do as well as chess masters. In the programming world,
chunks can be thought of as patterns of statements that accomplish a particular task. For
example, experienced programmers may recognize the familiar pattern of a sorting algo-
rithm. Davis reports that the Raytheon Company found that about half the code in its
inventory of COBOL programs was "redundant," in the sense that similar code existed to
perform essentially the same function.

The paper proposes two chunk-based complexity measurement models and reports on com-
prehension experiments aimed at validating proposed metrics. Davis points out that pro-
grammers often maintain the same piece of code over a long period of time. Comprehen-
sion experiments that present subjects with unfamiliar programs may therefore be less
relevant to the maintenance task than it might at first appear.

The paper is recommended for students with some level of programming maturity. The
results reported could be the basis of interesting class discussion in an advanced course.

64 CMU/SEI-90-EM-3

Deime182
Deimel, Lionel E., and David V. Moffat. "A More Analytical Approach to Teaching the
Introductory Programming Course." Proc. Natl. Educational Computing Conf 1982.
Columbia, Mo.: University of Missouri, 1982, 114-118.

The authors review approaches to teaching the introductory programming course and con-
clude there is a need for a radically different approach, largely because students fail to
grasp the nature of programs and of program development. Their solution is more
analytical (as opposed to synthetic), consisting of four stages of instruction, in which stu-
dents successively (1) experience programs as a user, (2) read and analyze programs and
algorithms, (3) modify existing programs, and (4) design and implement new programs.
Much of the discussion is concerned with the benefits of program reading.

This is a paper for teachers. The authors acknowledge that the lack of appropriate
materials makes their approach difficult to implement.

Deime184
Deimel, Lionel E., and Lois Makoid. "Measuring Program Reading Comprehension:
The Search for Methods." NECC '84: 6th Annual Natl. Educational Computing Conf
Dayton, Ohio: University of Dayton, 1984, 142-146.

Abstract: Evaluating program reading comprehension is a difficult task faced by both
programming instructors and software psychologists. This paper offers a taxonomy of
methods to measure comprehension and relates these techniques to a theory of comprehen-
sion. The classification should be useful for constructing test questions for both the class-
room and laboratory.

Deimel and Makoid present their classification of program reading comprehension ques-
tions that we have used in this report. The two-dimensional taxonomy is based on the
Bloom taxonomy of educational objectives in the cognitive domain [Bloom56, Bloom7l], and
on Ruven Brooks's knowledge domains [Brooks83]. The authors present a list of question
types by Bloom taxonomy level, a list refined in [Deime185c].

This paper is primarily for teachers, though it might be of interest to students needing to
construct comprehension tests in experimental studies.

Deime185a
Deimel, Lionel E., and Lois Makoid. "Developing Program Reading Comprehension
Tests for the Computer Science Classroom." Computers in Education: Proc. IFIP TC 3
4th World Conf on Computers in Education-WCEE 85, Norfolk, VA, USA, July 29-
August 2, 1985. Amsterdam: North-Holland, 1985, 535-540.

Abstract: A methodology for constructing program reading comprehension tests is dis-
cussed and illustrated. Emphasis is on multiple-choice tests used with realistic reading
passages. Item writing employing a classification of question types developed by the au-
thors and a program comprehension model developed by Ruven Brooks is recommended.

The authors discuss constructing multiple-choice program reading comprehension tests
within the framework described in [DeimeI84]. The paper is illustrated with examples and
provides a good deal of practical advice to computer science instructors unfamiliar with
education literature. Most of the examples are taken from a reading passage and com-
prehension test reproduced completely in [Deime185b].

This paper and the next are addressed to teachers, and may not be of much interest to
students.

CMU/SEI-90-EM-3 55

Deimel85b
Deimel, Lionel E., Lynda Kunz, Lois Makoid, and Jo Perry. "The Effects of Comment
Placement and Reading Times on Program Reading Comprehension." Proc. 19th Ann.
Conf on Info. Sciences & Systems. Baltimore: The Johns Hopkins Univ. Dept. of
Electrical Eng. & Comp. Sci., 1985, 595-601.

Abstract: Two experiments are described which compare the use of detailed comments
placed either in line with the high-level language code or offset to the right. Given more
than adequate time in Experiment 1 to read the program and answer comprehension ques-
tions, subjects given the two commenting treatments scored similarly on a comprehension
test. When reading time was substantially reduced in Experiment 2, there were significant
differences in comprehension between the commenting styles, favoring offset commenting.
Further analysis revealed a significant time by comment placement interaction. Possible
explanations and related questions are discussed.

The commenting styles discussed and their possible effects on program readability are
certainly of interest here, but perhaps of greater interest is the construction of the test by
which program comprehension was measured. The test was constructed using the theory
set forth in [DeimeI84]. Most of the experimental materials are reproduced in the paper.

Teachers or experimenters needing to construct program comprehension tests will find this
paper quite interesting.

Deime185c
Deimel, Lionel E. "The Uses of Program Reading." ACM SIGCSE Bulletin 17, 2 (June
1985), 5-14.

Abstract: It is argued that program reading is an important programmer activity and that
reading skill should be taught in programming courses. Possible teaching methods are
suggested. The uses of program reading in test construction and as part of an overall
teaching strategy is discussed. A classification of reading comprehension testing methods is
provided in an appendix.

This paper argues for the importance of program reading and contends that reading skills
are not necessarily developed in students unless the students receive explicit instruction
designed to develop these skills. The author contends that three components are needed to
teach program reading-lecture, reading exercises, and program writing standards that
are designed with the production of comprehensible programs in mind. He also suggests
that program reading can be used both to teach and to evaluate general programming
skills.

The appendix contains a revised version of the question classification introduced in
[DeimeI84]. This list is an improvement over the earlier one, although there are omissions
and, perhaps, some misclassification.

This paper is primarily addressed to teachers.

Goldberg87
Goldberg, Adele. "Programmer as Reader." IEEE Software 4, 5 (Sept. 1987), 62-70.
Paper originally appeared in Information Processing 86: Proc. IFIP 10th World Comp.
Conf., H. J. Kugler, ed. Amsterdam: North-Holland, 1986, 379-386.

This paper describes how the facilities of the Smalltalk-80 environment support program
reading, a particularly important function in what the author calls an "exploratory
environment," in which much programming is accomplished by modifying and reusing ex-
isting application and system code. Goldberg describes the Smalltalk-80 system in terms

56 CMU/SEI-90-EM-3

of four levels (user interface, functionality, structure, and language/implementation) and
lists important comprehension questions for each level.

This paper offers an unusual argument for needing to read programs, an argument tied
quite directly to program writing. It suggests ways in which future environments may
provide support for both activities.

Kernighan74
Kernighan, Brian W., and P. J. Plauger. The Elements of Programming Style. New
York: McGraw-Hill, 1974. A second edition was published in 1978.

This influential book tries to do for programming what Strunk and White did for writing.
The authors want people to read programs and thereby learn to program better. This slim
volume is filled with snippets of advice ("Make your programs read from top to bottom.")
and illustrative code segments from a variety of languages. It is not the ultimate authority
some would make it out to be, but it is a stimulating classic that everyone interested in
serious programming should read. It is somewhat dated, but contains a lot of good advice.

Kernighan8l
Kernighan, Brian W., and P. J. Plauger. Software Tools in Pascal. Reading, Mass.:
Addison-Wesley, 1981.

In The Elements of Programming Style, Kernighan and Plauger illustrate their points with
other people's code. Here, they use their own simple, reusable software tools, written in
Pascal. The book is virtually a whole course on programming technique. There is much
code to read here, but, as is commonly the case in textbooks, most of it is inscrutable
without the surrounding discussion. Thousands of programmers have studied this book on
their own. (This is a revision of an earlier book, Software Tools. The programs in that
book are written in Ratfor, which requires a preprocessor whose output is FORTRAN
code.)

Knuth84
Knuth, Donald E. "Literate Programming." Computer J. 27, 2 (May 1984), 97-111.

Knuth describes his WEB system for programming and documentation. Anyone with a deep
interest in the system should read this paper, but the reader who would prefer a brief,
luci.d deS rptiUL, Ot LhiS ;,tEtiig systei , (and philosophy) should read Jon Bentley's
piece [Bentley86a] on the subject instead.

Knuth86a
Knuth, Donald E. METAFONT: The Program. Reading, Mass.: Addison-Wesley, 1986.

Source code for Knuth's typeface-generation system, written using WEB. (See [Bentley86a].)

Knuth86b
Knuth, Donald E. T-Y. The Program. Reading, Mass.: Addison-Wesley, 1986.

Source code for Knuth's text-processing system, written using WEB. The book runs to
nearly 600 pages. (See [Bentley86a].)

Letovsky86a
Letovsky, Stanley. "Cognitive Processes in Program Comprehension." In Empirical
Studies of Programmers: Papers Presented at the First Workshop on Empirical Studies
of Programmers, June 5-6, 1986, Washington, D.C., Elliot Soloway and Sitharama

CMU/SEI-90-EM-3 57

Iyengar, eds. Norwood, N.J.: Ablex, 1986, 58-79. Reprinted in J. Syst. and Software 7,
4 (Dec. 1987), 325-339.

Abstract. This paper reports on an empirical study of the cognitive processes involved in
program comprehension. Verbal protocols were gathered from professional programmers as
they were engaged in a program understanding task. Based on analysis of these protocols,
several types of interesting cognitive events were identified. These include asking questions
and conjecturing facts about the code. We describe these event types, and use them to derive
a computational model of the programmers' mental processes.

Letovsky refers to a study involving the videotaping of six professional programmers as
they enhanced a FORTRAN 77 program of about 250 lines. (The same study is also the
basis for [Letovsky86b] and [Littman86].) Subjects were asked to "think aloud" as they worked.
The author describes and analyzes what they said as they labored to understand the pro-
gram to'. modified. He presents a cognitive model of program understanding composed of
the programmer's knowledge base, a mental model, the construction of which is the ulti-
mate goal of program reading, and an assimilation process by which the programmer ac-
tually builds the mental model. Most of the paper is concerned with the assimilation
process and the empirical data justifying the author's analysis of it.

Although Letovsky's language often differs from that of Brooks, his cognitive model of
program comprehension is basically consistent with and elaborates the model in [Brooks83].
Whereas Brooks emphasizes top-down approaches to reading programs, Letovsky offers
convincing evidence that programmers work both top-down and bottom-up. Much of the
paper is devoted to analysis of the "questions," "conjectures," and "inquiries" made by the
programmers while reading the code.

Teacher and student alike can benefit from reading this paper, which suggests, perhaps
better than any other, what a useful model of program comprehension might be. Examples
from the data contribute to one's understanding of the assimilation (reading) process on
one hand, yet detract from the author's description of his model on the other. Practical
implications need to be drawn by the reader. Asking students what Letovsky's results
imply (about documentation, for example) should evoke interesting discussion.

The 1987 reprint includes an appendix, "Other Categories of Questions and Conjectures,"
which illustrates programmer thinking not accounted for by the author's model.

Letovsky86b
Letovsky, Stanley, and Elliot Soloway. "Delocalized Plans and Program
Comprehension." IEEE Software 3, 3 (May 1986), 41-48.

The authors conclude, based on the same study as (Letovsky86a], that inadequately docu-
mented "delocalized plans" are sometimes responsible for misreading of programs on the
part of maintainers. They analyze comprehension failures by their subjects and suggest
techniques to prevent such misunderstandings when composing programs.

According to this paper, the task of understanding a program is one of uncovering the
intention behind the code. Intentions are described as "goals." Techniques for rea!izing
goals in a particular implementation are called "plans." Plans are a lot like algorithms,
but they may involve non-contiguous elements and may be combined in ways we do not
usually consider for algorithms. Two plans involving loops may be combined into a solu-
tion using a single loop implementing two distinct goals, for example.

The authors have observed that readers of programs tend to infer the goals of code frag-
ments on the basis of locally available information. If the plan for a fragment is
"delocalized," that is, part of the plan is realized in non-contig-uous code, the reader will
often incorrectly perform this inference. The authors suggest various documentation tech-
niques to mitigate reading problems resulting from delocalized plans, most of which re-

58 CMU/SEI-90-EM-3

quire the programmer to be more explicit in comments about his intentions. The paper
also includes a brief section on related work and tools for assisting program reading.

The comprehension difficulties discussed here are not surprising ones, yet the paper comes
as something of a revelation to most of us who have never thought much about those
difficulties or have never thought about them so clearly. This is "must" reading for student
and teacher alike.

Levine9O
Levine, Linda, Linda H. Pesante, and Susan B. Dunkle. Technical Writing for Software
Engineers. Curriculum Module SEI-CM-23, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., May 1990.

Capsule Description: This module, which is directed specifically to software engineers,
discusses the writing process in the context of software engineering. Its focus is on the basic
problem-solving activities that underlie effective writing, many of which are similar to those
underlying software development. The module draws on related work in a number of disci-
plines, including rhetorical theory, discourse analysis, linguistics, and document design. It
suggests techniques for becoming an effective writer and offers criteria for evaluating writ-
ing.

This curriculum module is a brief presentation of what software engineers should know
about written technical communication. Levine, Pesante, and Dunkle believe that future
software engineers must be taught to write well. They provide substantial advice to in-
structors who may be sympathetic to this idea but who are uncertain of what they can do
to implement it. This is an essential resource for teachers who sincerely want their stu-
dents to write better.

Linger79
Linger, Richard C., Harlan D. Mills, and Bernard I. Witt. Structured Programming:
Theory and Practice. Reading, Mass.: Addison-Wesley, 1979.

An extended apology for and explication of structured programming. The book provides a
good description and adequate examples of the algorithmic conversion of arbitrary pro-
grams into structured ones. Of greatest interest for our purposes is the 66-page Chapter 5,
"Reading Structured Programs." The entire book is sprinkled With exercises.

Much of Chapter 5 is devoted to an example of how an unstructured, undocumented pro-
gram can be structured and documented bottom-up using stepwise abstraction, the for-
mulation of an abstract description of what a fragment does from the fragment itself. (The
techniques described here provide the basis for what Basili and Mills do, with greater
formality, in [Basili82].) The chapter is notable for its insights into program reading gener-
ally and into the proper nature of comments. According to the authors, well-documented
programs can largely be read top-down, whereas poorly documented programs have to be
read mostly bottom-up. In practice, they suggest, both strategies are 1,-.71lly used, even
for well-documented or totally mysterious programs.

Teachers should read Chapter 5 and whatever other sections they find of interest.
"Reading Structured Programs" is full of practical ideas useful when teaching program
reading. Students who do not need to be convinced of the virtues of structured program-
ming and who do not need to structure spaghetti code are likely to find this book tedious.

Littman86
Littman, David C., Jeannie Pinto, Stanley Letovsky, and Elliot Soloway. "Mental
Models and Software Maintenance." In Empirical Studies of Programmers: Papers
Presented at the First Workshop on Empirical Studies of Programmers, June 5-6, 1986,

CMU/SEI-90-EM-3 59

Washington, D.C., Elliot Soloway and Sitharama Iyengar, eds. Norwood, N.J.: Ablex,
1986, 80-98. Reprinted in J. Syst. and Software 7, 4 (Dec. 1987), 341-355.

Abstract: Understanding how a program is constructed and how it functions are signif-
icant components of the task of maintaining or enhancing a computer program. We have
analyzed videotaped protocols of experienced programmers as they enhanced a personnel
data base program. Our analysis suggests that there are two strategies for program under-
standing, the systematic strategy and the as-needed strategy. The programmer using the
systematic strategy traces data flow through the program in order to understand global
program behavior. The programmer using the as-needed strategy focuses on local program
behavior in order to localize study of the program. Our empirical data show that there is a
strong relationship between using a systematic approach to acquire knowledge about the
program and modifying the program successfully. Programmers who used the systematic
approach to study the program constructed successful modifications; programmers who
used the as-needed approach failed to construct successful modifications. Programmers
who used the systematic strategy gathered knowledge about the causal interactions of the
program's functional components. Programmers who used the as-needed strategy did not
gather such causal knowledge and therefore failed to detect interactions among components
of the program.

This empirical study reports on 10 professional programmers performing the maintenance
task described in [Letovsky86a]. (Why the two papers report different numbers of subjects is
not explained.) The authors argue that different subjects applied different strategies to
the program reading task. The key to successfully modifying the target program was un-
derstanding interactions among components--presumably a not uncommon situation-and
only subjects who attempted to understand the overall operation of the program were suc-
cessful. Significantly, years of experience was correlated neither with successful modifi-
cation nor systematic strategy. The authors admit that the subjects might have behaved
differently had they been able to test and debug, and they also admit that it is impractical
to try to understand truly large programs completely before attempting modification.
Nonetheless, they speculate that effective program reading prior to changing any code
leads to more efficient maintenance.

This paper is perhaps most useful as a means of sending a warning to students inclined to
begin modifying a program before they understand it.

Lukey8l
Lukey, F. J. "Comprehending and Debugging Computer Programs." In Computer Skills
and the User Interface, M. J. Coombs and J. L. Alty, eds. London: Academic Press,
1981, 201-219.

Lukey reviews and comments on progress in understanding program comprehension and
debugging. The author suggests that there are three methods of studying these
phenomena-the experimental approach, the artificial intelligence approach, and the ob-
servational approach. He focuses on the former two.

This is a good summary of a large body of research, much of which, because of limitations
of space, we have not been able to include here. Although, as a literature review, this
material is somewhat out of date, it provides helpful coverage of early references. Lukey's
review is recommended for teachers and for students with serious interest in studying
program comprehension.

Miara83
Miara, J. Richard, Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman.
"Program Indentation and Comprehensibility." Comm. ACM 26, 11 (Nov. 1983),
861-867.

60 CMU/SEI-90-EM-3

Abstract: The consensus in the programming community is that indentation aids program
comprehension, although many studies do not back this up. We tested program comprehen-
sion on a Pascal program. Two styles of indentation were used--blocked and nonblocked-
in addition to four possible levels of indentation (0, 2, 4, 6 spaces). Both experienced and
novice subjects were used. Although blocking style made no difference, the level of inden-
tation had a significant effect on program comprehension. (2-4 spaces had the highest mean
score for program comprehension.) We recommend that a moderate level of indentation be
used to increase program comprehension and user satisfaction.

This paper addresses the impact of indentation and blocking on program comprehension.
By blocked indentation, the authors mean that statements immediately within a begin ...
end pair share a common left margin with those delimiting keywords. In nonblocked
style, the delimited statements are indented further. The authors review previous studies
of indentation, noting that their support for the hypothesis that program indentation aids
program readability and comprehension is, at best, ambiguous. They explain possible
reasons for the discrepancy between their results and those reported by others. The
results of the experiments reported here favor the view that indentation aids comprehen-
sion, but they also show that excessive indentation (6 or more spaces) does not increase the
effect. Interestingly enough, the novices in the study reacted very favorably to indented
code and rejected the nonindented program. Experts, on the other hand, showed no such
prejudice.

This is a good paper on the effect of formatting practices. The experiment was done care-
fully, which makes it especially relevant to those interested in empirical studies. The
practical wisdom to take away from the paper is simple: indent code three spaces to show
its structure. This paper is recommended for both instructors and students.

Moffat84
Moffat, David V. Common Algorithms in Pascal with Programs for Reading.
Englewood Cliffs, N.J.: Prentice-Hall, 1984.

A discussion of basic algorithms illustrated with Pascal examples. The book is distin-
guished by the inclusion of complete, documented programs to accomplish simple tasks. It
makes pleasant bedtime reading for any programmer interested in clear, straightforward
coding and documentation. Reading exercises are included with the complete programs,
and teachers may find these useful. Many questions are too broad and open-ended for
students not accustomed to program reading, however.

Oman90a
Oman, Paul W., and Curtis R. Cook. "The Book Paradigm for Improved Maintenance."
IEEE Software 7, 1 (Jan. 1990), 39-45.

A condensed version of [Oman9Ob], but with a few useful ideas and comments not found in
that more scholarly paper. Its brevity makes it attractive for student reading.

Oman90b
Oman, Paul W., and Curtis R. Cook. "Typographic Style is More than Cosmetic."
Comm. ACM 33, 5 (May 1990), 506-520.

The authors discuss relatively straightforward source code formatting and commenting
techniques to improve program comprehension. They also discuss their experimental
evidence to support their claim that the techniques do, in fact, achieve their objective.

Following a brief review of the literature, Oman and Cook introduce their "book format
paradigm" as a vehicle for displaying source code. They point out that the organization of
books into chapters, sections, and paragraphs, supplemented by prefaces, tables of con-

CMU/SEI-90-EM-3 61

tents, and indexes, is both familiar and serviceable. Similar organization and devices can
be applied to computer programs, and most of the application can be done automatically.

A program formatted according to the book paradigm includes a preface, table of contents,
chapter divisions, pagination, and indices. Most of the added text is in the form of com-
ments, although page headings, which include chapter name and page number, are ap-
parently generated by a listing program. In the table of contents, for example, one might
find the main procedure listed as "Chapter 2," beginning on page 4. A procedure called on
page 4 would be listed in a module index at the end of the program as being called from the
main procedure; and, if it called other modules, those would also be noted.

The authors refer to features that aid the reader in finding his way around the program as
"macro-typographic" factors. They also discuss "micro-t-,pographic" factors, including the
addition of blank lines and indentation, vertical alignment conventions, use of upper- and
lowercase, use of boldface, addition of "paragraphing" (putting more than one statement on
a line), etc. All these conventions were selected by appeal to "typographic style principles,"
which the authors claim is supported by the empirical evidence.

The paper also reports on four experiments carried out with Pascal and C code formatted
according to the book paradigm or formatted conventionally. Subjects were asked to imple-
ment an enhancement, complete a comprehension test, or complete a call graph for the
code in question. Data were also gathered through think-aloud protocols in one of the
experiments. In each case, subjects using book format code outperformed their fellow sub-
jects using more conventional program listings. Moreover, the authors report that they
adapted easily to the book format, even in the absence of instruction in its use.

Oman and Cook conclude that their book paradigm is natural and useful, though they
recommend that students be taught style principles rather than particular formatting con-
ventions.

This is an important and thought-provoking paper. It is easy to quibble about the specifics
of the book format paradigm, but it is difficult to dismiss the thrust of this work. The
authors' recommended conventions are by no means radical, and require no substantive
changes in executable statements of the code. Yet, the claimed results are impressive.
This is "must" reading for teachers. Students not specifically interested in empirical
studies should probably read [Oman90a] instead.

Paze189
Pazel, D. P. "DS-Viewer-An Interactive Graphical Data Structure Presentation
Facility." IBM Systems J. 28, 2 (1989), 307-323.

Abstract: DS-Viewer is a tool that is the result of a research project in data structure
presentation within a program state. This tool addresses two distinct issues in this area: (1)
to effectively present data structures themselves for a given program state and (2) to present
groups of data structures and their interrelationships as described by their pointer defini-
tions. Graphical presentations were developed to address these issues. For the data struc-
ture presentation, the user is provided a display window for any single data structure in-
stance formatted with its fields and field values. Flexibility in display is provided by allow-
ing the user a choice from the various value formats for each field. For groups of data
structure instances, a graphical drawing space is provided in which pictures of these data
structure instances and their interrelationships are drawn as blocks and arrows. The com-
puter assists the user in drawing such a picture by describing its components, allowing the
user to choose which to draw and to construct as much of the picture as desired.

This paper describes an IBM prototype system that runs on a PC as a Microsoft Windows
application. The tool is designed for use in debugging complex data structures that may
themselves have been corrupted. DS-Viewer allows the user to select interactively the
data structure components and representations to be used for the graphic presentation. It

62 CMU/SEI-90-EM-3

allows the user to select a display of multiple instances of data structures linked by
pointers.

Pennington87
Pennington, Nancy. "Comprehension Strategies in Programming." In Empirical
Studies of Programmers: Second Workshop, Gary M. Olson, Sylvia Sheppard, and Elliot
Soloway, eds. Norwood, N.J.: Ablex, 1987, 100-113.

Abstract: This report focuses on differences in comprehension strategies between program-
mers who attain high and low levels of program comprehension. Comprehension data and
program summaries are presented for 40 professienal programmers who studied and modi-
fied a moderate length program. Illustrations from detailed think-loud protocol analyses
are presented for selected subjects who displayed distinctive comprehension strategies. The
results show that programmers attaining high levels of comprehension tend to think about
both the program world and the domain world to which the program applies while studying
the program. We call this a cross-referencing strategy and contrast it with strategies in
which programmers focus on program objects and events or on domain objects and events,
but not both.

Based on her previous research, Pennington proposes that understanding of overall pro-
gram flow control precedes the more detailed understanding of program functions. In
particular, she suggests that program readers build at least two mental models of the
program they are studying, a "program model" and a "domain model." The program model
is characterized by an abstract knowledge of the program's text structures. The domain
model relates objects and functions in the problem domain to source-language entities.

The author carried out an experiment using a minimally documented 200-line FORTRAN
program. Subjects were asked to study the program for 45 minutes in preparation for a
modification task. Some of the subjects were asked to "think aloud" as they examined the
program. After the study period, subjects wrote summaries explaining what the program
did and answered 20 comprehension questions. They were given an additional 30 minutes
to implement the requested change, afte: which a second summary was written and 20
more comprehension questions answered. Using her analysis of the data, Pennington as-
serts that the comprehension strategies of the subjects can be characterized as "program-
level," "domain," or cross-referencing," the latter being a strategy that combines features
of the other two. That is, the programmers concentrated either on the program, on the
problem domain, or somehow effectively related the two. Not surprisingly, it was the
cross-referencing readers who performed best.

Whether or not Pennington's results indicate that program readers create two distinct
mental models in succession, they certainly support the layered abstractions proposed by
Brooks [Brooks83] and Letovsky [Letovsky86al. This is an insightful paper discussing the
cognitive process of program comprehension. It is equally interesting on methodological
grounds. Pennington's paper is recommended reading for instructors interested in pro-
gram comprehension. Student benefits from reading the paper, however, may be limited.

Shneiderman79
Shneiderman, Ben, and Richard Mayer. "Syntactic Semantic Interactions in Program-
mer Behavior: A Model and Experimental Results." Intl. J. Comp. & Info. Sciences 8, 3
(June 1979), 219-238.

Abstract: This paper presents a cognitive framework for describing behaviors involved in
program composition, comprehension, debugging, modification, and the acquisition of new
programming concepts, skills, and knowledge. An information processing model is
presented which includes a long-term store of semantic and syntactic knowledge, and a
working memory in which problem solutions are constructed. New experimental evidence is
presented to support the model of syntactic /semantic interaction.

CMU/SEI-90-EM-3 63

The authors present their cognitive model of programmer behavior, the "syntactic/
semantic" model. They suggest that this model is useful in explaining a variety of be-
haviors, including program reading and program writing. The authors hypothesize that
programmers retain both semantic and syntactic knowledge in long-term memory, and
that they use short-term and working memories in performance of various program-related
tasks. Semantic knowledge and syntactic knowledge are largely independent in this
model. Semantic knowledge is multilayered and substantially language-independent; syn-
tactir knowledge applies to particular programming languages. Shneiderman and Mayer
describe how their model applies to program reading, program writing, debugging, and
learning programming languages. They conclude their paper with brief discussions of ex-
periments that they offer as supporting evidence for their theory.

In program comprehension, according to this theory, the reader "constructs a multileveled
internal semantic structure to represent the program," a process of encoding from the pro-
gram syntax, which is not memorized directly. The internal structure is built by recog-
nizing the function of program components and fragments as "chunks." These pieces are
then aggregated until a description of the entire program is available.

This is a paper everyone should read. It presents a typical cognitive model in an approach-
able way, and shows how such models are used and verified. It also offers insight into
programmer behavior. Yet, the structural complexity of the syntactic/semantic model
makes the model seem less useful than it should be, primarily because a totally adequate
model would be very much richer in processing details. The processes reified in this model
are largely implicit in other comprehension models. Shneiderman's and Mayer's mental
model of a program is quite similar to that of Brooks [Brooks78] and Letovsky [Letovsky86a].
Their description of the assimilation process, however, is strictly bottom-up.

Shneiderman8O
Shneiderman, Ben. Software Psychology: Human Factors in Computer and Information
Systems. Cambridge, Mass.: Winthrop, 1980.

Software Psychology is a handbook for the application of psychology to computer-related
issues. Shneiderman provides a crash course on methods of psychological research and
proceeds to discuss topics from program reading to team organization and the design of
interactive systems. Although this volume was written a decade ago, it remains an invalu-
able reference on psychological factors related to the computer. The book contains an
extensive bibliography.

Tenny88
Tenny, Ted. "Program Readability: Procedures Versus Comments." IEEE Software 14,
9 (Sept. 1988), 1271-1279.

Abstract: A 3 x 2 factorial experiment was performed to compare the effects of procedure
format (none, internal, or external) with those of comments (absent or present) on the
readability of a PL/I program. The readability of six editions of the program, each having
a different combination of these factors, was inferred from the accuracy with which students
could answ-r questions about the program after reading it. Both extremes in readability
occurred in the program editions having no procedures: without comments the procedureless
program was the least readable and with comments it was the most readable.

An interesting paper that defines readability within the context of maintenance: "a pro-
gram is readable if information needed to maintain it is easily found L. reading the
code." The author formalizes this definition by expressing readability as the average num-
ber of right answers to a series of questions about the program in a given length of time.

The experiment reports that six versions of the same program were used to explore the

64 CMU/SEI-90-EM-3

effects of comments versus the inclusion of procedures. Four editions of the program in-
cluded procedures that performed the major subtasks. Both internal and external (i.e.,
separately compiled) procedure definitions were used. Two of the programs were
procedureless. Commented and uncommented versions of each program version were used
as well. The same set of questions accompanied each of the programs. Scores were tabu-
lated, and ANOVA and F-tests were performed to determine the statistical significance of
the differences between the mean scores.

The reported results are somewhat surprising. The procedureless program with comments
was the least readable, whereas the same program with no comments was the most read-
able. As far as this particular program is concerned, however, the author concludes that
procedures have little effect on readability, whereas comments do seem to have an effect.
Yet, there are compelling reasons to believe that a large program is more readable with the
modules expressed as separate procedures. Thus, "[While] it would be unwise to extrapo-
late these results to all programs, they do indicate that procedures can >ave little effect on
the readability of programs below a certain size." The results reported by the author differ
qualitatively from results obtained by himself on a previous experiment in which the
procedureless program got higher scores than the program with internal procedures, with
or without comments. Possible explanations for these differences are explored.

Aside from the statistical value of this experiment, the author's questions (which are in-
cluded in the paper) are of much pedagogical value. Instructors are encouraged to read it.
This information may be of limited value to beginning students. Advanced students may
find this paper interesting nevertheless.

Thomas90
Thomas, E. J., and Paul W. Oman. "A Bibliography of Programming Style." ACM
SIGPLAN Notices 25, 2 (Feb. 1990), 7-16.

A lightly annotated bibliography of nearly 100 references on programming style, broadly
construed. The Thomas and Oman serves as a helpful complement to this bibliography.

Weinberg7l
Weinberg, Gerald M. The Psychology of Computer Programming. New York: Van
Nostrand Reinhold, 1971.

Weinberg devotes the first chapter of his well-known book to program reading, remarking
ruefully that "[elven programmers do not read programs." He suggests that there is much
to learn from reading both good and bad programs. Most of the chapter is devoted to
examples of the factors affecting what actually gets coded: limitations of the machine, the
implementation language, and the programmer; historical accidents; and evolving specifi-
cations.

Weiser81
Weiser, Mark. "Program Slicing." Proc. 5th Int. Conf on Software Eng. New York:
IEEE, 1981, 439-449.

Abstract: Program slicing is a method used by experienced computer programmers for
abstracting from programs. Starting from a subset of a program's behavior, slicing reduces
that program to a minimal form which still produces that behavior. The reduced progrrr'm,
called a "slice", is an independent program guaranteed to faithfully represent the original
program within the domain of the specified subset of behavior.

Finding a slice is in general unsolvable. A dataflow algorithm is presented for approxi-
mating slices when the behavior subset is specified as the values of a set of variables at a
statement. Experimental evidence is presented that these slices are used by programmers

CMU/SEI-90-EM-3 65

during debugging. Experience with two automatw slicing tools is summarized. New meas-
ures of program complexity are suggested based on the organization of a program's slices.

Being able to find a program slice simplifies analysis of a program. Even though program
slicing cannot be fully automated, the concept of a slice is a useful one.

Weiser explains slicing by pointing out that, when fixing a bug, an experienced program-
mer usually focuses only on those parts of the program that may obviously have something
to do with the bug in question. Other parts of the program are ignored, effectively having
been deleted in the programmer's mind from the code being studied. Programmers apply
this same technique when making program improvements or modifications.

The paper considers the slicing of block-structured programs written in a Pascal-like lan-
guage. A slice must have two desirable properties: (1) it must have been obtained from the
original program by statement deletion, and (2) the behavior of the slice must be the same
as that of the original program, as observed through the domain of the specified subset of
behavior. Characterizations of programs in terms of flow graphs are explained, and mean-
ing is given to a slice within those contexts. To make the problem of finding a program's
slice tractable, Weiser introduces a weaker definition of slice and gives sufficient con-
ditions for statement inclusion. Weiser also introduces a number of slice-based complexity
metrics and discusses their computation.

The paper is quite technical and is recommended only for teachers and advanced students.
It does, however, provide a name for and some analysis of an intuitive, widely used com-
prehension strategy.

Wilde89
Wilde, Norman, and Stephen M. Thebaut. "The Maintenance Assistant: Work in
Progress."J. Syst. and Software 9, 1 (Jan. 1989), 3-17.

Abstract: The Maintenance Assistant project at the Florida/Purdue Software Engineering
Research Center seeks to develop methodologies and tools in the complex tasks associated
with making changes to software systems. Three broad approaches are currently being
explored: dependency analysis involves capturing the dependencies between different en-
tities in a software system and the development of tools to present and analyze these depend-
encies. Reverse engineering involves the identification or "recovery" of program require-
ments and/or design specifications that can aid in understanding and modifying it.
Program change analysis involves methods for analyzing differences between two versions
of a program in order to understand a change that has been made and detect possible
maintenance-induced errors. A strength of the project has been the very close relationship
with the industrial affiliates of the Software Engineering Research Center. It is hoped that
these organizations will be able to apply the methodologies currently being explored in their
own software projects and in tools to be used by their clients.

This paper surveys a number of program maintenance techniques currently in use in in-
dustry and under prototype development at the Software Engineering Research Center
(SERC). The work described is expected to produce tools that are language-independent,
semi-automatic (with human interaction required), and potentially applicable to programs
of any size.

The author discusses four broad classifications of dependency analysis: data flow depend-
encies, definition dependencies, calling dependencies, and functional dependencies. A
prototype tool is under development to assist the programmer in exploring these depend-
encies. Components of the system all utilize a single program database. The prototype
handles only C programs.

SERC's reverse engineering effort focuses on identifying a useful model of program com-
prehension. The initial goal is to establish a framework for identifying and assessing the

66 CMU/SEI-90-EM-3

effectiveness of strategies and techniques that either aid the comprehension process direct-
ly or partially automate it. In connection with this, SERC has surveyed some 120 program
reading tools currently in use. A summary of their findings is presented in the paper.

Finally, program change analysis to assess the impact of program change is discussed.
Change analysis tools can be used to help programmers identify unexpected side effects, to
guide management in the allocation of resources, or to gauge the system's vulnerability to
newly introduced errors. The paper reports on SERC's strategies based on incremental
data flow analysis.

This paper does a good job of surveying existing tools and suggesting the nature of those
that might become available in the future. Recommended reading for teachers and ad-
vanced students.

Wilde90
Wilde, Norman. Understanding Program Dependencies. Curriculum Module SEI-
CM-26, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.,
Aug. 1990.

Capsule Description: A key to program understanding is unraveling the interrelation-
ships of program components. This module discusses the different methods and tools that
aid a programmer in answering the questions: "How does this system fit together?" and "If I
change this component, what other components might be affected?"

This curriculum module discusses some of the important relationships that may exist
among elements of a program. Wilde briefly discusses program comprehension and what
is known about it. The bulk of the module treats dependencies among data items, types,
program units, and source files: what they are, how to find them, how they can be
presented to the program reader, and what tools are available to help the reader deal with
them.

The author's interest is principally in what the maintainer needs to know about how pro-
gram components work together. Even within this context, Wiide's scope is narrow. None-
theless, this module is useful in its making explicit some of what the program reader may
need to learn from a program.

Like all SEI curriculum modules, this report is addressed to teachers, although its concise
overview may appeal to students as well.

CMU/SEI-90-EM-3 67

68 CMU/SEJ-90-EM.3

S Acknowledgements
A number of people contributed in small or large ways to the production of this report.
Gary Ford's commitment to producing educational materials led us to consider a report
on program reading. Special thanks are due Mark Ardis, who said "do it" at a time
when a more ambitious project encountered administrative snags, and who, along with
Nancy Mead, brought the authors together.

Other members of the SEI staff who gave of their time to talk about program reading,
teaching, Ada, and program documentation are: Edward Averill, Judy Bamberger, Len
Bass, Mike Christel, Linda Levine, Jim Tomayko, Rob Veltre, Nelson Weiderman, and
Greg Zelesnik. Similar thanks are due Jon Bentley and Chris Van Wyk of AT&T Bell
Laboratories; David Bustard, SEI visiting scientist from the University of Ulster; Cur-
tis Cook, of Oregon State University; John Cross, of Indiana University of Pennsylva-
nia; David Dobkin, of Princeton University; Rick Green, of Carnegie Mellon University;
Phil Kulton, of Harris Corporation; Paul Oman, of the University of Idaho; Ruth
Shapiro, SEI resident affiliate from GTE Government Systems Corporation; and Nor-
man Wilde, SEI visiting scientist from the University of West Florida.

Chuck Engle, formerly an SEI resident affiliate from the U.S. Army and now of Florida
Institute of Technology, was a tireless Ada oracle and program critic. Our effort could
not have been successful without SEI librarians Karola Fuchs and Sheila Rosenthal.
Linda Pesante did her usual splendid job of editing, which seems even more impressive
from the vantage point of SEI author than from that of interested bystander. She was
assisted by Marie Elm, who was tenacious in her pursuit of clarity. Angela Wilkerson
typed in some of the abstracts and edits.

We have no j ibt missed a few names, for which we apologize.

Our production schedule was short, so virtually all of the above people can credibly
deny responsibility for the final words we have put on paper. We thank them all and
accept full responsibility for any mistakes.

CMU/SEI-90-EM-3 69

70 CMU/SEI-90-EM-3

*Appendix: Program Source Code

On the following pages can be found the Ada source code for the program on which the
reading exercises are based. The code is shown in alphabetical order by ifile name. The
file names are those from the UNIX environment in which the program was developed.
Package specifications and bodies are separated. The file naming convention is as fol-
lows: The main procedure and all package specifications are in file name.a, where the
procedure or package is name. Package and task bodies are in file namebody.a, where
the package or task is name.

Contents of the files appear on the pages shown below:

dosearch-type-body.a 72

monitor-keyboard-body.a 93

numbers.a 94

numbersbody.a 121

otherio.a 142

pdi.a 143

process normal-input-body.a 148

search~body.a 150

synchronizebody.a 151

timekeeper.a 155

timekeeper-body.a 161

CMU/SEI-90-EM-3 71

dosearch-type-body.a

--I TASK NAME: numbers.search. (dosearchtype)

-- ALGORITHM/STRATEGY: Wait for call to either entry enterstart search or
-- I entry enter startsearchfromcheckpoint. In the former case, a call
-- is made to procedure startsearch to begin the search, after which the
-- wait is resumed. If enter startsearchfromcheckpoint is called,
--I the checkpoint file is read, and procedure start-search is called with
--I restarting=true.

--I NOTES: Task normally terminates using a terminate option in select
--I statement.

WITH other io;
WITH sequentialio;
WITH text io;
WITH timekeeper;

SEPARATE (numbers.search)

TASK BODY dosearch_type IS

-- Range of count of digit positions in number
SUBTYPE number of occurrences range IS natural

RANGE 0 .. maximumnumberlength;

-- To hold counts of number of occurrences of each digit for checkpoint
TYPE wideselect_vector_type IS ARRAY(radixdigit) OF

number of occurrences_range;

-- Definition of type to record checkpoint
TYPE checkpointrecord IS

RECORD

-- Order of checkpointed search
order : natural;

-- Length of PDI sought in checkpointed search
searchlength : digitrange;

-- Value of smin at checkpoint (see startsearch)

smin : number;

-- Number of digits not yet determined at checkpoint
free : number of occurrences_range;

-- Distribution of digits already selected at checkpoint
select vector : wide selectvector_type;

-- Next digit to be added to distribution
digittoplace : radi:.:_digit;

-- Elapsed time of search prior to checkpoint
elapsedtime : duration;

-- Number of combinations tested prior to checkpoint

combinations tested : natural;

END RECORD;

72 CMU/SEI-90-EM-3

dosearchtype-.body.a

-- Package to perform I/O of checkpoint records
PACKAGE checkpoint_io IS NEW sequential-io (elementtype =>

checkpointrecord);

-- Checkpoint record
checkpoint checkpointrecord;
-- Checkpoint file
checkpointfile checkpointio.file type;
-- One second

second CONSTANT duration := 1.0;
-- Time between checkpoints
checkpoint interval : duration := 3600*second;
-- Flag to tell start search if search is being restarted from a
-- checkpoint (true if it is)
restarting : Boolean := false;

-- Uninitialized time value imported from package timekeeper
uninitialized time CONSTANT timekeeper.time :=

timekeeper.uninitialized time;
-- Search start time or time of last checkpoint
to timekeeper.time := uninitializedtime;
-- Current time

ti timekeeper.time;

-- Exception raised for any error related -o opening input file
file_open_error EXCEPTION;

CMU/SEI-90-EM-3 73

dosearch-type-body.a

-- PROCEDURE NAME: numbers.search. (do_searchtype).startsearch

--I PURPOSE: To perform PDI search.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 6/11/90
--I DATE OF LAST REVISION: 8/9/90 VERSION: 1.2

-- I
--I PARAMETERS:
-- 1 radix (in) radix of PDIs sought

-- order (in) order of PDIs sought

-- searchlength (in) length of PDIs sought

--I INPUT: None.

--I OUTPUT: (To default file) Information about the search before
--I and after it is completed. Procedure select_digits prints out
-- I PDIs found and other intermediate information.

--I ASSUMPTIONS/LIMITATIONS: None. Search may fail due to inadequate
--I storage allocation.

--I ALGORITHM/STRATEGY: The real search is carried on by selectdigits.
--I This procedure merely initializes the search and outputs a summary
--I at the end.

-- f ERROR CHECKS/RESPONSES: None.

-- I
--I NOTES: In a length-search_length search, any combination of
--I searchlength base-radix digits is a potential PDI. To
-- determine if it is actually a PDI, all we need do is raise each
--I digit to the order power and sum the result. If the sum
--I has the same combination of digits we began with, then we have found
--I a PDI. Procedure select digits builds up a candidate combination
-- of digits by selecting the number of radix-i digits in
--I the combination, then the number of radix-2 digits, etc. The
--I array selectvector keeps track of how many of each digit have been
-- put in the trial combination (select vector(i) is the number of
-- occurrences of digit i) . Variable smin holds the minimum possible
--I value of any PDI found using the current combination of digits,
--I that is, the sum of the order powers of all the digits so far
--I placed in the trial digit combination. Table look-up is used
-- in the computation of smin. Array sum table(i, j) contains the
--I the sum of i instances of j raised to the order power.

PROCEDURE start search (radix : IN radi::_range; order : IN natural;
searchlength : IN digitrange) IS

74 CMU/SEI-90-EM-3

dosearchtypebody.a

-- Number of complete digit combinations tested in PDI search
combinations-tested : natural;

-- Default and current number of calls to procedure select_digits
-- between checks of whether the user has requested service from the
-- keyboard (see selectdigits)
default maxcalls to selectdigits

: CONSTANT natural := 3000;
current maxcalls to selectdigits

: natural := default maxcalls to selectdigits;

-- Number of calls to selectdigits since check was made for keyboard
-- interrupt

calls to select-digits : natural := 0;

-- Valid digits in base-radix
SUBTYPE numeral IS radix digit RANGE 0 .. radix - 1;

-- Range of number of occurrences of any digit possible for this search
SUBTYPE number of occurrences IS natural RANGE 0 .. searchlength;

-- To hold information on digit combinations
TYPE selectvector_type IS ARRAY(numeral) OF number of occurrences;

-- Characters used to set off related information in output file
divider CONSTANT string :-;

-- Current combination of digits selected for consideration
selectvector : selectvector type := (numeral => 0);

-- Minimum value of PDI possible with combination of digits derived
-- from current combination specified by select-vector
smin : number;

-- Table of sums of powers of base-radix digits
sum-table : ARRAY(number of occurrences, numeral) OF number;

-- Current time obtained from package timekeeper
t : timekeeper.time;

-- Import operators from package timekeeper
FUNCTION .- " (x : timekeeper.time; y : timekeeper.time) RETURN duration

RENAMES timekeeper."-";
FUNCTION "=" (x : timekeeper.time; y timekeeper.time) RETURN Boolean

RENAMES timekeeper."=";

CMU/SEI-90-EM-3 75

dosearchtypebody.a

--I

--I PROCEDURE NAME:
--I numbers.search. (dosearchtype) .start search.initializetable

-- I PURPOSE: To initialize table of sums of powers of base-radix digits.

-- I
--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 6/11/90
-- DATE OF LAST REVISION: 8/8/90 VERSION: 1.1

--I PARAMETERS:
--I radix (in) radix of PDIs sought

-- order (in) order of PDIs sought

-- INPUT/OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: It is assumed that initialization of
--I sum table proceeds without overflow.

-- ALGORITHM/STRATEGY: The initialization is stiaightforward, using
--I the operations on multiple-precision integers defined in package
--I numbers.

--I ERROR CHECKS/RESPONSES: None.

--I NOTES: See description of sum table in start-search.

PROCEDURE initialize table (radix : IN radix range;
order : IN natural' IS

76 CMU/SEI-90-EM-3

dosearch type-body.a

BEGIN -- initialize-table

-- Initialize sums (all 0) for any number of 0 digits
FOR count IN number of occurrences LOOP

sum table(count, 0) := makenumber(radix, 0);
END LOOP;

-- Initialize sums (all 0) for 0 instances of any other digit
FOR digit IN 1 .. radix - 1 LOOP

sum table(0, digit) := make number(radix, 0);
END LOOP;

-- Initialize sum (1) for I instance of 1 digit
sumtable(l, 1) := make number(radi.:, 1);

-- Initialize entries of row 1 of sum-table that have not yet been
-- given values
FOR digit IN 2 .. radix - 1 LOOP

sum table(l, digit) makenumber(radix, digit);
FOR power IN 2 .. order LOOP

sum table(l, digit) := digit * sum table(l, digit);
END LOOP;

END LOOP;

-- Initialize entries in remaining rows of sum table that have not
-- yet been given values
FOR count IN 2 .. searchlength LOOP

FOR digit IN 1 .. radix - 1 LOOP
sumtable(count, digit) := sumtable(count-1, digit) +

sum table(l, digit);
END LOOP;

END LOOP;

END initialize table;

CMU/SEI-90-EM-3 77

dosearch-type-body.a

--I FUNCTION NAME: numnbers.3earch. (do-search-type) .start_search.is pdi
-- I
--I PURPOSE: To determine if a number is a PDI.

-- I
--I PROGRAM1ER: Lionel Deimel DATE WRITTEN: 6/11/90
--I DATE OF LAST REVISION: 8/8/90 VERSION: 1.1

-- PARAMETERS:
-- smin (in) sum of powers of digits
-- ispecified by select vector
--I (candidate PDI)

-- select-vector (in) sombination of digits in smin

-- RETURNS: True if smin is a PDI, false otherwise.

-- INPUT/OUTPUT: None.

--I ASSUMPTIONS/LIMITATIONS: None.

--I ALGORITHM/STRATEGY: Check if the combination of diqits in smin
--I is the same as in select vector.

--I ERROR CHECKS/RESPONSES: None.

NOTES: None.

FUNCTIONs_pdi (smin : IN nuaber; select-vector :IN select-vecor-tv
RETURN Boolean IS

- Base-smin.radix: digit from smmn
digit : numeral;

-- Variable in which digit 7rmbinatimn of smin is computed
tally select vector_type := (numeral => 0);

BEI-- is di

-Compute ,mgit combinatlDn in smin

FOR position 1N smin.hiqh Drjer _digit LDOP
dlgit := smin.11igit (pcs11tion) ;

tally(digit) tal'/(Iiit) ' 1;
END LOOP;

-- Return tr~e sti has same Jiost :scmnAtsn as that specsfied by
-- select vector

E li eect '1t)

END ,""

78 CMU/SEI-90-EM-3

dosearch-type-body.a

-- PROCEDURE NAME:
--I numbers.search. (dosearchtype) .startsearch.report_pdi

-- I
-- I PURPOSE: To announce a number as a PDI.

-- I
-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 6/11/90
-- I DATE OF LAST REVISION: 8/8/90 VERSION: 1.2

--I PARAMETERS:
-- I pdi (in) PDI to be output

-- I INPUT: Jone.

--I OUTPUT: (To default file) number, identification, elapsed time,
--I and number of combinations tested.

-- I ASSUMPTIONS/LIMITATIONS: No provision is made for too short an
-- i output line.

-- I ALGORITHM/STRATEGY: Function nubers.convert to string is used to
--I obtain a representation of pdi to be output.

-- I ERROR CHECKS/RESPONSES: None.

-- I NOTES: Identifies number as PDI or PPDI.

-- I

PROCEDURE reportpdi (pdi : IN number) IS

7
CMU/SEI-90-EM-3 79

dosearch_typebody.a

-- Character representation of pdi
pdi_string : dynamic_string;

BEGIN -- reportpdi

-- Obtain and output character representation of pdi
pdi_string := convert to string(pi);
textio.put (pdistring.char(l .. pdistring.length));
text io.new line;

-- Output its identification
text_1 o.put ("is an order-");
other io.natural io.put (order, wiJth => 1);
IF (order=search length) THEN

textio.put (" PPDI.");
ELSE

textio.put (", length-");
otherio.natural-io.put (lengthofnumber(pdi), width => 1);
textio.put (" PDI.");

END IF;
text io.new line;

-- Output elapsed time of search
textio.put ("Found after: ");

timekeeper.elapsed_time;
text io.new line;

-- Output number of combinations of digits tested
text io.put ("Number of combinations tested: ");
other-_io.naturalio.put (combinationstested, width => 1);
text io.new line(2);

END report pdi;

80 CMU/SEI-90-EM-3

dosearch-type-body.a

-- I PROCEDURE NAME:
-- numbers.search. (dosearch_type) .start search.printstate

-- PURPOSE: To display the current state of the PDI search.

-- i PROGRAMMER: Lionel Deimel DATE WRITTEN: 6/11/90
-- DATE OF LAST REVISION: 8/9/90 VERSION: 1.2

-- I
--I PARAMETERS:
-- smin (in) current value of smin (see
-- start-search)

-- digitto_place (in) next digit to be selected for

-- I trial digit combination

-- select-vector (in) current digits in trial
--I combination

-- INPUT: None.

--1 OUTPUT: (To default file) number, identification, elapsed time,
--I and number of combinations tested.

-- ASSUMPTIONS/LIMITATIONS: No provision is made for too short an

-- I output line.

-- ALGORITHM/STRATEGY: Function numbers.convert to string is used to
-- I obtain a representation of smin to be output.

-- ERROR CHECKS/RESPONSES: None.

--I NOTES: None.

PROCEDURE printstate (smin : IN number; digittoplace : IN numeral;
select-vector : IN select vectortype) IS

CMU/SEI-90-EM-3 81

dosearchtype-body.a

-- Character representation of smin
smin-string : dyna;,,icstring;

BEGIN -- print_state

-- Obtain and output character representation of smin
smin string :- convert to string(smin);
text io.put line ("smin:");

textio.put (sminstring.char(l .. sminstring.length));
text io.new line;

-- Output next digit to be selected in digit combination
text-io.put ("digit to place: ");
otherio.natural_io.put (digittoplace, width => 1);

textio.newline;

-- Output current digit combination
textio.put line ("select vector:");

FOR position IN REVERSE numeral LOOP
text io.put ("(");
other _io.naturalio.put (position,

width => maximum radix-length);
text io.put (") = ");
other io.naturalio.put (selectvector(position),

width => 2);
text io.new line;

END LOOP;

END printstate;

82 CMU/SEI-90-EM-3

dosearch-type-body.a

O --I

,--I PROCEDURE NAME:
--I numbers.search. (dosearchtype) .startsearch.record checkpoint

-- PURPOSE: Output checkpoint information to default output file and
--I write checkpoint record to checkpoint file.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 6/11/90
--I DATE OF LAST REVISION: 3/8/90 VERSION: 1.1

-- I
--I PARAMETERS:
-- 1 order (in) order of PDIs sought

-- searchlength (in) length of PDIs sought

-- smin (in) current value of smin (see
-- Istart _search)

-- free (in) number of digits yet to be
-- Iselected

-- select-vector (in) current digits in trial
--I combination

--I digit toyplace (in) next digit to be selected for
trial digit combination

--I INPUT: None.

-- I OUTPUT: (To default file) checkpoint information (time, elapsed
--I time, number of combinations tested, smin, digittoplace,
-- and select vector) and, if necessary, an error message to
--I the effect that the checkpoint file cannot be written.

--I (To file "pdi.ckp") checkpoint record.

-- I ASSUMPTIONS/LIMITATIONS: No provision is made for too short ,n
--i output line.

--I ALGORITHM/STRATEGY: Procedure print_state is used to output
--I smin, digittoplace, and select-vector.

--I ERROR CHECKS/RESPONSES: If the checkpoint file cannot be written
--i for any reason, an error message is output to the default file
--I and the procedure continues.
-- I
--I NOTES: None.

PROCEDURE recordcheckpoint (order : IN natural; search length : IN
iigit_range; smin : IN number; free : IN number of occurrences;
select vector : IN select vectortype; digit _to place : IN numeral) IS

-- Checkpoint record to be written
checkpoint : checkpoint record;

-- Current time
checkpointtime : t rmekeeper.time;

CMU/SEI-90-EM-3 83

dosearch-typebody.a

-- Current digits in trial combination in format for checkpoint
-- record
wideselectvector : wideselectvector type := (radix-digit => 0);

BEGIN -- record_checkpoint

-- Output header and divider
text io.put_line ("CHECKPOINT");
text io.outline (divider);

-- Output time and elapsed time
timekeeper.time_stamp;
text io.new line;

text-io.put ("Elapsed time: ");
timekeeper.get_time (checkpointtime);
timekeeper.elapsedtime (checkpointtime);
text io.new line;

-- Output number of combinations tested
text io.put ("Number of combinations tested: ');

other io.naturalio.put (combinationstested, width => 1);
text io.new line;

-- Output smin, digittoplace, and select vector
printstate (smin, digittoplace, select-vector);

-- Change representation of digit combination for writing checkpoint
FOR digit IN numeral LOOP

wide select vector(digit) := select vector(digit);
END LOOP;

BEGIN

-- Create and write checkpoint record
checkpoint := (order, searchlength, smin, free,

wide-select vector, digitto place, checkpoint-time -t,

combinationstested);
checkpoint_io.create (file => checkpoint file, mode =>

checkpointio.out file, name => "pdi.ckp");
checkpoint_io.write (file => checkpoint file, item =>

checkpoint);
checkpoint_io.close (file = checkpoint file);

EXCEPTION

WHEN OTHERS =>
text io.new line;

text io.putline ("Cannot write to checkpoint file; " &
"checkpoint ignored");

text io.new line;

END;

-- Output divider

text _io.put _line (divider);

text io.new line;

END record-checkpoint;

84 CMU/SEI-90-EM-3

do searchtype-body.a

--

-- PROCEDURE NAME:
--I numbers.search. (dosearchtype) .startsearch.selectdigits

--I PURPOSE: To construct combinations of digits, test them as possible
-- I PDIs, and report PDIs found. Also interacts with task synchronize
--I to fulfill user requests for information and changes to operating

parameters.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 6/11/90

-- DATE OF LAST REVISION: 8/9/90 VERSION: 3.1

-- PARAMETERS:
-- smin (in) current value of smin (see

-- I start-search)

-- free (in) number of digits yet to be

-- (selected

-- select-vector (in) current digits in trial
-- combination

-- digit to place (in) next digit to be selected for

-- (trial digit combination

--I INPUT: None.

OUTPUT: (To default file) search status information, including

-- I checkpoint information and PDIs found.

-- I (To file "pdi.ckp") checkpoint record (tnrough call to
--I record checkpoint).

-- ASSUMPTIONS/LIMITATIONS: No provision is made for too short an

-- output line. On entry, it is assumed that select vector
--I represents a combination of digits in the range (radix-i
-- I digitto_place-i). The sum of these digits, each raised to
-- the appropriate order power, is assumed to be in smin. On entry,
-- I it is assumed that free digits remain to be selected.

-- I ALGORITHM/STRATEGY: Select digit- finds all PDIs that can be
-- constructed from the combination of digits in select vector

-- I and digits in the range {digit_to_place ... 0). It does so by
-- I calling itself recursively. Tests are made to prune the search
--I tree by not considering digit combinations whose corresponding
--I smin will have too many or too few digits. Through judicious
-- use of Boolean restarting, select_digits can reconstruct its
--I parameters at the time of a checkpoint, as well as its call
-- I stack. (It does this when it is called with restarting=true.)
--I At appropriate intervals, checkpoint records are written
--I through calls to record checkpoint. Also at appropriate

-- I intervals, calls are made to synchronize.checkinterrupts in
-- order to process user requests while searches are in progress.

-I EPROR CHECKS/RESPONSES: None.

--I NOTES: None.

CMU/SEI-90-EM-3 85

dosearchtype_body.a

PROCEDURE select digits (smin : IN number; free : IN
number of occurrences; select vector : IN select vector type;
digittoplace : IN numeral) IS

-- Flag to return status from synchronize.check_interrupts
flaq : interrupt flagtype;
-- New checkpoint interval from synchronize.check interrupts
interval : duration;
-- New maximum number of calls between checks for user interaction
-- from synchronize.check interrupts
max calls : natural;

-- Updated smin to be used in call to selectdigits
new smin : number;
-- Updated selectvector to be used in calls to selectdigits
newselect vector : selectvector_type;

BEGIN -- selectdigits

IF restarting THEN

-- Setting up to restart PDI search from checkpoint

IF (digittoplace /= smin.radix-l) AND THEN
(select vector(digitto place+l) /=
checkpoint.select vector(digit toplace+l)) THEN

-- Return if not placing first digit and previous digit
-- has not yet been selected the right number of times
RETURN;

ELSIF (selectvector(digit_to_place) =
checkpoint.select vector(digit to place)) AND THEN
(digitto place = checkpoint.digitto place) THEN

-- Have completed setup for restart

-- Clear restarting flag for normal operation
restarting := false;

-- Output state at beginning of restart
text_io.put_line ("RESTARTING");
text_io.put_line (divider);
timekeeper.start time (to);
timekeeper.timestamp (tO);
text io.new line;
text io.put ("Elapsed time before restart: ");
timekeeper.print elapsedtime (checkpoint.elapsedtime);
text io.new line;
text io.put ("Number of combinations tested before restart: ")
other io.natural io.put (checkpoint.combinationstested,

width => 1);
text io.new line;
print-_state (smin, digit _toplace, select vector);
text_io.put line (divider);
text io.new line;

END IF;

86 CMU/SEI-90-EM-3

do search type body.a

* ELSE

-- Beginning or continuing PDI search

-- Get current time and initialize start time if at start of

-- search
timekeeper.gettime (tl);

IF (to = uninitialized time) THEN
tO := tl;

END IF;

-- Record checkpoint if time since last checkpoint or start of

-- search is greater than specified time between checkpoints

IF (tl-tO >= checkpoint_interval) THEN

recordcheckpoint (order, searchlength, smin, free,
select vector, digit toplace);

tO := tl;

END IF;

END IF;

-- Tally additional call to selectdigits and, if sufficient calls
-- have been made, handle requests for user interaction, if any
calls to select digits := calls to selectdigits + 1;
IF (callstoselectdigits >= current maxcalls to select digits) THEN

-- Reset tally of calls to select-digits
calls to selectdigits := 0;

-- Handle any user interaction
synchronize.check interrupts (flag, interval, max-calls);

-- Process returned flag

CASE flag IS

WHEN checkpoint change =>

-- Set new time between checkpoints
checkpoint interval := interval;
synchronize.clear keyboard;

WHEN max calls-change =>

-- Set new number of calls between checks for user input
-- request

currentmax _calls to selectdigits := max calls;
synchronize.clear keyboard;

WHEN status =>

-- Output search status

text io.new line;
text io.put line ("STATUS");
text io.putline (divider);
text io.put ("Performing order-");
other io.natural io.put (order, width => 1);
IF (order = search_ length) THEN

text io.put (" P");

ELSE
text io.put (", length-");
other-io.natural io.put (search length, width => 1);
text io.put ("");

END IF;

CMU/SEI-90-EM-3 87

dosearchtype-body.a

text io.put ("PDI search in base ");
other-io.naturalio.put (radix, width => 1);
text io.new line;
textio.put ("Checkpoint interval: ");
other io.duracion_io.put (checkpoint-interval,

fore =>6, aft => 1);
textio.putline (" 3econds");

textio.put ("Calls to selectdigits between polling" &
" of keyboard: ");

otherio.naturalio.put (current max-calls to _select _digits,
width => 1);

text io.new line;
timekeeper.time_stamp;
textio.newline;
text io.put ("Elapsed time: ");
timekeeper.elapsed_time;
text io.new line;
text io.put ("Number of combinations tested: ")
other io.naturalio.put (combinations-tested, width => 1);
text io.newline;
print_state (smin, digit_toplace, select vertor);
textio.putline (divider);
text io.new line;
synchronize.clearkeyboard;

WHEN continue =>

-- Resume search
synchronize.clearkeyboard;

WHEN nointerrupt =>

-- Resume search (no user interaction request)
null;

END CASE;

END IF;

-- Abandon search if smallest possible PDI has too many digits
IF (length of number(smin) > searchlength) THEN

RETURN;
END IF;

-- Copy current digit distribution
new selectvector := select-vector;

IF (digit to place = 0) THEN

-- Selecting number of instances of digit 0

-- Another complete combination has been tested
combinations tested := combinations-tested + 1;

-- Must select free instances of digit 0
newselectvector(digittoplace) := free;

-- Test for PDI and report if one has been found
IF is pdi(smin, newselectvector) THEN

reportpdi(smin);
END IF;

88 CMU/SEI-90-EM-3

dosearch_typebody.a

* ELSE

-- Selecting number of instances of some digit other than 0

IF (free = 0) THEN

-- No more digits can be selected; fill out digit combinar .
-- with zeroes

FOR digit IN REVERSE 0 .. digit toplace LOOP
new select vector(digit) := 0;

END LOOP;

-- Test for PDI and report if one has been found
IF is_pdi(smin, newselect vector) THEN

report_pdi(smin);
END IF;

ELSE

-- Additional digits can be selected

IF (lengthofnumber(smin) = search_length) THEN

-- Smallest possible PDI is right length; try every
-- possible number of instances of the next digit to place
FOR count IN REVERSE 0 .. free LOOP

new select vector(digittoplace) := count;
selectdigi-s (smin + sum table(count, digittoplace),

free - count, new_select_vector, digit toplace - 1);
END LOOP;

ELSIF (lengthofnumber(smin) < searchlength) THEN

-- Digits selected in combination so far cannot make a
-- sufficiently long PDI; begin trying possible numbers
-- of instances of the next digit to place, starting with
-- greatest possible number and quitting if some number of
-- instances cannot possibly lead to finding a PDI
FOR count IN REVERSE 0 .. free LOOP

new smin := smin + sumtable(count, digittoplace);
IF (length ofnumber(new smin + sum table(free - count,

digit_to_place -1)) >= search_length) THEN
new select vector(digit to place) := count;
selectdi;its (newsmin, free - count,

new selectvector, digitto place -1);
ELSE

EXIT;
END IF;

END LOOP;

END IF;

END IF;

END IF;

END select_1igts;

CMU/SEI-90-EM3 89

dosearch-type-body.a

BEGIN -- startsearch

-- Output information about search, including whether it is a PDI or
-- PPDI search
text io.newline;
text io.put ("Begin order-");
other io.naturai io.put (order, width => 1);
IF (order = search_length) THEN

text io.out (" P");
ELSE
text io.put (", length-");
otherio.naturalio.put (searchlength, width => i);
text io.oDut ("..) ;

END IF;
text io.put ("PDI search in base ');

other io.natural-io.out (radix, width => 1);

text io.new line;

-- Output current date and time
timekeeper.start time (t);
timekeeper.timestamp (t);
text io.new line (2);

-- Perform initializations for search
initialize table (rad1ix, order);
smin := make num.ber(raaix, 0);
combinations tested := 0;

-- Perform actual search
selectdigits (smin, searchlength, selectvector, radix - 1);

-- Output time of search
textio.put ("End search after ')

timekeeper.elapsed_time;
text io.new line;

-- Output number of combinations tested
text_io.put ("Number of combinations tested: ");
otherio.natural_io.put (combinations-tested, width => 1);
text io.new line (2);

END start-search;

90 CMU/SEI-90-EM-3

dosearch-type-body.a

BEGIN -- do searchtype

LOOP

SELECT

-- Wait for call co perform PDI search
ACCEPT enter start search (radix : IN radi:-:_range;

order : IN natural; search_length : IN Jigit range) DO

-- Perform search
start-search (radi::, order, search Lenqth);

END enter start search;

OR

-- Wait for call to restart search from checkpoint
ACCEPT enter start search from checkpoint;

BEGIN

-- Get search parameters from checkpoint file
checkpointio.open (file => checkpointfile,

mode => checkpointio.infile, name => "pdi.ckp");
checkpointio.read (file => checkpointfile,

item => checkpoint);

checkpoint_io.close (file => checkpoint file);

EXCEPTION

WHEN checkpoint io.nameerror =>
text io.new line;
cext io.put_ line ("Cannot find file ""pdi.ckp""".
RAISE file open error;

WHEN checkpointio.use error =>
tex:t io.new line;
text io.put_line ("Cannot open file ..pdi.ckp"""..
RAISE file open error;

WHEN checkpoint 'o.end error =>
tt onew- I ne;

t.ext io.put li.ie (-- e error readin ile"

PAISE file- er error;

WHEN OTHERS =>
text io ne1 Cln;

text io.pu -ine ("Problem encounrered readinq file
... pd I. r,);

RAISE file_ aen error;

END;

-- Perform search
restarting * true;
start search (che~kpcint.smin.radix, checkpoint.order,

checkp(int. search l ;ith)

-- Abort crocess to -illow t,--mination with TERMINATF option -f
-- Select
ABORT mnitor eboari;

CMU/SEI-90-EM-3 91

do_search_type-body.a

OR

TERMINATE;

END SELECT;

END LOOP;

EXCEPTION

WHEN fileopenerror =>

text io.new line;
textio.put line ("Terminating program");
text io.new line;
ABORT monitor_keyboard;

WHEN constraint error I numeric error =>

text io.new line;
textio.put line ("Numerical error encountered");
text io.new line;
text_io.put_line ("Terminating program");
text io.new line;
ABORT monitor_keyboard;

WHEN storageerror =>
text io.new line;
textio.put line("Storage error encountered");
textio.newline;
textio.putline ("Terminating program");
text io.new line;
ABORT monitor_keyboard;

WHEN OTHERS =>

textio.newline;
textio.putline("Program error encountered");
text io.new line;
textio.put line ("Terminating program");
text io.new line;
ABORT monitorkeyboard;

END do_search_type;

92 CMU/SEI-90-EM-3

monitor_keyboard_body.a

--i TASK NAME: numbers.search.monitorkeyboard

-- ALGORITHM/STRATEGY: The task waits for a call to entry
-- beginkeyboard monitor. It then enters a loop to alternately read a
--I line from the keyboard and call svnchronize.keyboardinterrupt.

-- NOTES: None.

WITH textio;

SEPARATE (numbers.search)

TASK BODY monitor_keyboard IS

-- Position of last character on input line
last : natural;
--Input line entered by user
response : string(l .. line_length);

BEGIN -- monitor_keyboard

-- Wait for signal to begin monitoring for user input
ACCEPT begin_keyboardmonitor;

-- Process signals from user

LOOP

LO-Read input
textio.getline (item => response, last => last);

-- Signal interrupt

synchronize.keyboardinterrupt;

END LOOP;

END monitorkeyboard;

CMU/SEI-90-EM-3 93

numbers.a

-IPACKAGE NAME: numbers

--I PURPOSE: Provide multiple-precision integer type and operations.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/20/90
--I DATE OF LAST REVISION: 8/9/90 VERSION: 2.].

-INOTES: The operations provided are e::tensive, but not e::as-ve.
-IUninitialized numbers and numbers resulting from inva>1- Doerazions are

"invalid," that is, they have a special representation recognized as
-I invalid. Zero is always treated as pcsitive.

PACKAGE numbers I

-Constants related to the representation of numbers:
-Number of digits in representation

maximum -number -length : CONSTANT :- 60;
-- Largest possible radi:: (must be a,. least 2)
maximum radix : CONSTANT := 90;
-- Maximum number of digits required to represent radi::
maximum -radix Iength : CONSTANT :=2-
-- Maximum numtber of digits required to represent single ditof number
maximum digit_length : CONSTANT := 2;

-Type derivatives of above constants:
-To hold representation of a single digit

SUBTYPE digit_ atring IS string(l . . mna.:imumdigit~length);
-- Range of values possible for radix1
SUBTYPE radix range IS natural RANG. I .. ma::-.;mum radi::.;
-- Range of digit positions (low-order digit numbered 1)
SUBTYPE digit_range IS natural RANGE I .. maximum-number_length;
-- Range of allowable values for individual digits
SUBTYPE radix-digit IS natural RANGE 0 .. (ma::imum radi:: - 1);

94 CMU/SEI-90-EM-3

numbers.a

-- Declarations to implement variable-length string representing a number:
-- Maximum number of characters in representation of number (allows for
-- sign and base)
maximum stringlength : CONSTANT :- 1 + (maximum_digitlength + 1)

maximum numberlength + 6 + maximum radixiength;
-- Range of length of string
SUBTYPE dynamicstringlengthrange IS natural

RANGE 0 .. maximumstringlength;
-- Range of character positions within string (leftmost character numbered 1)
SUBTYPE dynamic_string_index_range IS natural

RANGE 1 .. maximumstringlength;
-- Definition of variable-length string
TYPE dynamicstring IS

RECORD

-- Length of string (possibly 0)

length : dynamicstring_lengthrange;

-- Characters of string

char : string(dynamic stringindexrange);

END RECORD;

-- Variable length string representing "Error"
invalidnumber_string : CONSTANT dynamic_string : (5,

('E', 'r', 'r', 'o', 'r', others => ' '));

-- Number type

TYPE number IS LIMITED PRIVATE;

CMU/SEI-90-EM-3 95

numbers.a

--I FUNCTION NAME: numbers.make number

--I PURPOSE: Produce a multiple-precision integer, given a radi:-: and the
-- value of a single-digit number in that radix.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90

--I DATE OF LAST REVISION: 7/25/90 VERSION: 1.1

--I
-- I PARAMETERS:
-- radix (in) base of number to be created

-- I digit (in) value of number (Idigitl < radix)
-- I

--I RETURNS: Multiple-precision representation of digit in base-radix.

-- I

--I INPUT/OUTPUT: None.

--I ASSUMPTIONS/L:MITATIONS: N-ne.

-- I
--I ERROR CHECKS/RESPONSES: Invalid number returned if digit out
--I of range. If digit is negative, negative number is returned.

-- I

--I NOTES: None.

--I

FUNCTION make number (radix : IN radixrange; digit : IN integer)

RETURN numb er;

96 CMU/SEI-90-EM-3

numbers.a

-- I UNCTION NAME: number-'.-" (unary minus)

-- PURPOSE: Negate multiple-precision integer.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
--I DATE OF LAST REVISION: 8/9/90 VERSION: 1.2
-- I
-- I PARAMETERS:

a (in) number to be negated

--I RETURNS: Multiple-precision representation of negation of a.

--I INPUT/OUTPUT: None.

--I ASSUMPTIONS/LIMITATIONS: None.

--I ERROR CHECKS/RESPONSES: None.

--I NOTES: None.
-- I

FUNCTION "-" (a : I0 number) RETURN number;

CMU/SEI-90-EM-3 97

numbers.a

--I FUNCTION NAME: numbers."abs"

-- PURPOSE: Take absolute value of multiple-precision integer.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/25/90
-- DATE OF LAST REVISION: 7/25/90 VERSION: 1.1

-- PARAMETERS:
-- a (in) number

-- I RETURNS: Multiple-precision representation of absolute value of a.

-- INPUT/OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: None.

-- ERROR CHECKS/RESPONSES: None.

NOTES: None.

FUNCTION "abs" (a : IN number) RETURN number;

98 CMU/SEI-90-EM-3

nmbers.a

1 FUNCTION NAME: numbers."<="

-- PURPOSE: Compare multiple-precision integers.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
--I DATE OF LAST REVISION: 7/25/90 VERSION: 1.1

-- PARAMETERS:
-- a (in) number

-- b (in) number

-- RETURNS: Boolean result of a <= b

-- INPUT/OUTPUT: None.

--I ASSUMPTIONS/LIMITATIONS: None.

--I ERROR CHECKS/RESPONSES: Returns false if either parameter is invalid or
--I if the parameters are in different bases, irrespective of their actual
--I values.

-- NOTES: None.

---- -- -- -

FU.,CTION "<=" (a, b : IN number) RETURN Boolean;

0

CMU/SEI-90-EM-3 9

numbers.a

--I FUNCTION NAME: numbers."="
-- I
--I PURPOSE: Compare multiple-precision integers for equality.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
--I DATE OF LAST REVISION: 7/25/90 VERSION: 1.1
-- I
--I PARAMETERS:
--I a (in) number

--I b (in) number

--I RETURNS: Boolean result of a - b.

--i INPUT/OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: None,

--I ERROR CHECKS/RESPONSES: Returns false if either parameter is invalid or
--I if the parameters are in different bases, irrespective of their actual
--I values.

--I NOTES: None.

FUNCTION "-" (a, b : IN number) RETURN Boolean;

0

100 CMU/SEI-90-EM-3

numbersa

--i FUNCTION NAME: numbers.,onverttostring

-- PURPOSE: To convert multiple-precision into a printable string.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21,90
--I DATE OF LAST REVISION: 7/25/90 VEPSION: !.1

-- I

-- PARAMETERS:
-- a (in) number

RETURNS: String representation of the value of parameter a. 7o r
example, the hexadecimal numnber -6A4F causes the string
"- 6 10 4 15 Base 16" to be returned.

-- I INPUT/OUTPUT: None.

-- I ASSUMPTIONS/LIMITATIONS: None.

-- I ERROR CHECKS/RESPONSES: Returns "Error" if parameter a _s _nval.

-- I NOTES: None.

FUNCTION convert to string (a : IN number) RETURN dynamic_string;

CMU/SEI-90-EM-3 101

numbers.a

- - - ------ = - - - - - - -- - -

-- I FUNCTION NAME: numbers."-" (binar mimnus)

-- I PURPOSE: To subtract two multiple-precision integers.

-- PROGRAMMER: Lionel Deimel CATE WRITTEN: 52> 30

-- DATE OF LAST REVISION: /26090 VERSION: 2.1

P.RAMETERS:

a (in) first operand

b (in) second operand

-- RETURNS: Multiple-precision representation of a - b.

-NPUT,'OUTPUT: None.

-- ASSUMPTIONS;LIMITATIONS: None.

-- ERROR CHECKS/RESPONSES: Returns invalid number if either parameter is

-- invalid or if the parameters are in different bases, irrespective

of their actual values.

-- NOTCS: None.

FUNCTION "-" (a, b : IN number) RETURN number;

102 CMU/SEI-90-EM-3

numbers.a

-- I FUNCTION NAME: numbers."-" (binary plus)

-- i PURPOSE: To add two multiple-precision incegers.

-- i PROGRAMR4ER: Liorel Deirmel DATE WRITTEN: 5/21,'90
-- I DATE OF LAST REVISION: 7/25/90 VERSION: 1.1

-- i PARAMETERS:
--I a (in) first operand

-- b (in) second operand

-- i RETURNS: Multiple-precision representation of a - b.

-- : NPUT/OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: None.

-- I ERROR CHECKS/RESPONSES: Returns invalid number if either parameter is
-- I invalid or if the parameters are in different bases, irrespective
-- ! of their actual values. Overflow generates an invalid result.

-- I NOTES: None.

FUNCTION '+" (a, b : IN number) RETURN number;

1

CMU/SEI-90.EM-3 103

numbers.a

- -n s a ans === ==----------- 5 5 S~

-- I FUNCTION NAME: numbers." "

-- PURPOSE: To multiply a multiple-precision integer by a single-digit
--I number in the same base.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
-- DATE OF LAST REVISION: 7/25/90 VERSION: 1.1

-- PP-kAMETERS:
-- f (in) single-digit value in base of a

-- a (in) number

-- RETURNS: Multiple-precision representation of f * a.

-- I INPUT/OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: None.

-- ERROR CHECKS/RESPONSES: Returns invalid number if parameter a is invalid,
--I or if the result generates overflow.

-- I NOTES: The value of a may be negative.

FUNCTION "*" (f : IN radix-digit; a : IN number) RETURN number;

104 CMU/SEI-90-EM-3

numbers.a

--I FUNCTION NAME: numbers.length_of number

-- PURPOSE: To determine the number of digits in a multiple-precisicn
-- integer.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
--I DATE OF LAST REVISION: 7/25/90 VERSION: 1.1

--I PARAMETERS:
-- a (in) number

--I RETURNS: Number of digits in representation of parameter a.

--I INPUT/OUTPUT: None.

--I ASSUMPTIONS/LIMITATIONS: Parameter a is assumed to be a valid number.

--I ERROR CHECKS/RESPONSES: None.

--I NOTES: If a has the value 0, the function returns 1.

FUNCTION lengthofnumber (a : IN number) RETURN digit_range;

CMU/SEI-90-EM-3 105

numbers.a

-- I PACKAGE NAME: numbers.search
-- I
--I PURPOSE: To perform searches for PPDIs, including interaction with user.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 7/25/90
--I DATE OF LAST REVISION: 8/8/90 VERSION: 1.1

-- I NOTES: None.

PACKAGE search IS

-- Messages to be passed from synchronize to do search to indicate what
-- action has been requested by the user. The meanings of the values is
-- as follows:

-- checkpointchange change checkpoint frequency
-- maxcallschange change frequency of keyboard polling
-- status display search status

-- continue resume search after user interrupt
-- no_interrupt resume search after no user interrupt
TYPE interruptflagtype IS (checkpoint change, max-calls_change,

status, continue, no-interrupt);

106 CMU/SEI-90-EM-3

numbers.a

-- TASK NAME: numbers.search.process_normal_input
-- I
--I PURPOSE: To read parameters for PDI searches from input file (i.e.,
--I to implement "normal" input mode) and initiate searches.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 7/31/90
--I DATE OF LAST REVISION: 7/28/90 VERSION: 1.2
-- I
--I INPUT: (From file "input.dat") triples of integers representing
--I PDI searches to be performed. "Input.dat" is a normal text file
-- (i.e., of type textio.in file). Integers should be separated by

blanks or new lines. After the third integer of a triple is read,
--I the remainder of the line on which it occurs is discarded. The
--I integers represent, respectively, the radix, order, and length
--I of the PDIs to be searched for. The numbers must be consistent

with types (and subtypes) numbers.radix_range, natural, and
--I numbers.digit_range.

--I OUTPUT: (To default file) error messages.

--I ASSUMPTIONS/LIMITATIONS: None.

-- ERROR CHECKS/RESPONSES: Errors relating to opening and reading the
-- input file are trapped and result in error messages being output
--I and the program's being terminated.

-- I NOTES: A triple is not read from the input file until previous
--I triple have resulted in completed searches.
-- I

TASK process normalinput IS

CMU/SEI-90-EM-3 107

numbers.a

--I ENTRY NAME: numbers.search.process_normal_input.start

-- I
--I PURPOSE: To accept signal to start reading input from file
--I to direct PDI searches.

--I NOTES: Only one call to this entry should be made. (Entry for
--I synchronization purposes only.)
-- I
- ---------- ===-=----=

ENTRY start;

END processnormalinput;

108 CMU/SEI-90-EM-3

numbers.a

--I TASK NAME: numbers.search.monitor_keyboard
-- PURPOSE: To read lines from keyboard and call task synchronize.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 7/31/90
--I DATE OF LAST REVISION: 8/1/90 VERSION: 1.2

-- INPUT: (From default file) lines, whose exact contents is ignored.
--I After each line is read, a call is made to entry
--I synchronize.keyboardinterrupt. This task does nothing until
-- a call is made to entry begin_keyboardmonitor.

-- OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: None.

--I ERROR CHECKS/RESPONSES: None.

-- NOTES: This task must be terminated with an abort.

TASK monitorkeyboard IS

CMU/SEI-90-EM-3 109

numbers.a

-- I ENTRY NAME: numbers.search.monitor keyboard.beginkeyboardmonitor
-- I
--I PURPOSE: To accept signal to start reading input lines.

--I NOTES: Only one call to this entry should be made. (Entry for
-- I synchronization purposes only.)

-- -- -- -

ENTRY beginkeyboard monitor;

END monitor-keyboard;

no CMU/SEI-90-EM-3

numbers.a

--I TASK NAME: numbers.search.synchronize

-- I
--I PURPOSE; To coordinate PDI search and user requests from the
-- I keyboard.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 7/31/90
-- DATE OF LAST REVISION: 8/1/90 VERSION: 1.2

--I INPUT: (From default file) user commands and associated
--I parameters. Commands recognized are "r" (resume search), "s"

(display status of search), "c" (change checkpoint interval),
.. ."k" (change keyboard polling frequency), and "q" (quit search).
--I Commands "c" and "k" require input of some number of seconds

(time between checkpoints) and an integer (some number of
-- invocations of do search.start search.select_digits between
--I check for user requests).

-- I OUTPUT: (To default file) prompts for commands and error messages.

-- I
--I ASSUMPTIONS/LIMITATIONS: In order to achieve proper termination,
--I this task assumes a call is made to entry start m'rnitor.

-- I
--I ERROR CHECKS/RESPONSES: Erroneous user input results in error
--I messages and reprompts.

-- NOTES: When "q" command is entered, synchronize aborts tasks
--I dosearch, monitor_keyboard, and processnormal input. In other

--I cases, synchronize terminates using a terminate option in select
-I statement.

TASK synchronize IS

CMU/SEI-90-EM-3 lU

numbers.a

-- 1
-- I ENTRY NAME: numbers.search.synchronize.start monitor

-- I
--I PURPOSE: To accept signal to start executing the function of
--I package synchronize.

-- NOTES: Only one call to this entry should be made. (Entry for
synchronization purposes only.) Call results in call to

-- entry monitorkeyboard.begin_keyboardmonitor to initiate

--I operation of task monitor keyboard.

ENTRY start monitor;

12 CMU/SEI-90-EM-3

numbers.a

~--I

-- ENTRY NAME: numbers.search.synchronize.checkinterrupts
--I
--I PURPOSE: To allow task synchronize to take user commands and
-- execute them or have the caller (task do search) execute them,
--F that is, to coordinate user command processing with the PDI
--I search.

--I PARAMETERS:
-- flag (out) message flag returned by
--I synchronize to indicate user
--I request (see type definition at
--I beginning of package for message
-- Iinterpretations

-- interval (out) if command was "c" (and
therefore flag set to

- - checkpoint_change), the new
--I number of seconds between

checkpoints; otherwise meaningless

-- max-calls (out) if command was "k" (and
-- Ftherefore flag set to
--I maxcallschange), the new number
-- I of calls of

do search.startsearch.selectdigits
-- between calls to this entry;

-- Iotherwise meaningless

-- I NOTES: When rendezvous completes, task synchronize waits for
--I confirmation that the caller has acted on the information
-- I transmitted by parameter flag. This confirmation is in the
-- form of a call to entry clearkeyboard Only when there
-- I was no request for service by the use. (that is, when flag is
-- returned as no interrupt) is no subsequent call to
--I clearkeyboard expected.

ENTRY checkinterrupts (flag : OUT interrupt_flag_type;
interval : OUT duration; max calls : OUT natural);

CML/SEI-90-EM-3 113

numbers.a

--I
-- ENTRY NAME: numbers.search.synchronize.keyboard_interrupt

-- I
--I PURPOSE: To accept signal that user has requested service.

--I NOTES: Rendezvous does not complete until service has been

--I provided.

ENTRY keyboard-interrupt;

14 CMU/SEI-90-EM-3

numbers.a

-- ENTRY NAME: numbers.search.synchrcnize.z.Lear_keyboard

-- PURPOSE: To receive confirmation :hat information returned
from rendezvous at entry checkinterrupts has been

--I appropriately acted upon.

--I NOTES: See notes for entry check interrupts.

ENTRY clear kevboari;

END synchronize;

CMU/SEI-90-EM-3 115

numbers.a

--I TASK TYPE NAME: numbers.search. (dosearchtype)

-- I PURPOSE: To actually perform PDI searches. (Only one task is

-- I needed. A task type is required, so the storage allocated

can be set with FOR ... USE.)

-- I PROGRAMMER: Lionel Deimel DATE WRITTEN: 7/31/90
DATE OF LAST REVISION: 9,9/90 VERSION: 1.3

-- INPUT: (From file "pdi.ckp") if entry

-- enter_startsearchfrom_checkpoint is called, task reads
a checkpoint record from this file and restarts a search from

the information In the record. The task terminates when the

-- search completes.

-OUTPUT: (To default file) search-related messages and results.
-- (To file "pd:.ckp") periodic checkpoint records, from which
-- a search can be restarted. The entire file is rewritten each
-- time a checkpoint record is written, so that the file never

contains more than a single record.

-- ASSMPTINS/LIMITATIONS: It is assumed that either entry
-- I enterstart search fromcheckpoint is called once or entry
-- enter-start search is called zero or more times, once for each
-- search to be performed.

-- ERROR CHECKS/RESPONSES: Problems related to reading the checkpoint
-- I file result in error messages and task termination.

--I NOTES: None.

TASK TYPE dosearchtype IS

u6 CMU/SEI.90-EM-3

numbers.a

-- ENTRY NAME: numbers.search. (dosearch_ty'pe) .encerstartsearch

-- PURPOSE: To tell task to perform a particular PDI search from the
-- beginning.

-- PARAMETERS:

radix (in) base of PDIs sought

order (in) order of PDIs sought

-- search_length (in) number of digits in PDIs
-- Isought

-- I NOTES: Entry may be called multiple times.

ENTRY enter-start-search (radix : IN radix_range;
order : IN natural; search-length : IN digitrange);

CMU/SEI-90-EM-3 117

numbers.a

-- ENTRY NAME: numbers.search.(do search type).-
-- enter_start_searchfrom checkpoint

-- PURPOSE: To receive signal to begin PDI search using checkpoint
record in "pdi.ckp".

--I NOTES: This entry should be called at most once.

ENTRY enterstartsearchfrom checkpoint;

END dosearchtype;

118 CMU/SEI-90-EM-3

numbers.a

-- Assure adequate storage is available for search; the number below
-- is quite machine-dependent
FOR dosearchtype'storagesize USE 1048_576;

-- Actual task to perform PDI searches
dosearch : do search_type;

END search;

CMU/SEI-90-EM-3 119

numbers.a

PRIVATE

-- Flag used to indicate invalid number
invalidnumberflag CONSTANT := 1;
-- Sign values

TYPE sign_type IS (plus, minus);
-- To represent digits of number
TYPE digit_set IS ARRAY(digit range) OF radixdigit;
-- Representation of number
TYPE number IS

RECORD

-- Base (initialized to invalid value)
radix : radix_range invalid number flag;

-- Position of leftmost digit
highorder_digit digitrange;

-- Sign of number
sign sign_type;

-- Digits of number

digit digit set;

END RECORD;

END numbers;

120 CMU/SEI-90-EM-3

numbersbody.a

7 -- -
-- I PACKAGE NAME: numbers

-- I NOTES: Operators generally assume multiple-precision parameters to be
--I canonical--to be valid representations or to be "invalid," that is, to
--I carry an invalid flag. Except for zero itself, canonical numbers have
--I no leading 0 digits. Numbers returned are intended to be canonical
--I also. Zero is always represented as positive.

PACKAGE BODY numbers IS

-- Range of possible carries or borrows
SUBTYPE carry or borrow IS radix-digit RANGE 0 .. 1;

CMU/SEI-90-EM-3 121

numbersbody.a

-- I FUNCTION NAME: numbers.make number
-- I
--I ALGORITHM/STRATEGY: Check parameter validity and set values of result.

--I NOTES: None.
-- I

FUNCTION make number (radix : IN radixrange; digit : IN integer)
RETURN number IS

-- Number to be returned

result : number;

BEGIN -- make-number

-- Check if parameters valid
IF (ABS(digit) < radix) THEN

-- Set sign
IF (digit < 0) THEN

result.sign := minus;
ELSE

result.sign := plus;
END IF;

-- Set radix, length of number, and single digit
result.radix := radix;
result.highorderdigit := 1;
result.digit (l) :- ABS(digit);

ELSE

-- Flag number as invalid

result.radix :- invalidnumberflag;

END IF;

-- Return number generated
RETURN result;

END makenumber;

122 CMU/SEI-90-EM-3

numbers.body.a

-- I--I FUNCTION NAME: numbers."-" (unary minus)

--I ASSUMPTIONS/LIMITATIONS: Parameter a is assumed canonical.

-- ALGORITHM/STRATEGY: Copy number and reverse sign unless parameter is 0.

-- NOTES: None.

FUNCTION "-" (a : IN number) RETURN number IS

-- Number to be returned

result number;

BEGIN --

-- Cc:y number
result := a;

IF (a.highorder_digit - 1) AND THEN (a.digit(l) = 0) THEN

-- Set siqn to positive for zero a
result.sign := plus;

ELSE

-- Reverse sign for non-zero a
IF (a.sign - plus) THEN

result.sign := minus;
ELSE

result.sign : plus;
END IF;

END IF;

-- Return number generated
RETURN result;

END "-";

CMU/SEI-90-EM-3 123

numbers~body.a

-- I--I FUNCTION NAME: numbers. "abs"

--I ASSUMPTIONS/LIMITATIONS: Parameter a is assumed canonical.
-- I
--I ALGORITHM/STRATEGY: Set sign of result to plus.
-- I
--I NOTES: None.

FUNCTION 'abs" (a : IN number) RETURN number IS

-- Number to be returned
result : number;

BEGIN -- "abs"

-- Make sign of result positive
result :- a;
result.sign := plus;

-- Return number generated
RETURN result;

END "abs";

124 CMU/SEI-90-EM-3

numbersbody.a

-- - -
- - FUNCTION NAME: numbers.1'<="

-- ASSUMPTIONS/LIMITATIONS: Parameters are assumed canonical.

-- I ALGORITHM/STRATEGY: Determine signs of parameters; result is
-- immediately determined if they differ. Otherwise, the result is
--I determined from the number with the most number of digits. If
--I signs and lengths are the same, procedure distinguish is used to
--I determine the result.

-- NOTES: None.

FUNCTION "<-" (a, b : IN number) RETURN Boolean IS

CMU/SEI-90-EM-3 125

numbersbody.a

--I FUNCTION NAME: numbers."<=".distinguish

-- PURPOSE: To determine if IxI <= lyl.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
-- DATE OF LAST REVISION: 8/9/90 VERSION: 1.2

-- PARAMETERS:
-- x (in) number

-- y (in) number

-- INPUT/OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: The parameters are assumed to have the same
-- radix and the same number of digits.

-- ALGORITHM/STRATEGY: Corresponding digits of the parameters are
--I compared from left to right until a difference between them is
-- I found or it is determined that there is no difference between them.
-- I

-- ERROR CHECKS/RESPONSES: None.

--I NOTES: The signs of the parameters are ignored.

FUNCTION distinguish (x, y : IN number) RETURN Boolean IS

126 CMU/SEI-90-EM-3

numbers-body.a

-- Difference found in corresponding digits
distinguished : Boolean := false;
-- Value of x found to be or assumed to be less than that of y
x less : Boolean := false;

BEGIN -- distinguish

-- Examine corresponding digits until a difference is found or
-- all digits are examined
FOR position IN REVERSE 1 .. x.high_order_digit LOOP

IF (x.digit(position) > y.digit(position)) THEN

-- Smaller digit found in y

distinguished := true;
x less := false;

ELSIF (x.digit(position) < y.digit(position)) THEN

-- Smaller digit found in x
distinguished := true;
x less := true;

END IF;

-- Terminate loop early if unequal corresponding digits found
EXIT WHEN distinguished;

END LOOP;

-- Return true if smaller digit found in x or all digits
-- are the same

RETURN (xless OR ELSE (NOT distinguished));

END distinguish;

CMU/SEI-90-EM-3 127

numbers-body.a

BEGIN --

IF (a.radix /= b.radix) OR ELSE
(a.radix = invalidnumberflag) OR ELSE
(b.radix = invalidnumber_flag) THEN

-- Comparison invalid
RETURN false;

ELSE

IF (a..sign /= b.sign) THEN

-- Signs differ; true if a negative

RETURN (a.sign = minus);

ELSE

If (a.sign - plus) THEN

--Both signs positive; true if a <= b
IF (a.highorderdigit < b.highorderdigit) THEN

RETURN true;
ELSIF (b.high_order_digit < a.highorderdigit) THEN

RETURN false;
ELSE

RETURN distinguish(a, b);
END IF;

ELSE

--Both signs negative; true if lal <= Ibi
IF (b.high_orderdigit < a.highorderdigit) THEN

RETURN true;
ELSIF (a.high_orderdigit < b.highorderdigit) THEN

RETURN false;
ELSE

RETURN distinguish(b, a);
END IF;

END IF;

END IF;

END IF;

END "<'=";

128 CMU/SEI-90-EM-3

numbersbody.a

--I FUNCTION NAME: numbers."="
-- I
--I ASSUMPTIONS/LIMITATIONS: Parameters are assumed canonical.
-- I
--I ALGORITHM/STRATEGY: Check radices, sign, and corresponding slices
--I of digit arrays for inequality.

--I NOTES: None.

FUNCTION (a, b : IN number) RETURN Boolean IS

BEGIN --

IF (a.radix /= b.radix) OR ELSE
(a.radix = invalidnumberflag) OR ELSE
(b.radix invalidnumberflag) OR ELSE
(a.sign /= b.sign) OR ELSE
(a.highorder_digit /= b.highorderdigit) THEN

-- Comparison is not valid, signs differ, or numbers are
-- of different length

RETURN false;

ELSE

IF (a.digit(l .. a.high_orderdigit) /=

b.digit(l .. b.high_order digit)) THEN

-- Signs and lengths are same, but digits differ
RETURN false;

ELSE

-- Signs, lengths, and digits are the same
RETURN true;

END IF;

END IF;

END - ,

CMU/SEI-90-EM-3 129

numbersbody.a

-- I FUNCTION NAME: numbers.convert to string

-- ASSUMPTIONS/LIMITATIONS: Parameter is assumed canonical.
-- I
--I ALGORITHM/STRATEGY: Character string is generated from left to right.
--I Attributes are used to generate and space characters.

-- NOTES: None.

---- -- - -- -

FUNCTION converttostring (a : IN number) RETURN dynamic_string :S

-- String in which character representation of a is generated
result : dynamic string;
-- Position in result.char up to which character array ha$ been e
string_length : dynamic stringinde-_range;

BEGIN -- convert_to_string

IF (a.radix = invalid number flag) THEN

". Error" returned if number invalid

result :- invalid number string;

ELSE

-- Generate sign
IF (a.sign = plus) THEN

result.char(l) :
ELSE

result.char(l) :

END IF;

-- Generate digits from left to right
stringlength :- .;
FOR position IN REVERSE 1 .. a.highorder_digit LOOP

result.char(stringlength+l ..
stringlength+radix digit'image(a.digit(position))'last)
radix_digit'image(a.digit(position));

stringlength := stringlength +
radixdigit'image(a.digit (position))'last;

END LOOP;

-- Generate "Base" and radix
result.char(string-lengthl .. stringlength+5+

radix_r nge'image(a.radix) 'Last) := " Base"

radix range'image(a.radix);
result.length := stringlength + 5 + radix_range'image(a.radix-:)'last;

END IF;

-- Return string generated
RETURN result;

END convert to string;

130 CMU/SEI-90-EM-3

numbersbody.a

-- I FUNCTION NAME; numbers."- (binary minus)
-- I
-- I ASSUMPTIONS/LIMITATIONS: Parameters are assumed zanonical.

-- I

--I ALGORITHM/STRATEGY: If operands are valid, the signs are :heckec to see
--I if they are the same. If they are, the difference is computed using
--F numbers."+" and numbers.'-" (unary minus). Otherwise, the operand
--I of larger magnitude is found, and procedure performsubtraction
--I is used to find the digits of the difference.

-- I NOTES: None.

FUNCTION "-" (a, b : IN number) RETURN number IS

-- Number where difference is computed
result : number;

CMU/SEI-90-EM-3 131

numbers body.a

-I PROCEDURE NAME: rnumbers." -'.perform-subtraction
--I
-- j PURPOSE: To generate the digits of the difference of two
--I multiple-precision integers.

-- I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
-- I DATE OF LAST REVISION: 7/26/90 VERSION: 1.1

PARAMETERS:
-- x (in) first operand

-- y (in) second operand

-- result (in out) on exit, contains digits and
-- I pointer to high-order-digit of
-- difference; other fields are
-- unchanged

-- INPUT/OUTPUT: None.

--I ASSUMPTIONS/LIMITATIONS: The operands are assumed to have
-- I legitimate values and to share the same radix. The magnitude
-- of the first operand is assumed to be at least as large as that
-- I of the second.
-- I
-- I ALGORITHM/STRATEGY: If the digits of the operands are the same,
-- I zero is returned. Otherwise, subtraction is performed on the
-- I meaningful slice of the digit array of the second operand and
-- I the corresponding slice from the first operand, noting any
--I borrow in the high-order position. The remaining meaningful
--I slice from the first operand is copied into the difference, and
--I the borrow, if any, is propagated.
--I
--I ERROR CHECKS/RESPONSES: None.

-- I NOTES: The sign and radix fields of parameter result may contain
-- I significant values. The procedure leaves these unchanged.
-- I The signs and radices of the operands are ignored.

PROCEDURE performsubtraction (x, y : IN number; result : IN OUT number)
IS

-- Number borrowed from place to left
borrow : carry_or_borrow;
-- Digit position being operated upon
pos : digit_range;

132 CMU/SEI-90-EM-3

numbersbody.a

BEGIN -- perform-subtraction

IF (x.high_order digit = v.high_order_digit) AND THEN
(x.digit(l x.high_order_digit) =

y.digit(l y.high_order digit)) THEN

-Difference is zero

-Copy zero value
result.high_order_digit :=1;
resUlt.digit(l) :=0;

ELSE

-Result is non-zero

-Subtract digits in common between x and y
borrow :- 0;
FOR position IN 1 .. y.high_order digit LOOP

IF (x.digit(position) - borrow < y.digit(position)) THEN
result.digit(position) xc.radix + x.digit(position)-

y.digit (position);
borrow := 1;

ELSE
result.digi7(position) x.digit(position) - borrow-

y.digit (position);
borrow :=0;

END IF;
END LOOP;

-- Copy remaining digits to result
result.digit(y.high_order digit+ .. x.high_order_digit)

x.digit(y.high_order_digit+l . x.high_order_digit);

-- Propagate borrow to high-order digit
FOR Position IN y.high_order_digit .. x.high_order_digit LOOP

IF (borrow = 1) THEN
IF (result.digit(position) =0) THEN

result.digit(position) :x.radix - 1;
ELSE

result.digit (position) :=result.digit (position) -1;

borrow :=0;
END IF;

ELSE
EXIT;

END IF;
END LOOP;

-- Eliminate leading zeroes
pos :- x.high_order_digit;
WHILE (result.digit(pos) =0) LOOP

p05 := p05- 1

END LOOP;
result.high_order digit :=pos;

END IF;

END perform-subtraction;

CMU/SEI-90-EM-3 133

numbersbody.a

BEGIN --

IF (a.radix = b.radix) AND THEN
(a.radix /= invalid number_flag) AND THEN
(b.radix /= invalid number_flag) THEN

--Subtraction is possible; compute difference
IF (a.sign = b.sign) THEN

-- Signs of operands equal

-- Set radix

result.radix := a.radix;

IF (abs(a) <= abs(b)) THEN

-- Since Ibi >= lal, compute digits of IbI - lal
performsubtraction(b, a, result);

-- Set sign (special case for zero)
IF (a.sign = plus) THEN

IF (result.highorder digit = 1) AND THEN
(result.digit(l) = 0)
THEN
result.sign plus;

ELSE
result.sign minus;

END IF;
ELSE

result.sign := plus;
END IF;

ELSE

-- Since jal > Ibi, compute digits of la) - Ibi
performsubtraction(a, b, result);

-- Set sign
IF (a.sign = plus) THEN

result.sign := plus;
ELSE

result.sign := minus;
END IF;

END IF;

ELSE

-- Signs of operands different

-- Compute difference using addition

result := a + (-b);

END IF;

END IF;

--- Return difference or invalid number
RETURN result;

END ... ;

134 CMU/SEI-90-EM-3

numbers-.body.a

--I FUNCTION NAME: numbers."+" (binary plus)
-- I
--I ASSUMPTIONS/LIMITATIONS: Parameters are assumed canonical.

-- I
--I ALGORITHM/STRATEGY: If the operands are valid, the signs of the
--I operators are compared. If they are different, the sum is computed
-- using numbers."abs" and numbers (binary subtraction). If the
--I signs are different, the operand with the larger number of digits
--I is found, and procedure performaddition is used to compute the digits
--I of the sum.

-- I NOTES: None.

FUNCTION "+" (a, b : IN number) RETURN number IS

-- Number where sum is computed
result : number;

CMU/SEI-90-EM-3 135

numbers_body.a

--I PROCEDURE NAME: numbers. "+" .perform addition
-- I
-- PURPOSE: To generate the digits of the sum of two multiple-precision
-- I integers.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/9C
--I DATE OF LAST REVISION: 7/26/90 VERSION: 2.1

--I PARAMETERS:
-- x (in) first operand

-- y (in) second operand

-- result (in out) on exit, contains digits and
-- pointer to high-order-digit of
-- sum; other fields are
-- I unchanged

-- I--I INPUT/OUTPUT: None.

--I ASSUMPTIONS/LIMITATIONS: The operands are assumed to have
-- I legitimate values and to share the same radix. The first
--I operand is assumed to have at least as many digits as that

of the second.

-- I ALGORITHM/STRATEGY: The largest digit array slices of meaningful
-- digits are added, and remaining digits of the first operand
-- I are copied to the sum. The carry from the first operation is
-- I then propagated.

-- I ERROR CHECKS/RESPONSES: None.

-- I NOTES: The sign and radix fields of parameter result may contain
-- I significant values. The procedure leaves these unchanged.
-- I The signs and radices of the operands are ignored.

PROCEDURE perform-addition (x, y : IN number; result : IN OUT number) IS

136 CMU/SEI-90-EM-3

numbersbody.a

*-- Range for addition of two digits

SUBTYPE digitsum IS natural RANGE 0 (2*maximum radix - 1);

-- Number carried from place to right

carry : carry_orborrow;
-- Sum of corresponding digits
sum : digitsum;

BEGIN -- performaddition

-- Add digits in common between x and y
carry := 0;
FOR position IN 1 .. y.highorder_digit LOOP

sum := x.digit(position) + y.digit(position) + carry;
IF sum >= x.radix THEN

result.digit(position) sum - x.radix;
carry : ;

ELSE
result.digit(position) sum;
carry := 0;

END IF;
END LOOP;

-- Copy remaining digits of x to result
result.digit(y.high_orderdigit+l .. x.high_order_digit)

x.digit(y.high_order_digit+l .. x.high order_digit);

-- Propagate carry to high-order digit
FOR position IN y.high_orderdigit+l .. x.high_orderdigit LOOP

IF (carry = 1) THEN
sum := result.digit(position) + carry;
IF sum >= x.radix THEN

result.digit(position) sum - x.radix;
carry : ;

ELSE
result.digit(position) := sum;
carry := 0;

END IF;
ELSE

EXIT;
END IF;

END LOOP;

-- Handle carry from high-order digit, if any
IF (carry = 1) THEN

TF (x.high_orderdigit < maximum numberlength) THEN
result.highorder_digit := x.highorder_digit + 1;
result.digit(x.high_order_digit + 1) :- carry;

ELSE
result.radix :- invalid, number-flag;

END IF;
ELSE

result.highorderdigit := -.highorderdigit;
END IF;

END perform-addition;

CMU/SEI-90-EM-3 137

numbers-body.a

BEGIN --

IF (a.radix - b.radix) AND THEN
(a.radix /= invalid numberflag) AND THEN
(b.radix 1= invalidnumber flag) THEN

-- Addition is possible; compute sum

IF (a.sign = b.sign) THEN

-- Signs of operands equal

-- Set sign and radix
result.sign :- a.sign;
result.radix : a.radix;

IF (a.high_order_digit >= b.highorderdigit) THEN
performaddition(a, b, result);

ELSE
perform addition(b, a, result);

END IF;

ELSE

-- Signs of operands different

-- Compute sum using subtraction
IF (a.sign plus) THEN

result a - abs(b);
ELSE

result := b - abs(a);
END IF;

END IF;

END IF;

-- Return sum or invalid number

RETURN result;

END "+";

138 CMU/SEI-90-EM-3

numbersbody.a

-- I FUNCTION NAME: numbers.' ' "

-- A "'4TIONS/LTMTTATIONS: Parameter a is assume -inn:;a!.

-- ALGORITHM/STRATEGY: If operands ire valid, multiplication is performed.
-- I A zero result is handled as a special case. In the general case,
--I the sign and base are determined by the multiple-precision factor.
--I The product is computed from right to left, and overflow is checked
--F for before any carry is propagated.

-- NOTES: None.

FUNCTION "" (f : IN radix_digit; a : IN number) RETURN number IS

-- Range for single digit product
SUBTYPE digit-product IS natural RANGE 0 .. a.radix**2 - a.radix;
-- Range for digits in base of operation
SUBTYPE localradix digit IS radix digit RANGE 0 .. a.radix -1;

-- Carry from multiplication of one digit
carry : localradixdigit;
-- Result of single digit multiplication plus carry
product : digitproduct;
-- Number where product is computed
result : number;

CMU/SEI-90-EM-3 139

numbersbody.a

BEGIN --

IF (a.radix /- invalidnumber_flag AND f<a.radix) THEN

-- Operands valid; compute product

-- Set radix
result.radix := a.radix;
IF (f-0 OR ELSE (a.highorder_digit=l AND a.digit(l)=0)) THEN

-- Set product to zero
result.high_order_digit := 1;
result.sign := plus;
result.digit(l) := 0;

ELSE

-- Sum is non-zero

-- Set sign
If (a.sign = plus) THEN

result.sign plus;
ELSE

result.sign minus;
END IF;

-- Multiply by factor, saving high-order carry
carry :- 0;
FOR position IN 1 .. a.high_order_digit LOOP

product :- (f * a.digit(position)) + carry;

result.digit(position) := product REM a.radix;
carry :- product/a.radix;

END LOOP;

-- Process carry; set product to invalid if overflow occurs
IF (carry = 0) THEN

result.high_orderdigit := a.highorderdigit;
ELSE

IF (a.high_order_digit = maximumnumberlength) THEN
result.radix :- invalid numberflag;

ELSE
result.high_order_digit := a.high_orderdigit + 1;
result.digit(result.highorderdigit) carry;

END IF;
END IF;

END IF;

END IF;

-- Return product or invalid number

RETURN result;

END "*"

140 CMU/SEI-90-EM-3

numbers-body.a.

-- FUNCTION NAME: numbers.length of number

ASSUMPTIONS/LIMITATIONS: Parameter a is assumed canonical.
-- ALGORITHM/STRATEGY: Proper value is copied form high-order digit

--1 digit field of input parameter.

-- NOTES: None.

FUNCTION length of number (a : IN number) RETURN digitrange IS

BEGIN -- lengthofnumber

-- Return length from high-order digit field
RETURN (a.highorder_digit);

END lengthof number;

PACKAGE BODY search IS SEr'"ATZ;

END numbers;

CMU/SEI-90-EM-3 141

otherjo.a

-- 1 1
--I PACKAGE NAME: other io

--i PURPOSE: To provide instantiated I/O packages for various units.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/20,'90
DATE OF LAST REVISION: 8/1/90 VERSION: 1.1

-- NOTES: This package required by packages numbers.search and timekeeper.

WITH textio;

PACKAGE other io IS

PACKAGE duration io IS NEW text io.fixed io (duration);
PACKAGE naturalio IS NEW text io.integerio (natural);
PACKAGE integerio IS NEW textio.integerio (integer);

END other io;

142 CMU/SEI-90-EM-3

pdia

-- PROCEDURE NAME: pdi (main procedure)

-- PURPOSE: To find PDIs and PPDIs

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/24/90

-- DATE OF LAST REVISION: 8/8/90 VERSION: 2.0

--I INPUT: (From default file) commands and requests to accept commands from

-- user.

--I (From file "pdi.ckp") checkpoint information. File contains at most

--I one checkpoint record.

--I OUTPUT: (To default file) prompts, status information, and PDIs found.

(To file "pdi.ckp") information written by program to all restart
--I from a checkpoint.

-- ASSUMPTIONS/LIMITATIONS: The program has certain built-in limitations

--I that can be altered by changing constants in the code:

--I 1. Numbers longer than 60 digits cannot be handled.
--I Therefore, searches can be performed for at most

length-60 PDIs.

-- 2. The maximum radix that can be accommodated is 90.

-- Searches for long-length PDIs may cause two kinds of problems:

1. No provision is made for output lines exceeding the line
-- (length normally handled by the output device.

-- 2. Available storage may be insufficient for performing some
--I searches. The amount needed is highly system-dependent,
-- Iand the storage allocated for the search task may need
--I to be adjusted for particular systems or particular
--I searches.

--I ALGCRITHM/STRATEGY: Let the radix of the PDIs being sought be r. (See
--I background notes below.) The search proceeds by selecting the number
-- I of digit r-l in the number to be tested, then the number of digit
--I r-2, etc. A combination of digits is counted as tested whenever
-- the distribution of all digits r-l, r-2, ... , 0 is determined.
-- Each time procedure selectdigits is called, the program
--I selects the distribution of another digit. The program selects
--I the maximum number of occurrences of a digit before a distribution
--I involving fewer occurrences is tried. As the number of instances of
--I each digit is determined, the sum of these digits raised to the
--I search-order power is computed in smin (the minimum summation value
--I of the distribution being computed). Should smin become a number
--I whose length is greater than the length of the PDIs being sought,
-- I the program backtracks, thereby removing large digits in favor of
--I smaller ones. A one-dimensional array, select vector, keeps track of
--I how many instances of each digit have been selected in the current
--I distribution. The search algorithm finds PDIs in roughly reverse
--I numerical order.

1

CMUISEI-90-EM-3 143

pdi.a

--I ERROR CHECKS/RESPONSES: Most errors likely to occur are caught by the
--I program and result in error messages written to the output file.
--I Some of the these messages are rather nonspecific, however, and
--I may require the user to make reasonable inferences. It is intended
-- tnat invalid input from all sources (including missing and unreauable
--I files) be recognized as erroneous and that appropriate user error
--I messages be displayed.

--I COPYRIGHT NOTICE:

--I Copyright (c) 1990 by Carnegie Mellon University, Pittsburgh, Pa.

--I Distribution: Approved for public release; distribution is unlimited.

--I Produced by the Software Engineering Institute (SEI) . The SEI is a
--I federally funded research and development center operated by Carnegie
--I Mellon University and sponsored by the U.S. Department of Defense under
--I contract F19628-90-C-0003.

--I Permission to make copies or derivative works of this software is
--I granted, without fee, provided that the copies, derivative works, and
-- i supporting documentation are not made or distributed for direct
--I commercial advantage, and that all copies, derivative works, and
--I supporting documentation contain this copyright notice and state that
--I copying is by permission of Carnegie Mellon University.

--I NOTES:
--I
-- 1 1. Background

--I This program finds perfect digital invariants (PDIs) and
--I pluperfect digital invariants (PPDIs) . A PDI is an integer, the
--I sum of whose digits, each raised to the same integral power, equals
--I the number itself. For example,

-- 5 5 5 5
--I 4150 = 4 + 1 + 5 + 0 = 1024 + 1 + 3125 + 0.

-- ~'le call 4150 an order-5 (for the exponent), length-4 (for the number of
--I digits) PDI. Being a PDI is a property of the number and its base
-- (radix). It is easy to verify, for example, that 4150, interpreted as
-- i an octal (base-8) number, is not an order-5 PDI. On the other hand,
-- the octal number 4423 is an order-5 PDI because

-- 5 5 5 5
-- 1 4423 = 4 + 4 + 2 + 3 = 2000 + 2000 + 40 + 363,
-- I
--I where all the arithmetic shown is in octal. Because the radix of the
-- I number is significant, we should speak of 4150 as an order-5,
--I length-4, base-10 PDI and of 4423 as an order-5, length-4, base-8 PDI.
-- I (Abbreviations are possible; we might say 4150 is an order-5 PDI,
-- I understanding that the base is 10 and assuming the length is apparent.)

-- I A PDI whose order is the same as its length is known as a pluperfect
-- i digital invariant, or PPDI. The decimal number 8208, for example, is
-- I an order-4 PPDI, since
-- I
-- 1 4 4 4 4
-- 1 8208 - 8 + 2 + 0 + 8 = 4096 + 16 + 0 + 4096.

144 CMU/SEI-90-EM-3

* pdi~a

I PDIs and PPDIs have been tabulated, but questions remain about their
-- properties and distribution. (it is not known if there are PPDIs of

orders other than I in all bases, alt-'gh there are ncn-triva PPDis
in nearly all bases.) These are not burning questions f mathemat:cs,

-- I but they have received a degree of attention, oartirularly from
-- the recreational mathematics community. This program performs
--I exhaustive searches for PDIs and PPDIs.

--I 2. References

--I Martin Gardner, THE INCREDIBLE DR. MATRIX, to. 2D5-2. :;w Lrrn:
--I Charles Scribner's Sons, 1Y'6.

-- Lionel Deimel & Michael Jones, "Finding Pluperfect Diqglal
Invariants: Techniques, Results and Ibservations." JOURNAL IF

--I RECREATIONAL MATHEMA2rCS 14:2, op. 37-107, 1981-1982.

-- 1 3. Program Operation Overview

-- The program interacts with the user through the standard input file
--I (presumed to be the keyboard). Output is sent to the standard output
--I file (presumed to be a CRT) . If the user needs to save program output,
--I some mechanism is likely available through the operating system.

(Most operating systems have a way of capturing all terminal output
-- in a file.) The user interacrirely indicates whether search parameters
-- (which tell the program what searches to perform) are to be taken from
--I the file named "input.dat" or whether a previously begun search is to be
--I restarted from a checkpoint. In the latter case, checkpoint information
--I is read from file "pdi.ckp." Because searches can be long-running,
-- I tte program records a checkpoint in "pdi.ckp" each hour. Should
-- piocessing be interrupted for any reason, the program can be restarted
--I from its state as of the last time a checkpoint was written.

--I File "input.dat" should contain any number of triples of natural
-- numbers, each triple specifying a search the program is to carry out.
-,- i Numbers may be separated by spaces or line breaks; "normal" input

should have a triple on each line of the file, although this format
-- is not required. In any case, any characters on the line after the
--I third number of a triple are ignored, and the first number of the ne::t

triple is sought on the next line. The numbers of the triple
--I represent, respectively, the radix, order, and length of the PDIs being
-- I sought. The second and third numbers of a triple should be equal,
--I of course, if the search is for PPDIs.

--1 If the program is started from a checkpoint, the contents of
--I "input.dat," if any, are ignored; if the interrupted search is
--I completed, the program terminates.

CMU/SEI-90-EM-3 145

pdi.a

-- i During a search, the following is written to the screen:

1. When the search begins, the date, time, and search

parameters.

-- 2. When a PDI is found, the number, elapsed time since the
--I beginning of the search, and the number of combinations

tested. The time shown is clock time, not processor time.

-- 3. When a checkpoint record is written, the date, time,
--I elapsed time, number of combinations tested, and search
--I state information: the values of smin, digittoplace
--I (the next digit whose number of instances is to be
--I determined by selectdigits), and selectvector.

-- 4. When the search ends, the elapsed time and number of
--I combinations tested.

-- While the program is running, the user may interact with it by typing
-- I <return>. (Actually, the program reads any line entered, but ignores
--F the actual contents of the line.) After a brief delay--for the sake
-- I of efficiency, the program checks the keyboard infrequently--the user
--I is prompted with:

Enter "r" to resume search,
"s" for status check of search,
"c" to change checkpoint interval,
"k" to change keyboard polling frequency, or

-- 1 "q" to quit:

-- The user should enter the appropriate letter and <return>. These
-- I commands, respectively, cause the program to resume its search,
-- I display the state of the search, change the frequency

with which checkpoints are taken (from once each hour), change the
-- frequency with which the keyboard is checked (the default is after
--I each 3000 calls to procedure selectdigits), and terminate the program.
--I The state information includes all the information printed when a
--1 checkpoint is taken, plus the search parameters, checkpoint interval,
-- I and keyboard polling frequency.

-- I The user should recognize that program efficiency and flexibility are
-- I affected by changing the checkpoint interval and polling frequency.
--I If checkpoints are recorded too often, the search process is slowed
-- I down, although less computing time is wasted should the program have
--F to be restarted from a checkpoint. If the number of calls to
-- I selectdigits before the keyboard is checked is made too low, the

program becomes very responsive to keyboard interrupts, but at a high
--I price, measured in terms of search efficiency.

-- 1 4. Procedure Overview

--I Procedure pdi prompts the user to determine the source of input.
-- I Entry calls are made to task search to begin searches. Illegal responses
-- I by the user cause the prompt to be redisplayed. After the
--F appropriate call is made to begin searching, an entry call to
-- synchronize is made to initiate monitoring of the keyboard while
--i searches proceed.

WITH numbers;
WITH text io;

146 CMU/SEI-90-EM-3

pdi.a

PROCEDURE pdi IS

-- Maximum length of input line
line_length : CONSTANT := 80;

-- Position of last character on input line
last : natural;
-- Flag indicating (if true) that a prompt for a user command must be output
repeat : Boolean := true;
--Input line entered by user
response string(l .. line-length);

BEGIN -- pdi

-- Determine input option from user

WHILE repeat LOOP

-- Assume no need to reprompt
repeat := false;

-- Prompt user and read response
textio.newline;
text io.put line

("Enter ""n"" for normal input from file ""input.dat""");
textio.put line

(" or ""r"" to restart from file ""checkpoint"": ");
textio.get line (item => response, last => last);

-- Interpret user response

IF (last - 1) THEN
IF (response(l) = 'n') THEN

-- Take search parameters from "input.dat"

numbers.search.process_normal_input.start;

ELSIF (response(l) = 'r') THEN

-- Begin search from checkpoint file "pdi.ckp"
numbers.search.dosearch.enterstartsearchfrom checkpoint;

ELSE

-- Invalid user input (unrecognized character); must reprompt
repeat := true;
text io.new line;

END IF;

ELSE

-- Invalid user input (>1 character entered); must reprompt
repeat :- true;
text io.new line;

END IF;

END LOOP;

--Begin monitoring keyboard for user request to enter commands
numbers.search.synchronize.start monitor;

END pdi;

CMU/SEI-90-EM-3 147

processnormaljnputbody.a

---- - - - -

--I TASK NAME: numbers.search.process_normal_input

--I ALGORITHM/STRATEGY: Search parameters are read from file and, for each
--I set, entry dosearch.enterstartsearch is called.

-- I NOTES: None.
-- I

WITH other io;

WITH text io;

SEPARATE (numbers.search)

TASK BODY process_normal_input IS

-- Input file
input : text io.file_type;
-- Order of PDIs to be sought
order : natural;
-- Radix of PDIs to be sought

radix : numbers.radixrange;
-- Length of PDIs to be sought
search_length : numbers.digitrange;

-- Exception raised for any error related to opening input file
file openerror : EXCEPTION;

BEGIN -- process_normal_input

SELECT

-- Wait for signal to begin reading file
ACCEPT start;

BEGIN

-- Open input file

text_io.open (file => input, mode -> text io.in file,
name -> "input.dat");

EXCEPTION

WHEN text io.name error =>
text io.new line;
text io.put_line ("Cannot find file ""input.dat""");
RAISE file_openerror;

WHEN text io.use-error =>
text io.new line;
textio.putline ("Cannot open file ""input.dat""");
RAISE file_open_error;

WHEN OTHERS ->

text io.new line;
text io.put line ("Problem encountered opening file " &

"w...input.dat") ...);

RAISE fileopenerror;

END;

148 CMU/SEI-90-EM-3

process_normainput_body.a

-- Process search parameters until end-of-file reached
WHILE (NOT textio.end of file(input)) LOOP

-- Read parameters
other io.natural io.get(input, radix);
other io.natural io.get(input, order);
other-io.natural-io.get(input, searchlength);
textio.skipline(file => input);

-- Call entry to begin search

search.dosearch.enterstart search (radix, order, searchlength);

END LOOP;

ABORT monitor_keyboard;

OR

TERMINATE;

END SELECT;

EXCEPTION

WHEN fileopenerror =>
textio.newline;
text_io.put line ("Terminating program");
text io.new line;
ABORT monitor_keyboard;

WHEN text io.data error =>
text_io.newline;
text_io.putline ("Error reading file ""input.dat"'");
textio.newline;
text_io.putline ("Terminating program");
text io.new line;
ABORT monitor_keyboard;

WHEN text io.end error =>
text_io.new_line;
text_io.putline ("End-of-file error reading file ""input.dat);
textio.newline;
text_io.putline ("Terminating program");
text io.new line;
ABORT monitor_keyboard;

WHEN OTHERS ->

text io.new line;
textio.put line ("Program error encountered");
textio.newline;
text_io.putline ("Terminating program");
text io.newline;
ABORT monitorkeyboard;

END process_normalinput;

CMU/SEI-90-EM-3 149

search~body.a

--I PACKAGE NAME: numbers.search
-- I
--I NOTES: For convenience in development and maintenance, all tasks are
-- separately compiled.

SEPARATE (numbers)

PACKAGE BODY search IS

-- Maximum length of input line
linelength : CONSTANT := 80;

TASK BODY processnormalinput IS SEPARATE;

TASK BODY monitorkeyboard IS SEPARATE;

TASK BODY synchronize IS SEPARATE;

TASK BODY dosearchtype IS SEPARATE;

END search;

150 CMU/SEI-90-EM-3

synchronizebody.a

-ITASK NAME: numbers.search.synchronize
-- I
--I ALGORITHM/STRATEGY: Wait for call to entry start-monitor, then start
--I task monitor_keyboard. Main part of task accepts calls to either
-- (1) keyboardinterrupt, followed by check_interrupts or
--I (2) checkinterrupts.

-- NOTES: Several TERMINATE options on SELECT statements are required to
--I assure proper termination under any reasonable sequence of events.

---- - -- -

WITH other io;
WITH text_1o;

SEPARATE (numbers.search)

TASK BODY synchronize IS

-- New time requested between checkpoints
checkpoint_interval : duration;
-- Position of last character on input line
last : natural;
-- New new number of invocations of do search.selectdigits between checks
-- for keyboard interrupt from user
new max_calls to select_digits : natural;
-- Flag indicating (if true) that a prompt for a user command must be output
repeat : Boolean;
-- Input line entered by user

response : string(l .. linelength);

CMU/SEI-90-EM-3 151

synchronizeo_b iy.a

BEGIN -- synchronize

-- Wait for signal to begin monitoring keyboard for user commands

ACCEPT start monitor;

-- Signal monitor_keyboard to accept user input

monitor_keyboard.begin_keyboardmonitor;

LOOP

SELECT

-- If user has requested service, calls are accepted first from

-- task monitorkeyboard, then from task do-search

ACCEPT keyboard_interrupt DO

SELECT

ACCEPT check interrupts (flag : OUT interrupt_flag_type;
interval OUT duration; max-calls : OUT natural) DO

repeat := true;
WHILE repeat LOOP

-- Prompt for user command
textio.putline

("Enter ""r"" to resume search,");
textio.putline

(H ""ls""lI for status check of search,");

text io.putline
(1 ""c"" to change checkpoint interval,");

("k"' to change keyboard polling" &

frequency, or");
text_io.put_line (" ""q"" to quit:");

-- Read user response

textio.get_line (item => response, last => last);

-- Interpret user command
IF (last = 1) THEN

IF (response(l) = 'r') THEN

-- Resumption of search requested

text io.new line;
flag := continue;
repeat := false;

ELSIF (response(l) = 's') THEN

-- Status check requested
flag := status;
repeat := false;

152 CMU/SEI-90-EM-3

synchronizebody.a

ELSIF (response(l) = 'c') THEN

-- Checkpoint interval change requested
LOOP

BEGIN

-- Prompt for and read new checkpoint interval
text_io.put_line

("Enter new checkpoint interval in" &
" seconds and tenths of seconds:");

other io.duration_io.get
(checkpointinterval);

text_io.skip_line;
textio.newline;
EXIT;

EXCEPTION

WHEN text io.data-error ->
text io.putline ("Illegal value");
textio.skip_line;

END;
END LOOP;
flag := checkpoint_change;
interval :- checkpoint-interval;
repeat := false;

ELSIF (response(l) - 'k') THEN

--Keyboard polling frequency change requested
LOOP

BEGIN

-- Prompt for and read new polling frequency
textio.putline

("Enter number of digits handled" &
" between polling of keyboard:");

other_io.naturalio.get
(new max calls to selectdigits);

text-io.skip_line;
text io.new line;
EXIT;

EXCEPTION

WHEN text io.data-error =>
text_io.putline ("Illegal value");
tex.-t-io.skip-line;

END;
END LOOP;
flag :- maxcalls change;
max-calls := newmaxcalls to selectdigits;
repeat :- false;

ELSIF (response(l) = 'q') THEN

-- Program termination requested
ABORT process_normalinput;
ABORT do search;

ABORT monitorkeyboard;
repeat := false;
text io.new line;

CMU/SEI-90-EM-3 153

synchronizebody.a

ELSE

-- Unrecognized command

text io.new line;

END IF;

ELSE

-- Unrecognized command

text io.new line;

END IF;

END LOOP;

END checkinterrupts;

OR

TERMINATE;

END SELECT;

SELECT

-- Wait for signal that operation is complete

ACCEPT clear-keyboard;

OR
TERMINATE;

END SELECT;

END keyboard_interrupt;

OR

-- If user has not requested service, check from task do-search
-- comes here
ACCEPT check-interrupts (flag : OUT interrupt flagtype;

interval : OUT duration; max-calls : OUT natural) DO

-- Reply that no service is requested

flag := nointerrupt;

END checkinterrupts;

OR

TERMINATE;

END SELECT;

END LOOP;

END synchronize;

154 CMU/SEI-90-EM-3

timekeeper.a

--I PACKAGE NAME: timekeeper

-- PURPOSE: To provide facilities for measuring and displaying elapsed time
--I and current time. Clients can get current time, reset timer,
--I output elapsed time since timer was reset, compute elapsed time,
--I and compare times for equality.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
-- DATE OF LAST REVISION: 8/9/90 VERSION: 1.7

--I NOTES: Package intended to provide services without additional functions
--I of standard package calendar.

WITH calendar;

PACKAGE timekeeper IS

-- Export type time from standard package calendar
SUBTYPE time IS calendar.time;

-- Export "-" function from standard package calendar
FUNCTION "-" (x : time; y : time) RETURN duration RENAMES calendar."-';

-- Export "=" funetion from standard package calendar
FUNCTION "=" (x : time; y : time) RETURN Boolean RENAMES calendar."=";

-- Provide 3pecial value of type time to indicate need for special
-- function and to allow procedure calls without corresponding parameter
uninitialized time : CONSTANT time :f calendar.time of(1901, 1, 1);

CMU/SEI-90-EM-3 155

timekeeper.a

--I PROCEDURE NAME: timekeeper.start time

--I PURPOSE: Reset timer and return current time.
-- I
--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
--I DATE OF LAST REVISION: 7/23/90 VERSION: 1.2

-- PARAMETERS:
-- t (out) current time

--I INPUT/OUTPUT: None.

-- ASSUMPTIONS/LIMITATIONS: None.

--I ERROR CHECKS/RESPONSES: None.

--I NOTES: Procedure elapsedtime can be called to print the elapsed time
--I since the timer was last reset.
-- I

PROCEDURE start time (t : OUT time);

156 CMU/SEI-90-EM-3

timekeeper.a

~--I
-- I PROCEDURE NAME: timekeeper.time_stamp

-- PURPOSE: Print time specified by input parameter or current time.

-- PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
-- DATE OF LAST REVISION: 7/23/90 VERSION: 1.1

PARAMETERS:
-- t (in) time to be printed or value of

of uninitialized time

-- INPUT: None.

-- OUTPUT: (To default file) time of parameter t or, if
-- t=uninitializedtime, current time. Month, day, year,
--I hours, minutes, and seconds are shown
-- (example: "January 22, 1990 at 12:15:10.25"). Output is

neither preceded nor followed by new lines.

ASSUMPTIONS/LIMITATIONS: It is assumed the output will fit on the
--I current line.

--I ERROR CHECKS/RESPONSES: None.

-- I
--I NOTES: If parameter is omitted, procedure outputs current time.

PROCEDURE time-stamp (t : IN time := uninitialized time);

CMU/SEI-90-EM-3 15-7

timekeeper.a

-- I PROCEDURE NAME: timekeeper.get_time

-- I
--I PURPOSE: Get current time.

-- PROGRAMMER: Lionel Deime. DATE WRITTEN: 5/21/90
-- DATE OF LAST REVISION: 7/23/90 VERSION: 1.1

-- PARAMETERS:

-- t (out) current time

-- INPUT/OUTPUT: None.

--I ASSUMPTIONS/LIMITATIONS: None.

--I ERROR t-HECKS/RESPONSES: None.

-- NOTES: None.

PROCEDURE gettime (t : OUT time);

0

158 CMU/SEI-90-EM-3

timekeeper.a

--I PROCEDURE NAME: timekeeper.printelapsed time

-- I PURPOSE: Print interval expressed in days, hours, minutes, and seconds.

--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
DATE OF LAST REVISION: 8/9/90 VERbiON: 1.2

-- I PARAMETERS:
-- elapsed-in (in) interval to be printed

--I INPUT: tone.

--I OUTPUT: (To default file) value of elapsed_in, expressed in days,
-- hours, minutes, and seconds. Labeled output is a minimum of 12

characters long and is neither preceded nor followed by new
--I lines. (Example: " day, 23 hours, 14 minutes, 26.1 seconds")

--I ASSUMPTIONS/LIMITATIONS: Parameter elapsedin is assumed to have a

-- I positive value.

--I ERROR CHECKS/RESPONSES: None.

-- I NOTES: None.

-- I

PROCEDURE printelapsed time (elapsed-in : IN duration);

CMU/SEI-90-EM-3 159

timekeeper.a

--I PROCEDURE NAME: timekeeper.elapsed time
--I
--I PURPOSE: Print elapsed time since timer was last reset (by start time).

-- I
--I PROGRAMMER: Lionel Deimel DATE WRITTEN: 5/21/90
-- DATE OF LAST REVISION: 7/22/90 VERSION: 1.1
-- I
--I PARAMETERS:

t (in) end of interval being timed or value
--I of uninitialized time

--I INPUT: None.

--I OUTPUT: (To default file) days, hours, minutes, seconds between time
-- timer was last reset, to time t, or, if t=uninitialized time, to

current time. Format is same as that of print_elapsedtime.

--I ASSUMPTIONS/LIMITATIONS: Parameter t assumed to be at least as late
--I as when timer was last reset. Output is unpredictable if start time
-- 1 never called.

--I ERROR CHECKS/RESPONSES: None.
-- I
--I NOTES: Timer is reset by call to start-time. If parameter omitted,
--I elapsed time to current time is printed.

PROCEDURE elapsed-time (t : IN time := uninitialized time);

END timekeeper;

160 CMU/SEI-90-EM-3

timekeeperbody.a

-- I PACKAGE NAME: timekeeper

-- I NOTES: None.

WITH other io;

WITH text io;

PACKAGE BODY timekeeper IS

-- Ranges for valid numbers of hours and minutes
SUBTYPE hour-number IS natural RANGE 0 .. 23;
SUBTYPE minute number IS natural RANGE 0 .. 59;

-- Constants in seconds
seconds : CONSTANT duration := 1.0;
one_day : CONSTANT duration 86 -6400*seconds;
one hour : CONSTANT duration := 3 600*seconds;
one-minute : CONSTANT duration := 60*seconds;

-- Starting time for timer.
time_0 : time :u uninitialized time;

CMU/SEI-90-EM-3 161

timekeeper-body.a

-- I PROCEDURE NAME: timekeeper.starttime
-- I
--I ALGORITHM/STRATEGY: Get time from calendar.clock.
-- I
-- NOTES: None.

- - - - - --- --- -- -

PROCEDURE start-time (t : OUT time) IS

BEGIN -- start-time

-- Reset timer to begin at current time and return time to caller.
time 0 :- calendar.clock;
t :- time_0;

END start time;

162 CMU/SEI-90-EM.3

timekeeper_body.a

-- =

--I PROCEDURE NAME: timekeeper.time_stamp
-- I
--I ALGORITHM/STRATEGY: Procedure calendar.split used to separate time
--I to be displayed into month, day, year, and seconds. Seconds broken
--I down into hours, minutes, and seconds by repeated subtraction.

--I NOTES: Two spaces are used for printing hours, minutes, and seconds,
--I even if only a one-digit number is required. Seconds are printed to
--I two decimal places.

PROCEDURE time_stamp (t : IN time := uninitializedtime) IS

-- Type to facilitate printing of months
TYPE month name IS (anuary, ebruary, arch, pril, ay, une, uly, ugust,

eptember, ctober, ovember, ecember);

-- Initial characters of months. Needed because initial capitals
-- are desired with other letters in month names lowercase.
month initial char : ARRAY (0 .. 11) OF character := ('J', 'F', 'M','A7, 'Mf ' Jf ,j , 'A', 'S', '0', 'N', 'D');

-- Package for month name I/O
PACKAGE month_io IS NEW textio.enumerationio (month-name);

-- Time to be printed
stamp-time : time;

-- Component values of time to be printed
year : calendar.yearnumber;
month : calendar.month number;
day : calendar.day_number;
hours : hour number;
minutes : minute number;
seconds : calendar.day_duration;

CMU/SEI-90-EM-3 163

timekeeper-body.a

BEGIN -- timestamp

-- Determine if time t or current time is to be printed
IF (t - uninitialized time) THEN

stamptime calendar.clock;
ELSE

stamp_time :=t;
END IF;

-- Break time to be printed into components
calendar.split (stamptime, year, month, day, seconds);

-- Output month
month :- month - 1;
textio.put (month initial char(month));
monthio.put(month-name'val(month), set => text io.lower case);
text-io.put (" ");

-- Output day, year, " at
other io.integerio.put(day, width => i);
text io.put (", ");
other _io.integer_io.put(year, width => 4);
text io.put (" at ");

-- Calculate and output number of hours
hours :- 0;
WHILE (seconds >- one hour) LOOP

seconds := seconds - onehour;
hours :- hours + 1;

END LOOP;
otherio.integerio.put (hours, width => 2);
text_io.put (":");

-- Calculate and output number of minutes
minutes := 0;
WHILE (seconds >= oneminute) LOOP

seconds := seconds - one minute;
minutes minutes + 1;

END LOOP;
other io.integerio.put (minutes, width => 2);
text io.put (":");

-- Output number of seconds
otherio.durationio.put (seconds, fore => 2, aft => 2);

END timestamp;

164 CMU/SEI-90-EM.3

timekeeper-body.a

-- - -
- PROCEDURE NAME: timekeeper.gettime

-- ALGORITHM/STRATEGY: Time returned from calendar.clock.

-- NOTES: None.

PROCEDURE get_time (t : OUT time) IS

BEGIN -- qet time

t := calendar.clock;

END get-time;

CMU/SEI-90-EM-3 165

timekeeper.body.a

-- PROCEDURE NAME: timekeeper.printelapsedtime

-- I
-- ALGORITHM/STRATEGY: Parameter elapsed_in is assigned to elapsed, and
--I number of days, etc., determined through repeated subtraction.

--I NOTES: Tests are made to assure grammatical output ("l hour," not
.. .."1 hours," etc.).

PROCEDURE printelapsed_time (elapsed-in : IN duration) IS

-- Seconds of elapsedin yet to be accounted for in terms of days, etc.
elapsed : duration;

-- Number of days, hours, minutes, and seconds so far found
-- in interval elapsed in
days : natural := 0;
hours hour number := 0;
minutes : minute number := 0;
seconds : calendar.dayduration;

166 CMU/SEI-90-EM.3

timekeeper_body.a

BEGIN -- print_elapsed_time

-- Save interval to be printed in elapsed
elapsed := elapsed_in;

-- Compute number of days in interval
WHILE (elapsed >= one_day) LOOP

elapsed := elapsed - oneday;
days := days + 1;

END LOOP;

-- Compute number of hours in interval
WHILE (elapsed >= onehour) LOOP

elapsed := elapsed - onehour;
hours := hours + 1;

END LOOP;

-- Compute number of minutes in interval
WHILE (elapsed >= one minute) LOOP

elapsed : elapsed - one minute;
minutes minutes + 1;

END LOOP;

-- Output number of days, if any
IF (days > 0) THEN

other io.integerio.put (days, width => 2);
IF (days = 1) THEN

textio.put (" day, ");

ELSE
text-io.put (" days, ");

END IF;
END IF;

-- Output number of hours, if any
IF (days > 0) OR ELSE (hours > 0) THEN

other io.integerio.put (hours, width => 2);
IF (hours = .) THEN

text-io.put (" hour, ");

ELSE
text-io.put (" hours, ");

END IF;
END IF;

-- Output number of minutes, if any
IF (days > 0) OR ELSE (hours > 0) OR ELSE (minutes > 0) THEN

other io.integerio.put (minutes, width => 1);
IF (minutes = .) THEN

textio.put (" minute, ");
ELSE

text_io.put (" minutes, ");

END IF;
END IF;

-- Output number of seconds
other io.duration io.put (elapsed, fore => 2, aft => 1);
textio.put (" seconds");

END printelapsedtime;

CMU/SEI-90-EM-3 167

timekeeperbody.a

-- PROCEDURE NAME: timekeeper.elapsed time
--I
-- i ALGORITHM/STRATEGY: Call print_elapsed_time to output length of
--I appropriate interval.

--I NOTES: None.
-- I

PROCEDURE elapsedtime (t : IN time := uninitializedtime) IS

BEGIN -- elapsed-time

-- Output length of interval from from time_0 to c'rrent time ,or
-- to time t
IF (t = uninitialized time) THEN

printelapsed_time (calendar.clock - time_0);
ELSE

print_elapsedtime (t - time_0);
END IF;

END elapsedtime;

END timekeeper;

168 CMU/SEI-90-EM-3

*Diskette Order Form

Machine-readable source code for the Ada program in this report (CMU/SEI-90-EM-3)
is available from the SEI either on a 5-1/4" diskette for IBM PCs and PC-compatibles or
on a 3-1/2" diskette for the Apple Macintosh. Each diskette also includes ASCII ver-
sions of the exercises from the text. To receive the distribution diskette, return this
form with $10.00 payment to:

Education Program Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Checks should be made payable to Carnegie Mellon University.

Please send: D- PC Disk Macintosh Disk

Send to:

Name

Address

Tel. No.

E-mail

UN I.I tjFD. _JJNCLAS&LLEfl-
$I CURITY CLASSIF ICA I ION Of T,..5 PAGE

REPORT DOCUMENTATION PAGE

to REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

eSECUITY CLASSIFICATION AUTNORITY 3 OISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

?b OCCLASSI FICA TION/OVNGRAOING SCHE OULE DISTRIBUTION UNLIMITED

N/A _

4 PER00M'I'G ORGANIIZATION REPORT NUM61ERIS) s. moNITORING OAGANIZA TION REPORT NUu9ERIS)

CMU/SEI-90-EM-3________________________________

6& NAMkE Of PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION
1I, opDIicableI

SOFTWARE ENGINEERING INSTITUTEI SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS lCity. State and 7IP Code) 7b. ADR

CARNEGIE MELLON UNIVERSITY ESD Dsty Si"at nd Zip Code)

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

So. NAME OF FUNOINGISPONSORING 8~b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZAT ION' (if applicablit)

SEI JOINT PROGRAM OFFICE j SEI JPO F1962885C0003

6c. ADDRESS lCity. State and ZIP Code) 10. SOURCE OF FUNDING NOS. _____________

CARNEGIE MELLON UNIVERSITY PROGRAM PRioJECr TASK WORK UNIT

SOTAEEGNEIGISIUEJOELEMENT NO. No. NO No.

PITTSBRGCH, PA 15213 N/A N/A NIA

I V TITLE I/nedude Secui,'ty ClasaficatioIU

Reading Computer Programs: Instructor's Guide and Exerciser

12. PERSONAL ALTHNR(SI

Lionel Deimel and J. Fernando Naveda
13&. TYPE OF REPORT 13b. TIME COVERED 1 ATE OF REPORT (,.. Mo.. Day) 15.G ON

FINL ROMTOAugust 1990 168

17 COSATI COOES 18i SUBJECT TERMS tCoMIn"~ Olt reverse iffteCeUdry and ideiatlf) by btocb numnbei

FIELD - GROUP I Sue G- code reading software maintenance
program reading programmer education

I Iprogram comrehension teaching programming
9 ABSTRACT iCoRCAW Oinu 04 Iei if At~toldT *And Identify by 64OCIF nRmbEir

The ability to read and understand a computer program is a critical skill for the soft-
ware developer, yet this skill is seldom developed in any systematic way in the educa-
tion or training of software professionals. These materials discuss the importance of
program reading, and review what is known about reading stragegies and other factors
affecting comprehension. These materials also include reading exercises for a modest
Ada program and discuss how educators can structure additional exercises to enhance
Vrcgram reading skills.

20 OISTRIBUTION/AVAILAO#LITY OF AeST RACT 21 ABSTRACT SECURITY CLASSIF ICATION

NCLASSIFIEOIUN1.1MITEO nSAMF AS RPT 0 oric USERS X3 UNCLASSIFIED, UNLIMITED

2a NAME OF RESPONSIBLE INDIVIDUAL 2bTELEPHONE NUMBER 22c OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF (412) 268-763 SEI JPO

DD FORM 1473,83 APR EDITION Of I JAN 73 IS OBSOLETE, UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGt

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

e he SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a modulo
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted. without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-1 (superseded by CM-19] EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engneering Project Course
CM-3 The Software Technical Review Process EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Coniurtion Management" Engineering Education
CM-5 Information Protection EM-3 Reading Computer Programs: Instructors Guide and
CM-6 Software Sfety ExercisesC CM-7 Assurance of Software Ouulity
CM-I Formal Specification of Software"
CM-9 Uni Testing and Anslysis
CM-10 Models of Software Evolution: ULf Cycle and Process
CM-1I Software Specifkations: A Framework
CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intelectual Property Protection for Software
CM-1S Software Development and Licensing Contacts
CM-16 Software Developmeni Using VOM
CM-17 User Interface Development!
CM-l8 [superseded by CM-231
CM-1 Software Requrements
CM-20 Formal Verification of Programs
CM-21 Software Project Maiagement
CM-22 Software Design Methods for Real-Time Systems*
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concufrent Programming
CM-25 Language and Sytem Support for Concurrent

Programming"
CM-26 Understanding Program Dependencies

