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ABSTRACT

A performance comparison and tradeoff study was conducted between eight

unique aircraft configurations for high performance light aircraft and remotely

piloted vehicles. These configurations included conventional tractor,

conventional pusher, canard, tandem-wing, joined-wing, flying-wing and 3-

surface designs, which were analyzed through the use of microcomputer-based

performance and lattice vortex programs. Actual experimental aircraft were

utilized as models which were geometrically -caled to a useful load of 600

pounds and given a common powerplant of 115 horsepower. The joined-wing,

tandem-wing and conventional pusher were found to exhibit enough

improvement over a conventional tractor configurat,,n to warrant serious

consideration for design selection. The performance and stability programs

were reasonably accurate predictors of aircraft performance when given actual

aircraft parameters and thus judged as reliable estimators of scaled aircraft

performance.

hooession For
NTIS GRA&I

DTIC TAB Q]
Unannounced 13
Justification

By
Distribution/

Availability Codes
..Ivail and/or

Dspc1



TABLE OF CONTENTS

I. INTRODUCTION .............................................................. 1

II. BACKGROUND ............................................................... 8

III. PROCEDURE ................................................................ 18

IV. POWER AVAILABLE ..................................................... 20

V. SCALING FACTORS ................. 26

VI. DRAG POLAR ... . ................. 30

VII. POINT PERFORMANCE PROGRAM ............................ 37

VIII. PERFORMANCE EQUATIONS .................................... 43

IX. PERFORMANCE COMPARISONS ...................................... 46

X. STABILITY DERIVATIVES .......................... 54

XI. CONCLUSIONS AND RECOMMENDATIONS .................. 61

APPENDIX A MODEL FOR THE CONVENTIONAL TRACTOR
CONFIGURATION WITH RETRACTABLE GEAR ................ 67

APPENDIX B MODEL FOR THE CONVENTIONAL TRACTOR
CONFIGURATION WITH FIXED GEAR ............................. 73

APPENDIX C MODEL FOR CONVENTIONAL PUSHER
CONFIGURATION WITH RETRACTABLE GEAR ................ 79

APPENDIX D MODEL FOR THE CANARD CONFIGURATION
WITH A RETRACTABLE NOSEGEAR ........ ..... 8

APPENDIX 'lEv MODELr FOR THrwnE TlANDEM-vi W 11NG

CONFIGURATION WITH LOW WING LOADING ................ 91

APPENDIX F MODEL FOR THE TANDEM-WING
CONFIGURATION WITH HIGH WING LOADING ................ 97

jv



APPENDIX G MODEL FOR THE JOINED-WING
CONFIGURATION WITH BICYCLE GEAR ....................... 103

APPENDIX H MODEL FOR THE 3-SURFACE
CONFIGURATION WITH RETRACTABLE NOSEGEAR ...... 109

APPENDIX I MODEL FOR THE FLYING WING
CONFIGURATION WITH BICYCLE GEAR ....................... 115

LIST OF REFERENCES ................................................... 121

INITIAL DISTRIBUTION LIST ............................................. 124



TABLE OF SYMBOLS AND/OR ABBREVIATIONS

An Area upon which an individual component drag area is based

AR Aspect ratio (main wing only)

c Specific fuel consumption, lbf/(ft-lb/sec)sec

c.g. Center of gravity

CL Coefficient of lift

CD Coefficient of total drag

CDi Coefficient of induced drag

CDI2 Induced drag coefficient in POINT performance program

cd Coefficient of drag for 2-dimensional airfoil

cfin Minimum coefficient of drag for 2-dimensional airfoil

C o Coefficient of parasite drag

CD~jt Cocfficient of drag based on a revelant area Ar other than
wing area

c.g. Center of gravity

CLa lift-curve slope, WCL/ax

CLtrim Coefficient of lift at trimmed condition

CL Coefficient of lift

cl Coefficient of lift for 2-dimensional airfoil

CI3 Rolling moment coefficient due to sideslip, aC/l[3

CMa Pitching moment coefficient due to angle of attack, aCMIDa

Cnl Yawing moment coefficient due to sideslip, KCn/a3

DIA Propeller diameter, ft

BHP Brake horsepower, manufacturer's specifications
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e Oswald efficiency factor

FAA Federal Aviation Administration

FG Fixed gear

Hf Final altitude

H Initial altitude

H/L Height/length

hp Horsepower

k Induced drag coefficient

KTAS Knots true airspeed

J Advance ratio

10OLL 100 octane low-lead aviation fiel!

lbf Pounds of fuel

Lc/-Lt Canard loading/Tail loading

L/D Lift-to-drag ratio (CL/CD)

mph Statute miles per hour

n Propeller speed, rps

NLF Natural Laminar Flow

nm Nautical miles

PA Power available, ft-lbs/sec

PR Power required, ft-lbs/sec

Re Reynolds number

RG Retractable gear

ROC Rate of Climb

rpm Revolutions per minute

rps Revolutions per second
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RPV Remotely piloted vehicle

S, Sref Wing area, ft2 (includes canard)

Sc Canard area

St Tail area

SFC Specific fuel consumption (lbf/BHP/hr)

V True airspeed , ft/sec

Vmax Maximum true airspeed , ft/sec or mph

Vx Velocity of maximum angle of climb

Vy Velocity of maximum rate of climb

Xac Neutral point

Xref Designated datum point in LINAIR

Wo Weight at beginning of leg

WI Weight at end of leg

W/L Wing loading or width/length

WL Landing weight

WTO Ta;.,eoff weight

ot Angle of attack

Sideslip angle

6 Col--ction factor for deviation from elliptical lift distribution

X. Scaling factor

1l Propeller efficiency

POO Freestream density of air

Ir Correction factor for deviation from elliptical lift distribution
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I. INTRODUCTION

In 1903, Orville Wright was credited with the first powered heavier-than-air

aircraft flight in a canard-configured airplane. However by 1920, the

conventional configuration of a main forward wing with an aft horizontal tail

surface had become dominant in aircraft design. The predominance of the

conventional configuration may be attributed to two historical factors. The

"dogfighting" requirements of World War I dictated that fighter aircraft be

highly maneuverable. Tailplanes provided agility whereas canards were overly

stable and prevented stalls and spins. Secondly, the heavy weight and size of

early aircraft engines severely limited the center of gravity locations for which a

canard-configured pusher aircraft could compensate [Ref. 1 :p. 81. The answer in

those days was to mount the engine in front and balance the aircraft with an aft

horizontal tail. Although some hybrid designs existed, none was successful

enough to be considered a breakthrough. World War II and the post-war years

provided some unique designs in the form of flying wings by Messerschmitt

(Me-163) and Northrop (YB-49), forward swept-wings by Junkers (Ju-287) and

multi-fuselaged aircraft such as the North American Twin Mustang (P-82), but

little else other than conventional aircraft for commercial and general aviation

use.

Decades passed without a highly successful non-conventional design until

Burt Rutan introduced a small two-place fiberglass aircraft with a canard-

configuration called the "VariEze" in 1975. The VariEze, due to its low cost,

simplicity of construction and high speed on low horsepower, resulted in

hundreds of orders for plans by experimental aircraft homebuilders and many



similar follow-on designs. With the advent and widespread use of composite

materials for aircraft construction, a large variety of aircraft configurations

appeared in kitplane and aviation trade magazines. Aircraft like the Beech

Starship, OMAC 1 and Avtek 400 touted the advantages of canards for

commercial application, as did the Gates-Piaggio Avanti for 3-surface aircraft

[Ref. 1 :p. 8]. Beechcraft claimed enhanced stability and stall resistance with its

canard versus conventional configuration as well as increased fivel efficiency,

improved lift-to-drag ratios and increased wing efficiency and effective span

with its tipsails or winglet rudders [Ref. 2:p. 9]. Piaggio claimed its Avanti

would fly 60 mph faster, take off 3490 pounds lighter and carry the same

number of passengers on 30 percent less horsepower than the Starship

[Ref. 3:p 37]. As will be seen later, both the canard and 3-surface

configurations compared very favorably against conventional twin-engine

business aircraft. Some other non-conventional aircraft, such as the Learfan, a

twin-engine pusher single-propfan configuration with a conventional wing

layout, failed more as a result of financing during FAA certification than as a

result of design [Ref. 4:p. 82].

The proliferation of exotic designs for the experimental aircraft builder and

for application to military remotely piloted vehicles (RPVs) could be attributed

to the ability to utilize layup molds and composite materials. Fiberglass cloth is

simple and inexpensive to work with and conducive to blended-wing bodies and

complex curves. Graphite fibers have provided greater stiffness and lighter

weight in structures previously constructed of aluminum and wood without the

complex joints and fasteners required of them.
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With such a panorama of design choices, how can a fledgling aircraft

designer go from "back of the napkin" sketches to full-scale prototypes without

the availability of wind tunnels, supercomputers and significant financial

backing? A small sample of possible configurations is shown in Figures 1 and 2.
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Likewise, how can an aircraft user equitably compare the presently available

designs with passenger loads varying from I to 4 or more, engines ranging

from 26 hp to 300+ hp, and wing areas and loadings also spanning from low to

high? One solution lies in the use of simple microcomputer-based programs for

predicting aircraft performance and handling qualities and of the concept of

scaling aircraft geometrically.

This thesis examined nine different aircraft configurations and made a

comparative study of the performance advantages and disadvantages of each.

The various configurations and the aircraft designs used for reference were:

" Conventional tractor retractable Lancair 235
* Conventional tractor fixed gear RV-4
" Conventional pusher Mini-Imp
• Canard LongEze
• Tandem-wing (Low W/L) Dragonfly
• Tandem-wing (High W/L) Q-200

• Joined-wing Ligeti Stratos
• rhree Surface Discovery
• Flying Wing Mitchell U-2

Descriptions of the full-scale aircraft may be found in the Appendix by

aircraft type. The reader may wish to briefly familiarize him or herself with the

aircraft design as the aircraft are referred to by configuration in the remainder

of the thesis.

Each of the configurations listed above has been successfully flown, but head

to head comparison was "fruitless" since "apples were not being compared to
apples." A trade study comparison of the full scalc aircraft was not legitimate

since the various aircraft used different powerplants, had unequal useful loads,

6



and incorporated unique design constraints. These aircraft were similar in one

regard, in that they were designed to carry one or two people at a high speed

(150+ mph) on a low horsepower engine (160 hp or less).

This study made the comparisons between the configurations by

standardizing the powerplant and scaling the aircraft listed above to carry the

same useful load. Although each of the full scale aircraft had been successful in

flight test, these scaled aircraft are untested except by computer prediction using

theoretical equations. These equations are the same equations studied in

introductory Aeronautical Engineering courses such as AE 2035 (Basic

Aerodynamics) and AE 2036 (Performance, Stability and Control). The

computer methods of determining the drag polar and thus the remainder of flight

performance characteristics are similar to the methods studied in AE 4323

(Flight Evaluation Techniques) and AE 4273 (Aircraft Design).

The conclusions of this study may be utilized as a starting point for an

aircraft designer with specific aircraft traits or requirements in mind. Once the

possibilities are narrowed down to a single configuration then the designer can

begin the task of optimization and compromise.

This report was prepared as a partial requirement for an Aeronautical

Engineering degree. The author, academic advisor and the U. S. Navy assume

no legal liability or responsibility for the accuracy of the performance

predictions or assumptions contained within this report. The aircraft utilized in

this study are based on information packets available to the general public and

performance reports published in aviation trade magazines. Because of the

unique designs of the representative aircraft, tradenames have been used for

reference and do not constitute an endorsement of any product or designer.
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II. BACKGROUND

A. AERODYNAMIC TRADEOFF STUDIES OF CONVENTIONAL,
CANARD, AND 3-SURFACE AIRCRAFT

In 1984, Kendall and Gates Learjet Corporation conducted a study using the

theorems of Prandtl and Munk to show that the 'ideal' minimum induced drag

could be achieved with a modern three-surface airplane in trim if equal and

opposite vertical loads were applied by the forward and aft trimming surfaces

[Ref. 5]. Kendall compared these results with the theoretical results for

conventional and canard-configured aircraft. For two-surface aircraft, the

minimum induced drag required a zero trim surface load. This could only be

attained at one aft c.g. location on the conventional aircraft and was not

attainable on the canard configuration without losing positive static longitudinal

stability. Therefore, two-surface aircraft must be designed for minimum

induced drag at some average c.g. location. Since canard uploads were generally

higher than tail downloads, the conventional configuration typically had lower

induced drags. Conversely, 3-surface aircraft using both fore and aft trimming

surfaces could trim for minimum induced drag at any c.g. location. Thus,

Kendall summarized that the 3-surface design could have better cruise efficiency

in a stable trimmed condition over a practical range of c.g. locations, followed

by the conventional design and lastly, the canard configuration [Ref. 5:p. 91.

In 1985, Selberg and Rokhsaz determined the theoretical induced and viscous

drag under trimmed conditions between conventional, canard and 3-surface

aircraft configurations [Ref. 6]. A three surface vortex lattice method was used

3



to trim the aircraft as well to predict the induced drag of each configuration. To

predict the inviscid and viscous characteristics, a vortex panel method was used

in conjunction with a momentum integral boundary layer method. The aircraft

were modeled after modern day 6-passenger business turboprops. The useful

load was constant at 1200 pounds with a maximum gross weight of

approximately 4600 pounds. The main wing area was 120 square feet with an

aspect ratio of 12. All configurations utilized the same vertical tail and the

same NASA MS(1)-0313 airfoil for all lifting surfaces. The top views of the

three configurations are shown in Figures 3-5.

I

Figure 3. Conventional 6-place Business Turboprop I Ref. 61
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Figure 4. Canard 6-place Business Turboprop [Ref. 61

__Li

Figure 5. Tri-surface 6-place Business Turboprop [Ref. 61
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The parameters varied included static marg ', stabilator surface area,

stabilator loading ratios, and aspect ratio. Aspect ratios were limited such that

they would be feasible for all-composit- lifting surfaces. For the 3-surface

design, the canard and tail had equal areas. The objective of the paper was to

analyze the behavior of the ratio CLtim/CDi over a range of static margins and

area ratios. CLtrim/CDi is the ratio of total lift coefficient at trim to the induced

drag coefficient and is the primary indicator of flight efficiency for range,

endurance and fuel economy and therefore of great interest to business-class

aircraft designers.

The study found that for the 3-surface configuration, the maximum value of

CLLrim/CDi occurred at approximately a ratio of the canard load to negative tail

load of 2.0. CL.trm/CD, degraded rapidly for canard to negative tail load ratios

less than 2.0. but the effect was not as severe for higher values as shown in

Figure 6.

140 TRI- SURFACE
S-l20f:. S * SI , 36 111

120 - ~ v 
12, Rc 'q 1

"
.

9

STATIC MAROIN

100 09

017

CLI

CO, 0 35

053

60 0 71

40J 0869

125

200 0.2 04 110 20 40 S00

L / /- L

Figure 6. Tri-surface Induced Drag Sensitivity to the Ratio of Canard to Tail
Loading and Static Margin [Ref. 6J
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Both the conventional and canard configurations were evaluated as a function

of tail or canard area as shown in Figures 7 and 8.

140- CONVENTIONAL

120-

210

60--- 60

200

200 02 04 0.6 06 10

STATIC MARGIN

Figure 7. Conventional Configuration Induced Drag, Sensitivity with Changes in
Tail Area and Static Margin [Ref. 6]

140- CANARD
S-120f1, 1~2, R,-9

120-

100

C

Go0 S. l,
- 360

264
216

40 - 160

201
00 02 04 06 06 t0

STA71C MARGIN

Figure 8. Canard Configuration Induced Drag Sensitivity with Changes ifl
Canard Area and Static Mlargin [Ref. 6]



A comparison of the graphs at a common static margin of 0.35 shows that

the conventional configuration had the highest CLtrim/CDi with a range between

85 and 125, whereas the canard had the lowest CLtrim/CDi ratio ranging from 66

to 96. Enlarging the tail size increased CLtrim/CDi because of the lower CL of the

tail and hence the lower induced drag. The 3-surface configuration CLtrim/CDi

ratio varied between 100 and 104 for canard-to-tail loadings of 1.0 to 4.0. The

study found that the 3-surface aircraft was inferior to conventional aircraft in

terms of induced drag for static margins less than 0.85. However, the 3-surface

configuration was limited to equal areas for the canard and tail surface area and

this may not have been the optimum ratio. The canard configuration had the

highest CLtrim/CDi for higher static margins, but this was not a factor since most

business class aircraft have a static margin between 0.25 and 0.43 [Ref. 6:p. 6].

For peak span efficiencies, a canard aspect ratio to wing aspect ratio of 1.5 to 2.0

was required. One should note that induced drag reduction is not the only

measure of improved flight efficiency. The goal of decreased total drag

reduction may not occur with decreased induced drag reduction, as parasite drag

will increase as the wing and tail areas are enlarged.

Additional tests were conducted using the natural laminar flow airfoil,

NASA NLF-0215F, and the NACA 23012 airfoil. The NLF airfoil raised the

overall CLtrim/CDi results whereas the NACA 23012 airfoil lowered the results.

In all cases, at normal static margins and lower stabilator aspect ratios, the

conventional configuration had the highest lift-to-drag ratio with those for the

canard and 3-surface about equal. The highest stabilator surface areas produced

the least induced drag for all configurations. However, Selberg and Rokhsaz

concluded the overall CLtrim/CDI was close enough between all the configurations

13



that configuration selection should probably be made from other considerations,

such as stability and control, safety, structural requirements and costs

[Ref. 6 :p. 9].

The Selberg and Rokhsaz study -' mpared the ratios of CLtrim/CDi for the

three configurations and predicted -' ., conventional configuration to be slightly

superior to the 3-surface confi. ion which was judged to be superior to the

canard configuration. The Ke. ,all study used theory to predict the minimum

induced drag would be attained with the 3-surface aircraft, followed by the

conventional aircraft and lastly the canard configuration. These studies were

similar, but differed in the parameters being optimized. The value of the

minimum induced drag may be not correspond to that for the minimum value of

CLtrim/CDi. Therefore, the studies were not comparative for configuration

selection.

B. COMPARATIVE STUDIES OF CONVENTIONAL, CANARD,

AND 3-SURFACE AIRCRAFT

A comparison conducted by a major aviation trade magazine between the

Piaggio Avanti, a 3-surface configuration shown in Figure 9, the Beech Starship,

a canard-configured twin turboprop shown in Figure 10, and several

conventionally-configured twin turboprop business-class aircraft tends to justify

the results of the two studies [Ref 7].

14



Figure 9. Piaggio Avanti [Ref. 8:p. 865]

L/'

/E

Figure 10. Beech Starship [Ref. S:p. 811
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Although the Starship has a maximum takeoff weight of 14,400 pounds and the

Avanti maximum takeoff' weight is 10,810 pounds, both aircraft have similar

payload-range characteristics and their cabin volumes are both roughly 500 cubic

feet In spite of the Avanti having a higher cruise airspeed of 391 KTAS versus

the Starship's 315 KTAS, the Avanti had a better specific range of 0.82 nm/lb of

fuel to the Starship's 0.55 nm/lb. In this comparison, the 3-surface

outperformed the two conventional twin turboprop aircraft in its class as well, as

shown in Figure 11.

FUEL MILEAGE vs. SPEED I
.9 BEECH SUPER KING AIR 300 0 TYPICAL CRUISE WEIGHTS -

B2.A00. PIAGGIO AVANT - CONSTANT ALTITUDE. VARYING POWER..S BEECH SUPER KING AIR 8200 9,0 IAGL . N T  
TOP POINT IS LONG RANGE CRUISE

EC8 - 11,00 LE.- - 00 z ALTITUDE IN 1,000 FT.
BEECH KNG AIR CIA I -H MAXIMUM CRUISE THRUST,I 850L PIPER CHE:YENNE

-. 401L-S. VARYING ALTITUDE
10.000 LB" BOTTOM POINT IS MAXIMUM SPEED

It,,, • -J% , , € ,. lkLEARJET 31

.. t - -... 13. . .500 LB I

25 _b__ _

BRITISH AEROSPACE 43 EC S HI
%. J~'STRAM 31 11. BEECH S'TARSHIP

D _jETSTREAMII~ -2,0L
{ .3 - - 14,000 L5. 12,000 LB. t

.2 CESSNA CITATION 2 BEECHJET
12.000 LB. 14,000 LB

S.1-----

0ii

200 250 300 350 400 4S0
SPEED.KTAS

Figure 11. Twin Turboprop Comparison Chart [Ref. 7:p. 75]
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This chart demonstrates that comparison of actual aircraft and prototypes

may be of as much usefulness to aircraft designers as pure theoretical studies. In

contrast to the Selberg and Rokhsaz study, the canard aircraft is quite equitable

with conventional aircraft in its class whereas the 3-surface Piaggio Avanti

significantly outperformed its competitors in fuel economy and speed for

turboprops. Therefore, this thesis utilized actual aircraft or prototypes that have

successfully flown for comparison in the 2-place aircraft category.

17



III. PROCEDURE

The number of variables affecting aircraft performance is enormous;

therefore a few parameters were held constant and others were limited. Since

the ultimate design specification of any aircraft is its useful load, this was held

constant at 600 pounds. This equated to two aircrew at 170 pounds each,

approximately 32 gallons of fuel and 50-60 pounds of baggage. This same useful

load would provide approximately 400 pounds of monitoring and remote control

equipment for an RPV. For four passengers or up to 1000 pounds of RPV

equipment, the same configuration performance values could be scaled

appropriately. The total wing areas fo, each aircraft ranged between 67-216

square feet and the gross weight varied between 1025 and 1575 pounds. Wing

area was defined as the total area of lifting surfrces, which included the canards

on the canard, 3-surface, tandem and joined-wing configurations.

Each aircraft configuration utilized the identical aircraft engine, and the

propeller efficiency was also common. A power available versus true velocity

curve at constant rpm was plotted for this engine and propeller combination and

used in the computer performance program POINT written by Dr. Frederick 0.

Smetana [Ref. 9]. Users may select any engine and propeller combination by

following this procedure.

The following performance parameters were computed for each scaled

aircraft and then compared with one another:

• Gross weight

• Flat plate drag area

* Parasite drag coefficient

18



• Maximum climb angle and speed

• Maximum climb rate and speed

* Maximum level flight speed

* Speeds for max endurance and max range

* Service and absolute ceilings

* Max range and endurance for a given fuel load

* Stability derivatives (CLcX, Cmz, Cl and Cn3)

The lift, moment, rolling and yawing coefficients were computed by the

lattice vortex program LINAIR by Dr. Ilan Kroo [Ref. 10]. This program

calculates the aerodynamic characteristics of multi-element nonplanar lifting

surfaces by solving the Prandtl-Glauert equation for inviscid, irrotational,

subsonic flow. Once LINAIR has solved the system of equations, it utilizes the

Kutta-Joukowski relation to compute the forces and moments acting on the

configuration. LINAIR is a simplified version of the lattice vortex program

demonstrated in AE 3501 (Advanced Aerodynamics).

The 3-view drawings of the aircraft on which the configurations are based

and the output from the POINT performance and LINAIR programs may be

found in the Appendix by aircraft type.

19



IV. POWER AVAILABLE

In order to equitably compare the various aircraft configurations, the power

available to each aircraft must be equivalent. The powerplant chosen for this

study was the Avco Lycoming Model O-235-L2A. This engine is very common

in the general aviation fleet, readily accessible to experimental homebuilders and

relatively inexpensive for use on RPV's or targets. The O-235-L2A is a

direct-drive, four-cylinder, horizontally-opposed, air-cooled engine. This engine

is supplied at the factory with an automotive type alternator and starter. The

O-235-L2A has a rated maximum continuous power of 118 hp at 2800 rpm at

standard sea level conditions using grades 100/10OLL aviation fuel. This engine

has an alternate rating of 115 BHP at 2700 rpm which was used for this study

[Ref. I1 :p. I]. This alternate rating was used since most aircraft owners tend to

use less than full power for enroute climb and cruise for increased engine life

and economy.

The power available curve which was used for all the aircraft configurations

was constructed by multiplying the brake horsepower by a propeller efficiency

as a function of velocity. A generic 62-inch diameter propeller was utilized with

performance data obtained for the two-blade Clark-Y section propeller 5868-9

which was tested and documented in NACA Report 640 [Ref. 12]. It should be

noted that many combinations of propeller diameter, pitch and shape could be

tested for each aircraft until the optimal performance is obtained. Therefore.

holding the propeller diameter and pitch constant in this comparison was

justified. The advance ratio (J) was tabulated as a function of velocity by holding
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7

the rpm and diameter constant at 45 rps and 62 inches respectively as shown in

the following equation:
(1)

n( x D IA (f)

Normally the engine rpm would increase as the aircraft increases velocity as

in a slight dive, but for this efficiency calculation, the study assumed the pilot

incrementally throttled back to hold rpm constant. The design chart for the

Clark-Y section, two-bladed propeller 5868-9 is shown in Figure 12. This

information may also be available from the propeller manufacturer for a specific

fixed-pitch or constant-speed propeller.

t ! .! _ - . , , . ..... . , ~ ... . .: .,. . . ..

.o, .. . . , - -- -
:7/1

/ _ - 7- 
- _ _ __ _

C ' 4 £ # ' 4) 6- ' .4 , /_ c . c 1; C !I'

Figure 12. Design Chart for Propeller 5868-9, Clark-Y section. 2 blades
IRef. 12:p. 5501

In order to obtain i for the 62-inch propeller, seven points were selected off

the 30' blade pitch curve. The 30' blade pitch was cho,,en since it gave the

highest propeller efficiency at airspeeds in the 180-190 mph range where the
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,:esign aircraft are expected to cruise. These seven points were replotted and a

3rd order polynomial curve was fitted to give an equation for 11 as a function of J

, shown in Figure 13.

y = 2.8682e-4 + 0.53671x + 1.0161xA2 - 0.71832xA3 RA2 = 0.998
1.0.

0.8 -- hr 99 99 9 9 9 9 9 9 9 4 - 9

0.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 13. Propeller Efficiency versus Advance Ratio

Now, with values of q as a function of J and therefore of velocity, the actual

power available (not counting accessories) could be calculated through the use of

a spreadsheet.

Therefore, the actual power available with this propeller was:

(2)

Power (f"l'b") = BlIP < 550O xil
avail h

These values were computed in Table I and were used to generate the pove

available versus velocity curve shown in Figure 14.
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Figure 14. Power Available versus Velocity

Figure 15 shows the same power available in the common units of

horsepower and miles per hour.
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Figure 15. Power Available versus Velocity
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The bold values in Table 1 were used in the POINT program to provide a

power available curve for computer-generated aircraft performance prediction.

Intermediate values of il were also calculated for velocities between 60 and

300 ft/sec in steps of 2 ft/sec for use in estimating maximum range and

endurance. These power available and propeller efficiency data were standard

for all of the configurations, although they slightly favored the aircraft designed

with cruise speeds of 180-190 mph. The aircraft designer using the format of

this thesis should select an advance ratio with peak efficiencies near the desired

cruise speed of his or her design.
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TABLE 1. POWER AVAILABLE DATA FOR THE 0-235 ENGINE
PropDia(ft)= 5.17 BHP= 115 rho/rho0= 1 N(rpm)= 2700

V (ft/sec) V (mph) J1 Pa (ft-lbs/sec) Pa (hp)
50.0 34.0 .215 .155 9831 17.9
60.0 40.8 .258 .194 12268 22.3
70.0 47.6 .301 .234 14813 26.9
80.0 54.4 .344 .276 17443 31.7
90.0 61.2 .387 .318 20138 36.6
100.0 68.0 .430 .362 22875 41.6
110.0 74.8 .473 .405 25634 46.6
120.0 81.6 .516 .449 28391 51.6
130.0 88.4 .559 .492 31127 56.6
140.0 95.2 .602 .535 33818 61.5
150.0 102.0 .645 .576 36444 66.3
160.0 108.8 .688 .616 38983 70.9
170.0 115.6 .731 .655 41413 75.3
180.0 122.4 .774 .691 43712 79.5

190.0 129.3 .817 .725 45859 83.4
200.0 136.1 .860 .756 47832 87.0
210.0 142.9 .903 .784 49610 90.2
220.0 149.7 .946 .809 51170 93.0
230.0 156.5 .989 .830 52492 95.4
240.0 163.3 1.032 .847 53553 97.4
250.0 170.1 1.075 .859 54333 98.8
260.0 176.9 1.118 .867 54808 99.7
270.0 183.7 1.161 .869 54958 99.9
280.0 190.5 1.204 .866 54762 99.6

290.0 197.3 1.247 .857 54196 98.5
300.0 204.1 1.289 .842 53240 96.8
310.0 210.9 1.332 .820 51872 94.3
320.0 217.7 1.375 .792 50071 91.0
330.0 224.5 1.418 .756 47814 86.9
340.0 231.3 1.461 .713 45081 82.0
350.0 238.1 1.504 .662 41849 76.1
360.0 244.9 1.547 .602 38096 69.3
370.0 251.7 1.590 .534 33802 61.5

380.0 258.3 1.633 .458 28944 52.6
390.0 265.3 1.676 .372 23501 42.7
400.0 272.1 1.719 .276 17452 31.7
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V. SCALING FACTORS

For each aircraft configuration, the useful load was held constant at a value
of 600 pounds. This equated to two aircrew at 170 pounds each, 32 gallons of

fuel at six pounds per gallon, and 68 pounds of baggage. An RPV with the same)

fuel load could carry over 400 pounds of monitoring and remote control

equipment and keep it airborne for approximately 5 hours.

The method of scaling each aircraft design was adapted from a 1950 study on

the use of models for flight testing and conversion of data to the full-scale

aircraft. The flight test engineer derived the scaling principles based on the

theory that the model reacts to all the same forces, both known and unknown, in

the proper magnitude, direction and sequence as the full-scale aircraft

[Ref. 13 :p 457]. The scaling factors used in this study were published in an

article for building scale model aircraft that could be used for flight test

[Ref. 14:p. 30]. The data collected could only be considered valid if the models

were dynamically similar to the actual aircraft to be flown. This includes the

propulsive power, the weight , and the distribution of the weight. Although a

1/5 scale model might have a wing span that is 1/5 as long as the full scale

aircraft, the scale weight is not 1/5 the full scale weight, but rather 1/125 since

the weight varies as the cube of the linear dimensions. Thus dimensional

conversions were required and symbolized by the use of X,the scaling factor,

as shown in Table 2.
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TABLE 2. SCALING FACTORS [Ref. 14:p. 34]
X Full Scale Linear Dimensions

Model Linear Dimensions

Model Design
Example for 1/5 Scale Model (h = 5) ~

Parameter Model Should Be: Full Scale Model
Linear Dimensions Full Scale/h Span: 35.8 Ft. 35.815 =7.16 Ft.
Area Full Scae/X 2  Wing: 174 sq. ft. 174/25 =6.96 sq. ft.
Volume, Mass. Force Full ScaleX 3  Gross WI. = 2645 lbs. 2645/125 = 21.16 lbs.
Moment Full Scale/x" Full Scale/625
Moment of Inertia Full ScaleX 5  Pitch: 1346 Slug ft.2  134613125 = 0.431 slug ft.2 j
Linear Velocity Full Scalef/- Max: 14 mph 144/2.24 = 64 mph
Linear Acceleratia., Same as Full Same as Full Scale
Angular Acceleration Full Scale x x Full Scale x 5
Angular Velocity Full Scale x1/3X Full Scale x 2.24
Time Full Scale//-. Full Scale/2.24
Work Full Scale/X4  Full Scale/625
Power Full ScaleX 3 5  Rated: 160 hp 160/280 = 0.57 hp
Wing Loading Full Scale/X 15.2 psi 15.2/5 = 3.04 psi
Power Loading Full Scale x/5 16.5Slbs./hp 16.5 x2.24 = 37 1bs./hp
Angles Same as Full Same as Full Scale
R.p.m. Full Scale 0X/ Rated: 2750 rpm 2750 x 2.24 = 6160 rpm

Full Scale Performance from Model Test
Example for 1/5 Scale Model (N = 5)

Full Scale Measured Derived
Parameter Should Be: Model Pert. Full Scale Pert.

Time Model x/ Model x2.24
Maximum Speed Model x/ 64 mph 64 x2.24 144 mph
Max. Climb Rate Model x,' T 344 1pm 344 x 2.24 770 1pm
Takeoff Distance Model xx 160 ft. 160x5 =800 ft.
Pitch, Roll &Yaw Rates Model 'IT 50'/sec. 50/2.24 =22

0/sec.

For this aircraft configuration study. 2, was not a given value, but was

determined for each aircraft. This study, scaled tiw, aircraft by useful load or

weight. Since weight goes as volume, it varies as the cube of X.The actual

aircraft useful load was known as well as the desired useful load of 600 pounds.

Therefore X was backed out as follows:

Example actual aircraft useful load: 400 lbs

(3)
3 Actual owful lod 400 2

(4)

= = 0.8736
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A spreadsheet was set up to properly scale all required parameters by taking

the cube root of the useful load ratio and using this X value as shown in Table 3.

Each aircraft had a different value of . which was used to scale the remainder of

the dimensions and parameters. These scaled dimensions were used in the

performance programs as required. The performance values were scaled only

for the sake of interest since these values are based on the aircraft's installed

engine and not the common powerplant.

The major concern with scaling Lircraft which cannot be accounted for easily

is the effect of the Reynolds number In this study, the difference between the

Reynolds number of the actual and of the scaled aircraft was less than 5% for

most of the aircraft. In the study's worst case where X equaled 0.74, the

Reynolds numbers were still quite similar and for Re between 2 and 4 million,

there is no significant difference in the etfects. For example, the Re for the

scaled joined-wing aircraft based on the chord length are:

(5)
0.00238 x 176.4 fV sec x2.54 ft 2.843E6Re C,.1 3.751 E-7 " .4 E

(6)
Re 0.00238x 176.4 ft/sec x3,.44 A 3.850E6

Smod el 3.751E-7

The lift and drag values for a Re of 2.84 million is not significantly different

from those at a Re of 3.85 million.
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TABLE 3. SCALED AIRCRAFT PARAMETERS BASED ON X

Conventional retractable tractor aircraft based on the Lancair 235

Aircraft Specifications X = 0.99
Actual values Scaled values

Wing span (ft.) 23.40 23.67
Wing chord root 4.33 4.38
Wing chord tip 2.38 2.40
Wing area (sq. ft.) 76.00 77.74
Wing airfoil section NLF-0215-F NLF-0215-F
Wing aspect ratio 7.20 7.20
Wing loading (GW) (lb./sq. ft.) 18.42 18.63
Effective horizonal tail span (ft.) 6.67 6.74
Horizonal tail chord root 2.17 2.19
Horizonal tail chord tip 1.58 1.60
Horizonal tail area (sq. ft.) 10.60 10.84
Horizonal tail airfoil section
Horizonal tail aspect ratio 4.19 4.19
Vertical tail area 8.60 8.80
X-section height incl canopy (ft) 3.25 3.29
X-section height (firewall) 2.50 2.53
X-section width 3.67 3.71
Length overall (ft.) 20.00 20.23
Fuel capacity (usable) 33.00
Empty weight (lb.) 820.00 848.28
Gross weight 1400.00 1448.28
Useful load 580.00 600.00
Wheel base (in.) 48.00 48.55
Nose wheel retractable

Advertised performance
Max speed sea level (mph) 225 223.73
75% cruise speed 8k' 21 0 208.82
Stall speed 55 54.69
ROC sl (ft/min) (GW) 1150 1143.52
Range at 75% (no reserve) nm 1 000
G limits at gross weight 9/-4.5
Horsepower 11 8 122.76
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VI. DRAG POLAR

The POINT performance program required an estimated drag polar as an

input in the form of CD = CDo + k CL2 . This study utilized the CDn method

as presented in Aircraft Performance, Stability and Control [Ref.9:p. 401 to

estimate the parasite drag coefficient CDO. The CDr method cannot account for

the increased profile drag experienced by the aircraft at large angles of attack

and therefore was not used to predict stall speeds.

In this method, the drag coefficient of each component is based on an area,

Art, which is appropriate for that component. Airfoil-surface areas are based on

their surface area whereas all other components are based on frontal cross-

section areas. For example, the drag of the vertical tail is based on the square-

foot surface area of the vertical tail as shown in a side view [Ref.9:p. 40]. The

reference area of the fuselage is its frontal cross-sectional area in square feet.

CDo is then the sum of the product of the component drags, CDE, and their

reference area, An, divided by the wing reference area as shown in the formula

below.

(7)

C - cD;
Mo S

The value of k was based on the Oswald efficiency factor and aspect ratio as

shown in the following equations:
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(8)
2k- C L

iceAR

where: (9)
e

The Oswald span efficiency factor, e, accounts for the non-elliptical lift

distribution and flow separation about the wing [Ref 15:p. 296]. The value of

1+ 8 was obtained from Figure 16 where 5 and T are correction factors for

deviations from elliptical lift distribution [Ref. 16 :p. 2-7]. The value of T was

not required.

1.2 6  I / -

1.22 1.08

.1.02

0 4 8 12

AR

Figure 16, Variation of I + 5 with AR [Ref. 9:p. 451
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For this study, aircraft dimensions were calculated as mentioned in the

previous section on scaling factors and entered into a spreadsheet. Values of

airfoil cdmin were obtained from references 17-19. The, value of cdmin used was

the minimum value for the airfoil found in the laminar "drag bucket." An

example of cdmin for several NACA 5-digit airfoils is shown in Figure 17, with

values of cdmin ranging from .0035 for the NACA 66(215)-416 to .010 for the

NACA 642-415 with the addition of standard roughness.

.032 1-. II I I I -II
'd .02e

E 0 2 012 9 x 1061 h I I

S41 2,1.5 .9-- - 1 ' 1
0 Y MACA 642.415

o.024 -3~Ar roughness 6

U0 ~ v ACA 66(215)-4~1
6 9ga XAA652-41.5 9

.020
S.~T~ TjI' I I

016 !
.02

*~~~~~~ 9.1 -------- ---- I 

0t ;:0 ~ p . I0
0 o I :9. .062

9 ;g.10 .10 .265 -. 02

• I -- , I -

.1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0
section lift €oeficlent, c

Figure 17. Sample NACA cd vs cl Chart [Ref. 19 :p. 161]
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In order to achieve flight test Cdmin as low as the values of NACA data for

the airfoil, the wing surface requires a professional glass-like finish free of bugs,

dirt and moisture. Post World War II NACA wind tunnel tests of manufactured

wing sections were found to exhibit minimum drag coefficients on the order of

0.0070 to 0.0080 in nearly all cases of NACA 2-, 3-, and 6-series sections

[Ref. 12 :p.170]. However, those tests were conducted on wings of metal with

numerous joints and rivets. Today's composite aircraft obtain exceptional

finishes through the use of molds and seamless layups of fiberglass and graphite

fabrics. Therefore, a minimum cdmin comparison was justified. Fuselage, tail

component and landing gear CDrc values were taken from Smetana Tables 5-2,

5 3, and 5-4 [Ref. 9:p.42-44] which were compiled from Hoerner [Ref. 20]. For

fuselages not listed in the Smetana tables, Nicolai [Ref. 16:p. 8-6] was utilized to

estimate CDn.

The spreadsheet calculations were tested for a known aircraft with a smooth

glassy finish and are shown in Table 4. The CDn method resolved an

equivalent flat plate drag area of 1.20 square feet with a "fullness factor" of 0.9.

The fullness factor was this author's estimation of the percentage of the

rectangular cross-sectional area filled by the frontal cross-section of the fuselage.

A perfectly-round fuselage one foot in diameter only fills up 78.54% of a one

foot square and thus has a fullness factor of .7854. A rectangular fuselage would

have a factor of 1.0. The equivalent flat plate area is the reference area for a flat

plate with a drag coefficient of 1, resulting in the same drag as the specified

aircraft.
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When the drag polar was entered into POINT with a power available curve

for the 118 hp 0-235 engine, the full-scale Vmax was predicted as 222 mph

wNhereas the actual aircraft had an advertised Vmax of 225 mph. This error of

less than 1.5% is considered optimistic considering the estimations made for

propeller efficiency, fullness and interference drag, but nonetheless, quite

acceptable. For this study, all drag polars were calculated using the minimum

airfoil cdmin values. Accordingly, the performance figures obtained were the

theoretical "best" values and probably better than those that would be obtained

from flight test of a typical aircraft. Figure 18 is a graph of the drag polar for

the scaled conventional configuration with retractable gear.

1.6' ~-

1.2 I
1 .0 ......
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Figure 18. Conventional RG Drag Polar

As test cases, the POINT performance results were compared with results

of the manufacturers' flight test for the Lancair 235 and the LongEze which both
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use the Lycoming 0-235 engine and have useful loads of approximately 600

pounds. Maximum speeds and ranges were within 1-2% of advertised

performance, but predicted rates of climb were approximately 10% low.

However, since all the configurations were tested with the same power available

curve and the same program, the results will contain the same error margins and

will not affect the comparative results.

Once Table 1 was tabulated, the aircraft scaled to the same useful load and

the drag polars determined for each aircraft, then sufficient information was

available to run the POINT performance program.
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TABLE 4. DRAG POLAR ESTIMATION

DRAG POLAR BUILDUP

Aircraft Conventional RG Input italicized data

Wing from NASA tech paper 1865 for the NLF-0215F airfoil
Cdmin = 0.0045 S= 77.7

Fuselage (ft.)
Length = 20.2 W/L = .183

Firewall height = 2.53 H/L = .125
Max height incl canopy = 3.3

Max width = 3.7
Firewall X-section (sq it) = 9.4

adjust for roundness factor o.- --
Adjusted X-section (sq ft) = 8.4

% for canopy = .30
Adjusted X-section (sq ft) = 11.0

from Smetana Table 5-2, cdn, = .063

Horizontal Tall fror Smetana Table 5-3, cdt = 0.0043

Vertical Tall from Smetana Table 5-3, cdr, = 0.0043

Component Cdr, A Cd-rA-
Wing .0045 77.7 0.35

Fuselage .0630 11.0 0.69
Hor. tail .0043 10.8 0.05
Vert. tail .0043 8.8 0.04
Total 1.13

Interference effects 0.06
Protuberance effects 0.03

Equiv. flat plate area (sum of CdLArr and effects) F1 .2-3

CDO= .01579 AR= 7.2
e= 0.938 k1 = .0158

k3 = .0471

CD= .0158 + 0471 CL^2
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VII. POINT PERFORMANCE PROGRAM

The POINT performance program was used to predict the aircraft

performance when under zero accelerations. This FORTRAN program was

originally written for a mainframe computer by Dr. Frederick 0. Smetana and

published as Reference 21 in 1984. Four years later, the programs were adapted

to run on IBM and finally Macintosh personal computers. The programs were

not particularly user-friendly, but are reasonably usable by undergraduate

students with basic concepts of aircraft performance. The following inputs were

required and have been calculated in previous sections:

" Power available vs velocity curve
* initial and final altitude
• Aircraft weight
• Wing Area
* Drag polar
- Coefficients of the drag polar

After the program was run, the following values were provided by the
output in POINT.TXT:

" Maximum and minimum level fight speeds at altitude
* Speed for maximum climb angle and maximum climb angle at altitude
" Maximum endurance speed at altitude
o Speed for maximum range at altitude
• Service and absolute ceilings
" Maximum rate of climb, power and time schedule vs altitude for minimum

time to climb from altitude Hi to altitude Hf
• Rate of climb, speed and power schedule vs altitude for most economical

climb from Hi to Hf
" Maximum rate of climb, power available and power required schedule vs

velocity at altitude Hi for velocities between the minimum and maximum
level flight speeds

* Lift and drag coefficients in all of the above cases
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The program was started by opening POINT.APL on the Macintosh. The

following is an example of the prompts and input entries for the test case aircraft

(Lancair 235). The values for the power available prompts were from Table 1

and the CDo and k values were obtained from Table 4.

enter 1 if an existing data set is to be processed
enter 0 if a new data set is to be created

0
IF YOU NEED HELP INTERPRETING THE FOLLOWING QUESTIONS

RESTART THE PROGRAM AND ENTER 1 AT THIS POINT. OTHERWISE,
ENTER 0.
0

enter the number of points on the power available curve
5

enter the power and velocity for point number I
0,0

enter the power and velocity for point number 2
22875,100

enter the power and velocity for point number 3
45859,190

enter the power and velocity for point number 4
54762,280

enter the power and velocity for point number 5
28944,380

if the engine is supercharged, enter 1. If not, enter 0
0

enter the reference altitude
0

enter the initial altitude
0

enter the final altitude
10000

enter the aircraft weight
1400

enter the wing area
76

enter the three coefficients of the drag polar
15 00,0.,.V 1 1

enter the exponent of the CDI2 term
2
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Once the exponent of the CDI2 (induced drag due to lift) term was entered,

the POINT program automatically executed. On the Macintosh SE 20, it took

about 1 minute until a blinking cursor reappeared. POINT.APL was then exited

by either closing or quitting. Table 5 is an example of the data file generated

(POINT.DAT) which was modified for additional aircraft by highlighting the

data to be changed and simply typing in the new data. This step avoided the

requirement to reenter the power available curve data or altitude data.

TABLE 5. POINT.DAT

5 0 0.OOOOOOOOOOOOOD+00
0.OOOOOOOOOOOOOD+00 0.0000000000000D+00
0.2287500000000D+05 0.1000000000000D+03
0.4585900000000D+05 0.1900000000000D+03
0.5476200000000D+05 0.2800000000000D+03
0.2894400000000D+05 0.3800000000000D+03
0.1580000000000D-01 0.0000000000000D+00 0.4710000000000D-01

0.2000000000000D+01
0.7600000000000D+02
0.1400000000000D+04 0.0000000000000D+00 0.1000000000000D+05

The location of particular values could be determined by comparing

POINT.DAT with the data input from POINT.APL. The performance output

for the POINT program was listed by opening POINT.TXT. If a printout was

desired, page setup was set to the horizontal position. A shortened version of the

output is shown in Tables 6 and 7.

QUICKPLOT was used to generate plots of the columnar output by

highlighting the desired numerical data, copying it, and then opening

QUICKPLOT and pasting the data in. QUICKPLOT then asked which column
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was to be plotted against what other column. If more than two columns were to

be plotted, the paste function was done again and the additional columns to be

plotted were selected. These values were plotted on the same graph as before.

Figure 19 is an example of the power versus velocity curve plotted with data

from Table 7.

X 04xl0
6.

0.

5.

0. 50. 100. 150. 200. 250. 300. 350

Velocity (ft/sec)

Figure 19. QUICKPLOT Power vs. Velocity

If any of POINT TXT was to be saved, it had to be saved under a new name

as each run of POINT.APL would overwrite the previous data and output.
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TABLE 6. POINT.TXT

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = O.O000OD+00 FEET

PA(FT-LBS/SEC) V(FT/SEC)
0.00000D+00 O.OOOOOD+00
0.22875D+05 O.10000D+03
0.45859D+05 0.19000D+03
0.54762D+05 0.28000D+03
0.28944D+05 0.38000D+03

AIRCRAFT CHARACTERISTICS

CD = 0.15800D.01 + 0.00000D+00*CL**2 + 0.47100D.01*CL** 0.20000D+01
WING AREA = 0.77740D+02 SQ.FT WEIGHT = 0.14483D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.OOOOOD+00 FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUDE

I I I I I iL" §

MINIMUM LEVEL FLIGHT SPEED = 0.72108D+02 FT/SEC
LIFT COEFFICIENT = 0.30109D--01 DRAG COEFFICIENT = 0.44278D+00

MAXIMUM LEVEl FLIGHT SPEED = 0.31817D +03 FT/SEC
LIFT COEFFICIENT = 0.154650D--0C DRAG COEFFICIENT =0.16926D-01

MAXiMUM CLIMB ANGLE= 0.65156D+01 DEG
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0.164-42D+03 FT/SEC

LIFT COEFFICIENT 0.57910D+00 DRAG COEFFICIENT = 0.31595D-01

VELOCITY FOR MAXIMUM ENDURANCE = 0.124921)43 FT/SEC
POWER FOR MAXIMUM ENDURANCE = 0.1 1398D+05 FT-LBS/SEC

LIFT COEFFICIE,NI= 0.10032Di01 DRAG COEFFICIENT = 0.63200D.01

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.16441D- 03 FT/SEC
LIFT COEFFICIENT= 0.57919D+0() DRAG COEFFICIENT = 0.316(X)D-01

SERVICE CEILING = 0.224501)405 FT
VELOCITY AT SERVICE CEILING = 0.21878D+03 FT/SEC

LIFT COEFFICIENT = 0.66693D(X) DRAG COEFFICIE-I = O.36750D 01

Afl S( Jf C -LIC 0-2422D.07 17
VELOCI'Y AT ABSOLUTE CEILING = 0.221 00D.,3 FT/SEC

LIFT COEFFICIEN-I'= 0.70497D-00 DRAG COEFF1CIEN1'= 0.392O.i)-(,I
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TABLE 7. POINT.TXT

MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.000o0D+O0 FTTO 0.10000D+04 FT

H(FT) R/C(FT/SEC) V(Fr/SEC) P(FT-LBS/SEC) CL CD
0.00000D+O0 0.21396D+02 0,20955D+03 0.495351)+05 0.3565 1D+00 0.21786D.01
0.50000D+03 0.20884D+02 0.20961 D+03 0.48682D+05 0.36158D+00 0.21958D.01
0.10000D+04 0,20376D+02 0,20967D+03 0,47839D+05 0.36672D+00 0,22134D.01

MAXIMUM R)C, POWER AVAILABLE, & POWER REQUIRED VS VELOCITY
AT 0.00000D-#O0 FT

R)C(FT/SEC) PA(FT-LBS/SEC) PRQ(FT.LBS/SEC) V(FT/SEC)
-0.74995D.09 0.15358D+05 0.15358D+05 0.721081)+02
0.23087D+01 0.17441D+05 0.14098D+05 0.80000D+02
0.49751D+01 0.20137D+05 0.12932D+05 0.90000D+02
0.74114D+01 0.22875D+05 0.12141D+05 0.10000D. 03
0.96526D+01 0.25634D+05 0.1 1654D+05 0.11000D+03
0.11715D+02 0.28392D+05 0.1 1425D+05 0.12000D+03
0.13603D+02 0.31127D+05 0.1 i426D+05 0.13000D-,-03
0.15315D+02 0.33819D+05 0.1 1639D+05 0.14(X)OD-03
0.16842D+02 0.36445D+05 0.12053D+05 0.15000D403
0.18174D-02 0.38983D+05 0.12662D+05 0.16000D-03
0.19298D+02 0.41413D+05 0.13463D+05 0.17000D+03
0.20199D+02 0.43712D-05 0.14457D.-05 0.180(0D4 03
0.20861D+02 0.45859D+05 0.15646D+05 0.190001)+03
0.21266D-02 0.47832D+05 0.17033D+05 0.20000D-03
0.21396D+02 0.49610D+05 0.18622D405 0.21 0OD-03
0.21233D+02 0.51170D+05 0.20418D+05 0.22000D+03
0.20759D+02 0.52492D+05 0 '2427D+05 0.23000Dt03
0,19953D+02 0.53554 D+05 0,.24656D+05 0.24000D,03
0,18796D+02 0.54333D+05 0.271 10D+05 0.25000D+03
0.17269D+02 0.54809D-05 0.29798D+05 0.26000D+03
0.15351D+02 0.54959D+05 0.32725D+05 0.27000D*03
0.13023D+02 0.54762D+05 0.35901 D+05 0,28000D*03
0.10264D+02 0.54196D+05 0.39331 D+ 05 0.29000D+03
0.70537D+01 0.53241 D+05 0.43025D+05 0.30000D+03
0.33717D-01 0.51873D+05 0 4699OD+05 0.31000D 0
0.140591).09 0.50-135D+05 0.55i35D,05 0.31 171). 03
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VIII. PERFORMANCE EQUATIONS

The output of the POINT performance program was utilized to make

additional performance predictions by use of a spreadsheet. The Breguet range

and endurance formulas as presented in Anderson [Ref. 22] were used to

calculate maximum range and endurance as shown:

(10)
R=L T I ln WED

C CD wL

(11)
3

E- =(2p S)!WL -CCD

The POINT performance program computed the velocities for the maximum

range ana endurance and the corresponding values of CL and CD were obtained

from POINT.TXT. However,the equations in the program do not account for

the decreased aircraft weight as the fuel is burned off. For a general aviation

aircraft or RPV where the fuel weight is only 10-15% of the gross weight, the

velocity change is minor. The value of il was obtained from Table I for the

respective velocities. The landing weight was the takeoff weight minus the

weight of the 32 gallons of fuel onboard. The range and endurance values

calculated were for a no-reserve fuel condition.

The specific fuel consumption of the Lycoming 0-235 is shown in Figure 20.

This value may be found in the owner's manual for different aircraft engines.
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AVCO L'IVOMING
AIRCRAFT ENGINE

POWER AND FUEL CONSUMPTION

ENGINE MODEL 0-235-C
COMPRESSION RATIO 6.5 i1

120 SPARK TIMING 25 STC
FUEL 80/87 OCTANE

110
MIXTURE SETTING FULL RICH

100 FULTRTL

90 CR H

80

70

060
La

0 -PROPELLER LOAD

S40

20 POELRLOAD

SEFULCONS
F .L (HROILE

70 SPEC FUEL CONS

1600 1800 2000 2200 24V.0 X00
EN.SA SPEED RPM

Figure 20. [Ref. 23]

The value of .59 lbs of fuel per BHP per hour was converted into consistent

units for the Breguet equations as shown below:

(12)

c- 0. 59 lb f BHP hr 2.8x 0 lb
BHP -h r 5 0 1b3 600 sec L2981 12sec

SC-C sec

Table 8 is an example of the spreadsheet for maximum range and endurance

based on the Breguet formulas.
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TABLE 8. RANGE AND ENDURANCE SPREADSBEET

Input italized data Givens:
Gal fuel= 32

Range Fuel weight (Ibs) = 1 92
From POINT.TXT: SFC = 0.59

Vmax range (ftlsec) = 164.41
Vmax range (mph) = 111.8 Wo = 1448

CL= 0.57919 W1 = i256
CD= 0.0316

From Table 1:
il= 0.633

c = 2.9798F-07
CL/CD= 18.33 [Range (sm) = 1049

Endurance
From POINT.TXT: p= .00238

Vmax endur (ft/sec) = 124.92
Vmax endur (mph) = 85.0 S 77.74

CL= 1.0032
CD = 0.0632

From Table 1:
1= 0.47

c = 2-9798E-07
CU/CD= 15.87 Endur (hr) 8.2
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IX. PERFORMANCE COMPARISONS

Following the procedures in the previous chapters, the performance of each

of the nine different configurations was computed. For all configurations, the

useful load was held constant at 600 pounds and the actual aircraft was scaled

dimensionally. Due to different designs, methods of construction and materials,

the gross weights varied from 1027 lbs for the joined-wing aircraft up to 1575

for the 3-surface aircraft. The aircraft that were scaled up from single-seaters

tended to be lighter than the 2-seaters by 100-300 lbs although there was some

overlap as shown in Figure 21.

3-Surface

Flying Wing

Joined Wing

Tandem (High W/L)

Tandem (Low W/L)

Canard

Conv Pusher

Conv FG I
Cony RG

0 500 1000 1500 2000

Gross Wt

Figure 21. Gross Weight Comparison
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The lightest aircraft, based on the Ligeti Stratos, made use of carbon fiber in

the spars, Kevlar® for shear webs and cockpit and fiberglass wings

[Ref. 23:p.49]. The cockpit seating was also very tight and significantly reclined

as can be seen in Figure 22.

T

Figure 22. Joined-Wing Aircraft Cockpit [Ref. 23]

The flying wing and conventional pusher aircraft were also scaled up from

single-seaters and featured reclined seating. The conventional pusher was

fabricated of fiberglass and sheet metal [Ref. 24] whereas the flying wing

fuselage was constructed of Dacron®-covered steel tubing with a wooden-ribbed

wing covered in Mylar® [Ref. 25]. The tandem-wing (high W/L) was a 2-seater

constructed of fiberglass which had a scaled gross weight of only 1109 pounds.

A similar design with low wing loading weighed in at 1372 pounds, the greater

weight of which was accounted for in part by its larger scaled wing area of 112

square feet to the scaled tandem's (high W/L) wing area of 67 square feet. As

expected, the lighter aircraft performance was significantly better in the range.

endurance and rate of climb comparisons. The relationship between the

configuration and its weight could be examined more closely in the future.
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The maximum velocity of the scaled aircraft was inversely proportional to

the equivalent flat plate area as shown in Figures 23 and 24.

3-Surface

Flying Wing

Joined Wing

Tandem (High W/L)

Tandem (Low W/L)

Canard

Conv Pusher

Cony FG

Conv RG

0 50 100 150 200 250

Vmax

Figure 23. Vmax

3-Surface

Flying Wing

Joined Wing

Tandem (High W/L)

Tandem (Low W/L)

Canard

Cony Pusher

Cony FG

Conv RG

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Flat Plate Area (sq ft)

Figure 24. Equivalent Flat Plate Area
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Not surprisingly, the two retractable gear aircraft had the top speed of 216

mph. However, the tandem-wing (high W/L) and joined-wing, with their

closely-faired and short fixed gear either on the wingtips or on the centerline,

were close behind at 205 and 193 mph respectively. The canard, 3-surface and

conventional FG all had exposed, but faired, main gear with either a retractable

nosewheel or a small tailwheel and topped out between 180-190 mph.

Some of the most significant differences could be seen in the range and

endurance comparisons where L/D, rl and Wto were primary determinants. The

range comparison is shown in Figure 25.

3-Surface

Flying Wing

Joined Wing

Tandem (High W/L)

Tandem (Low W/L)

Canard

Conv Pusher

Cony FG

Conv RG

200 400 600 800 1000 1200

Range (sm)

Figure 25. Range Comparison

The conventional pusher configuration flew 1169 sm before fuel exhaustion,

a full 11-15% improvement over its closest competitors at 1013-1049 sm. The

convcntional pusher had neither the lowest equivalent flat plate drag area nor the

lowest gross weight, but the combination of reasonably low values of the above
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parameters along with a higher r1 due to its higher efficiency cruise speed put it

well in front. The aircraft with the highest equivalent flat plate areas did the

poorest in range. Their high parasite drag coefficient coupled with low

propeller efficiency at lower speeds gave them maximum ranges that were only

60-70% of the conventional pusher. Although the flying wing had an (L/D)max

of 21.6 to the conventional pusher's (L/D)max of 20.2, the flying wing's

propeller efficiency was only .32 compared to the conventional pusher's 11

of .55.

The comparative endurance chart is shown in Figure 26.

3-Surface

Flying Wing

Joined Wing

Tandem (High W/L)

Tandem (Low W/L)

Canard

Cony Pusher

Conv FG

Conv RG 4
0 5 10

Endurance (hrs)

Figure 26. Maximum Endurance comparison.

In this case, the maximum value of (L/D)3/2 was the dominant parameter in

the endurance equation and favored the configurations with the larger wing areas

such as the flying wing (216 ft2), and the joined-wing (148 ft2). Although the

conventional pusher had only 86 square feet of wing area, its higher rl of .40
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exceeded the previous aircraft il values of .23 and .27. Once again, the fixed

gear aircraft faired poorly by comparison.

The rate of climb comparison was a measure of excess power available over

power required. Since all the configurations had the same power available, the

dominant parameters were weight and the coefficients of lift and drag as shown

in the following equation:

(13)

2 W3CD2  1
R= 3 oC 3/2

P.SCL CL /CD

The joined-wing and tandem-wing (high W/L) both topped 1600 feet per

minute with the conventional pusher close behind at 1560 feet per minute as

shown in Figure 27.

3-Surface

Flying Wing

Joined Wing

Tandem (High W/L)

Tandem (Low W/L)

Canard

Conv Pusher

Conv FG

Cony RG

0 500 1000 1500 2000

ROC (ft/min)

Figure 27. Rate of Climb comparison.
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The service ceiling, defined as the altitude at which the aircraft can still

maintain a 100 foot per minute rate of climb, was also a function of excess

power available and the rankings between the aircraft were comparable to the sea

level rate of climb. Since all of the aircraft easily exceeded 14,000 feet, or the

altitude where the pilot must wear an oxygen mask and the engines are normally

turbocharged, these comparisons were not judged significant.

The numerical values between the scaled aircraft are shown in Table 9.
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TABLE 9. PERFORMANCE RESULTS

Configuration Flat Plate Area (sq ft) Gross Wt (Ibs) Vmax (mph)
Conventional RG 1.23 1448 216
Conventional FG 2.28 1475 181
Conventional pusher 1.28 1 250 216
Canard 2.02 1293 190
Tandem (Low W/L) 2.36 1372 176
Tandem (High W/L) 1.44 1109 205
Joined wing 1.80 1027 193
Flying wing 2.87 1200 170
3-Surface 1.97 1575 191

Configuration Range (sm) Endurance (hrs) ROC (ft/min)
Conventional RG 1049 8.2 1290
Conventional FG 641 5.0 870
Conventional pusher 11 69 10.5 1560
Canard 821 8.2 1220
Tandem (Low W/L) 711 8.0 1034
Tandem (High W/L) 1013 9.6 1614
Joined wing 1015 12.4 1674
Flying wing 766 10.8 1170
3-Surface 785 7.3 980

Configuration Service ceiling (ft) Vx (mph) Vy (mph)
Conventional RG 22,450 112 143
Conventional FG 16,587 102 122
Conventional pusher 26,878 103 140
Canard 23,588 94 124
Tandem (Low W/L) 23,554 85 114
Tandem (High W/L) 26,000 99 133
Joined wing 30,306 84 123
Flying wing 28,026 74 108
3-Surface 21,460 98 125
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X. STABILITY DERIVATIVES

Although aircraft performance may be the driving factor behind its design,

no design is complete without an estimate of the aircraft stability derivatives and

its handling characteristics. These dimensionless values are not necessarily

comparative as far as "best and worst," but the values should represent acceptable

handling qualities, which can be compared to those for certified aircraft in its

class.

The lattice vortex program, LINAIR, was used to estimate the some of the

stability characteristics of the configurations. LINAIR can also determine the

appropriate wing twist for a new design, expected performance for a given wing

geometry and proper angles of incidence for tail and canard surfaces in the hands

of an experienced designer [Ref. 10:p.2]. LINAIR calculates the aerodynamic

characteristics of multi-element nonplanar lifting surfaces by solving the Prandtl-

Glauert equation for inviscid, irrotational, subsonic flow. Once LINAIR has

solved the system of equations, it utilizes the Kutta-Joukowski relation to

compute the forces and moments acting on the configuration. LINAIR is a

simplified version of the lattice vortex program demonstrated in AE 3501

(Advanced Aerodynamics).

As a test of this program's usefulness, the lift and moment coefficients

(CL, CM) were computed over an angle of attack, x , ranging from 0' to 8' and

the rolling and yawing coefficients (CI and Cn) were computed using a sideslip

angle, 03, of 2. Each aircraft was plotted in x-y-z coordinates according to the

LINAIR instructions and the displayed geometry was checked for correct

representation. Full-scale blueprints proved advantageous over page-sized
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drawings for plotting coordinates. Most of the configurations were plotted from

enlarged photocopies or sketches and the fuselages may have not been modeled

with enough detail for dependable side forces. Special care had to also be used in

panel distribution in order to prevent downstream vortices from crossing over

control points of other surfaces and producing erroneous results [Ref. 10:p. 29].

The value of CLex was determined by calculating ACL, dividing by Aoa and

converting to radians as shown below:

(14)
ACL 180

Obtaining the value of CM was a little more involved as CMoa was calculated

about the nose of the aircraft when Xref was set to zero. This value of CMco

was corrected to the c.g. of the aircraft, where CMcx is normally measured, by

the relationship:

(15)

CC = +CM ,,. C vo C!. -

where:

(16)
ACM

Ac

and:

(17)
s

eruf  b I,:

If the location of the c.g. of the aircraft was known beforehand, then the

value could be entered into LINAIR as Xref and the computer would complete

the above steps. A center of gravity location can be approximated by estimating
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the aerodynamic center of the aircraft (the neutral point) and placing the c.g.

3-6 inches in front of Xac [Ref. p. 60-62]. The actual c.g. must be more

accurately calculated before the advanced design stage.

The values of Cnp and Clp were calculated for a AP of 20. This increment

was sufficient because of the linear assumption. To translate CnP3 to the c.g. of

the aircraft, the following relationship was used:

(18)

Cn 00-&- =C 0 + Cy be

where: (19)
AC,

C n  
-

and: (20)
AC

A3

Once again, knowing the c.g. position prevented this moment transfer from

having to be performed.

The static margin was determined by the following formula:

(21)
CM,

S.M.=--

since: (22)

CM, = CL(h - h,)

where: (23)

h -h = s.m.

The configuration models as used are shown in Figures 28-33 and the

calculated values for CLa, CMcx, C11, and Cnp are shown in Table 10.
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,

Figure 28. Model of Conventional Configuration

TI

Figure 29. Model of Canard Configuration

Figure 30. Model of Tandem-Wing Configuration
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Figure 31. Model of Joined-Wing Configuration

Figure 32. Model of Flying-Wing Configuration

Figure 33. Model of 3-Surface Configuration
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TABLE '0. STABILITY DERIVATIVES (per radian)

CLa CMx CnP3 CI3 S.M.

Conven 3.60 -.693 .264 -.102 .19

Tandem 3.75 -.921 .096 -.011 .25

Canard 5.35 -1.20 .175 -.016 .22

Joined 4.00 -.368 .265 -.007 .09

Wing 4.77 -2.60 .013 -.094 .54

3-Surf 5.06 -.594 .080 -.021 .12

Some static stability parameters of a variety of aircraft for comparison are

shown in Table 11.

TABLE 11. STAb:LITY DERIVATIVES OF VARIOUS AIRCRAFT

[Ref. 2 7:p. 281

Cessna Twin let Lear F - 4 Boeing
172 Engine Trainer ,let Fiuhter 747

(pur radian)

Cm . -. 89 -2.OS -. 6 -.66 -.098 -1.45

CLo, 4.6 6 2" 5.0 5.0,: 2.8 5.67
CL,

e .63 .58 .39 .4 .24 .36
CD

oe .06 0.0 0.0 0.0 -.14 0.0
C

oe -1.28 -1.9 -.9 -.98 -.322 -1.4
C &

-.089 -. 13 -. 14 -. 173 -. 156 -. 281
Cl

5r .0147 .0087 .03 .014 .0009 0.0
C n

.065 .12 .16 .15 .199 .184
Cn- Aor -.0657 -. 0763 -. 11 -..071 072 -.113
C,,

I CV -.31 -. -94 1 .73 -.655 -1.08
Cv

(r .I " 1-4 .2_ _ .14 .124 .179
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As can be seen above, the lift-curve slope, CLa, for all the configurations is

within the range for general aviation aircraft. The pitching moment due angle of

attack, CMcx, should be negative iii order to be longitudinally stable. Individual

components, such as the wing or fuselage alone, may be positive, but the

horizontal tail must make the entire aircraft negative. Once again, the values for

all the configurations were in the expected range. The yawing coefficient due to

sideslip angle, C1l3, is an indication of direction stability and is sometimes

referred to as "weathercock stability." For a stable aircraft, CnP3 must be

positive. The restoring value increases as the value of CnP increases. These

values appeared reasonable for all the configurations. The final stability

derivative examined is the rolling moment due to sideslip angle, Cl3, which is

sometimes known as the dihedral effect and is normally negative.[Ref.28:C. 2]

The joined-wing, tandem-wing and the canard configuration had low values of

C11 which may be duc to less than adequate modeling of the wings by creating

too much anhedral or too little dihedral of the wings and canards. These

configurations should be studied more closely for sensitivity to panel

discretization and for improvement of dihedral effect. The static margin, s.m.,

is a measure of the longitundinal static stability of the aircraft with respect to

incidence disturbances and is the distance between the c.g. and the neutral point

in units of the mean aerodynamic chord. LINAIR usz s the average chord, cref,

rather than the mean aerodynamic chord, mac. In these test cases, the static

margin was a function of where the c.g. was estimated to be.
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XI. CONCLUSIONS AND RECOMMENDATIONS

The results from the microcomputer programs used in the study indicate a

degree of accuracy sufficient enough to be used in preliminary aircraft design

and for academic instruction. To ensure full use of the programs' capabilities

however, a one week short course integrated into a beginning level aeronautical

engineering course should be offered. Self-instruction from the user manual is

possible, but very time-consuming and error prone. Perhaps an updated version

of the programs could be written to make them more "user-friendly." The

POINT performance program is one of several microcomputer programs

utilized extensively in Aeronautical Engineering courses at the University of

North Carolina, and LINAIR is used by students at Stanford University. These

two programs, since they are operable with both Macintosh and IBM-compatible

PC's, should be useful in the following Aeronautical Engineering courses:

POINT

AE 2035 (Basic Aerodynamics)

AE 2036 (Performance, Stability and Control)

AE 4323 (Flight Evaluation Techniques)

AE 4273 (Aircraft Design)

LINAIR

AE 2035 (Basic Aerodynamics)

AE 3501 (Advanced Aerodynamics)

AE 4273 (Aircraft Design)
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Since the student may purchase the performance programs for the price of a

textbook, they would have use of the programs after graduation. LINAIR is

more expensive, about $1000, and probably would be limited to academic

departments and actual aircraft designers. Granted, more elaborate software

exists for the VAX® and mainframe computers which are more accurate and

operate considerably faster, but these programs are significantly more complex

to learn and use, and are well out of the price range of stt'ients.

For aircraft design, step one has usually been selection of a particular

configuration, followed by numerous iterations to estimate the aircraft weight,

wing area, power required, etc. Because of the amount of calculations that had

to be done, all too often the conventional configuration has been the only

configuration examined. Through the use of simple PC-based programs such as

POINT and LINAIR, rough performance estimates and handling characteristics

can be computed, allowing other configurations to be examined as well.

Following the procedures in this study, the aircraft designer can quickly do

tradeoff studies between propeller pitch, horsepower, weight and equivalent flat

plate drag area and their effect on performance. The use of scaling factors

enables quick comparisons to presently flying aircraft in the design's category.

What Burt Rutan has done for the canard configuration and Molt Taylor

with the conventional pusher, has yet to be achieved for the 3-surface, tandem or

joined-wing configuration. although several successful designs are in the air now.

These three configurations share the attribute of stall-proof approaches when

properly designed. The 3-surface Avanti has proven itself as a true contender in

the business class turboprop category as shown in the Aviation Week and Space

Technology comparison. Scaled Composites, Inc., has tested the concept of a
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cross between the 3-surface and tandem-wing configuration with its AT 3 shown

in Figure 28 [Ref 29 :p. 45].

V 4,F

Figure 28. Advanced Technology Tactical Transport AT 3 [Ref 29:p. 45]

When one looks at the overall results of this thesis, the configuration with the

most potential, and granted, the most risks, is the joined-wing configuration. In

the comparative performance studies, the joined-wing was the lightest, had the

greatest endurance and rate of climb and was competitive in every other

category. Since compromise is a necessary part of aircraft design, an aircraft

that does well in every category allows the greatest flexibility f(" optimization.

The joined-wing design allows for lighter wings and spars because of its

structural sturdiness, and the fuselage can be designed into the optimal elongated

egg shape for minimal fuselage drag at low Mach numbers. A thumbnail sketch

of a possible joined-wing/3-surface configuration is shown in Figure 29.
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UNITY CONCEPT

S 95.4 sq ft
GW 1140 Ibs

Vmax 230 mph
Range 1540 sm
Endurance 13 hrs
ROC 1920 fpm

Figure 29. Possible Joined-wing/3-surface Configuration

Presently, current work on joined-wing configurations is being done by Julian

Wolkovitch who claims reduced transonic and supersonic drag and improved

area ruling on high Mach aircraft as well IRef. 8:p. 851.

Follow-on studies to this thesis could proceed in two directions. First is the

theoretical direction, which would use the same criteria of this thesis, but parallel

that of the Selberg and Rokhsaz study by designing the configurations with the

same generic fuselage. main wing and gross weight. This study would require

extra attention in the area of static stability and handling qualities, since the

theoretical designs would unproven in actual flight test. The other course vould
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be along the lines of flight test, in that the student would input the weight, power

and dimensional data for an actual experimental aircraft and run the programs

for their predictions of flight performance. The student then could arrange to

fly with the pilot and collect flight performance data as learned in AE 4323 and

do comparisons with the computer output to test the accuracy of the programs.

Of the nine configurations studied in this thesis, at least six can be found nearby

in California with a high likelihood of owner cooperation. The model for the

joined-wing aircraft has been successfully flown in Australia and a two-place

version may be in the works, but flight test of this and the flying wing model is

unlikely due to lack of availability.

The challenges in this thesis were finding that little information could be

found in aircraft design books relating to non-conventional configurations. How

is the aspect ratio defined for a tandem-wing or joined-wing aircraft? How does

one define the wing reference area for 3-surface aircraft? Tables of drag

indexes often overlooked V-tails, rudderons and winglets. Some of the airfoils

had a reflex flap which deflected upward slightly in cruise for decreased induced

drag, but airfoil wind tunnel data did not account for it. In short, more research

data needs to be tabulated for unconventional configurations. Along these lines,

the U.S. Naval Research Laboratory is developing the Low Altitude/Airspeed

Unmanned Research Aircraft (LAURA). This RPV consists of a modular

baseline fuselage designed to accept a variety of wings with low Reynolds

number (LRN) airfoils and various combinations of tails. LAURA is designed

for the shipboard environment which includes stowage, launch and recovery

parameters, salt water intrusion, and an assortment of autonomous maritime
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missions. Some of the possible configurations include the hinged-wing, tandem-

wing, twin boom and joined-wing as shown in Figure 30. [Ref. 30]

-.-7 .. . --.-

HINGED WING

TANDEM WING

TWIN BOOM JOINED WING

Figure 29. LAURA Configurations [Ref. 301

In conclusion, the conventional configuration is hard to surpass for

simplicity and loA risk, but for specialized mission performance and optimal

performance, all configurations should at least be considered.
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APPENDIX A MODEL FOR THE CONVENTIONAL

TRACTOR CONFIGURATION WITH RETRACTABLE GEAR

line i, modeld 235

6'1" 6'7"

For caw of rranspOnal n
10 or from the Airport rthe out

6., *7v dminr itt denk~ndrng Il, snodei - boird wing panels ire ecrrih
_____ remorg abfr Att~ch boltsare

o ()0 reacherd from the seat esl

230-____________________
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TABLE A. 1. SCALED PARAMETERS BASED ON X FOR THE

CONVENTIONAL RG

Conventional retractable tractor aircraft based on the Lancair 235

Aircraft Specifications X = 0.99
Actual values Scaled values

Wing span (ft.) 23.40 23.67
Wing chord root 4.33 4.38
Wing chord tip 2.38 2.40
Wing area (sq. ft.) 76.00 77.74
Wing airfoil section NLF-0215-F NLF-0215-F
Wing aspect ratio 7.20 7.20
Wing loading (GW) (lb./sq. ft.) 18.42 18.63
Effective horizonal tail span (ft.) 6.67 6.74
Horizonal tail chord root 2.17 2.19
Horizonal tail chord tip 1.58 1.60
Horizonal tail area (sq. ft.) 10.60 10.84
Horizonal tail airfoil section
Horizonal tail aspect ratio 4.19 4.19
Vertical tail area 8.60 8.80
X-seclion height incl canopy (ft) 3.25 3.29
X-section height (firewall) 2.50 2.53
X-section width 3.67 3.71
Length overall (ft.) 20.00 20.23
Fuel capacity (usable) 33.00
Empty weight (lb.) 820.00 848.28
Gross weight 1400.00 1448.28
Useful load 580.00 600.00
Wheel base (in.) 48.00 48.55
Nose wheel retractable

Advertised performance
Max speed sea level (mph) 225 223.73
75% cruise speed 8k' 210 208.82
Stall speed 55 54.69
ROC sl (fl/nlin) (GW) 1150 1143.52
Range at 75% (no reserve) nm 1 000
G limits at gross weight 9/-4.5
Horsepower 118 122.76
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TABLE A.2. DRAG POLAR ESTIMATION FOR THE CONVENTIONAL

RG

DRAG POLAR BUILDUP

Aircraft Conventional RG Input italicized data

Wlncj from NASA tech paper 1865 for the NLF-0215F airfoil

Cdmtn = 0.0045 S- 77.7

Fuselage (ft.) -
Length 20.2 W/L = .183

Firewall heignt 2,53 H!L = .125
Max height mcl canopy 3.3

Max width 3.7
Firewal X-section (so ft) 9.4

adjust for soundness facior of. 0 9
Adjusted X-secton (sq it) = 8.4

% for canovy = 30
Adjusted X-section (sq ft) =. 11.0

from Smetana Table 5-2, cd;m,= .063

Horizontal Tail orom Smetana Tab!e 5-3, cdn = 0.0043

Vertical Tail from Smetana Table 5-3. cd, = 0.0043

Component Cdn A. CdrA,
Wing .0045 77.7 0.35

Fuselage .0i30 11 0 0.69
Hor. tail .0043 10.8 0.05
Vert. tal, .0043 8.8 0 04
Total 1.13

Interference effects . 06
Protuberance effects 0 03

Equiv. flat plate area (sum of Cd.A, and elfects) ET7 2-31

CDO= 01579 AR= 72

e= 0.938 1= .0158
k3 .0471

CD= 0158 .0471 CL"2



TABLE A.3. POINT.TXT OUTPUT FOR THE CONVENTIONAL RG

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = 0.OOOOOD+OO FEET

PA(FT-LBS/SEC) V(FT/EC)
0.000001)4)0 0.OOO0OD+00
0.22875D)405 O.I0OOOD+03
0.45859D)405 0.19000D)403
0.54762D+05 0.28000D)403
0.28944D)405 0.38000D+03

AIRCRAFr CHARACTERISTICS

CD =O.15800D.01 + O.OOOOD+O0)*CL**2 + O.47l00D.0I*CL** 0.20000D+01
WING AREA= 0.777401)4)2 SQ.FT WEIGHT = 0.14483Di-04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.00000D,400 FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FIAL ALTITUDE
4-1 i i i 1 1 1 1 1 i i 111i1iii4 111..II;I 1 . ......

MINIMUM LEVEL FLIGHT SPEED) = 0.721081)4)02 Fr/SEC
LIFT COEFFICIENT= 0.30109D)401 DRAG COEFFICIENT= =0.44278D)

MAXIMUM LEVEL FLIGHT SPEED =0.31817D+03 F1/SEC
LIFT COEFFICIENT =0.154651)40 DRAG COEFFICIENT 0.1 6926D.0I

MAXIMUM CLIM BANGLE = 0.65156D)4)I DEC,
VELOCITY FOR MAXIMUM CLIMB1 ANGLE =0.164421)4)3 FT/SEC

LIFE COEFFiCIENT =0.5791 01)-(X) DRAG COEFFICIENT = 0.31 595D.0 1

VELOCITrY FOR MAXIMUM ENDURANCE = 0.12492D+03 FT/SEC
POWER FOR MAXIMUM END)URANCE = 0.1 1398D)+05 FT-LBS/SEC

LIFE COEFFlCIEN = 0.100321)4)1 DRAG COEFFICIENT= 0.632(01)-Ol

VELOCITY FOR CLASS ICAL MAXIMUilM RANG E =0. 1644 11D+03 FT/S EC
LIFT COEFFICIENT =0.57/919D)4)0 DRAG COEFFICIENT '= 0.316001)-Ol

SER VICE CEILING = 0.224501)405 FT
VELOCITY ATE SER VICE CEI LING; = 0.218781)403 FT/SEC

IlFT COEl-FCIEiNT =0.6669S'D40(X DRAG COEFFICIENT=- 0.36750D-01

ABSOLUTrE CEILING = 0.2462.2D+05 FT
VELkOCriY AT ABSOLUTrE CEILING = 0.22100JD+03 FT/SEC

LIF-TCOEFFICIENT =0.70.197D-00 DRAG COEFFICIENT = 0.39208D.01l
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MAXIMUM RATE OF CLIMB SCHEDULE FROM O.00000)D+00 FT TO O.10000D+04 FT

H(FT) R/C(FrS/EC) V(FT/SEC) P(FT-LBS/SEC) CL CD
0.00000)D+0 0.21396D402 0 20955D+03 0.49535D+05 0.35651 D*00 0.21786D-01
0.50000D+03 0.20884D+042 0.20961D+03 0.48682D+05 0.36158D+)0 0.21958D-01
0.10000D+04 0.20376D+02 0.20967D+03 0.47839D+05 0.36672D+00 0.22134D.01

MAXIMUM R/C. POWER AVAILABLE. & POWER REQUIRED VS VELOCITY
AT 0.000001) tt',0 FT

PXC(FT/SEC) PA(FT-LBS/SEC) PRQ(FT-LBS/SEC) V(FTISEC)
-0.74995D.09 0.15352D+05 0.15358D+05 0.72108D+02
0.23087D+01 0.17441 D+05 0.14098D+05 0.800(X)D+02
0.49751D+01 0.20137D+05 0.12932D+05 0.90(X)OD+02
0.74114D+01 0.22875D05 0.12141D 05 0.10(X)OD+03
0 96526D+0I 0.25634D 05 0.1 1654D-+05 0.1 10001)--03

0.11715D.t02 0.28392D+05 0.1 1425D+05 0.12000D+03
0.13603D+02 0.31127D+05 01 1426D+015 0.13000D-103
0.15315D+02 0.33819D+05 0.116391),)5 0.14000D+03
0.16842D02 0.36445D+05 0.12053D+05 0.15000)D+03
0.181741)+02 0.38983D405 0.12662D+05 0.16000D--03
0. 1929K),02 .0.41413D+05 0.13463D+05 0.17(X)0D0003
0.20199D+02 0.43712D+05 0.14457D+05 0.18000D+03
0.20861 D+02 0.45859D05 0.15646D+05 0.19(X014)3
0.21266D+02 0 47832D+05 0.17033D+05 0.20(00+1)3
0.21396D+02 0.49610D+05 0.18622D+05 0.21(XX)I)+03
0.21233D+02 0.51170D+05 0.20418D+05 0.22(X)0D+03
0 20759D+02 0.52492D+05 0.22427D+05 0.23000D+03
0.19953B-02 0.53554D405 0.24656D+05 0.24000D.03
0.18796D402 0.54333D05 0.27110D05 0.25000)D+03
0.17269D-02 0.54809D+05 0.29798D+05 0.26(X)01)+03
0.153511)4 02 0.54959D+05 0.32725D+05 0.270(X)D+03
0.13023D+02 0.5,1762D+05 0.35901 D- 05 0.28(X)00403
0.102641)+02 0 51 Of,I) 05 0.39331 D+05 0.29(X)01)+03
0.70537D+01 0.53241 D-#05 0.43025D05 0.300()OD+03
0 33717D+01 0.5,873D405 0.469901)+05 0.31000 D-03
0. 14659D-09 0.50435D 0:, 0.50435D+05 0.31817D+03
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APPENDIX B MODEL FOR THE CONVENTIONAL

TRACTOR CONFIGURATION WITH FIXED GEAR
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TABLE B.1. SCALED PARAMETERS BASED ON X FOR THE

CONVENTIONAL FG

Conventional fixed gear tractor aircraft based on the RV-4

Aircraft Specifications X= 1.01
Actual values Scaled values

Wing span (ft.) 23.00 22.87
Wing chord root 4.90 4.87
Wing chord tip 4.90 4.87
Wing area (sq. ft.) 110.00 108.79
Wing airfoil section NACA 23013.5 NACA 23013.5
Wing aspect ratio 4.81 4.81
Wing loading (GW) (lb./sq. ft.) 13.64 13.56
Effective horizonal tail span I 8.50 8.45
Horizonal tail chord root 3.40 3.38
Horizonal tail chord tip 2.00 1.99
Horizonal tail area (sq. ft.) 21.90 21.66
Horizonal tail airfoil section
Horizonal tail aspect ratio 3.30 3.30
Vertical tail area 10.87 10.75
X-section height incl canopy 3.70 3.68
X-section height (firewall) 2.60 2.59
X-section width 2.30 2.29
Length overall (ft.) 20.33 20.22
Fuel capacity (usable) 32.00
Empty weight (lb.) 890.00 875.41
Gross weioht 1500.00 1475.41
Useful load 610.00 600.00
Wheel base (in.) 74.00 73.59

Advrti,,ed performance
Ma4 speed sea level (mph) 201 201.55
75% cruise speed 8k' 186 186.51
Stah speed 54 54.15
ROC sl (ft'min) (GW) 1650 1654.55
Range at 75% (no reserve) nrn 650
G limits at gross weight
Horsepower 150 147.14
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TABLE B.2. DRAG POLAR ESTIMATION FOR THE CONVENTIONAL

FG

DRAG POLAR BUILDUP

Aircraft Conventional FG Input italicized data

Wing from Theory of Wing Sections NACA 23013.5 airfoil
Cdmin .0060 S = 108.8

Fuselage (ft.)
Length = 20.2 W/L = .113

Firewall height = 2.59 H/L = .128
Max height incl canopy = 3.7

Max width = 2.3
Firewall X-section (sq ft) = 5.9

adjust for roundness factor oI0.9
Adjusted X-sectior. (sq ft) = 5.3

% for canopy = .42
Adjusted X-section (sq ft) = 7.6

from Smetana Table 5-2, cdi, =.071

Gear from Smetana Table 5-4, CdrA7t = 0.68

Horizontal Tail from Smetana Table 5-3, cd, = 0.0043

Vertical Tail from Smetana Table 5-3, cdrt = 0.0043

Component Cd-t A Cd-,A n
Wing .0060 108.8 0.65

Fuselage .0710 - 7.6 0.54

Gear 0.68
Engine nacelle .1000 .8 0.08

Hor. tail .0043 21.9 0.09
Vert. tail .0043 10.9 0.05

Total 2.09

Interference effects 0.06
Protuberance effects 003

Equiv. flat plate area (sum of CdrtA-t and effects) F-2.28

CDO= .0209C AR = 4.81
0957 ki - .0209

k3 .0692

CD- .0209 + .0692 CL'2
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TABLE B.3. POINT.TXT OUTPUT FOR THE CONVENTIONAL FG

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = 0.00000D+O0 FEET

PA(FT.LBS/SEC) V(FT/SEC)
0.00000D+O0 0.0000D+00
0.22875D+05 0.10000D+03
0.45859D+05 0.19000D+03
0.54762D+05 0.28000D+03
0.28944D+05 0.38000D+03

AIRCRAFT CHARACTERISTICS

CD = 0.20900D-01 + O.OOOOOD+O0*CL**2 + 0.69200D-01*CL** 0.20000D+O
WING AREA =0.10880D+03 SQ.FT WEIGHT= 0.14754D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.O0000D±0O FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUDE

MINIMUM LEVEL FLIGHT SPEED = 0.76279D+02 FT/SEC
IIFT COEFFICIENT = 0.19585D+01 DRAG COEFFICIENT = 0.28633D+00

MAXIMUM LEVEL FLIGHT SPEED = 0.26533D-"03 FT/SEC
LIFT COEFFICIENT = 0.16187DtW DRAG COEFFICIENT = 0.22713D-01

MAXIMUM CLIMB ANGLE = 0.50631D+01 DEG
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0.14931D+03 FT/SEC

LIFT COEFFICIENT = 0.51114D-00 DRAG COEFFICIENT = 0.38980D-01

VELOCITY FOR MAXIMUM ENDURANCE = 0.10941D-03 FT/SEC
POWER FOR MAXIMUM EN'DURANCE = 0.141781->05 FT-LBS/SEC

LIFT COEFFICIENT =0.95188D-4X) DRAG COEFFICIENT = 0.83600D-01

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.144001-03 FT/SEC
LIFT COEFFICIENT = 0.54957D+00 DRAG COEFFICIENT = 041800D-0I

SERVICE CEILING = 0.165871-05 FT
VELOCITY AT SERVICE CEILING= 0.18565D+03 FT!SEC

LIFT COEFFICIENT= 0.55315D--00 DRAG COEFFICIENT = 0.42074D-01

,LlTECE ILING.i D
VELOCITY AT ABSOLUTE CEILING = 0.187451-03 FT/SEC

LIFf COEFFICIENT = 0.58611D,0 DRAG COEFFICIENT = 0.r4672D-01
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MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.O0000D+00 FT TO 0.10000D4M FT

H(FT) R/C(FT/SEC) V(FT/SEC) P(FT-LBS/SEC) CL CDO.0000D+O0 0.14552D+02 0.17908D+03 0.43506D+05 0.35534D+00 0.29638D.01
0.50000D+03 0.14127D+02 0.17917D+03 0.42769D+05 0.36023D+00 0.2988OD.01
0. 1000D+04 0.13704D+02 0.17926D+03 0.42040D+05 0.36518D+00 O.SO128D.01

MAXIMUM R/C. POWER AVAILABLE, & POWER REQUIRED VS VELOCITY
AT O.O000)D+00 FT

R/C(FI/SEC) PA(FT-LBS/SEC) PRQ(FT.LBS/SEC) V(FT/SEC)
-0.32645D09 0.16454D+05 0.16454D+05 0.76279D+02
0.10253D+01 0.17441D-,-05 0.15929D-05 0.80000D+02
0.35496D+01 0.20137D05 0.14900D+05 0.90000D0)2
0 57R45D -01 0.22875D+05 0.14341D+05 0. 10000--03
0.776420.01 0.25634D-05 0.14179D+05 0.1 1 000D.,03
0.95028D-01 0.28392D.,-05 0.14371D+05 0 12000D+03
0.1 1002D.-02 0.31127D,-O5 0.14895D.-05 0.13000D-03
0.12257D+02 0.33819D+05 0.15736D-05 0.140O0D-03
0.13255D,02 0.36445D-05 0.16889D-0O5 0.15000D-03
0.13981D+02 0.38983D+05 0.18355D-05 0.16000D-03
0.14420D+02 0.41413D-05 0.20138D+05 0.17000D+03
0.14550D,-02 0.437121)+05 0.22245D.05 0 18000D-03
0 14352D-02 0.45859D-4, 0.246e4D-05 0.19000D-03
0.13b04D)+02 0.4732D05 0.27465D-05 0 20000D-03
0.12884D--02 0.49610D-05 0.30600D-05 0.21000D-03
0.1 1569D.4-02 0.51170D+05 0.34102D+05 0.220004.-03
0.9C348D-01 0.52492D+05 0.37982D05 0.23000D-03
0,76580D-01 0.53554D-05 0.42255D05 0.24000D-03
0,50145D-01 0.54333D05 0.469350+05 0.25000D,03
0.188(0)-0)! 0.5480(D-.05 0.52035D-05 0.26000D-03
0.10396D-09 0.54931D,-05 0.54931D-05 0.26533D-03
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APPENDIX C MODEL FOR CONVENTIONAL PUSHER

CONFIGURATION WITH RETRACTABLE GEAR
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TABLE C. . SCALED PARAMETERS BASED ON X FOR THE PUSHER

RG

Conventional retractable pusher aircraft based on the Mini-Imp

Aircraft Specifications X = 0.93
Actual values Scaled values

Wing span (ft.) 24.83 26.75
Wing chord root 3.00 3.23
Wing chord tip 3.00 3.23
Wing area (sq. ft.) 74.00 85.87
Wing airfoil section GA (PC) -1 GA (PC) -1
Wing aspect ratio 8.33 8.33
Wing loading (GW) (lb./sq. ft. 13.51 14.56
Effective horizonal tail span 6.50 7.00
Inverted V-tail chord root 2.30 2.48
Inverted V-tail chord tip 1.60 1.72
Inverted V-tail area (sq. ft.) 14.73 17.09
Inverted V-tail airfoil section
Inverted V-tail aspect ratio 2.87 2.87
X-section height 2.70 2.91
X-section width 2.20 2.37
Length overall (ft.) 14.75 15.89
Fuel capacity (usable) 12.50
Empty weight (lb.) 520.00 650.00
Gross weight 1000.00 1250.00
Useful load 480.00 600.00
Whecl base (in.) 59.00 63.56
Nose wheel retractable

Advertised performance
Max speed sea level (mph) 200 192.70
75% cruise speed 175 168.61
Stall speed 0.00
ROC sl (ft/min) 1500 1445.24
Range at 75% (no reserve) nm
G limits at gross weight 4/-3
Horsepower 100 129.74
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TABLE C.2. DRAG POLAR ESTIMATION FOR THE PUSHER RG

DRAG POLAR BUILDUP

Aircraft Conv. Pusher RG Input italicized data

Wing from McCormick, p. 79 for the GA(PC)-1 airfoil
Cdmin 0.008 S = 85.9

Fuselage (ft.)
Length = 15.9 W/L = .149

Firewall height = 2,91 H/L = .183
Max height incl canopy = 2.9

Max width = 2.4
Firewall X-section (sq ft) = 6.9

adjust for roundness factor o 0.95
Adjusted X-section (sq ft) = 6.6

% for canopy =
Adjusted X-section (so ft) = 6.6

from Smetana Table 5-2. cdr, ..C63

Inverted V-Tail from Smetana Table 5-3, cdz = 0.0043

Component Cd-, A n C dn A
Wing .0080 85.9 0.69

Fuselage .0630 6.6 0.41
V-tail .0043 17.1 0.07
Total 1.17

Interference effects 0.06
Protuberance effects 0.03

Equiv flat plate area (sum of CdnAn and effects) 1.28

CDO = .01489 AR = 8.33
e = 0.93 k1 = .0149

k3 = .0411

CD= .0149 + .0411 CL^2



TABLE C.3. POINT.TXT OUTPUT FOR THE PUSHER RG

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = O.00000D+O0 FEET

PA(FT-LBS/SEC) V(FTSEC)
0.OOOOOD+00 0.00000 D0
0.22875D+05 0.10000D+03
0.45859D+05 0.19000D+03
0.54762D+05 0.28000D+03
0.28944D+05 0.38000D+03

AIRCRAFT CHARACTERISTICS

CD = 0.14900D-01 + 0.000O0D+00*CL**2 + 0.41 100D.01*CL** 0.20000D.1I
WING AREA = 0.85900D+02 SQ.F WEIGHT = 0.12500D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.00000D+(0 FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUDE
.. ...--. H ill+...... ... ..

MINIMUM LEVEL FLIGHT SPEED = 0.564921D+02 FT/SEC
LIFT COEFFICIENT = 0.38317D+0I DRAG COEFFICIENT = 0.61832D+O0

MAXIMUM LEVEL FLIGHT SPEED= 031725D+03 FT/SEC
LIFT COEFFICIENI = 0.12150D±O0 DRAG COEFFICIENT = 0.15507D-01

MAXIMUM CLIMB ANGLE = 0.828661+I01 DEC
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0.1511 1D+03 FT/SEC

LIFT COEFFICIENT = 0.53556D+O0 DRAG COEFFICIEN' =0 26688D.01

VELOCITY FOR MAXIMUM ENDURANCE = 0.10829D+03 FT/SEC
POWER FOR MAXIMUM ENIDURANCE = 0.77356D-t0 FT-LBS/SEC

LIFT COEFFICIENT = 0.10429D-O! DRAG COEFFICIENT = 0.59600D-0I

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.14251 D+03 FT/SEC
L.IFT COEFFICIEN-i = 0.60210D-O DRAG COEFFICIENT = 0.298001).(i

SERVICE CEILING = 0.26879D+05 FT
VELOCITY AT SERVICE CEILING = 0.21022D403 FT/SEC

LIFT COEFFICIENT = 0.65932D-0 DRAG COEFFICIENT = 0.32767D-0]

ABSOLLTE CEILING = 0.29124D-05 FT
\ ELOYCITY AT ABSOLUTE CEILING = 0.211 97D-03 FT/SEC

LIF? COEFFICIENr = 0.70333D-00 DRAG COEFFICIENT = 0.35231D.O
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MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.00O0D+00 F' TO 0.100G0D+4 l'T

H(Ff RC(FT/SEC) V(FT/SEC) P(Fr-LBSS EC) CL CD
0.000OD+00 0.26049D+02 0.20519D-03 0.48781 D+05 0.29044D+O 0.8367D.01
0.50000D+03 0.25486Di0' 0.205171)+03 047929D+05 0.29477D+00 0.18471D-01
0.10000D+04 0.24929D 02 0.20516D-03 0.47087D,05 0.29918D+00 0.18579D.01

MAXIMUM RIC. POWER AVAILABLE, & POWER REQUIRED VS VELOCITY
AT O.O0000D+00 FT

R/C(FT/SEC) PA(FT-LBS/SEC) PRQ(FT.LBSSEC) V(FTiSEC)
-0.49714D.09 0.1 1395D-05 0. 11395 D+O5 0.56492DO2
0.11715D+01 0.12264D+05 0.10800D+05 0.60000D-02
0.42501D01 0.14810D.05 0.94972D-04 0.7000D-02
0.70469D+01 0.17441D+05 0.86328D+04 0.80(M0D,-02
0.96370D+01 0,20137D-45 0.80907D 04 0.90000D--02
0.12056D--02 0.22875D-1)5 0.780.4D04 0.10000D-03
0.1431 ")-02 0.256.34D+05 0.77385D+-4 0.11 0O)OD-03
0.16420D+02 0.28392D.135 0.78672D-04. 0.1200)D-03
0.1 8359D-02 0.31127D4-,- 0.81788D--4 0.13000D.J3
0.20122D-02 0.33819D--05 0.86668D-4 0.14000D,03
0.21693D-,02 0.36445D-O5 0.93287D-4)4 0.15000)D-03
0.L3055D-02 0.38983D-05 0.10165D+05 0.16(0D-03
0.24188D-,-02 0.414 130-05 0.11178D-05 0.17000D+03
0.25071D-02 0.43712D.-05 0.12373D-)S 0.18000D4)3
0.25684D,-02 0.45859D+05 0.13753D-05 0.1900)4D-03
0.26005D--02 0.47832D-05 0.15326D-05 0.20000D-03
0.26010D-02 0.49610D-05 0.17097D--05 0.210)D-03
0.25678D-02 0.51170D+05 0.19074D-05 0.220(X)D-,)3
0,24983D-02 0.52492D+05 0.21263D+05 0.23000D3
0.2.905D-02 0.53554D-OS 0.23673D-05 0.240001)-03
0.22417D-02 0.543331D-45 0.26311 D-0 0,250(0D-03
0.2(W9 D-402 0.54809D45 0.29186D.45 0.260(0D-03
0.18122D-02 0.54959D45 0.32306D--0 0.27(X)OD-03
0.15267D-02 0.54762D-05 0.35679D-05 0.280001)-OS3
0.11 907D- 0 54196D-5 0.39313D- 05 0.290(X)D-03
0.801 ,D- ) 0.53241)D-05 0.432 81)-)5 0.30(0)C003
0.35774D-01 051 871D-05 0 47401 D-05 0.310001)03
0.18943D.09 0.5061 2D05 0.506 2D--O 0.317251)-03
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TABLE D.1. SCALED PARAMETERS BASED ON k FOR THE CANARD

canard aircraft based on the LongEze

Aircraft Specifications X=1.01
Actual values Scaled values

Wing span (ft.) 26.10 25.89
Wing chord root 6.80 6.74
Wing chord tip 1.80 1.79
Main wing area (sq. ft.) 84.24 82.86
Wing airfoil section Eppler
Wing aspect ratio 8.09
Wing loading (GW) (lb./sq. ft.: 7.30 7.24
Canard span (ft.) 11.70 11.60
Canard chord root 1.10 1.09
Canard chord tip 1.10 1.09
Canard area (sq. ft.) 12.87 12.66
Canard airfoil section GA(W)-1
Canard aspect ratio 10.64
Total wing area 97.11 95.52
Vertical winglet area (each) 7.88 7.75
X-section height incl canopy 3.10 3.07
X-section height (firewall) 2.20 2.18
X-section width 1.90 1.88
Length overall (ft.) 16.75 16.61
Fuel capacity (usable) 52.00
Empty weight (lb.) 710.00 692.68
Gross weight 1325.00 1292.68
Useful load 615.00 600.00
Wheel base (in.) 59.00 58.52
Nose wheel Retractable

Advertised performance
Max speed 8k' (mph) 0.00
75% cruise speed 8k' 183 183.75
Stall speed 0.00
ROC sl (ft/min) 1350 1355.57
Range at 75% (40' reserve) nm 965
G limits at gross weight
Horsepower 115 111.73
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TABLE D.2. DRAG POLAR ESTIMATION FOR THE CANARD

DRAG POLAR BUILDUP

Aircraft Canard FG Input italicized data

Wing for Eppler airfoil
Cdmin = .0080 S = 82.9

Canard from Eppler for GA(A)-1 airfoil
Cdmin = .0065 S = 12.7

Fuselage (ft.) Total S = 95.52
Fuselage length = 12.4 W/L = .152
Firewall height = 2.18 H/L = .176

Max height incl canopy = 3.1
Max width = 1.9

Firewall X-section (sq ft) = 4.1
adjust for roundness factor o 0.8

Adjusted X-section (sq ft) = 3.3
% for canopy = .41

Adjusted X-section (sq ft) = 4.6

from Smetana Table 5-2, cdrt 063

Gear from Smetana Table 5.4. CdnArt = 0.68

Vertical Winglets from Smetana Table 5-3, cdn = 0.0058

Component C d 7, A t C d n A 7:
Wing .0080 82.9 0.66
Canard .0065 12.7 0.08

Fuselage .0630 4.6 0.29
Gear 0.68

Engine nacelle & intake .1000 .9 0.09
Vert. winglets .0058 7.8 005

Total 1.85

Interference effects 0.06

Proluberance effects 0.03

Equiv. flat plate area (sum of Cdi;Ait and effects) 2.02

CDO = .02113 AR = 809
e= 0.9294 k1 = .0211

k3 = .0423

i CD .0211 + .0423 C(X2j
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TABLE D.2. DRAG POLAR ESTIMATION FOR THE CANARD

DRAG POLAR BUILDUP

Aircraft Canard FG Input italicized data

Wing for Eppler airfoil
Cdmin = .0080 S = 82.9

Canard from Eppler for GA(A)-1 airfoil
Cdmin .0065 S = 12.7

Fuselage (ft.) Total S = 95.52
Fuselage length = 12.4 W/L = .152
Firewall height = 2.18 H/L .176

Max height incl canopy = 3.1
Max width = 1.9

Firewall X-section (sq ft) = 4.1
adjust for roundness factor o 0.8

Adjusted X-section (sq ft) = 3.3
% for canopy = .41

Adjusted X-section (sq ft) = 4.6

from Smetana Table 5-2, cdn 063

Gear from Smetana Table 5-4, CdnAn = 0.68

Vertical Winglets from Smetana Table 5-3, cdn = 0.0058

Component C d;-. A t C d 7, A 7:
Wing .0080 82.9 0.66
Canard .0065 12.7 0.08

Fuselage .0630 4.6 0.29
Gear 0.68

Engine nacelle & intake .1000 .9 0.09
Vert. winglets .0058 7.8 0.05

Total 1.85

Interference effects 0.06
Protuberance eftects 0.03

Equiv. flat plate area (sum of CdirAi and effects) 2.02

CDO= .02113 AR = 8.09
e= 0.9294 k1 = .0211

k3 = .0423

.0211 + .0423 CL2]
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TABLE D.3. POINT.TXT OUTPUT FOR THE CANARD

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = O.OOOOOD+00 FEET

PA(FT-LBS/SEC) V(FT/SEC)
O.OOOOOD+O0 O.O0OOOD+00
0.22875D+05 0.10000D+03
0.45859D+05 0.19000D+03
0.54762D+05 0.28000D+03
0.28944D-f05 0.38000D+03

AIRCRAFT CHARACTERISTICS

CD = 0.211 OOD-01 + 0.0000D+OO*CL**2 + 0.42300D-0I*CL** 0.20000D-0I
WING AREA =0.95520D02 SQ.FT WEIGHT = 0.12927D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.OOOOOD- FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUDE

MINIMUM LEVEL FLIGHT SPEED = 0.56600D+02 FT/SEC
LIFT COEFFICIENT = 0.35499D-0 DRAG COEFFICIFNT = 0.55416D-00

MAXIMUM LEVEL FLIGHT SPEED = 0.27982D+O3 FT/SEC

LIFT COEFFIC!ENT = 0.4525D--00 DRAG COEFFICIENT =0.21992D-01

MAXIMUM CLIMB ANGLE= 0.72187D+O1 DEG
VEL)CITY FOR MAXIMUM CLIMB ANGLE = 0.13808D--O3 FT/SEC

LIFT COEFFICIENT = 0.596,'4D+O0 DRAG COEFFICIENT = 0.36148D.01

VELOCITY FOR MAXIMUM ENDURANCE = 0.96419D+02 FT/SEC
POWER FOR MAXIMUM ENDURANCE = 0.85995D+04 FT-LBS/SEC

LIFT COEFFICIENT = 0.12233D+01 DRAG COEFFICIENT = 0.844)0OD-01

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.126P9D.+03 FT/SEC
LIFT COEFFICIENT = 0.70627D-,-00 DRAG COEFFICIENT = 0.42200D.01

SERVICE CEILING = 0.23588D-O5 FT
VELOCITY AT SERVICE CEILING = 0.18556D.3 FT/SEC

LIFT COEFFICIENT = 0.70060D+O DRAG COEFFICIENT = 0.41862D.01

ABSOLLTE CEILING = 0.26057D-05 FT
VELOCI'Y AT ABSOLLIE CEILING = 0.187(0D-03 FT/SEC

LIFT COEFFICIENT= 0.75223D-0O DRAG COEFFICIEN' = 045016D ('
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MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.00000D+00 FTTO 0.10000D+04 FT

H(FT) R/C(FT/SEC) V(FT/SEC) P(FT.LBS/SEC) CL CD B
0.0O000D.OO 0.20328D+02 0.18200D+03 0.44155D+05 0.34332D+00 0.26086D-01
0.50000DO3 0.19858D+02 0.18198D+03 0.43383D+05 0.34845D+00 0.26236D-01
0.10000D+04 0.19391 D+02 0.18197D+03 0.42619D+05 0,35368D+00 0.26391 D-01

MAXIMUM RIC. POWER AVAILABLE, & POWER REQUIRED VS VELOCITY
AT 0.00000D+00 FT

R/C(FT/SEC) PA(FT-LBS/SEC) PRQ(FT.LBS/SEC) V(FT/SEC)
-0.40567D.09 0.1 1422D.-05 0.11422D+05 0.56600D-02
0.10687D+01 0.12264D-O5 0.10882D--05 0.60000D.42
0.39479D-01 0.14810D+05 0.97064D-4 0.7000D-02
0.6529OD.-01 0.17441D-05 0.90013D-414 0.8000OD-02
0.88798D-t01 0.20137D--05 0.86580D+04 0.90000D-02
0.11030D+02 0.22875D--05 0.86170D.-04 0.10000D-O3
0.12987D--02 0.25634D+05 0.88456D04 0.11000D-03
0. 14748D-02 0.28392D+05 0.93266D44 0. 1 2(X)D-03
0 163031)+02 0.31127D-05 0.10053D-05 0.1300D.4)3
0.17634D-02 0.33819D+05 0.1102)ID--05 0.14000D--03
0.18724D+02 0.36445D+O5 0.12240D.-05 0.15000D-03

0.19550D+02 0.38983D-.05 0.13711D-05 0.1600OD-03
0.2(X91 D-02 0.414 13D+O5 0.15441D-,.O5 0.17000D.-03
0 20322D-02 0.43712D05 0.17442D-05 0.1800OD-03
0.20218D-02 0.45859D--05 0.19724D+05 0.1900',)D-03
0.19754D-v02 0 47832D-05 0.22297D-05 0.2(1)OD-4)3
0.18904 D-02 0.49610D-05 0.25173D-05 0.21000D-03
0 17642D-02 0.51170D-05 0.28365D-05 0.2200D-()3
0.15941 D-02 ().52492D+05 0.31885D-05 0.2300)D.-03
0.13775D-02 0.53554D---S 0.35747D-05 0.2400O)D-O
0.1111 7D--02 0.54333D+05 0.39963D--05 0.25(OD-03
0 793871-01 54809D ,05 0.44546D--05 0.26(01)--03
0 42142D01 0.54959D14)5 0.495111D-05 0.27000D03
0 20094D. I I 0.54769D.-05 0.54769D-,05 0.27982D-03



xl10O
6.

5 . .................... .. ...... . .... ..........

00

0. 50. 100. 150. 200. 250. 300. 350.
Velocity (ft/sec)

Figure D.1. Power vs Velocity Curve for the Canard

30.

U 2 0 . .. .. .... ...... ........ .. .. .. ..
0

10. .... . ...

0.
0. 50 100. 150 200. 250. 300. 350

Velocity (ft/sec)

Fic-ure D.2. Rate of Climb vs Velocitv Curve for the Canard

90



APPENDIX E MODEL FOR THE TANDEM-WINGI
CONFIGURATION WITH LOW WING LOADING

Fic 3.27 Trorec, vaiew oravona of itic. VoIigrgr~. n
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TABLE E. 1. SCALED PARAMETERS BASED ON X FOR THE

TANDEM-WING (LOW W/I)

Tandem wing aircraft based on the Dragonfly

Aircraft Specifications 0.92
Actual values Scaled values

Wing span (ft.) 22.00 23.87
Wing chord root 2.60 2.82
Wing chofd tip 1.60 1.74
Wing area (sq. ft.) 46.20 54.37
Wing airfoil section (ref
Wing aspect ratio 10.48 10.48
Wing loading (GW) (Ib./sq. ft.) 11.00 11.93
Canard span (ft.) 20.00 21.70
Canard chord root 3.20 3.47
Canard chord tip 1.70 1.84
Canard area (sq. ft.) 49.00 57.66
Canard airfoil section GU25-5(11)8 mod
Canard aspect ratio 8.16 8.16
Total Wing Area 9520 112.03
Average Aspect ratio 9.29 9.29
X-section height incl canopy i 3.80 4,12
X-section height (firewall) 2.60 2.82
/-section width 3.60 3.91
Vertical tail area 7.12 7.72
Fuselage length (ft.) 18.30 19,85
Fuel capacity (usable) 15.00
Empty weight (lb.) 605.00 772.34
Gross weight 1075.00 1372.34
Useful load 470.00 600.00
Wheel base (in.) 23500 25493

Advertised performance
Max speeo sea level (mph) 168 161.30
75% cruise s.ed i65 158.42
Stall speed 0.00
ROC sl (ft/min) (GW 850 816.10
Range at 75% (30' reserve' nrm 500 460.91
G limits at oross weight 4.4t-2
Horsepower 56 74,46



TABLE E.2. DRAG POLAR ESTIMATION FOR THE TANDEM-WING

(LOW WIL)

DRAG POLAR BUILDUP

Aiicraft Tandem Wing FG tniput italicized data

Wing
Cdmin =.0090 S = 54.4

Canard for GU25-5(11)8
Cdmin .0090 S = 57.7

Total S = 112.03
Fuselage (ft.)

Fuselage length = 19.9 W/L = .197
Firewall height = 2.82 HIL =142

Max height ic! canopy = 4.1
Max width = 3.9

Firewall X-section (sq ft) = 11.0
adjust for roundness factor of 0.85

Adjusted X-section (sq ft) = 9.4
% for caropy =.4

Adjusted X-section (sq it) = 13.7

from Smetana Table 5-2, cdit = .063

Gear from Smetana Table 5-4, Cd-,tA,- 0.26
Vertical tail from Smetana Table 5-3 cdit 0.0039

I Component COd-, A Ct d -,A-,,
Wlng .0090 54 4 0.49
Canard .0090 57 7 0.52I

FUselage .0630 13.7 0.86
Gear 0.26

Vert. tail .0039 7.7 0.03
Total 2.16

Interference effects 0.06
Protuberance effects 0.03

Equiv flat plate area (sumn of Cd-,A,- and effects) F 2.36-

'Do= .02292 AIR = 1048
e 0.91324 k!= .0229

k3 = .0333

F~b = 023 ~ 0333C!2
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TABLE E.3. POINT.TXT OUTPUT FOR THE TANDEM-WING (LOW

W/L)

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = 0.00001)D-00 FEET

PA(FT-LBS/SEC) V(FT/SEC)
O.OOOD+00 0.00000DfO0
0.22875D+05 0.100001403
0.45859D05 0.190001)43
0.54762D+05 0.28000D+03
0.28944D+05 0.38000D403

AIRCRAFT CHARACTERISTICS

CD = 0.229001)-O1 + 0.O0000OO)CL**2 + 0.3330OD-01*CL** 0.20000D-0)1
WING AREA = 0.11203D+03 SQ.FT WEIGHT = 0.13723D4)4 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.000000D+ FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUDE

MINIMU M LEVEL FLIGHT SPEED = 0 499121)402 FT/SEC
LIFT COEFFICIENT =0.41321D.40I DRAG COEFFICIENT = 0.59146D40

MAXIMUM LEVEL FLIGHT SPEED = 0.25886D+03 FT/SEC
LIFT COEFFICIENT - 0.15363D+X DRAG COEFFICIENT= 0.2368)6-01

MAXIMUM CLIMB ANGLE = 0.66927D+01 DEG
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0.1251 ID03 FT/SEC

L!FT COEFFICIENT =0.65763D140 DRAG COEFFICIENT = 0.37302D(

VELOCITY FOR MAXIM UM ENDURANCE = 0.84657D-02 FT/SEC
POWER FOR MAXIMUM ENDURANCE = 0.74091)4) FT-LBS/SEC

LIFT COEFFICIENT = 0.14363D401 DRAG COEFFICIENT = 0.916(X)D-)I

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.11141D-0)3 FT/SEC
LIFT COEFFICIENT = 0.82927D4X) DRAG COEFFICIENT = 0.45800D-01

SERVICE CEILING = 0.23553D4)5 FT
VELOCITY AT SERVICE CEILING = 0.16856D-)03 FT/SEC

LIFT COEFFICiENT - 0.7t)75I06D- DRAC, COEF.ICILN I = 0.425i9D-Ol

ABSOLUTE CEILING = 0.265391)-O5 FT
VEL(XXITY AT ABSOIUTE CEILING = 0 16980D-03 FI ,SEC

LIFT COEFFICIE\- = 84(601)-(X, DRAG COEFFICIENI = 0 4642.1),01

94



MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.00000D)40 FTTO0.10000D±04 Fr

H(FT) R/C(FT/SEC) V(FT/SEC) P(FT-LBS/SEC) CL CD' B
O.OOOOOD+00 0.17242D-02 0.16746D+03 0.40806D+05 0.36710D+00 0.27388D-01
0.50000D+03 0.168461)+02 0. 16741 D+03 0.40086D+05 0.37271D+O0 0.27526D-01
0.100OOD+04 0.164541)+02 0.16737D+03 0.39374D+05 0.37842D+00 0.27669D-01

MAXIMUM R)C, POWER AVAILABLE, & POWER REQUIRED VS VELOCrY
AT O.00000D+00 FT

R!C(FTrSEC) PA(FT-LBS/SEC) PRQ(FT-LBS/SEC) V(FT/SEC)
-0-99101D-09 0.98046D-04 0.98046D.)±4 0.49912D+02
0.25816D-01 0.98255D+04 0.97900U)+04 0.50000D02
0.27429D+01 0.12264D-05 0.84998D+04 0.60000D-02
0.51316D+01 0.14810D+05 0.77674D+04 0.70000D-.
0.72854D.1)] 0.17441D+05 0.74434D,.44 0.80000D--02
0.92430D.,-01 0.20137D-05 0.7455D-04 0.90000D-02
0.11016L+02 0.22875D-05 0.77571 D--04 0.1000D-03
0.12602D-02 0.25634D-05 0.83400)44 0.1 1000D-43
0.13988D-,-2 0.28392D+05 0.919561)--4 0.12000D-.-03
0.15158D 02 0.31127D+05 0.10326D1)45 0.13000D-03
0.16090D+02 0.33819D-05 0.1 1737D+05 0.140(k)D-03
0.16763D-02 0.36445D-,-05 0. 1 34-40D-05 0.150001)403
0.17152D;4)2 0.38983D-05 0.154451)45 0.16000D--O3
0.172311-,-02 0.41413D05 0.17766D-15 0.17000D-03
0.16974D-02 0.43712D-05 0.204181)-05 0.18(00D-03
0.16354D-,02 0.45859D--05 0.23416D.-05 0.1900+)+03
0.153,-"D--02 0.47832D+05 0.26776D.)05 0.20000D+03
0.13915D02 0.49610D+05 0.30513D--05 0.21) D--03
0.12041D-02 0.51170D)+05 0.34646D+05 0.22000D.-03
0.96929D-01 0.52492D-05 0.39190D--O5 0.230(0')D+03
0.68422D-01 0.53554D-O5 0.44164D-05 0.240()D,03
0.34607D-01 0.54333D--05 0 49584D05 0.25(00D-03
0.63670D. 10 0.54770D-05 0.54770D-05 0.25886)--3
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APPENDIX F MODEL FOR THE TANDEM-WING

CONFIGURATION WITH HIGH WING LOADING

Fi -4daigoffw0mUe 2,
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TABLE F.1. SCAI ED PARAMETERS BASED ON k FOR THE

TANDEM-WING (HIGH W/L)

Tandem wing aircraft based on the 0-200

Aircraft Specifications X= 1.00
Actual values Scaled values

Wing span (ft.) 16.67 16.72
Wing chord root 2.20 2.21
Wing chord tip 1.50 1.50
Wing area (sq. ft.) 32.00 32.18
Wing airfoil section (ref ) NASA LS(1)0417MOD
Wing aspect ratio 8.68 8.68
Wing loading (GW) (lb./sq. ft.) 16.42 16.47
Canard span (ft.) 16.67 16.72
Canard chord root 2.50 2.51
Canard chord tip 1.50 1.50
Canard area (sq. ft.) 35.00 35.20
Canard airfoil section NqASA LS(1)0417MOD
Canard aspect ratio 7.94 7.94
Total Wing Area 67.00 67.37
Average Aspect ratio 8.30 8.30
X-section height incl canopy 1 3.30 3.31
X-section height (firewall) 2.20 2.21
X-section width 3.90 3.91
Vertical tail area 4.16 4.17
Fuselage length (ft.) 18.00 18.05
Fuel capacity (usable) 20.00
Empty weight (lb.) 505.00 509.24
Gross weight 1100.00 1109.24
Useful load 595.00 600.00
Wheel base (in.) 0.00

Advertised performance
Max speed sea level (rnph) 220 219.69
75% cruise speed 207 206.71
Stall speed 64 63.91
ROC sl (ft/min) (GW) 1200 1198.33
Range at 75% (30' reserve) nm 0.00
G limits at gross weight
Horsepower 100 100.98
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TABLE F.2. DRAG POLAR ESTIMATION FOR THE TANDEM-WING

(HIGH W/L)

DRAG POLAR BUILDUP
A ircr,f t Tandem Wing FG (Q-200) Input italicized data

Wing for NASA LS(1)0417mod
Cdmin = .0078 S- 32,2Canard ~ ci, NASA LS(1)0417mod
Cdmin .6078 S= 35.2Fuselage (ft.) Total S = 67.38

Fuselage length = 18.0 W/L = .217
Firewail height = 2.21 H1 =.123

Max height incl canopy = 3.3
Max width = 3,9

Firewall X-section (sq ft) = 8.S
adjust for roundness factor of 0.8

Adjusted X-section (sq ft) = 6.9
% for canopy .- .50

Adjusted X-section (sq it) = 10.4

from Nicholei Figure 8.1, cd--,z,050

Gear from Smetana Table 5-4, CdrrAn = 0.26
Vertical tail from Smetana Table 5-3, cdn = 00039

Component Cdn A n CdnA7Wino .0078" 32.2 0.25
Canard .0078 35 2 0.27

Fuselage .0500 10.4 0.52
Gear 0.26Vert, tail .0039 4.2 0.02
Total 1.32

Interference effects 0.06
Protuberance effects 0.03

Equiv. flat plate area (sum of CdrAi and effects) J 1.44

CDO = .02327 AR = 8.68
e= 0924 ki = .0233

"I, .0397

CD= .0233 + 03c7 
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TABLE F.3. POINT.TXT OUTPUT FOR THE TANDEM-WING

(HIGH W/L)

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = 0.OOOOOD+00 FEET

PA(FT-LBS/SEC) V(FT/SEC)
O.OOOOOD+0O 0.OOOOOD+00
0.22875D+05 0.10000D+03
0.45859D+05 0.19000D+03
0.54762D+05 0.28000D+03
0.28944D+05 0.38000D+03

AIRCRAFT CHARACTERISTICS

CD = 0.23300D-01 + 0.OOOOOD+O0*CL**2 + 0.39700D-OI*CL** 0.20000D--OI
WING AREA = 0.67380D+02 SQ.FT WEIGHT = 0.11092D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.OOOOOD+O0 FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUDE

MINIMUM LEVEL FLIGHT SPEED = 0.55840D-+02 FT/SEC
LIFT COEFFICIENT = 0.44367D+O1 DRAG COEFFICIENT = 0.80477D+00

MAXIMUM LEVEL FLIGHT SPEED = 0.30124D+03 FT/SEC
LIFT COEFFICIENT = 0.15245D--00 DRAG COEFFICIENT = 0.24223D-01

MAXIMUM CLIMB ANGLE = 0.89928D+01 DEG
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0.14490D-03 FT/SEC

LIFT COEFFICIENT = 0.65892D- DRAG COEFFICIENT = 0.40537D-01

VELOCITY FOR MAXLMUM ENDURANCE = 0.10211 D-,03 FT/SEC
POWER FOR MAXIMUM ENDURANCE = 0.79552D±04 FT-LBS/SEC

LIFT COEFFICIENT = 0.13269D+O1 DRAG COEFFICIENT = 0.93200D-01

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.13438D+03 FT/SEC
LIFT COEFFICIENI = 0.76610D-) DRAG COEFFICIENT = 0.46600D-0t

SERVICE CEILING = 0.26001 D-)5 FT
VELOC IY A SERVICE CEILING - 0 10017Q-,4V FT/SC

LIFT COEFFICIEN-r = 0.80524D-0 DRAG COEFFICIENT = 0.49(42D-01

ABSOLLrE CEILING = 0.28064D+05 FT
VELOCITY AT ABSOLLE CEILING = 0.20059D--3 FT,/SEC

LIFT COEFFICIENT = 0.8549SD-.-f) DRAG COEFFICIENT = 0.52320D-('
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MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.OOOOOD+O0 FTTO 0.10000D+04 FT

H(FT) R)C(FT/SEC) V(FT/SEC) P(FT-LBS/SEC) CL CD B
O.OOOOOD+O0 0,26948D+02 0.19507D+03 0.46883D+05 0.36354D+00 0.28547D-0!
0.50000D+03 0.26353D+02 0.19505D+03 0.46062D+05 0.36899D.00 0.28705D-01
0.10000D+04 0.25763D+02 0.19503D+03 0.45252D+05 0.37454D+00 0.28869D-01

MAXIMUM R)C, POWER AVAILABLE, & POWER REQUIRED N", VELOCITY
AT O.OOOOOD+O0 FT

R/C(FT/SEC) PA(FT.LBSISEC) PRQ(FT.LBS/SEC) V(FT/SEC)
-0.51402D-09 0.1 1235D05 0.11235D+Oi 0.55840D-02
0.15389D-01 0.12264D+05 0.10557D-05 0.60000D-02
0 49278D-01 0.14S1OD-05 0.93437D-04 0.70(X)OD-02
0.79962D-01 0.17441 D--05 0.85716D--04 0.80(X)D-02
0.10824D-02 0.20137D-05 0.81309D-04 0.90(00D-02
0.1 3446D+02 0.22875D-05 0.79603D-04 0,100OOD-03
0.15875D+02 0.25634D+05 0.80249D-04 0.11 X)D-03
0.18109D-02 0.28392D--05 0.83050D+04 0.1 2(K)OD-03
0.20137D-02 0.31127D-05 0.87907D--04 0,13000D-03
0.21944D+02 0.33819D-05 0.94779D-,04 0 14000D-03
0.2351OD.-02 0.36445D+05 0.10367D.05 0.15(X)D-03
0.24813D--02 0.38983D--05 0 11460D-05 0,16(X)0D-03
0.25829D-02 0.41413D+05 0.12762D-05 0.1 7000D-03
0.26533D-02 0.43712D+05 0.14280D,05 0.18000D.-03
0.26900D+02 0.45859D--05 0.16021D--05 0.1900OD-03
0.26901 D ,-2 0.47832D--05 0.1 7992D+05 0.2(00,D--03
0 2651 ID-02 0.49610D+05 0.20203D,-05 0.21000D-03
0.25701 D+02 0.51170D+05 0.22662D+05 0.2200WD-03
0.24442D-02 0.52492D+05 0.25380D+05 0.23000D-03
0.22708D.-02 0.53554D+05 0.28365D+05 0.2400OD-03
0.20469D-02 0.54333D-05 0.31628D-05 0.25000D-03
0.17696D-02 0.54809D.-05 0.35179D-05 0.26(X)OD-03
0.14361D- 02 0.54959D-05 0,39029D-05 0.27(X)0D-03
0.10435D-02 0.54762D-05 0 43187D--05 0.28(",D)-03
0.588801)-Ol 0.54196D-45 0.47665D-05 0.29(XX)D-OS

O '77....) .. ...- (5 0.52473D,5 0.3- 1(00- o
0 24400D-09 0.53094D--05 0 53094 D-05 0.30124D-07
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APPENDIX G MODEl. FOR THE JOINED-WING

CONFIGURATION WITH BICYCLE GEAR
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TABLE G. 1. SCALED PARAMETERS BASED ON X FOR THE

JOINED-WING CONFIGURATION

Joined wing aircraft based on the Ligeti Stratos

Aircraft Specifications X =0.74

Actual values Scaled values
Wing span (ft.) 17.58 23.79
Wing chord root 2.54 1,44
Wing chord tip 2.13 L.88

Wing area (sq. ft.) 41.00 75.11
Wing airfoil section Wortmann
Wing aspect ratio 7.54 7.54
Wing loading (GW) (ib./sq. ft.) 5.13 6.94
Canard span (ft.) 17.00 23.01
Canard chord root 2.54 3.44
Canard chord tip 2.13 2.88
Canard area (sq. ft.) 40.00 73.27
Canard airfoil section Wortmann
Card aspect ratio 7.23 7.23
Total wing area 80.70 148,38
Vertical winglet area (each) 6.00 8.12
X-section height incl canopy 2.70 3.65
X-section width 2.00 2.71
Length overall (ft.) 8.17 11,06
Fuel capacity (usable) 5.00
Empty weight (lb.) 172.00 426.45
Gross weight 414.00 1026.45
Useful load 242.00 600.00
Wheel base (in.) 0.00 0.00
Bicycle gear with tip wheels

Advertised performance
Max speed sea level (mph) 124 106.59
75% cruise speed 112 96.27
Stall speed 38 32.66
ROC sl (ft/min) 670 575.91
Range at 75% (no reserve) nm 259Vne 167 143.55

G limits at gross weight 9;-6
Horsepower 28 80.76
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TABLE G.2. DRAG POLAR ESTIMATION FOR THE JOINED-WING

CONFIGURATION

DRAG POLAR BUILDUP

Aircraft Joined Wing FG Input italicized data

Wing for FX 6e series Wortmann airfoils
Cdmin = .0065 S = 75.1

Canard for FX 66 series Wortmann airfoils
Cdmin = .0065 S = 73.3

Total S = 148.37
Fuselage (ft.)

Fuselage length = 111 'IL = .245
Firewall height = 3.65 H/L = .330

Max height mcl canopy = 3.7
Max width = 2.7

Firewall X-sectiort (sq ft) = 9.9
adjust fcr roundness factor oi0.8

Adjusted X-section (sq ft) = 79
% for canopy =

Adjusted X-section (sq ft) = 7.9

from Nicola. p 8-6 cdr .042

Gear from Smetana Table 5-4, Cd-A;t = 0.29

Vertical tails from Smetana Table 5-3. cd;- = 0.0039

Component Cd7, A -, C d 7.Ar
Wing .0065 75.1 0.49
Canard .0065 73.3 0.48

Fuselage .0420 7.9 0.33
Gear 0.29

Two vert. tails .0039 16.2 0.06
Total 1.65

Interference e"c-cts 006
Protuoerance effects 0.03

Equiv flat plate area (sum of Cd-zA- and effects) 1.80

CDO= .01321 AR = 7.54
e = 0.938 k1 = .0132

k3 = 0450

CD= .0-32 . 0 45 CL'2
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TABLE G.3. POINT.TXT OUTPUT FOR THE JOINED-WING

CONFIGURATION

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = 0.(OOOOD-00 FEET

PA(FT-LBStSEC) V(FT/SEC)
0.00001D 00 O.OMD--O
0.22875D+05 0.I1OOOOD+03
O.45859D+05 0.19000D+03
0.54762D+05 0.280MD,03
0.289443+05 0.38000D+03

AIRCRAFT CHARACTERISTICS

CD = 0.13200D.01 + 0.00000D-.OOCL**2 + 0.45000D.OI*CL** 0.20000D--OI
WING AREA = 0.14840D+03 SQ.FT WEIGHT = 0.10265D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.00001)D4 FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FLNAL ALTITUDE

MINIMUM LEVEL FLIGHT SPEED = 0.38308D-4)2 FTISEC
LIFT COEFFICIENT = 0.39608D+01 DRAG COEFFICIENT= 0.71914D-00

MAXIMUM LEVEL FLIGHT SPEED = 0.28439D-03 FT/SEC
LIFT COEFFICIENT =0.71867D,01 DRAG COEFFICIENT =0.1.432D.01

MAXIMUM CLIMB ANGLE = 0. 10300DO2 DEG
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0. 12373D+03 FT/SEC

LIFT COEFFICIENT = 0.37964D-.00 DRAG COEFFICIENT= 0.196b6D-0O

VELOCITY FOR MAXIMUM ENDURANCE = 0.78715D-02 FT/SEC
POWER FOR MAXIMUM ENDURANCE = 0.45477D+04 FT-LBS/SEC

LIFT COEFFICIENT = 0.93808D00 DRAG COEFFICIENT = 0.5280)D.01

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.10359D-03 FT/SEC
LIFT COEFFICIENT = 0.54160D-00 DRAG COEFFICIENT = 0.264(X)D.0

SERVICE CEILING = 0.30306D05 FT
VELOCITY AT SERVICE CEILING = 0.17560D+03 FT/SEC -

ABSOLUTE CEILING = 0,32861 D--05 FT
VEIJ)CITY AT ABSOLITE CEILING 0,17586D-43 F,,SEC

LIFTCOEFFICIENI = 0.55796D(XK DRAG COEFFICIE\-I = 0 2721-
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MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.00000D+4)0 FTTO 0.10000D+04 FT

H(FT) R/C(FT/SEC) V(FT/SEC) P(FT-LBS/SEC) CL CD B

0.00004D+0 0.27890D+02 0.18105D+03 0.43946D+05 0.17732D+00 0.14615D-01
0.50000D+03 0.27320D+02 0.18096D+03 0.43160D+05 0.18012D+00 0.14660D-01
0.1 0000D+04 0.26755D)402 0.18086D+03 0.42383D+05 0.18298D+00 0.14707D-01

MAXIMUM RC. POWER AVAILABLE. & POWER REQUIRED VS VELOCITY
AT 0.00000D-,-0 FT

RC(FT/SEC) PA(FT-LBS/SEC) PRQ(FT-LBS/SEC) V(FT/SEC)
-0.17727D-08 0.71394D--04 0.71394D+04 0.38308D+02
0.63792D-00 0.75159D+4 0.68611D+04 0.40000D+02
0.40572D-01 0.98255D+4 0.56609D+04 0.50000D-02
0.70981D-1 0.12264D-05 0.49781D+04 0.60000-)-02
0.99127)..-01 0.1481OD.-05 0.46349D-)4 0.700001)4)2
0. 12560D02 0.17441 D05 0.45495D+W 0.80000D--02
0.15056D-02 0.20137D-05 0.46824D,04 0.90000D02
0.17399D02 0.22875D45 0.50158D04 0. 1 O(X)D-3
( 105731-0 0.25634D+05 0.55434D- 4 0.11000D+03
0.21556)--02 0.28392D-05 0.626541D04 0.12000D--03
0.23,324D02 0.31127D-05 0.71866D+ 4 0.13000D-43
0.24848D02 0.33819D+05 0.83141D+04 0.14000D-03
0.26097D02 0.36445D05 0.96572D-04 0.15000D-03
0.27041D-02 0.38983D-5 0.11226D05 0.1600)D-03
0.27650D-02 0.41413D-05 0.13032D05 0 17000D-)3
0.27888D-02 0.43712D45 0.15086D-05 0.18000D-3
0 277241)-02 0.45859D-05 0.17402D+05 0.19000D-3
0.27124D02 (14 7832D-05 0.19991D-05 0.20000D-03
0.26054D-02 0.49610)D-05 0.22866D-05 0.21(0)4D3
0.24481D-02 0.51170D+05 0.26042D+05 0.22000D-)3
0.22371)D-02 0.52492D-05 0.2952()05 0.23000.)-03
0.196901)('. 0.535541)405 0.33343D-05 0.24000D-03
0 16402D-02 0.54333D-45 0.37497D-,-05 0.25000.)-03
0 12475D--02 0.54809D+05 0.42003D,05 0.26(X)OD-03
0 78738D-0) 0.54959D-0)5 0.46877D-05 0.27X0)D-03
0.25638D-01 0.54762D-0O5 0.52130D-05 0.280001)43
0. 19226D-09 0.54560D-4)5 0.54560D-05 0.28439D-03
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APPENDIX H MODEL FOR THE 3-SURFACE
CONFIGURATION WITH RETRACTABLE NOSEGEAR
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TABLE H.I. SCALED PARAMETERS BASED ON X FOR THE

3-SURFACE CONFIGURATION

Aircraft Specifications = 1.02
Actual values Scaled values

Wing span (ft.) 30.00 29.36
Wing chord root 4.91 4.81
Wing chord tip 1.67 1.63
Wing area (sq. ft.) 102.50 98.18
Wing airfoil section NASA (NLF-0215)
Wing aspect ratio 8.78 8.78
Wing loading (GW) (Ib./sq. ft. 16.00 15.66
Canard span (ft.) 7.90 7.73
Canard chord root 1.33 1.30
Canard chord tip 0.67 0.66
Canard area (sq. ft.) 7.90 7.57
Canard airfoil section NASA (NLF-0215)
Canard aspect ratio 8.35 8.35
Total wing area 110.40 105.75
Horizonal tail span (ft.) 7.90 7.73
Horizonal tail chord 2.00 1.96
Horizonal tail area (sq. ft.) 15.80 15.13
Horizonal tail airfoil section NACA (63218)
Horizonal tail aspect ratio 3.96 3.96
Vertical tail area (each) 5.17 5.06
X-section height incl canopy 3.21 3.14
X-section height (firewall) 3.21 3.14
X-section width 3.50 3.43
Length overall (ft.) 17.92 17.54
Fuselage length 14.50 14.19
Fuel capacity (usable) 30.00
Empty weight (lb.) 1040.00 975.00
Gross weight 1680.00 1575.00
Useful load 640.00 600.00
Wheel base (in.) 61.00 59.70
Nose wheel Retractable

Advertised performance
Max speed sea level (mph) 190 192.05
75% cruise speed 170 171.84
Stall speed 70 70.76
ROC sl (ft/min) 1500 1516.22
Range at 75% (no reserve) nm 1000
Va 150 151 62
Vne 250 252.70
Vgear ext 165 166.78
G limits at gross weight 4.4/-2.2
Horsepowei 115 106.66
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TABLE H.2. DRAG POLAR ESTIMATION FOR THE 3-SURFACE

CONFIGURATION

DRAG POLAR BUILDUP

Aircraft 3-Surface FG InPut italicized data

Wing for NLF-0215 airfoil
Cdmln = .0045 S = 98.2

Canard for NLF-0215 airfoil
Cdmin .0045 S = 7.6

Total S = 105.75
Fuselage (ft.)

Fuselage length = 14.2 W'I = .242
Firewall height = 3.74 H/L = .221

Max height mcl canopy = 3 1
Max width = 3,4

Firewall X-section (sq ft) = 10.8
adjust for roundness factor of.0,8

Adjusted X-section (sq ft) = 8.6
% for canopy =

Adjusted X-section (sq ft) = 8.6

from Nicolai p 8-6, c d.- .050

Gear fron Smetana Table 5.4. Cd-An = 0 74

Vertical tails from Smetana Table 5-3, cdm- = 0.0058

Component C d7- A 7, C d A7
Wing .0045 98.2 0 44
Canard .0045 7.6 0 03

Fuselage .0500 86 043
Gear 0.74

Vert. winglets .0058 7.8 0.05
Total 1.69

Interference effects 006

Protuberance effects 0.03

Equiv flat plate are. (sjm of CdmA- and effects) F 1.84 1

CDO= .01744 AR = 878
e= 0923 k1 = .0174

k3 = .0393

CD = 0174. 039' CL'2.
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TABLE 1.3. POINT.TXT OUTPUT FOR THE 3-SURFACE

CONFIGURATION

POWER AVAILABLE VS. VELCITY
REFERENCE ALTITUDE - O.00000D4OD F EF

PA(FT.LBS/SEC) V(FTISEC)
O.00000D+00 0.00000D+00
0.22875D+05 0.10000D+03
0A5859D.05 0,19000D+03
0.54762D+05 0.28000DO3
0.28944D+05 0.38000D+03

AIRCRAFT CHARACTERISTICS

CD = 0.18600D-01 + O.00000D+0*CL"*2 + 0.39300D.01OCL*" 0.20000D+0I
WING AREA = 0.1075D+03 SQ.FT WEIGHT = 0.15750D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = 0.0000D+00 FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUDE

MINIMUM LEVEL FLIGHT SPEED = 0.62678D+02 FT/SEC
LIFT COEFFICIENT = 0.31858D+01 DRAG COEFFICIENT = 0.41748D+00

MAXIMUM LEVEL FLIGHT SPEED = 0.28105D+03 FT/SEC
LIFT COEFFICIENT =0.15845D+00 DRAG COEFFICIENT = 0.19587D-(.

MAXIMUM CLIMB ANGLE 0.56865D+01 DEG
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0.14365D+03 FT/SEC

LIFT COEFFICIENT= 0.60649D+00 DRAG COEFFICIENT =0.33056D-01

VELOCITY FOR MAXIMUM ENDURANCE = 0.10249D03 FT/SEC
POWER FOR MAXIMUM ENDURANCE = 0.10079D+05 FT-LBS/SEC

LIFT COEFFICIENT = 0.11916D+01 DRAG COEFFICIENT 0.7440OD-01

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.13488D 03 FTISEC
LIFT COEFFICIENT =0.68796D+00 DRAG COEFFICIENT= 0.372)D.01

SERVICE CEILING = 021460D+05 FT
VELOCITY AT SERVICE CEILING = 0.18932D+03 FT/SEC

LIFT COEFFICIENT= 0.68818D+00 DRAG COEFFICIENT= 0.372 21D.0

ABSOLUTE CEILING = 0.24242D45 FT
VELOCITY AT ABSOLUTE CEILING = 0.19123D-03 FT/SEC

LIFT COEFFICIENT = 0.742790+00 DRAG COEFFICIENT = 0.40283D.01
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MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.0(XX)OD+00 IT TO 0.10000D+04 FT

H(FT) R/c(Fr/SEC) V(FT/SEC) P(FI-LBS/SEC) CL CD
0.00000D-0) 0.16380D+02 0.18435D+03 0.44665D+05 0.36828D+00 0.23930D-01
0.50000103 0.15983D+02 0.18436D+03 0.43890D+05 0.37367D+O0 0.24087D-01
0.10000 D 0.15589D+02 0.18437D+03 0.43125D-05 0.37914D+O0 0.24249D-01

MAXIMUM RIC. POWER AVAILABLE. & POWER REQUIRED VS VELOCITY
AT 0.O()OOOD+X) FT

R)C(FT/SEC) PA(FT-LBS/SEC) PRQ(FT.LBS/SEC) V(FT/SEC)
-0.46627D-09 0.1 2936D+05 0.12936D+05 0.62678D-O2
0.18667D,01 0.14810D.-05 0.11870D+O5 0.70000D+02
0.41647D+01 0.17441 D-05 0.10882D+05 0.80()0OD)02
0.62368D-01 0.20137D+05 0.10314D+05 0.90000D-4)2
0.81190D+01 0.22875D-05 0.10088D--05 0.10000D.O3
0.98259D-,01 0.25634D+05 0.10158D-05 0.11 OOOD+03
0.1 1360D-02 0.28392D+45 0.10500D-rO5 0.12000D-03
0. 12715D-,02 0.31127D-05 0.11 102D+05 0.13000D-03
( 13hb)D-02 0.33819D.-05 0.1 1956D-05 0.1400D-03
0.14845D-02 0.36445D-05 0.13064D--05 0.15000D-03
0.15590D-02 0.3083D-05 0.14429D+O5 0.160X0OD-O3
0.1 6099D-02 0.41413D-O5 0.16057D+05 0.1 700OD-03
0.16354D-02 0.43712D+05 0.1 7955D--05 0.18()0OD--03
0.16335D+02 0.45859D+05 0.20132D+05 0.19000D-03
0. 16021 De02 0,.47832D-05 0.22599D-05 0.200XOD-03
0. 15393D,-02 0.49610D--05 0.25366D-05 0.21 0OD-03
0.14429D-02 0.51 170D-,05 0.28445D-05 0.2200OD-03
0.13108)-02 0.52492D-05 0.31847D-05 0.23X)OD.-03
0.1108D+02 0.53554D-05 0.35585D-,-05 0.24000D-03
0 93087D-01 0.54333D.-05 0.39672D-05 0.25(XX)D-OS
0.(1"869D-01 0.54809)D-05 0.44119D-05 0.26000LO-03
0 38211 D-OI 0.54959D.-O5 0.48941 D-05 0.27000D-03
0.38912D-(X 0.54762D.-05 0.54149D-05 0.28000D.-03
0.19487D.09 0.54720D505 0.54720D-05 0.28105D-03
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APPENDIX I MODEL FOR THE FLYING WING

CONFIGURATION WITH BICYCLE GEAR
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TABLE 1.1. SCALED PARAMETERS BASED ON XFOR THE FLYING

WING CONFIGURATION

Flying wing aircraft based on the Mitchell U-2

Aircraft Specifications X= 0.79
Actual values S,.aled values

Wing span (ft.) 34.00 42.84
Wing chord root 0.00
Wing chord tip 0.00
Wing area (sq. ft.) 136.00 215.89
Wing airfoil section Wortmann mod
Wing aspect ratio 8.50 8.50
Wing loading (GW) (lb./sq. ft.) 4.20 5.29
Vertical tail area (each) 0.00
X-section height incl canopy (ft) 0.00
X-section height (firewall) 0.00
X-section width 0.00
Length overall (ft.) 9.33 11.76
Fuel capacity (usable) 1.50
Empty weight (lb.) 300.00 600.00
Gross weight 600.00 1200.00
Useful load 300.00 600.00
Wheel base (in.) 0.00
Nose wheel Retractable

Advertised performance
Max speed sea level (mph; 85 75.73
75% cruise speed 65 57.91
Stall speed 29 25.84
ROC sl (ft/min) 500 445.45
Range at 75% (no reserve) nm 39 30.95
G limits at gross weight 10
Horsepower 20 44.90
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TABLE 1.2. DRAG POLAR ESTIMATION FOR THE FLYING WING

CONFIGURATION

DRAG POLAR BUILDUP

Aircraft Flying wing RG Input italicized data

Wing for Wortmann airfoil (FX 66-S-196)
Cdmin 0.007 S 215.9

Fuselage (ft.)
Length = 11.8 W/L = .321

Firewali height = 3.78 H!L = .321
Max heigh mcil canopy = 5.7

Max width = 38
Firewall X-section (sq ft) = 14.3

adjust for roundness factor of. 0.8
Adjusted X.section (sq ft) = 11.4

% for canopy = .50
Adjusted X-section (sq ft) = 17.1

from Nicola, Figure 8.1. co, = 0-40

Gear from Smetana lable 5-4. Cd-zAt-, 0.51

Winglet rudders from Smetana Table 5-3. cd:-= 0.0058

Component C d-,, A ;z C d-,, A
Wing .0070 215.9 1.51

Fuselage .0400 .17.1 0.69
Gear 0.51

Wmnglet rudders .0058 7.6 0.04
Total 2.75

Interference effec,. 0.06
Protuberance effects 0.03

Equiv. flat plate area (sum of Cd-tA- and effects) 3.00
CDO= .01131 AR= 8.5

e= 0.93 k1 = .0113
k3 = .0403
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TABLE 1.3. POINT.TXT OUTPUT FOR THE FLYING WING

CONFIGURATION

POWER AVAILABLE VS. VELOCITY
REFERENCE ALTITUDE = O.00D+00 FEET

PA(FT-LBS/SEC) V(FT/SEC)
0.00000D,+00 0.000O0D+00
0.22875D+05 0.10000D,+03
0.45859D+05 0.19000D+03
0.54762DM05 0.28000D+03
0.28944D+05 0.38000D+03

AIRCRAFT CHARACTERI-TICS

CD = 0.11300D-01 + 0.00000D+00*CL**2 + 0.40300D.0I*CL** 0.2000OD-O1
WING AREA = 0.21590D+03 SQ.FT WEIGHT = 0.12000D+04 LBS

STATIC PERFORMANCE AT AN ALTITUDE = O.OOOOD+00 FT
WITH MINIMUM TIME AND MOST ECONOMICAL CLIMB SCHEDULES TO A FINAL ALTITUD

MINIMUM LEVEL FLIGHT SPEED = 0.35417D+02 FT/SEC
LIFT COEFFICIENT = 0.37235D+01 DRAG COEFFICIENT = 0.57004D-00

MAXIMUM LEVEL FLIGHT SPEED = 0.26508D403 FT/SEC
LIFT COEFFICIENT= 0.66472D-01 DRAG COEFFICIENT = 0.11478D-0)

MAXIMUM CLIMB ANGLE = 0.85675D+01 DEG
VELOCITY FOR MAXIMUM CLIMB ANGLE = 0.1 1431D+03 FT/SEC

LIFT COEFFICIENT =0.35742D+00 DRAG COEFFICIENT = 0 6448D-O1

VELOCITY FOR MAXIMUM ENDURANCE = 0.71362D+02 FT/SEC
POWER FOR MAXIMUM ENDURANCE - 0.42203D+04 FT-LBS/SEC

LIFT COEFFICIENT = 0.91716D+00 DRAG COEFFICIENT = 0.45200D.0:

VELOCITY FOR CLASSICAL MAXIMUM RANGE = 0.93918D402 FT/SEC
LIFT COEFFICIENT = 0.52953D)400 DRAG COEFFICIENT = 0,22600D.01

SERVICE CEILING = 0.29307D+05 FT
VELOCITY AT SERVICE CEILING = 0.16158D+03 FT/SEC

LIFT COEFFICIENT = 0.46543D+00 DRAG COEFFICIENT = 0.20030D-01

ABSOLUTE CEILING = 0.325731D05 FT
VELOCITY AT ABSOLUTE CEILING = 0. 16151D-03 FT/SEC

LIFT COEFFICIENT = 0.52583D-,-00 DRAG COEFFICIENT = 0.22443D-01
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MAXIMUM RATE OF CLIMB SCHEDULE FROM 0.OOOOODO0 FTTO 0.10000D+04 FT

H(FT) R/C(qT/SEC) V(Fr/SEC) P(FT.LBS/SEC) CL CDO.00000D+O0 0.21522D+02 0.16836D+03 0.41023D+05 0.16478D+00 0.12394D.010.50000D+03 0.21079D+02 0.16825D+03 0.40284D+05 0.16742D+00 0.12430D.010.10000D+04 0.20640D+02 0.16815D+03 0.39554D+05 0.17012D+00 0.12466D.01

MAXIMUM RC, POWER AVAILABLE. & POWER REQUIRED VS VELOCITY
AT 0.OOOOOD+00 FT

R/C(FTISEC) PA(FT-LBS/SEC) PRQ(FT-LBS/SEC) V(FT/SEC)
-0.15614D-08 0 65065D+04 0.65065D+04 0.35417D42
0.14027D,01 0.751590+04 0.58327D-04 0.4000()D+02
0.41209D-01 0.982550+04 0.48804D+04 0.50000D--02
0.65602D-01 0.12264D005 0.43917D+04 0.6000D0.02
0.882271+01 0.14810D.-o05 0.42226D-04 0.70000D-,02
0.10943D-02 0.17441D+05 0.43099D)4 0.8000(X)D-2
0 12926D-02 0.20137D.-05 0 46262D--0 0.900001)-02
0.14761D-02 0.22875D-05 0.51620D+04 0. 10000D-03
0. 1 6430D,02 0.25634D.-05 0.59176D.-04 0. 100D-03
0.17911 D-02 0.283()2D-45 0.68990D-04 0. 120(X)D..3
0 19176D-02 0.31127D-05 0.81158D-0.4 0.13000)+,03
0.20199D+02 0.33819D05 0.95798D1)i4 0.14000D-03
0.20951D02 0.36445D+05 0.11304D+05 0.15000D-03
0.21400D,02 0.38983D-05 0.13303D-05 0.160()0D-03
0.21517D-.02 0.41413D--05 0.15592D-05 0.170(X)D-03
0.212714D,02 0.43712D-05 0.18186D-05 0.180(X0-03
0.20631D-02 0.45859D05 0.21102D-65 0.19(X)OD403
0,1456 402 0.47832D05 0.24355D-05 0.2(X000D03
0.1 8040D-02 049610D-45 0.27962D-05 0.21 00OD-03
0 16025D002 0.51170D05 0.31940D05 0.22000D-03
0.13489D-02 0.52492D-05 0.36305D,-5 0.23000-)-030 10399D+02 0.53554D-05 0.41075D-05 0.24000-)-030.67224-D01 0.54333D-05 0.46266D-05 0.250O0D-o3
0.24275D-01 0.54809D+05 0.518961)-05 0.26000D+03
0.95818D.10 0.54927D4)5 0.54927D05 0.26508D-03
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Figure 1. 1. Power vs Velocity Curve for the Flying Wing Configuration
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Figure 1.2. Rate of Climb vs Velocity Curve for the Flyinp Wing
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