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INTRODUCTION

The principal portion of this Final Report on the present grant, Artificial
Intelligence Methods in Pursuit Evasion Differential Games, consists of an at-
tached Technical Report by Rodin and Weil, on Differential Games and Artificial
Intelligence In Air Combat. The rest of the report is a brief summary of our activi-
ties and achievements under the grant during the past three years. The
summary is brief, because it is merely a restatement of reports sent by the P.I. to
the AFOSR regularly during the life of the grant. Since those reports also
contained copies of publications produced under the sponsorship of this grant,
no further copies of such publications are included either. However, we are
including copies of a few letters and other material, all of which relate to items
of interest mentioned below.

FULFILLMENT OF PROPOSED WORK

In order to gauge whether we succeeded in fulfilling our aims, as described in
the Abstract of our proposal to the AFOSR on February 6, 1987, we quote the
Abstract:

"The aim of the research here proposed is to develop the
conceptual framework and the software for the prototype of
an operational, on-board, real time multiprocessing computer
system, capable of assisting the pilot in flight and fire control
decisions; in other words, a Tactical Decision Aiding Expert
System (TDAES).
The end product of this research will be for use in theoretical
combat planning and analysis; in practical fighter pilot train-
ing (e.g., in simulations); and as an actual aid for pilots in sup-
port of their tactical decision making during flights.
The nature of this research is intelligent control of a very spe-
cific type; we intend to combine certain aspects of differen-
tial game theory, 3 dimensional computational geometry and
artificial intelligence in a unique way, so as to provide a solu-
tion to the problem described above. r : 7

We believe that the attached Technical Report responds in meaningful ways to
each of the aims set forth above. Another version of this report also constitutes
the doctoral dissertation of R. Well under the direction of the P.I.; a project which
was initiated shortly before the starting dale of ihls grant. Therefore, in an impor-
tant sense, this report is a culmination and summing up of much of the work we
have done during the past three years.The principal subjects of the Report are
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as follows:

1. Semantic Control Theory
2. Air Combat Environment
3. Pursuit-Evasion Differential Games
4. Artificial Intelligence
5. Numerical Algorithms
6. Multi-objective Decision Making
7. System Integration
8. Simulation

Thus, to be specific, of our aims that we originally set forth, the only one missing is
that of multiprocessing. That is a subject we were not able to get into in any
meaningful way, because of lack of appropriate computer equipment.

OTHER PROPOSAL FULFILLMENT WORKS

In addition to the Technical Report referred to above, there are other items also,
which relate to the fulfillment of our purposes. These include the following:

Doctoral dissertations:

1.Artificial Intelligence Methods in Decision and Control System ; by Y. Urov; un-
der the supervision of E.Y. Rodin.

2.Intelligent Prediction Methodologies in the Navigation of Autonomous
Vehicles by M. Amin; under the supervision of E.Y. Rodin.

3.Artificial Intelligence Methods in Utilizing Low Dimensional Models of Differential
Games by R.D. Weil; under the supervision of E.Y. Rodin.

Other publications:

1."Artificial Intelligence in Air Combat Games" (E.Y. Rodin, L.W. Wilbur, B.
McElhany, S. Mittnik and Y. Urov), Pursuit-Evasion Differential Games, ed. by Y.
Yavin and M. Pachter, Pergamon Press, pps. 261-274, 1987.

2."Annotated Bibliography of Pursuit-Evasion Differential Games" (E.Y. Rodin),
Pursuit Evasion Differential Games, ed. by Y. Yavin and M. Pachter, Pergamon
Press, pps. 275-340, 1987.

3."Artificial Intelligence Modelling of Control Systems" (E.Y. Rodin, Y. Lirov, B.G.
McElhany and L.W. Wilbur). SIMULATION, vol 50, no. I, pps. 12-24, 1988.
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4."Semantic Control Theory" (E.Y. Rodin), Appl. Math. Letters, vol 1, no. 1, pps. 73-
78, 1988.

5."Collision Free Path Planning in a Dynamic Environment: Semantic Control
Approach" (E.Y. Rodin, B.K. Ghosh, F. Golenko and R.W. Weil), SIMULATION, vol
50, pps. 196-201, 19e 8.

6."Automated Learning by Tactical Decision Systems in Air Combat" (E.Y. Rodin,
B.J. Ghosh and Y. Lirov), Comp. and Math. with Appl., vol 18, no.1-3, pps. 151-
160, 1989.

7."A Pursuit-Evasion Bibliography - Version 2", (E.Y. Rodin), Comp. and Math. with
Appl., vol 18, no. 1-3, pps. 245-320, 1989.

8.wTactical Air Combat Maneuvers: Recognition and Guidance Via Neural
Networks" (E.Y. Rodin and M. Amin) , to appear in Aerospace America.

9."Flight and Fire Control with Logic Programming" (E.Y. Rodin and D. Geist), to
appear in Comp. and Math. with Appl.

Talks:

In addition to the above paper, there were several talks given by the P.I. and/or
his graduate students at various meetings and conferences. Examples of such
venues:

Aerospace Applications of Artificial Intelligence Conferences
International Symposia on Differential Games Applications
IEEE Conferences on Decision and Control
IEEE International Symposia on Intelligent Control
Society for Industrial and Applied Mathematics Conferences
Naval Underwater Research Center Seminars
Yale University Seminars
Scott Air Force Base Seminars

BENEFICIAL EFFECTS OF THE GRANT

In addition to the results enumerated above, there were several additional tan-
gible and intangible gains made, which are of potential utility not only to
Washington University, but also on a national scale; and gains which, we be-
lieve, are of potertiil use to the USAF. We list some of these below.
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Collaboration with Scott AFB:

An excellent working relationship developed, in the course of this grant, be-
tween the CINCMAC Analysis Group on the one hand, and the P.I. and his
graduate students on the other. Items:

1. A group of 30-40 students of the P.I. now takes a regu!ar annual field trip to
Scott AFB, where they are given technical presentations by various AF officers.
Several of these students pursue the subjects of these talks in minor and major
research projects.
2. We arranged two special seminar series this past school year at Washington
University, relating to the applications of Artificial Intelligence, specifically for
groups from Scott AFB.
3. Scott AFB officer-scientists gave several special presentations on their problem
areas to groups of Washington University students, at the University.
4. A formal agreement of internships was signed between Scott AFB and
Washington University.
5. Lt. General A.J. Burshnick nominated the P.I. for membership to the Air Force
Scientific Advisory Board.
6. Scott AFB provided funds for the P.I. to equip his laboratory with a SUN 4/260
workstation.

Other Collaboration:

The P.I., his associates and graduate and undergraduate students gave full day
progress report type presentations to groups from each of the following organi-
zationm

AFOSR
Scott AFB - CINCMAC Analysis Group
HQ SAC Delegation
Rockwell International
McDonnell Douglas
Emerson Electric

RESEARCH ENVIRONMENT

As a direct result of this grant, the P.I. was enabled to establish at Washington

University the following two entities:

Semantic Control Laboratory

This laboratory contains all of the computer equipment, which was utilized for
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the purposes of this grant, and which will continue to be so utilized. It also con-
tains a large quantity of specialized books and other literature, all of which are
specifically earmarked for the type of research here described. The laboratory
turned out to be a magnet for many (specifically American undergraduate)
students, resulting in increased interest in careers related to science and engi-
neering.

Center for Optimization and Semantic Control

The School of Engineering at Washington University agreed to establish this
Center for the specific purpose of both fulfilling the aims of this grant, and for the
purpose of enabling the P.I. and his group to continue their research of the na-
ture described here. E.Y. Rodin is Director of the Center; its members are drawn
from among the faculty, and from among graduate and undergraduate stu-
dents.
In addition to the individual and/or joint research activities of members of the
Center, an environment is created which is conducive for drawing the interests
of some of our brightest, most capable and most motivated students towards
our interesting research projects.
The Center holds weekly seminars, at which ongoing research projects, future
efforts, etc. are regularly discussed.

ACKNOWLEDGEMENT

The Principal Investigator, Prof. Ervin Y. Rodin, would like to express his thanks to
the AFOSR for enabling him and his group of graduate and undergraduate stu-
dents to engage in the highly rewarding, very interesting and hopefully useful re-
search here described.



DEPARTMENT OF THE AIR FORCE
HEADQUARTERS MILITARY AIRLIFT COMMAND

SCOTT AIR FORCE BASE. ILLINOIS 62225

30 November 1989

Dr James M. McKelvey
Dean, School of Engineering and Applied Science
Washington University
St Louis, Missouri 63130

Dear Dr McKelvey

Just a short note to thank you for your hosp 4tality and the superb presenta-
tions of Dr Rodin, his colleagues and students. We were most impressed with
the presentations--and the fact that so many students were willing to sacrifice
their Thanksgiving holiday to meet with us. They are doing some work of great
interest to us in solving real-world problems. We hope to continue this rela-
tionship in the future.

Thanks again for taking time out of your busy schedule to meet with us.

Si 
rely

AMES D. GRAHAM, . Colonel, USAF
Deputy Director, Command Analysis Group
DCS/Plans and Programs



VOLUNTEER SERVICE AGREEMENT BETWEEN 375 MSSQ/MSCS
SCOTT AFB, IL AND WASHINGTON UNIVERSITY, ST. LOUIS, MO

Statement of Understanding. Volunteer service is to be uncompensated and must be required for
academic credit or certified to be related to the academic process. Participants are not considered
federal employees for any purpose other than for Federal Tort Claims provisions and for purposes
relating to compensatory injuries sustained during the performance of work assignments. This
service does not lead to noncompetitive permanent employment with this base or with any other
federal installation.

Though the university will refer interested students, final selection is left to the Department of the
Air Force. We are an equal employment opportunity employer and selection will be based on these
principles.

The undersigned parties understand the Volunteer Service Program will provide meaningful
experiences reflecting the academic requirements of the participants in a manner so as not to
jeopardize other established youth program positions nor positions of any other employee.

Department of the Air Force Volunteer Service Program General Objectives

a. To provide meaningful assignments which relate to the academic endeavors of participants.

b. To provide experiences which enhance the career education and/or career development of
participants.

c. To foster amiable relationships between representatives of the Air Force, as a viable potential
employer, and university officials.

d. To encourage women, handicapped individuals, and minorities to explore career options
available with the Department of the Air Force.

e. To introduce students to the mission and functions of the Air Force and to the work
environment so as to facilitate their development of an appreciation for work ethics.

Activity Responsibilities

a. Ensure Office of Personnel Management/Air Force Volunteer Service Program objectives are
met.

b. Designate a Volunteer Service Program Coordinator to whom all inquiries can be directed.

c. Provide structured assignments and opportunities for experience which reflects program
objectives.

d. 7ertify and document participation in and completion of the Volunteer Service Program.

e. Provide all participants opportunities to evaluate the program in reference to program objectives.

f. Ensure that this in no way jeopardizes other student employment programs nor contributes to
erosion of the position duties of other employees.
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Jniversity Responsibilities

t. Develop a program information dissemination system which ensures that all students are given
equal opportunity to apply for referral.

3. Provide activity with name of school officials to whom service inquiries can be directed.

-. Provide students' resumes to activity.

I. Provide information necessary for activity to provide structured, meaningful assignments when
academic assignments require such.

e. Inform activity of any change in participants' status.

Participant Responsibilities

a. Though Volunteer Program participants are not federal employees, they are expected to maintain
acceptable attendance and to conduct themselves so as not to disrupt normal workflow in the
activity.

b. Provide information which may be needed for certain reporting requirements.

Daniel G. Marlert Dl 1e
Civilian Personnel Officer

an, School of Engineering Date
hington University, St. Loui, MO

10a



THE WASHINGTON UNIVERSITY/MAC INTERN PROGRAM

The Intern Program with Washington University teams an undergraduate student
with analysts from the Command Analysis Group on an issue as it is being analyzed
for the senior executives at the Military Airlift Command. This teaming provides a
symbiotic relationship. The analysts benefit from learning from the student some of
the newer innovative methodologies being taught at Washington University. The
student experiences the cycle of analysis from the initial nebulous statement of the
issue through the presentation of the analytical findings to senior executives for a
decision. We want to motivate students to continue a technical course of study by
giving them a "piece of the action" and letting them see what practitioners do. We
are trying to help alleviate the national problem of low graduate enrollment in the
sciences and engineering by American students.



DEPARTMENT OF THE AIR FORCE
HEADQUARTERS STRATEGIC AIR COMMAND

OFFUTT AIR FORCE BASE, NEBRASKA 68113

Ervin Y. Rodin
Box 1040, Washington University I q MAR 1990
One Brookings Drive
St. Louis, MO 63130-4899

Dear Dr Rodin

I. As per your request from our recent telephone conversation, listed below
are the individuals planning to visit your facilities.

Dr. Jacqueline Henningsen, Chief, Capability Assessment Division,
Strategic Air Command

Mr. Patrick McKenna, Operations Research Analyst,
Strategic Air Command

Dr. Fred Choobineh, Dept of Industrial Engineering,
University of Nebraska, Lincoln

2. We can arrive at your facilities by 10:00 AM on Monday, April 2, 1990. In
line with your suggestion, please send introductory materials describing your
program and a possible agenda for the day. We look forward to learning about
your progress.

Sincerely

ueline R. Henningsen, GM-15
Chief, Capability Assessments Div
Dir force Assessments, DCS/Plans & Resources

Fax # (402) 294-7628
Voice # (402) 294-2355



Washington
\ASH I NGTON UN N VERSITY IN ST LOUIS

Schol of .inginccring :and Applied Science Center for Opt iritaIlion and Son:antiv (: 144

To: All ssm (and other interested) undergraduate and
graduate students

From: Professor E. Y. Rodin

On Friday, march 2, 1990, a group of scientists from
Scott Air Force Base will give a I-hour talk in the Berger
Room (Cupp. II, 101) at 12:00 noon. They will present a
set of as yet unsolved optimization problems, which
are of great interest to them. Their purpose with the
presentation is to interest undergraduate and/or
graduate students to undertake joint research with
them on some of these problems.

These problems lend themselves to individual (or
grouo) semester or even multi-year projects. They
can also be Senior Projects, can be developed to
masters' Theses or could even be the basis for doctoral
work.

If you are interested in hearing - without any obligation
- what these problems are, please come to the Berger
Room at 12:00 noon. You can bring your own lunch. If
you cannot make it at 12:00, come at 1:00: if we will
have several 1:00 o'clock people, the talks will be
repeated for them.

\'i%lhingto, I I ntilversit y
( ' 1111111,.S Box I0-#0(

St l.tmisNi. Ilissoturi (. 1WO
'1l (.l 411) .4 ) ) 0 ., . -SM04)

X (.l i) 726..i.i .i
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Membership Nomination

HQ USAF/NB

1. We are pleased to nominate Dr Ervin Y. Rodin for'membership
to the Scientific Advisory Board. Dr Rodin is Professor of
Applied Mathematics and Systems Science, and Director, Center for
Optimization and Semantic Control, Department of Systems Science
and Mathematics, Washington University, St Louis MO.

2. Dr Rodin is a leading researcher in scheduling applications,
Artificial Intelligence, and Neural Networks. Throughout the
past year, Dr Rodin provided exceptional counsel and assistance
to the command on airlift operational analysis issues. He is an
ideal candidate with his exceptional record and demonstrated
willingness to work national issues.

3. Enclosed is Dr odin's biographical data. He is aware of his
nomination and will gladly serve if selected. Thank you for our
opportunity to nominate Dr Rodin.

Sincerely

ANTHONY J, BURSHNICK 1 Atch
Lieutenant General, USAF Dr Rodin's Biographical Data
Vice Commander in Chief

COORD: XPW

.. *



Center for Optimization and Semantic Control

Visit of Program Managers* from
the Air Force Office of Scientific Research

Tuesday, February 13, 1990

PROGRAM

8:30 - 9:00 Ervin Y. Rodin, Director, COSC Survey of Background, Current
Work and Objectives

9:00 - 9:45 Roark Weil, Principal Specialist, Differential Games in Optimal
McDonnell Douglas Missiles Systems: Flight and Fire Control
Graduate Student

9:45 - 10:30 Daniel Geist, Graduate Student Flight and Fire Control with Logic
Programming; and Time Varying
Voronoi Diagrams

10:30-11:15 Massoud Amin, Graduate Student Intelligent Prediction Methodologies
in the Navigation of Autonomous
Vehicles

11:15-12:00 R. Weil, D. Geist and M. Amin Presentations of Computer Implemen-
tations in the Semantic Control
Laboratory.

12:00- 1:00 Luncheon Berger Room
Professor Christopher Byrnes, Chairman Education and Research in the
Department of Systems Science & Math. Department of Systems Science & Math

1:00 - 1:45 Mark Monical and Chao Ruan, Further Developments in the Expert
Graduate Students Systems Approach to Aeromedical

Routing

1:45 - 2:15 A. Girard, D. Homtrop, Solution Methods for the Operational
K. Ruland, Undergraduate Support Aircraft Vehicle Scheduling
Students Problem.

2:15 - 3:00 Professor Iiro Mukai and Optimization with a Probabilistic
Di Yan, Graduate Student Performance Index; and Stochastic

Approach for Maximum Entropy
Distribution

3:00 - 3:30 M. Monical and C. Ruan Presentation of Computer Implemen-
tations in the Semantic Control
Laboratory.

*Dr. Charles Holland; Dr. Neil Glassman; Dr. Aje Nachman; Dr. Abe Waxman

We also welcome our other distinguished visitors from HQMAC, Scott AFB; and from the
McDonnell Douglas Company.
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I Center for Optimization and Semantic Control

Visit of Delegation from HQ/SAC-Offut AFB
Monday, April 2,1990

PROGRAM

E 10:00-10:15 Ervin Y. Rodin, Director, COSC Survey of Background, Current
Work and Objectives

E 10:15-11:00 Roark Weil, Principal Specialist, Differential Games in Optimal
McDonnell Douglas Missiles Systems: Flight and Fire Control5] Graduate Student

11:00-11:45 Massoud Amin, Ph.D. Intelligent Prediction
Methodologies in the
Navigation of Autonomous
Vehicles

11:45-12:15 R. Weil and M. Amin Presentations of Computer
Implementations in theg Semantic Control Laboratory

E 12:15-1:30 Luncheon Whittemore House

1:30-2:15 Daniel Geist, Graduate Student Flight and Fire Control with
Logic Programming; and Time
Varying Voronoi Diagrams

2:15-3:00 Mark Monical and Chao Ruan, Further Developments in the
Graduate Students Expert Systems Approach to

Aeromedical Routing

3:00-3:45 Professor Hiro Mukai and Optimization with a Probabil-
Di Yan, Graduate Student istic Performance Index; and

Stochastic Approach for
Maximum Entropy Distribution

3:45-4:30 D. Geist, M. Monical and C. Ruan Presentation of Computer
Implementations in the
Semantic Control Laboratory.

We also welcome our other distinguished visitors from Emerson Electric,
Electronics and Space Division; and Rockwell International, North American
Aviation;
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Center for Optimization and
Semantic Control

Prof. Ervin Y. Rodin, Director

Faculty:

M. Amin (Neural Networks, Systems Theory)
B. Ghosh (Robust and Adaptive Systems, Robotics)
R. Loui (Decision Theory and Planning)
H. Mukai (Optimization Methods, Control Systems)
E. Rodin (Artificial Intelligence, Optimization, Differential Games.)

Graduate Students: Undergraduates:

D. Geist R. Weil D. Baker J. Hodapp C. Mayewski
J.S. Lin Y. Wu J. Feser D. Horntrop A. Rodin
M. Monical D. Yan A. Girard D. Krasnow M. Ross
C. Ruan F. Yang C. Hennings M. Meusey K Ruland

R. Wagnon

Office: Labomratoryr

Cupples H, 103 Cupples II, 111
(314) 889-6007 (314) 889-5806

Fax: (314)726-4434; e-mail: rodin@rodin.wustl.edu

Equipment: Expansion Plans:

SUN 4/260 2 SUN SparcStations
SUN SparcStation Additional Macintosh
IBM PC/AT Additional Memory
Macintosh II ci Additional Software
Macintosh SE 30
1.5 gigabytes of memory

Other Expansion Plans:
Additional faculty, graduate and undergraduate students; and establishment of
advisory committee.



Center for Optimization and Semantic Control

Current projects

* Aeromedical Evacuation Problem

OSA Aircraft Scheduling

Tactical Decision Aiding Expert System for Flight and Fire Control

Neural Network Implementation of Decision Making in the Presence of
Partial Information

Neural Network Decision Aiding for Optimal Motion in a Cluttered, Time
Varying Environment

Logic programming

Technical Areas of Interest

• Constrained and unconstrained optimization

" Differential games

• Artificial intelligence

* Neural networks

• Multiprocessing

* Multiobjective decision theory

* Semantic nets

* Multiresolutional algorithms

* Computational complexity

" Delauney triangulation

" Graph theory

" Simulated annealing

" Genetic algorithms

19a



I
I

Center for Optimization and Semantic Control

Purpose: To study, in an academic environment, conventional and
unconventional optimization and control problems, the genesis of which is in
government, industry or business.

Examples: ° Large-scale time varying scheduling problems
Flight and fire control systems for combat aircraft* Robotic navigation in cluttered environments

I Features: • Large scale problems (computationally); therefore one of the
aims of the analysis must be feasibility and computability.

• Multi-objective optimization problems; sometimes with time
varying objectives, sometimes with fuzzy ones.
Classical optimization, control or game theoretic methods
are insufficient for their resolution.

I Solution: • Classical methodologies
• Semantic networks
- Expert Systems
• Neural nets

Additional requirement: User friendliness

Participation Advisory committee
I Multidisciplinary facultyI Graduate students
* Undergraduate groupsI

i Principal Past Accomplishments:

Development of Semantic Control paradigms (combination of classical
mathematical methodologies with artificial intelligence approaches)

Development of Tactical Decision Aiding Expert System for Flight and Fire
Control (adopted for the Eurofighter)

Development of Neural Networks Approach to Maneuver Recognition

Development of Low Observable Tracking Algorithms in Time VaryingI Environments
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TECHNICAL REPORT

Center for Optimization and Semantic Control

WASHINGTON UNIVERSITY

DIFFERENTIAL GAMES AND ARTIFICIAL INTELLIGENCE

IN AIR COMBAT

by
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Roark David Weil
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Saint Louis, Missouri

Another version of this report was submitted to the Sever Institute of Technology
by the second author, under the direction of the first author, in partial fulfillment of
his requirements for the degree of Doctor of Science.



ABSTRACT

DIFFERENTIAL GAMES AND ARTIFICIAL INTELLIGENCE

IN AIR COMBAT

by

Ervin Y. Rodin

and

Roark David Well

A new methodology is developed for dealing with complex systems that
are self modifying in the order, relations, and component types. Air-combat is
one such system. Differential game technology currently and for the foreseeable
future is incapable of generating solutions to all but very low dimensional models
for air-combat. The solutions of the low dimensional models are by themselves
too simplistic to be useful in actual air-combat.

Artificial intelligence methodologies and the new Semantic Control
Paradigm splice together suboptimally the low dimensional differential game
solutions. Mesarovic's general systems theory is extended by defining for the
first time Semantic Systems dealing with systems that self modify their form
(order and relations). A new methodology for simulation of Semantic Systems
based on Al Frames is also developed.

Three artificial intelligence methodologies are explored for splicing the
differential games: rule based, the Analytical Hierarchy Process, and artificial
neural nets. The rule based approach uses an explicit set of rules in a forward or
backward chaining fashion to determine the most appropriate differential game.
The artificial neural net approach is based on a paradigm modelled after
biological processes. Simulation trains a hierarchy of neural nets to determine
the most applicable differential game. The Analytical Hierarchy Process is a
paradigm of relative measure. First determined is the relative importance of a set
of criteria for choosing the most appropriate differential game. Next determined
with respect to each criterion is a relative rating of each differential game
altemative. A tallied score determines the game.

Those aspects of differential game theory that are useful for air-combat
are reviewed. The game of kind determines the region of state space from which



capture of an adversary is possible. The game of degree determines trajectories
based on a cost function in the region of state space in which capture is possible.
A simplified development of the necessary conditions for the game of degree is
given by combining Berkovitz's methodology with Isaac's theorem (that all games
are equivalent to an autonomous game with terminal payoff). Berkovitz's result,
depended always on using the family of time varying feedback strategies in the
variation, has been extended to consider autonomous feedback strategies for
autonomous systems.

The overall approach taken in this work has been to combine different
technologies that by themselves are currently incapable of solving a problem.
Hybridization techniques for future integrated system methodologies may solve
problems that are currently beyond the scope of pure solutions. Methodologies
in this work have application to problems deemed so difficult that no appropriate
mathematical models can be derived, nor can be found any appropriate analytical
methods.
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A new methodology is developed for dealing with complex systems that
are self modifying in the order, relations, and component types. Air-combat is
one such system. Differential game technology currently and for the foreseeable
future is incapable of generating solutions to all but very low dimensional models
for air-combat. The solutions of the low dimensional models are by themselves
too simplistic to be useful in actual air-combat.

Artificial intelligence methodologies and the new Semantic Control
Paradigm splice together suboptimally the low dimensional differential game
solutions. Mesarovic's general systems theory is extended by defining for the
first time Semantic Systems dealing with systems that self modify their form
(order and relations). A new methodology for simulation of Semantic Systems
based on Al Frames is also developed.

Three artificial intelligence methodologies are explored for splicing the
differential games: rule based, the Analytical Hierarchy Process, and artificial
neural nets. The rule based approach uses an explicit set of rules in a forward or



backward chaining fashion to determine the most appropriate differential game.
The artificial neural net approach is based on a paradigm modelled after
biological processes. Simulation trains a hierarchy of neural nets to determine
the most applicable differential game. The Analytical Hierarchy Process is a
paradigm of relative measure. First determined is the relative importance of a set
of criteria for choosing the most appropriate differential game. Next determined
with respect to each criterion is a relative rating of each differential game
alternative. A tallied score determines the game.

Those aspects of differential game theory that are useful for air-combat
are reviewed. The game of kind determines the region of state space from which
capture of an adversary is possible. The game of degree determines trajectories
based on a cost function in the region of state space in which capture is possible.
A simplified development of the necessary conditions for the game of degree is
given by combining Berkovitz's methodology with Isaac's theorem (that all games
are equivalent to an autonomous game with terminal payoff). Berkovitz's result,
depended always on using the family of time varying feedback strategies in the
variation, has been extended to consider autonomous feedback strategies for
autonomous systems.

The overall approach taken in this work has been to combine different
technologies that by themselves are currently incapable of solving a problem.
Hybridization techniques for future integrated system methodologies may solve
problems that are currently beyond the scope of pure solutions. Methodologies
in this work have application to problems deemed so difficult that no appropriate
mathematical models can be derived, nor can be found any appropriate analytical
methods.



ARTIFICIAL INTELLIGENCE METHODS IN UTILIZING LOW DIMENSIONAL

MODELS OF DIFFERENTIAL GAMES

1. INTRODUCTION

One of the most, if not the most complex dynamical systems is the air-

combat arena. The demand on a pilot's faculties becomes more demanding at

each incremental increase in the level of technology at both the pilot's and his

adversaries' disposal. Thus, the purpose of this research is the development of a

real-time tactical flight and fire control system. The development of this system

will consider the capabilities of the aircraft, weapons, and electronic

countermeasures of both the pilot and his adversaries.

Rufus Isaacs first looked into the theory of modeling tactical encounters in

what he termed "Differential Games" in his seminal Rand report. Isaacs

assumed a differential model for the aircraft dynamics. He also assumed fixed,

the roles of pursuer and evader for the duration of an encounter. Only the

pursuer had weapon capabilities. Hyper-surfaces in the state space modeled

weapon capabilities. The weapon model supposed that if the state of the system

was driven to the aforementioned hyper-surface then the evader is destroyed

with probability one, while off the surface there is probability zero that the evader

is destroyed.
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There are many reasons differential games have not found widespread

use in air combat. lsaacs' conditions are only "necessary" conditions. The

meeting of these conditions does not guarantee a solution, but a solution must

meet these conditions. It has only been possible to find solutions to very low

order models for an encounter (e.g., two dimensional constant velocity). This

happens because due to the complex geometric structure of the solutions, the

controls may be noncontinuous across manifolds in the state space.

The intractability of finding solutions to sufficiently high order models for

fixed role encounters is not the only impediment to the use of differential games.

The assumption that weapon systems can be modeled by a surface in the state

space such that off the surface there is zero probability of destruction of an

adversary, and on the surface there is probability one of destruction is not

realistic. A continuous probabilistic model that assigns to every point in state

space a probability of destroying an adversary is a more realistic weapon

systems model. This probability function depends on such items as range, range

rate, aspect angle, off boresight angle, etc. Clearly, it is easy to include the

effects of electronic countermeasures in this function by adjusting the

probabilities in an appropriate fashion. The fixed role assumption during an

encounter is also not reasonable. All participants in an encounter have weapon

systems that can be modeled by continuous probabilistic functions. Each

participant tries to obtain a reasonable firing opportunity while preventing his

adversaries from doing the same.

The solution to the low order one target models are by themselves, not

sufficiently accurate to be useful in air combat. It is the contention of my

research that artificial intelligence methodologies may be used to splice these low

order solutions together in a sub-optimal fashion that will be useful in air combat.
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The first step in solving the air combat problem is defining how to model

such a complex system. The complexity of the air combat arena falls outside

current definitions of general systems as first proposed by Mesarovic. The basis

for traditional system definitions are a fixed set of objects and a fixed set of

relations between the objects. Our interests are systems that have the property

that they self modify. This modification takes place by attrition and reproduction

of the objects, and modification of relations between the objects. The objects of

course are aircraft, missiles, SAMs, and ground targets.

One area of my research explores the characteristics of self modifying

systems of the above type. I term these type of systems, semantic systems.

Semantic systems are shown to be an extension of general systems defined by

Mesarovic. The semantic state object consists of terms representing the order of

the system, and the relations among them.

Closed form analytical techniques are generally only useful for very low

order system models. Simulation techniques must be used for understanding

system models of any real complexity for even classical general systems. The

normal case assumes that a system may be classified according to such

categories as, continuous dynamical systems, discrete dynamical systems,

linguistic systems, decision systems, etc. Closed form analytical tools assume

that a system (or its model) is of a homogeneous classification. The problem that

we have to deal with is that even the portions of the air-combat arena that can be

classified as a Mesarovic general system are not of a homogeneous nature. The

fact that the system is self modifying further compounds the problem. I also will

introduce a new technique for modeling systems of the aforementioned complex

nature. The basis of this technique is Marvin Minsky's artificial intelligence

frames. I show that the frame based modeling and simulation paradigm is
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natural for semantic systems. This allows one to define the systems objects and

relations (semantic state) in terms of declarative and procedural knowledge.

The semantic control paradigm will be used to determine the controls for

an aircraft. The control problem breaks into three blocks.

(i) Identifier

The identifier fuses sensor data to estimate the current semantic

state. Component types (MIGS, SAMS, Airliners) and state are

estimated. Also estimated are the relations between the identified

components (attacking, retreating). Sensor fusion is itself a

complex subject of current research, but is beyond our interest

here. We assume complete information of the semantic state.

(ii) Goal Selector

The Goal Selector determines the most appropriate differential

game based on the identified semantic state. The choice is made

from a knowledge base of games from which solutions can be

generated. The results are the optimal trajectories, barrier, and

controls. It should be noted that these controls are not the same

controls as those needed by the aircraft, because the game chosen

may be a simplification of the actual encounter. This block has a

library of numerical methods used to solve the differential games.

(iii) Adapter

The Adapter determines the controls that cause the aircraft to

"best" follow the optimal trajectory determined by the Goal Selector.

This is best accomplished by a rule-based control system
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dependent upon the differential game model chosen in the

identifier, and upon the performance limits of the aircraft.

The design of the goal selector is the main thrust of this dissertation.

Three alternate methodologies are considered: rule based, the Analytical

Hierarchy Process, and artificial neural nets. The rule based approach uses an

explicit set of rules in a forward or backward chaining fashion to find the most

appropriate differential game. The artificial neural net approach is based on a

paradigm modelled after biological processes. Simulation trains a hierarchy of

neural nets to find the most applicable differential game. The Analytical

Hierarchy Process is a paradigm of relative measure. First determined is the

relative importance of a set of criteria for choosing the most appropriate

differential game. Next determined with respect to each criterion is a relative

rating of each differential game alternative. A tallied score determines the game.

The use of Pursuit-Evasion games gives us the ability to execute actions

in at least locally optimal trajectories, which is something that a human pilot does

not automatically achieve. However most Pursuit-Evasion solutions are over

simplifications of real life air combat. These solutions need to be refined, and this

has to be done when experience is acquired by the utilization of this system.
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2. DIFFERENTIAL GAMES

This first section covers the aspects of differential game theory applicable

to air-combat. Contained are the derivations of the necessary conditions for the

game of kind and game of degree. The derivation of the necessary conditions for

the game of degree extends Berkovitz's work to consider only autonomous

variations for autonomous systems. Section 6 uses the results derived in this

section in generating the solutions for the differential games in the knowledge

base.

Rufus Issacs in his seminal Rand Reports first introduced the notion of

what he called differential games. He formulated the idea of two opposing players

having control of a system described by differential equations. One of the

players (pursuer) wishes to drive the state of the system to penetration of a

terminal surface (manifold) while the other player (evader) wishes to prevent

penetration. Isaacs defined two complementary methodologies of solution to this

problem, games of degree and games of kind.

The game of kind determines from what regions of the state space

penetration of the terminal surface is possible. The game of kind determines

boundaries that separate the state space into regions of capture and escape. The

capture region is defined as the set of all points from which the pursuer can force

penetration of the terminal surface regardless of the controls used by the evader.

Similarly, the escape region is defined as the set of all points from which the

evader can prevent penetration of the terminal surface regardless of the controls

of the pursuer. The boundaries that separate the capture and escape region are

generated by barriers that neither the pursuer nor evader can force to be

penetrated. If the barriers do not form the boundary of a closed region of the

game space then capture is possible from the entire game space. The barriers
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then form surfaces that force classical swerve manuevers in the trajectories of

the players.

The game of degree determines what the optimal controls and trajectories

of the players should be in the capture region. This is done by defining a cost

function on the controls, state space, and terminal surface. The solution to the

game of degree may not be unique, and exists only for those initial points from

which it is possible for the pursuer to drive the state to the terminal surface

regardless of the controls of the evader, i.e. for points contained in the capture

region determined by the game of kind.
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2.1. GAMES OF DEGREE

The necessary conditions for the game of degree are now derived. Our

methodology follows Berkovitz (1967) using a theorem of Isaacs (Theorem 2.1.1

page 10) for a simplified presentation. Lemma 2.1.3 and Theorem 2.1.2 are

original contributions and extend Berkovitz's work to consider only autonomous

variations for autonomous systems. Berkovitz always found it necessary to use

the class of time varying variations.

2.1.1. GAME SPACE

Let X be an n-dimensional vector, Y be an s-dimensional vector, and Z be

an s -dimensional vector. The game space E is a subset of n-dimensional

Euclidean space bounded by the terminal manifold C. Then X e Edescribes the

position in the game space and can be described by differential equations:

(2.1.1) X =fj(X,Y,Z); j= 1,2,...,n

The vector valued function f(X,Y,Z) = (f, (X,Y,Z),... fn(X,Y,Z)) is assumed to be of

class C(1) on it arguments. The vectors Y and Z are the control vectors of the

pursuer and evader respectively.

2.1.2. TERMINAL MANIFOLD

The game ends when the trajectory penetrates an (n-1 )-dimensional

terminal manifold C. The manifold C is at least piecewise continuous and on

each section is C(1 ). We assume we can parameterize C as:

(2.1.2) X= h(Sl,S 2.... ,sn.1)

where h in a n-dimensional vector function.
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2.1.3. PAYOFF

The game of degree has integral payoff of the form:

(2.1.3) P(Xoo'1') = G(X'O'¢)dt + H(s)

to

where

H A smooth function defined on (n-1) dimensional terminal manifold C

G A function containing partials of any order

0 The control strategy of the pursuer, a vector valued function 4: X - Y

D The control strategy of the evader, a vector valued function (D: X - Z

tf a The time the trajectory first contacts the terminal manifold C.

to = Initial time of game.

X0 a X(t0 )

A game of degree is said to have integral payoff if H = 0, and terminal payoff if G

a 0. A game with integral payoff is said to be a pursuit evasion game if G 1, and

a game of survival if G is not constant.

The following theorem allows us to derive theoretical results strictly in

terms of games of degree with terminal payoff.
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THEOREM 2.1.1:1 A game with payoff G # 0 can be replaced by an equivalent

one with terminal payoff.

This is done by adjoining the new state variable Xn+1 , new terminal cost H', new

terminal manifold C, and new game space E such that:

X9n+ 1 = G(X,o,cb)

H'(s') = H(s) + sn

(2.1.4) Xn+i (tf) = sn (terminal condition)

Xn+ 1 (0) = 0 (initial condition)

E'= E x (-0o,o0)

C' = C x (-00,00)

This theorem can be extended so that our following results are valid for

other forms of games not directly incorporated so far. If t effectively appears in f,

G, or H adjoin Xn+1 = 1, replace t by Xn+i, use Xn+ 1 (0) = 0, E'= E x (oo,oo),

and C' = C x (-00,00). Games of fixed duration can also be incorporated, e.g.

(2.1.5) P(X 0,O,() = {G(XO,(Z)dt

This is done by adjoining T* = Xn+ 1 = -1, Xn+ 1 (0) = T, C' Xn+i = 0, and E' = E

x (-.00000)

The goal of the pursuer will be to minimize the payoff, while the goal of the

evader will be to maximize the payoff.

1 lsaacs Sec. 2.4, p.g. 1
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2.1.4. NECESSARY CONDITIONS

We will now derive the necessary conditions for the optimal strategies of

both players. These derivations will follow Berkovitz and we will assume the

existence of optimal strategies (feedback control laws). This differs from Isaacs'

heuristic treatment in which he only assumed the existence of a single optimal

trajectory. Isaacs' theorem that any non-autonomous game with integral cost can

be replaced by an equivalent autonoumous game with terminal cost will also be

used to simplify the derivations. Berkovitz used non-autonomous games

because his variations of strategies required variations in optimality over

arbitrarily small increments of time even for autonomous games2 . We use the

notion of level sets to consider only autonomous strategies for autonomous

games.

The following assumptions will be needed. Without loss of generality we

have shown (Theorem 2.1.1) that only terminal payoff functions need be

considered. The payoff function is simply P(X 0 ,0,0) = H(Xf). The closure of E

(EC ) is contained in a bounded subset rl of (X)-space. We also assume the

existence of the bounded subset F of (X,0,,)-space which contains the projection

of rl. C may be decomposed into Q ,i = 1, 2 .... a, (n-1)-dimensional connected

sub-manifolds of class C 1) each contained in HI such that:

a
(2.1.6) C

j=1I

2 Berkovitz considered the family of non-autonomous strategies even for

autonomous games.
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The (n-i)-dimensional sub-manifolds are each parameterized as:

(2.1.7) X = hj(s1 ,s2 , ...,sn. 1) j= 1,2,...,a

2.1.5. STRATEGIES

The underlying assumption is that optimal strategies exist for both the

pursuer and evader. Let U denote the class of functions 0 that are piecewise

C() mappings of X on Ec to s-dimensional Euclidean space. Let V denote the

class of functions D that are piecewise C(1) mappings of X on Ec to s -

dimensional Euclidean space.

Let 4) e U and (D e V, then the differential equations describing the motion

in the state space is:

(2.1.8) X6 = f(X,O(X),A(X)); X(t 0 ) = X0

There may be more than one solution to this differential equation if X0 is point of

discontinuity of 4 or D. A solution that is unique in a neighborhood of X0 may

bifurcate at some future point of the trajectory at a point of discontinuity of 4 or D.

Isaacs termed these surfaces of discontinuity of 0 or D semipermeable

surfaces. Some of these surfaces to be explored later are barriers, dispersal, and

universal surfaces.

Berkovitz defines a playable pair as 4 e U and (D e V such that for every

X0 e E, X reaches C in finite time.3 This puts the restrictions on the pursuer, as

the goal of the evader is to avoid penetration of C as long as possible. The

underlying assumption is that E is the capture region so there must exist at least

one 4) for every 0 that satisfies the playability condition. The payoff function

P(X0 ,o,)A) = H(Xf), exists for each playable pair (4), D) and X e E but may be

3 Berkovitz p.g 4
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multivalued. The capture region assumption guarantees the non-empty maximal

pair of subclasses UM c U, VM c V having the property that every pair 0 e UM,

(D r VM is playable. The members of UM and VM are called pure strategies.

The roles in the game are that the pursuer should choose a strategy E

UM to minimize P(X 0 ,0,4). The evader should choose a strategy (D e VM to

maximize P(X 0 ,0,4)). The playable pair (0, ) such that P(X 0,4,4) is single

valued is a saddle point if

(2.1.9) P(X0 ,*,4) __ P(X0 ,0 *,0) _ P(X0Sb,c)

holds for every X0 e E, 0 E UM, and 4D e VM. The game's optimal strategies are

then 4 and D. The value function of the game is then defined as W(X0 ) =

P(Xo, ',D). The optimal trajectory corresponding to (0*,) is denoted a*(X 0 ,t).

2. '.6. GAME SPACE DECOMPOSITION

We will now look at decomposing the game space into regions of

continuity and discontinuity of the optimal controls 0 and e. The discontinuities

are the semi-permeable surfaces mentioned earlier. The semi-permeable

surfaces are sub-manifolds of dimension (n-i) and serve to separate the game

space E into regions of continuity.

A regular decomposition of the game space E is a decomposition into

subregions denoted: Ell, E12 , ... , Elj 1 , E2 1, ... , E2j2 , ... ,Ea, ... Ej

such that the Ej satisfy the following properties:4

4 Remember a is the number of components in the decomposition of the terminal

manifold C.
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(a.) Eij, i = 1 ,2,..,az, j = 1 ,2,...,j1, is connected and has piecewise
smooth boundary.

(2.1.10) (b.) Ei, n~ Ekt = 0 i * k or] # 1.

(C.) Ec = U Ej 5

The regions Ei, i=1,2,...,a, defined as

j=1

are connected, have piecewise smooth boundary, and

The regions Ej i= 1 ,2,...,a are such that:

(2.1.13) (a.) The E always lie on the same side of the C

(b.) Eci nCk = 0for i #k.

We also note that for each i = 1 ,2,...,ac:

(2.1.14) (a.) Eci,ji rCi *0

(b.) E~i r C= 0 for j *ji.

The sub-manifolds Mij, i = 1,2,. ..,a, and j = 1 ,2,...,ji-1 defined by,

are oriented, connected, of dimension (n-i), and of class CO1). We assume the

sub-manifolds can be parameterized by sl = (sj1 s2-sn1 such that,

(2.1.16) X = hij(sJlsSJ2i...,5in..l).

The sub-manifolds Mjthen divide E, into two disjoint regions. The A i =

1 ,2,...,ac, and j,k = 1 ,2,...,ji-l also satisfy:

5Recall that E~jis the closure of the set Eqj
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The sub-manifolds N 1 ,i2,...,ik defined for each subset i1 ,i2..ik of the integers

i=1,2,...,a as

(2.1.18) Nil,i2,...,ik = (Ecil n Eci2 r ... r Ecik) rn E are either empty or a

connected non-singular oriented differentiable manifold.

N
12

E, 1 E21

M M
11 21

EXAMPLE REGULAR DECOMPOSITION

Some final notation is needed before we close out this section. The

sections Ci of the terminal manifold will often be denoted as ji. M0 will denote

the union of all the il,i2,...,ik such that i e il,i2,...,ik. Lastly for

i = 1,2,...,a and j = 1,2,...,ji we define:

Elij = j U Mj

(2.1.19) Eij =Ej U Mj. 1

ij =Mij U Eij U M,j.
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The following assumptions on the saddle point (0, ) can now be stated:

(2.1.20)

(i) The fact that thp functions 0* and 0* are piecewise C(1) means

there is a regular decomposition associated with the saddle point

(A*,'*) on E with the property 0* and 1)* are C(1) on Eij for i -

1,2,...,a, and j = ,2...,Ji.

(ii) If X0  Eij then there is a unique optimal trajectory a (Xo,t) in E for

to < t < tiji where ti'ji is the time the trajectory reaches Ci.The path

is never tangent to sub-manifolds Mk, k = j,..,ji or N ,....ir

Berkovitz 6 points out that if X0 E Nil ,...,ir then X0 can be a member of

several E'ij for several values of i. Then condition (2.1.20) (ii) will hold for each of
*e

these values of i. The time derivative of the optimal trajectories a will in general

be discontinuous at times tik when the trajectory intersects the sub-manifolds

/llk, k = j,-'.,ji-- This is because either 1 or (D are discontinuous at these points.

2.1.7. VALUE FUNCTION

The following lemma of Berkovitz will be needed before we can discuss

the properties of the value of the game. This lemma describes some basic

properties of an optimal trajectory, and its intersections with manifolds A1k, k =

J'.'Ji-1.

6 Berkovitz pg 6
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LEMMA 2.1.17 Let X0 e E!ij, tik = ti,k(XO) be the intersect time with manifold

Mik, Xik = Xik(Xo) be the intersect point with manifold Mk for j-1 < k ! ji. Then for

j ! k _ Ji, a*(X0 ,t) is defined, is C) on EF:ik x [ti,k1 ,tik], and satisfies:

(2.1.21) X* = f(Xo,o*(X),D*(X)); X(0) = X0

where for ti,k.I and tik the values are defined as limits from the interior of Ek.

Furthermore for j < k < Ji the parameters sk, tik, and Xik of manifolds A4k are

C(1) functions of X0 for X0  EP-ij8 .

proof: The optimal controls 4*(X) and C*(X) are by assumption C() on

Elk, 1 _< k _< ki. The fact that Eik is contained in a bounded subset "I implies there

exists continuous extensions 4 ik(X) and D ik(X) on a region EikE containing Ecik

of the restrictions 4 I Eik and 0I Eik ,

We now proceed by induction on each of the regions E-ik, showing the

first assertion is true for k = j where X0 e E:iij. Consider the differential equation

for X0 e Etij on EjE:

(2.1.22) X9 = f(X,O*ij(X),D(* 1i(X)); X(0) = X0

The existence and uniqueness theorems of ordinary differential equations9

guarantee that there exists C() function ajj(X 0 ,t) defined for a(X0 ) < t < b(XO)

which is a unique solution of the differential equation (2.1.22).

7Berkovitz Lemma 1 pg 8

8Recall sJ is the (n-i)-dimensional parameterization of Mk via 2.1.0.

9 Boothby Theorem 4.1 pg 130
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The optimal trajectory is assumed to exist on --ij. This along with the fact

that (2.1.21) agrees with (2.1.22) on Ej implies that on E:ij, Yij(X0,t ) = C*(X0,t )

for ti,j-1 _< t 5 tij, where tij is the time the trajectory intersects ,ij and ti,j.1 is the

time the trajectory intersects M',j.1 backwards in time. The first assertion holds

for k = j.

We now show the second assertion is true for k = j. The fact that sJ and tij

are C(1 ) functions of X0 follows from the implicit function theorem, aij(Xotij) is

C(1 ) on EijE x (ti,j.1-Bti,j+ B)10 , hij is C(1 ) (2.1.22), the condition:

(2.1.23) aij(X0 ,tij) - hij(s) = 0

and that the nxn matrix

(2.1.24) L "  *(x 0 tij)  "hij(sJ)

has dimension n due to the fact that the optimal trajectory is not tangent to Aij.

Xij is a C(1) function of X0 follows from the fact that hij is a C() function of sJ, sJ

is a C(1 ) function of X0 , and Xij = hij(sJ). The second assumption holds for k= j.

Assume now that for Ji - k > j+1 , *(X0 ,t) exists and is C(1) on L::i,k1.

Also that sk' l , ti,k.1, Xi,k.1 are C() functions of X0 e L-ij. Let o e -ik, then by

similar arguments to those above, there exists C() function aik(a,t) defined for

a(a) < t < b(a) which is a unique solution of the differential equation:

(2.1.25) X* = f(X,Oik(X), 4'ik(X)); X(0) = (x

10 The fact that the solution oij(Xo,t) to (2.1.22) exists on E -ij x [ti,j.l,tij]

implies it must exist on some open region containing E:ij x [ti~-. ,ti.
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Similar arguments to those above imply that for tiyk-1 tik

(2.1.26) aG (X,k1l,t-ti,k-1) = aYik(X,k1l,t-ti,k1l).

On the interval tik.1 5 t !5 tik we also have by the optimality of the trajectory,

(2.1.27) a (XO,t) =a(Xi,k-1,ttik.1)

This leads to the conclusion that for tikl :5 t:5 tik,

(2.1.28) a (XO,t) = Oik(Xi,k..1,t-ti,k..1)

We have shown that Gik is C(1) on Ekx Itikl1, tik], and by assumption XI,k1l

and ti,k-1 are CM) functions of X0. This implies that o*(X0,t) is C(M on E-ij x

Iti,k1, tik].

Last we must show that sk1 ti,k-1, Xi,k1, are CMl functions of X0 e Ij

Since Gik is C(1) on EikE x (ti,k-1- 8 ,tik+8) we can repeat arguments for with

(2.1.23) and (2.1.24) where we simply replace j by k.

We now consider the properties of the value function W(X0) = Xo (

The following lemma of Berkovitz states the smoothness properties of W(X 0).

We note that W is continuous on Eq.

LEMMA 2.1.2:11 W(X 0) is a CM1 function of X0 e E-ij and is continuous on E.

proof: The value function can be written in terms of the contact of the

terminal manifold C:

(2.1.29) W(X0) = P(X0 ,4o ,D )=H(Xi,1i).

'Berkovitz pg 16
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The fact that H is C(1 ) by assumption, and Xi,ji is a C(1 ) function of X0 E --ij

(Lemma 2.1.1) implies the C(1) assertion.

Since W is continuous on E:ij we need only show for continuity on 1 that

for every X e Mj there exists a sequence from each side of Mj approaching X

whose limits are equal. 12 Let X0 e Ej such that a*(Xo,tij) = X, by Lemma 2.1.1

such an X0 must exist. Along any trajectory W(a (X0 ,t)) is constant implying

W(a (Xo,t'ij)) = W(c;*(XO,t+ij)).

The assumption that the payoff function is single valued for the optimal

trajectories is used to extend the continuity of W(X) to all of the game space E.

Let X e N1 ,2,...,k, and 0 l(X,t),..., K(X,t) be the corresponding optimal

trajectories in each region E1 ,...,EK. Since c*1 (X,0+) = a*2 (X,0+ ) = .

a*K(X,0+), and W(X) is continous on all E, the conclusion holds.

The following notation needs to be introduced. If X0 e Mj, then W'x(Xo)

= lim WX(X) as X - X0 from Eij. Likewise, W+X(X 0 ) = lim Wx(X) as X --* X0

from E,j+l. Lemma 2.1.2 guarantees the existence of these one sided limits.

One more lemma is needed before the main result of this section can be

handled. This lemma states the properties of variations from the optimal

controls. The lemma is new and allows the extension of Berkovitz's work to

consider only the family of autonomous pure strategies for autonomous systems.

LEMMA 2.1.3: Let e E UM, X0 e Eij and R > 0. Denoting the trajectory

corresponding to *,O by a(t,X) we can define the set:

12 Since we have already shown continuity on E:ij we do not have to show this

for every sequence.
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(2.1.30) NR(XO) X { W(X) !: W(a;(R,X 0)) }

Then NR(XO) satisfies the following properties,

i.) NR(XO) is closed,

(2.1.31) ii.) X0 r= NR(XO)I

iii.) If X e NR(XO) then & (t,X) e NR(XO).

Define for O e UM a corresponding OR by:

(2.1.32 ORK(x) if X V- NR(XO)

L. (X) if XE NR(XO).

Then iv.) OR rE UM. The trajectory corresponding to ORA0 is denoted by

cFR(t,X).

(PR-(

ILLUSTRATION OF NR(XO) & OR
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proof: The properties i.) and ii.) follow easily from the continuity of W(X).

Property iii.) follows from the optimality of the strategies. Assume there exists an

Xe NR(XO)comP and t > 0 such that o*(t,X) e NR(XO). 13 The fact the we are

only dealing with terminal costs implies that W(X) = W(a (t,X)) hence X

NR(XO): a contradiction.

We now turn our attention to property iv.). There are two cases to be

considered. The first case is when the optimal trajectory never leaves NR(X0).

Then aR(t,X) = a(t,X) for t 0, implying the trajectory intersects the terminal

manifold in finite time due to the admissibility of O(X). If the trajectory leaves

NR(XO) at time T then GR(t,X) = a*(t-T,a(T,X)) for t _ T, implying the trajectory

intersects the terminal manifold in finite time.

Isaacs' equation can now be derived in the following theorem. This theorem is

new and considers only variations of autonomous strategies.

THEOREM 2.1.2: On E:--ij the following equation is satisfied for all 0 e UM and D

VM:14

MinMax(Wx(X)f(X,O,4)) = MaxMin(Wx(X)f(X,O,()) = 0

where for X r Mj, M,j-1 the equation is defined as a limit from the interior of Ei.

proof: Let X0 e Ej, and 0 e UM then by Lemma 2.1.3, NR(XO) and OR are

nroperly defined for R > 0. The assumption that (,D is a saddle point implies

that:

(2.1.33) W(X 0 ) = P(X0 ,O*,( ) _. P(XO,OR,4 ) = W(aR(R,XO))

13NR(XO)comP is the complement of NR(XO).
14WX is the partial derivative vector of W wrt. X.
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where OR is the trajectory corresponding to OR,cD* and R is the exit time from

NR(XO).

The condition (2.1.33) implies that W(X 0 ) - W(aR(R,XO)) S 0 with equality

for = 0*. Lemma 2.1.2 and Lemma 2.1.1 state that W and OR are both C(1 ) so

the mean value theorem may be applied twice on NR(XO) using the fact that X0 =

aR(0,XO).

(2.1.34) W(X0 ) - W(GR(R,XO))

=-WX(XO)(OR(R,XO) - X0) + O(aR(R,Xo)-XO) 2

=-WX(X)(a*'R(0,XO)R + O(R) 2 ) + O(R) 2

=-Wx(Xo)f(Xo,O(Xo),4)*(X 0))R + O(R) 2

__ 0 {by equation (2.1.33)}

Dividing equation (2.1.34) thru by R, we have in the limit as R - 0:

(2.1.35) WX(Xo)f(XO,O(Xo),4) (X0 )) > 0 for every 4 UM

with equality for 4 = 4*

Similar arguments can show for 0D that:

(2.1.36) WX(Xo)f(Xot*(X0),0D(X0)) < 0 for every 0 r VM

with equality for D = 0.

Combining equation (2.1,35) and (2.1.36) we have:

(2.1.37) WX(X 0 )f(X 0 ,O(X0),0(X 0 ))

< Wx(X0 )f(X0 ,O (X0 ),0D (X0 ))

_ Wx(Xo)f(Xo,O(X),4) (Xo))

for every ) e UM, 0D e VM. Equality holds for 4 = 0* and (D 0 (D simultaneously.

Equation (2.1.37) implies the assertion of the theorem, (2.1.32) on Ij. We

now extend this result to E:',ij. Without loss of generality assume X e Mvj, then
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due to Lemma 2.1.2 and the fact that f is C(1 ) by assumption, the limit of

equation (2.1.37) as X0  X from Eij exists and implies:

(2.1.38) Wx(X)f(X,*ij(X),D(X))
5W'x(X)f(X,o1)ij(X),(D ) ij(X))

5 W-x(X)f(X,O)(X),4D*ij(X)),

where the continuous extensions of the controls defined earlier are used.

The last question to be tackled in this section is the continuity of WX

across manifolds Mij. The following theorem of Berkovitz handles this question in

the case both )* and e are not discontinuous at Mj.

THEOREM 2.1.3:15 If )* and 1D* are both not discontinuous at /j then WX is

continuous across Mi.

proof: The assertion will be proven if we can show

W-X(X 0 ) = W+x(X0 ). The fact that W is CO) on E!:ij (Lemma 2.1.2), and Mij is a

C() manifold implies (similarly to Lemma 2.1.1) that there exists a C(1)

extensions Wij(X) on a region EijE containing Ecij of the restriction W I Ei. Given

arbitrary X0 e Mij and letting x(r) be any C(1) curve lying in/ j such that x(O) =

X0 we have w(r) = W(x(r)) = Wij(x(r)). Then the derivative of w(r) at r = 0 is:

(2.1.39) w*(0) = WXij(X 0)x*(O)-- W'x(X0)x*(0) •

Similar arguments can show that,

(2.1.40) w*(O) = W+x(Xo)xO(O) •

This leads to

(2.1.41) (W'x(Xo) - W+x(Xo))X*(O) = 0.

15 Berkovitz Theorem 1 pg 16
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The fact that x(r) is an arbitrary curve and Mj is a (n-1)-dimensional

manifold implies W+x(X0) W'X(X0 ) or

(W'X(X0 ) - W+X(X 0 )) is nonzero and orthogonal to/Mj at X0 . Assume the latter

and without loss of generality that i1 (X) is continuous across then Ai.

Analogous to Lemma 2.1.3 we define the following function on NR(XO):

(1) () Xif X e NR(XO)
(2.1.42) OijR(X) E 0* ij(X) if X r NR(XO),

is a member of UM, where *ij(X) is again the continuous extension of the control

as defined earlier.

The results of Theorem 2.1.1 on E:ij (2.1.32) imply that:

o = Wx(X0 )f(X0 , ij(X0),b (X0 ))

o - W 'x(X0)f(X 0,i,j+ ,R(Xo),cI (XO)),
0 = W+ x(X0)f(X0,O i,j~l (X0), D (X0))

<W+x(X)f(XOijR(XO),(D*(X 0 )).

Using the fact that OijR(XO) = 0*ij(Xo) and combining equations of (2.1.42) we get:

(2.1.) (Wx(X0 ) - W+x(Xo))f(Xo*ij(Xo),O*(Xo)) 0,
(W-X(X0 ) - W+x(Xo))f(Xo,O*i,j+l (X0 ),C(D (X0 )) >_ 0.

The inequality must hold in equations (2.1.43), otherwise due to the assumption

that (W'X(X0 ) - W+x(X0 )) is nonzero and orthogonal to Mj, f(Xo,oij(Xo),4)(Xo))

and f(Xoi,j+I (X0 ),(ID (X0 )) must be tangent to Mj. If the inequality holds then on

each side of the tangent plane of Mj at X0 the trajectory points into opposite

sides of the half space, an impossibility. This implies WX(X 0 ) = W4 X(X0 ).
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2.1.8. ADJOINT EQUATIONS

We will now derive the adjoint equations following Berkovitz. The fact that

the ajoint equations are derived in retro-time from the terminal manifold, and the

optimal trajectories are defined only in forward time for t _> 0 causes us to first

introduce and define the function F(t,X0 ). Then we show for t _> 0:

aw(x)
(2.1.45) = Wx(X) = r(tX0),

ax

with X = a (t,X0 ).

LEMMA 2.1.4:16 Let X0 ( E=ij, define the function r(t,X0 ) as follows. On each

interval [ti,k.1, tik], j < k < Ji, F satisfies the following differential equation:

(2.1.46)
= "[" f(a*(t'x°)'o*(a*(t'x°))'cD *(°*(t'x°)))a

ax

+

ND ax

with the initial condition "(t'iK,XiK), and final condition r(t+i,K.1,Xi,K. I ). The

initial conditions on each interval are described as follows.

16Berkovitz Lemma 4 pg 19
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Define r(tiK) = riK where for k = ji, 1 = where rji is defined by the

n linear equations 17 :

(2.1.47) Fji as -'(t'i'ji'Xo)

- a H(Xi'ji) _Xi7ji 7

If k < ji then letting r~iK = r(t'iK), F'iK is defined by the following n linear

equations:

(2.1.48) F"ik as  - i K 7XO)

= +ik aXik -*(t+iKXo) 2

Then on each interval [ti,k.1 ,tik], F is well defined and a continuous function of t

and X0 for 0 !5 t and j <_ k _ Ji.

proof: The proof will be by induction. We first show the lemma holds for k

= ji. The matrix on the left hand side of equation (2.1.47) has dimension n due to

the non-tangency condition. This implies r'ji is uniquely defined. The fact that

17 These are known as the transversality conditions.
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Xiji is a C(1 ) function of s, and Lemma 2.1.1 imply that (2.1.47) uniquely defines

Fji as a continuous function of X0 .

Equation (2.1.46) defines an n-dimensional linear system in r. The fact

that the matrix on the RHS of equation (2.1.46) is a continuous function of t for

tiji. 1 s t < tiji implies the unique solution F(t,X0 ) exists on this interval18 . The

conclusion then holds for k = Ji-

We now show that if the conclusion holds for k + 1, it holds for k. Equation

(2.1.48) uniquely defines Fik since the non-tangency condition implies the

matrices of (2.1.48) are non-singular. The induction assumption implying ]-ik is

a continuous function of X0 , along with Lemma 2.1.1 imply that F"K is a

continuous function of X0 . Then differential equation (2.1.46) is well defined

similar to k = ji with the new initial condition F(t'K) = F"K for ti,K.1 5 t ! tiK. The

unique solution F(t,X0 ) exists on this interval.

THEOREM 2.1.4:19 Let X0 e Ej, r(t,X0 ) be the function described in Lemma

2.1.4, if X =,a (t,X0 ) then for t __ 0:

(2.1.49) Wx(X) = F(t,X0 ).

proof: Let X0 e Eip because W(X 0 ) = H(Xiji), and from Lemma 2.1.1

parameter sJ is a C(1) function of X0 we have
aHl(Xi,ji )  axi,ji as

(2.1.50) Wx 0 (X0 ) =
axi,ji as ax0

18Zadeh and Desoer, 1963

19 Berkovitz Theorem 2 pg 21
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Define F as the n x n matrix in equation (2.1.46), so that we can write r = -F F.

Then we have

(2.1.51) WX0(X0) =aHl(X, 1 ) aX1,i as
ax1 , as ax0

ji- ti,K+l

I f(r4 +ErF) -dtkjft, ax0
ti ,K aa

(r E "F) - dt

aH (X,ji) a~~j as

axiji as ax0

j 1 ti K + 1 ac* - tjj - *

k~ -aa aao

tiK 0

aHl(Xi11i) aXi~ji as

ax,j, as ax0

ac (0,x0) ac (f-,1i,x0)
+ F(0,X 0) ax0  - ax0

7.ri Oa (t~iK,Xo) (t-kK0 (t

SKKj ax0 i ax0
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Let us now look at the terms in the summation above. Expanding the

partials of the optimal trajectory, and using equation (2.1.48), we have:

Eat~,o Ga fiK,XO)7

(2.1.5L) iK -(t'iO ia(iK,Xo) ] t

k=J ____ aXO a

=1 E +LE**tiKXO as -ik---.--iKXo J

asas ax0
=0.

We can also use equation (2.1.47) to show

0 2*(t+ i'jiXo) aj + ax,j1  as
Eli E(*ax 0  as ax0]

aH(X,ji) axi,1i as

axi,1i as a 0

Combining equations (2.1.51), (2.1.52), and (2.1.53) along with the known fact

that

Do (0,X0)
(2.1.54) = I (nxn identity matrix),

ax0

we have WX 0(X0) r (0,X0).



31

We note that it X = a*(,X 0 ) then a *(t, X0 ) a * (t-t,X) for t 2! r. This implies

r(t,x0 ) = F(t-,x) for t t rdue to equation (2.1.46). Hence WX(X) = r(O,X)

r(t,x0).
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2.2. GAMES OF KIND

The achievement of termination (reaching terminal manifold C) is the

kernel of the problem. We wish to determine from what positions in the game

space E capture can be guaranteed. The game space E is partitioned into the

capture region and escape region. The surface that separates these two regions

is termed the barrier (B). This section will be concerned with the derivation of the

equations that generate the barrier, and follows Isaacs' heuristic treatment found

in his Rand report.

2.2.1. FEASIBLE CONTROLS

At each X r Ewe assume defined a set of feasible controls for the pursuer

U(X) and evader V(X). The pursuer is free to pick any control vector 0 6 U(X).

The evader is free to pick any control vector (D e V(X).

2.2.2. TERMINAL MANIFOLD

The terminal manifold (C) is an (n-i)-dimensional manifold. We assume

the manifold can be parameterized by si; i=1,.., n-1 and the coordinate functions

hj; j = 1,...,n such that,

(2.2.1) X = hj(s 1 .... iSn.1);j= 1,..,n.

The condition of capture is defined only when the terminal manifold (C) is

penetrated. The condition when a trajectory X reaches C without penetration and

returns to E will be considered neutral. This neutral condition delineates capture

and escape. Defining y = Lv1 ,...,-4n) to be the normal to C at x extending into E,

the condition,

n
(2.2.2) min max , .(x)fi(x,o,4) > 0,

*0 4V 1
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implies that the evader E can prevent immediate termination from a position

sufficiently close to C. The region of C where the above holds is referred to as

the non-usable part (NUP) of C. The opposite condition

n
(2.2.3) min max ,, _(x)fi(x,O,q)) < 0

) (D i=1

implies that the pursuer P can force termination for positions sufficiently close to

C. The region of C where this condition holds is referred to as the usable part

(UP) of C. The neutral condition can only hold for trajectories containing a

member x of C such that the condition,

n
(2.2.4) min max , vi(x)fi(x,o,qD) = 0.

0 D ci) =1

The region of C where this condition holds is referred to as the boundary of the

usable part of C (BUP). The condition for the BUP is given on an (n-i)-

dimensional manifold, hence the BUP is an (n-2)-dimensional manifold. We seek

to attach to the BUP a surface that neither the pursuer or evader can penetrate

and that separates E into the capture and escape region. We begin by

discussing these semipermeable surfaces of dimension (n-i) and how they may

be attached to (n-2) dimensional manifolds.

2.2.3 SEMIPERMEABLE SURFACES

Let S be an orientable surface separating the neighboring space. The two

directions of penetration of S are termed the P-direction and E-direction. The

"side" of the surface S reached after penetration in the P-direction is termed the

P-side. The definition of the E-side follows naturally.
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Definition: A surface S is termed semipermeable at X when,
i .

i.) There exists a value e7 U(X) (the controls of P) such that when Y = 4,

no vector (D e V(X) causes f(X,o ,D) to penetrate the surface S in the E-

direction,

ii.) There exists a value c1 e V(X) (the controls of E) such that when Z = 0,

no vector 4 r U(X) causes f(X,O,D ) to penetrate the surface S in the P-

direction.

A surface S is termed a semipermeable surface (SPS) if for every x r S, the

surface is semipermeable.

Theorem 2.2.1:20 Let S be a smooth surface in E and v(x) = (vl (x),...,vn(x)) be

its normal vector at each x e S. Then S is a SPS if

n
(2.2.5) min max Z vi(x)fj(x,04),) = 0.

ScD i=1

proof: v(x) is oriented such that it points in the E-direction of S. Let 4 be the

value of (D at which the LHS of the equation above assumes its maximum. Then

by definition for every feasible 4,

n . n .
(2.2.6) 0 = min vi(x)fi(x, O, ) < , vi(x)fi(x,o,¢ ).4) i=1 i=1

This implies there is no value of 4 that causes penetration of S in the P-direction.

The opposite case follows similarly.

2 0 1saacs pg 9.7
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Theorem 2.2.2:21 Let S be as above and assume that on an open set N relative

to S, 0 * (x) and *(x) are C(1 ) for x e S. Then for k = 1 ,...,n the following relations

hold on N;

dvK n afi(x,o ,()
(2.2.7) = vi(x)

dt i=1 axK

proof: The Tietze-Urysohn extension theorem implies there exists a C(1 )

extension of v(x), )(x), (D (x) from N to E. This implies that the partial derivative

of (2.2.5) with respect to coordinate xK, k = 1,...,n exists on the extensions and is

given by,
n a vi  n afi  n s afi  o )j

(2.2.8) + fi + I , *
i=1 axK =1 axK i=j=1-l

n r afi ao+ I_ I , v= =o.
i=1 j=1 3(Dj axK

The optimality criterion implies that the two double summation terms are zero.

Looking at the first term we may write,

n s afi ao*j s a n¢*j
(2.2.9) n s vi- - Y- ifi [ _ ] =0.

i=1 j=1 aj axK j= j i=1 axK

If (x) is an interior minimum of U(x) then the first bracketed term is zero. The

alternative case of an exterior minimum implies that the second bracketed term is

zero.

211saacs pg 9.9
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Assume that there exists a C(1 ) real valued function G:E -+ R such that v

oGx i. The C1 nature of G implies that aVK/axi = ohVi/ox K since the order of

partial differentiation of G makes no difference. Then we may write that

n i  n avK dVK
(2.2.10) 1 = , fi =

i=1 a XK i=1 oxi dt.

The last part of the expression follows fror'm, the second summation which is the

time derivative of vK along a trajectory corresponding to the optimal controls (D

and 4 through x. Substitution of (2.2.10) and (2.2.9) into (2.2.8) leads to (2.2.7)
page 35. This leads to the reverse path equations (RPE) where r = tf - t:

dv K  n ofi(x,o ,D)(2.2.11) - , (x) x

d'r i=1 axK

dXK , •
=- fK(x,O Ad

dr

Theorem 2.2.3:22 Let D be an (n-2)-dimensional manifold in E parameterized by

s1 , .. ,s n -2 with xi = hi(s 1 , .. ,s n-2); i = 1 ,...,n the smooth coordinate functions of D.

If the normal vector v(s 1 ,..., s n.2) = {vl(Sl,-'-,Sn-2),-,Vn(sl....'sn-2) } to D is such

that on D,

n . .

(2.2.12) , ._(x)fi(x,o ,b ) = 0,i=1

with xi(r,s1 , .. ,s n-2) and vi(T,s 1 , .. , s n . 2) , i = 1 ,..,n integral curves of the RPE with

initial conditions v,hi , then xi(t,sl,.-,S-2) is the parametric representation of a

SPS S containing D.

221saacs pg 9.13
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proof: We first show that the vK derived through the RPE is the normal to

the surface S. Defining the functions TK('E,sl ,.** ,S,,.), k = 1 ,...,n-2 by,

n axi
(2.2.13) TK = X~) -

we note TK(O,sl --** -2 = 0 since this is exactly the normality condition on D.

Taking the derivative of TK with respect tort we have,

dTK n a0x n axi avi(x)
(2.2.14) - , Vi v(x) - + Z- ___

dtr 61 a'tasK< i=1 asK atr
Noting that,

a2x, af1  n afi ax1  s &fi 4j
(2.2.15) - - - II

atasK< asK j=1 ax1  ask j=1 a~j axK

r af1 a(D
j=i a(D axK

The optimality criterion implies that the last two terms of the RHS of equation

(2.2.15) are once again zero inferring,

(2.2.16) ____ na x
atasK< j=1 axj asK

Substituting (2.2.15) and (2.2.16) into (2.2.14) we conclude,

dTK n n afi axj n n axi f
(2.2.17) - = - IZIv 1(x) - - + I - jx

d& i=1 j=1 ax1  ask i=1j=1 ask a1 x i

= 0.

The fact that TK = 0 on D and (2.2.17) imply TK = 0 on S.
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We now define the function Q(t,s1 ,...,S n.2) by,

n
(2.2.18) Q = (x)fi(x,,4 ).i=1

Taking the derivative of Q with respect to r we have,

dQ n ofi  n a vi
(2.2.19) - = viJ - + _ fi  - =0,

d i=1 at i=1 a

by similar arguments to those used earlier. Since Q = 0 on D, Q = 0 on S.

Let p(w) be a smooth curve on S passing thru a point x e S such that p(0)

= x, then the tangent vector components for i = 1 ,...,n to p(w) at w = 0 are,

n-2 axi apj ap(2.2.20) ,1, + fi

j=1 asj aw aw

The p,, pj are smooth real valued coordinate functions of p(w) such that sj = pj(w)

and T = p.,(w). Taking the inner product of the tangent vector of p(w) with the

vector v we have,

n n-2 axi apj f apr
(2.2.21) i1 [1 - - ° Pw

i=1 = sj aw w I

n-2 apj  in ax- ap l v n
- , -, vi + Ifvi]
awL G-=1 asi awL =1

n-2 ap1  T1

1=1 O' [I aw C

=0.
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This implies that the vector v is normal to the surface S. Lastly S is

semipermeable because,

n n
(2.2.22) min max I v(x)fi(x,o,4 ) , vi(x)fi(x, 4)

(D i=1 i=1

=Q=O.

2.2.4 BARRIERS

Clearly the barrier B that separates the capture and escape region of E is

a semipermeable surface. The barriers B that we will be interested in will be

attachable to the terminal manifold C. This corresponds to the case where the

Barrier is a function c: the maximum vehicle dynamics. It is possible for a barrier

to exist that does not attach to C. The case of an intercept problem where fuel is

limited is an example of such a case. Assuming the pursuer is faster, fuel limited,

and equally maneuverable as the evader, it is obvious that a barrier exists

corresponding to fuel exhaustion that prevents capture. We will not be

concerned with these type of barriers here, as traditional separation principles

allow us to deal with these type of constraints.

The boundary of the usable part (BUP) has been shown to be an (n-2)-

dimensional manifold such that BUP = all x e C such that,

n
(2.2.23) min max , v,(x)fi(x, ,D) = 0,

4 i=1

where v(x) is the normal to x e C pointing into E. The x E BUP and v, serve as

the initial conditions to the RPE,
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dv K  n Zafi(x,o (D),*

= I, (x)
(2.2.24) dt i1 Dxk

= - fk(x,O1 ¢))
dr

where * and (D are the continuous solutions on E to

n
min max v,(x)fi(x,O,(ID) = 0.

The theorem of the last section implies then that the (n-1 )-dimensional manifold

generated by the RPE and initial conditions on C is a semipermeable surface.

There are a number of important observations about the geometry of the

barriers. The first is that they may end abruptly when a solution no longer exists

to (2.2.24) for the controls, or at a curve of discontinuity of the optimal controls.

The BUP may not be connected (actually the most common case). This

means that there are a number of barriers connected to the terminal manifold.

Each of these barriers is attached to a zonnected submanifold of dimension (n-2)

of BUP. The way these barriers intersect determines the capture and escape

regions. If the barriers and UP of C form the boundaries of closed regions of E

then the interior of these regions are the capture region if the optimal controls

agree for each barrier at the intersection point. It may be that the capture region

may not be connected, but consists of a number of connected subregions. The

escape region consists of that part of E that is not part of the capture region or its

boundaries. The boundary between these two regions of course consists of

portions of the barriers.

The barriers may in fact not meet or form the boundary of a closed region

of E. In this case, assuming no other type of barriers not connected to C, the
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playing space E serves as the capture region. The barriers become a singular

surface that trajectories must swerve around to reach the UP of C.
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3. SELF MODIFYING SYSTEMS

This section explores systems and modelling techniques that fall outside

the classical techniques. Mesarovic formalized the traditional concepts for

systems in which there was a fixed set of objects, and a fixed set of relations

between the objects. The type of systems we are exploring have the property

that the system is self modifying in the objects and relations. These type of

systems we term semantic systems. It is important to understand how a system

such as air-combat can evolve before an attempt is made to the control the

system's evolution. Semantic systems will be shown to be a natural extension of

Mesarovic's systems. Simulation techniques for investigating the complexity of

semantic systems will also be explored.
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3.1. GENERAL SYSTEMS

A "system" can loosely be defined as an aggregation or assemblage of

objects joined in some regular interaction or interdependence. A system "entity"

is an object of interest. Properties of "entities" are "attributes". "Activities" are

processes that cause changes in the "system". We start by defining the

traditional mathematically rigorous definition of a general system as originated by

Mesarovic (5).

Definition: Let T be an arbitrary linear ordered index set, a formal object E.;

j e {1,2,...,n}, is a set whose elements eJ(t); t e T, are called the values of the

object =E.

Note: The index set T may be of finite, countable or uncountable

cardinality. The case of Card(T) = 1 might correspond to the constrained

extremization system, while card(T) = R and card (T) = N would correspond to

continuous and discrete time systems respectively. We now define general

systems and the more structured case of input-output systems.

Definition: (Explicit) A general System Es is generated by the Cartesian

cross product:

E=E 1 xEx ... x En

and the relation R on E such that Es is a proper subset of E (i.e. e(t) r Es iff
_R[e 1 (t),e2(t),...,en(t)).
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Definition: Let I = {1,2,...,n} and IX , ly be sets forming a partition of I. The

set X = x{Ej: j = IX}2 3 is termed the input object, while the set Y = x{.j: jE ly is

termed the output object. The system Es is then

Esc XxY

and is referred to as an input-output system.

Input-output systems are defined in terms of relations. This means that

there may be a set of outputs for a given input. If we apply a particular input to

an actual system we know we will get out a single output, not a set of outputs.

This means that there is something still missing from our definition: the concept

of state that determines what the output should be for a particular input.

Definition: Given a general system Es , let C be an arbitrary set and F a

function, F:(C x X) -* Y, such that (x,y) E Es iff there exist c 6 C such that F(c,x)

= y. C is then a global state set whose elements are the global states. F is a

global systems-response function.

It should be noted that a state object is not equivalent to having a state

space. A state space exists only for dynamical systems in which the semigroup

property (among others) is in effect. Dynamical systems are a specific type of

family of general systems.

The problem with this explicit specification of a general system is that both

R and E may be infinite sets which may be only specified through induction. Thus

E. may be defined by an initial set of generating elements E and a set of syntactic

rules (S) to generate syntactically correct elements from previously generated

2 3Cartesian product
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elements. The system relations RI may also specified inductively. A set of

primary relations (R) is given, and a set of axioms (A) is specified that defines

how members of R are combined to form R. This leads to the implicit definition of

a system.

Definition: (Implicit) A general system is a quadruple (E,S,T,A).

We will now introduce the formal concept of a classical system model as

defined by Mesarovic (5). Conceptually a model should be a system that

simplifies the system being modelled such that "important" properties are

incorporated while other "unimportant" properties are neglected.

Definition: Let Es c X x Y, Es' c X' x Y' be two general systems, with the

functions hX:X -4 X', hy:Y -* Y'. The function h = hX x hy: X x Y --+ X' x Y' is

called a relational homomorphism from Es to Es' if and only if:

(x,y) e Es -- (hx(x),hy(y)) e Es'

if and only if h is a bijective relational homomorphism such that:

(x',y') e Es' -+ (hX'1 (x),hy "1 (y)) E Es

then h is a relational isomorphism.

Es' is a structural model for Es if and only if there exists a relational

homomorphism h: Es --+ Es' and the two systems are structurally equivalent if

and only if h ik a relational isomorphism.

A general system model is then an quintuple (E,S,T,A,h).
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3.2. SEMANTIC SYSTEMS

The paradigm for analysis and synthesis of systems in the past have

assumed Mesarovic's definition of systems and models.24 There are many

complex systems where this definition falls short. Many complex systems are

self modifying. This modification takes place in an evolution of the generating

relation R the system objects E,, or the order of the system n. Air combat is one

system that exhibits these properties. The system components consist of

aircraft, missiles, SAMS, and ground targets. The destruction of an object or

launching of missiles modifies the systems order and relations.

Let ESi be a Mesarovic general system defined by the relation Ri such that

Esi c x{Eji: j e Ji}. The set E = {Esi: i e I) is the set of system generation

components. This set defines the types of feasible components with which we

are concerned, and multiple copies may exist. The set E for the air combat

problem would consist of airplanes, missiles, SAMS, and ground targets.

We now go about defining the feasible partial relations that coordinate

components of the system. A set of feasible relations F, for each i e I is defined.

The domain for each r e FO is of the form x{EjKa: j E JKa, JKa c JK, Ka E 1, a

A). The range for each r e Ai is of the form x{Eji: j e J, J c Ji}. The index set A

defines the mix of components that effects a component of type i, Ka indicates

the type of component for a e A, and JKa indicates what objects from a

component of type Ka effect a component of type i. The index set J indicates

what objects from a component of type i are effected. The case of input-output

systems has the domain restricted to output objects, and the range restricted to
2 4The practitioner may not have been cognizant of this fact.
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input objects. It should be noted that a component of type i may be effected by

multiple components of type j though the object sets from the multiple

components of type j may be different. The set R = Uir= F11 defines the set of

feasible relations for the system.

A semantic state consists of the tuple (S,RS,M) where

S={ESim:imE I,me M),

RS ={rm: im r 1, type(rm ) e 14m, m e M }

and M defines the mix of components for the system. The notation rm is used to

indicate a feasible relation for a component of type im e I from 14m for m e M.

We note that two relations for component m, rm and rm may be of the same

type but are considered different if the components assigned to the domain are

assigned differently or are different. We call M the semantic order, S the

semantic form, and Rs the relational state. The semantic form S, is fixed for a

fixed M, I.E. a component may not change its type during the course of its

existence. Alternatively, RS is not fixed for fixed M, a component may change its

relation to other components as the need arises. A change in (S,RsM) is termed

a semantic event.

The semantic order M may evolve in two manners, reproduction or

attrition. Letting M' denote the new semantic order, then M c M indicates a pure

reproductive semantic event. Similarly, M = M' indicates a pure attrition semantic

event. A semantic event may occur such that M = M', implying that only the

relation state has changed. This type of semantic event is termed a relational

semantic event. The classification of a semantic event as pure is not

guaranteed, an event of mixed origin is the normative case.
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The relational state RS is also subject to change. Obviously a change in

semantic order will force a change in RS . The relational state may also change

while the semantic order remains fixed. This change would take place

dependant upon the traditional global state and systems-response of the

component types indicated by the semantic form S. The purpose of S is to carry

the traditional Mesarovic information.

The values of the objects of the components of S may be varying

depending upon classification (I.E. dynamical, decision) of the general system

type of the component. RS coordinates the components of S, hence RS has an

influence on the components of S. S may be continuously changing with respect

to object values of the components, but the member components only change at

semantic events.

We will now describe the constraints under which a semantic system can

evolve. Each component type Esi, i r I, has a set of reproductive rules Fi that

may be empty. Members of Fi consist of the ordered tuples (EsJ,R,CRJ) such

that j e I, EsJ E E, R cF, and CRJ c Es'. The tuple indicates that the

component of type Esi may reproduce a component of type EsJ with an initial

relation r e R. if the conditions for reproduction CRJ are met by component of

type Esi. The set R indicates the set of feasible relations from which the new

component can be initialized. The set Rj may not be empty. The set CRJ

indicates the conditions on the component of type Esi under which the new

component may be reproduced. Clearly if CRJ is empty then reproduction of the

new component is not possible, CRJ = Esi implies that reproduction is always

possible.

We have so far described the type of reproduction that may take place for

a member of the system generation component set. We now describe the
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consistency conditions that express a component can not reproduce another

component if there does not exist a initial feasible relation for the new component

whose domain consists of component types currently in the system. A

component m e M of type im may reproduce a component of type EsJ when

(EsJ,Rj,CRJ) G Fim only if there exists subset M c M with m e M, r e R., and a

correspondence C:A - M such that Ka = ic(a) for every a e A.2 5 This simply

states that reproduction can only take place when thcr; exists an initial feasible

relation whose domain can be well defined by an appropriate assignment of

components currently in the system.

The attrition rules for a semantic system describe how components of M

may be removed from the system. There are two classifications of attrition rules

for semantic systems. The first classification consists of the rules of self attrition

which describe the mechanism by which a component can cause itself to be

removed from M. The self attrition rules for a component of type Esi are defined

by the set of self attrition rules CSA c Esi. CSA specifies the conditions under

which a component ceases to exist independent of the action of all other

components of the system. We note that CSA must be a proper subset or the

component could not possibly exist. It is also possible that CSA is empty. Self

attrition is closely related to concepts such as stability, and life expectancy. An

aircraft that goes unstable will cease to exist once it hits the ground. A missile

has a life expectancy related to the bum time of its motor.

The other classification for attrition in a semantic system is attrition of one

component caused by another. This type of attrition is termed causative attrition.

Causative attrition is defined for each component type Esi, i e I by the set of rules
25 Ka and A were defined previously for the definition of the domain of a feasible
relation.
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Gi which may be empty. A member of Gi is the ordered tuple (EsJ,CCAJ) such

that j e I, EsJ e E, and CCAj c Esi x EsJ. The tuple indicates that the component

of type Esi will cause a component of type Esi to be removed if the conditions for

attrition CCAJ are met by Es' and Esi. CCAj must be a proper subset to have

significant meaning. CCAj empty implies that a component of type Esi may not

be removed by a component of type Esi. The case CCAj = Esi x EsJ would

express that the existence of a component of type Esi implies the removal of a

component of type EsJ. An important point of semantic systems is that it may not

be possible for a component of type Esi to remove a component of type Esi

directly, but a component of type Esi may be able to reproduce a component of

type EsK that can remove the component of type EsJ.
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3.3. SEMANTIC CONTROL

Previously we have given a description of self modifying systems that

have been termed semantic systems. A component of type Esi (i e I) of a

semantic system had the capability to choose a relationship r e ,4 to other

components. A component also had the capability to reproduce other

components according to the set Fi or cause attrition of other components

according to the set Gi. The choice of a components relation to other

components, to reproduce a component, or remove a component is a form of

control over the semantic state of the system. This type of control is termed

semantic control.

Each component or group of components is assumed to have a directive.

The directives specify the purpose of a component. Groups of components with

the same directive may cooperate. These directives for the air combat problem

correspond to missions. A group of fighter bombers for the air combat problem

may be assigned the mission of destroying a tactical site, they may cooperate in

achieving this directive either in bombing runs or handling interceptors.

The semantic control problem for a component i E I is to determine the

"best" r r RFO dependant upon the semantic order M that allows the component its

"best" attempt to achieve its directive. It should be noted that a component may

only be able to achieve its directive by reproducing another component. The

"best" r E 0R in this case is one that brings the component to a condition of F for

reproduction. This means for the air combat problem an aircraft chooses a

strategy (r e R') that brings the aircraft to a missile firing point with its target.
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The set of all semantic states (S, RS , M) clearly can be an uncountable

set. A component m e M may also only have limited or no knowledge about

other m' E M (stealthing, limited sensor range). Clearly, it is not possible to

anticipate every situation or even to determine if a specific situation exists. Still a

component must try to meet its directive as best it can with limited knowledge

and understanding of specific semantic states. The difficulty of designing a

semantic controller is one reason humans are still in the loop in many real world

systems that are in reality semantic systems.

Semantic control contrasts in many essential details with classical control.

Classical control assumes that the designer can analyze the plant and generate

the control laws a priori. The underlying assumption is that plant and control

laws are fixed. This implies that the plant is a Mesarovic type system in which

the set of formal objects E.; j E {1,2,.., n} is fixed and that the generating relation

R is also fixed.

The semantic control system consists of a set of classical control systems

which represent choices for r e ,m for components m e M under control of the

semantic control system, along with a designer as depicted in figure 3.1.
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FIGURE 3.1
SEMANTIC CONTROL SYSTEM
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The designer may be automated or semi-automated and consists of three

blocks:

1. System Identifier,

2. Goal Selector,

3. Control System Adapter.

These blocks are generically referred to as correlators. Each correlator searches

its specific search space for the best alternative according to the current data and

specific search knowledge.

The purpose of the System Identifier correlator is to estimate the current

semantic state. The identifier correlator consists of an inference engine and

knowledge base. The knowledge base consists of a set of structural models (IM)
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of Mesarovic form. This set of structural models may be explicitly defined, or

implicitly defined via a generating set and an algebra of construction. Typically a

member of IM has subsystems that are structural models for components of E.

The inference engine for the System Identifier must choose the best

structural model from the knowledge base and estimate the state object from the

state object set for the chosen structural model. There may be more components

in the semantic order M than any of the structural models in the knowledge base

can account for. The inference engine must choose which of the components of

M will be accounted for in the structural model chosen.

The System Identifier for the air combat problem for a specific aircraft

component determines how the aircraft component itself should be modeled

along with enemy aircraft. Assuming the knowledge base can only handle one-

on-one encounters the inference engine might choose to model the aircraft itself

as an infinitely maneuverable fixed velocity two dimension model. An adversary

might be modeled as a limited maneuverable but faster two dimension model.

The identifier would also have to determine best approximations of the state of

this lower dimension model that approximate the much higher order aircraft

components.
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FIGURL 3.2
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The Goal Selector correlator determines a trajectory in the semantic state

space based on the structural model identified by the identifier. This trajectory is

chosen to allow survivability and reliability according to the component's directive.

It may not be possible to meet this semantic goal exactly.

The Goal Selector for the air combat problem solves the differential game

specified by the System Identifier correlator. The results are the optimal

trajectories, barriers and controls. These controls are not the same controls as

those needed by the aircraft, due to the fact that the model chosen by the System

Identifier is a simplification of the actual encounter.
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FIGURE 3.3
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The Control System Adapter determines the control strategy that will meet

the semantic goal. This control may be of the open/closed loop variety, or may

be rule based, or a combination of all three. The control system adapter chooses

its control for a component of type ESi from the set of feasible controls Fi. The

set of feasible controls /4 then serves as the knowledge base for the Control

System Adapter. The inference engine chooses the member of the knowledge

base that meets the goal chosen by the goal selector as close as possible. The

control adapter also determines if reproduction or attrition goals can be met and

carries out this directive.
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FIGURE 3.4
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The Control System Adapter for the air combat problem determines the

aircraft controls that causes the aircraft to "best" follow the optimal trajectory

determined by the Goal Selector. This is accomplished by a rule-based control

system dependant upon the differential game model chosen in the System

Identifier, and upon the performance limits of the aircraft.

Lastly, each correlator may feed back information to another correlator

whenever it cannot meet the performance criteria askea for by the other

correlators.
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34. FRAME BASED SIMULATION OF SEMANTIC SYSTEMS

The majority of large scale systems that are under study in today's

technological world are of such complexity that closed form analytical tools

provide only a fraction of the information needed to understand and design these

systems. The paradigms of analysis assume a homogeneous form of a system.

Classes of these paradigms deal with systems that are entirely discrete

dynamical systems, continuous dynamical systems, decision making systems,

linguistic systems, etc. Real world systems are of such high order and mixed

type that simulation techniques are a must to understand these systems.

Semantic Systems have components that have the complexity described

above. Another order of complexity is added in the self modifying nature of

Semantic Systems. Stability and controllability of certain components may be

desirable sub-properties, but more important design goals might be reliability and

survivability of certain groups of components. This is indeed the case for air-

combat problems in which the designer desires survivability and reliability only on

his components. Simulation currently is the only method for design and analysis

for these systems.

How do we go about modelling and simulating semantic systems in which

the existence and mix of objects can be considered part of the state of the

system? The paradigm of Frame Base Simulation (FBSM) is proposed as a

methodology for dealing with Semantic Systems and other highly complex

general systems.

Minsky (1975) proposed the idea of frames and scripts to represent

knowledge about objects and events typical to specific situations for artificial
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intelligence (AI) knowledge representation. This is a method of organizing the

knowledge representation in a way that directs attention and facilitates recall and

inference. Minsky's frames were based on "declarative" knowledge. Knowledge

could be separated into a general set of procedures for manipulating facts of all

types, and a set of facts describing a particular area of knowledge.

Mathematically this is akin to having a set of proof procedures that are applied to

a specific group of axioms. Winograd asserted that though possible, the

restriction of frames to declarative knowledge is overly cumbersome. Winograd

added the idea of attached procedures to Minsky's frames. These attached

procedures represented "procedural" knowledge. "Procedural" knowledge is

knowledge bound to the use of the knowledge, or programs associated with how

to use the knowledge.

Frames from the Al standpoint provide the structure that allows

interpretation of new data via the concepts accumulated by previous experience.

This format for Al facilitates "expectation-driven processing", looking for things

based on the conjectured context. An example of a generic chair frame might

be:2 6

CHAIR Frame

Specialization-of: Furniture

Number-Of-Legs: an integer (Default =4)

Style-Of-Back: straight, cushioned,

Number-Of-Arms: 0, 1, or 2

Specialization-of, Number-Of-Legs, Style-Of-Back, and Number-Of-Arms

are "slots" of the generic chair frame. Slots are the elementary representational

2 6 Barr page 217
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mechanism of "expectation-driven processing". Slots provide the place where

knowledge fits within the larger context created by the frame. An important

property of frames is inheritance. The Specialization-of slot establishes the

"property inheritance hierarchy" between the frames. Descendant frames can

inherit information of parent frames via this mechanism. A particular instantiation

of chair inherits the same slots from a generic chair frame, but the slots are more

fully specified:

Roark's-CHAIR Frame

Specialization-of: CHAIR

Number-Of-Legs: 127

Style-Of-Back: cushioned

Number-Of-Arms: 2

We want to model a semantic system in which the semantic state is

defined by (S,Rs,M). We start with the set E = {Esi: i r 1} of system generation

components.2 8 The set E for the air combat example consists of aircraft, tactical

sites, ground defenses (SAMS) , air to air missiles, ground to air missiles, air to

ground missiles. Each Esi e E is described by a structural model Es'i and a

generic FRAME.

Frames from the modeling standpoint provide the structure in which the

evolution of the system can be viewed. This is "context-driven modeling", the

component is modeled based on the context. The "slot" again serves as the

elementary representational mechanism. A slot for FBSM may contain in

271 sit on an executive office chair with a pedestal base due to my many hours
sitting in front of my computer
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general, subslots, attached procedures, and other frames as is the case for Al.

An abridged generic aircraft frame would be:

Aircraft Frame
Mesarovic Slot

Parameters:
Max Clift: a real
Max Thrust: a real
Max Gs: a real
Weight: a real
Wing Surface Area: a real
Oswald Efficiency: a real
Wing Aspect Ratio: a real

State:
X: a real
Z: a real
Z: a real
VLG: a realALG:. a real
Heading Rate: a real
Pitch Rate: a real
Heading: [-PiPi]
Pitch: (-Pi/2,Pi/2)
Fuel: a real
NumberAirAirMissiles: [0,1,2,3,4,5,6]

Controls:
Bank: (-Pi/2,Pi/2)
Thrust: (0, MaxThrust)
Clift: (, MaxClift)

if-needed (procedure to update state)
Relational State Slot

Tactic: (LOSPursuit,
LOS Evade,
LOSGroundPursuit,
LOSGroundEvade
Harrier Attack F16F 16_Ev'ade_Harrie r)

Reproductive 
Slot

Air To Air Missiles: (Aim_9J, Aim_9L)
Missile Description:

Max Off Boresight: [0,Pi]
Min Range: a real
Max Range: a real

if-needed (procedure to fire missiles)
Air To Ground Missiles:* **..

Self Attrition Slot

if-needed (procedure to test for crash)
2 8Recall that each member ESi of E is a Mesarovic general system.
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A generic frame is defined for each i E I. Each generic frame contains

slots for modelling the component i. The first type of slot defined is the

"Mesarovic Slot". This slot contains the Mesarovic structure of ES'i, a structural

model of ESi. The declarative portion of the Mesarovic slot contains subslots

defining the global state set, along with component input and output object (Es5 j1 )

sets of ES'i. A global state is defined when global state subslots are filled. The

procedural portion of the Mesarovic slot contains attached procedures

representing the global systems-response function for Es'i. These attached

procedures indicate how to determine the output set subslot values, and state

subslot values (for the dynamical portion of the system) from input subslot

values.

The state object slots for the generic aircraft frame consist of the subslots,

"Parameters" x "State"

We note that we have been able to partition the global state set into a constant

portion and a changing portion. The "State" portion of the partition corresponds

to the segment of the general system for which the semi-group property holds.

Mesarovic has shown that under this property the more restrictive notion of state

space can be defined along with the corresponding transfer function. The input

object set slots consist of the "Control" slots. The output object set slots are not

included in this example as they are redundant with the State slots for an aircraft

model. The attached procedure representing the aircraft transfer function

consists of the discrete time version of the aerodynamic equations of motion.

The second type of slot defined for each generic frame is the "Relational

State Slot". This slot contains frames indicating the feasible relation r e FO

currently representing the relational state of the component i. This is a example

of when a frame slot may contain another frame. A relational frame is defined for
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every r e Ai . The relational frames will be described later but an example for the

air combat problem is shown below.

Harrier Attack of F1 6 Frame
Harrier Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real

F16 Type Target: an aircraft frame
F16 Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real
Max Turn Radius: a real

if-needed (procedure to determine Harrier control)

The next slot of interest is the "Reproductive Slot". This slot contains

subslots defining the type of components that may be reproduced (EsJ), the initial

state object and relation (Rj) for a reproduced component, and conditions under

which reproduction may take place (CRJ). The declarative portion of the slot

contains a subsiot whose value is the frame type of the object to be reproduced.

The condition for reproduction and initial relation are determined by both

declarative and procedural subslots. The parameterization of the reproductive

conditions (CRJ) may be specified by declarative slots, while the procedure for

testing for (CRJ) is done via an attached procedure.

The reproductive slot for the generic aircraft frame contains the type of

missiles that may be fired (reproduced). The type of air to air missile subslot

includes a frame subslot containing a specialization of an air to air missile frame

(Aim_9L, Aim_9J). There are also declarative subslots describing the

capabilities of a missile. These conditions are tested by the attached procedure

to determine if a missile should be fired.

Slots are also defined for attrition of both types. The self attrition slot

contains an attached procedure to determine if the conditions CSA have been
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met. These conditions for the aircraft frame include an attached procedure for

testing for out of fuel, flying into the ground, or exceeding the design of the air

frame.

The causative attrition slot contains attached procedures for determining if

the conditions CCAj are met for removing a frame instantiation of type j. This

type of slot is not present for the aircraft frame assuming no guns.

We now turn our attention to the relational frames. A generic relational

frame is specified for each r r R. The declarative portion of the frame carries

the object state set for the relation. This set carries the paramterization of how

the relation is to be fitted to the component frame to which it is attached. The

declarative portion also contains slots containing frames that contain instantiation

of the components that serve as the domain of the relation. The procedural

portion contains an attached procedure to determine the inputs of component i

based on the declarative portion of the slot (domain components and relational

state). An instantiation of a relational frame occurs when a component i chooses

relation r e /O.

The "Harder AttacK of F16" frame contains a slot for a specific

instantiation of an F16 frame indicating the current target for the Harrier

instariation. The description slots describe a structural model for both the F16

and Harrier instantiations. These models are of much lower order than the actual

structural models specified in the Mesarovic slot of the component frame. These

lower order models are used so that an actual solution to the relation can be

computed.

The structure and management of frame instantiation is what separates

FBSM from simply being a data structure. Inheritance allows one frame to be
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related to another. The generic aircraft frame was defined above. We may

further specify aircraft types by the use of inheritance. An F16 type aircraft would

have the same slots as the generic aircraft frame but the Parameter slots would

be specified. Similarly to the Al case an F16 would be a specialization of the

aircraft frame. The same applies to missiles where we have used the

specialization of AIM_9L and AIM_9J. A specialization of a frame is different

than an instantiation. A instantiation of a frame implies the existence of a system

component. A F16 is a type of aircraft but Blue Fighter 1 which is an instantiation

of a F16 is an actual component. Reproduction is the act of instantiation of a

specialization of a frame. The case where Blue Fighter 1 (F16) fires an AIM_9L

missile means that the Blue Fighter 1 will cause the instantiation of a missile that

inherits the properties of an AIM9L missile frame.

Frames from an Al standpoint, by supplying a place for knowledge, create

the possibility of missing or incompletely specified knowledge. The slot

mechanism permits reasoning based on seeking confirmation of expectations

(I.E.. fill in the blanks). The use of attached procedures can be used to

determine the values. For modelling, initially we assume all slots are filled.

Subsequent slot values and instantiations are determined with the use of

attached procedures and allow for FRAME interdependencies. An FBSM

executive is responsible for the management of the simulation system. This

executive keeps track of instantiations, removes instantiations, and manages

iteration events for slot values. The FBSM of the air combat environment has

been implemented in PASCAL and currently runs on a SUN 4.
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4. AIR COMBAT ENVIRONMENT SIMULATION

The air combat environment simulator will now be described. The

simulator will be described in terms of Semantic Systems and Frame Based

Simulation (FBSM) described in Section (3).

The index set I of system generation component set E consists of Aircraft,

Ground Targets, and Ground Defenses. We note that in our stage one simulator

we are not including air to air missiles, air to ground missiles, and ground to air

missiles. One additional advantage to FBSM is that a model of the causative

attrition rules of a component may be absorbed into the Frame model of the

components that can reproduce the component.

The section will be organized in terms of the component types of the index

set I. Each component type will have a section describing the structural model

E'si for E.1 e E, followed by Frame description. The first component we will

consider will be aircraft.

4.1. AIRCRAFT

This section of the simulator description will be devoted to the aircraft

components. We first will discuss the aerodynamic model for an aircraft, a

continuous time dynamical model. The discrete time numerical model for the

simulation will then follow. The discussion will then continue with a probabilistic

model for the missile capabilities of the aircraft. Lastly we will define the aircraft

component frame.
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4.1.1. AERODYNAMIC MODEL

There are four aerodynamic forces that must be considered, gravity,

thrust, lift, and drag. The aircraft frame has three axis: longitudinal, lateral, and

vertical. The longitudinal axis is through the aircraft body. The lateral axis is

through the aircraft wings perpendicular to the longitudinal axis. The vertical axis

is perpendicular to the plane formed by the longitudinal and lateral axis.

The following angles define the aircraft movement in three dimensional

euclidian coordinates: 0, 0, and r. The heading of the aircraft in the x-y plane is

defined by 0. This angle is measured counterclockwise from the x-axis.

The rotation of the aircraft about its lateral axis is defined by the pitch

angle 0. The pitch angle is measured clockwise from the horizontal x-y plane.

Pitch angle defines if the aircraft is flying nose up or down with respect to the

horizontal plane.

The last angle t defines the rotation of the aircraft about its longitudinal

axis. The bank angle r is measured clockwise from the x-y plane. Bank angle

defines the aspect of the wings with respect to the x-y plane.

Thrust is the force applied by the aircraft engine along the forward

longitudinal axis of the aircraft. If T is the magnitude of the thrust (NT), then the

components are,

Tx = TcosocosO

(4.1.1) Ty = TcososinO

TZ = -Tsino
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The lift force is directed along the vertical axis of the aircraft. Lift is the

force induced by the wings of the aircraft. If L is the magnitude of the lift its

components are:

LX = L(sinocosecosx + sinesinz)

(4.1.2) Ly = L(sinosinOcosc - cosesinr)

LZ = Lcostcoso

The magnitude of the lift force L can be related to the unit-less lift coefficient CL

by,

(4.1.3) L = OCLVLG 2S/2

where

vLG = Aircraft Longitudinal Axis Velocity

a Air Density (kg/m 3 )

S = Aircraft Wing Area (m2 )

Drag is the force along the longitudinal axis opposite the direction of travel.

The drag force arises from resistance of the aircraft movement through the air. If

DG is the magnitude of the drag, its components are:

DGX = DGcosvcoso

(4.1.4) DGy = DGcososinO

DGZ = -DGsino

The magnitude of the drag force D can be split into two components, the

parasite drag CDO and the induced drag CDi. The parasite drag CDO is due to

the profile drag of the airfoil, skin friction drag, pressure drag, and interference
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drag of the other aircraft components. The induced drag is related by Prandtl's

lifting line theory to the lift coefficient CL by

(4.1.5) CDi = CL 2 /(Fnear)

where

ar a Aircraft Wing Aspect Ratio

e - Oswald Wing Efficiency Factor

The magnitude of the drag D is then related to these coefficients by,

(4.1.6) DG = OVLG 2 S(CDO + CL2 /H-[ear)/2

The equations of motion can be found by equating the forces ((4.1.4),

(4.1.1), (4.1.2)) for each of the x, y, z, components along with (4.1.3) and (4.1.6).

This gives

VLG* = g((T/W-(B + CLC)VLG 2) + sine)

0* = g(CLDvLGC0st - COslO/VLG)

(4.1.7) 0" = - gCLDvLGsinr/coso

x = vLGCOSOcosO

y = vLGcos4osinO

z° =- vLGsino

where

B = OCDOS/2W

C = aS/2W]lear

D = aS/2W

W a Aircraft Weight (NT)

VLG a Aircraft Longitudinal Axis Velocity
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The trajectory of the aircraft is determined by three controls; T (thrust), t

(bank angle), and CL (coefficient of lift). All three controls are assumed to be

instantaneously adjustable between the minimum and maximum values.

Aircraft dynamics are limited by a number of factors. Thrust (T) is limited to

a maximum amount available (ThrustMax). Maximum thrust is a characteristic

of the design performance of the aircraft engine. We are also assuming fuel

limitations. Once fuel is exhausted thrust is obviously no longer available. The

fuel burn equation may be written as follows:

(4.1.8) F=- efT

where

F a fuel amount

ef - engine efficiency

T -time elapsed

A maximum amount of lift is also available at any velocity. The maximum

lift available is related to the maximum value of CL (CLMax). The maximum

coefficient of lift (CLMax) is a parameter of design performance of the aircraft

airframe. The maximum coefficient of lift (CLMax) determines the stall velocity

of the aircraft. An uncontrollable loss of altitude occurs when an airplane is in a

stall. The stall velocity is defined as the velocity (VLG) below the point at which

the pitch rate (0*) defined in (4.1.7) can be held to zero, and is given by,

coso 1/2
(4.1.9) VLGStall = CLDCOs

The maximum load factor of the airframe is another design parameter.

The maximum load factor is given in G's which is equal to the force of gravity on
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an object at rest at sea level. The instantaneous number of G's for an aircraft is

given by:

G = VLG (cos)
2 + ()2 1/2

where g is the gravitational acceleration constant.

4.1.2. NUMERICAL METHOD

We will now describe the numerical method for simulating the

aerodynamic model discussed in Section 4.1.1. The first two equations of

(4.1.54) can be decoupled from the rest and are of the vector form,

(4.1.10) V* = F(V,U)

where F(.,-) is a C(1) function from Rn +m to Rn , V is a n-dimensional state

vector, and U is a m-dimensional control vector.

The following notation will be needed. We define ti = ti. 1 + h, Vi = V(ti),

V'i = V°(ti), and Ui = U(ti). Denoting FV(s,e) and FU(e,e) as the matrix of partials

with respect to the V and U coordinates of F(.,.) respectively we define

FV = Fv(Vi,Ui) and FUi = Fu(Vi,Ui). We can now define the first order

approximation to (4.1.10) at time ti+ 1 around ti as,

(4.1.11) VIi+1 = Vi + Fv'(Vi+ 1 - Vi) + Fui(Ui+ 1 - Ui)

where we have used the fact that V" i = F(Vi,Ui). The trapezoidal rule allows us to

approximate Vi+ 1 in terms of Vi and is given by:

(4.1.12) Vi+ 1 = V i + h(Vi+i + Vi)/2.
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Substituting (4.1.12) into (4.1.11) we get,

(4.1.13) Vij= Vi+ FvV1~ +

hFvi+l/2 + hFVi/2 + FU'(Ui+i -Ui).

Collecting terms we have,

(4.1.14) (1 - hFV1/2)Vi+l = (I + hF~i/2)Vi

+ FViVt + Fui(Ui+l - Ui),

where I is the nxn identity matrix. Multiplying (4.1.14) by (I - hFVi/2)-l we have,

(4.1.15) VH.1j = (I - hF~i/2Yl (I+ hFVi/2)V 1

+ (I - hFVi/2)-l (Evivi + Fui(Ui+i - Ui)),

Equation (4.1.15) and equation (4.1.12) form the difference equation

model for vLG* and 00 of (4.1.7), the aircraftdynamics differential model. We

now give Vi, Ui, Fyi, and Fyi for the aircraft structural model.29

Vi=[vLGi *,]T U=[Ti CUi , ]T

(4.1.16) Fy' = L-29(B +CLi)VL~i) gcoso~I

FUi = W gvLi20

0gDvL~icosti -9CLiDYLGisintiJ

29[ ]T denotes the transpose of the vector [ ]



73

We now turn our attention to the differential equation for 0 from (4.1.7). A

close examination indicates that,

(4.1.17) O i+l=EO(ti+l) = -gCL(i+1 )D VLG(i+l )sinti+l/CoSji+ 1

is determined by Vi+1 and Ui+1 defined in (4.1.16) where Vi+ 1 is determined by

the methodology defined in (4.1.15) and (4.1.12) The trapezoidal rule is once

again used along with (4.1.17) so that,

(4.1.18) el+ 1 = 0(ti+ 1 ) = 8i+1 + h(0i+1 + O~i)/2

The last equations for x° , ye, and z' of (4.1.7) are decoupled and can be

determined in terms of Vi+1 , Ui+1 and Oi+1 and are given by

X i+1 = vLG(i+l)COS~i+lcOsei+l

(4.1.19) y i+1 = VLG(i+l)COSoi+ lsin0i+l

z i+1 = -VLG(i+l)sinoi+l

We use the trapezoidal rule one final time along with (4.1.19) to get:

xi+l = x i + h(xOi+l + xi)/2

(4.1.20) yi+l = yi + h(y i+l + Y~i)/2

zi+ 1 = zi + h(zi+l + zi)/2
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4.1.3 PROBABILISTIC MISSILE MODEL DEVELOPMENT

We will now derive the probabilistic model for missile firing envelopes.

This model will serve as the causative attrition rules Gi between aircraft. The true

nature of these models are classified and we only seek a plausible

approximation. The actual details of the model is not critical, but the

methodology to determine the firing and risk surfaces is critical to our

methodology.

We start by asymptotically looking at the deterministic case for a constant

speed missi!e with bounded turn rate against a straight flying aircraft with

constant speed taking place at fixed altititude. Justification for this asymptotic

case is that the vast majority of pilots shot down never realized they had been

fired on and hence took no evasive maneuvers. The missile is assumed to have

a finite life time which is the burn time of it motor. Our problem is then to

determine the maximum range from the target aircraft that the missile can reach.

The coordinate frame we will work in is centered at the target aircraft with the

aircraft's velocity vector aligned with the y-axis. This coordinate system is shown

in Figure 4.1.1.
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The analysis is started by assuming the missile is infinitely maneuverable.

This corresponds to the maximum firing range from any point in space since the

missile can always be fired toward the optimal intercept point regardless of the

position and direction of the aircraft firing the missile.

The equations of motion are:

X= VMsinI
(4.1.21) X mi(

Y* = -VA + VMcos4D

where
VA = velocity of missile

A=velocity of target aircraft
-- missile heading control.

The Hamiltonian of the optimal minimum intercept time control problem is:

(4.1.22) H = 1 + FXVMsinD + FyVMcosD - ryVA
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The adjoint equations are then:

rx°=O
(4.1.23) 

Fy 0
. r' O0

The optimai control found by minimizing the Hamiltonian with respect to (D)

is, (D = arctan(ry/fx) + n. The fact that the adjoints are constant implies that (D

is constant and may be found geometrically by solving for:

(4.1.24) X(tf) = X(to) + tfVMsin(1 = 0

Y(tf) = Y(t 0 ) - tf VA + tf VMcOS(D = 0.

The heading angle cD is then,

(4.1.25) D = arctan(X(t0 ),Y(t0 ) - tf VA) +

Our interest lies in determining the manifold of the maximum range of the missile

fortf = missile birn time. This leads to the equation:

(4.1.26) X2 + (Y - VATBT) 2 = (VMTBT) 2 .

The maximum range for a missile fired optimally at the intercept point is

thus an eccentric circle in front of the target aircraft by the distance the target can

fly during the life of the missile with radius of the distance the missile can travel

during its life. An example is shown in Figure 4.1.2 below.
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We now may consider the case when the missile has a maximum turn

rate. The case aoove serves as a singuiar surface for when a missile is perfectly

aligned for intercept when fired. If the missile is not aligned then the maximum

range will be reduced as the missile wastes time and energy turning to an

intercept course.

The equations of motion are now:

Xeo= V sin(c
(4.1.27) Y4= -V+VMc

(o= V /;R

where
V =velocity of missile
VM= velocity of target aircraft

= missile heading relative to aircraft heading
= missile turn control (-1 5 0 !5 1)

R = minimum turn radius of missile.
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It should be noted that 0 is no longer a control, but now a state variable. The

Hamiltonian of the optimal minimum intercept time control problem is:

(4.1.28) H = 1 + FX VMsinO + Fy VMCOScD - Vy VA + r"D VMO/R

The adjoint equations become:

(4.1.29) = -VM(Excos - yVMsin)

The optimal control 0 is found by minimizing the Hamiltonian with respect to 0

yielding:

(4.1.30) 4 = -sign(FI-)

The terminal conditions are

(4.1.31) X(tf) = Y(tf) = 0; cI(tf) = E + 30.

Transversality also yields r(,(tf) = 0. The terminal conditions for the other

adjoints follow from the terminal condition that min H = 0 yielding,

sinO cose
(4.1.32) - VM + VACOSO Y = VM + VACOSe

309 can be viewed as the angle at which intercept is approached infinitesimally
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This lead

-VM
(4.1.33) r< *(tf) = (sinecos¢(tf) - cossinl(tf))

VM+ VACOSe

-VM sin(O - ¢(tf))

VM+ VACOSO

= 0.

This implies that 0*(tf) = 0. The conclusion is that all trajectories terminate on a

singular surface on which the missile is flying a straight intercept course. The

missile thus turns maximally until it reaches a point that ID(t) matches the angle

for X(t) and Y(t) that would be optimal for the infinitely maneuverable missile. The

missile then switches to a straight lead intercept trajectory. A typical trajectory

shape is shown in Figure 4.1.3 below.

Trajectory Range vs Miisiie Headi ng
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FIGURE 4.1.3
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Letting r be retro time, and t 1 be the retro time at which the trajectory enters the

singular surface we have the equations of motion for t _ , 1 ,

d1(t) = it + 0
(4.1.34) X(t) = tVMsinO

Y(t) = T(VA + VMCOSO)

The equa';ons for motion fort> t 1 when t = 1 are:

VM t-)( r) = IC + e V (T - '1 )
R

(4.1.35) X(t) = Rcos L e- VM (t-c 1 )J + X(tl) - Rcose
L RJ

Y('c) = -Rsin 0e-- M  (r-'r1)] + VA(,r-tI) + Y(rI) + RsinO

R

Our interest lies in how the maximum range envelope varies with deviation

from the optimal missile intercept heading for the infinitely maneuverable case.

Numerically we can solve for the maximum range as a function of heading error

from the Maximum Singular Surface Range for the infinitely maneuverable

missile solved earlier. The outermost range envelope corresponds to the case

where the missile heading exactly matches the firing heading if the missile was

infinitely maneuverable. Thus for each X and Y there corresponds the optimum

firing angle (*(X,Y) which is the solution to (4.1.25). Then for each angle Q =

arctan(Y,X) we can determine numerically the maximum X, Y pair for a fixed error

offset from D (YtanQ,Y). These plo's are given in Figure 4.1.4.



81

10

8 ...... ...

...... j ..i .......... ...............
- ... ... .... .. ... .... ... .. ... .......

-4 ~ .. . . .. . . . -. , .... ... . ... . . . . . .

-6
-,0 -5 0 5 to

FIGURE 4.1.4
FIRING RANGES

The next asymptotic case will now be considered. We consider an

infinitely maneuverable aircraft against a missile with bounded turn radius. Once

again we assume the encounter takes place at fixed altitude with constant

velocity for both vehicles. Since the aircraft is now infinitely maneuverable we

assume the aircraft always aligns its velocity vector outward along the line of

sight between the aircraft and missile. The coordinate frame we will now work in

is centered at the missile with the Y-axis aligned with the missiles velocity vector.

The coordinate system is shown in Figure 4.1.5.
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The equations of motion written in polar coordinates are:
r= VA - VMCOSA

(4.1.36)

* [ 0 sinA

R"  r
where

r = distance of aircraft from missile
A = heading of aircraft relative to missile heading
VM =velocity of missile
V,"= velocity of target aircraft

= missile turn control (-1 < O < 1)
R = minimum turn radius of missile.

The Hamiltonian is:

(4.1.37) H = 1 + V MO 1 VMsinA rVMosA
L ~ r+ ~ j R r
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The adjoint equations are then

VMsinA
r=rA 2

(4.1.38) cosA

rA= -VM[I F A + rrsinA]

Minimizing H with respect to 0 implies the optimal control:

(4.1.39) 0 = -sign[rA]

The terminal conditions require some explanation. It should be obvious

that the only way r = 0 can be reached is along the singular surface for which A =

0. Thus we seek those trajectories that reach the singular surface A=0, r = s in

minimum time. Symmetry arguments clearly indicate that 0 = 1 in the right half

plane and 4 = -1 in the left half plane. Assuming the missile has a reasonably

long burn time, we can use for the boundary of the range of the missile:

(4.1.40) AO= VM
R

Letting r once again be retrograde time, and 1l be the retrograde time

when the breakaway from A = 0 occurs, we have for the right half plane () = 1)

for t >%1:

VM
A(:) = V- ('T - tC1 )R

(4.1.41)

r(t) = Rsin [ R (1:)] + VA(t -l) + l(VM - VA)R

To find the maximum capture range envelope we first note that we can relate r to

A by,

(4.1.42) r = RsinA + (VM - VA)TBT - R.A
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where TBT is the life time of the missile engine burn. The two figures below

show how the maximum range envelope varies with missile burn time and

minimum turn radius. The first figure shows how the maximum range envelope

varies for fixed minimum turn radius R, while TBT is varied. The second figure

indicates how the maximum range envelope varies-as R is varied while TBT is

held fixed.
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Range As A Function Of Turn Rate
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FIGURE 4.1.7

We now will splice our deterministic asymptotic results together into a

probabilistic missile effectiveness model. Arguably the results are not rigorous.

We seek only a plausible model of sufficient complexity that our methodology can

be exercised in more than a trivial fashion.

Earlier we mentioned that the vast majority of pilots shot down never

realized they had been fired upon. Therefore we define PU = probability that a

missile launch is undetected by the fired upon aircraft. We can thus use the

deterministic model summarized by equation (4.1.26). Rewriting equation

(4.1.26) in line of sight coordinates:

(4.1.43) r = VATBTCOS(AASP) +

[ (VMTBT) 2 - (VATBTsin(AASP))
2 11/2
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where AASP is the aspect angle which is defined as the angle measured

clockwise between the aircraft heading and the line of sight, and r is the line of

sight distance.

The next step is to modify the model given by equation 4.1.43 from a

deterministic model to a probabilistic one. This modification will account for the

fact that all of the parameters TBT, VM, VA, etc. vary probabilistically. The

probability that the missile will destroy an aircraft from a line of sight distance r,

where the aircraft has aspect angle AASP, is given by:

r JPexp(-ad), if d > 0
(4.1.44) P(K I r,AASp,U) = otherwise

where

d = r- VATBTCOS(AASP)-

[(VMTBT)2-(VATBTSin(AASP))
2 1 1/2

The non-negative a models the variability around the nominal parameters VA,

VM, and TBT. Last ditch end-game maneuvers, electronic counter measures,

terrain masking, etc are modeled by the parameter 0 < P < 1.

Equation (4.1.26) was the result when the missile was assumed to be

infinitely maneuverable so that missile off-boresight angle was not considered.

The off-boresight angle firing error from equation (4.1.25) can be written as:

(4.1.45) (De = AAS P - AOB + 1 +

arctan(rsin(AASP),rcos(AASP) - TBT VA)

where (De is the off-boresight angle error and AOB is the off-boresight angle

measured clockwise between the missile heading and the line of sight. The line

of sight coordinate system is shown in Figure (4.1.8).
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FIGURE 4.1.8

The effect of AOBe was shown in Figure 4.1.4. As it turns out, the

relationship between the maximum missile range and AOBe is highly nonlinear

and a closed form solution does not exist. The radii of the eccentric circles are

found from Equations (4.1.35) to be:

(4.1.46) 2 = X2 + (y- VA)2

: [VMTBT- VM(TBT-I) 2

I VM

" 2t1l VMRsin [ VM (TBTtl)1RM

where the parameters are those of Equations (4.1.27).31 Define 0' by

(4.1.47) 0' = arctan(X(to),Y(t0 ) - tf VA),

31TBT is still the missile burn time.
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which is the angle between the initial position of the missile and the heading of

the aircraft. De can then be expressed as:
VM

(4.1.48) (e = e- 0' -- (TBT-tl).
RM

The parameter C is defined below, strictly for convenience as:

VM
(4.1.49) C= - (TBT-t'l)

RM

The problem is to determine the unknowns 0 and rj from (e so that g. may be

calculated. Again, no closed form solution exists. Our methodology is to use a

second order Taylor expansion.

Assuming De is negative, the first step is the equation found by combining

second order Taylor expansions of equations (4.1.35) with (4.1.47):

X 2VMTBTsinO - RM(C) 2 cose
(4.1.50) tan8' =

Y-VATBT 2VMTBTCOSO - RM(C) 2 sinO

RM(C) 2

(4.1.51) W'-0 -tan'1 [ 2VMTBT .
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A second order Taylor expansion can now be applied to equation (4.1.51),

yielding

RM C2

The results of equations (4.1.51) and (4.1.48), valid for negative (De, can be

extended to determine the radius of the eccentric circle missile range g

approximately, as a function of I (De I, from equation (4.1.46) as:

i 2 = (VMTBT) 2 - 2RM I (De I VMTBT +

2R2 1 cos VMTBT VMTBT VMTBT

ML RM IIRM [RM 2 e1]
(4.1.52)

+[VMTBT [ VMTBT -2(e 1/2
RM RM

sin[ VMTBT [VMTBT [ VMATBT -20 1/21
RM RM RM

The probabilistic model of Equation (4.1.44) can now be extended. The

probability that a missile destroys an aircraft from a line of sight distance r, with

aircraft aspect angle AASP, and off boresight angle AOB when a launch is

undetected is given by:

13exp(.-(d'), if d' > 0

P(K I r,AASp,AoB,U) 
=

13, otherwise
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where

( e = AASP - AOB - arctan(rsin(AASP),rcos(AASP) - TBTVA)

and
d'= r - VATBTCOS(AASP)

- (VMTBT) 2 - VATBTsin(I AASP I) - 2 RM I eI VMTBT

VMTBT VMTBT VMITBT1

RM RM RM

11si RM TB RMTB VTT-2(e

1 -

snVMTBT -[VMTBT VMTBT 2 1

RM LRM [ RM 2I(eI]]

The case when a missile launch is detected by the target aircraft will now

be considered. The probability that a launch is not detected is given by PD = 1 -

PU" The assumption for a detected missile launch is that the target aircraft tries

to outrun the missile. The deterministic version for an infinitely maneuverable

aircraft was given by Equation (4.1.42), which (rewritten in line of sight

coordinates ) is given by:

(4.1.54) r = RMsin(AOB) + (VM - VA)TBT - RMAOB.
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Equation (4.1.54) assumed that the target aircraft could instantaneously

align its velocity vector outward along the line of sight. Now an approximation will

modify this equation to account for the energy and time needed for this alignment

by the target aircraft. The equations of motion in line of sight coordinates are:

r=- [ VAcos(AASP) + VMcos(AOB) 1

*1 -1 VA
(4.1.55) AOB [ VAsin(AASP) + VMsin(AOB) VA

r RA

1 1 VM
AASP = - [ VAsin(AASP) + VMsin(AOB) | ,

r LJ RM

where we have introduced RA for the turn radius of the aircraft, with E [-1,1]

being the missile control, while the aircraft control 0 e [-1,1]. An approximation to

the loss in distance along the line of sight of the aircraft due to its turning outward

(AASP = n) is given by RA(sin(I AASP I) - R + I AASP ).32

Similarly to the undetected missile case we combine the results into a

probabilistic model as3 3 :

Pex(-a "),if d" t 0
(4.1.56) P(K I r,AASP,AOB,D) =the rwis[3 otherwise

where
d"=r-RM(sin(IAOBI)- IAOBI)-(VM- VA)TBT-

RA(R - I AASPI - sin(IAASP I)).

32Note we have assumed the missile is launched from a distance such that r 1

<< VA/RA.

33Note a and 13 have the same meaning as in the undetected case.
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Equations (4.1.53) and (4.1.55) give a probabilistic missile effectiveness

model in terms of nominal parameters. This model does not directly take altitude

into account as in general this is a fast state variable that has little effect as far as

initial altitude separation at launch. The maximum turn rates and velocities are

effected by altitude and airframe load factors. This remain near a nominal level

for a launch at given altitude. Missiles such as AMRAAM normally seek a

nominal mid-flight altitude to optimally set these parameters. This model display

a reasonable approximation to actual missile firings sufficient for our purposes.
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4.1.4. AIRCRAFT FRAME DESCRIPTION

The aircraft frame and relational subframes can now be described. The

details of the attached procedures are found in other sections such as 4.1.3,

4.1.2, and 6.

Aircraft Frame
Mesarovic Slot

Parameters:
Max Clift: a real
Max Thrust: a real
Max G's: a real
Weight: a real
Wing Surface Area: a real
Oswald Efficiency: a real
Wing Aspect Ratio: a real

State:
X: a real
Y: a real
Z: a real
VLG: a real
ALG: a real
Heading Rate: a real
Pitch Rate: a real
Heading: [-Pi,Pi]
Pitch: (-Pi/2,Pi/2)
Fuel: a real
Number Air Air Missiles: [0,1,2,3,4,5,6]
Number Air GroundMissi: [0,1,2,3,4,5,6]

Controls:
Bank: (-Pi/2,Pi/2)
Thrust: (0, MaxThrust)
Clift: (0, MaxClift)

if-needed(procedure to update state)
Relational State Slot

Tactic: (LOS Pursuit,
LOSEvade,
LOS GroundPursuit,
LOS-_GroundEvade
Harrier Attack F16
Harrier-Evade-f 16
F16 Evade Harrier
F16_-Attack-Harrier)

Causal Attrition Slot
Air To Air Missile Type Attrition:

Missile Description:
Nominal Burn TIME: a real
Nominal Velocity: a real
"Detected: a positive real
ODetected: (0,1]
aUndetected: a positive real
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[0,11R r LvAcfi D et: [0'i]

if-needed (procedure to determine if
target destroyed)

Air To Ground Missile Type Attrition:
Missile Description:

Nominal Burn TIME: a real
Nominal Velocity: a real
a: a positive real
13: [0,1]

if-needed (procedure to determine if
target destroyed)

Self Attrition Slot
if-needed (procedure to test for crash)

Harrier Attack of F16 Frame
Harrier Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real

F 16 Type Target: an aircraft Frame
F16 Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real
Max Turn Radius: a real

if-needed (procedure to determine Harrier control)

Harrier Evade F16 Frame
Harrier Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real

F16 Type Target: an aircraft Frame
F16 Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real
Max Turn Radius: a real

if-needed (procedure to determine Harrier control)

F16 Evade Harrier Frame
Harner Type Target: an aircraft Frame
Harrier Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real

F16 Description:
Speed: a real
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Kill Radii: a real
Kill Eccentricity: a real
Max Turn Radius: a real

if-needed (procedure to determine F1 6 control)

F6 Attack Harrier Frame
Harrier Type Target: an aircraft Frame
Harder Description:

Speed: a real
Kill Radii: a real
Kill Eccentricity: a real

F16 Description:
Speed: a real
Kill Radii: a real
Kill Eccentricity: a real
Max Turn Radius: a real

Advasary: Aircraft Frame
if-needed (procedure to determine F1 6 control)

LOS Pursuit Frame
Advasary: Aircraft Frame

if-needed (procedure to determine LOS heading control)

LOS Evade Frame
Advasary: Aircraft Frame

if-needed (procedure to determine LOS heading control)

LOS Ground Pursuit Frame
Fixed Altitude: a positive real
Advasary: SAM Frame,

Ground Target
Frame
if-needed (procedure to determine LOS heading control)

LOS Ground Evade Frame
Fixed Altitude: a positive real
Advasary: SAM Frame,

Ground Target Frame
if-needed (procedure to determine LOS heading)
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4.2. SAMS (Surface To Air Missile Sites)

The next component type to be discussed is SAM sites. The probabilistic

model for the missile capabilities for simplicity is assumed to have the same form

as in section 4.1.3. The difference between air to air, and air to ground missiles

will be imbedded in nominal parameters such as VM, TBT, PD, etc. The location

of the SAM sites is fixed but may be unknown to other components.

SAM Frame
Mesarovic Slot

Parameters:
X: a real
Y: a real

State:
NumberGroundAirMissl: [0,1,2,3,4,5,6]

Causal Attrition Slot
Ground To Air Missile Type Attrition:

Missile Description:
Nominal Burn TIME:a real
Nominal Velocity: a real
aDetected: a positive real
ODetected: [0,1]
aUndetected: a positive real

•t [0,1]
PUoautncr'Det: [0,1]

if-needed (procedure to determine if
target destroyed)



97

4.3. HOMES (Home Aircraft Bases)

The Home component type describes airfields. Home components have

fixed location, and their purpose is to reproduce (takeoff), or cause attrition

(landing) of aircraft components. The frame is shown below.

HOME Frame
Mesarovic Slot

Parameters:
X: a real
Y: a real

State:
NumberAircraft_TypeA: a pos integer
Number_AircraftTypeB: a pos integer

Causal Attrition Slot
if-needed (procedure to land aircraft)

Reproductive Slot
if-needed (procedure to takeoff

aircraft)
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4.4. GROUND TARGETS

The last component type to be considered are Ground Targets.

Components of this type are targets of tactical interest. Ground target real world

counterparts could be factories, or other facilities of importance. This very simple

frame is shown below.

Ground Target Frame
Mesarovic Slot

Parameters:
X: a real
Y: a real
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5. SYSTEM INTEGRATION

This .section outlines how to integrate all the concepts discussed

throughout this dissertation together via the semantic control paradigm. The use

of the probabilistic missile models will be discussed, and how to integrate the

results into determining and using the appropriate differential game model.

Methodologies for implementing the system goal selector will also be explored

and outlined. The goal selector determines the differential game models, and

from the knowledge base. Three possible methodologies for the goal selector

will be discussed. Lastly the control adapter will be discussed. The identifier is

not discussed as perfect information is assumed.
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5.1. FIRING AND AVOIDANCE SURFACES AS GOALS

Two surfaces must be determined, a firing surface, and an avoidance

surface. The firing surface is a function of resource allocation and a desired

probability of being able to destroy all assigned targets for a mission. A simplified

equation for the probability of being able to destroy all assigned aircraft targets

(PM), based on the negative binomial distribution is given by:

N (x-1)! K
(5.1) PM p(1p)XK-

x=K (x-K)!(K-1)!

where
N a Number Of Missiles Remaining On Aircraft
p Probabilfty That A Missile Will Destroy Its Target
K NumberOf Targets
x Number Of Missiles Fired.

Equation (5.1) is solved for p given PM, N and K. A more complex

equation might include a tradeoff on the cost of a missile, or scarcity of the

missiles as a resource. Suppose that an aircraft has 6 air to air missiles, and the

expected number of encounters is 2 aircraft targets. To assure a 90% probability

of being able to destroy the expected targets, each missile must be fired such

that the missile has a 58% probability of destroying its target.

The next step is to use equations (4.1.53) and (4.1.56) to determine the

firing surface. Figures 5.1 and 5.2 show the firing surface for a missile to have a

58% probability of destroying its target when Vm = 1, Rm = 1, Va = .25, Ra = 4,

Tbt = 9, a = 0.25, 3 = 0.9, and PD = 0.2.
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FIGURE 5.1
Missile Range Launch Surface For Prob Kill Of 0.58

FIGURE 5.2
Missile Firing Range Contours For Prob Kill Of 0.58
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The avoidance surface is determined by the amount of risk that a pilot or

the pilot's superiors are willing to accept. We will assume for simplicity that it is

desirable to keep the probability of being destroyed by an adversarial missile

launch below a predetermined threshold. Equations (4.1.53) and (4.1.56) are

used again, this time to determine the avoidance surface. The role of aircraft and

missile parameters are now interchanged to indicate ownship aircraft capabilities

versus the adversarie's missile capabilities. Figures 5.3 and 5.4 show an

avoidance surface for an adversary missile kill probability of 10% percent when

Vm = 1, Rm = 1, Va = .33, Ra = 2, Tbt = 7, a = 0.75, 3= 0.7, and PD = 0.4.

FIGURE 5.3
Missile Range Avoidance Surface For Prob Kill Of 0.10
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FIGURE 5.4
Missile Range Avoidance Contours For Prob Kill Of 0.10
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5.2 GOAL SELECTOR

Once the finng and avoidance surfaces are determined, the problem

becomes one of determining trajectories and controls that allow the ownship

aircraft to reach the firing surface without penetrating the avoidance surface. The

goal selector of the semantic control paradigm must identify the differential game,

parameters and role that the ownship aircraft should assume from the knowledge

base of differential games. Three alternatives for the system goal selector expert

system will be explored, rule based, neural nets, and The Analytical Hierarchy

Process.

One key requirement for the "expert system" implementation of the goal

selector is that the knowledge (i.e. the differential game library) must be

separated from how the knowledge is manipulated. It is imperative that the

capability exist to add new differential games to the knowledge base for the

possibility of improved performance, without modifying the system as a whole.

This feature is known as "incremental development"34 . "Incremental

development" allows the maintenance and improvement of performance by

incrementing the knowledge base as more is learned about ownship and

adversarial performance via the models incorporated into the knowledge base.

Without "incremental development" a new model, or improved adversarial

performance could mean the obsolescence or complete redesign of the semantic

control system.

A "shell" is a tool for building a limited set of knowledge base applications

based on generalizing the requirements common among these applications. The

34Lazarev, G. L. pg 134
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"shell" serves to separate the knowledge represented and the "inference engine".

The "inference engine" is primarily responsible for control. The "inference

engine" must also handle features such as user interaction, explanation

capabilities, and uncertainty. Our goal is to outline how to build the expert

system "shell" for the goal selector such that "incremental development" is

supported, and performance will approach optimality for the current differential

games in the knowledge base.

5.2.1 RULE BASED APPROACH

The first methodology to be considered for building the differential game

expert "shell" will be a rule based system. It should be noted that the majority of

existing expert systems are rule based due to their naturalness, ease, and

uniformity of expression. Rule base systems are of the form

If condition(s) then action(s)

These rules can be used in a forward or backward chaining fashion.

Forward chaining starts with a rule base and a set of known facts. A rule that

matches the current set of known facts is triggered. The set of known facts is

modified by the triggered rule's action. The process is repeated for the set of

updated facts until a solution, or a failure is reported. Reasoning is performed

from facts, using rules until a solution is found.

Backward chaining is goal driven processing. Reasoning is performed

from a goal using rules to existing facts. Rules are used from actions to

conditions. Each hypothesized goal is reduced to a set of sub-goal. The process

is then repeated until the reduced sub-goal can be identified with the existing
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facts. One of the main uses of backward chaining is the generation of

explanations for a decision.

There are two reasons we give only brief consideration to the rule based

approach. Generating general rules splicing the differential games together

appears to demand understanding the dynamics of the encounters at the same

level that prevents the solution of higher order games. Rule based approaches

also tend to be brittle. An increment in the knowledge base could change a set of

complex rules drastically. Generating a set of rules for a specific set of

differential games would create a non-robust goal selector. Rule based

approaches do not appear promising.

5.2.2 NEURAL NET APPROACH

The next expert system type to be considered is the Artificial Neural Net

expert system as proposed by Gallant. Interest in Artificial Neural Nets has had

extremes in popularity since the early 1960s. Artificial Neural Nets are

computational mechanisms based on the structure of thc bmran. Currently there

is an explosion of interest and research in Artificial Neural Nets and their

capabilities. This explosion follows a long winter of interest in Artificial Neural

Nets during the 1970s.

Initially, during the 1960s, there was a great deal of excitement over linear

neuron-like models termed perceptrons3 5 . Minsky and Papert demonstrated in

their book Perceptrons the key limitation that perceptrons could only solve

linearly separable problems. This revelation lead to the wide scale abandonment

of Artificial Neural Nets in the 1970s and to the flow of research dollars to

35Rosenblatt
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Artificial Intelligence (AI). Recent advances with multilayered networks and new

network learning paradigms such as backpropagation have overcome the

limitation of linear separability and caused a major resurgence in artificial neural

net research.

Hecht-Nielsen3 6 gives the following general definition of an artificial neural

net system [ANS]:

A neural network is a parallel, distributed information
processing structure consisting of processing elements (which
can possess a local memory and carry out localized information
processing operations) interconnected together with
unidirectional signal channels called connections. Each
processing element has a single output connection which

ranches ("fans out") into as many collateral connections as
desired (each carrying the same signal - the processing element
output signal.) The processing element output signal can be
any mathematical type desired. All of the processing that goes
on within each processing element must be completely local;
i.e., it must depend only upon the current values of the input
signal arriving at the processing element via impinging
connections and upon values stored in the processing element's
local memory.

Simpson3 7 gives a simpler, less rigorous definition, "... an ANS is a nonlinear

directed graph with edges that is able to store patterns by changing the edge

weights and is able to recall patterns from incomplete and unknown inputs".

A biological neuron is the basic building block of the nervous system.

Figure 5.5 shows a simplified view of a biological neuron. The body cell of the

neuron is termed the "soma". Connected to the "soma" are multiple "dendrites"

and an "axon", these serve as the mechanism of communication to other

neurons. The "dendrites" are spine like connections which receive stimulus from

other neurons. Each neuron has a single "axon" that serves to transmit the same

36Simpson pg 3

37Simpson pg 4
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stimulus to all the other connected neurons. The connection between a neuron's

"axon" and another neuron's "dendrite" is termed a "synapse". Each "synapse"

has a level of transmission of the stimulus on the "axon" to the connected

"dendrite". Only when a neuron receives sufficient stimulus from other neurons

connected at the "dendrites" does the neuron become active and send a stimulus

out on its own "axon". Since each neuron accepts a different level of stimulus

from a connected neuron based on the transmission level at the "synapse", the

network knowledge is equivalent to these transmission levels. Biological neural

networks work by a biochemical process that is beyond our scope of interest

here.

FIGURE 5.5

Biological Neuron

Soma

Dendrites

~Axon

The basic model for an artificial neuron is shown in Figure 5.6. Unes (or

wires) replace the functions of biological "axon" and "dendrites". "Synapses" are

replaced by weights (or resistors). The body of the neuron or "soma" is split into

two components. The first component is an adder that sums up the weighted
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outputs of other neurons. The second component is the activation function. This

function determines the artificia: reuron's activation level based on weighted net

input. Typically this function is an s-shaped function known as a squashing

function.

FIGURE 5.6

Artificial Neuron Model

L#Wn

The method of connecting the network neurons defines the network

topology. Two general categories for networks exist, recurrent and non-

recurrent. Recurrent networks have cycles in the network connections. These

cycles make recurrent network dynamical systems. Our interest lies in non-

recurrent networks. Non-recurrent networks have no cycles. A non-recurrent

network can be viewed as a transformation from n-dimensional euclidean space
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to m-dimensional euclidean space. The special instance of a non-recurrent net

with which we concern ourselves is the feedforward net shown in Figure 5.7.

FIGURE 5.7

Feedforward Neural Net

.U,- Output Layer

> Hidden Layers

**O Input Layer

A feedforward net consists of a number of layers of neurons. Neurons in

one layer are restricted to outputting only to neurons in the next layer, and

inputting only from neurons in the previous layer. There is always an input layer

which simply serves to buffer the inputs. An output layer also exists and its

activation activation function fo can be linear or nonlinear. There can also be a

number of hidden layers. These hidden layers lie between the input and output

layers and have a non-linear activation function f0. The power of the feedforward

net lies in the non-linear nature of the hidden layers. Recent research has shown

that any measurable function can be approximated almost everywhere by a
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feedforward net with one hidden layer.38 The network connection weights can

be programmed a priori. The weights are more commonly learned recursively.

Different learning paradigms can be found in Simpson (1989).

Gallant has demonstrated a methodology to use artificial neural networks

to build classification expert systems where the outputs from the system can be

represented by variables that take on values from a finite set. Each variable has

its own finite set of possible values. The particular artificial neural network

implementation for our interests will have a Boolean (two value) classification

system. Classification expert systems can handle a wide variety of applications.

Suppose a particular variable X can take on continuous values in the range [0,1],

X could be approximated by several Boolean choice variables X1 ,X2 ,X3 , where

each Xi corresponds to a range of values:39

if X>1/4, thenX,=1;e lseX1 =-1;

if X_1/2, thenX 2 =1;elseX2 =-1;

if X > 3/4, then X3 = 1; else X3 = -1;

so that X = .6 would correspond to X1 = X2 = 1, X3 = -1.

The artificial neural net for the classification expert system shall have the

architecture described below. The net architecture shall be feedforward with one

hidden layer. The neurons are perceptrons having discrete activation levels, -1,

0 or 1, corresponding to the Boolean values False, Unknown or True

3Hornik

39Gallant pg 154
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respectively. The neuron activation function relating the activation of neurons

(uk'lj) on layer k-1 to neurons (uki) on layer k is given by:

netki = ., wkijuklj
J
- 1,9 if netki > 0

uki = 0, ifnetki=0

L -1, if netki < 0,

where vkij is the weight connecting neuron i on layer k to neuron j on layer k-i.

The name of each neuron corresponding to each variable of interest must

also be specified. The variables of interest must also be partitioned into

dependent and independent classes. The independent variables of interest are

assigned to the input layer, while the dependent variables are assigned to the

output layer.4 0 Partial knowledge about the relation between dependent and

independent variables can be directly incorporated in the net by allowing only

partial connectivity through the hidden layer between sets of input and output

neurons. The values of the weights can be directly programmed if the relations

are actually known, or more realistically they can be learned from a training set of

input and output pairs.

40This partitioning differs slightly from that proposed by Gallant. Gallant's

method was to list all the dependencies (adjusting to avoid cycles) having no

particular input, output, and intermediate layers. The number of layers

corresponded to the minimum number of flow forward dependencies. (Gallant pg

156)
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Our interest in classification systems will be to determine what models to

use, and the particular parameterization of the models chosen. The problem is

divided up hierarchically. One classification network is designed to determine

what differential game and models should be used, along with pursuer and

evader role assignments. Another set of classification nets is also specified, one

net for each output combination from the first net. A net that corresponds to an

output combination determines the parameterizations and flight characteristics for

the model, differential game, and role chosen.

Figure 5.8 illustrates the classification net that determines which

differential game from the knowledge base (currently in our stage I simulator) will

be chosen along with some of the criteria that might be used to make the

decision. Figure 5.9 illustrates the net corresponding to the "Harrier Pursuit"

output of the differential game classification net shown in Figure 5.8. The net

shown in Figure 5.9 determines the parametrization of the F16 pursuit of Harrier

differential game. A game parameterization classification net exists

corresponding to each of the output classifications of the net shown in Figure 5.8.

The question of determining the weights of the classification nets

discussed above and shown in Figures 5.8 and 5.9 still remains open. Generally

the connection weights are learned recursively via training by one of the methods

discussed in Simpson. Training is generally done from a training set of desired

input output matchings for asymptotic cases. The goal is to learn the unknown

underlying mapping from input to output space so that correct outputs will be put

forth for inputs not in the training set.
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FIGURE 5.8

Harrier F16 LOS Harrier LOS F16
Pursuit Pursuit Pursuit Evade Evade Evade

Differential Game
Classification

Neural Net

[1.1* 1*...1 i...1 II...!11* l..1 1**
Ownship Advasary Ownship Adversary MaximumState State Aircraft Aircraft Allowable Desired

Type Type Advasary Ownship
Kill Prob Kill Prob

FIGURE 5.9

Ownship Ownship Ownship
Ownship Adversary Minimum Missile Missile
Velocity Velocity Turn Radius Radius EccentricityI 1.... 1'" - I...- T11. .. 1 ] ...

F16 Pursuit Of Harrier
Differential Game Parameterization

Classification Neural Net

i[.- 1I'.1 11.I 11. 11-1 11-1
Ownship Advasary Ownship Adversary Maximum Minimum

State State Aircraft Aircraft Allowable Desired

Type Type Advasary Ownship
Kill Prob Kill Prob
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The generation of a representative training set is typically non-trivial.

Training sets must be generated for the differential game classification neural

net, ard for each of the individual parametrization classification neural nets. Twc

methods can be considered for the generation of the training sets: analysis and

simulation.

Generating the training set by analysis shares the main difficulty of the rule

based methodology: the requirement for complete mathematical understanding

of how all the differential games perform relatively for each member of the

training set.4 1 It may be possible to generate analytically members of the

training set for a few asymptotic cases, but the their generation for every case by

this methodology is not really practical.

Simulation methodologies appear to be the most promising means of

generating a training set. Each of the differential game parametrization

classification neural nets can be trained independently by closing the loop

simulating forward, and adjusting the weights by propagating the errors backward

in time. Once each of the individual differential game parametrization

classification neural nets is trained, the differential game choice classification

neural net (Figure 5.8) training set can be generated via comparative simulation.

This methodology involves the generation of the appropriate neural net output for

a given neural net input by searching all possible output via simulation for the

best performance. Extensive search via simulation would of course be extremely

computationally intensive. Therefore heuristic search methods might offer

improvement in search speed. The neural nets once trained on a large enough

411t is this difficulty the prevents the generation of solutions to higher order

differential games.
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set, would be expected to generalize well to cases not directly included in the

training set.

One important requirement is that the expert system be able to justify its

decisions to the user. A system to aid pilots must be able to explain decisions to

the pilot to find acceptance. Gallant gives a methodology to generate

explanations of decisions via the generation of if-then rules from classification

neural nets.4 2 His methodology is as follows:

i) List all inputs that have contributed positively to the
discriminant of Zjk. Figure 5.10 generates Zl k' l , Z2 k ' , and

5 

Zk-1.

ii) Arrange the list by decreasing absolute value of the weights.
Figure 5.10 gives Z2k l, Z5 k- 1, and Z1 k' i.

iii) Generate clauses for an if-then rule from the ordered list from
ii) until

k used for clause

[remaining zki iH'ki ]

is satisfied. The generated if-then rule for Figure 5.10 given by

this methodology is:

if Z2 k-1 is False and Z5 k-1 is True

then Conclude That Zjk is True

42Gallant pg 163
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Gallant's methodology generates as set of if-then rules for layer to layer

connections that can be used in a backward-chaining fashion to explain

decisions.

In conclusion we has shown in this section that artificial neural nets are

candidates for implementing the semantic controller identifier for air-combat.

Such a methodology would provide a real-time mechanism for determining what

differential games and parameters should be chosen from the knowledge base.

The main drawback of this approach is the difficulty in obtaining training sets.

FIGURE 5.10

Explanations by if-then Rules

TrueZ k  Rule: k-I

If Z 2= False and Z True,Ik
Then Conclude Zk is False

2

-6 -

1 -10 1 -1
True False ?? ?? True False

Z Z Z Z4k- Zk zk 1
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5.2.3 ANALYTICAL HIERARCHY APPROACH

The final approach to be discussed for implementing the identifier is the

Analytical Hierarchy Process originated by T.L. Saaty of the Wharton School.

The Analytic Hierarchy Process (AHP) is a general theory of measurement that

can be used in multicritena decision making. Ratio scales are derived from

paired comparisons. To use AHP in a decision problem, a hierarchic structure

that represents the problem is needed, along with pairwise comparisons to

establish relations within the structure.

Figure 5.11 shows an evample of a hierarchic structure for a simple

example of choosing the best high school for a student to attend. This simple

hierarchy has the overall goal as the apex (choose the school that gives the most

overall satisfaction). The criteria for selecting falls on the second layer. The

lowest layer contains the alternative (the school) choices. More complex

decision problems that have criteria and sub-criteria would have more layers in

the hierarchy. Figure 5.12 shows the pairwise comparison of the importance of

the criteria with respect to satisfaction with school. The relative importance of

each of the criteria can be shown to be the principal eigenvector of the matrix of

pairwise comparisons. Pairwise comparison would be repeated for each school

choice with respect to each of the criteria. The set of principal eigenvectors for

each of the comparison matrices would finally be composed via matrix.

multiplication to give an overall ranking of the merits of each alternative (school

choice).
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The AHP has a formal mathematical basis. We first present some partially

ordered set notation.

Definition 5.1: Let S be a partially ordered set (P.O.S). Then for x,y C S:

i) x<y implies x <yand x y

ii) y covers x, if x < y and there does not exist

te Ssuchthatx<t<y

iii) x"={y I xcoversy}

iv) x+ ={y I ycoversx}

FIGURE 5.11

HIERARCHY FOR HIGH SCHOOL CHOICE

Satisfaction With School

School A School B School C

Developed For Saaty's Son
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FIGURE 5.12
Comparison of characteristics with respect to overall satisfaction with school

School Vocation College Music
Learning Friends Life Training Prep. Classes

Learning 1 4 3 1 3 4
Friends 1/4 1 7 3 1/5 1
School 1/3 1/7 1 1/5 1/5 1/6

Lif e
Voc 1 1/3 5 1 1 1/3
Train

College 1/3 5 5 1 1 3
Prep
Music 1/4 1 6 3 1/3 1
Class

Given our P.O.S notation a Hierarchy can formally be defined. The

following definition introduces the concept of layers for a P.O.S.

Definition 5.2: Let H be a finite P.O.S., H is a hierarchy if the following conditions
are satisfied;

i) There axist a partition of H into set Lk,
k = 1,...,h where L1 = {b}, b is a single element
(apex).

ii) x e Lk implies x- is a subset of Lk+ 1 ,
k 1,.., h-1

iii) x e Lk implies x+ is a subset of Lk. 1 ,
k-= 2,..., h

We now lay out the ground work for determining rankings of the elements

of a layer with respect to each member of the next higher layer. Let U be a finite

set of "alternatives". Let C be a set of criteria with respect to which the elements

in U are compared. For c E C, let PC: UxU -+ R+ such that PC(Ai,Aj) - aij E R+

for every Ai,A e U.43 The function PC is of course the pairwise comparison.

Definition 5.3: For every c e C, (LxU,R+,PC) is called a "primitive scale".

43 R+ is the set of positive reals
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Definition 5.4: For Ai,A j e U and c e C:

i) Ai >C Aj iff PC(Ai,Aj) > 1 "Ai dominates Aj wrt c"

ii) Ai =C Aj iff Pc(Ai,Aj) = 1 "indifference"

Reciprocal consistency is imposed on the pairwise comparisons. It is imposed so

that if A is twice as important as B, then B is half as important as A. Saaty's first

axiom states this condition.

Axiom 5.5: For every Ai,Aj E U and c r C, Pc(Ai,Aj) = 1/Pc(Aj,Ai).

Our main sub-objective at this point is this: given a matrix A = (aij) =

(Pc(Ai,Aj)) of pairwise comparisons obtain a scale of rank order of the

alternatives. Let RM(n) be the set of (nxn) positive reciprocal matrices, and

define a function W:RM(n)-[0,1In which maps (nxn) reciprocal matrices to n-

dimensional vectors with positive components with magnitude less than or equal

to one. The function W determines from a matrix of pairwise comparisons the

relative rankings of the alternatives based on the relative magnitude of the

corresponding components of the vector.

Definition 5.6: (RM(n),[0,1]n,W) is the "derived" scale.

There are of course many different "derived" scales. Saaty built his

"derived" scale around the notion of consistency. Consistency is the property of

transitivity in the pairwise comparisons.

Definition 5.7: The mapping PC is said to be consistent iff,

Pc(Ai,Aj)Pc(Aj,Ak) = PC(Ai,Ak) for every i,j,k

or

aijajk = aik for every i,j,k
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While the pairwise comparisons are not required to be totally consistent

(they seldom are), the *derived" scale is based on consistency for the idealized

case. Small perturbations in consistency can be likened to noise in a

measurement. Letting wi be the ith component of the derived scale vector W,

then if A were totally consistent then aij = wi/w j for every i,j = 1,2,...,n. this

implies the following:

w.aij =1
wi

n
I aijw1/wi = n

j=1

n
aijwj - nwi

AW = nW

Thus W is the eigenvector corresponding to the maximum eigenvalue n. Small

perturbations of consistency implies by the continuity of the eigenvalues and

eigenvectors that:

AW = FmaxW,

where Imax is the maximum eigenvalue of A, and W is the corresponding

eigenvector.

At this point we have shown how Saaty's methodology relates alternatives

on one layer of the hierarchy to each of the criteria on the preceding layer. It still

is to be shown how to relate alternatives to criteria on layers not directly adjacent,

in particular to relate alternatives on the bottom layer to the goal on the apey of

the hierarchy.

Recall the notation of definitions 5.1 and 5.2. Assume that the "derived"

scales (normalized principal eigenvectors corresponding to the pairwise
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comparison matrixes) have been defined for every member of the hierarchy (x e

H) ranking all member of the next level of the hierarchy (X) with respect to x, i.e.,

for every x e H a function,

Wx:X- -+ [0,1] such that ,, Wx(y) = 1,
y=X-

is defined. Given any element x r La of a particular level a of the hierarchy, and

subset S of a lower level L (a < 13), Saaty defined a function Wx,s:S -+ [0,1]

which reflects the properties of the "derived" scales of the intermediate levels LK,

k = a,.... 3-1. Let X {x l,... ,xmk+l} = LK+1; Y= {Yl,....Yrk} = LK, and assume

there exist z e LK.1 such that Y = z-, then the function Wz,X:X -* [0,1] relating

hierarchy layer LK.1 to layer LK+1 can be constructed as follows:

WzX(xi) =-K Wyj(xi)Wz(yj); i = 1,... mK+1.
j=1

The matrix B is formed by letting bij = Wyj(xi), defining W i = Wz,X(xi) and Wj

Wz(yj) then:

Wi I bij j ; i=1 .....iK+1

j=1

W=BW

This derivation relates layer k-1 to layer k+1 by a simple matrix multiplication, and

is generalized in the following theorem.

Theorem 5.8: Let H be a hierarchy with largest element b and h levels. Let BK be

the priority matrix of the kth level, k = 1 ,...,h, if W' is the priority vector of the pth

level with respect to some z r Lp_1, then the priority vector W of the qth level (p

< q) with respect to z is:
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W = BqBq. 1 ...Bp+iW,

in particular with respect to b

W = BhBh. 1 ... B2 b1

The power of the AHP has been shown to be the structure it brings to

multi-criteria decision problems, along with the necessity to make only pairwise

comparisons among alternatives. It is much easier to compare two objects at a

time, then to rate a whole group. The AHP mechanism has the power to

compose these local rankings into the hierarchic structure and produce an overall

relative ranking of the merits of the bottom level alternatives with respect the

overall goal.

Our interest is to incorporate the AHP as a mechanism to implement the

system identifier. It is our goal here to point out only how the identifier might be

formulated to use the AHP, along with projected strengths and weakness.

A hierarchy is created indicating criteria and sub-criteria for choosing the

most appropriate differential game and parameterization. Figure 5.13 shows a

sample three layer hierarchy for choosing the differential game. The criteria in

this example include fuel usage, missile usage, lethality of ownship against

adversary, risk of ownship from adversary, duration of the encounter, and

dynamic sensitivity of the differential game model. Dynamic sensitivity of the

differential game model measures how much extra headroom a model has to the

dynamics of the adversary before the model is invalidated by penetration of the

barriers or other critical assumptions of the underlying model are invalidated.
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FIGURE 5.13
EXAMPLE AHP HIERARCHY FOR CHOOSING MOST APPROPRIATE

DIFFERENTIAL GAME AND PARAMETERIZATION

BEST DIFFERENTIAL GAME AND PARAMETERIZATION

Dynamics Missile Encounter Fuel Risk Lethality
Sensitivity Usage Duration Usage

One High-F High-R -High - L

Two MedF MedR MedL

Two LowF LowR LowL

- VeryHighS VeryLongE

- HighS ,- LongE

Medium-S - Medium-E

LowS - ShortE

VeryLowS

A pairwise comparison matrix is continually updated for each layer of the

hierarchy with respect to each of the criteria of the previous layer. One

modification to the use of the AHP is made here by following the method of

Forman (1987). Instead of directly comparing the differential game alternatives,

levels are designated for each of the bottom layer criteria. An example of these

levels is shown in Figure 5.13.

A comparison matrix for the levels is created only with respect to the

criteria for which the levels were designated, enabling a priority vector to be

determined. A priority vector relating all the levels to a particular criterion can be

created by augmenting the original priority vector with zeroes for non-related

levels. Figure 5.15 illustrates the comparison matrix and priority vectors for the

fuel levels of Figure 5.13. Once the augmented comparison vectors have been
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determined with respect to each bottom level criterion, the overall priority vector

of the levels can be determined by the normal AHP composition technique of

Theorem 5.8. Figure 5.16 shows an example of the priority vectors for the levels

of each criterion, the priority vector of the criteria, and the overall composed

priority vector of the levels with respect to the goal of choosing the best

differential game. The pairwise comparison matrices were omitted for brevity.

A scoring technique is used to choose the differential game and

parameterization from the knowledge base. A level under each criterion is

determined for each differential game alternative. The score consists of the sum

of the weights corresponding to the designated levels. Assume for our simple

example that there are two differential games and each game has two

p=_ameterizations which have had levels determined for the criteria as shown

below. The respective scores using the values of the overall priority vector of

Figure 5.16 are also determined and are shown in Figure 5.14.

Differential Game 1 Parametization 2 has the highest score and would be

the differential game chosen. It is important to note that the criteria priority

vectors, pairwise comparisons, and levels would be dynamically changing during

an air-combat mission. Fuel might have a low priority early in a mission, but later

might have high priority, once a shortage develops.



127

FIGURE 5.14
EXAMPLE SCORING

Diff Game 1 Param 1 (Score: 0.375)

HighS Two ShortE LowF LowR Med_L

0.035 + 0.020 + 0.043 + 0.045 + 0.196 + 0.036 = 0.375

Diff Game 1 Param 2 (Score: 0.434)

LosS One MedE MedF MedR High_L

0.138 + 0.080 + 0.023 + 0.023 + 0.098 + 0.072 = 0.434

Diff Game 2 Param 1 (Score: 0.335)

VeryHighS One MedE LowF MedR High_L

0.017 + 0.080 + 0.023 +. 0.045 + 0.098 + 0.072 = 0.335

Diff Game 2 Param 2 (Score: 0.316)

MediumS >Two LongE LowF LowR Low_L

0.035 + 0.010 + 0.012 + 0.045 + 0.196 + 0.018 = 0.316

FIGURE 5.15
Level Comparisons With Respect To Fuel Usage

High_F MediumF Low_F

HighF 1 1/2 1/4
Medium F 2 1 1/2

LowF 4 2 1

"Priority Vector Of Fuel Usage Levels"

HighF 0.143
MediumF 0.286
LowF 0.571
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"Augmented Priority Vector Of Levels WRT Fuel Usage"

VeryHighS 0.0

Medium E 0.0
Short E 0.0
LowF 0.571
Medium_F 0.286
HighF 0.143
HighR 0.0
MediumR 0.0
LowR 0.0

LowL 0.0

FIGURE 5.16
Priority Vectors For Example Hierarchy

"Priority Vector Criteria With Respect To Goal Of Choosing Most Appropriate
Differential Game"

Dynamic Sensitivity 0.259
Missile Usage 0.110
Encounter Duration 0.084
Fuel Usage 0.079
Risk 0.343
Lethality 0.125

"Priority Vector Of Dynamic Sensitivity Levels"

Ve ryHighS 0.067
High_S 0.133
Med S 0.267
Low-S 0.533
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"Priority Vector Of Missile Usage Levels"

One 0.727
Two 0.182
> Two 0.091

"Priority Vector Of Encounter Duration Levels"

VeryLongE 0.074
Long E 0.138
Medi-um_E 0.275
Short_E 0.513

"Priority Vector Of Fuel Usage Levels"

High_F 0.143
Medium_F 0.286
LowF 0.571

"Priority Vector Of Risk Levels"

High_R 0.143
Medium_R 0.286
LowR 0.571

"Priority Vector Of Lethality Levels"

HighL 0.571
MediumL 0.286
LowL 0.143

"Overall Pnorib Vector Of Criteria Levels With Respect To Goal Of Choosing
Most Apropriate Differential Game"

Very_HightS 0.017
HighS 0.035
Med S 0.069
Low-S 0.138
One- 0.080
Two 0.020
> Two 0.010
VeryLongE 0.006
Long E 0.012
Medium_E 0.023
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Short E 0.043
High-"F 0.011
MediumF 0.023
Low-F 0.045
High-_R 0.049
MediumR 0.098
Low R 0.196
High-L 0.072
MediumL 0.036
LowL 0.018

An advantage of the AHP implementation methodology for the system

identifier is that incremental development is easily supported. New games and

parameterizations can easily be incorporated by simply determining the

appropriate level under each criterion, and including the new games to the

scoring. An explanation of the decision is also available by examining the

different layer weights with respect to the goal of choosing the best differential

game. Risk (0.343) and Dynamic Sensitivity (0.259) are the most important

criteria for the example. Diff Game 1 Param 2 (0.434) had the best level value

for Dynamic Sensitivity, and was as good as all other choices for Risk.

One area of difficulty that still requires research for the AHP based method

is how to determine levels from the differential game and parameterization when

the criteria are not part of the game formulation. The appropriate criteria, sub-

criteria, and propeT number of levels for each criterion also require further

investigation.



131

5.3 CONTROL ADAPTER

The control adapter is responsible for following the differential game

trajectories from the goal adapter, and for firing missiles (reproduction). In our

current implementation the goal adapter is a rule based expert system. The goal

adapter determines the aircraft controls that best follow the differential game

trajectory. Techniques for following a known trajectory are not new and simply

require tradeoffs when a trajectory requires controls outside the aircraft flight

envelope.

The phase 1 simulator currently has implemented an expert system

trajectory follower. It determines how to use excess capabilities when available.

Suppose that we use a two dimensional differential game (F1 6 pursuit of Harrier),

the controller may find that the turn called for is wide enough that excess thrust

and lift are available. The controller will make the simpler turn called for by the

two-dimensional game and use the excess flight capabilities to climb or dive to

bring the ownship and adversary into the same horizontal plane to better fit the

differential game model. These ideas are implemented currently in the control

adapter with specific rules dependent upon the differential game model chosen.

The control adapter also determines if a missile launch opportunity has occurred

by reaching the terminal manifold or the differential game, or a firing surface of

the probabilistic model has been reached.



132

6. DIFFERENTIAL GAME KNOWLEDGE BASE

This section will cover the incorporation of differential games into the

knowledge base. Currently our phase I simulator has strategies of a Harder

chasing an F16 (highly maneuverable but slower pursuer), an F16 chasing a

Harder (faster pursuer against highly maneuverable evader), and line of sight

strategies (LOS). The LOS strategies consist of turning at the maximum rate

available to the aircraft while maintaining a minimum desired velocity. There are

many implementations of this strategy currently available such as proportional

navigation (PRONAV), and LOS will not be extensively discussed here. The

other four strategies (a pursuit, and an evasion strategy for each game) are

extensively discussed and the game of degree solutions are new for eccentric

terminal manifolds.

Two obstacles prevent the building of a large knowledge base of

differential game solutions. The first one deals with dimensionality and

discontinuity of trajectories and controls. This obstacle has prevented the

generation of solutions to all but very simple low dimensional problems. The

second obstacle is the need for feedback control laws that can be generated in

real time. The normal procedure is to solve a corresponding two point boundary

value problem (TPBVP) numerically. This numeric solution cannot be found in

real time and is the open loop control. Open loop control does not allow one to

take advantage of an opponent's mistakes.

Currently research in McDonnel Douglas Missile Component Company's

guidance navigation and control technology group is exploring the use of Neural

Nets to overcome the obstacles to the use of differential game technology. A

brief overview of Neural Nets is found in section 5.2.2.
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The approach being taken is to train individual Neural Nets to be the

optimal feedback controllers for the pursuer and evader. The only information

assumed to be available is the initial state of the system, and the final state of the

system via simulation. No knowledge of the true optimal trajectories or feedback

control strategies is assumed. This approach allows training of optimal feedback

control strategies without explicit knowledge of the true solution.

FIGURE 6.1 shows the approach to training the neural controllers. Initial

conditions in state space are generated randomly. A discretized version of the

system is used along with the current parameterization (weight structure) of the

neural controllers to close the loop via simulation. The states of both the

controllers and system are generated at each time step and stored. At the end of

the simulation the terminal cost is known.

FIGURE 6.1

NEURAL NET TRAJECTORY SHAPING
VIA DIFFERENTIAL GAMES

FORWARD ACTIVATION THROUGH SIMULATION

Xo Uou,, x, ,., Ux.

Neural -1 _ -'* Neural --rerminal

Controlere. SYSTElM EYSTEM -nrole i.. SY S T E M  Cost

(x. " .) .(x) (x. "H(x.) " (x.)

guo "x, 0u. nx2 X u., Ox.

BACKPROPAGATION THROUGH GRADIENT DESCENT

ACCUMULATION OF NEURAL WEIGHT ADJUSTMENTS
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The partials of this cost are fed back thru the system as shown in the

Figure 6.1. A modified version of the backpropogation algorithm is used to adjust

the neural controller weights. The backpropogation algorithm is fed for each time

instance of the discretized system, the partial derivative of the terminal cost with

respect to the state of the controller at that time instance. The backprogation

algorithm then determines parameter adjustments (weight) for that time instance,

along with the partial of the terminal cost with respect to the controllers input.

The modification to the backpropogation algorithm comes from the fact the

weight adjustments are accumulated over all time steps of the simulation. After

feeding back the partial for all time steps the weights of the neural controllers are

adjusted.

The simulation for the same initial conditions is repeated with the modified

neural controllers. The adjustment simulation cycle is repeated until a change in

the terminal cost falls below a predetermined threshold. This cycle is then

repeated for new randomly generated initial states. The learning process is

terminated when only minor adjustments are necessary for newly generated

random initial conditions.
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6.1 HARRIER CHASING AN F16 (ECCENTRIC AGGRESSIVE PEDESTRIAN)

The first differential game considered is that of an infinitely maneuverable

pursuer against a faster evader with limited maneuverability. Asymptotically this

can be viewed as a Harrer (infinitely maneuverable) against an F1 6 (faster). The

game takes place in two dimensional planar space. This game can be used

assuming altitude remains nearly constant during an encounter. Only the Harrier

type aircraft is assumed to have aggressive capabilities, modeled by an eccentric

circle terminal manifold. The gamc cf degree for this type of terminal manifold is

solved for the first time.

6.3.4. MODEL

The encounter takes place in two-dimensional realistic space (a fixea

inertial coordinate system). The state space dimension is five. The model for the

infinitely maneuverable aircraft (Harrier) is:

(6.3.2) 2 w2sin4

Y2= w2cos4'

where
w2 a speed of Harrier type aircraft

(D s control heading for Harder type aircraft,
measured from y-axis

The model for the faster but limited maneuverable aircraft (F1 6) is:

X1 •= w1sinO

(6.3.3) Y1 = Wlcose

9• =w,/R

where

w, = speed of F16 type aircraft
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0 a heading of F1 6 type aircraft measured from y-axis

R =- minimal turn radius of F16 type aircraft

a control for F16 type aircraft (-1 < 0 < 1)
note: -1 (1) _ maximum left (right) turn

A legitimate game requires w1 > w2 . There would be no contest if the Harrier

type aircraft was both infinitely maneuverable and faster. The two-dimensional

realistic space model is shown in Figure 6.2.

The control strategies and target set are determined in a reduced state

space. The dimension of the reduced state space is two. The new geometric

coordinate system (a relative inertial coordinate system) is still two-dimensional.

A right hand coordinate system with the new y-axis aligned with the F16 type

aircraft velocity vector is used. The new coordinate system is relative to the F16

type aircraft.

FIGURE 6.2

WY - 2

x
2

HARRIER
.9 WI

............... w l Y2:

X1  : F16

Y

X

Realistic Space
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State equations for the new coordinate system are:

Wl
X._* = Y + w2 sin(C-0)

R
(6.3.3)

w2y= - w + w2 cos(-0).

R

*

Without loss of generality we introduce the new control for the Harrier, D = D -

e. This leads to:

X = - - YO + w2 sin(CD*)
R

(6.3.4)
w2 .

y.* - - w I +-w2 cos(D).
R

One last transformation is made to follow Davidovitz and Shinar (1985). A

change of coordinates is introduced to normalize the system equations. The new

coordinate transformation is:

(5(t) = X(tR/Wl )/R(6.3.5)
Y(t) = Y(tR/w1 )/R.

This leads to the following normalized state equations:

X = -Yo + vsinD*
(6.3.6) .vasCD

ye = X¢-l1+vcs

where:

v- the speed ratio w2 /w1 .
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The normalized coordinate system relative to the F1 6 type aircraft is shown in

Figure 6.3.

FIGURE 6.3

Y

1.0

HARRIER

F16 x

COORDINATE SYSTEM RELATIVE TO F16 TYPE AIRCRAFT

6.3.5 STRATEGY

Only the Harrier type aircraft has aggressive capabilities. The terminal

manifold is an eccentric circle centered at the F16 in the reduced state space of

equations (6.3.6). The eccentricity is positive along the Y-axis. The model for

the encounter is shown in Figure 6.4. The goal of the Harrier type aircraft is to

penetrate the eccentric "kill" circle centered at the F16 type aircraft.
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FIGURE 6.4
Y

ex

1.0 16 HARRIER

Harrier Type Aggressor

The model variables are:

b Eccentricity of Harrier type kill circle

0 Radius of Harder type kill circle

v Velocity ratio: v < 1 (Harrier type aircraft slower than F1 6 type aircraft)

-Parameter of Harder type kill circle (terminal manifold)

X,Y -Cartesian coordinates in frame of the F1 6 type aircraft with F1 6 type
velocity aligned with y-axis

The reduced state equations 6.3.7 are repeated here for clarity:

X" =-YO + vsinZ'
(6.3.8) 

= - I +

where:

D a Harder type aircraft control

0 = F16 type aircraft control: $ < 1.
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The solution must be found in retro-time. We introduce the retro time variable t as

follows:

= tf - t

where:

t a forward time

tf final time (when kill circle is penetrated)

The final conditions are:

(6.3.8) Xf = p3sin()

Yf = P3cos(O) + b

Section 2.2.2 page 32 showed that the terminal manifold is partitioned into the

usable part (UP), non-usable part (NUP), and boundary of the usable part (BUP).

The BUP and UP regions are:

BUP M (Xf,Yf): U=COS 1  + (1 +b2 )1 j

(6.3.9)
UP -((Xf,Yf)" lel < Oup)

The next step is to determine the capture region and barriers defined in

section 2.2 page 32 (the game of kind). Clearly the barriers enclose the capture

region as a subset of the game space because the Harder type aircraft is slower

than the F1 6 type aircraft. When the velocity vectors of both the Harrier and F1 6

type aircraft are aligned, it is impossible for the Harder to close distance. The

barrier equations for the right half plane (RHP) (SHINAR 19851) are:
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(6.3.11) X(tr) = -bsint + cosr - 1 + (vt + P)sin(Ou - T)

Y(t) = bcosT + sint + (vt + O)cos(0uP- T).

Paths must be determined for all points lying in the capture region by the

game of degree (section 2.1). A cost function is assigned so that all the possible

paths terminating on the kill circle can be compared. The cost function used by

the Harrier is the time to the kill circle (terminal manifold). This cost function is:

(6.3.12) '(X,Y) = {dt

Isaacs' main equation (2.1.32) is:

(6.3.13)
-X2 rx

mi n maxfo(-YI'X4Xry) +v V(~+Iy2)' '2cos((D-tan I- j)- ry+l1]=0

This leads to the optimal controls for the right half plane (RHP):

(6.3.14)
= sign{-YFx + XIy} sign{S}

The terminal conditions are:

Xf = Psin(O)

Yf = JNos(O) + b

(6.3.15) r(e) =0

S = -brx
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0 = rxcose - TysinO (Tranversality)

These terminal conditions leads to the following terminal controls and costates for

the RHP:

¢= + e

sine
v + cosO - bsinO

cose

r = v + cosO - bsi nO

The retro state and costate equations are:

rxo = fyo

(6.3.16) 
fy0 =

X0 = YO - vsin

YO = -X0 +1 - vcos(D

Integration of these retro equations with the terminal conditions, yield for the

RHP:

(D=' + 0 -'r:

(6.3.17)

X(x) = -bsin: + cost - 1 + (yr + P)sin(0-T)

Y(r) = bcosx + sin: + (vt + P)cos(e-t)
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The optimal controls are found by inverting the last two equations of

(6.3.16) to determine 8 and t. Unfortunately the equations are non-linear and the

inversion must be done numerically.

An important point to note is that the barrier is a smooth imbedding in the

one parameter (0) family of paths. This is important when a differential equation

is approximated by a difference equation. This smoothness property means that

the strategies played cannot change drastically during an integration update

period for the approximating difference equation. This will not be true when the

F16 type aircraft is considered the aggressor.

One final note is the y-axis serves as a dispersal surface. For any point

on the y-axis there are two optimal paths, one to the right and one to the left.

These paths are mirror images of each other, due to the symmetry of the

problem. The Harrier wishes to stay on the y-axis, but the optimal move for the

F16 is to force the trajectory off the y-axis. The barrier and optimal trajectories

are shown in the figure below.
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FIGURE 6.5
Barriers and Optimal Trajectories For The Capture Region Harrier type Aircraft

The Aggressor

y

f~b x
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6.2. F16 CHASING A HARRIER (ECCENTRIC HOMICIDAL CHAUFFEUR)

The second differential game considered is that of a faster pursuer against

a slower but infinitely maneuverable evader. The role of pursuer and evader

have been exchanged from that of section 6.3 (Harder Chasing An F16). The

F16 type aircraft is now assumed to be the aggressor. This game also takes

place in two dimensional planar space. Only the F16 type aircraft is now

assumed to have aggressive capabilities, modeled by an eccentric circle terminal

manifold. The game of degree for this type of terminal manifold is solved for the

first time.

The fixed inertial model is the same as in section 6.3.4 page 135. The

F16 type aircraft now has the aggressive capabilities. The terminal manifold is

an eccentric "kill" circle centered at the F1 6 in the reduced state space (shown in

Figure 6.3). The eccentricity is positive along the Y-axis. The goal of the F16

type aircraft is to force the Harder type aircraft to penetrate the terminal manifold.

The relative coordinate frame model is shown in Figure 6.6.
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FIGURE 6.6
Y

1.0 HARRIER

xxxxxx

F16 Type Aggressor

The model variables are:

a Eccentricity of F1 6 type kill circle (terminal manifold)

a Radius of F16 type kill circle (terminal manifold)

v Velocity ratio: v < 1 (Harrier type aircraft slower than F1 6 type aircraft)

0 M Parameter of F1 6 type kill circle (terminal manifold)

X,Y a Cartesian coordinates in frame of the F1 6 type aircraft with F1 6 type
velocity aligned with y-axis

The state equations and controls are the same as in the case that the

Harrier was the aggressor (equations (6.3.8)). The solution again must be found

in retro time (t). The terminal conditions are:
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(6.3.17) Xf = asinO

Yf = acosO + a

The usable part (UP) and the boundary of the usable part (BUP) of the terminal

manifold (kill circle) are:

BUPcos
1  -v + a(l+a 2-v 2 )1/ 2[UP -(ff) ua =-co "1  (1 +a2 )

(6.3.18) UP a ((Xf,Yf): 10 1 < 0 ua)

Two initial assumptions will be used here. The first is that the whole space is the

capture region. This implies that the barriers (if they exist) do not meet (are

open). The mathematical condition for open barriers from Shinar (1985) is:

(6.3.19) a > (1 + a2 - v2 )1 / 2 + vsin- 1 (cosOua) - 1

The second condition is that the barriers meet the "kill" circle tangentially. This

mathematical condition from Shinar (1985) is:

(6.3.20) a2 > (1 + a2 - v2 )
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The barrier equations for the right half plane (RHP) from Shinar (1985) are:

X(tr) = asin= - cost + 1 + (a - vc)sin(tr + Oua),(6.3.21)
Y(tr) = acost + sint + (a - vc)cos(,t + Oua ) ,

where r _ 2l - cos 1 (v) - )ua1

A cost function is again needed to choose a trajectory leading to the

terminal manifold. The cost function used by the Harrier is the time to the kill

circle (terminal manifold), but in this case it is the time till the Harrier type aircraft

reaches the F16 kill circle. The cost function is:

r(X,Y) = f dt

Isaacs' main equation2 (2.1.32) is:

(6.3.22)

max min [(-YFx+XFy)+v(Fx 2 +Fy 2 )1 /2cos(O-tan. 1 F )-Fy+l] = 0
[D0ry j-'~]=

1The barrier termination time.

2The role of minimizer and maximizer have now been switched form the case

where the Harrier type aircraft is the aggressor.
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This leads to the optimal controls for the right half plane (RHP):

( = tan- 1  r

(6.3.23)
0 = -sign{-YF x + XIy} = -sign{S}

The games space must be decomposed according to section 2.1.6 page

13. Each of the cases discussed below corresponds to a region Ej in which the

optimal controls are continuous. The singular surfaces that function as borders

(controls are discontinuous) for the different cases correspond to the AIj.

Equation (2.1.47) is used to generate the initial conditions on the singular

surfaces.

The first case to be considered is the Harder type aircraft below the

barrier. This corresponds to the classical situation in which the pursuer (F1 6)

must perform a swerve maneuver. A universal surface exists along the y-axis

both above and below the kill circle (terminal manifold). The y-axis below the

kill circle is a universal surface because by symmetry there are trajectories

entering from each half plane. These trajectories upon entry continue along the

universal surface3 . This corresponds to a tail chase with the Harrier type aircraft

chasing the F1 6 type.

3 A further discussion of universal surfaces and their implication can be found in

Issaacs (2).
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The universal surface below the y-axis will be used as an intermediate

terminal manifold to generate the swerve maneuver. The terminal conditions are

with parameter s, (s < a - a < 0):

Xf = 0

(6.3.25) Yf = s

(s - (a- a))
F(s) = + constant (tranversality)

(1 -v)

1-x
max min [o(-sfx)+v(rx 2 +ry 2 )1 /2 cos((D-tan' 1 - )-ry+l]=(D 0 ry

These terminal conditions lead to the following terminal controls and costates for

the RHP:

ry = (1 - v)- 1

(6.3.26) rxF= 0

=D 0
OF =-1

SF =0.

The retro4 state and costate equations are:

rxo = ry

ry °0 = rx

(6.3.27) X° = YO - vsinD

YO =-X + 1 - vos(D
so = -r x

4 Retro time T is now the time to the universal surface, not the time to the kill

circle.
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Integration of these retro equations with the terminal conditions yield for the

RHP:

= -t

(6.3.27)
X(,t) = (yr - s)sinr + cosT - 1

Y(r,) = -(vT - s)cost + sin,'

Solving for s and r5 :

s = ((X + 1)2 + y2 -1 )112 + vt
(6.3.28)

Ir = tan "1 (Y/(X+1)) + tan"1 (((X+1)2 + y2 - 1 )1/2)

It should also be noted at this point that extension of the barrier equations

from the barrier termination point at r = 2nl - cos 1 (v) - 0 ua till the barrier

extension intersects the negative Y-axis, is a singular surface. Once a trajectory

starting below the barrier reaches this surface the swerve portion of the

maneuver can be started. At this point the pursuer (F16) begins to turn to start

chasing the evader (Harrier), while the Harrier also starts turning to begin

evading.

There are two cases to be considered for the swerve portion of the

maneuver, trajectories that terminate directly on the terminal manifold, and

trajectories that first terminate on a universal surface consisting of the Y-axis

above the terminal manifold and then continuing on the Y-axis to the terminal

manifold.

5The dependency of T only on the states X,Y allows the use of state feedback for

i D.ll llm n IIiiimllm l lm ll m n
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We now consider the case where trajectories terminate directly on the

terminal manifold. The main equation and optimal control solution equations are:

(6.3.30)

max min[o(-YFx+XFy)+v(rx 2 +Ey2 )l'2cos((-tan1  )-Fy+1] = 0

0 = tan -
1  x]

Fy

(6.3.31) (6= -sign{-YFx+XFy} = -sign{S}

The terminal conditions with parameter 0 (0 s 0 _ue5 ) are:

Xf = csin(0)

Yf = cxcos(O) + a

(6.3.32) 1(0) = 0

FxCOs(e) - Fysin(O) = 0

S = -arx

These terminal conditions lead to the following terminal controls and costates for

the RHP:

Fx = sin(O)

(6.3.33) ['Y = COW)
(D=0

= 1

The retro state and costate equations are:

FXo = -ry

ry 0 = rx

(6.3.34) X = -Y + vsinT

Yo = X + 1 - V~Cost
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So =-F x

Integration of these retro equations with the terminal condition.c, ,iold for the

RHP:

Tx = sin(t + 0)

ly = cos( + 0)

S = -cos( + 0) - a + cos(O)
(6.3.35)

0= 1

X(,t) = (a - vr)sin(0+t) + asint - cost + 1

Y(t) = (a - vr)cos(e+t) + acost + sint

Once again to determine the optimal controls we must determine ' and 0 from the

equations for X(tr) and Y(t) above. The problem is that a closed form solution

does not exist and numerical methods must be relied on.

The last case to be considered is for those trajectories that terminate on

the Y-axis universal surface above the terminal manifold. The encounter then

ends with a classical tail chase of the pursuer (F1 6) chasing the evader (Harrier).

The main equation and optimal control solution equations remain the same as in

the case of termination directly on the terminal manifold. The difference is that

the Y-axis above the terminal manifold now serves as an intermediate terminal

manifold for the trajectories. This means that we are now looking for trajectories

that terminate on the following surface parameterized by a (a + a < a):

(6.3.36) Xf(o) = 0

Yf(o) = ,

The other terminal condition is:
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so = -rX

!nitgratior of these retro equatior.s widh the terminal conditions, yield for the

RHP:

Trx = sin('r + 0)

T"y = cos(t, +e)

S = -cos( + 0) - a + cos(O)
(6.3.34)

4=e+,

0= 1

X(T) = (a - vr)sin(e+t) + asint - cost + 1

Y(tc) = (a - vt)cos(e+t) + acost + sint

Once again to determine the optimal controls we must determine t and 0 from the

equations for X(t) and Y(t) above. The problem is that a closed form solution

does not exist and numerical methods must be relied on.

The last case to be considered is for those trajectories that terminate on

the Y-axis universal surface above the terminal manifold. The encounter then

ends with a classical tail chase of the pursuer (F1 6) chasing the evader (Harrier).

The main equation and optimal control solution equations remain the same as in

the case of termination directly on the terminal manifold. The difference is that

the Y-axis above the terminal manifold now serves as an intermediate terminal

manifold for the trajectories. This means that we are now looking for trajectories

that terminate on the following surface parameterized by a (a + a < a):

(6.3.35) Xf(o) = 0

Yf(a) = a

The other terminal condition is:
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(6.3.37) F(a) = (a - (a+a))/(1 - v)

This leads to the following terminal controls and costates fcr the RHP:

ry = 1/(1 - v)

(6.3.38) 4=1

x = 0 (continuity on US)

The retro state and costate equations are:

rx° = Fyo

Fy0 =-Fxo

(6.3.39) so = -F X

X0 = -Y + vsint

YO = X + 1 - vCosot

Integration of these retro equations with the terminal conditions, yield for the

RHP:

sin( T)FX = 11-v

cos(T)
Fy =1

S = (cos(r) - 1)/(1 - v)

(6.3.40) d = r

O= 1

X(t) = asint - cost .,. - vtsint

Y(,) = acost + sint - vrcost
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The closed loop optimal control can be found directly from the last two equations

as:

(6.3.41) t = tan- ((X-1)/y) + tan-1 (((X-1)2 + y2- 1 )-1/2)

The barrier and optimal trajectories are shown in the Figure 6.7.

FIGURE 6.7
Barriers and Optimal Trajectories For The Capture Region

F16 type Aircraft The Aggressor

,e . .t %es

,• " 4S
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7. CONTRIBUTIONS, SUMMARY AND FUTURE RESEARCH

We have extensively explored the use of low order differential games in

flight and fire control via artificial intelligence methodologies. Differential game

technology currently, and for the foreseeable future, will only be able to generate

solutions to low dimensional models. Unfortunately, these low dimensional

models by themselves are not usable for actual air-combat. This dissertation has

developed methodologies for dealing with extremely complex dynamical systems

(such as air-combat) with only a partial understanding of the true system nature.

We have given an appropriate derivation of the necessary conditions for the

differential game of kind and game of degree. Concentration has been on

differential game theory actually applicable to air-combat. A simplified

development of the game of degree necessary conditions combines Berkovitz's

methodology with Isaacs' theorem (that all games are equivalent to an

autonomous game with terminal payoff). The consideration of only autonomous

feedback strategies when dealing with autonomous systems has extended

Berkovitz's results, which depended always on using the family of time varying

feedback strategies in the variation.

We have also explored the nature of complex systems in whidh the form

and order changes. This exploration has reviewed and extended Mesarovic's

definition of a general system. Traditional system theory falls under Mesarovic's

definition in which the relations and components remain fixed. Complex systems

such as air-combat do not fall in this category. The addition (reproduction) and

subtraction (attrition) of components modifies the system relations. Because of

this we have extended Mesarovic's definition to handle self modifying systems

and have termed these systems Semantic Systems.
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We have shown that Semantic Systems naturally relate to the Semantic

Control Paradigm. Future research is still open concerning conditions under

which key Semantic System Components are survivable and reliable.

Survivability relates to the conditions under which a component can prevent its

own removal from the system (semantic order). Reliability relates to the

conditions under Which a component(s) can force a particular semantic state.

Survivability and reliability are the Semantic System extensions of reachability

and controllability.

In addition, we have also created a knowledge base of differential.

Derived for the first time were the game of degree solutions of an eccentric

terminal manifold for a Harrier evader and F16 pursuer. These game solutions

are currently in our air-combat simulator derived under our new Frame Based

Simulation methodology for Semantic Systems. Current involvement includes

research to increase the knowledge base of game solutions via artificial neural

nets. The approach is to train individual Neural Nets to be the optimal feedback

controllers for the pursuer and evader. The only information assumed to be

available is the initial state of the system, and the final state of the system via

simulation. This approach assumes no knowledge of the true optimal trajectories

or feedback control strategies. This approach allows training of optimal feedback

control strategies without explicit knowledge of the true solution.

We have explored artificial intelligence methods to determine the most

appropriate differential game from the knowledge base. Development has also

included a probabilistic missile effectiveness model, and a methodology to get

around the zero-one terminal manifold inherent in differential games. The zero-

one terminal manifold means a missile has zero probability of destroying an
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adversary until it reaches a surface at which point the missile has 100%

probability of destroying the adversary.

The general approach taken in this work has been to combine different

technologies that by themselves are incapable of solving the problem at hand.

Hybridization techniques for future integrated system methodologies will solve

problems that are currently beyond the scope of pure solutions. Methodologies

in this work have application to problems currently deemed so difficult that no

appropriate mathematical model can be derived, nor can be found any

appropriate classical analytical methods.

We have outlined three Al methodologies for splicing together the

differential games; rule base expert systems, artificial neural nets, and the

Analytical Hierarchy Process (AHP). The rule based expert system appears to

be the easiest methodology for immediate implementation, but requires a deep

understanding of the game in the knowledge base and is brittle to incrementing

the knowledge base with more games. The artificial neural net implementation

offers very high performance via training, but training sets would be very difficult

go generate. The AHP appears to offer the best compromise. It requires only

local understanding via the pairwise comparison and its hierarchic structure. The

AHP also would easily incorporate incrementing the knowledge base. The

question of appropriate criteria for the hierarchies of the AHP are still open to

research. Training methodologies for the artificial neural net approach also are

still open. Lastly a comparison via simulation of the performance of the three

methodologies is still forthcoming.
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10. APPENDIX A: SIMULATOR RESULTS

This section contains two example runs from the simulator. The first

example shows the result of choosing the wrong strategy. The pursuer chooses

a line of sight strategy and tries to turn too quickly and is unable to capture the

evader. The second example shows the result of a proper choice of strategies by

both players.
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