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Abstract

Positron Survival In Type II Supernovae
by

Steven J. Sturner

In this work I investigate the possibility of Type II supemnovae being the origin for
positrons producing observed annihilation radiation observed toward the Galactic center.

It was my contention that the decay of 56Co coupled with falling densities would allow

for the production and extended existence of positrons in the supernova outflow.
Supernova 1987A has prompted many people to construct models of supernova outflow.
I use the results of two existing models as the initial conditions in my models. I have
created both an analytic and a computer model for the survival of positrons. These
models show that while Type II supernovae fall short of the necded production of
surviving positrons, the lower densities existing in Type I supernovae may be a more

promising source.
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L_Introduction

{Sincc the discovery of Supernova 1987A (a Type II supernova) in February of 1987
there has been a flurry of activity in the field of supernova modelling. The fact that the
supernova occurred in the nearby Large Magellanic Cloud and that the progenitor star has
almost universally been identified as Sk -69 202 (Woosley 1988; Woosley (in press);
Nomoto et al. 1988; Shigeyama l?omoto, and Hashimoto 1988) has allowed great
progress to be made in this area.\q:ﬂor to exploding, Sk -69 202 was seen as a B3-I blue
supergiant with a surface temperature of approximately 16,000 K and a bolometric
magnitude of -7.5 to -8.2. A blue supergiant becoming a Type II supernova shocked
many people. It has been suggested that Sk -69 202 was once a red supergiant but it
evolved back to the blue. @dodc(ls have used low ste}lar metallicity and mass loss to get
such a star to evolve back bcfil:eﬁeﬁxi)iodingA(Wooélé; 19%8; Shigeyama, Nomoto, and
Hashimoto 1988; Nomoto et al. 1988). As a result of the proximity of SN 1987A, there
is a wealth of data on the light curve. Details of the middle light curve have put limits on
the amount of radioactive 56Ni (and thus the 56Co) that was produced in the explosive
silicon bumning that took place as the shock propagated outward. Details of the middle
light curve together with the early emergence of x- and y-rays indicate that this nickel was
mixed radially outward as well (Woosley 1988; Woosley (in press); Pinto and Woosley
1988; Shigeyama, Nomoto, and Hashimoto 1988; Nomoto et al. 1988). This radial
mixing was driven by Rayleigh-Taylor instabilities caused by the deposition of y-ray
energy in the region of nickel production.

These new models allow many calculations to be made on the effects of supernovae
on their gaiactic neighborhood. One of these will be investigated in this thesis; the

possible contribution of positrons from a Type II supernova to the observea Galactic 511

keV y-ray line. Observations of celestial annihilation radiation was pioneered by Haymes
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et al. at Rice University in the late 60's and early 70's. They found a source of possible
annihilation radiation towards the Galactic center. However, the source of the observed
line was never pinpointed as positron annihilation because of inadequate energy
resolution. The measured flux was 1.8x10-3 Y cm-2 s-! (if interpretted as a point source)
when using a detector with an aperture of 24° FWHM in 1970 and 1971. Later, in 1974,
a detector with an aperture of 15° FWHM was used and a flux of 0.80x10-3 ycm-2 s-!
was observed. Thus, evidence for a variable or diffuse source was seen from the
beginning. Several groups have continued this work. In 1977 Bell/Sandia Labs were
able to determine that the line was due to annihilation of positrons because of their
improved energy resolution. They observed a flux of 1.22x10-3ycm-2 s-! towards the
Galactic center with a 15° FWHM aperture. Also in 1977 the Centre d'Etude Spatiale des
Rayonnements measured a flux of 4.2 or 3.2 x10-3 ycm-2 s'! (depending on reduction
method) using an aperture of 50° FWHM. Comparing their observations with earlier
ones, they concluded that the observed flux depended on the instrument aperture. This
high flux was confirmed by a group at the University of New Hampshire with a detector
with an aperture of 100° FWHM in 1977. Riegler et al. made observations using the
HEAO-3 satellite (35° FWHM) in 1979 and 1980. They found fluxes of 1.85 and 0.65
x10-3 ycm2 s-1 respectively (Share et al. 1988). Ramaty and Lingenfelter saw this as
evidence of a variable compact source that turned on in 1977 and off in 1979 plus a
diffuse source (Ramaty and Lingenfelter 1987). Share et al. made observations using the
130° FWHM f¥-ray spectrometer on the Solar Maximum Mission satellite from October to
February yearly from 1980-81 to 1985-86. They report a flux of about 2.1x10-3 y cm-2
s-1 with less than a 30% yearly variation. This was significantly larger than observations
made with smaller apertures within that same time period (see figure 1). Thus Share et
al. conclude that the best explanation is a diffuse source of annihilation radiation and the
case for a variable source was weakened because of the short period for variability

needed (Share et al. 1988).




L8611

(8861 T8 39 AreYS) 6L61 Ut O pue LL6T
ur uo Surwmy 9amos JjqeLreA e jo uonsaf3ns sy pue soxnpy 193xe] Sutureiqo sanude

1331e] JO puan [eIOUIT P AON “SIUNUAINSEAU A [ [S INUD N[O JO LIOISIH

dVIA
6461 SL61 LL61

£861

J L L

(.og)) Nns— s

(.€1) $N32/2459~- ©
(.S£) £-OVIH- H
(.001) HNN—- n

(.€1) vionvs/T13e- @
(.08) NS32—- D

M (1) 3018- p
..... og---}-- O - Grz) 30-"u

n —o—
m .
r-e- .
@
o —p—
- —g—

Ad oAb 'y

1°0

ol

1 am3iy

5. w2 L 01 ‘XnTd




4

Clayton (1973) suggested that the source of these positrons should be either 56Co

(daughter of 56Ni) or 44Ti. He predicted that both of these nuclei should be produced

during explosive nucleosynthesis. The production of this nickel has been proven by the

light curve of SN 1987A. He concluded that both were potentially adequate to account
for the observed feature.

In this thesis I discuss the escape of positrons produced by the decay of cobalt to

iron in a Type II supernova. I decided not to look at whether positrons could be "shot”

out of a supernova, but whether a positron could survive for an extended period of time

within the expanding gas. My motivations for this were two-fold:

1) The uncertain structure of the magnetic fields within the supernova made it uncertain
that a charged particle had any chance to escape.
2) The velocity profile of an expanding supernova provided an environment where the

density of electrons would decrease rapidly (section IV).

The uncertain nature of the magnetic fields made them hard to incorperate into my model.
The condition that the positrons were required to remain within the shell in which they
were produced implied the existence of these fields.

The organization of this thesis is as follows. In sections II-V, I discuss the
processes involved in the production, thermalization and annihilation of positrons. In
section VI, I discuss published models of SN 1987A from which I determined the initial
conditions for my models. Sections VII and VIII contain these models of positron

survival. There is both an analytic and a computer model.




IL_The B+ Decay of 6Co to S6Fe

The decay of cobalt to iron is an important process because the energy liberated
powers a supernova during the middle part of its light curve. We are particularly
interested in the emission of positrons from this reaction as a possible source for the
diffuse component of the background 511 keV ‘y-rays. The cobalt is formed by the decay
of 56Ni. This isotope of nickel has a half-life of 6.1 days; therefore, it all has essentially
turned to cobalt at times of interest to us. I have therefore assumed that 56Co was the
explosive nucleosynthesis product. The half-life of 56Co is 78.8 days (see figure 2). A
positron is emitted when the cobalt decays to an excited state of iron. This route is taken

20% of the time.

Co 56

g+ 20%

2.085 MeV

0.8469 MeV

eessessssesssnes ¢ 56

The Q-value for electron capture is 4.57 Mev (Lederer et al. 1967). From this, one
can determine that the maximum kinetic energy of an emitted positron is 1.46 MeV. The
positron energy distribution function is of the form (Whaling 1960) :

N = kpw(wg - w)?

where k = a normalization constant,




p = momentum of the positron,
w = total energy of the positron = KE + mc2,

W= maximum total energy of the positron = KE_,, + mc2.

Thus N = kpw[ KE,,, - KE ]2. This can be simplified so the only variable is the kinetic
energy:

L
121

1
ST " 12
KE +2mc? | |KE+mc? || KEnx -KE | (@1

_k
N-E-KE

To numerically follow the thermalization of these positrons I will find it convenient to
approximate the spectrum as a weighted sequence of monoenergetic emissions. Breaking
the energy range (0-1.46 MeV) into ten intervals, I calculate the fraction of positrons
emitted in each interval by finding the area under a plot of equation (II-1) (see figure 3) to
be:

Table II-1: Fraction of Positrons in Kinetic Energy Interval

Interval MeV) Midpoint Energy of Interval (MeV) | Fraction of Total Positrons
0.000 - 0.146 0.073 0.061
0.146 - 0.292 0.219 0.117
0.293 - 0.438 0.365 0.152
0.439 - 0.584 0.511 0.165
0.585 - 0.730 0.657 0.158
0.731 - 0.876 0.803 0.142
0.877 - 1.022 0.949 0.104
1.023 - 1.168 1.095 0.066
1.169 - 1.314 1.241 0.030
1.315 - 1.460 1.387 0.005

This fraction will be used to weight quantities when in determining a mean value with

respect to energy.
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IIL_Positron E Loss in a Partially Ionized Medi

Once a positron is emitted, it loses energy in a variety of ways as it passes through
matter. It will lose energy to the un-ionized component by inelastic collisions with the
atomic electrons. In this process the electron will be removed from the atom or it will
move to an excited state. The positrons will lose energy to the ionized component by
interacting with the free electrons. The positrons will also radiate energy via
Bremsstrahlung when interacting with nuclei. I derive expressions for these in order to

calculate thermalization times for positrons emitted by 56Co.

IIIa) Coulomb collisions with bound electrons

The energy loss rate for inelastic coulomb collisions with bound electrons has been
calculated by many people. The general form of this loss rate can be gotten by a simple
classical calculation (Whaling 1960). Consider an ion of mass M, charge ze, and

velocity v. Let b be the impact parameter.

M, ze

The momentum gained by the electron is:

"y 2
jpdt where F = —Z&
2 x2+b

3"
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If the electron is assumed to move very little during the encounter this can be simplified

to:

2
Ap=J‘FLdt whereF‘L=FsinG-)=—Le-£—3 .

2
(xz + b2 )
With the substitution dx = v dt,

“Fld" 2z¢?
Ap=J‘—-'—v =v -

If the electron is regarded as free, then it acquires kinetic energy:

The electron may be quasi-free if the Coulomb force from the passing ion greatly exceeds
that holding the electron in its orbit. Therefore the amount of energy transferred from the

ion to a bound electron is:

If there are NZ electrons per cubic centimeter, then the ion will encounter 2xb db dx NZ
electrons with an impact parameter between b and b+db in traveling a distance dx. Thus
the energy lost, dE, will be 2ntb db dx NZ AE. The total amount of energy lost in
traveling a distance dx is found by integrating over all impact parameters:

4n2e‘NZ (-bﬂi]

& _ anfeNz Do |
dx mv2 \min)

4nz2c4Nz J‘ db _
b
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if z=1 (as for positrons)

where 7y is the relativistic correction factor and  is a characteristic atomic frequency of
motion (Jackson 1975). Physically, here the minimum impact parameter is either the
impact parameter where the maximum allowable energy (2y2mv2) is transferred to the
bound electron using the above form for AE or the minimum extent of the electron's
wave packet. The maximum impact parameter is gotten by setting the collision time equal
to the orbital period. If the collision time is greater than the orbital period there is no net
transfer of energy to the atomic electron.

More in depth calculations yield various results. Bethe derived a quantum
mechanical formula for the energy loss of an electron owing to ionization of bound
electrons as it passes through matter with relativistic corrections and corrections due to

the electron spin (Heitler 1934; Wu 1960):

4 v2E
=%ﬂ[m(¥22 )+Aj|-rpol, (I-2)

&6

mv?

where I is the mean ionization potential (=11.5 ¢V x Z),
NZ,uma is the density of atomic electrons,
B=v/,




/)
=[1-B2)-(2\/—1_-?-1+32)1n2+%(1-\/1-—[52]2

and I‘pol is a correction term resulting from dielectric properties of the medium.

Equation (II1-2) can be transformed into:

4me (szdﬂ 1—( 2 ) l—l ]

B B | E+mc J> rpol .

L LU )[mz] | Ea

(II1-3)

(S ] (L-—-

This gives a factor multiplying the logarithm that is the same as in the classical equation
(IT1-1). In order for equation (III-2) to apply to positrons I believe that the argument of
the logarithm should be increased by a factor of two in equation (ITI-2). For the case of
an incoming electron arguments were made that the maximum energy transfer would be
1/4 mv2 instead of 1/2 mv2 because it is impossible to distinguish whether the detected
outgoing electron is the target or the projectile. But a positron and electron are
distinguishable. This would eliminate the -1/2 In 2 in equation (III-3). The details of the
calculation were not provided making it impossible to tell for certain. Since it is not the
purpose of this thesis to investigate details of energy loss, I will assume equation (III-3)
is sufficiently correct for positrons.

Another version of this formula was listed for positrons or electrons by M. Zombeck
in Special Report 386 of the Smithsonian Astrophysical Observatory (Sect. 13, p. 23,

1980):
[T ]
dE _ 4np? lnl (l:‘,+mc2 |.l 2}
dx l L L I lmc ) J EB J




- 4me’

mcz

[ uound\{ {- lE 2\ -} 121
g* }LML L Tc )(mcz} _]EB J ’ -

2
where r, = <— = the classical electron radius,
mc

and as before, I=the mean ionization potential, B=v/c, and NZ, . 4=the density
of atomic electrons.
A third version of this formula is given for electrons by J. Jackson ( gp cit pp.
619-637 ):

dE _4rn
dx

m02

Zbound r y+ 2 -I
[ p’ JlnlL(y ) 2 h“i&”' an-5)

where I = h<w>.

These formulae differ only in the arguments of the logarithm and the correction terms

involving B. A comparison of this correction term follows.

Table III-1: Comparison of the correction terms of equations (III-3) and (III-4)

2
BERE AN e
0.1 0.01 - 0.005 0.15 - 0.20
0.2 0.04 - 0.020 0.13 -0.21
0.3 0.09 - 0.045 0.11 -0.24
0.4 0.16 - 0.080 0.08 -0.27
0.5 0.25 - 0.125 0.04 - 0.31
0.6 0.36 -0.180 -0.01 - 0.36
0.7 0.49 - 0.245 - 0.06 -041
0.8 0.64 - 0.320 -0.10 - 045
0.9 0.81 - 0.405 -0.12 - 047

Since the value of the logarithm term was of order 10 for the initial energies of the
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positrons, I considered the differences in these small terms unimportant.

IIIb) Plasma excitation

The positrons also interact with the free electrons in a medium. Bussard claims that
positrons lose energy to the ionized component of a medium by exciting plasma waves
(Bussard, Ramaty, and Drachamn 1979). The formula that he quotes from Book and Ali
(1975) is :

&6

- 1.3x10"3%°-[M [{%} .M {;F% HlnA eVim  (WL-6)

E
kT

where M=-2_j dx /X e* ,
ﬁo

n.= the free electron density = NZ,,,

E = the positron energy in eV,

Bussard et al. went into no details about the origin of this equation. Jackson deals with
the problem of an ion of charge ze passing through an electronic plasma (op cit pp.
641-643). The interactions are broken into two types depending on whether the impact
parameter is larger than or smaller than a Debye length. When the impact parameter is
smaller than a Debye length there is a two-body screened potential interaction. When the
impact parameter is larger than a Debye length there is a collective response of the
medium and plasma oscillations are excited where the energy of these oscillations is

extracted from the particle. Thus Jackson's formula is broken into two parts:
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[ 1]
ne )

ret | = 2
%—:4 2&32} :-1 123(_[?_'\{‘_2] -{ for b>-k—1.7, (m-7)
f \
dE _ 4ne’ &] () 2 ] 1
dx mc? \[32 )ln le41mec2)l 1.47 max{,Ysz Ymv } J> for b kD. (mI-8)

4re
mc

and as before n = the free electron density = NZg..

where —==- —= -5 1x10 MeV-cm

In order to make these formulae appropriate for positrons I believe that the form of by,
should be altered to that of an electron:

oo |

Jackson states that his calculations are for non-relativistic particles. Bussard makes no
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statement about the energies where his formula is valid. Jackson's small impact
parameter fdrmula and Bussard's formula are nearly equal if one assumes that the latter is
also non-relativistic. But the problem is that they seem to be explaining two different
types of interactions, plasma oscillations and two-particle interactions. This is one of my
major dilemmas, considering that plasma energy loss is not the objective of this thesis.
What follows is a comparison of the coefficients of Bussard's and Jackson's formulae

(assuming both formulae are valid at the listed energies ).

Table III-2: Comparison of the coefficients in equations (III-6) and (III-7)

EMeV) | F .w%’ﬁMev-cn? 5-_1’12(ﬁMev-cm2
B
1.50 | 0.94 0.87 5.5
1.00 | 0.89 1.3 5.8
0.80 | 0.85 1.6 6.0
060 | 079 2.2 6.5
040 | 0.69 3.3 7.4
020 | 048 6.5 1
0.10 | 0.30 13 17
005 | 0.17 26 30
001 | 0.04 130 130
(all values are x10%)

The total energy loss due to the ionized component is either equation (III-6):

NZ
=13x10> {A‘E

E ) L\41m,c )

&6

(E in MeV)
or by adding equations (III-7) and (III-8):
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[ L 1
Nmee 2 ) -1
- 5.1x10'25( 5 )m}hm& {42& 2} [ma"[_yi\?% /7_2_1_}] -}.(m-9)

(inMeV/cm)

& |6

IIIc) Radiative losses due to Bremsstrahlung
The radiative loss rate due to Bremsstrahlung has been calculated by several people
also. Bethe and Heitler calculated the loss rate to be (Wu 1960):

2 \2 2E
IS, JyA
dx_NEO(D » @= 137 \mcz) 41n\mc2) 3 (I-10)

2
where mc? << E; << L‘/;n_c_ and screening of the nucleus is neglected.
2
Z

The ratio of radiative energy loss to ionization loss is given approximately by:

@E)ap . EZ __.0685xE MeV). (I-11)
(dE)ION 1600 m02

Thus this formula predicts radiative losses to be small at our energies.

Jackson also has words of wisdom on this subject (op.cit pp. 708-719). He gives
energy loss equations for the nonrelativistic limit and the ultrarelativistic limit . The ratios
of radiative losses to ionization losses are:

(dE) 4

RAD

(—Z ]m 2 1 N
137 13 B ( nonrelativistic ) -12)
(dE) 3PN M

InB

and
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233 M
L
% Z°m Y (ultrarelativistic, y>>1) (I-13)
InB

where B is the argument of the logarithm in the ionization energy loss equation.

These formulae yield ratios of a few ten thousandth's of a percent and a few percent

respectively. Zombeck also has a formula for radiative losses (op ¢it Sect. 13, p. 23):

% =3.09x10% NZ* (E+mc?) Mev/cm . (I-14)

This is also negligibly small compared to the ionization loss rate for our case. Thus I feel
that Bremsstrahlung can be safely ignored in our calculations. I believe that Cherenkov

can also be ignored because of the small rate of loss (Wu 1960), if it exists at all.

IOId) Conclusion

From these results I must choose expressions for the energy loss of 56Co positrons
in the supernova interior. Because the fraction of positrons that survive the expansion is
only weakly sensitive to the differences in thermalization times the choice of which to use

is not crucial. I chose to use equation (III-4) and equation (III-9) (see figures 4 and 5).




19

* A Z°0 MO[aq Sfrej £319ud oy se

XP/HP Ul 9seaudul 93re[ oY1 0N ©  WIO/SWOR ([ X§Q'[ 18 195 SWOE JO ANSuap 241 pue G'pT 18 198
£ ol

woje 13d SUONIIJS PUNOq JO 1oqHIny ) Yitm ((p-[11) uonenbd) ssOf UONEZILOL Y1 JO wdy :pamdy
(A@N) £3aaug
1 21 I 8’ 9 1 4 Z 0

T A L 1 T Aﬁ T 1 T — I 1 1 _ 1 r i _ L | T _ LI d LB 0

- 1

— 1

- 7

_ . [
™

- . N

- - a.
]

N 1%

: ] =

- = )

i i 3

- 7 ™~

_ 0

i 1 &

- .

— uorjeziuo] — ¥

H’ P 1 1 1 1 I 1 _ 1 1 1 _ 1l 1 _ 1__1 ! —l’ | 1 1 _ ,_ 1 1 ]




20

* wswore @_xwo._ 1B 12§ SEM SWOJE JO A1ISUSP Yl puB §°| 1B 13S Sem wole Jod suonddpd
0

ou_m 3o Joquunu 3y |, “((6-111) uonenbd) uoueioxd ewseyd o1 anp ssoj ASseuaayijorody S angig

(ASK) £Biauy

vl c'l l g 9 14 z 0
q_____ﬂ_jﬁ_-_____ﬁ_q‘______W_1ﬂO
T -
o 1
| -
— -
i ]
— — €
i i
— evurseid — v
- —
Ll e b by s v b b b g

(wa/A3N) 2131 X xp/3p




21

IV. Hubble FI It 1 the Densiiv Evolution of S

As I have shown, the energy loss rate for a positron passing through matter depends
on the density of that matter. The rate of positron annihilation also depends on the
density of the matter, specifically the electron density. Thus I had to find an expression
for the density evolution of the supernova ejecta. An important step in simplifying the
density evolution of a spherical shell in a supernova was the assumption that the
expanding gas is in a Hubble-type flow. Hubble flow simply means that the velocity at a
given point in the supernova is proportional to its distance from the center of the
explosion. It is easy to understand why this type of outward flow should occur. As the
shock propagates outward each shell is pushing on the layers on top of it. The outer
shells are pushing on less matter than inner ones and therefore should accelerate to a
larger velocity. This becomes true in supernovae after acceleration has ended and after
the size is much greater than the initial size. From this time on the ratio of velocity, v(r),
to distance from the center, r, is a constant for all r. This also means that there is a
velocity gradient across a spherical shell. If one considers such a shell, it can be shown

as follows that the density within that shell decreases as t-3.

v +dv
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As t = t+dt r =>r+vdt

r+dr => r+dr+ (v+dv)dt

From this, one can show that the thickness of the shell has increased to dr + dvdt = dr(1+
(Vr/R)dt) wtere Vp is the velocity of the outermost region of the supernova and R is the
radius of that region. It is easy to show dv = dr (Vy/R) because in a Hubble flow v(r)/r =
Vg/R =constant. To show that the density in this region is proportional to t-3 one needs
to use conservation of mass within the shell:
M(t) = M(t + ct),
where M(t) = 4mr(t)2 dr(t) p(t), and
M(t + dt) = 4mr(t + dt)2 dr(t + dt) p(t +dt).

Setting M(t) = M(t + dt):

==> 4mr(t)2dr(t) p(t) = 47 r(t + dt)2 dr(t + dt) p(t + dt),

Keeping terms only to first order in dt:

4mr(t)2dr(t) p(t) = 4x [r(t)2 + 2r(t)v dt] dr(t) [1 + (VR/R) dt] p(t + dv),
=> ()2 p(t) = [r(t)2 + 2r(t)v dt] [1 + (Vg/R) dt] p(t + dv),

== 0=r2dp+[2rv+r2(VR/R)]pdt,
=r2[dp + 3(Va/R) p dil,

=> dp=-3(Vg/R)pdt
The solution to this equation is:

3
t

PO = p(ty) -‘3’- where t > t,,
t
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or

3
t

n() =n(ty) -, wheret>t, . (IV-1)
t

Thus the velocity gradient across a spherical shell due to a Hubble-type flow causes the
particle density within that flow to decrease as t3 with the restriction that the value taken
for ty must be after a Hubble-type flow has been established. For my study the values

n(ty) and time t; are obtained from published supernova models (see section VI).




24
v The Radiative Capt 1 Annihilati f a Posit

So far I have covered the production and thermalization of positrons. Positrons are
destroyed by annihilating with electrons. Positrons can annihilate directly or by forming
positronium first. Positronium in the singlet state has a lifetime of 10-19 s and emits two
511 keV photons during annihilation. Triplet positronium has a lifetime of 10-7s and
undergoes three-photon annihilation (Bussard, Ramaty, and Drachman 1979; Ramaty and
Lingenfelter 1987). The probability of annihilation in flight is negligible until the
positrons slow to energies of several hundred eV (Bussard, Ramaty, and Drachman
1979). The values of equations (III-4) and (III-9) rise dramatically at low energies
(below 0.2 MeV). The positrons will therefore spend only a small amount of time at
these energies before thermalizing. I have therefore required all positrons to thermalize
before annihilating. At temperatures associated with the interior of a supernova (a few
thousand degrees) the dominant mode of annihilation is positronium formation by
radiatively recombining with free electrons (Bussard, Ramaty, and Drachman 1979) (see
figure 6). The cross section for such a reaction changes with velocity (and therefore
temperature). Thankfully the cross section is only proportional to T-1/2 (Osterbrock
1974) and is therefore relatively insensitive to these changes.

The theory of radioactive decay is well known. The radiative recombination and
subsequent annihilation of a positron can be treated in an analgous manner. The
probability that a.positron will decay (annihilate) in the next time interval dt is

proportional to dt and inversely proportional to the mean lifetime t:

Probability of Decay =dt/t . v-1)

If the mean lifetime is taken to be a constant, i.e. constant density and constant
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recombination rate, and if no new positrons are created then the number of positrons

decreases exponentially with time:

dN
N

o dt
t ?
+

L
T

N,=N_e*. (V-2)

In an expanding supernova the density is proportional to t-3, as I have shown. Since the
mean lifetime against positronium formation is inversely proportional to the density, the

mean lifetime goes as t3:

[ IR
3
=l RZe Al Paald, (V)

where t = a time when Hubble flow has been established,
n(ty) = the density of atoms at t,,
Z;,.. = the number of free electrons per atom at tg,

A = the radiative recombination rate,

therefore =4 (V-4)

There are then two ways of calculating the probability of a positron surviving to a

predetermined time:

1) A Monte Carlo simulation using the probability of capture and annihilation,
2) An analytic solution to equation (V-4) which requires taking o as a constant.
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The Monte Carlo routine that I used stepped through time with a constant time step.
At the begi@g of each step the mean lifetime was evaluated for that time. This set the
probability of capture for that time step. A random number was generated for each
positron that had survived to that time. If the number (between O and 1) was less than the
probability, the positron was removed. The time was then incremented after all the
surviving positrons had been checked for survival. Thus the number of positrons that
survived to the "end" time out of the initial number injected could be found. There was
one major difficulty with this method. The "resolution” was inversely proportional to the
number of positrons initially injected. By "resolution” I mean the smallest probability of
survival obtainable. For example, in following the history of 104 particles the probability
of survival cannot be calculated when it becomes comparable to 10-4 or less. The
survival fraction is quantized in units of 104. In Type II SN the probability of survival is
a very small number. To get probabilities down to the size needed would use an
enormous amount of computer time. This problem led to the use of the following
analytic solution.
The analytic solution I derived from equation (V-4) proved to be more useful for my

calculations :

dN, __dt
N+ C(.t3

N+('2) = exp [_1_[ 2 2 ]] . (V-5)
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With this formula I could calculate the probability of a positron surviving without using
arbitrarily large numbers of initial positrons to get small probabilities.

A comparison of the two methods shows that they produce comparable results when
the number of positrons that survive to the end of the monte carlo program is of the order
100 (see Appendix A). Equation (V-5) can be used to produce an analytic modei for the
survival of positrons but it is difficult to incorporate the thermalization process (see
Analytic Models of Positron Survival, section VII).

The advantage of the numerical approach, on the other hand, is that it does not
require a constant annihilation rate per free electron. The temperature, ionization, direct
in-flight annihilation, etc. can all be represented by time-dependent quantities in a Monte
Carlo history. That approach is therefore more general. The temperature of the
supernova ejecta should decrease with time due to the fewer number of decays depositing
energy within the supernova. The rate of this cooling is unknown because it is uncertain
whether a pulsar was created in the SN 1987A. This and other unknowns (degree of
radial mixing, expansion velocity, magnetic field configuration, clumping, etc.) coupled
with the weak temperature dependence of the recombination rate, A, led me to believe that
my analytic solution was sufficient for this rough survey of positron survival. I have
therefore used the approximation that the mean lifetime of positrons against radiative
recombination is exactly proportional to t3 and have esimated the proportionality

constants for typical supernova conditions in my models.




28

"(6L61 uewyoriq pue ‘Aiewrey ‘pressng) SUONOId punoq
pue 3015 [10q IIM UONE[IYIUUE 1DIIP PUR ‘SUCNIII 21 YIIM UONBUIGUIOIA] dAnRIpeS
‘H rennau qim 33ueyoxd a3reyd Aq wintuonisod 105 suonisod reunsay Yoiym e saey 19 am3ng

()1

oo_ so_ wo_ no_ vo_ no_ No_

WO) ALISN3OQ 139¥V1i/S3LiVYy

€

23S

20 Mu /%y




29

Y1 __Models of SN 1987A

I chose to use Type II supernova models by Woosley et al. and Nomoto et al. as the
sources of parameters needed as input in my models. The model of Woosley's that
produced the best fit to the light curve of SN 1987A was model 10HM. This model
assumed that the progenitor star was Sk -69 202. This star was assumed to have been 20
M, when on the main sequence. Such a star would have a 6 M, helium core. The star
was then allowed to lose 4 M,, from its hydrogen shell prior to the explosion. A 1.4 M,
neutron star was formed from this helium core. The explosion was simulated by
replacing the neutron star with a piston that had an energy of 1.45x105! ergs. During the
explosion, approximately 0.07 M,, of 56Ni was formed in the silicon shell. This model
mixed the 56Ni radially outward to a mass coordinate of 9 M. This was done to
improve the light curve fit in the 20 - 40 day region. It also accounted for the early
detection of x- and y-rays at 175 days. The regions where the 56Ni was mixed was not
homogenized and the model 10H(non-mixed) density profile was left unaltered (Woosley
1988; Woosley (in press); Pinto and Woosley 1988).

Nomoto et al. have also produced several hydrodynamic models of SN 1987A. The
model that produced the best fit to the observed light curve was model 11E1. This model
also assumed that the progenitor star was 20 M, while on the main sequence. Similarly,
a 1.4 M, neutron star was formed from the 6 M, helium core. In this model the star was
assumed to have undergone mass loss leaving it with 12.7 M, of material at the time of
collapse. The explosion was simulated by replacing the iron core with a point mass and
introducing the explosion energy interior to the 11.3 M, of ejecta. Model 11E1 used an
explosion energy of 1.00x1051 ergs. This model produced appproximately 0.07 M,, of
56Ni. Radial mixing was also required in this model to fit observations of the light curve

between 25 - 40 days and the early detection of x- and y-rays. Thus Nomoto mixes the
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nickel out to a radial mass coordinate of 10 M, (Note: Nomoto and Woosley use different
conventions. Nomoto's mass coordinate system has its zero point at the inner edge of the
ejecta while Woosley's is at the center of the remnant. Hence forth, I will always add 1.6
M,, onto Nomoto's coordinate for ease in comparing results.) (Nomoto et al. 1988;

Shigeyama, Nomoto, and Hashimoto 1988).

Table VI-1: Summary of supernovae model parameters

Nomoto et al. Woosley et al.
Main Sequence Mass 20M, 20 M,
Neutron Star Mass 1.4 M, 14 M,
Mass of Ejecta 11.3M, 14.6 M,
Energy of Explosion 1.00x10°" ergs 1.45x10” ergs
Maximum Radius 11.6 M, oM,
for Mixing Ni (Woosley Conv.)

The quantities I required from these models were a density profile at an early time
after the explosion (but after Hubble flow had been established), a mixing profile, and an
approximate temperature of the region. Fortunately all the needed information was
available (see figures 7-10). For each model I divided the region of the ejecta which
contained nickel into shells. I approximated the density profiles for each model by a
series of step functions to obtain a typical density for each shell. I determined an analytic
function that fit Woosley's mixing profile and integrated it over the region of each shell to
determine the amount of nickel in that shell. Nomoto's mixing was a step function so the
amount of nickel in each of those shells was just the area under each step function. A

summary of the results follows.




Table VI-2: Summary of model 10HM (Woosley et al.)

‘ ShellMo) | SNiM,) | nty) (e p(ty) (g-cny’
| 1.6 -2.0 0.0105 1.08x1010 1.0x1012
20-25 0.0109 5.38x1010 5.0x10-12
2.5-3.0 0.0090 3.76x10!1 3.5x10-11
3.0-35 0.0073 5.38x1010 5.0x10-12
3.5-4.0 0.0061 3.76x1010 3.5x10-12
40-4.5 0.0050 2.37x1010 2.2x10-12
45-50 0.0041 2.37x10!0 2.2x10-12
50-5.5 0.0034 2.16x1010 2.0x10-12
5.5-6.0 0.0027 1.61x1010 1.5x10-12
6.0 - 6.5 0.0022 3.23x10° 3.0x10°13
6.5-1.0 0.0019 2.16x10° 2.0x10-13
7.0-17.5 0.0015 2.69x10° 2.5x10-13
7.5-8.0 0.0012 3.23x10° 3.0x10-13
8.0-8.5 0.0009 3.23x10Y 3.0x10-13
8.5-9.0 0.0008 3.23x10° 3.0x10-13
= 86 days)
Table VI-3: Summary of model 11E1 Nomoto et al.)

ShellMo) | S6NiMp) |  n(t) (cm® p(t,) (g-cmy®
1.6-2.1 0.0100 1.08x1010 1.0x10-12
2.1-26 0.0079 8.60x1010 8.0x10-12
2.6-4.0 0.0222 1.08x1010 1.0x10-12
40-5.1 0.0155 9.68x10° 9.0x10-13
5.1-6.2 0.0078 5.38x10° 5.0x10°13
62-7.6 0.0056 9.68x108 9.0x10-14
7.6-9.6 0.0008 4.30x108 4.0x10-14
9.6-11.6 0.0007 2.15x108 2.0x10-14

(where t, = 116 days)

31
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VIL__ Analytic Models of Positron Survival

I have worked on an analytic model that began with a differential equation involving
the time rate of change of the number of positrons per gram. It contained a source term
due to the production of positrons by the decay of 36Co and a loss term due to the
radiative recombination of positrons with free electrons. TLs main problem with this
solution is that it is hard to incorporate the process of thermalization. But I have found
that the time it takes for a positron to become thermal is small cc npared to time of
injection into the supernova (at least for injection times of interest). Therefore the error
from this shortcoming should be small.

The analytic solution begins with the expression:

At

dn, 0

?4& n.n =Se

where n_ = the number of positrons per gram,

(VI-1)

S = initial 56Co decay rate per gram = (N 05 /56) X A,
A = 56Co decay constant = 1/111.52 days,
n, = the number of free electrons per cm3 = the number of atoms per cm3 x Zg,,

A = the radiative recombination rate.

But from equation (IV-1) the density of atoms is:

3
)
n() = n(1,) -
t
This changes equation (VII-1) to:

d;‘; + O 22, )P0, =S¢ " (VI-2)
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An equation of the form dy/dx+a(x)y = h(x) is equivalent to the equation d(py)/dx=ph if :

p =exp“. a(x)dx] .

The solution of this equation is (Hildebrand 1976):

1 const.
== h _—
y PJ.p dx + =5

In particular, if y = y; atx = x;:

y(x) = I heey B gy 4y DD (VII-3)
X

p(x) 1 px)

By making the substitution in equation (V-3):

a()=An(ty) § Z, =15,

ot
1
1=
2a (tz )

Att=t,, ‘n+(t) = n (1) for t; 2 ty (the initial time of the expansion). From equation
(VI-3):

.

=> p(t) =exp

| s |

]
|
]

1 T 1
Scxﬂri% (%’)J 'fexplL-[ Aot + > al = h dt' (VII-4)
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The first term corresponds to the number of positrons existing at t, that survive until time
t. The second term corresponds to the number of positrons emitted between t; and t that
survive until ime t. Ithenlett; =>t; and lett => oo :
1 = T l( ya 1
0

n+(oo)=n+(t)exp!'_—2-,+s exp,- .ZHdt'. (VII-5)
TTUL %) ,{ L 2 )

The integral needed to be done numerically. To do this I used a routine on the microVax,
DQDAGI, from the IMSL Math Library. When time was kept in seconds it was difficult
to get the integrating routine to produce a non-zero solution to the integral in equation
VII-5 because of the extremely small size of the integrand over the entire range of the
integration except for a very sharp peak at 5x108 seconds far from the lower limit of
integration. I therefore converted my units of time into years. This moved the peak
closer to the lower limit of integration (in the absolute sense) and thus made it harder for
the integration routine to ignore. I used this model to calculate the number of positrons
that would survive until t = oo from the innermost shell of Woosley's model 10HM. I

used the following values for the input parameters:

Ao = 1.038x10-7 s-1 = 1/111.52 days = 3.27 yr-1,
A =2.00x10-12 cm3 s-1 = 6.31x10-5 (T=3500 K) (Bussard et al 1979),
Zge.= 1.5 electrons/atom,
to = 7.43x106 s = 86 days = 0.236 yrs,
n(ty) = 1.08x1010 atoms cm-3,

a = 7.52x10-20 §-2 = 7.45x10-5 yrs-2.

Using these parameters, the value for the integral in equation VII-5 was 8.52x1027 s.

The first term in equation (VII-5) because it was very small. By taking a value for S of
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1.12x1015 gt s-1, I calculated that 9.54x10-12 positrons per gram should survive. This

translates to 3.99x1019 positrons surviving from the inner-most shell of Woosley's

model 10HM. This result is compared to that of the computer simulation in section IX.
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My computer model for positron escape from a Type II supernova drew from the
derivations and research presented in sections II - VI of this thesis. Two of the major

improvements of this type of model over the previously discussed analytic model were:

1) Requiring positrons to thermalize before annihilating,

2) Allowing the radial mixing of cobalt into regions of lower density.

To accomodate the radial mixing, the supernova ejecta was broken up into a number of
shells (as discussed in section VI). There were two sets of initial conditions
corresponding to the two supernova models discussed in section VI. Each shell was
assigned an initial density and amount of 56Ni (56Co) in accordance with the model being
used. A summary of this data was shown in tables VI-2 and VI-3. Other parameters
needed in this model were the 56Co decay rate, the radiative recombination rate for
positrons and electrons, and the degree of ionization of the ejecta. The values I took for

these parameters were the same as I used in the analytic model:

Ao = 1.038x10-7 571,
A= 2.00x1012 cm3 s°1,

Zgee = 1.5 electrons/atom.

This program calculated the number of positrons that survived from each shell. To
do this, the continuous emission of positrons was approximated by a discrete set of
positron injection times varying from 5 - 30 years with the interval between injection

times being 1 year. The number of cobalt decays that occurred within each time interval
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dt centered on the injection time can be described by the expression:
] A (t-dy2) A, (t+dt2 1
dNCo=NOCo=_exp(- 0" )'exP{' 0 ))J :

The number of positrons injected was 1/5 this number.

For each injection time the program calculated a mean time of thermalization for a
positron (the time when a typical positron was slowed to thermal energies). This was
done by using equations (III-4) and (III-9) to calculate a time of thermalization for a
positron in each of the energy intervals listed in table II-1. These times were then
weighted by the energy distribution function to get the mean time of thermalization.
During the thermalization process the density was allowed to evolve according to
equation (IV-1). The program then used equation (V-5) to calculate the fraction of
positrons surviving from the mean time of thermalization until t = = and that time when
the mean lifetime of positrons to radiative recombination, €, equalled 100 years (as
calculated for the central shell of model 10HM). This second calculation was made to
estimate the error in terminating the recombination process at approximately 110 years
(when T = 100 years). This could be of use when performing a Monte Carlo history.
Thus the number of positrons surviving from a given shell with a given injection time
could be calculated by taking the product of the survival fraction and the number of
positrons injected for that injection time in that shell. The program stepped through
injection times of 5 to 30 years and through all of the shells. The program added the
contributions from all times and all shells to get a total number of positrons surviving for
each model. A flow diagram for the program along with a printout are included in
Appendix B. A quantity of potentially more interest was the probability of a positron
surviving from a particular shell. This gives insight into how the survival of positrons
depends on the density of a region.

A summary of the results for each shell when the positrons were required to survive
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until t = o= can be seen in tables VIII-1 and VIII-2. Note the large difference from shell to
shell in the probability of surviving. This is due to the fact that the probability of
surviving is an exponential involving the density and one can see that the density varies
significantly from shell to shell. Thus the radial mixing of nickel (cobalt) outward
significantly improves the production of positrons able to contribute to a diffuse
annihilation line (see figures 11 and 12).

As I have already stated I have also calculated the probability that a positron will
survive until the mean lifetime, T, equalled 100 years (approximately 110 years after the
explosion) and the number that will do so from each shell to compare with the previous
results (see tables VIII-3 and VIII-4). The differences between the results for survival
until t = oo and until T = 100 years is small for the shells producing the most positrons.
The difference between the overall survival probability and the overall number of
"survivors"” is correspondingly small, 11.4% for model 10HM and 2.6% for model 11E1
(see table VIII-5).




Table VIII-1: Summary of Results for model 10HM Initial Conditions

Shell (M, ) Inital Density [Probability of Surviving] Number That Survive
(at 86 days) until t = e until t = e
1.6 -2.0 1.08x1010 1.98x10-33 8.89x101°
20-25 5.38x1010 1.87x10°7 0
2.5-3.0 3.76x1011 9.52x10-153 0
30-3.5 5.38x1010 1.87x10-%7 0
3.5-40 3.76x1010 6.53x10-1 1.71x10?
40 -4.5 2.37x1010 1.40x1043 3.00x10°
45-50 2.37x1010 1.40x1043 2.46x10°
5.0 -5.5 2.16x1010 3.08x1042 4.48x1010
55-6.0 1.61x1010 2.98x10-38 3.44x10%4
6.0-6.5 3.23x10° 3.16x10-22 2.97x1030
6.5-7.0 2.16x10° 2.14x10°19 1.74x10%3
70-7.5 2.69x10° 6.83x10-2! 4.38x1031
7.5-8.0 3.23x10° 3.16x10-22 1.62x1030
8.0-85 3.23x10° 3.16x1022 1.22x10%0
8.5-9.0 3.23x10° 3.16x10-22 1.08x103°

Table VIII-2: Summary of Results for model 11E1 Initial Conditions

Shell M. ) Initial Density [Probability of Surviving] Number that Survive
71 (at 116 days) until t = oo untilt=oo

1.6 - 2.1 1.08x1010 3.04x1045 1.30x108

2.1-2.6 8.60x1010 1.80x10-105 0

2.6 - 4.0 1.08x1010 3.04x1045 2.88x108

40-5.1 9.68x10° 1.32x1043 8.76x10°

51-6.2 5.38x10° 9.08x10-36 3.03x10"7

62-17.6 9.68x108 5.01x10-%0 1.20x1033

7.6-9.6 4.30x108 3.27x10°1 1.12x10%7

96-11.6| 2.15x108 5.06x10-12 1.51x1040
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Table VIIf-3: Summary of Results for model 10HM Initial Conditions

Shell (M, ) Inital Density [Probability of Surviving| Number That Survive
(at 86 days) | untl =100 years | untl ¢=100Q years

1.6 -2.0 1.08x1010 3.43x10-33 1.54x1020
20-25 5.38x1010 2.90x10-56 0
2.5-3.0 3.76x101! 2.02x10-146 0
3.0-3.5 5.38x1010 2.90x10-36 0
3.5-40 3.76x1010 4.45x10-30 1.16x103
40-45 2.37x1010 4.70x1043 1.00x1010
45-50 2.37x1010 4.70x1043 8.24x109
5.0-5.5 2.16x10%0 9.27x1042 1.35x101!
55-6.0 1.61x1010 6.77x10-38 7.82x1014
6.0 - 6.5 3.23x10° 3.72x10-22 3.50x1030
6.5-7.0 2.16x10? 2.39x10°1° 1.94x1033
70-175 2.69x10° 7.83x10°2 5.03x1031
7.5-8.0 3.23x10° 3.72x1022 1.91x10%0
8.0-85 3.23x10° 3.72x102 1.43x1030
8.5-9.0 3.23x10° 3.72x1022 1.27x1030

Table VIII-4: Summary of Results for model 11E1 Initial Conditions

ShellM. ) Initial Density [Probability of Survivingj Number that Survive
©° ! (at116days) | untl ¢=100 years | untl =100 years
1.6 - 2.1 1.08x1010 1.17x10"% 5.01x108
2.1-26 8.60x1010 8.47x10-101 0
2.6-40 1.08x1010 1.17x104 1.11x10?
40-5.1 9.68x10° 4.44x1043 2.94x1010
5.1-6.2 5.38x10° 1.78x10°% 5.94x1017
62-7.6 9.68x10% 5.66x10-20 1.36x1033
7.6-9.6 4.30x108 3.47x1013 1.19x1037
96-11.6| 2.15x108 5.18x10-12 1.56x1040




Table VIII-S: Summary of Overall Results for models 10HM and 11E1

"survivors"

10HM 10HM 11E1 11E1
t=o0 =100 t= oo T =100
Probability of
PR 620x1020 | 6.93x102' | 5.03x10 | s.16x1071
Surviving
Number of
_ 1.79x1033 2.00x1033 1.52x1040 1.56x1040
Survivors
% Difference
in number of 11.7% 2.6%

I comment on these results and compare them to the analytic model in section IX.
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IX. Summary and Conclusions

My original purpose for undertaking this project was to investigate Type II
supernovae as a possible source for the diffuse component of the 511 keV annihilation
radiation from the Galactic center. At the recent 14th Texas Symposium on Relativistic
Astrophysics, Reuven Ramaty argued that a source of 3x1043 positrons/sec was needed
to account for the diffuse background (this is easily verified to within an order of
magnitude by a simple calculation if the distance to the Galactic center is taken to be 8
kpc). My models show that Type II supernovae do not produce nearly enough positrons
to account for this line. Using initial conditions set by model 11E1, my models show
only 1.5x1040 positrons will survive (model 10HM inital conditions yielded
approximately 1033). If one assumes a fairly optimistic rate of one Type II supernova
every 100 years in the Galactic center, a production rate of only 4.777x1030 positrons/sec
is achieved. This is well short of what is needed. This does not mean that this model was
a failure. There was good agreement between the analytic model and the computer
model. The computer model predicts 8.89x1019 positrons surviving until t = e from the
inner shell of model 10HM while the analytic model predicts 3.99x10!9. The diffence
can be accounted for by the fact that in the computer model the positrons were required to
thermalize before annihilating. During the thermalization process the density in each shell
decreased. This coupled with the strong dependence of the probability of survival on the
density increases the chance for survival from a particular injection time. As mentioned
previously, the integral contained in the analytic solution was difficult to evaluate. A
non-zero solution came only after converting seconds to years.

The computer model produced interesting results as I have stated in section VIII. The
most interesting is the strong dependence of the probability of survival on the density (see
figure 13). The reason for this is that the probability of survival contains an exponential
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involving the density. Thus a variation in density from shell to shell of a factor of 50,
produces a factor of 30 difference in the probability of surviving. This is the reason that
mixing has such an overwhelming effect on the number of positrons that survive.
Therefore a small refinement in the density profiles of these models to produce a better fit
to the light curve would greatly affect the results of my model.

This strong dependence on the density suggests that Type I supernovae with their
larger explosion energies (and thus lower densities at a given time) are good candidates
for the source of positrons. All that is needed is a nearby Type I supernova to improve
theoretical models.

In my computer model I used positron injection times ranging from 5 to 30 years.
Figure 14 shows that a peak level of production was reached within that time period for
each shell, ie. the injection time that produced the most "survivors” from each shell was
between S and 30 years. Thus I feel that my models adequately describe the production
of Galactic positrons from Type II supernovae given their somewhat limiting
assumptions. More complicated hydrodynamic models which take into account the
structure of the magnetic fields and the details of the radial mixing may yield more precise

results but they should not negate my final result.
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! I. !. C . [! l. !E! Cl s V.VIE R

Program: fdecay.c Last revision: 1/18/89

Time Monte Carlo Survival Prob. Analytic Survival Prob.
9.460800e+08 1.040000e-03 1.035319¢e-03
9.776160e+08 1.600000e-03 1.658541e-03
1.009152e+09 2.520000e-03 2.543862e-03
1.040688e+09 3.880000e-03 3.755176e-03
1.072224e+09 5.460000e-03 5.358753e-03
1.103760e+09 7.460000e-03 7.420789¢-03
1.135296e+09 1.014000e-02 1.000504¢e-02
1.166832e+09 1.302000e-02 1.317069e-02
1.198368e+09 1.658000e-02 1.697060e-02
1.229904e+09 2.120000e-02 2.144997e-02
1.261440e+09 2.698000e-02 2.664539e-02
1.292976e+09 3.310000e-02 3.258440e-02
1.324512e+09 4.022000e-02 3.928528e-02
1.356048e+09 4.758000e-02 4.675734e-02
1.387584e+09 5.568000e-02 5.500124e-02
1.419120e+09 6.472000e-02 6.400976e-02
1.450656e+09 7.426000e-02 7.376845e-02
1.482192e+09 8.482000e-02 8.425654¢-02
1.513728e+09 9.612000e-02 9.544782¢-02
1.545264e+09 1.080000e-01 1.073115¢-01




START
READ
INIT. COND.
SHELL = 1| NO
SMAX #
SHELL+1 SHELLS

TIME = START NO
< STOP
TIME+STEP TIME

ENERGY2 THERM

CALCULATE dE/dx, dE, dt

FIND TIME OF THERM. ‘-—-—J

v

CALCULATE SURVIVAL PROB

and NUMBER of SURVIVORS

CALCULATE # FROM §

CALCULATE MEAN THERM C

CALCULATE # FROM ALL
SHELLS
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/‘t“t‘.‘t‘l‘._“l.“‘- I‘IFE'I'IMEW'C 4/19/89 “lt‘tt‘ttl#t‘tt"t“/
#include <stdio.h>

#include <math.h>

#define CUT_OFF_ENERGY 2.6e-4 f**in MeV**/
#define INITIAL_DENSITY 1.08e10 /**atoms/cc, from Woosley's
graph**/
#define INITIAL_TIME 7.43e6 /**86 days expressed in
seconds**/

#define RAD_RECOM_RATE 2.0e-12 /**rom Bussard's paper**/
#define COBALT_SOURCE 1.4987e54 /**0.07 solar masses converted to
atoms**/
#idefine DECAY_RATE 1.03785e-07 [**1/111.52 days**/
#define ION_POT 2.99e4 /**11.5*Z in Mev**/
#define Z_FREE 1.5 /**assuming 1.5 free
electrons/atom**/
#idefine Z_BOUND 24.5

#define IN_FLIGHT_FRACTION 0.0 /**Number that annihilate in
flight*s/
#define REST_MASS 0.511

#define END_TIME 3.473495e9 /**when tau is 100 years**/
FILE *point;

Fadd il Ll * L L e * “ss e/
Faddhdd . SUBROUTINES *#**** e/
/“..‘..‘..‘.“ 2 /

f******[onization Losses using the handbook formula***#*#+/

double ionization(energy, density, betasqrd)
double energy, density, betasqrd;
{
double ratio, partl, part2, pan3, dEdx1;
ratio = pow(energy/REST_MASS, 0.5);
partl = 5.1¢-25*(density*Z_BOUND)/betasqrd;
part2 = pow(betasqrd, 0.5)*(energy+REST_MASS)*ratio/ION_POT;
part3 = 0.5%betasqrd;
dEdx1 = part1*(log(part2)-part3);
return (dEdx1);

/ /
[******Plasma Losses using Jackson's formula®****+/

double plasma(energy, density, betasqrd)
double energy, density, betasqrd;

(
double gamma, partd, part5, part§, dEdx2;
gamma = pow((1-betasqrd), -0.5);
partd = 5.1¢-25*(density*Z_FREE)betasqrd;
partS = 5.3e5*pow(betasqrd, 0.5)*pow((density*Z_FREE), -0.5);
pant§ = 3.86e-11*pow((2.0/(gamma-1.0)), 0.5);
dEdx2 = partd4*log(0.764*part5/pans);
return (dEdx2);




fe+*+**Radiative Capture of Positrons*****%/

double decay(meantherm, initdensity)
double meantherm, initdensity;

{
double fraction, stop, taunot, timesqrd, const;

timesqrd = pow(meantherm, -2.0);
stop = pow(END_TIME, -2.0);

35

taunot=1/(initdensity*Z_FREE*RAD_RECOM_RATE*pow(INITIAL_TIME, 3.0));

const = pow((taunot*2), -1.0);
fraction = exp(const*(stop - timesqrd));

return(fraction);

J

/‘t“lt.t‘tttt'itt't"tt#.‘it“t.li““t‘!‘t‘tt‘t“#-ttttﬁtittttt‘.“t“‘ttt“t/

[******Number of Positrons Injected at Starttime****#»/

double injection(starttime, step, shellsource)
double starttime, step, shellsource;
{

double start, finish, num;

nums=shellsource*(exp(~(DECAY_RATE*(starttime-(step/2)))) -
exp(-(DECAY_RATE*(starttime +(step/2)))));

returmn(numj;
}
/“t‘tt'.t“tt“"‘ »* /
Fadhd e MAIN PROGRAM ** his /
I‘a-;._ ® YT - /
main()
{

double energy, startEn, time, starttime, step;

double density, scale, meantherm;

double dEdx, dEdx1, dEdx2, dE, aveenergy;

double velocity, dt, total, survivors, numinjected, percentleft;
double avebeta, betasqrd;

double store(10](2], distrib(10], shell{15](2);

double initdensity, shellsource, grandtotal, sum;

mnt  xyazs;
point=fopen("dataW™,"w");
fprintf(point,\n\n");

fprintf(point,” PROGRAM: lifetimeW.c LAST REVISION: 4/19/8%\n\n");

fprintf(point,” Start: 5 years Finish: 30 years  Step= 1 yexr\n\n\n");

fprintf(point,”

distrib{0}= 0.061;
distrib[1]= 0.117;
distrib{2)= 0.152;
distrib(3]= 0.165;
distrib{4]= 0.158;

\n\n");




distrib(5]= 0.142;
distrib[6]= 0.104;
distrib[7])= 0.066;
distrib(8]= 0.030;
distrib[9])= 0.005;

shell{0][0])= 1.08e10;
shell[1]{0]= 5.38e10;
shell[2][0)= 3.76e11;
shell{3]{0]= 5.38e10;
shell(4][0}= 3.76e10;
shell[S5){0]= 2.37¢10;
shell[6][0]= 2.37e10;
shell(7]{0]= 2.16e10;
shell[8](0]= 1.61e10;
shell{9][0]= 3.23e9;

shell[10)[0]= 2.16e9;
shell{11](0]= 2.69¢9;
shell[12]{0]= 3.23e9;
shell{13][0]= 3.23e9;
shell[14]{0])= 3.23e9;

shell{0)[1]= 2.246e53;
shell(1]{1]= 2.332e53;
shell[2][1]= 1.925e53;
shell{3][1]= 1.562e53;
shell{4]{1)= 1.305e53;
shell[5][1]= 1.070e53;
shell[6][1]= 8.770e52;
shell[7][1)= 7.273e52;
shell[8][1)= 5.773e52;
shell[9](1])= 4.706e52;
shell(10][1]= 4.064e52;
shell[11]{1]=3.209e52;
shell{12][1}= 2.567e52;
shell{13][1]}= 1.925e52;
shell{14]{1]= 1.711e52;

grandiotal = 0;
step = 3.1536e7;
z2=0;

! START OF SHELL LOOP sees/

for (z2=0; 2< 14.5; z=2+1.0)
{

total = 0;

initdensity = shell(z](0);
shellsource = shell(z](11/5;

fprintf(point,” Shell number: %2.0f Initial density: %5.3¢ Amount of cobalt: %5.3¢\a\n", z+1.0,
initdensity, shellsource);

fprintf(point,” INJECTION TIME TIME OF THERM. NUMBER OF POSITRONS PROB. OF
SURVIVAL\");
fprintf(point,” Y

[eesrnnenasen START OF TIME LOOP /
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for (starttime= 1.5768e8; starttime<= 9.47e8; starttime=starttime + step)
{

x=0;

y=0;

meantherm=0;

/t“.‘t“‘-‘tt‘tt.“.."START OF EN'ERGY Loopt-‘..“t‘t“.“““t‘tt“/

for (startEn= 0.073; startEn<= 1.46; stantEn=startEn + 0.146)
(
time=starttime;
energy=startEn;

THERMALIZATION LOOP

i

while (energy > CUT_OFF_ENERGY)

{
scale=(5.0e10/3.92e21)*pow(time, 3.0)*shell{0][0]/sheli[z]{0];

density=initdensity*pow(INITIAL_TIME,3.0)/pow(time,3.0);
betasqrd=1-pow(((energy/REST_MASS)+1.0), -2.0);

dEdx 1=ionization(energy, density, betasqrd)
dEdx2=plasma(energy, density, betasqrd);
dEdx=dEdx1+dEdx2;

dE=scale*dEdx;

if(energy-dE>0)

{
aveencrgy=energy-(dE/2);
avebeta=pow(1-pow(((aveenergy/REST_MASS)+1.0), -2.0), 0.5)%

velocity=3e10*avebeta;
di=scale/velocity;

/‘“““‘“Iﬂmmﬁn[ Tifne md Enel’gy“““""“/

energy=energy-dE;
time=time-dt;
)

else goto end;

}

sanes)

END OF WHILE LOOP

/
/‘““.““Cdcuhw md Store Lifetime“““““/
end:;
store[x++][0]=time;
)
END OF ENERGY LOOP

7

I‘“‘.“...Cm Mm mﬂﬁlﬂ“““““‘l

while (y <x)
(
store{y][1]=store[y][0])*distrib[y];
meanthermsmeantherm+store[y}(1]);

y=y+l;
)

[esesesseesCaiculate How Many Survived*sesessess/
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percentleft = decay(meantherm, initdensity);

numinjected = injection(starttime, step, shellsource);

survivors = percentleft*(numinjected*(1-IN_FLIGHT_FRACTION));
total = total + survivors;

fprintf(point,” %e  %oe Foe 9oe\n" starttime,meantherm.nusminjected,percentleft);
}

/t-n-ututat-tt-ttt-ttttt-t#ttttEND OF TIME Loopttttttttumt-uttt-nttt.tttt-/

fprintf(point,\n\n");  fprintf(point,"Number surviving from shell %1.0f: %e\n\n", z+1.0, total);
fprintf(point,” \n\n");

grandtotal = grandtotal + total;

}

/t.ttt‘t‘ttt‘.t#tt“ttt#t‘t‘tEND OF SHEIL LOOP.“*t‘t.“t‘t“t‘t‘.t‘t“‘.‘/

sum=0;

for(s=0;5<14.5;5=s+1)
{

)

sum=sum+(shell(s][1]/5);

fprintf(point,"The total number surviving = %e out of %e.\n\n",grandtotal,sum);
fprintf(point,The survival fraction is %e.", (grandiotal/sum));

fclose(point);
}

/ﬁ*“t“i“tt‘-- L 2 ] '/

[enmenes *THE END * /

Ptt“t.tlttt ® ---.-../
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