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Human-Computer
Interaction Software:

Lessons Learned,
Challenges Ahead

HCI software should |
augment human
intelligence. Despite
the progress that has
been made over the
last few years, the big
challenge is to create
truly cooperative
problem-solving
systems.

Gerhard Fischer, University of Colorado at Bouider

riting good software for human-
compuler interaction is a major
challenge. This very new field is

based on three developments: Powerful
workstations with bitmapped screens and
pointing devices provide the new techno-
logical base. Innovative applications have
drawn attention to the computer’s interac-
tive, rather than its computational, capabili-
ties. The complexity of today's software has
made better communication techniques a
necessity, not a luxury.

Good HCI is important for the products
that the software engineer designs and im-
plements for users, but it is equally impor-
tant for software engineers themselves.
Theyhave to design, understand, and main-
tain complex artifacts that are opaque and
very difficuit to deal with. Software engi-
neers and programmers have a stake in im-
proving today's environments.

0704-7459/R9/00010044/301 00 © 1989 1EEE

Software desigh as a
communication

Having spent the last decade building
knowledge-based systems, improving
human-computer interaction, and explor-
ing the nature of design processes, my col-
leagues and I are convinced that current
life<cycle models of software engineering
are inadequate for most of today's comput-
ing problems.' They are inadequate be-
cause they reston the assumption that prob-
lem requirements can be stated precisely at
the beginning of a project and that com-
plete specifications and an implementation
can be derived from them through formal
manipulations.

Software engineering is a design activity.
Most design problems are ill-structured’
and must be solved by exploration and error
elimination, considered the foundation of
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all scientific activity by the philosopher
Karl Popper. This is especially true for
HCI software: There are no complete HCl
theories. The problem is ill-structured,
and so many of the methods and tools de-
veloped for traditional software-engi-
neering problems are of little use for HCI
software.

Illstructured problems are also charac-
terized by design instabilities and the need
for frequent redesign. The main goal of
HCI software is not to develop a correct
implementation of given specifications
but to develop an effective solution that
corresponds to real needs. Specification
correctness in this context is not a mean-
ingful concept because itimplies a precise
specification of intent, which is seldom
available.

Unless we match our paradigms and
methods to illstructured problems, the
implementation disasters of the 1960s will
be succeeded by the design disasters of the
1980s. We need effective exploratory pro-
gramming environmentsand rapid-proto-
typing tools that support iterative, evolu-
tionary design.

The best paradigm for creating HCI soft-
ware is a communication model' and a
rapid-prototyping approach that supports
the coevolution of specification and im-
plernentation.* Communication between
customers, designers, and implementers
and between humans and the knowledge
base that describes the emerging product
is crucial.

Our work at the University of Colorado
at Boulder centers on knowledge-based
systems that enhance and support com-
munication. When we write HCI software,
we define what the computer will do and
what humans will and can do. We also
make assumptions aboutwhat theywantto
do. It is this human element that distin-
guishes HCI software:

® Humans are individuals with different
talents, goals, knowledge, and prefer-
ences.
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¢ Humans are moving targets, not static
objects. They start as novices and may re-
main in this class, but they may also be-
come casual or expert users.

HCI software design must start with the
human as a fix point. Humans do not have
three hands, and our designs must take
this into account — users cannot keep two
hands on a keyboard and one on a mouse.
HClI software should acknowledge human
weaknesses (limited shortterm memory
and execution errors) and exploit human
strengths (a powerful information-pro-
cessing and visual system).

Knowledge-hbased HCI

Our research has three dimensions:
theoury development, engineering con-
struction, and empirical studies. The goal
of theory development is to understand
how human cognition and design capa-
bilities result from an interplay between
mental processes and external computa-
tional and memory aids. The purpose of
engineering construction is to design and
develop the desired artifacts. The empiri-
cal research examines how people per-
form tasks using the antifacts in a natural
setting.

The primarvapplication of our research
has been the creati~n of knowledge-based
HCI software to run on highfunctionality
systemsin support of cooperative problem
solving.

Architecture. Effective HCl ismore than
creating attractive displays: You must give
the computer a considerable body of
knowledge about the world, users, and
communication processes.

However, the use of knowledge-based
systems today is limited severely by the
communication botteneck in the narrow
channel between the user and the system.
A good user interface is vital to a knowl-
edge-hased system, but it has litte use if its
sophisticated graphical facilities lack rich,
supporting information structures.

Knowledge-based facilities have
elaborate, interactive graphical interfaces
supported by specialized viewers and in-
formation-management systems.

To support these systems, we have devel-
oped a model, illustrated in Figure 1. Our
system architecture reflects two major de-
partures from traditional approaches:
The use of windows, menus, and pointing
devices widens the explicit communi-
cation channel, and shared knowledge es-
tablishes an implicit communication
channel.

Expliat channel. 1.arge bitmapped
screens with windows, menus, pointing
devices,and speech outputand input have
widened the explicit channel between the
user and computer dramatically. Tnese
technologies are necessary but by no
means guarantee good HCI.

Exploiting these technologies to benefit
| the user requires a deeper understanding
of psychological principles — for ex-
ample, the difference between recall and
recognition memory, by which menu svs-

Knowledge about:
s problem domain
s communication processes
s communication partner
« problems of the user
and tutorial intervention

/ N\

Human Knowledge
knowiedge base

% 70 2

Figure 1. Architecture tor knowledge-
based human-computer interaction.
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tems should be evaluated. We must also
take into account the nature of different
tasks and the user’s abilities.

The design space of the explicit channel
is huge, largely unstructured, poorly un-
derstood, and inadequately supported by
tools. It should therefore come as no sur-
prise that even with improved technical
capabilities many HCI systems are still
modeled on teletype interaction.

Implicit channel. When communication
isbased on shared knowledge structures, it
is not necessary to exchange all informa-
tion between the user and system expli-
citly. Figure 1 lists four knowledge
domains necessary for implicit communi-
cation:

1. Problem domain. Intelligent be-
havior builds on large amounts of knowl-
edge about specific domains. This knowl-
edge constrains the number of possible
actions and describes reasonable goals
and operations. We can infer the user’s
goals and intentions if we understand the
correspondence between the system's
primitive operations and the concepts of
the task domain. If the computer has a
model of the problem domain'’s abstrac-
tions, communication between the
human and the problem domain is
feasible.

2. Communication processes. The in-
formation structures that contro! commu-
nication should be made explicit so the
user can manipulate them. Safe, explora-
tory environments should be supported
(for example, with undos, redos, and his-
tory lists). User and computer should
communicate by writing on a shared dis-
play or by referring to something already
on the display. This interreferential, I/0
model (for example, as supported by the
Symbolics presentation system) supports
dialogue rather than issuing isolated mes-
sages.

3. Communication partner. Theuser of
a system does not exist; there are many
kinds of users, and an individual's require-
ments change with experience. Adaptive
systems change their behavior according
to the needs of different users. Unless the
system has a mode] of the user, it is im-
possible for it to relate descriptions of new
systems to the existing knowledge of in-
dividual users.
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4. Common problems and in-
structional strategies. If the system is to be
agood coach orteacherand notjustan ex-
pert, it must incorporate instructional
strategies based on pedagogical theories
and exploitthe knowledge contained in its
model of the user. For the same reason, an
intelligent support system should know
when tointerrupt a user.

Object-oriented architectures. Our sys-
tems use an object-oriented architecture,
which has been shown to be well-suited to
interface construction. In this model, the
user communicates with the system, which
is represented on the screen as a world
composed of active objects. Each screen
object hasits visual representation (which
defines its appearance and its relation to
other screen objects) and a functional role
(which governsits behavior).

The principles of object-oriented design
— inheritance, flexibility, extensibility,
and modularity — support new program-

The principle of
human problem-domain
communication abstracts
the domain’s operations
and objects and bullds
them into the computing
environment.

ming methodologies that encourage de-
signing for reusability and redesign, such
as differential programming and pro-
gramming by specialization and analogy.
Object-oriented architectures provide
substantial support for interface design.

Domain communication. Most users are
experts in some problem domain,
whether it be physics or music. The com-
puter isageneralist; its generality means it
can support ali knnwiedge workers. But
domain experts are not interested in
learning the computer’s languages; they
simply want to use it to solve problems and
accomplish tasks.

To shape the computcrinto a truly use-
ful medium, we have to make it invisible
and let users work directly on their prob-

lems and their tasks. To do this we must
“teach” the computer the experts’ lan-
guages by endowing it with the abstrac-
tions of different application domains.

The principle of human problem-domain
communication’ abstracts the important
operations and objects of a domain and
builds them into the computing environ-
ment. This lets the user operate with per-
sonally meaningful abstractions. It is im-
portant not 1o lose the semantics of the
domain by reducing it to oversimplified
data structures.

WLisp, our user-interface toolkit,® and
two systems called Framer and Crack sup-
port human problem-domain communi-
cation in the areasof interface and hitchen
design. People can use these systems 1o do
programming by constructing artifacts in
the domain instead of writing statements
in a programming language. Our experi-
ments have shown that people who use
these environments had a sense of accom-
plishment because they created their own
impressive version of something that
works but was not difficuit to build.

Framer and Crack, described in the box
on pp. 4849 are design environments
(with embedded construction kits): They
provide a set of building blocks that model
a problem domain. The building blocks
define adesign space (the set of all designs
that can be created by combining these
blocks) and a design vocabulary. The
advantage of design environments is that
they eliminate several prerequisite skills,
thus letting users spend much more time
working in their area of interest.

Thedisadvantage isthat these design en-
vironments are effective in only one area.
But this limitation affects all knowledge-
bas d systems, and human expertise isalso
restricted to specific domains. The chal-
lenge for computer systems is to create
these design spaces for many domainsand
to organize this huge set so users can find
the abstractions they need.

Reuse and redesign. Software environ-
ments must support design method-
ologies whose main activity is not only the
generation of new programs but also the
mainienance, integration, modification,
and explanation of existing ones.

A construction kit with many general
building blocks supports reuse and rede-
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sign by providing stable abstractions. The
user-interface tools of Smalhalk, the Lisp
machines, and WLisp have undergone a
long evolutionary development. They are
based on abstractions about the domain of
interface design and constitute a partial
theory of one class of user interfaces. The
evolutionary development of such a
theory, driven by tests of the abstractions’
validity in several applications, isa prereq-
uisite for the development of a sysiem that
supports reuse and redesign.

However, standard programming lan-
guages oifer only a few primitives for HCI
(read, write, and format). These primi-
tives are conceptually based on a linear
stream, not a two-dimensional screen. So it
is a huge effort to build the HCI part of an
application because the designer has to
build it from low-level components.

On the other hand, functionally rich en-
vironments offer hundreds and thou-
sands of abstractions,® substrates for HCI
(different classes of windows, support for
interreferental 1/0), and screen-layout
tools. Such systems reduce the size of the
application system substantially. The
major cost of such systems is that the de-
signer must learn and understand the ab-
stractions, but this cost is incurred only
once per designer.

Intelligent support systems. High-func-
tionality systems are not without prob-
lems, however. Our informal empirical
studies have shown that:

¢ Users do not know that tools exist. Itis
very difficult for a novice or casual user to
build a mental model of the capabilities of
a high-functionality system. Without such
a model, users are unaware of tools that
might be relevant to their tasks. A passive
help system is no help in this, because to
ask a question the user must know enough
to know whatis not known! Active help sys-
tems, critics, and browsing 100ls® let users
explore a system and point out useful in-
formation.

¢ Users do not know how to access tools.
Knowing that something exists does not
guarantee that you know how to find it.

¢ Users do not know when to use tools.
While each system feature may have a sen-
sible design rationale from the system
engineer’s viewpoint, this rationale is fre-
quently beyond the user’s grasp. Users do
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not understand which commands are
basic and which are advanced, nordo they
understand that the options represent
different, generalized interaction styles.

¢ Users do not understand the results
that tools produce. Visualization tools and
explanation components address this
problem.

* Users cannot combine, adapt, and
modify tools according to their needs.
Even after all the other problems are over-
come, in many cases the tool does not do
exactly what the user wants. The user
needs system support to carry out con-
strained design processes at the user’s

- operational level.

We have constructed design environ-
ments*® to support the modification and
construction of new systems from sets of
predefined components. In contrast o
simple construction kits, our design en-
vironments incorporate knowledge about
which components fit together and how
they do so, and they supply critics that rec-

The success of new
computer systems is
Judged less on processing
speed and memory size
and more on the quality
of thelr communication
capabilites.

ognize errors and inefficient or useless
structures. OQur environments can deal
with multiple representations of the de-

sign.
Lessons learned

The success of new computc. systems
(the Macintosh may be the best example)
is judged lessand less on pr rcessing speed
and memory size and moi e and more on
the quality of communication capabilities.
We have learned that, to be successful,
HCI software must:

¢ Take advantage of technology. Mod-
ern work: tations provide new technologi-
cal possibilities. Yet many current user in-
terfaces are still teletype-oriented. It
requires a huge design and imple-
mentation effort to reconceptualize all

software to lake advantage of the new
possibilities.

» Use user-interface construction Kits.
User-interface management systems’ pro-
vide graphical primitives and tools to
specify dialogue structures, but they limit
information exchange and separate the
user interface from the application. Thisis
a reasonablc approach for some prob-
lems. However, for the kinds of problems
we try to solve, such as intelligent support
for human problem-domain communi-
cation, a strong separation between inter-
face and application is not feasible. In
these systems, the user interface must have
extensive access to the state and actions of
the application system. For problems of
this kind, user-interface construction kits
are more appropriate.

User-interface construction kits can pro-
vide powerful environments for rapid pro-
totyping of a large class of interfaces. They
provide many building blocks for con-
structing high-quality interfares at a rela-
tively low cost, and object-oriented archi-
tectures can supply uniformity,
extensibility, and incremental develop-
ment.

User-interface construction kits come
close (within their scope) to our notion of
human problem-dnmain communi-
cation. Users familiar with problem
domains but in~xperienced with comput-
ers have few pr oblems using these systems,
while computer experts unfamiliar with
the pro'.}»in domains could not exploit
their - ower.

T'ic major shoricoming of large con-
struction kits is that they do not help the
designer construct interesting and useful
artifacts in the application domain. In
Crack, for exampile, it is not enough to
provide design units — kitchen design is
more than placing appliances. Design en-
vironments and critics are needed to help
users construct truly interesting arufacts;
they surpass construction kits in that they
incorporate useful, general knowledge
about design.

* Provide exploratory environments.
Users do not knowwhat they want, and de-
signers do not understand what users
need or will accept. The only viable
strategy for HCI software is incremental,
evolutionary development. Initial systems
must be built to give users something con-
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Framer and Crack

Framer and Crack are design environments. Framer supports the
construction of window-based user interfaces and Crack supports
cooperative kitchen design. Both systems incorporate andillustrate the
research issues outlined in this article.

The basic building blocks are application-dependent abstractions
that support human problem-demain communication. Framer and
Crack incorporate intefligent support systems and offer different design
strategies such as design with basic building blocks and redesign of
prototypical examples.

Framer. Figure A shows a screen from Framer, an enhanced ver-
sion of the Symbotics Frame-Up tool. Framer offers the user a paiette
of domain-oniented building blocks, and supports direct-manipulation
interaction in the work area. This visual interaction style is especially
appropriate in a domain in which visual objects are designed from
visual parts.

In addition to serving as an application-onented construction kit,
Framer has a small rule base with design knowledge about relevant
aspects of window-based user intertaces. The Praise commandtelis a
user the positive aspects of a design; the Suggest Improvements com-
mand criticizes the design; the Explain option gives some rationale for
the suggested improvement.

Framer includes a catalog, which contains several prototypical de-
signs that can be praised and criiqued. When brought into the work
area, the user can modify them and use them as a staring point for re-
design. Prototypical solutions that can be changed and refined through
redesign areimportant ennchments for designers and enlarge their de-
sign possibilties. Users can store their designs in the catalog.

Withiout Framer. the user would have to wnite the program in Figure
Btogeneratethe screenlayoutin Figure A. Framer generates this code
automatcally. An expenenced user can then modity the code.

Crack. Cntics are another type of inteligent support system. Critics
let users pursue their own goals, ntervening only it they discover the
solution is. according to their knowledge, infenor.

Empirical observations indicate that users are often unwilhng to ieam
more about a system than they need 1o soive therr current problem. To
cope with new probiems as they arise, a critc must generate advice
that is tailored to the user's needs and the cument situation. This re-
moves from users the burden of having to leam new things in neutral
settings when they do not know if they will ever use them.

Figure C shows a screen from Crack,' a critic system that helps
users design kitchens. Similar to Framer, it provides a set of domain-
specific building blocks and has knowledge about how to combine
them into useful designs. it “looks over the shoulder” of users as they
design. K it discovers a shortcoming in the design, it offers critasm,
suggestions, and explanations and helps users improve the designs
through cooperative problem sotving. Crack’s objective is to biend the
designer and the computer into a problem-solving team to produce bet-
ter designs than either of them coukd working alone.

User control. Critics in Crack are state-driven condition-action rules
that are triggered when nonsatisfying partial designs are detected.
These rules are activated after each state change. State changes are
allinstance creations of design units and of any design-unit manipula-
tion (kke move, rotate, and scale). An unsatisfactory solution is an ar-
rangement of design units that violates one or more of the relations
between them.

Crack is not an expert system that dominates the design process by
generating new designs from high-level goals or resolving design con-
flicts automatically. Users control the system's behavior at afl imes and
can modify its knowledge base if they disagree with the criticism.

Crack lets the user control the firing of critics at three levels: Al ori-
tiquing can be tumed on or off, individual critics can be enabled or dis-
abled, and spedific relations in a critic can be modified. When cribquing
is tumed off (the detault), Crack acts like a construction kit with no de-
sign knowledge. When critiquing is enabled, all cribcs are active. Anin-
dividual critic can be disabled if a user does not like its criticism or it its
knowledge has been assimilated and is no longer needed. At the
lowest fevel, the different relational tests within a critic can be replaced.

Framer
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Figure A. A screen from Framer, a design environment for window-based interfaces.
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For example, if a user doesn't want to have the sk 1n ront ot 3 wn
dow, the in-front-of relation can be replaced with another relabor. such
as no-relation or close-to.

Appropriate apphications. The cnitiquing approach 1s best suited for
il-defined problem areas where the goal is to satisty. rather than op-
timize, a solution. Kitchen design (as an area of architectural design) s
still an ill-defined problem despite the existence of some well-estab-
lished design principles. Architects do not try to find optimal solutons
to design problems but rather make trade-offs within a solution space
that is bounded by external constraints.

Critics can be classified as:

« Active or passive. Critics can activate themselves when they detect
an unsatisfactory design or they can be passive and wait until the user
asks for an evaluation. Active criticism early in the design makes users
aware of their unsatisfactory design when the mistake is easier to cor-
rect. But users may find it a nuisance 1o have someone continuously
critique them without giving ther.. a chance to develop their own work.
A passive critic lets the user request an evaluation when they have
completed a partial design. Active critics seem to be suited for guiding
novice users; passive critics seem to be more appropriate for interme-
diate users.

= Reactive or proactive. Crack's critics are reactive: They make com-
ments about what the user has done. A proactive critic plays the role of
an adviser by suggesting what the user might do or proposing criteria
which the user should consider. For example, a proactive criticin Crack
could highight the area where a new design unit could be locatedina
partially completed design.

« Positive or negative. Critics can either praise a superior design or
complain about an inferior design. Critics in Crack are negative: They
complain only about unsatisfactory configurations and do not praise
especially useful or interesting configurations. Human critics are both
positive and negative.

+» Local or giobal. A critic’'s granularity determines whether it is
oriented toward local aspects of a partial design or global aspects of
the total design. Asink critic is a local critic because it is concemned with
alow-fevef design unit: a sink. Awork-triangle critic (the work tiangle is

TWh DR D 8E PROGRAM F RAMEWORK EXAMPLE -1
COMMANG DEFINER T
COMMANG TABLE
. INHERIT-FROM -“cotor ‘uf command” “standard arguments”
“input editor compatibility”)
KBO-ACCELERATOR-P NiL;
STATE VARWBLESNIL

PANES
{ (PANE-1 DISPLAY
(PANE-5 ‘DISPLAY)
(PANE-4 DISPLAY)
(TITLE TITLE HEIGHT-IN-LINES 1
. REDISPLAY-AFTER-COMMANDS NIL)
(Imenubar| :COMMAND-MENU MENU-LEVEL
-TOP-LEVEL)
(PANE-3 :DISPLAY))

CONFIGURATIONS
'( (DW:MAIN
(LAYOUT (DW:MAIN :COLUMN ROW-1 TITLE
imenu bar] PANE-3)
(ROW-1 :ROW PANE-1 PANE-5 PANE-4}}
(:SIZES
(DW:MAIN (TITLE1 :LINES)
(imenu bar| ASK-WINDOW SELF
:SIZE-FOR-PANE imenu barj)
:THEN (ROW-1 :EVEN }(PANE-3 :EVEN))
(ROW-1 (PANE-1 :EVEN) (PANE-5 .EVEN) (PANE-4 EVEN))))))

Flgure B. The Lisp program for the screen layout in Figure A.

the center-front distance between the sink, range, and refrigerator) is
a more global critic because it is concerned with a larger portion of the
design: several appliances. A kitchen critic is a global critic: it is con-
cemed with the look of the entire kitchen.

Reference
1. G. Fischer and A. Morch, *Crack: A Critiquing Approach to Cooperative
Kitchen Design.” Proc. Int'i Conf. Intelhgent Tutoring Systems, ACM, New
York, 1988, pp. 176-185.
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crete o react to. This strategy must be sup-
ported by exploratory programming sys-
tems that support the coevolution of speci-
ficauons and implementations.

Prototypes replace anticipation (how
will the system behave?) with analysis (how
does it actually behave?), which is much
easier towork with. Most major computing
systems have been developed with exten-
sive feedback from their actual use. In this
wav improvements are made in response
to discrepancies between a system’'s actual
and desired states.

We know that writers with access to edi-
tors and formatting 1ools are increasingly
willing 10 modify their work. Intelligent
support tools in exploratc y program-
ming environments will lower the cost of
making changes, so designers will also
start to experiment — thereby gaining ex-
perience and insight leading to beuter de-
signs.

Expioratory environments also support
reuse and redesign. But anyone who
thinks that reuse and redesign comes for
free is wrong. If reuse and redesign are
great ideas and if they are easy to master,
why have thev had limited success so farin
software development? Obsenvation of de-
signers dealing with complex software sys-
tems has revealed one reason: These
methodologies are not adequately sup-
ported. Ttis too expensive to change a sys-
tem or explore design alternatives in most
software production environments.

® Use prototypes. Static specification
languages have little use in HCI software
design. First, detailed specificationsdonot
exist. Second, the interaction between a
system and its user is highly dynamic and
aesthetic, aspects that are difficult, if not
impossible, to describe with a static lan-
guage. Successful HCI systems should let
users play with the prototvpe systems and
discuss their design rationale. A prototype
makes it much easier and productive for
designers and users to coopcate hecause
users do not have to rely on written specifi-
cations, which do not indicate an inter-
face’s qualiues.

¢ Promote natural communication. Nat-
ural communicauon is more than the abil-
ity to communicate in natural language: it
is the ability to engage in a dinlogue. When
human novices communicate with human
experts, much more goes on than justare-
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quest for factual information. Novices
may not be able to articulate their ques-
tions without the experts’ help; the ex-
perts’ advice may not be understood with-
out further explanation; each may
hypothesize that the other misunder-
stood; experts may provide information
they were not explicitly asked for.

Natural communication needs a proper
user interface to supportit, butitis notre-
stricted to the user interface. The underly-
ing knowledge base must contain the
needed knowledge, and it must be struc-
tured correctly.

* Help the user make intelligent choices.
Communication can be described in
terms of the speaker and the listener roles.
The speaker presents information, per-
haps in the form of a question or as a re-
quest for action, which the listener tries to
understand. In general, the listener must

Concern for the human
must equal concemn for
the computer. A theory
of human cognitive
processes should drive
the new communication

developments.

be the more intelligent agent because he
must not only understand a situation as
such butalso understand how the speaker
presentsit.

In HCI, the user is the more intelligent
agent. Therefore, giving the user the ap-
propnate cues is the essence of most HCI
designs: The context provided by win-
dows, menus, spreadsheets, property
sheets, and form systems lets the user
choose the appropriate next step.

Because humans and computersare not
alike, designing HCI software is a problem
not only of simulating human-to-human
communication but of engineering aher-
natives in the domain of interaction-re-
lated properties. Humans do not have a
menu on their forehead of the commands
they can execute in a certain context.

¢ Extend the design knowledge base.
Why hasn’'t someone like Donald Knuth
written a book with prescriptions for build-

ing good HCI software? Because the basis
of such a book has yet to be created by
cognitive science. We have to extend the
existing knowledge base for HCI. Card,
Moran, and Newell® have provided some
methodologies and principles for the de-
sign of systems that support routine cogni-
tive skills whose time spans fall within sec-
onds. But these quantitative design
methods are not relevant to complex sys-
tems, which may take months and years to
learn and understand.

Aninterdisciplinaryapproachisneeded
toincrease our HCI knowledge base. Con-
cern for the human must equal concern
for the computer. A theory of human
cognitive processes should drive the devel-
opment of new communication capabili-
ties. We need design principles for com-
prehensibie systems thatare not restricted
to the evaluation and assessment of ex-
isting HCI systems. If humans are the fix
point of future HCI systems, the designs
must be based on cognitive principles
right from the beginning.

Chalienges ahead

Usercentered designs, comprehensible
systemns, intelligent support systems, and
powe. “ul tools to augment human intel-
ligence are the main goals of HCI design.
The software design community has ac-
cepted these goals as relevant, and con-
siderable progress hasbeen made over the
last few years. But big challengeslie ahead:

¢ Focus on innovation. Part of our re-
search effort should be directed toward
demonstrating which current systems are
good or bad because this gives us insight
into the design criteria for future systems.
But the main challenge lies in developing
new, innovative systems.

Restricting our effort to evolutionary
improvement of current systems ignores
the history of HCI over the last decades,
dunng which HCl has made revolutionary
steps forward. If the cost of developing
HCI software is to be reduced, more com-
puter support must be supplied to the de-
velopment process. Current development
occurs notin the computerbutin people’s
heads; itis not documented and thercfore
cannot be analyzed.

¢ Perform real evaluations. If the pni-
mary approach to HCl is incremental and
evolutionary, evaluation of existing sys-
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tems is an important activity. The chal-
lenge here isnot torestrict our evaluations
to laboratory experiments but to test real
users doing real wasks in real settings. Ulu-
mate criteria are usefulness and usability
for real-wor*1 purposes and therefore
must be tested in the real world. Validation
and verification methods from other soft-
ware domains have limited use in HCL
Formal correctnessiscrucial, butitisbyno
means a sufficient measure of the effec-
uveness and success of an HCI system.

® Accept change. We have to accept the
empirical truth that for many systems re-
quirements cannot be stated fully in ad-
vance.? In many cases, they cannoteven be
stated in principle because neither design-
ers nor users know them in advance. The
development process itself changes the
designers’ and users’ perceptions of what
is possible and increases their insights. We
have to acceptchanging requirementsasa
fact of life and not condemn them as a
product of sloppy thinking. We need
methodologies and tools that supportand
coordinate the process of change.

* Tailor software. One crucial shortcom-
ings of computers is that thev don’t sup-
port the notion of accomplishing a task or
purpose that the user chooses. To do so
would require software that is truly soft,
which means that the behavior of a system
can be changed withoutmajorreprogram-
ming and without specialists. This require-
ment is critical because predesigned sys-
tems are too rigid for problems whose
nature and specifications change and
evolve.

Thisgoal does notimply transferring the
responsibilitv of good svstem design to the
user. It is probably safe to assume that nor-
mal users will never build tools of the qual-
itva professional designer can achieve. But
a question for future research is' Should
we design the HCI part of a system com-
pletely or should we develop metasvstems
that let users alter the HCI according to
their needs? Should svstems be adaptive —
should they change their behavior based
on a model of the user and the task (the
idea behind our critic systems) — or
should systems be adaptable by the user
(asthev must be to support reuse and rede-
sign)?

¢ Provide a window into the knowledge
base. It is insufficient for intelligent sup-
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portsystems to just solve a problem or pro-
vide information. The user must be able to
understand and question their criticism.
We assume that users will not ask a pro-
gram for advice if its expertise cannot be
examined. Designers must provide win-
dows into the knowledge base and reason-
ing processes of these systemnsata level that
a user can understand. The users should
be able to query the computer for sugges-
tions and explanations, and they should
be able to modify and augment the critic’s
knowledge.

An evaluation of Crack demonstrates
the relevance of this approach. Crack was
used by an architectural designer who con-
sidered the cooperative, user-dominated
approach to be itsmostimportant feature.
He felt that this feature set Crack apart
from expert-system design tools that often
reduce users to spectators. In the current

We have to accept
changing requirements
as a fact of life and not

condemn them as a
product of sloppy
thinking. Tools should

support change.

version of Crack, we have deliberately
avoided equipping the system with its own
design capabilities. Why? Because usersin-
crease their knowledge and indepen-
dence by working with systems that do not
do the work for them but that enable them
to do it themselves. Too much assistance
and 100 manv automatic procedures can
reduce users’ motivation.

¢ Improve cooperative problem-sohving
svstems. Current intelligent support sys-
tems like Framer and Crack are oneshot
affairs. They give advice, but that advice is
not a starting point for cooperative prob-
lem solving. Human advisorv dialogues®
are judged successful when they allow
shared control of the dialogue. Our svs-
temsshould be designed to manage errors
and trouble. No svstem can be designed to
be 1otally foolproof. The problem in HC]
is not simply that difficulties in communi-
cating arise that do notoccurin human-to-

human communication but that, when
the inevitable troubles do arise, the same
resources are not available for their detec-
tion and repair. Errors should not cause a
breakdown of the interaction; thev shouid
be regarded as an integral part of the
process of accomplishing a task. The goal
of a cooperative endeavor is not to find
fault or to assess blame but to get the task
done.

¢ Recognize design conflicts. As is true
for most realworld design tasks, there is
no optimal solution for HCI, only trade-
offs. A challenge for the future is to resolve
these design conflicts. In our research ef-
forts, we will concentrate on the following
trade-offs:

* How do we balance the effort and the
large training costs necessary for learning
a complex interface with the power of ex-
tensive functionality? It is important that
we explore techniques that reduce the
cognitive costs (such as learning on
demand and human-problem communi-
cation).

* How do we make computer systems
useful and usable at the same time? Useful
computers must be complex and have rich
func' »nality because they mustmodel the
abstractions of manv domains, but it is
hard to make complex svstems usable. In-
telligent support systems promise to par-
tially resolve this design conflict.

¢ How do we achieve high speed and
convenience of use (power) for the expe-
rienced user and at the same time achieve
ease of learning and use for the novice and
the casual user? Adaptive and adaptable
svstems will more closely accommodate
the needs of the individual user.

* How do we separate dialogue manage-
ment from the application (toenhance re-
usability and uniformirv) and vet retain
application-specific semantics? User-inter-
face toolkits, UIMSs, and human problem-
domain communication provide differ-
entanswers to this question.

* How do we ensure the quality of HCI
software and minimize the costs of its de-
velopment? Reuse and redesign will be an
absolute necessity for dealing with this de-
sign conflict.

* How do we fit new systems comfortabhy
into people’s lives and at the same time
dramatically change the wav thev live and
work? Incremenial learning needs to be
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enhanced to expose users 1o systems that
have a low threshold (it is easy 10 get
started) and a high ceiling (the limitations
of the systems do not show up immedi-
ately).

ew formalisms and new tools have

helped us augment human intel

hgence. Computers used in the
right way are a unique opportunity to take
another big step forward. to create
cooperative svstems in which humans can
achieve more than if thev were working
alone. HCI software is needed to exploit
this potential.

Creating better HCI software will have a
major effect on software engineers them-
selves because their main activity is design-
ing for mostly illstructured problems. In-
telligent computer-support systems and
good interfaces are crucial for improving
the productivity of the software engineer
and for increasing the quality of the soft-
ware product. The cost of hardware and
software in future systems will be small
compared with the cognitive costs occur-
ring in the development, comprehension,

and use of complex svstems. <
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