
:UNCLASSIFIED . " FOR ANNOUNCEMENT ONLY

SECURITY CLASSIFICATION OF THIS PAGE '" '.
Form Approved

PAGE OM8 No. 0704-018r

Ia. REPORT SECURITY b. RESTRICTIVE MARKINGS

Unclassif AD-A226 285 RI MRN
2a. SECURITY CLASSIFI, DISTRIBUTION /AVAILABILITY OF REPORT

FOR ANNOUNCEMENT ONLY

Zb. DECLASSIFICATION, UUWNGRADING SCHEDULE Availability: see 16.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S

ARI Announcement 90-09

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) U.S. Army Research Institute for the

Department of Computer Science Behavioral and Social Sciences

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

University of Colorado 5001 Eisenhower Avenue

Boulder, CO 80309 Alexandria, VA 22333-5600

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

see 7a. PERI-BR

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT

see 7b. ELEMENT NO. NO. NO. ACCESSION NO.

6.11.02.B 74F n/a n/a

11. TITLE (include Security Classification)

Human-Computer Interaction Software: Lessons Learned, Challenges Ahead

12. PERSONAL AUTHOR(S) Gerhard Fischer

13a. TYPE OF REPORT 13. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Journal Article - FROM 88/06 T090/06 1989, January 9

16. SUPPLEMENTARY NOTATION Michael Drillings, contracting officer's representative

Availability: Fischer, G. Human-computer interaction software: lessons learned (see 20.)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Problem solving

I 'Knowledge-based systems,, Proble
Human-computer interactions .

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
> New formalisms and tools have helped to augment human intelligence. Computers, used in

the right way, are a unique opportunity to take another great step forward in order to
create cooperative systems which enable humans to achieve more than if they were working

alone. Human-computer interaction (HCI) software is needed to exploit this potential.
Creating better HCI software will have a major effect on software engineers themselves, since

their main activity is designing for problems which are mostly ill-Ptructured. Intelligent

computer-support systems and good interfaces are crucial in order to ipvrove productivity for
the software engineer, and to increase the quality of the software product. The cost of
software and hardware in future systems will be small compared with the co,-Tnitive costs of
the development, comprehension, and use of.complex systems.

16. Supplementary Notation (continued) -

challenges ahead. in IEEE Software. Volume 6, Number 1, January 1989, 44-52.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[3 UNCLASSIIEDUNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Michael Drillings 202/274-8722 PERI-BR

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

I N TE R FACE SI YL SST EMS

________',., S

Software
Hu man-Computer

Interaction Software:
Lessons Learned,
Challenges Ahead

&wfu Ifwd s , University of Colorado at Bouider

HCI software should 3g riting g od software for human- Softwae d"&% as a
n h a computer interaction is a majoraugnllent humnn W V challenge. This very new field is communication process
In l ies based on three developments: Powerful Having spent the last decade building

the progress that has workstations with bitmapped screens and knowledge-based systems, improving
pointing devices provide the new techno- human-computer interaction, and explor-

befn m d 0 oal th ~logical base. Innovative applications have ing the nature of design processes, my col-
last few years the big drawn attention to the computer's interac- leagues and I are convinced that current

tive, rather than itscomputational, capabili- life-cycle models of software engineering
ties. The complexity of today's software has are inadequate for most of today's comput-

truly cooperative made better communication techniques a ing problems.' They are inadequate be-
problem ving necessity, not a luxury, cause they rest on the assumption that prob-

Good HCI is important for the products lem requirements can be stated precisely at
sylaens. that the software engineer designs and im- the beginning of a project and that com-

plements for users, btit it is equally impor- plete specifications and an implementation
tant for software engineers themselves, can be derived from them through formal
They have to design, understand, and main- maniptilations.

tain complex artifacts that are opaque and Software engineering is a design activity.
very difficult to deal with. Software engi- Most design problems are ill-structured2
neers and programmers have a stake in im- and must be solved by exploration and error
proving today's environments, elimination, considered the foundation of

44 07.0.04-749/439,9,XWISOi 00 © 1i9MF IEEE Software

all scientific activity by the philosopher *Humansare moving targets, not static Knowledge-based facilities have
Karl Popper.3 This is especially true for objects. They start as novices and may re- elaborate, interactive graphical interfaces
HCI software: There are no complete HCI main in this class, but they may also be- supported by specialized viewers and in-
theories. The problem is ill-structured, come casual or expert users. formation-management systems.
and so many of the methods and tools de- HCI software design must start with the To support these systems, we have devel-
veloped for traditional software-engi- human asafix point. Humansdo not have oped a model, illustrated in Figure I. Our
neering problems are of little use for HCI three hands, and our designs must take system architecture reflects two major de-
software. this into account- users cannot keep two partures from traditional approaches:

Ill-structured problems are also charac- hands on a keyboard and one on a mouse. The use of windows, menus, and pointing
terized by design instabilities and the need HCI software should acknowledge human devices widens the explicit communi-
for frequent redesign. The main goal of weaknesses (limited short-term memory cation channel, and shared knowledge es-
HCI software is not to develop a correct and execution errors) and exploit human tablishes an implicit communication
implementation of given specifications strengths (a powerful information-pro- channel.
but to develop an effective solution that cessing and visual system).
corresponds to real needs. Specificatiorn Explicit rhannel, l.arge bitmapped
correctness in this context is not a mean- KlOWIOe gO4m W NCI screens with windows, menus, pointing
ingful concept because it implies a precise Our research has three dimensions: devices, and speech output and input have
specification of intent, which is seldom theury development, engineering con- widened the explicitchannel between the
available. struction, and empirical studies. The goal user and computer dramatically. Tnese

Unless we match our paradigms and of theory development is to understand technologies are necessary but by no
methods to ill-structured problems, the how human cognition and design capa- means guarantee good HCI.
implementation disasters of the 1960s will bilities result from an interplay between Exploiting these technologies to benefit
be succeeded by the design disasters of the mental processes and external computa- the user requires a deeper understanding
1980s. We need effective exploratory pro- tional and memory aids. The purpose of of psychological principles - for ex-
grammingenvironmentsand rapid-proto- engineering construction is to design and ample, the difference between recall and
typing tools that support iterative, evolu- develop the desired artifacts. The empiri- recognition memory, by which menu sys-
tionary design. cal research examines how people per-

Thebest paradigm for creating HCI soft- form tasks using the artifacts in a natural
ware is a communication model' and a setting.
rapid-prototyping approach that supports The prim;rv application of our research Knowledge about

-problem domainthe coevolution of specification and im- has been the creati-n of knowledge-based communicationpcses
plementation.4 Communication between HCI software to run on high-functionality * communication partner
customers, designers, and implementers systemsin support of cooperative problem - problems of the user
and between humans and the knowledge solving, and tutorial intervention
base that descnbes the emerging product /
is crucial. Architecture. Effective HC1 is more than uma n - 11 Knowege

Our work at the University of Colorado creating attractive displays: You must give lknowledge l'4 Implicit base
at Boulder centers on knowledge-based the computer a considerable body of mmlicion
systems that enhance and support com- knowledge about the world, users, and . channel I
munication. When we write HCI software, communication processes. h
we define what the computer will do and However, the use of knowledge-based .Q
what humans will and can do. We also systems today is limited severely by the
make assumptionsaboutwhat theywant to communication bottleneck in the narrow Exlicit
do. It is this human element that distin- channel between the user and the system. communication
guishes HCI software: A good user interface is vital to a knowl- channel

@ Humans are individuals with different edge-based system, but it has little use if its
talents, goals, knowledge, and prefer- sophisticated graphical facilities lack rich, FIgure 1. Architecture for knowledge-
ences. supporting information structures. based human-omputer interaction.

January 1989 45

tems should be evaluated. We must also 4. Common problems and in- lems and their tasks. To do this we must
take into account the nature of different structional strategies. If the system is to be "teach" the computer the experts' lan-

tasks and the user's abilities, a good coach or teacher and notjust an ex- guages by endowing it with the abstrac-
The design space of the explicit channel pert, it must incorporate instructional tions of different application domains.

is huge, largely unstructured, poorly un- strategies based on pedagogical theories The principle of human problem-domain

derstood, and inadequately supported by and exploit the knowledge contained in its communications abstracts the important
tools. It should therefore come as no sur- model of the user. For the same reason, an operations and objects of a domain and
prise that even with improved technical intelligent support system should know builds them into the computing environ-
capabilities many HCI systems are still when to interrupt a user. ment. This lets the user operate with per-
modeled on teletype interaction, sonally meaningful abstractions. It is im-

Object-oriented architectures. Our sys- portant not to lose the semantics of tl'c

Implicit channeL When communication tems use an object-oriented architecture, domain by reducing it to oversimplified
is based on shared knowledge structures, it which has been shown to be well-suited to data structures.
is not necessary to exchange all informa- interface construction. In this model, the WLisp, our user-interface toolkit,6 and
tion between the user and system expli- user communicates with the system, which two systems called Framer and Crack sup-
citly. Figure 1 lists four knowledge is represented on the screen as a world port human problem-domain communi-
domains necessary for implicit communi- composed of active objects. Each screen cation in the areasof interface and kitchen
cation: object has its visual representation (which design. People can use these systems to do

1. Problem domain. Intelligent be- defines its appearance and its relation to programming by constructing artifacts in
havior builds on large amounts of knowl- other screen objects) and a functional role the domain instead of writing statements
edge about specific domains. This knowl- (which governs its behavior), in a programming language. Our experi-
edge constrains the number of possible The principles ofobject-orienteddesign ments have shown that people who use
actions and describes reasonable goals - inheritance, flexibility, extensibility, these environments had a sense ofaccom-
and operations. We can infer the user's and modularity - support new program- plishment because they created their own
goals and intentions if we understand the impressive version of something that
correspondence between the system's works but was not difficult to build.
primitive operations and the concepts of Framer and Crack, described in the box
the task domain. If the computer has a The pdrid ple of on pp. 48-49 are design environments
model of the problem domain's abstrac- human problem idomain (with embedded construction kits): They

tions, communication between the communiaffon absfracts proideaPtofbuildingblocksthatmodel
human and the problem domain is the domain's operatons a problem domain. The building blocks
feasible. define a design space (the set of all designs

2. Communication processes. The in- an11d ae ftadb l dS that can be created by combining these
formation structures that contro! commu- them itOL h cOiiMiP"1 blocks) and a design vocabulary. The
nication should be made explicit so the environment, advantage of design environments is that
user can manipulate them. Safe, explora- they eliminate several prerequisite skills,
tory environments should be supported thus letting users spend much more time
(for example, with undos, redos, and his- ming methodologies that encourage de- working in their area of interest.
tory lists). User and computer should signing for reusability and redesign, such The disadvantage is that these design en-

communicate by writing on a shared dis- as differential programming and pro- vironments are effective in only one area.
play or by referring to something already gramming by specialization and analogy. But this limitation affects all knowledge-
on the display. This interreferential, I/O Object-oriented architectures provide bam-d systems, and human expertise isalso
model (for example, as supported by the substantial support for interface design. restricted to specific domains. The chal-
Symbolics presentation system) supports lenge for computer systems is to create
dialogue rather than issiting isolated mes- Domain ommunication. Most users are these design spaces for many domainsand
sages. experts in some problem domain, to organize this huge set so users can find

3. Communication partner. Theuser of whether it be physics or music. The com- the abstractions they need.

a system does not exist; there are many puter is a generalist; its generality means it
kinds of users, and an individual's require- can support all knnwledge workers. But Reuse and redesign. Software environ-

ments change with experience. Adaptive domain experts are not interested in ments must support design method-
systems change their behavior according learning the computer's languages; they ologies whose main activity is not only the
to the needs of different users. Unless the simply want to use it to solve problems and generation of new programs but also the
system has a model of the user, it is im- accomplish tasks. maintenance, integration, modification,
possible for it to relate descriptions of new To shape the corr, u-, r into a truly use- and explanation of existing ones.
systems to the existing knowledge of in- ful medium, we have to make it invisible A construction kit with many general
dividual users. and let users work directly on their prob- building blocks supports reuse and rede-

46 IEEE Software

sign by providing stable abstractions. The not understand which commands are software to take advantage of the new
user-interface tools of Smalltalk, the Lisp basic and which are advanced, nor do they possibilities.
machines, and WIjsp have undergone a understand that the options represent * Use user-interface construction kits.
long evolutionary development. They are different, generalized interaction styles. User-interface management systems' pro.
basedonabstractionsaboutthedomainof * Users do not understand the results vide graphical primitives and tools to
interface design and constitute a partial that tools produce. Visualization toolsand specify dialogue structures, but they limit
theory of one class of user interfaces. The explanation components address this information exchange and separate the
evolutionary development of such a problem. user interface from theapplication.Thisis
theory, driven by tests of the abstractions' * Users cannot combine, adapt, and a reasonablc approach for some prob-
validity in several applications, is a prereq- modify tools according to their needs. lems. However, for the kinds of problems
uisite for the development of a systerri that Even after all the other problems are over- we try to solve, such as intelligent support
supports reuse and redesign. come, in many cases the tool does not do for human problem-domain communi-

However, standard programming lan- exactly what the user wants. The user cation, a strong separation between inter-
guages ofler only a few primitives for HCI needs system support to carry out con- face and application is not feasible. In
(read, write, and format). These primi- strained design processes at the user's these systems, the user interface must have
tives are conceptually based on a linear operational level, extensive access to the state and actions of
stream.notatwo-dimensionalscreen.Soit We have constructed design environ- the application system. For problems of
is a huge effort to build the HCI part of an ments5 to support the modification and this kind, user-interface construction kits
application because the designer has to construction of new systems from sets of are more appropriate.
build it from low-level components. predefined components. In contrast to User-interface construction kitscan pro-

On the other hand, functionally rich en- simple construction kits, our design en- vide powerful environments for rapid pro-
vironments offer hundreds and thou- vironments incorporate knowledge about totyping of a large class of interfaces. They
sands of abstractions,6 substrates for HCI which components fit together and how provide many building blocks for con-
(different classes of windows, support for they do so, and they supply critics that rec- structing high-quality interfaces at a rela-
interreferential 1/O), and screen-layout tively low cost, and object-oriented ar hi-
tools. Such systems reduce the size of the tectures can supply uniformity,
application system substantially. The extensibility, and incremental develop-
major cost of such systems is that the de- The succss of 1e3w ment.
signer must learn and understand the ab- ColIputFr yStlls Is User-interface construct.on kits come
stractions, but this cost is incurred only judged /ass on p ocess close (within their scope) to our notion of
once per designer. e e and memory size human problem-domain communi-

Iatelligent s t s s Me cation. Users familiar with problem
Inteligent support systes. High-func- anddomains but inxperienced with comput-

tionality systems are not without prob- offI M'i TImmaUfII m ershavefewpr nblemsusingthesesstems,
lems, however. Our informal empirical Capabllltes, while cony, iter experts unfamiliar with
studies have shown that: the pro t1 ,- in domains could not exploit

* Users do not know that tools exist. It is their, ower.
very difficult for a novice or casual user to ognize errors and inefficient or useless T~ie major shortcoming of large con-
build a mental model of the capabilities of structures. Our environments can deal struction kits is that they do not help the
a high-functionality system. Without such with multiple representations of the de- designer construct interesting and useful
a model, users are unaware of tools that sign. artifacts in the application domain. In
might be relevant to their tasks. A passive Crack, for example, it is not enough to
help system is no help in this, because to Lessons Iarnd provide design units - kitchen design is
ask a question the user must know enough The success of new computr, systems more than placing appliances. Design en-
to know what is not known! Active help sys- (the Macintosh may be the best example) vironments and critics are needed to help
tems, critics, and browsing tools6 let users isjudged less and less on pr ocessing speed users construct truly interesting arufacts;
explore a system and point out useful in- and memory size and mol e and more on they surpass construction kits in that they
formation, the quality of communication capabilities, incorporate useful, general knowledge

e Users do not know how to access tools. We have learned that, to be successful, about design.
Knowing that something exists does not HCI software mist: 9 Provide exploratory environments.
guarantee that you know how to find iL 0 Take advantage of technology. Mod- Users do not knowwhat theyA-ant, and de-

* Users do not know when to use tools. ern work, rations provide new technologi- signers do not understand what users
While each system feature may have a sen- cal possibilities. Yet many current user in- need or will accept. The only viable
sible design rationale from the system terfaces are still teletype-oriented. It strategy for HCI software is incremental,
engineer's viewipoint, this rationale is fre- requires a huge design and imple- evolutionary development. Initial systems
quently beyond the user's grasp. Users do mentation effort to reconceptualize all must be built to give users something con-

47January 1989

Ramer and Crack
Framer and Crack are design environments. Framer suppor4,, the Empirical observations indicate that users are often unwllingto leam

construction of window-based user interfaces and Crack supports moreabouta systemthantheyneedtosolvetheircurrentproblem.To
cooperative kitchendesign. Both systemsincorporatvandillustratethe cope with new problems as they anse, a critc must generate advice
research issues outlined in this article, that is tailored to the user's needs and the current situation. This re-

The basic building blocks are application-dependent abstractions moves from users the burden of having to learn new things in neutral
that support human problem-do",ain communication. Framer and settings when they do not know if they will ever use them.
Crackincorporate intelligent support systems and offerdifferentdesign Figure C shows a screen from Crack,' a critic system that helps
strategies such as design with basic building blocks and redesign of users design kitchens. Similar to Framer, it provides a set of domain-
prototypical examples. specific building blocks and has knowledge about how to combine

them into useful designs. It "looks over the shoulder" of users as they
Framer. Figure A shows a screen from Framer, an enhanced ver- design. If it discovers a shortcoming in the design, it offers criticism,

sion of the Symbolics Frame-Up tool. Framer offers the user a palette suggestions, and explanations and helps users improve the designs
of domain-oented building blocks, and supports direct-manipulation through cooperative problem solving. Crack's objective is to blend the
interaction in the work area. This visual interaction style is especially designer andthecomputer into aproblem-sovingteamtoproduce bet-
appropriate in a domain in which visual objects are designed from ter designs than either of them could working alone.
visual parts.

In addition to serving as an application-oriented construction kit, User control. Critics in Crack are state-driven condition-action rules
Framer has a small rule base with design knowledge about relevant that are triggered when nonsatistyng partial designs are detected.
aspects of window-based user interfaces. The Praise command tells a These rules are actvated after each state change. State changes are
user the positive aspects of a design; the Suggest Improvements coin- all instance creations of design units and of any design-unit manpula-
mand crtazes the design: the Explain option gives some rationale for tion (like move, rotate, and scale). An unsatisfactory solution is an ar-
the suggested improvement. rangement of design units that violates one or more of the relations

Framer includes a catalog, which contains several prototypical de- between them.
signs that can be praised and critiqued. When brought into the work Crack is not an expert system that dominates the design process by
area, the user can modify them and use them as a starting point for re- generating new designs from high-level goals or resolving design con-
design. Prototypical solutions that can be changed and refined through flicts automatically. Users control the system's behavior at all times and
redesign are important ennchments fordesigners and enlarge their de- can modify its knowledge base if they disagree with the criticism.
sign possibilities Users can store their designs in the catalog. Crack lets the user control the firing of critics at three levels: AN cri-

Without Framer, the user would have to wnte the program in Rgure tfquing can be turned on or off, individual critics can be enabled or dis-
B to generate the screen layout in Figure A. Framer generates this code abled, and specfic relations in a critic can be modified. When crtiquing
automatically. An experienced user can then modify the code. is turned off (the default), Crack acts like a construction kI with no de-

sign knowledge. When critiquing is enabled, all cntics are active. An in-
Crack. Cntics are another type of intelligent support system. Cntics drvidual critic can be disabled if a user does not like its criticism or if its

let users pursue their own goals, intervening only ii they discover the knowledge has been assimilated and is no longer needed. At the
solution is. according to their knowledge, infenor. lowest level, the different relational tests within a critic can be replaced.

Framer

to

JI. Tb- .tttos

- - -

Ftu. A. A screen from Framer, a design environment for window-based interfaces.

48 IEEE Software

For example, if a user doesn't want to have the Sink in front ot a-
dow, the in-front-of relation can be replaced with another relakin. sui& ? A ',9.r .PX,RAM F PJE WORK EXAMPLE1
as no-relation or close-to. C,4AAC TEER

Appropriate appocations. The critqung approach is best sule Io('inputT ecro coptt
il-defined problem areas where the goal is to satisfy, rather than op- KBOD ACCELERATOFI P NIL)
timize, a solution. Kitchen design (as an area of architectural design) is STATE VARIABLES NIL
stlt an ill-defined problem despite the existence of some well-estab-
lished design principles. Architects do not try to find optimal solutions PANE S

(PANEl1 DISPLAY
to design problems but rather make trade-offs within a solution spc (PANE-5 DISPLAY)
that is bounded by external constraints. (PANE-4 DISPLAY)

Critics can be classified as: (TITLE TITLE HEIGHT-IN-LINES 1
-Active or passive. Critics can activate themselves when fthy detect . EDISPLAYAFTER -COMMANDS NIL)

))menu bar) :COMMAND-MENU MENU-LEVEL
an unsatisfactory design or they can be passive and wadt until the user :TOP-LEVEL)
asks for an evaluation. Active criticism early in the design makes users (PANE-3 :DISPLAY))
aware of their unsatisfactory design when the mistake is easier to cor-
rect. But users may find it a nuisance to have someone continuously :CONFIGURATIONS
critique them without giving then,, a chance to develop their own work. I (DW:MAIN
A passive critic lets the user request an evaluation when they have (:LAYOUT (DW::MAIN :COLUMN ROW-i TITLE

completed a partal design. Active critics seem to be suited forguiing)menu 1 :Rr) PAEAINE-3)PAE-)
novice users; passive critics seem to be more appropriate for interme- (:SIZES
diafe users. I DW:JIAIN (TITLE 1I:LNES)

-Reactive or proactive . Crack'scritics are reactive: They make coin- (Imenu bar) ASK-WINDOW SELF
ment abut hat he serhas one A roativecriic laystherol ofSIZE-FOR-PANE Imenu ball

ment abut hattheuse ha doe. Aroatvecriic laytherol of:THEN (ROW-i :EVEN)(PANE-3 :EVEN))
an adviser by suggestng what the user might do or proposing criteria (ROW-I (PANE-i :EVEN) (PANE-5 :EVEN) (PANE-A E VEN))))))
which the user should consider. For example, a proactive critic in Crack I
could highlight the area where a new design unit could be located in a Figao 0. The Lisp program for the screen layout in Figure A.
partially completed design.

C.Positive or negative. Critics can either praise a superior design or th eerfo dsacbtw ntesikrngndergrtr)s
cmplain about an interior design. Critics in Crack are negative: They h etrfotdsac ewe tesnrne n eneao)a

complain only about unsatisfactory configurations and do not praise a more global critic becausedi is concerned with a Larger portion of the
especially useful or interesting configurations. Human critics are both design: several appliances. A kitchen crit is a global critic: It is con-

positive and negative. cemed with the look of the entire kitch-en.
.Local or global. A critics granularity determines whether it is Reference

onented toward focal aspects of a partial design or global aspects of 1. G. ischer and A. Morch, 'Crack: A Cntiqiung Approach to cooperative
the total design. A sink critic is a local critic because it is concermed with Kitchen Design.* Proc. Int7 Cont Ir-nelhgent Tur'onng Systemns. ACM. Now
a low-level design unit: a sink. A work-triangle cr-itic (the work triangle is York, 1988. pp. 176-185.

Ore.0.Ol1tion S..I.d L..;th ActusI L..th

'1 DSc.].: 1/4- . -0 D-19.1 Sit..

flU p.t. *m-
N

E-

*SUGGESTION CIltlq., CRITC WIND3OW

r iaeP0-nt7fls::: ~ ~ ~ ~ F :-1 T. *01

FigweC. Ascre*en frmrak ItctINA syte for kI deign.

* , N~ tIA~49

Janar 1989T.-th.h,10 h~ttte.. ~u,..

crete to react to.This strategymust be sup- quest for factual information. Novices ing good HCI software? Because the basis
ported by exploratory programming sy,- may not be able to articulate their ques- of such a book has yet to be created by
tems that support the coevolution ofspeci- tions without the experts' help; the ex- cognitive science. We have to extend the
fications and implementations. perts' advice may not be understood with- existing knowledge base for HC. Card,

Prototypes replace anticipation (how out further explanation; each may Moran, and Newell' have provided some
will the system behave?) with analysis (how hypothesize that the other misunder- methodologies and principles for the de-
does it actually behave?), which is much stood; experts may provide information sign of systems that support routine cogni-
easier to work ith. Most major computing they were not explicitly asked for. Oive skills whose time spans fall within sec-
svstems have been developed with exten- Natural communication needs a proper onds. But these quantitative design
sive feedback from their actual use. In this user interface to support it, but it is not re- methods are not relevant to complex sys-
way improvements are made in response stricted to the user interface. The underly- tems, which may take months and years to
to discrepancies between a system's actual ing knowledge base must contain the learn and understand.
and desired states, needed knowledge, and it must be struc- An interdisciplinaryapproach isneeded

We know that writers with access to edi- tured correctly. to increase our HCI knowledge base. Con-
tors and formatting tools are increasingly # Helptheusermakeintelligentchoices. cern for the human must equal concern
willing to modify their work. Intelligent Communication can be described in for the computer. A theory of human
support tools in exploratc y program- termsofthespeakerandthelistenerroles. cognitiveprocessesshoulddrivethedevel-
ming environments will lower the cost of The speaker presents information, per- opment of new communication capabili-
making changes, so designers will also haps in the form of a question or as a re- ties. We need design principles for corn-
start to experiment - thereby gaining ex- quest fc r action, which the listener tries to prehensible systems that are not restricted
perience and insight leading to better de- understand. In general, the listener must to the evaluation and assessment of ex-
signs. isting HCI systems. If humans are the fix

Explorator% environments also support point of future HCI systems, the designs
reuse and redesign. But anyone who must be based on cognitive principles
thinks that reuse and redesign comes for Concem for OW human right from the beginning.
free is wrong. If reuse and redesign are luSt equl coNern' ft
great ideas and if they are easy to master, #W coMputr. A UWoIY Challenges a d
whs have the% had limited success so far in of human co 'lUve User-centered designs, comprehensible
software development? Obser-ation ofde- proceses sould drve systems, intelligent support s ystems, and
signer, dealing with complex software sys- M ew communication powc..u) tools to augment human intel-
tems has revealed one reason: These ligence are the main goals of HCI design.
methodologies are not adequately sup- dlevOepm.It& The software design community has ac-
ported. It is too expensive to change a Svs- cepted these goals as relevant, and con-
tern or explore design alternatives in most siderable progress has been made over the
software production environments, be the more intelligent agent because he last fewyears. But bigchallengeslie ahead:

9 Use prototypes. Static specification must not only understand a situation as * Focus on innovation. Part of our re-
languages have little use in HC! software such but also understand how the speaker search effort should be directed toward
design. First, detailed specificationsdo not presents it. demonstrating which current systems are
exist. Second, the interaction between a In HCI, the user is the more intelligent good or bad because this gives us insight
svstem and its tiser is highlh dynamic and agent. Therefore, giving the user the ap- into the design criteria for future systems.
aesthetic, aspects that are difficult, if not propriate cues is the essence of most HC But the main challenge lies in developing
impossible, to describe with a static Ian- designs: The context provided by win- new, innovative systems.
guage. Successfil HI systems shotuld let dows, menus, spreadsheets, property Restricting our effort to evolutionary
users play with the prototype systems and sheets, and form systems lets the user improvement of current systems ignores
discuss their design rationale. A protontpe choose the appropriate next step. the history of HCI over the last decades,
makes it much easier and productive for Because humans and computers are not duringwhich HCI has made revolutionary
designers and users to coopcate becatuse alike, designing HCI software isaproblem steps forward. If the cost of developing
tisers do not have to rely on written specifi- not only of similating human-to-human HCI software is to be reduced, more corn-
cations, which do not indicate an inter- communication but of engineering alter- ptiuer support must be supplied to the de-
face's quialities. natives in the domain of interaction-re- velopment process. Current development

e Promote natural communication. Nat- lated properties. Humans do not have a occursnot in the computerbut in people's
ural communication is more than the abil- menti on their forehead of the commands heads; it is not documented and therefore
itv to communicate in natural language: it they can exectte in a certain context. cannot be analyzed.
is the ability to engage in a dwlogue. When * Extend the design knowledge base. * Perform real evaluations. If the pri-
human novicescommtinicatewith human Why hasn't someone like Donald Knuth mary approach to HCI is incremental and
experts, much more goes on than just a re- written a book with prescriptions forbuild- evolutionary, evaluation of existing "vs-

50 IEEE Software

tems is an important activity. The chal- portsystemstojustsolveaproblemorpro- human communication but that, when
lenge here is not to restrict our ealuations vide information. The user must be able to the inevitable troubles do arise, the same
to laboratory experiments but to test real understand and question their criticism. resources are not available for their detec-
users doing real tasks in real settings. Ulti- We assume that users will not ask a pro- tion and repair. Errors should not cause a
mate criteria are usefulness and usability gram for advice if its expertise cannot be breakdown of the interaction; the% shouid
for real-worl i purposes and therefore examined. Designers must provide win- be regarded as an integral part of the
must be tested in the real world. Validation dows into the knowledge base and reason- process of accomplishing a task. The goal
and verification methods from other soft- ing processesofthese systemsata level that of a cooperative endeavor is not to find
ware domains have limited use in HCI. a user can understand. The users should fault or to assess blame but to get the task
Formal correctness is crucial, but it is by no be able to query the computer for sugges- done.
means a sufficient measure of the effec- tions and explanations, and they should * Recognize design conflicts. As is true
tiveness and success of an HCI system. be able to modify and augment the critic's for most real-world design tasks, there is

a Accept change. We have to accept the knowledge. no optimal solution for HCI, only trade-
empirical truth that for many systems re- An evaluation of Crack demonstrates offs.Achallengeforthefutureistoresolve
quirements cannot be stated fully in ad- the relev-ance of this approach. Crack was these design conflicts. In our research ef-
sance.- In many cases, thev cannot even be used by, an architectural designerwho con- forts, we will concentrate on the following
stated in principle because neither design- sidered the cooperative, user-dominated trade-offs:
ers nor users know them in advance. The approach to be its most important feature. 0 How do we balance the effort and the
development process itself changes the He felt that this feature set Crack apart large training costs necessary for learning
designers' and users' perceptions of what from expert-system design tools that often a complex interface with the power of ex-
is possible and increases their insights. We reduce users to spectators. In the current tensive functionality? It is important that
have to accept changing requirements as a we explore techniques that reduce the
fact of life and not condemn them as a cognitive costs (such as learning on
product of sloppy thinking. We need demand and human-problem communi-
methodologies and tools that support and We have to wcW cation).
coordinate the process of change. chang mngrequirement 0 How do we make computer systems

@ Tailor software. One crucial shortcom- as a fact of lIfe and it useful and usable at the same time? Useful
ings of computers is that they don't sup- condemn them as a computers must be complex and have rich
port the notion of accomplishing a task or product of sloppy func'-nalit% because thev must model the
purpose that the user chooses. To do so thinking TO018 fS oUd abstractions of many domains, but it is

would require software that is truly soft, hard to make complex s'stems usable. In-
which means that the behavior of a sNstem SUPPIt Ch f g. telligent support systems promise to par-
can be changedwithout major reprogram- tiallv resolve this design conflict.
ming and without specialists. This require- * How do we achieve high speed and
ment is critical because predesigned sys- version of Crack, we have deliberately comenience of use (power) for the expe-
tems are too rigid for problems whose avoided equipping the system with its own rienced user and at the same time achieve
nature and specifications change and design capabilities. Wh? Because users in- ease of learning and use for the novice and
evolve, crease their knowledge and indepen- the casual user? Adaptive and adaptable

This goal does not imply transferring the dence byworking with systems that do not systems will more closely accommodate
responsibility of good system design to the do the work for them but that enable them the needs of the individual user
user. It is probably safe to assume that nor- to do it themselves. Too much assistance * How do we separate dialogue manage-
mal userswill never build tools of the qual- and too many automatic procedures can ment from the application (toenhance re-
itva professionaldesignercanachieve. But reduce users' motivation. usability and uniformity) and vet retain
a question for future research is- Should 0 Improve cooperative problem-s)lving application-specific semantics? User-inter-
we design the HCI part of a system corn- systems. Current intelligent support sys- face toolkits, UlMSs, and human problem-
pletelv or should we develop metasvstems tems like Framer and Crack are one-shot domain communication provide differ-
that let users alter the HCI according to affairs. They give advice, but that advice is ent answers to this question.
their needs? Should systems be adaptive- not a starting point for cooperative prob- * How do we ensure the quaht of HCI
should they change their behavior based lem solving. Human advisory dialogues" software and minimize the costs of its de-
on a model of the user and the task (the are judged successful when they allow velopment? Reuse and redesign will be an
idea behind our critic systems) - or shared control of the dialogue. Our svs- absolute necessity for dealing with this de-
should systems be adaptable bs the user tems should be designed to manage errors sign conflict.
(as thev must be to support reuse and rede- and trouble. No system can be designed to * How do we fit new systems comfortabh,
sign)? be totally foolproof. The problem in HCI into people's lives and at the same Ume

* Provide a window into the knowledge is not simply that difficuhlies in communi- dramaticall , change the way thes lise and
base. It is insufficient for intelligent sup- catingarise that donotoccurin human-to- work? Incremental learning needs to be

51January 1989

enhanced to expose users to systems that 3. KR. Popper, 77 woiof Satific Dsoviry,
have a low threshold (it is easy to get Harper & RowNew York. 1968.
started) and a high ceiling (the limitations 4. W.R. Swartout and R. Balzer, "On the lnevi-

of the systems do not show up immedi- table Intertwiniig of Specification and Im-
atelv).plementation," Comm. ACM, July 1982. pp.
atelv).438-439.

5. G. Fischer And A.C. I &mke, "ConstrctionN w formalisms and new tools have K its arid Design Environments: Steps
helped is augment human intel- Toward Human Problem-Domain Conm-

N i gence. (uimpirters uised in the munatol," /itmrn-Compuler Inleniim,

righitwas tre atuque opportunity to take Not. 3, 198h, pp 179-222. Gerhard Fischer is professor of computer
anohertocrete 6. G. Fisher, Oigtritie Viesw of Reuse anid science and a member of the Institute of

aohrbig step forward,.ocet Redesign,' /II 1SqftttwreJul% 1987, pp 60 Cognitive Science at the Lnivrersits oif
coo~peratise systems in which humans can 72. Colorado at Boulder. Fischer direct% the tini-

achieve more than if the% were working 7. B. Itetts ei al., 'Goals anid Objectives for sersits's Knowledge-Based Sssiems anid
aloe. CI oftar istieI eed o xplit scihieri~c oftare")mplerGrah- Human-Computer Co~mmunication Research
aloe. CI ofts-4e i nededto xplit serIntrlae ~ftwre omp~ln f~ctfh. Group.

this potential. 'i. April 1987, pp. 7.3-78. His research interests include artificial intel-
Creating better HCI softw-are will have a 8. S.K Catrd. I.P. Moran. arid A. Newell, The ligence, human-cnn'puter communication,

major effect on software engineers them- M'i)*tr~wigi (Y Iittman-&J mftilpr Ininaizon cognitive science. And software engineering;
selsebecase teir ain ctivty i desgn- asiteice Eribatri Assoic., Hillsdale, NJ., he is especialk iiitriested iii bringing these re-sevsbcuetermi ciiNidsg- 19831. watcuh disciplines together to bunild coopria

ing for mostly ill-tructured problems. In- 9.~ arl nIj MrKeidrev, "Interface- tise prirhlemn-sositig systemis.
telligent computer-support systems and Design ImsreslforAdsice-GisinrgExpert Ss Fischer received PhD in comrpterscieice
good interfaces are crucial for improving terns, (.onm. ACM, Jan. 1987. pp. 14-3 1. from the tUniversitvof Hambutrg.

the productivitv of the softwa .re engineer -Dp. n~rio)odi.arpi)and for increasing the qttalitN of the soft- Adulrtes qurestioins to Fischer at (ornpiu-r S(ivnice et.Lsrivo Clrd.CiiisP

ware produict. The cost of hardware and 430. Bulder, CO 80309: CStiet getirrAl~tilder.niloradii.edtI

softwsare in future systemis will he- small
compared wi~th the cognitive coists occutr-
ring in the development, comprehetnsion,
and use of complex systems. 4

Acknowledgments
I thank iris fo rmenr co lleagues arid Stutdent~s

in the ii formn project at the IUn isersi t of Stut t-
gartarid ms current colleagues and students at
(he Urnserstttof Colorado. especialls Andreas
Lenike anid Charles Hair, who designed anid
des eloped Framer; Anders Morch. who de-
signied and deseloped Crack; Raymond
McCall, who contributed toi the evaluation of
C;rack atid who critiqued an earlier sersion of
thisartirle; Janet Grassiaand Francesca loine.
who helped edit the article; anid Heiniz-Dieter
Boecker. Hal Eden, Fran/ Fabian, Thomas
Mastaglio, Helga Nieper-Lemke. Christian
Rathke. arid Curt Stevens. whio all hav~e made
nialor cntribtiins to the research described
here.

This research wsas supported iii part bs Armrr
Research Insti grant MDAWX)3-80-C0 43.
US West Advanced Tec h tologies granti
0497.12,0389B. anid a Software Research.sso-
ciates (Japean) grant.

References
I. G. I'mu hi arid .. Schneider, -iuioiwledge-

Based 0 itniru icatir it Pri xesses in Soft-
ss~rr Eiigineerintg." Mr. .'i'rvh Int I Co)nj

SuhiiU-i.(S Press. 1L0%sAlarmrio%, Calif.,
1984. pp. 358-368.

2. H.A. Simon., .%OrVnuS (,/ iteArificwi. MIT1
Press. (.amrbridge. Mass.. 1981.

52 Copyright @- 1989 The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from IEEE SOFTWARE,
10662 Los Vaqueros Circle, Los Alamitos, CA 90720

