
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Ln

000IN

DTIC
SELECTES7 D

THESIS
STATIC SCHEDULERS

FOR
EMBEDDED REAL-TIME SYSTEMS

by

Murat Kilic

December 1989

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited.

Unclassified
security classification of this pace

REP'ORT D)OCUMENTATION PAGE
I a Report Security Classification Unclassified l b Restrictive markings

2a Security Classification Authoritv 3 Distribution Availability of Report

2b Declassification Downigrading Schedule Approved for public release: distribution is unlimited.
.4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

na Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postaraduate School if applicable) 52 Naval Postgraduate School
o~c Address i ry,. state, and ZIP code) 7b Address (ciry, state, and ZIP code)
Monterev. CA 93()43-5000 Monterey, CA 93943-5000
Sa -Name of Funding Sponsoring Organization Sb Office Symbol 9 Procurement Instrument Identification Number

8c Address rciy. state, and ZIP code) 10 Source of Funding Numbers

__Program Element No IProject No ITask No I\\ ork tUnit Accession No

11 Title . includr s-urifY claTsz!ication iSTATI'C Sc! EDULARS FOR EMBEDDED REAL-TIME SYSlFMIS
2 Persora! AuthorWs Murat Kilic

13 a -I ;pe of Rep:.rt 11) 1 ime Co~ered 14a Date of Report (year, nionih. dav) 14; Pace Court1
Master s Thesis Fr.om 10 December 1999 159
16 Supplemeittav No-.ation The viws' expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the D~epartmnent of Defcnse or the U.S. Governent.

I-Co"ati Codes IS Subject - erins ic;tru on reise if necessary anid ' den t' /v ft lo~- niumber;

Field C, rou p Sukgroup _ Static Schedulers. Single Processor Schieduling., Nonpreemltive Schedul-ing. Implementation
of Static Schedulars -

K19 Abstract iccn:!n;ue on rei cr~c i niecessarv a?,d idenriA c b hck nuber;
Because of the need for havina efficient scheduling algorithmns in large scale real time systems, software engineers put alot

of effort on developing schedulina algorithms. with high performance. But algorithms. developed upto now, are not perfect
fotr all cases. At this stai~e. instead of hie one sched-uling algorithm in the system, more than one different algorithm wh-ich
will ti- to find a feasible solution to the schedulfig problem according to the initial properties of tasks wvould be very useful
to reach a hig-h performance scheduLing for the system.

This re"port presents Ihe effo~rt to provide static schedulers for the Embedded Real-"Time Systems with single processor
using Ada programaming2 language. Th needn pemtbeagorithms, used used in three static schedulers are run
accordin2 to the tin-ri constra'its and precedence relationships of the critical operators extracted from highi level source
program. Thle final schedule guarantees that tim-in e constraints for the critical jcbs are met. The priary goal of this report
is to support the Computer Aided Rapid Prototvping for Emnbedded RcalTime Systems so that we determnine whether the
sy-stem, as desipned. meets the required tirnine Specifications. Secondary goal is to demonstrate the significance of Ada as the
implementation language and a modeling tool for a prototvpIna "Nstem.

22a Name of Respoinsible Indi%;cdual 22b Telephone (include Area code) 22c Office Symbol
Vno R. Kodres (408) 646-2197 Code 52K-r

DD f ORM 1473.84 MARZ S3 APRZ editin ma. be used until exhausted security classification of this page'
All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.

Static Schedulers

for
Embedded Real-Tune Systems

by

Murat Kilic

Lieutenant J. G., Turkish Navy
B.S., Turkish Naval Academy

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1989

Author: 7 w___________________________
S / / Murat Kilic'

Approved by: 0e, f -A '

Uno R. Kodres, Thesis Advisor

Lu* eo Rpe

Robert B. McGhee, Chairman

Department of Computer Science

ii

ABSTRACT

Because of the need for having efficient scheduling algorithms in large scale real-

time systems, software engineers put a lot of effort on developing scheduling algorithms

with high performance. But neither algorithm developed upto now is perfect for all cases.

At this stage, instead of having one scheduling algorithm ip the system, more than one

different algorithms which will try to find a feasible solution to the scheduling problem

according to the initial properties of the tasks would be very useful to reach a high

performance scheduling for the system.

This report represents the effort to provide static schedulers for the Embedded Real-

Time Systems with single processor using the Ada programming language. The

independent nonpreemptable algorithms used in these static schedulers are run according

to the timing constraints and precedence relationships of the critical operators extracted

from a high level source program. The final schedule guarantees that timing constraints

for the critical jobs are met. The primary goal of this report is to support the Computer

Aided Rapid Prototyping for Embedded Real-Time Systems so that we will determine

whether the system, as designed, will meet the required timing specifications. Secondary

goal is to demonstrate the significance of Ada as the implementation language.

AooeSsion For

NTIS GRA&I
DTIC TAB C1
Unannounced c'0
Justification

By
Distribution/

Avellability Codes
iii I 'Avail and/or

Diat Speoial

1' I|

TABLE OF CONTENTS

I. INTRODUCTION I

A. BACKGROUND I

B. THE STATIC SCHEDULER 2

C. OBJECTIVES 3

D. ORGANIZATION 3

II. PREVIOUS RESEARCH AND SURVEY OF

STATIC SCHEDULING ALGORITHMS 4

A. PREVIOUS RESEARCH 4

1. C A PS . 4

2. PSD L . 8

B. SURVEY OF STATIC SCHEDULING ALGORITHMS 9

1. THE FIXED PRIORITIES SCHEDULING ALGORITHM 9

2. THE HARMONIC BLOCK WITH PRECEDENCE CONSTRAINTS

SCHEDULING ALGORITHM 9

3. THE EARLIEST START SCHEDULING ALGORITHM 15

a. PREEMPTABLE VERSION 15

b. NONPREEMPTABLE VERSION 17

4. THE EARLIEST DEADLINE SCHEDULING ALGORITHM ... 19

5. MINIMIZE MAXIMUM TARDINESS WITH EARLY START

TIMES SCHEDULING ALGORITHM 19

iv

6. THE RATE-MONOTONIC PRIORITY ASSIGNMENT

SCHEDULING ALGORITHM 23

C. SULvM MARY 26

II. IMPLEMENTATION OF STATIC SCHEDULERS 27

A. ASSUM PTIONS 27

B. DATA STRUCTURES UTILIZED 28

1. LINKED LISTS 30

2. G RA PH 33

3. VARIABLE LENGTH STRINGS 34

C. ARCHITECTURAL DESIGN FOR STATIC SCHEDULERS 36

D. EXCEPTION HANDLING 38

E. PACKAGE PRESENTATIONS OF "THE HARMONIC BLOCK WITH

PRECEDENCE CONSTRAINTS SCHEDULING ALGORITHM" 40

1. "FILES" Package 41

2. "FILEPROCESSOR" package 41

3. "TOPOLOGICALSORTER" package 44

4. "HARMONICBLOCKBUILDER" package 44

5. "OPERATORSCHEDULER" package 46

F. IMPLEMENTATION OF "THE EARLIEST START SCHEDULING

ALGORITHM " 48

1. "OPERATORSCHEDULER" package 50

G. IMPLEMENTATION OF "THE EARLIEST DEADLINE SCHEDULING

ALGORITHM 53

V

1. "OPERATOR SCHEDULER" package 53

H. SUM M ARY 55

IV. DEVIATIONS FROM PREVIOUS WORK 56

A. ASSUMPTIONS 56

B. DATA STRUCTURES 57

C. ARCHITECTURAL DESIGN 57

D. EXCEPTION HANDLING 58

E. PACKAGE IMPLEMENTATION 58

V. CONCLUSIONS AND RECOMMENDATIONS 60

A. SUM M ARY 60

B. CONCLUSIONS 61

vi

LIST OF TABLES

Table I Record Fields for OPERATOR............................. 30

Table 2 Record Fields for LINKDATA............................. 31

Table 3 Record Fields for SCHEDULEINPUTS....................... 31

Table 4 Record Fields for OPINFO............................... 32

Table 5 Record Fields for DIGRAPH............................... 33

Table 6 Exceptions used in Static Schedulers......................... 39

vii

LIST OF FIGURES

Figure 1 Major Software Tools of CAPS 5

Figure 2 CAPS Architecture 6

Figure 3 The Execution Support System 7

Figure 4 1" Level DFD 10

Figure 5 Linear and Acyclic Graphs 12

Figure 6 Example of Scheduling with Earliest Start Time (preemptable) 16

Figure 7 Example of Scheduling with Earliest Start Time (Nonpreemptible) 18

Figure 8 Schedule for Two Tasks 24

Figure 9 Graphical Representation of the system and the data types used 35

Figure 10 New DFD for Static schedulers 37

Figure 11 PSDL Graph and its representation in implemented Graph Structure . 45

Figure 12 Finding a time interval for the system 46

Figure 13 Graph Model for Example 1 48

Figure 14 Graph structure for Example 2 49

Figure 15 Linked List representations used in Algorithm 2 and Algorithm 3. . . . 52

Figure 16 Example graph assumed for non-critical operators 57

viii

I. INTRODUCTION

A. BACKGROUND

Large scale Real-Time Systems are important to both civilian and military

operations. They are used in the control of modem systems, in air traffic control, in

tele-communication systems, and in defense. In these systems, many tasks have explicit

deadlines. This means that the task scheduling is an important component of the

systems. In Hard Real-Time Systems, tasks have to be performed not only correctly,

but also in a timely fashion. Otherwise, there might be some severe consequences.[Ref.

12: p.3]

The scheduling algorithm in a Hard Real-Time System can be either static or

dynamic, and is used to determine whether a feasible execution schedule for a set of

tasks exists so that the tasks' deadlines and resource requirements are satisfied, and

generate a schedule if one exists [Ref. 10]. A static approach calculates schedules for

tasks off-line and it requires the complete prior knowledge of tasks' characteristics. A

dynamic appoach determines schedules for tasks on the fly and allows tasks to be

dynamically invoked. Although static approaches have low run-time cost, they are

inflexible and can not adapt to a changing envihomnent or to an environment ";,li-se

behavior is not completely predictable. When new tasks are added to a static system,

the schedule for the entire system must be recalculated, which is expensive in terms

of time and money. In contrast, dynamic approaches involve higher run-time costs, but,

because of the way they are designed, they are flexible and can easily adapt to changes

1

in the et-,.onment.[Ref. 12: p. 3] In Hard Real-Time Systems, tasks are also

distinguished as preemptable and nonpreemptable. A task is preemptable if its execution

can be interrupted by other tasks and resumed afterwards. A task is nonpreemptable if

it must run to completion once it starts.

To meet timing constraints, we must schedule software tasks according to well

understood algorithms, so that the resultant timing behavior of the system is

understandable, maintainable and predictable. The use of well understood Real-Time

scheduling algorithms will also set the stage for eliminating many of the tine

dependant problems encountered in Real-Time Systems today, thereby avoiding some

of the most difficult problems to debug, with a resultant increase in system reliability

and with reduced system integration time and cost [Ref. 11].

B. THE STATIC SCHEDULER

If there exists a possible solution, the static scheduler builds a static schedule for

the execution of a prototype, which is a sequence of tasks being developed from the

Prototype System Description Language(PSDL) input specification for the prototype that

obey some predefined properties, in our case these are timing constraints and

precedence relationships. This schedule gives the precise execution order and timing of

operators with hard real-time constraints in such a manner that all timing constraints

are guaranteed to be met [Ref. 14].

Tasks are divided into two classes: time-critical and non time-critical. A task is

time-critical if it has at least one timing constraint associated with it, otherwise it is

2

non time-critical. Time critical tasks need more work to ,et a feasible schedule,

therefore they are handled by static scheduler before running a prototype.

And an auxiliary scheduler, called dynamic scheduler, executes the time-critical

task sequence generated by static scheduler and tries to allocate the non time-critical

tasks obeying the precedence relationship for the free time slots of CPU. The

importance of the static scheduler is that it obtains a sequence for the critical tasks

off-line, thus avoiding execution time during run time.

C. OBJECTIVES

This thesis describes the application of the schedulers that use different scheduling

algorithms to find feasible schedules for the real-time prototypes satisfying the critical

tuning constraints and precedence relationships among operators in the prototype.

D. ORGANIZATION

Chapter HI describes the previous research done in general. It includes a

discussion of Computer Aided Prototype System(CAPS) and Prototype System

Description language(PSDL). This chapter also presents a survey of The Static

Scheduling Algorithms for single processor environment. Chapter III outlines the

analysis and programming decisions that were made during the implementation. The

deviations from the earliest implementation are described in Chapter IV. Conclusions

and recommendations for the future work will be presented in Chapter V.

3

H. PREVIOUS RESEARCH AND SURVEY OF

STATIC SCHEDULING ALGORITHMS

A. PREVIOUS RESEARCH

The research previously done in static scheduler is associated with the Computer

Aided Prototyping System(CAPS) and the Prototype System Description Language

(PSDL). CAPS is a tool that is being designed to aid software designers in the rapid

prototyping of large software systems. The original design of the Static Scheduler was

described in [Ref. 19]. This design was further developed as The Conceptual Design

for the Pioneer Prototype of the Static Scheduler as a part of the CAPS execution

support system.[Ref.14] Then we see a pioneering effort to develop a static scheduler

as a part of the CAPS execution support system, using the Ada : programming

language.[Ref. 13] Thereafter a static scheduler was partly implemented in the Ada!

programming language. [Ref. 6]

1. CAPS

The CAPS is a tool that's being designed for development of Hard Real-

Time or Embedded Systems to speed up the design and implementation. CAPS process

is an iterative approach to designing complex software systems. CAPS is the major

system that requires more than one static scheduler.

' Ada* is a registered trademark of the United States Government, Ada Joint
Program Office

4

The CAPS architecture contains the following elements:

0 User Interface

* Prototyping System Description Language

• Rewrite Subsystem

0 Software Design Management System

0 Prototype Data Base and Software Base

0 Execution Support System(ESS)

Detailed information about CAPS is contained in [Ref.31], [Ref. 16], [Ref. 13],

and [Ref. 6] Figure 1 below graphically describes the major software tools of CAPS,

and the Figure 2 on page 6 describes the architecture of CAPS.

CAPS

User Software Execution

Interface Database Support

System System

Figure 1 Major Software Tools of CAPS

CAPS makes use of specifications and reusable software components to

automate the rapid prototyping methodology [Ref. 16: p. 66], which offers promising

5

User Interface

Prototype System

Descr iption Language

f Rewrite System
Software Design Execution Support

Managment System System

Prototype

Database

Software Base

Figure 2 CAPS Architecture

advantages in improved software engineering productivity, increased reliability of the

finished product, more realistic cost estimates based on identified system complexity,

and a reduction in the total system design to implementation timelog [Ref. 15: pp. 11-

121.

The Execution Support System is necessary for the execution and testing of

the prototype. The ESS contains a Static Scheduler, a Translator, and a Dynamic

Scheduler. [Ref. 32] The interfaces between these components are shown in figure 3

on page 7. The Translator translates the statements in the PSDL prototype into

statements in an underlying programming language. The underlying programming

6

ADAL

Code Scbedule i D
in ADA

ADA Cospiler/LiDDC!T

Prototype

Execut ing

prototype

Figure 3 The Execution Support System

language for the CAPS is Ada. The development of the translator is presented in

Moffitt [Ref. 18].

Static Scheduler is a part of the ESS and attempts to find a static schedule

for the operators in PSDL prototype with real-time constraints. An implementation

7

guide for the Static Scheduler can be found in [Ref. 13]. The operators that do not

have real time constraints are controlled by Dynamic Scheduler during run time.

The Dynamic Scheduler is a run time executive which controls the execution

of the prototype, it schedules operators which do not have real time constraints, and

provides facilities for debugging and gathering statistics. The fiist design for the

Dynamic Scheduler is contained in [Ref. 28] and the latest changes can be found in

Palazzo [Ref. 32].

The translator translates the PSDL code into Ada source code, th: Static

Scheduler extracts operator timing information from the PSDL source code and creates

a static schedule in Ada source code.

The Static Scheduler provides the Dynamic Scheduler with the non time-

critical operators. Dynamic Scheduler uses the "noncrits" text file to create a dynamic

schedule in a Ada source code. And, the Ada source code from the Translater, the

Static Scheduler, and the Dynamic Scheduler are compiled, linked and an executable

Prototype is generated.[Ref.32]

2. PSDL

PSDL is a language designed for clarifying the requirements of complex

real-time systems and for determining properties of proposed designs for such systems

by means of prototype execution. The language was designed to simplify the

description of such systems and to support a prototyping method that relies on a novel

decomposition criterion. PSDL is also the basis for the CAPS that speeds up the

prototyping process by exploiting reusable software components and providing execution

8

support for high level constructs appropriate for describing large real-time systems in

terms of an appropriate set of abstractions. [Ref. 17. p. 7]

B. SURVEY OF STATIC SCHEDULING ALGORITHMS

This section includes a survey of The Static Scheduling Algorithms for Hard

Real-Time Systems, and presents an overview of previous work and discusses their

characteristics.

1. THE FIXED PRIORITIES SCHEDULING ALGORITHM

In many conventional hard real-time systems, tasks are assigned with fixed

priorities to reflect critical deadlines, and tasks are executed in an order determined by

the priorities. During the testing period, the priorities are (usually manually) adjusted

until the system implementer is convinced that the system works. Such approach can

only work for relatively simple systems, because it is hard to determine a good priority

assignment for a system with a large number of tasks by such a test-and-adjust method.

Fixed priorities is a type of static scheduling. Once the priorities are fixed in a system,

it is very hard and expensive to modify the priority assignment.[Ref. 27].

2. THE HARMONIC BLOCK WITH PRECEDENCE CONSTRAINTS

SCHEDULING ALGORITHM

This scheduling algorithm is being used by the CAPS, a general description

of the implementation is furnished above, and a Data Flow Diagram(DFD) is given in

Figure 4 on page 10. After the first design efforts of this algorithm [Ref. 13] [Ref. 14]

even though the data flow diagram didn't change since the first Architectural Design,

9

some structural changes were made to the algorithm. Description below includes these

final structural changes [Ref. 6].

The first component of the DFD, the "PSDLReader", reads and processes

the PSDL prototype program. The output of this step is a file containing operators

identifiers, timing information and link statements.

TOPOLOGICAL

SORTER

PRECEDENCE

LINKS

LIST
LIST

SOURCE TEXT

IL FILE F -OPERATORS

READER PROCESSOR SCHEDULER

ATOMIC HARMONIC

OPERATORS BLOCKLITLENGTH

STATIC

HARMONIC- SCHEDULE

! BLOCK-

FILE

Figure 4 1' Level DFD

The second component is the "FileProcessor", the file generated in the first

step is analyzed and the data is divided into three parts based on its destination or if

additional processing required. The "NonCrits" file contains the names of all

10

noncritical operators. The Atomic Operators list contains all critical operators identifiers

and their associated timing constraints. The Links List contains the link statements

which syntactically describe the PSDL implementation graphs. During this step some

basic validity checks on the timing constraints are performed. If any of the checks fails,

an exception is raised and an appropriate error message is submitted to the user.

The "Topological-Sorter" performs a topological sort of the link statements

contained in the Links List. The requirements for a topological sort implies that the

statements being sorted have natural continuity and connectedness. These properties

define the execution precedence of the time critical operators regardless of whether the

graphs are linear or acyclic. In an acyclic digraph, like on Figure 5, the decision to

choose the "link a" first and the "link b" last is arbitrary in (b). The outp, t from either

sort is a precedence list of critical operators stipulating the exact order in which they

must be executed. The linear sort will produce one precedence list while the acyclic

sort can produce two or more precedence lists.

The second output of the "FileProcessor", the Atomic Operators list, is the

input to the "HarmonicBlockBuilder". An harmonic block is defined as a set of

periodic operators where the periods of all its component operators are exact multiples

of a calculated base period. Each harmonic block is treated as an independent

scheduling problem. When multiprocessors are utilized, then one processor for harmonic

block is necessary. The implementation being developed [Ref. 6] utilizes a single

processor, therefore the final static schedule assumes that only one harmonic block is

created. All the operators must be periodic, then all the sporadic operators are

converted to their periodic equivalents. The periodicity helps to insure that execution

11

a) Linear Graph

A B C

b) Acyclic Graph

B C D

A C B D

Figure 5 Linear and Acyclic Graphs

is completed between the beginning of a period and its deadline, which defaults to the

end of the period.

In order to convert a sporadic operator into its equivalent periodic operator,

the following parameters of the sporadic operator must be known

" Maximum Execution Time (MET).

" Minimum Calling Period (MCP).

* Maximum Response Time (MRT).

12

Some rules must be obeyed by the parameters described above to obtain an

equivalent periodic operator, the rules are the following :

* MET < MRT. This rules insures that (MRT - MET) produces a positive value.

* MCP < MRT. This condition is necessary, but not sufficient, to guarantee that
an operator can fire at least once before a response is expected.

0 MET < MCP. This restriction insures that the period calculated will conform to
a single processor environment.

The periodic equivalent is then calculated as P = min (MCP, MRT - MET),

the value of P must be greater than MET, in order for the operator to complete

execution within the calculated period. As a last resort, setting P equal to MCP, is a

worst case scheduling constraint.

After all the operators are in periodic form, they are sorted in ascending

order based on the period values. A second preliminary step is to calculate the base

block and its period for the sorted sequence of operators. The base period is defined

as the greatest common divisor (GCD) of all the operators in one sequence that will

be scheduled together.

The last preliminary step is to evaluate the length of time for the harmonic

block. The actual harmonic block length is the least common multiple (LCM) of all

the operators' period contained in the block. The harmonic block and its length are an

integral part of the static schedule. This block represents an empty timeframe within

which the operators will be allocated time slots for execution.

The outputs of the "TopologicalSorter" and the "HarmonicBlockBuilder"

are used by the "OperatorsScheduler" in order to create a static schedule for the time

critical operators. The resulting static schedule is a linear table giving the exact

13

execution start time for each critical operator and the reserved MET within which each

operator completes its execution.

This linear table is evaluated in two iterative steps. In the first step an

execution time interval is allocated for each operator based on the equation

INTERVAL = (current time, current time + MET). Next the process creates a firing

interval for each operator during which the second iterative step must schedule the

operator. The firing interval stipulates the lower and upper bound for the next possible

start time for an operator based on its period. The second step, initially, uses the lower

bound of each firing interval, when it schedules operators during subsequent iterations.

The sequence of operators is allocated time slots according to the earliest lower bound

first. Before an operator is allocated a time slot, this step verifies that

(current time + MET) = < harmonic block length.

This condition is applicable to every operator scheduled in that harmonic

block. This step also calculates new firing intervals for each operator scheduled. Once

all the operators are correctly scheduled within an entire harmonic block, a static

schedule is available. All subsequent harmonic blocks are copies of the first.

A theoretical development and implementation guideline of this algorithm

is available in the [Ref. 14] and [Ref. 13].

Part of the actual implementation of this algorithm and the analysis of its

performance is described in the [Ref. 6].

14

3. THE EARLIEST START SCHEDULING ALGORITHM

This algorithm considers the scheduling of n tasks on a single processor.

Each task becomes available for processing at time a, must be completed by time b,

and requires d, time units for processing.

There are two versions of the criteria : one allows the job splitting

(preemptable tasks), under this assumption it is only required to complete d', (where

dl+d 2,+...+d"n=d,, and n is the total number of splits of the task i) units of processing

between a, and b,; and the other version assumes that job splitting is not allowed

(nonpreemptable tasks).

a. PREEMPTABLE VERSION

Consider the rectangular matrix that has a column for each job and a

line for each unit of time available. There are max,(b,) lines and n columns. In this

matrix it is necessary to distinguish between admissible and inadmissible cells. For job

i the cell (ij) is admissible, if a,<j=<b, and inadmissible otherwise. The admissible

cells correspond to the time where the task may be performed. The Figure 6 below

shows an example.

Associated with each row there is an availability of one unit of time,

and with each column a requirement of 4. If the task i is being processed at tine j,

a I is placed in the admissible cell. This problem is equivalent to that of finding a set

of I's placed in admissible cells such that column sums satisfy the requirements d, and

each line contains at most one single l.[Ref. 20: pp. 511-5141

This type of algorithm does not take into account any precedence

constraints. In order to include the precedence constraints in this algorithm, it is

15

1 1 2 3 4

a 2 0 3 I

b 7 4 5 7

d, 2 1 2 2 1

TASKS 2

t 2

1 3

1 2 3 4 2 1

1 1 4

PERIOD 5 1

2 1 2 2
DEMANDS NETWORK REPRESENTATION

Figure 6 Example of Scheduling with Earliest Start Time (preemptable)

necessary to do some modifications. The modification can utilize some concept like the

harmonic block discussed in the former algorithm and also include the constraints that

a job j, that is preceded by i and k, is admissible only after a1<j=<b, and i and k are

already scheduled. The [Ref. 20: pp. 518-5191 presents an implementation in

FORTRAN to solve the case without precedence constraints. This type of algorithm

is not taken into account for precedence constraints, and is not applicable to our case

because it assumes that all the tasks are preemptable.

16

This algorithm is bounded by 0(n) in time, and as most heuristic algorithms, does

not guarantee that the solution (assuming that at least one is available for the problem)

is found.

b. NONPREEMPTABLE VERSION

In this approach, also, the precedence constraints are not included in

the analysis, but they may be easily taken into account during the construction of all

the feasible sequences.

The main idea is to enumerate implicitly all the possible orderings by

a branch, exclude and bound algorithm. During the branch all infeasible sequences due

to violation of the due date are discarded (here it is possible to include the precedence

constraints).

All the possible sequences are enumerated by a tree type construction.

From the initial node we branch to n new nodes on the first level of descendent nodes.

Each of these nodes represents the assignment of task i, 1 =< i =< n, to be the first

in the sequence. Associated with such node there is the completion time t0, of the task

j in the position i, i.e., t0' = a, + d. Next we branch from each node on the first level

to (n-I) nodes on the second level. Each of these nodes represents the assignment of

each of the (n-l) unassigned tasks to be second on the sequence. As before, we

associate the corresponding node the completion time of the task t'i = max (t", a) +

d,. We continue in a similar fashion. The initial node is a dummy node, in the

uncc strained case all the node must be present in the level 1 (level 0 is assumed to

be the dummy root of the complete tree), in case with precedence constraints in the

level I we allocate only the tasks that have only external input or no predecessor.

17

Consider the (n-k+l) new nodes generated at the level k of the tree

construction, if the finish time t' associated with at least one of these nodes exceeds

its due date then the subtree rooted at each one of the nodes that are unfeasible may

be excluded from further consideration.

The bounding condition applies only when there are no precedence

constraints and is intended to find an optimal (minimizing the length of the ble 'k)

ordering of the sequence. Figure 7 illustrates the application of this criteria.

2I 3

6 4 463

6 6

Ta s 1k s

1 1 2 3 4

a, 4 1 0

b 7 5 6 4

2 1 2 2

Figure 7 Example of Scheduling with Earliest Start Time (Nonpreernptible)

In the case with precedence constraints this algorithm does not

guarantee an optimal solution, another disadvantage is the tine complexity which tends

18

to factorial in the number of tasks. A more detailed explanation, as well, a step by step

definition of the algorithm, may be found in [Ref. 20 : p. 514-519].

This algorithm is implemented in this thesis including the precedence

constraints. It utilizes the concepts: length of the harmonic building block and the firing

interval for each task which are described before in this chapter. The implementation

details are explained in Chapter II of this thesis.

4. THE EARLIEST DEADLINE SCHEDULING ALGORITHM

This algorithm also considers the scheduling of n tasks on a single processor.

It is a varient of the Earliest Start Scheduling Algorithm, only the earliest deadline

should be considered as the criteria instead of the earliest start time. The

implementation details are explained step by step in the Chapter In of this thesis.

5. MINIMIZE MAXIMUM TARDINESS WITH EARLY START TIMES

SCHEDULING ALGORITHM

This algorithm considers a sequencing problem consisting of n tasks and

a single processor. Task i is described by the following parameters :

• the ready time (a,), the earliest point in time at which processing may begin on
i (i.e., an earliest start time).

" the processing time (d,), the interval over which task i will occupy the processor.

" the due date (b,), the completion deadline for task i.

The three characteristics a,, d, and b, are known in advance and no preemption

is allowed in the processing of the tasks.

As a result of scheduling, task i will be completed at time C, and will be

tardy if C, > d. The tardiness of task(T,) is defined by T, = max (0, C,-d,). The

19

scheduling objective is to minimize the maximum task tardiness, which is simply

T. =max, Tj).

For the static version of the n tasks single processor problem without

precedence constraints(all a, s are equal), T.. is minimized by the sequence b,,, =<

bt2l =< ... =< b,,,, that is, by processing the tasks in nondecreasing order of their

deadlines.[Ref. 21: p. 172]

In the dynamic version of the problem, the statement above can also be

applied if the tasks can be processed in a preemptable fashion, in this case sequencing

decisions must be considered both at task completion and at task ready time. Then we

have the following :

" At each task completion, the task with minimum b, among available tasks is
selected to begin processing.

* At each ready time, a,, the deadline of the newly available task is compared to
the deadline of the task being processed. If bi is lower, task i preempts the task
being processed otherwise the task i is simply added to the list of available tasks.

The solution to the preemptive case is not difficult to construct because the

mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained

in the set of all preemptive schedules, the optimal value of T,, in the preemptive case

is at least a lower bound on the optimal T,,, for the nonpreemptive schedules. This

principle is the basis for the algorithm.

In the nonpreemptive problem, there is a sequence corresponding to each

permutation of the integers 1, 2, ..., n. Thus there are at most n! sequences, but several

of these sequences do not need to be considered. The number of feasible sequences

depends on the data in a given problem, but will be usually less than n!.

20

A branch and bound algorithm will be used to systematically enumerate all

the feasible permutations.

The branching tree is essentially a tree of partial sequences. Each node in

the tree at level k corresponds to a partial permutation containing k tasks. Associated

with each node is a lower bound on the value of the maximum tardiness which could

be achieved in any completion of the corresponding partial sequence (obtained using

the preemptive adaptation). The calculation of lower bound allows the algorithm to

enumerate many sequences only implicitly. If a complete sequence has been found with

a value T"" less than or equal to the bound associated with some partial sequence, then

it is not necessary to complete the partial sequence in the search for optimum solution.

The branch and bound algorithm maintains a list of nodes ranked in

nondecreasing order of their lower bounds. At each stage the node at the top of the list

is removed and replaced on the list by several nodes corresponding to augmented

partial sequences. These are formed by appending one unscheduled task to the removed

partial sequence. The algorithm terminates when the node at the top of the list

corresponds to a complete sequence. At this point, the complete sequence attains a

value of Tm.. which is less than or equal to the lower bound associated with every

partial sequence remaining on the list, and the complete sequence is therefore optimal.

Before the tree search begins, the algorithm uses a heuristic initial phase to

obtain a feasible solution to the problem. This initial feasible solution allows the tree

search to begin with a complete schedule already on hand, and allows several partial

schedules to be discarded in the course of the tree search, simply because their bound

exceed the value of the initial solution.

21

There are four heuristics which can be used:

" Ready time : sequence the tasks in nondecreasing order of their ready time, a,

" Deadline : sequence the tasks in nondecreasing order of their deadlines, b,

" Midpoint : sequence the tasks in nondecreasing order of the midpoints of their
ready times and deadlines (a, + b,)/2. hence use the nondecreasing order of a, +
b.

* PIO : sequence the tasks in the order of their first appearance in the optimal

preemptive schedule, which is constructed by the dynamic version.

The [Ref. 21: pp. 171-176] contains a complete and detailed description of

the algorithm as also an analysis of the performance of the algorithm. Considering

each heuristic, the global time complexity of this algorithm is O(n). As can be

visualized, this algorithm does not take into account the possible precedence constraints

among the tasks, these precedence constraints must be taken into account during the

evaluation of the branch and bound solution of the tree search. The inclusion of the

precedence constraints in the evaluation of the heuristics must also be considered. The

algorithm can be extended to handle the case where tasks can be started only after

some instance of time in the future (this happens when some of the tasks are periodic),

the modification necessary is in the definition of task's scheduled start time.

'When all tasks are available simultaneously the [Ref. 22: pp.187-1991 presents
some useful algorithms and an experimental comparison among them, also in [Ref. 23:
pp.177-185] we may find some simple and quick algorithms for the same set of
conditions.

22

6. THE RATE-MONOTONIC PRIORITY ASSIGNMENT SCHEDULING

ALGORITHM

This algorithm assumes the following premises:

* The requests for all the tasks for which hard deadlines exist are periodic, with
period (p1).

" Deadlines consist of run-ability constraints, that is each task must be completed
before the next request for it occurs.

• The tasks are independent in that requests for a certain task do not depend on
the initiation or the completion of requests for other tasks.

" Run-time for each task is constant (d,) and does not vary with time. Run-time
here refers to the time which is taken by a processor to execute the task without
interruption.

An important concept in determining the rule is that of the critical instant

for a task. The deadline of a request for a task is defined to be the time of the next

request for the same task. The response time of a request for a certain task is defined

to be the time span between the request and the end of the response to that request.

A critical instant of a task is defined to be an instant at which a request for that task

will have the largest response time. A critical time zone for a task is the time interval

between a critical instant and the end of the response to the corresponding request to

the task.

Based on the definitions above it is possible to infer that a critical instant

for any task occurs whenever the task is requested simultaneously with requests for all

higher priority tasks. One of the values of this result is that a simple direct calculation

can determine whether or not a given priority assignment will yield a feasible

scheduling algorithm. Specifically, if the requests for all tasks at their critical instants

23

are fulfilled before their respective deadlines, then the scheduling algorithm is feasible.

As an example consider two tasks T, and T, with p, = 2, p2 = 5, and d, = 1, d2 = 1.

If we let T, be the higher priority task then from Figure 8 (a) on page 25 we see that

such priority assignment is feasible. Moreover, the value of T2 can be increased at most

to 2 but not further as illustrated in Figure 8 (b). On the other hand, if we let T2 be

the higher priority task, then neither of the values of d, and d2 can be increased beyond

I as illustrated in Figure 8 (c).

T i t T I =t

1 2 3 4 5 1 2 3 4 5

T 2 t T2 _ 1 t

CRITICAL TIME ZONE CRITICAL TIME ZONE

(a) (b)

T1 t

5T Z t

CRITICAL TINE ZONE 2

(C)

Figure 8 Schedule for Two Tasks

The analysis of the example above suggests a priority assignment. Let p,

and p be the request periods of the tasks, with p, < P2 If we let T, be the higher

24

priority task then, according to the definition of critical instant, the following inequality

must be hold L_ P/P, I d, + d2 =< P2 .

If we let T2 be the higher priority task, then, the following inequality must

be satisfied d, + d2 =< Pi. In other words, whenever the p, < P2 and d, d2 are such

that the task schedule is feasible with T2 at higher priority than T,, it is also feasible

with T, at higher priority than T2, but the opposite is not true. Thus we should assign

a higher priority to T, and lower priority to T2. Hence, more generally, it seems that

a reasonable rule of priority assignment is to assign priorities to tasks according to

request rates, independent of their run-times. Specifically, tasks with higher request

rates will have higher priorities. Such an assignment of priorities is known as the Rate-

Monotonic Priority Assignment. Such priority assignment is optimum in the sense that

no other fixed priority assignment rule can schedule a task set which cannot be

scheduled by the rate-monotonic priority assignment.

A formal development and analysis of this algorithm, as well the theoretical

development of maximum achievable processor utilization of this type of algorithm is

available in Liv [Ref. 25: pp. 46-61].

Some algorithms for scheduling periodic tasks to minimize average error

utilizes the rate-monotonic priority assignment algorithm in order to solve the

scheduling of the mandatory part of all the tasks, a complete description of these

algorithms may be found in [Ref. 26: pp. 142-150].

3This condition is necessary but not sufficient to guarantee the feasibility of the
prior;+y assignment. The symbol I_ x 1 denotes the largest integer smaller than or
equal to x.

25

C. SUMMARY

This survey presented some of the previous single processor static scheduling

algorithms for hard real-time systems. Many of the algorithms discussed do not address

the problem of how to schedule tasks that have precedence constraints. When it was

necessary to obey an earliest ready time, usually an algorithm based in a tree branch

and bound was used. The concept of a cost function to evaluate the schedule was

shown in the minimize maximum tardiness with early start times scheduling algorithm.

When precedence constraints were considered in the algorithms, the solution adopted

was to use some kind of graphical representation (directed graphs), and the notion of

a base timeframe was used (harmonic block). None of the algorithms presented gives

an optimal solution to the problem of scheduling hard real-time system with precedence

constraints. A general survey of Static Scheduling Algorithms can be found in

Cervantes [Ref. 33].

The approach that will be followed in this thesis is to develop the ideas exposed

in the harmonic block with precedence constraints scheduling algorithm (in order to

define a timeftame), and implement the three of the algorithms presented in this

chapter.

26

I. IMPLEMENTATION OF STATIC SCHEDULERS

When we looked at the history in developing the implementation of the Static

Schedulers we see some variations in basic data structures used. The first guidelines

about the Static Schedulers' current implementation were outlined in O'Hem [Ref. 141.

O'Hern introduced the "Graph Type Model" developed by Mok and Sutanthavibul [Ref.

28] as a basic unit. Johnson [Ref. 13] wrote the first pseudo code with some deviations

from O'Hem. Then Marlowe [Ref. 6] did a part of the first implementation of the basic

design. In her implementation, the tree structure was used as a basic unit. In this

chapter, the implementation of the basic design which is declared as "The Harmonic

Block with Precedence Constraints Scheduling Algorithm" has been completed with

some deviations from Marlowe's [Ref. 6]. Besides, two other algorithms, The Earliest

Start Scheduling Algorithm and The Earliest Deadline Scheduling Algorithm are also

implemented. In the implementation of the Static Scheduling algorithms in this thesis,

Ada Language has been used as a basic language. The Appendix D of this thesis has

the dependency information of the programs implemented, and Appendix E has the Ada

source code of all the programs and data structures utilized.

A. ASSUMPTIONS

First, this design assumes that the PSDL Prototype is syntactically correct. This

implies that each line begins with a PSDL keyword or reserved word. Second, the

designer structured the PSDL prototype program using a top-down design. This implies

27

that the program begins with the highest level and then decomposes all composite

operators, with the last(or lowest) level being the Ada* implementation modules. The

implementation design in this thesis addresses a single processor environment only.

All operators are nonpreemptable, and except non-time critical operators, all critical

operators should have a Maximum Execution time(MET). If the operators are sporadic,

they have an MET, Maximum Response Time(MRT) and a Minimum Calling

Period(MCP). It is also assumed that all timing constraints are non-negative integer

values. The system may include state machines, and external inputs and outputs. It can

handle the acyclic digraphs as linear digraphs. The data coming in from any External

input is assumed ready at execution time. The implemented algorithms use the

precedence relationships between the operators. The Static Schedulers implemented here

only accept the critical timing information extracted from the output file of

"PSDLReader". Normally this Text File has the timing and link information of the

atomic operators only.

B. DATA STRUCTURES UTILIZED

The major data structure used in the current implementation of static schedulers

utilizes Graph Type Model. This model is defined in [Ref. 28] and explained in [Ref.

14]. For this model, a Graph Type is created by using a generic type Graph Package.

Five data type abstractions are used in current implementations. They are as follows:

• OPERATOR

• LINK_DATA

• THEGRAPH

28

" SCHEDULEINPUTS

" OPINFO

OPERATOR contains all the critical timing information of each operator extracted

from the "atomicinfo" fide. LINKDATA contains the link information among the

operators and is utilized in THEGRAPH. THEGRAPH is the basic unit of the static

schedulers in this thesis. SCHEDULEINPUTS contains the scheduling information of

all operators and is used to create the final output.

Data types and their corresponding data structures are as follows

Abstract Data Types Data Structures

OPERATOR Linked List

LINKDATA Linked List

THEGRAPH Graph

SCHEDULEINPUTS Linked List

OPINFO Linked List

OPERATOR, SCHEDULEINPUTS, and OPINFO, as global data types, are

encapsulated in an Ada package called FILES which allows the other packages to use

them directly. The LINKDATA and THEGRAPH are utilized in an Ada* generic

package called GRAPHS which is used to create the Graph Structure for the Static

Scheduler in FILES. So the complete structure is created in package FILES. Files were

only used for the storage of information that would be used outside of the Static

Scheduler by the Execution Support System.

29

1. LINKED LISTS

A single operator is implemented with type OPERATOR as a record with

six fields as originally designed [Ref. 6]. These fields are shown in Table 1. Although

it is not necessary to fill all the fields in the record for all the operators, these fields

are required as a whole considering the different type of operators(e.g. periodic and

sporadic). Section E of this chapter explains the required fields in details. It is the

basic unit to store the atomic operator information within a Linked List in Graph

Structure. It is also utilized to construct a precedence list in the implementation of the

first algorithm.

Table 1 Record Fields for OPERATOR

FIELDS CONTENTS

THEOPERATORID The name of the operator

THE hET maximum execution time for the operator

THE _RT maximum response time for the operator

THE _CP minimum calling period for the operator

THEPERIOD the operator's period

THEWITHIN the time within which the operator must finish

A single instance of the type LINKDATA was implemented as a record

with four fields. These four fields are shown in Table 2. This is the basic unit of the

link information, which is implemented as a Linked List in the graph. The link

information of the graph is available in the input text file and the Linked List is

constructed. A defined order is not required for the Linked List which stores the link

30

information in Graph. Figure 9 shows the relationship between the Graphical and Data

Structure representation in a link statement.

The third abstract data type used in the Static Scheduler is

SCHEDULEINPUTS. It is a record which consists of five fields. These fields are

shown in TABLE 3. It has the final scheduling information about each operator and

it is utilized to create the static schedule output.

Table 2 Record Fields for LINKDATA

FIELDS CONTENTS

THEDATA STREAM The name of the link

THE FIRST OP ID Start of the link

THE LINK MET Maximum execution time for data transfer

THESECONDOPID End of the link

Table 3 Record Fields for SCHEDULEINPUTS

FIELDS CONTENTS

THEOPERATOR The name of the operator

THESTART Start time for the execution

THESTOP Stop time for the execution

THELOWER Lower bound for the firing interval

THEUPPER Upper bound for the firing interval

OPINFO is the last abstract data type which is used in the "Earliest Start

Scheduling Algorithm" and "Earlicst Deadline Scheduling Algorithm". The fields are

shown in Table 4. Detailed Linked List representation will be given in Section F.

31

The Linked Lists used in this implementation is construted by using an Ada

generic package called SEQUENCES, so that any data type could be stored in the

nodes of the list. The SCHEDULEINPUTSLIST, VLISTS, ELISTS, and

OPINFOLIST in the generic Graph package are constructed by using SEQUENCES.

The required functions and procedures are encapsulated in SEQUENCES generic

package which enables the user to operate on the List without knowledge of its

internal structure.

Table 4 Record Fields for OPINFO

FIELDS CONTENTS

NODE The operator information

SUCCESSORS Successors of the operator defined in the NODE

PREDECESSORS Predecessor5 of the operator defined in the NODE

These operations include, but are not limited to, the following

" EQUAL - determine if the two lists are equal to each other

• EMPTY -- create an empty list

" NON_EMPTY -- determine if the list is empty

" SUBSEQUENCE -- determine if a list is a subsequence of the original list

" MEMBER -- determine if the operator is in the list

" ADD -- add the operator into the list

• REMOVE -- remove the operator from the list

" LISTREVERSE -- reverse the order of the original list

" DUPLICATE -- duplicate the original list

32

" LOOK4 -- determine if the operator is in the list

" NEXT -- point to the next operator in the list

" VALUE -- return the operator record values.

The complete specification and implementation of this Linked List can be

found in Appendix E.

2. GRAPH

The Graph type represents the Graph Type Model and has the complete

information about the Graph, including operators and links information. Figure 8 shows

how the graph type is implemented. hI only presents the information required according

to the operators being either periodic or sporadic. It is a record which consists only

two fields, VERTICES and LINKS. They are shown in TABLE 5. VERTICES is a

pointer for the VLISTS which is a linked list to store the operators information and

uses the OPERATOR type as a basic unit, and the LINKS is a pointer for the

E_LISTS which stores the link information and uses the LINKDATA type.

Table 5 Record Fields for DIGRAPH

FIELDS CONTENTS

VERTICES Operator list of the graph

LINKS Link list of the graph

The graph model is constructed by using an Ada Generic Package called

GRAPHS, so that any data type could be stored in the nodes of the graph. In the case

of the Static Scheduler, the nodes are of the type OPERATOR. The required functions

33

and procedures were encapsulated in GRAPHS generic package enabling the user to

operate on the graph without knowledge of its internal structure. These operations

include, but are not limited to, the following :

" EQUAL_GRAPHS -- determine if the two graphs are equal to each other

" EMPTY -- creates an empty graph

* ISNODE -- determine if the operator is in the graph

• ISLINK -determine if a link is in the graph

" ADD -- add a link into the graph

" ADD -- add an operator into the graph

" REMOVE - remove a link from the graph

" REMOVE -- remove an operator from the graph

• SCAN_NODES -- search the graph for a given operator

" SCANPARENTS -- find the parents of a given operator in the graph

" SCANCHILDREN -- find the children of a given operator in the graph

" DUPLICATE -- duplicate the given graph

" TSORT -- sort the operators of the graph in a topological order.

Operations on the graph are easy to use. The use will be explained in details

later in this Chapter. A complete listing of the specification and implementation of the

Graph can be found in Appendix E.

3. VARIABLE LENGTH STRINGS

The Ada language has a predefined "string" type, but this couldn't be used

as the base type for the operator and data stream fields within the OPERATOR,

LINKDATA, and SCHEDULEINPUTS types, because the string must have a pre-

34

defined fixed length. Since these fields are necessarily of a variable length, to

accommodate the Ada identifiers that would be assigned to them, a variable length

string abstract data type was necessary. A generic variable length string package from

a public domain library was chosen for the implementation. It has functions to convert

a standard Ada string to a variable length string, functions for comparison, and

procedures for input and output. These were the main functions necessary for the static

scheduler, though there are many others in the package.[Ref. 6] Utilization of the

package is very simple, and a complete listing of the specification and implementation

for the variable length strings abstract data type can be found in Appendix E.

THE-GRAPH

{V-LISTS LIST)

VERTICES

(ELISTS LIST)

LINKS (LINK-DATA) (LINK-DATA) (LINK DATA)

THE_5CHEDULE_
INPUTS

ELEMIENT ELEMENT ELEMIENT
SCHEDULE_ INIPUT5) :SCHEDULE_ I PUTS) (SCHEDULE_-INPUTS)

NEXT , NXT71 EX

Figure 9 Graphical Representation of the system and the data types used

35

C. ARCHITECTURAL DESIGN FOR STATIC SCHEDULERS

The general DFD for the Static Schedulers is shown in Figure 2. Although there

are strong similarities with the original static scheduler for CAPS, the architectural

design is slightly modified to allow the system to run more than one algorithm and

simplify the decomposition process. The "PSDL_Reader" in described in Chapter II is

called "Preprocessor" in White [Ref. 30] and in this thesis. The "Preprocessor" and

"Decomposer" were not implemented in this thesis. An example graph with its

"PSDLReader" output file and the file which would be the output of the

"Decomposer" were given in Appendix C. Except the "TopologicalSorter" module

which is used only by the first static scheduling algorithm, the other modules are

shared by all the algorithins.

In this design the first module, known as "FileProcessor", reads the input file

"atomic.info" which has the timing constraints and link information of the operators,

and extracts the information in this file to construct the Graph Structure. The operators

which have no critical timing information are separated to another output file, referred

as "noncrits". This file is used by the Dynamic Scheduler which schedules non-time

critical operators for execution.

The "HarmonicBlockBuilder" module first calculates the periodic equivalents

of the sporadic operators which have no predefined periods. Then checks, if an

Harmonic Block can be found for a single processor. If yes, it calculates The Harmonic

Block Length, which is used to schedule the operators in their time intervals.

The module "TopologicalSorter" takes the Graph Structure as an input and builds

a precedence relationship, that specifies which operators must complete execution before

36

opoloqlcal-
sor ter

operator Info" atomic Info GRAPH

P5DL code file fle ststlc_

Figure 10 New DFD for Static schedulers

other operators can execute.

The module "Operator_Scheduler" combines the Precedence List and the

Harmonic Block Length for the for the first algorithm to produce a final Static

Schedule, if possible. Since the Earliest Start and Earliest Deadline Scheduling

Algorithms do not need THEPRECEDENCELIST, they use only the graph structure

and the Harmonic Block Length. To keep the design DFD as simple as it is, all the

static scheduling algorithm5 are included in this module.

37

The "ExceptionHandler" is the last module and handles all the exceptions which

are critical for the execution of the Static Scheduler. It terminates the program to let

the designer correct the errors.

D. EXCEPTION HANDLING

In this thesis, the schedulers are designed in order to build a static schedule by

using the atomic operator information extracted from the "atomic.info" input text file,

unless the conditions are found which would make the construction of the schedule

infeasible. If none of these conditions are found, the schedulers construct a schedule

for all the operators that were known for the system. During the operation, an

exception is raised in two conditions. One of them is to notify the designer that a

schedule is infeasible with the information provided, if any condition is found that

makes the construction of a schedule impossible. In this case the scheduler terminates

the execution. The other one is to notify that although a schedule may be possible,

there is no guarantee that it will execute within the required timing constraints. In both

cases. In this case the scheduler tries to find a feasible solution without terminating

the execution.

As we know, Ada includes several predefined exception conditions, but it also

permits us to declare user-defined exceptions. Although an exception is technically not

an object, user-defined conditions may be declared anywhere an object declaration is

appropriate (except as a subprogram parameter).[Ref. 291

Three different types of exception handling will be noticed throughout the

implementation, which are shown in Table 6. Number I through 3 are the examples

38

Table 6 Exceptions used in Static Schedulers

I HISSEDDEADLINE
2. OVERTIHE

3 HISSEDOPERATOR

4. NOBASEBLOCK

5 CRITOPLACKSMET

6 IETNOTLESSTHANIIRT

7 MCPNOTLESSTHANMRT

8 ICPLESSTHANNET

9. SPORADICOPLACKSMCP

10 SPORADICOPLACKSMRT

11 NETNOTLESSTHANPERIOD

12 MET ISGREATERTHANFINISHWITIIIN

13 PERIODLESSTHANFINISHWITHIN

14 BADTOTALTIME

15 FAILHALF PERIOD
16 RATIOTOOBIG

of the first type and used to notify the designer that there is no feasible schedule

exists which meets the requirements of the system in the running scheduling algorithm.

This type of exception is handled inside the driver program to allow more than one

static scheduler to run. The second type of exception handling is used to raise

exception in the local program unit, but passes exception handling to the driver

program. In this case, when the Static Scheduler discovers an exception, the following

occur. A variable, named Exception-Operator, is set by the Static Scheduler and a

procedure call to the Static Scheduler Exception Handler is made to transfer control to

the Exception Handler. This allows the Exception Handler to handle the exception and

39

gives the designer the name of the operator that caused the exception. This is done in

the Static Schedulers by having a global variable named "Exception.Operator" set by

the local programs before any of this type of excertion condition is discovered. This

shows that a schedule is infeasible with the information set provided, which means the

scheduler will end the execution without producing a schedule, and thus lets the

designer make the corrections. Exceptions 4 through 13 indicate that either required

constraints are missing or they are logically inconsistent. These are the examples of the

second type. The third type also has the concept of "Exception-Operator" as the second

type, it is handled inside the packages and its only function is to change a global

variable, "Exception-Operator", and print a descriptive message. Exceptions 14 through

16 indicate that, a feasible schedule may be possible, but there is no guarantee that it

will execute within the required timing constraints These are the examples of the third

type.

E. PACKAGE PRESENTATIONS OF "THE HARMONIC BLOCK WITH

PRECEDENCE CONSTRAINTS SCHEDULING ALGORITHM"

This Static Scheduler, as implemented in this thesis, contains six package

programming units. Four packages represent primary functional groupings, with two

additional packages EXCEPTIONHANDLER and FILES The

EXCEPTIONHANDLER package has the exception-handling procedures used by all

the other packages, which are called by the driver program, and the FILES contains

global data type declarations. The packages utilized in this algorithm are described

below:

40

1. "FILES" Package

The variable length string, discussed earlier in this chapter, is in the package

because it is an essential data structure for the implementation. It enables the operator

names and the data streams of variable length in the implementation, up to a maximum

of 80 characters. The number of characters was chosen arbitrarily and can be changed,

however, it seems that an Ada identifier of more than 80 characters wouldn't be

necessary.

All the values used for the critical timing information within the data types

are natural numbers to correspond with PSDL, which makes comparison of values

within these fields simpler; which in turn would be important when the algorithms were

utilized in CAPS.

All the packages are instantiated for each of the data types given. This

includes the DIGRAPH for the graph structure, and linked list for the

SCHEDULEINPUTS. This encapsulation of the major data structures allows the rest

of the packages to proceed.

2. "FILEPROCESSOR" package

This module has two procedures in it, SEPARATEDATA and

VALIDATEDATA. All the identified exceptions in the procedure VALIDATEDATA

in the FILEPROCESSOR package include:

1. CRITOPLACKSMET

2. METNOTLESS_THANMRT

3. MCPNOTLESSTHANMRT

4. MCPLESSTHANMET

41

5. SPORADICOPLACKSMCP

6. SPORADICOPLACKSMRT

7. METNOTLESSTHANPERIOD

8. METISGREATERTHANFINISH_WiTHIN

9. PERIODLESSTHAN_FINISH_WITHIN

The non-time critical operators are separated in SEPARATEDATA and put

into the "noncrits" file for future use in Dynamic Scheduler. While the non-time

critical operators are separated, all its dependent link information is also checked and

extracted without putting them into the graph structure. It is assumed that time critical

operators always have an MET and non-time critical operators never have any time

constraints. All the periodic and sporadic operators are extracted from the input text file

in SEPARATEDATA and a Graph structure is constructed. This procedure also

extracts the EXTERNAL input and output link information in that file.

The example shown in Appendix. B for the Fig. 14 is an Acyclic type of graph.

In the graph, OP_3 is a sporadic operator and OP_5 is non-time critical. It has

EXTERNAL input and output data streams with the two data streams from OP_1 to

OP_2. The current implementation of the static scheduler will extract the non-time

critical operator OP_5 from the graph by using SEPARATEDATA procedure in

FILEPROCESSOR package and put it into the "noncrits" file. The EXTERNAL

input-output data streams are assumed ready whenever needed, the graph doesn't have

this information either. Fig. 11(b) shows the latest form of the graph structure. The

links which are related with this non-time critical operator are excluded from the graph

42

later in the same procedure. OP_3 is converted into its periodic equivalent with the

CALCPERIODIC EQUIVALENTS procedure in HARMONICBLOCKBUILDER

package.

The procedure VALIDATEDATA is one of the most important procedures

within the static scheduler. Static Scheduler performs some basic validity checks on the

timing constraints contained in the "atomic.info" file, which is accomplished after the

Graph structure is built. The first check CRITOPLACKSMET verifies that all

critical operators have an MET. Checks 2 through 6 are valid for Sporadic Operators;

if the Sporadic Operator doesn't have an MCP, the exception

SPORADICOPLACKSMCP is raised, or else MCPLESSTHANPERIOD ensures

that MCP is less than MET. The SPORADICOPLACKSMRT ensures that MRT has

a value and METNOTLESSTHANMRT ensures that MRT is greater than the MET

for the Sporadic Operators. The MCPNOTLESSTHANMRT guarantees that an

operator can fire at least once before a response expected. The significance of these

validity checks will become apparent in the section for

"HARMONICBLOCKBITILDER" package. Checks 7 through 9 are for the periodic

operators; METNOTLESSTHANPERIOD ensures that the PERIOD is greater than

MET, METISGREATERTHANFINISHWITHIN ensures that FINISH_WITHIN

is greater than MET, and PERIODLESSTHANFINISHWITHIN is included for the

correct execution of the algorithms. In all nine cases, if any one of these checks fails,

an exception is raised and an appropriate error message is submitted to the user.

43

3. "TOPOLOGICALSORTER" package

The TOPOLOGICALSORTER package contains only one procedure which

utilizes TSORT in the generic GRAPH package. It is a simple algorithm that

essentially finds the operator, which must precede all others in a set, concatenates that

operator to a sequence of operators, which is called PRECEDENCELIST and then

deletes this operator and all its incoming and outgoing edges from the graph. This

cycle is repeated until all operators have been deleted from the graph. The final

sequence in PRECEDENCELIST should contain all operator names, in order, by

precedence. Fig. 14(a) shows a PSDL graph implementation with its EXTERNAL input

and outputs, but this graph is represented as seen in Fig. 14(b) in the graph structure

implemented in this thesis, the assumption of incoming data from EXTERNAL sources

are ready at start allows us to do this. Since all the links are deleted after the operator

was added into the PRECEDENCELIST, there wouldn't be any duplicates of the same

operator in this list.

4. "HARMONICBLOCK_BUILDER" package

The same graph structure is also the input for this package. A time frame

in this thesis is a set of periodic operators where the periods off all its component

operators are exact multiples of a calculated base period [Ref. 15: p. 7]. This package

is implemented as described in Chapter II, Section B, with the exception of sorting of

the operators in ascending order, based on the period values after all the operators are

in periodic form. Instead, the minimum period is found for calculation of GCD because

only the smallest period was required for finding GCD, and this was simpler to

implement than sorting the list.

44

(a) PSDL Graph Implementation

EXTERNAL EXTERNAL

EXTERNAL cn2

(b) The Model in Graph Structure

(c) Topological Sort

A B . C D (or)

A , C 0B gD

Figure 11 PSDL Graph and its representation in implemented Graph Structure

The procedure CALCPERIODICEQUIVALENTS was used to determine

the equivalent periods for sporadic operators. And FINDBASEBLOCK was used to

find a base block which verifies that an Harmonic Block Length can be determined for

the designed system. The two algorithms that can be used to determine the GCD which

is described in Janson [Ref. 13: p. 38]. Within this thesis the second algorithm is used

since the implementation was more straightforward, and, for a single-processor

environment, the second pass verifies that all periods were assigned correctly to the

first sequence if the alternate sequence equals the null set [Ref. 13: p. 381. The last

procedure is the FIND_BLOCKLENGTH which uses an algorithm to calculate the

45

length of time for the Harmonic Block known as The Least Common Multiple(LCM)

of all the operators'period contained in the block. Figure 12 describes the algorithm

which is explained in detail in Janson[Ref. 13: p. 39]. Two exceptions are reasonable

to have in this package. One of them is NOBASEBLOCK which means that it is not

possible to find a length for the time frame. The other is

METNOT_LESSTHANPERIOD which verifies that the calculated period of the

sporadic operator is greater than MET of the same operator.

Period of A (A) Period of B (B) Period of C (C) Period of D (D
p p p p

(GCDI)

[(A *B)fGCDI]
p

(LA)

(GCD2)

[(LCM1*C /GCD2]

(LCMl2)

(GCD3)

[(LCI2*D 1 GCD3]

-- j RESULT

Figure 12 Finding a time interval for the system

5. "OPERATORSCHEDULER" package

The PRECEDENCELIST and HAteMONICBLOCKLENGTH were used

as input in the OPERATORSCHEDULER for this scheduling algorithm. Procedure

46

TESTDATA tests the operators if they follow three basic rules which verifies that a

feasible static schedule always exist. These basic rules include:

* The MET of the operator should be less than half of its period

* The total MET/PERIOD ratio sum of operators should be less than 0.5

0 Tha total execution time of the operators should not exceed the
HARMONICBLOCKLENGTH.

Detailed information can be found in Mok [Ref. 301. If some of these tests are

not satisfied, the static schedulers will try to find a feasible schedule, but there is no

guarantee to have one.

Part of the OPERATORSCHEDULER which belongs to the first algorithm is

implemented in two steps as mentioned in Chapter II; the procedure

SCHEDULEINITIALSET performs the first step process, and allocates an execution

time with a firing interval for each operator to use in the next step. The

SCHEDULERESTOF_BLOCK performs the second step and completes the rest of

the process. The procedure CREATEINTERVAL is used by the

SCHEDULEINITIAL-SET in the first step and by the

SCHEDULERESTOF_BLOCK for the next firing intervals. Appendix A shows the

static schedule for the linear graph in Fig. 13 at the end of the process. The operators

are scheduled in the order (readnumbers, sortnumbers, write_numbers) during the

first iteration of this process. Since all the operators have a period of 20 with a

harmonic block length 20, they are scheduled only once in the block. Since all the

firing intervals are greater than the harmonic block length in this example, we do not

need a second process. Before an operator is allocated a time slot, this process verifies

47

r e a d -_o tw i e
numbersnubrnmes

Figure 13 Graph Model for Example 1

for all the operators that:

(currenttime + MET) <= harmonic block length

In the example shown in Appendix B, for Fig. 14 ,we have the second process

as the continuation of the first process. In this example, since the OP_2 has a

FINISHWITHIN constraint, this is considered in calculating the firing interval of

OP_2. This means that for the upper limit of the intervals of OP_2 the

FINISH_WITHIN is used instead of PERIOD.

F. IMPLEMENTATION OF "THE EARLIEST START SCHEDULING

ALGORITHM"

The nonpreemptable version of this algorithm is implemented in this thesis, and

precedence constraints are included.

This algorithm utilizes all the packages that the previous algorithm does with the

exception of TOPOLOGICALSORTER. Although this algorithm doesn't use that

package, it considers the precedence relationships among the operators. with the way

it is implemented in this thesis.

48

First, the Graph Structure is constructed as being described in previous algorithm,

and all the tests in FILEPROCESSOR package are applied. When the Graphical

representation of the system is approved, the Harmonic Block Length is calculated.

Then the algorithm starts to deviate from the first algorithm. The rest of this section

describes in details, how the algorithm works with the procedures used in the

OPERATORSCHEDULER.

a) P5DL Graph

[f inlshvi thin]
(PERIODIC)

(PERIODIC) OP2 C

E7IILEXTER|NALL

b) Graph Structure constructed

i nishvifthin]
(PERIODIC)

OP/[PERIODIC)

Figure 14 Graph structure for Example 2

49

1. "OPERATORSCHEDULER" package

This is the same package used for the first algorithm. It includes the the

procedure for the Earliest Start Time Scheduling Algorithm which is called

SCHEDULEWITHEARLIESTSTART. The final output list(AGENDA) of this

procedure is used by the procedure CREATESTATICSCHEDULE for the final

output. There are some other functions and procedures that the

SCHEDULE_WITHEARLIESTSTART procedure uses. They are as follows:

1. procedure BUILDOPINFOLIST

2. procedure PROCESSESTNODE

3. function FIND OPERATOR

4. function CHECKAGENDA

5. procedure ESTINSERT

6. function OPERATORINLIST

7. procedure ESTINSERTSUCCESSORSOFOPT

8. procedure PROCESSESTAGENDA

Two examples are shown in Appendix A and Appendix B for Fig. 13 and

Fig. 14. In the example -, Appendix B, the total MET/PERIOD ratio sum of the

operators is greater than 0.5. This message is printed on the screen, but since this is

not a fatal constraint, the algorithm proceeds to run for a feasible schedule. As soon

as the Time Interval is determined, the OP_INFO_LIST as shown in Fig. 15(a) is

constructed in procedure BUILDOPINFO_LIST. The AGENDA list includes the final

operators list with their start and stop times which are used by

CREATESTATICSCHEDULE for the final static schedule, shown in Fig. 15(b), and

50

MAYBEAVAILABLE list includes the available operators with their EST's for the

scheduling, shown in Fig. 15(c). The processes of this algorithm are explained in the

following steps:

1. Find the operators which has no predecessors and put them all into the
MAYBEAVAILABLE list. Since all these operators have the same Earliest Start
Time(EST), the order of the operators is not important in here. The EST for all of
these end ncdes is zero. Since EST is the same, we can pick any one of them
according to which one is first in the list.

2. Select the first operator and put it into AGENDA list with a calculated start
time(THESTART) and stop time(THESTOP).

3. Define a new EST for the selected operator and put it back into the
MAYBEAVAILABLE list.

4. Assign THESTOP of the selected operator to its successors as their EST's and
insert them into the MAYBEAVAILABLE list in an order according to their
EST's.

5. Get the first operator with the smallest EST in MAYBEAVAILABLE list and
look if all its predecessors are in AGENDA. If the answer is no, then get the
next operator and check the predecessors again. Repeat the process until the

answer is yes. Then assign a new EST for the selected operator and put it back b
the MAYBEAVAILABLELIST in an order according to its EST.

6. If any successor of the selected operator is not ALREADY in the
MAYBEAVAILABLE list, assign THESTOP of the selected operator to that
successor as its EST and insert into the MAYBEAVAILABLE list in its

order.

7. Repeat the process 5 and 6 above until the EST of the selected operator in

MAYBEAVAILABLE list is greater or equal to the time interval(HBL).

During the implementation of this algorithm, the abstract data types are tried

to be utilized instead of creating new data types. This is preferred to avoid the

complexity of the programs and reduce the time spent for creating the new data

structures. Besides, this was very practical for the comparisons among the operators.

As a result of this, the SCHEDULEINPUTS abstract data type is used for the

51

operators in AGENDA and MAYBEAVAILABLE list. For the EST information of

OPINO.LIST SCHEDULE_ INFO

SUCCESSORS I (O-0

PREDECE550R5 ft --

NEXT IotIV

S CHEDULE-INFO

SUCCESSORS toV o-9

INPUTS INPUTS INPUTS

N EXT -N

tBAYO8E.

AVAILABLE .-- M. SCHEDULE- SCHEDULE-. SCHEDULE-
INPUTS Impurs INPUTS

Figure 15 Linked List representations used in Algorithm 2 and Algorithm 3.

the operators THELOWER field in the SCHEDULEINPUTS abstract data type is

used. THE_START and THESTOP fields are as being used in the first algorithm.

Whenever an operator was selected from MAY_BEAVAILABLE list and verified that

all its predecessors are in AGENDA, it was taken out of the list. After it is processed,

it was put back again in its order with new EST. The MAYBEAVAILABLELIST

is kept in order because if all the predecessors are not in AGENDA during process 5,

that operator is is skipped and the process is repeated for the next operator. In this

52

ordered form, there is no necessity to look for the smallest EST in the list. The first

operator always has the smallest EST. During the scheduling, if THESTOP time of

any operator is greater than the HARMONICBLOCKLENGTH, then exception

OVERTIME is raised for that operator. This algorithm is not optimal as the branch

and bound tree explained in Chapter III, but has the advantage that it is more compact

in time and space.

G. IMPLEMENTATION OF "THE EARLIEST DEADLINE SCHEDULING

ALGORITHM

The implementation of this algorithm is very similar to the "Earliest Start

Scheduling Algorithm". Package utilization is the same as in the preceding algorithm.

It also considers the precedence constraints among the operators. The only difference

from the preceding algorithm is that the operators are selected according to their

earliest deadlines instead of their earliest start times.The rest of this section describes

in details, how the algorithm works with the procedures used in the

OPERATORSCHEDULER.

1. "OPERATOR SCHEDULER" package

This package is shared with the other algorithms. It includes the procedure

for the Earliest Deadline Scheduling Algorithm which is called

SCHEDULE_WITH_EARLIESTDEADLINE. The final output list(AGENDA) of this

procedure is used by the procedure CREATESTATICSCHEDULE for the final

output. Procedure number 1 and functions number 3.4.6 shown on page 50 for the

53

Earliest Start Scheduling Algorithm are shared. The other procedures used by this

algorithm are:

" procedure PROCESS_EDLNODE

* procedure EDLINSERT

* procedure EDLINSERTSUCCESSORSOFOPT

" procedure PROCESSEDLAGENDA

The two examples are given in Appendix A and Appendix B. The second

example gives the same warning message as the others. Most of the criteria in this

algorithm is the same as the Earliest Start Scheduling Algorithm. The major difference

is the order of the MAYBEAVAILABLELIST which is ordered according to the

earliest deadlines(EDL) of the operators. And this is considered during the scheduling

process. The processes of this algorithm are explained in the following steps:

1. Find the operators which has no predecessors and put them all into the
MAYBEAVAILABLE list in their orders according to their Earliest
Deadlines(EDL). Since all these operators have different EDL, the order of the
operators are important in here. Because of all the operators are in their orders
according to their EDLs, we can pick the first one in the list. Since these have m
predecessors, we do not need to check if the predecessors are in the AGENDA.

2. Select the first operator and put it into AGENDA list with a calculated
THESTART and THESTOP.

3. Define a new EDL for the selected operator and put it back into the
MAYBEAVAILABLE list.

If the operator has a FINISHWITHIN in it then,

EDL := EST + FINISHWITHIN;

otherwise;

EDL := EST + THEPERIOD;

54

4. Assign new EDL to each successor of the selected operator and insert them into
the MAYBEAVAILABLE list in an order according to their EDL's.

5. Get the first operator with the smallest EDL in MAYBEAVAILABLE list and
look if all its predecessors are in AGENDA. If the answer is no, then get the
next operator and check the predecessors again. Repeat the process until the

answer is yes. Then assign a new EDL for the selected operator and put it back A
the MAYBEAVAILABLELIST in an order according to its EDL.

6. If any successor of the selected operator is not ALREADY in the
MAYBEAVAILABLE list, assign a new EDL to that successor and insert into
the MAYBEAVAILABLE list in its order.

7. Repeat the process 5 and 6 above until the EDL of the selected operator in
MAYBEAVAILABLE list is greater or equal to the time interval(HBL). This is
the stop condition and where "pointer = null".

H. SUMMARY

When the three algorithms are compared with eachother, The Earliest Start

Scheduling Algorithm is more flexible and more efficient than the others. The way that

it is presented in Chapter II uses a branch, exclude, and bound method. It searches all

the branches in the tree one by one. But when the precedence relationships are

considered, the disadvantage of this algorithm is the time complexity. Besides, it

doesn't guarantee an optimal solution anymore. For these reasons, this algorithm is

implemented with the Graph Structure. It was possible to construct the same structure

as in Chapter two with Graph Structure, but it would be very hard to implement and

we would need a very big storage capacity. Instead, the branches that we will not use

are eliminated at the beginning, and this was the tradeoff between an optimal solution,

and fast and easy implementation with less memory.

55

IV. DEVIATIONS FROM PREVIOUS WORK

There are some deviations from the previous implementation presented in Marlow

[Ref.6] in this thesis. The assumptions made for the data requirements of the operators

differentiates from the earlier assumptions to overcome some problems. The Graph

Model is used as a basic structure instead of a N-ary tree structure for efficiency and

simple process of the operators. The rest of the packages which are not implemented

in Marlowe [Ref. 6] are completed. The "ExceptionHandler" module included in this

design is not the only level of exception handling, because the existance of some

nonfatal exceptions raised during the execution do not require the programs to exit.

Three different level exception handling exist in the implementation in this thesis.

A. ASSUMPTIONS

In Marlowe [Ref. 6: pp. 52-54], there was a problem mentioned in handling the

non-time critical operators. The problem was how to separate the non-time critical

operators whose data is required for a critical operator. Fig. 16 shows the situation. In

this thesis, it is assumed that the operator between the two critical operators is always

critical unless there is another path connecting the two critical operators. In this case,

the output data of the non-time critical operator should be initialized. This handles the

problem in separation of the non-time critical operators and so, since the OP_2 will not

depend on the data of OP_4, OP_2 uses the new output data of OP4 only when the

dynamic scheduler executes the operator OP_4.

56

CRITICAL CRITICAL CRITICAL

EXTERNAL rt
EXTERNAL

OP_1 OP_OP3

{OP_4

N#ON-CR ITZCAL

Figure 16 Example graph assumed for non-critical operators

B. DATA STRUCTURES

Although the abstract data types used for operator information and final

scheduling is kept the same, the LINKDATA abstract data type used for the link

information is changed and some other data types are included for the other algorithms

implemented. The LINK_DATA has a field called THELINKMET; this field was not

used during the implementation, but it is kept zero to show that we assume the time

for the data flow for a single processor is zero. All the data structures are explained

in details in Chapter III.

C. ARCHITECTURAL DESIGN

The architectural design in this implementation mostly looks like that presented

in Marlowe [Ref. 6]. The Fig.4 and Fig.10 shows the differences in the two DFDL's.

Since this implementation is the standalone static schedulers, an exception handler was

needed, which is the same as the Debugger in CAPS. The second thing is the

separation of the "PSDLReader" into "Preprocessor" and "Decomposer". The

"Preprocessor" reads in the PSDL source file for the prototype being designed and

57

produces a text file containing the information of the composite and atomic operators

together. The resultant text file becomes the input to the module "Decomposer" which

separates the atomic operator and link information, and does the validity checks

between the composite and atomic operators. It produces a text file containing only the

atomic operator and link information which becomes the input to the module

"FileProcessor". This separation makes the decomposition process easy and reduces

the complexity.

D. EXCEPTION HANDLING

There are three different types of exception handling in this implementation. One

of them is the outmost level exception handling which handles the major errors

encountered during the execution. This is the same idea mentioned in Marlowe [Ref.

6]. Other level of exceptions are needed to run the static schedulers as standalone and

to give warnings to the user without exiting the program. The details of the exception

levels are given in Chapter III, Section D.

E. PACKAGE IMPLEMENTATION

The pseudo code listing given in Janson [Ref. 13] and the variable length string

abstract data type, VSTRINGS, are utilized for the implementation of the first

algorithm.

The OPERATORSCHEDULER package consists all the three static schedulers.

The reason for not having different modules for every other staticscheduler is that all

the static schedulers implemented here have the same time interval concept and share

most of the procedures in this package.

58

In this implementation, the modules in the original I" DFD are tried to have

minimum change to keep the original design as simple as possible.

59

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This thesis provides three static schedulers which a,.; the first complete

implementations that support the Computer Aided Prototyping for Embedded Real-

Time Systems. These schedulers can also be executed as standalone in the way that

they are implemented.

Most of the algorithms written in the past do not address the problem of how to

schedule tasks that have precedence constraints. Since the precedence constraints are

considered in these algorithms, the graphical representation(directed graphs), and the

notion of a base timeframe was used. None of the algorithms presented in this thesis

gives an optimal solution to the problem of scheduling Hard Real-Time Systems with

precedence constraints. But these schedulers are important in supporting the Execution

Support System(ESS) within the framework of CAPS.

The contribution of this thesis to CAPS and Hard Real-Time Systems was the

implemented static schedulers for non-preemptable, single processor systems. These

static schedulers allow operators from any type of software system, even those with

control based on data flow, to be scheduled in a way that meets all critical timing

constraints.

o0

B. CONCLUSIONS

With the implementation of these static schedulers in this thesis, the major part

of the Static Scheduler in the ESS within CAPS is completed. These are integrated into

the Execution Support System, with the simulation of "Decomposer". The new data

structures like Graph Structure are introduced to the Static Scheduler. The Graph Model

was very successful to capture the computational requirements of the Hard Real-Time

Systems.

The schedulers are imported into the Execution Support System where

"Decomposer" is simulated for the current STATICSCHEDULER. Since the composite

operator information is not included in the graph data type, the names of the operators

in STATIC_SCHEDULER output should start with the names of their composites to

avoid the naming conflicts with the TRANSLATOR shown in Fig.3 The information

of how these are related to eachother can be found in Palazzo [Ref. 321. The driver

program that runs the standalone static schedulers is adopted for the CAPS environment

which is shown in Appendix F. Otherwise the schedulers were successfully used in

CAPS.

All the programs in this thesis are implemented in Ada. Ada's modularization and

generic package advantages with its exception handling mechanism were utilized to

model the static schedulers for single processor. Even though Ada was very efficient

for single processor environment, since it uses a FIFO queue for the parallel tasks,

there would be a very big problem in the implementation of the schedulers for

multiprocessor systems. When the tasks are queued during the parallel processing, we

61

can not use any priority, or precedence relationship in the schedulers. This means Ada

will need some changes for the implementation of optimal static schedulers.

Several areas for further research include the following:

• Implementation of the "Decomposer"

" Implementation of more efficient algorithms which give optimal solution to the
scheduling problem

" Implementation of the static schedulers for preempted, multiprocessor systems

* To find a solution for the FIFO queue restriction for parallel tasking in Ada.

As soon as the "Decomposer" is completed and imported to the implementation,

CAPS will not need any simulation for running the static schedulers. So the CAPS

system will have a complete ESS running in its environment.

62

APPENDIX A. LINEAR GRAPH EXAMPLE

The following is the "atomic.info" file used as an input for the satic scheduleing
algorithms in Figure 13.

ATOMIC
read numbers

MET
10

PERIOD
20

ATOMIC

sort-numbers
MET
2
PERIOD

20

ATOMIC
write-numbers

MET
2
PERIOD

20
LINK
a

read numbers

0
Sort numbers
LINK
b
sort numbers
0

write numbers

63

IMPLEMENTATION

HARMONICBLOCKLENGTH (HBL) = 20

OPERATORID MET PERIOD

read-numbers 10 20

sort numbers 2 20

write-numbers 2 20

1) FIRST ALGORITHM:

PRECEDENCELIST (read-numbers, sortnumbers, write-numbers }

STATIC SCHEDULE:

Message to the user:

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2- Although a schedule may be possible, there is no guarantee that

it will execute within the required timing constraints.

OPERATOR ID START TIME END TIME FIRING INTERVAL

read numbers 0 10 (20,30)

sort numbers 10 12 (30,48)
write-numbers 12 14 (32,50)

STOP CONDITION: All firing intervals are greater than HBL in the last pass.
A feasible schedule found, READ "schedule.out" file.

64

2) SECOND ALGORITHM: (EarliestStart time Scheduling Algorithm)

Message to the user:

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2- Although a schedule may be possible, there is no guarantee that

it will execute within the required timing constraints.

SUCCESSORS : PREDECESSORS

readnumbers (sortnumbers] readnumbers [-]
sortnumbers [write_numbers] sort numbers (readnumbers]
writenumbers [-] write-numbers [sortnumbers]

AGENDA : MAY BE AVAILABLE

STEP_1) [] [readnumbers] (end node)
(EST: 0)

STEP_2) [readnumbers] [sortnumbers,readnumbers]
START:0 (EST:10) (EST:20)

FINISH: 10

STEP_3) [readnumbers, sortnumbers] [writenumbers, readnumbers, sortnumbers]
START:0 START:10 (EST:12) (EST:20) (EST:30)

FINISH: 10 FINISH: 12

STATIC SCHEDULE:

STEP_4) (readnumbers,sortnumbers,writenumbers]

START:0 START:I0 START:12
FINISH:10 FINISH:12 FINISH:14

(readnumbers,sortnumbers,write_numbers]

(EST:20) (EST:30) (EST:32)

STOP CONDITION: (All EST values are greater than HBL).
A feasible schedule found, READ "ss.a" file.

65

3) THIRD ALGORITHM : (Earliest Deadline Scheduling Algorithm)

Message to the user:

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2- Although a schedule may be possible, there is no guarantee that

it will execute within the required timing constraints.

SUCCESSORS . PREDECESSORS

read -numbers (sort-numbers] read-numbers [-]
sort -numbers (write-numbers] sort-numbers [read-numbers)
write-numbers []write-numbers (sort-numbers]

AGENDA MAY BEAVAILABLE

STEP_1) [read-numbers] (end node)
(EST:0)
(EDL: 20)

STEP_2) [read-numbers] [sort-numbers,read-numbers]
START:0 (EST:10) (EST:20)

FINISH:10 (EDL:30) (EDL:40)

STEP_3) [read numbers, sort numbers] (write numbers, read numbers, sort numbers]
START:0 START:10 (EST:12) (EST:20) (EST:30)

FINISH:10 FINISH:12 (EDL:32) (EDL:40) (EDL:50)

STATIC SCHEDULE:

STEP_4) (read-numbers,sort-numbers,write-numbers]
START:0 START:10 START:12

FINISH:10 FINISH:12 FINISH:14

(read -numbers, sort_numbers,write -numbers]
(EST:20) (EST:30) (EST:32)
(EDL:40) (EDL:50) (EDL:52)

STOP CONDITION: (All EST values are greater than HBL).
A feasible schedule found., READ "ss.a" file

66

The output "ss.a" file created as static schedule for the first algorithm

with TL; use TL;
with DSPACKAGE; use DSPACKAGE;
with PRIORITYDEFINITIONS; use PRIORITYDEFINITIONS;

with CALENDAR; use CALENDAR;
with TEXTIO; use TEXT_10;

procedure STATIC SCHEDULE is
write numbersTIMINGERROR exception;
sort numbers TIMING ERROR exception;
readnumbers TIMINGERROR exception;

task SCHEDULE is
pragma priority (STATICSCHEDULE_PRIORITY);

end SCHEDULE;

task body SCHEDULE is
PERIOD : constant :- 20;
read numbersSTOPTIME1 : constant 10.0;
sort numbersSTOPTIME2 : constant 12.0;
write numbersSTOPTIME3 constant 14.0;
SLACKTIME : duration;

START OF PERIOD : time := clock;

begin
loop

begin
read numbers;
SLACK TIME := START OF PERIOD + read numbers STOP TIMEl - CLOCK;
if SLACKTIME >= 0.0 then

delay (SLACKTIME);
else

raise readnumbersTIMINGERROR;
end if;
delay (STARTOFPERIOD + 10.0 - CLOCK);

sortnumbers;
SLACK TIME := STARTOFPERIOD + sort numbers STOP TIME2 - CLOCK;

if SLACK TIME >= 0.0 then
delay (SLACKTIME);

else
raise sortnumbersTIMINGERROR;

end if;
delay (STARTOFPERIOD + 12.0 - CLOCK);

writenumbers;
SLACK TIME := START OF PERIOD + write numbers STOP TIME3 - CLOCK;
if SLACKTIME >- 0.0 then

delay (SLACKTIME);

else
raise write numbersTIMINGERROR;

end if;
START OF PERIOD := START OF PERIOD + PERIOD;

67

delay (STARTOFPERIOD - clock);

exception
when write numbers TIMINGERROR ->

PUT LINE("timing error from operator writenumbers");

STARTOFPERIOD :- clock;

when sort numbers TIMING ERROR ->

PUTLINE("timing error from operator sortnumbers");

STARTOFPERIOD :- clock;
when read numbers TIMING ERROR ->

PUT LINE("timing error from operator readnumbers");

STARTOFPERIOD :- clock;

end;
end loop;

end SCHEDULE;

begin
null;

end STATIC SCHEDULE;

68

APPENDIX B. ACYCLIC GRAPH EXAMPLE

The following is the "atomic.info" file used as an input for the

Static Schedulers for Figure 16.
ATOMIC
OP_1
MET
1
PERIOD

12
ATOMIC

OP_2
MET

1
PERIOD

8
WITHIN
7

ATOMIC

OP 3
MET
1

MCP
8
MRT
12
ATOMIC
OP 4
MET
2

PERIOD
8

ATOMIC
OP_5
LINK
al
OP 1
0
OP_2
LINK

a2
OP 1
0
OP_2
LINK
b

69

Op_2

0
OP_3
LINK
c

OP_2

0

OF_4

LINK
d
OP_3
0
OP_4
LINK
e
OFI

0
OP_5
LINK
f
Op_5

0
OP_3

LINK
start
EXTERNAL

0
OPT_1
LINK
finish
OPT_4

0
EXTERNAL

70

IMPLEMENTATION

HARMONICBLOCKLENGTH (HBL) - 24

OPERATOR ID MET PERIOD FINISHWITHIN

oP 1 1 12 -

OP 2 1 8 7

OP_3 1 8(EQUIVALENT) -
oP 4 2 8 -

1) FIRST ALGORITHM: (Earliest Start Scheduling Algorithm)

PRECEDENCELIST (OP_1, OP_2, OP_3, OP_4

STATIC SCHEDULE:

Message to the user:

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2- Although a schedule may be possible, there is no guarantee that

it will execute within the required timing constraints.

OPERATORID STARTTIME ENDTIME FIRINGINTERVAL

First Process

OP 1 0 1 (12,23)

OP 2 1 2 *(9,15)
OP 3 2 3 (10,17)
OP 4 3 5 (11,17)

Second Process

OP 1 12 13 (24,35)
OP 2 13 14 *(17,23)
OP 3 14 15 (18,25)
OP_4 15 17 (19,25)

OP 2 17 18 *(25,31)

OP 3 18 19 (26, 33)
OP_4 19 21 (27,33)

STOP CONDITION: All firing intervals are greater than HBL in the last pass.

A feasible schedule found, READ "ss.a" file.

7'

2) SECOND ALGORITHM: (Earliest Deadline Scheduling Algorithm)

Message to the user:

I- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2- Although a schedule may be possible, there is no guarantee that

it will execute within the required timing constraints.

SUCCESSORS . PREDECESSORS

OPi1 [OP 2] OPi1 [-]
OP_2 [OP_3,OP_-4] OP_2 (OP_1]
OP 3 [OP 4] OP 3 [OP 2]
OP_4 [-] OP_4 [OP_2,OP_31

AGENDA :MAY BEAVAILABLE

STEP_1) !0 EP_11 (end node)
(EST: 0)

STEP_2) [OP_1] [OP_2, OP_1]
START:0 (EST:1) (EST:12)
FINISH: 1

STEP_3) [............,OP_2] [OP_3, OP_4, OP_2, OP_1
START:1 (EST:2) (EST:2) (EST:9) (EST:12)

FINISH: 2
STEP_4) [............,OP_3] OP_4, OP_2, OP_3, OP_1

START:2 (EST:2) (EST:9) (EST:10) (EST: 12)
STEP_5) [......... .. Op_4] [OP_2, 0P-3, 0P-4, OPi1]

START:3 (EST:9) (EST:10) (EST:11) (EST:12)

FINISH: 5
STEP_6) [............,OP_2] [OP_3, OP_4, OP_1, OP_2

START:9 (EST:10) (EST:11) (EST:12) (EST:17)
FINISH: 10

STEP_7) [............,OP_3] [OP_4, OP_1, OP_2, OP_3
START:10 (EST:11) (EST:12) (EST:17) (EST:18)

STEP_8) (............,OP_4] (OP_1, OP_2, OP_3, OP_4]
START:ll (EST:12) (EST:17) (EST:18) (EST:19)
FINISH: 13

STEP_9) [............,OP_1 [OP_2, OP_3, OP_4, OP_1
START:13 (EST:17) (EST:18) (EST:19) (EST:25)
FINISH: 14

STEP_10) [............,OP_2] OP_3, OP_4, OP_1, OP_2
START:17 (EST:18) (EST:19) (EST:25) (EST:25)

FINISH: 18
STEP_11) [............,OP_3] OP_4, OP_1, OP_2, OP_31

START:18 (EST:19) (EST:25) (EST:25) (EST:26)
FINISH: 19

72

STEP_12) [............ OP_4] [OP_1, OP_2, OP_3, OP_4
START:19 (EST:25) (EST:25) (EST:26) (EST:27)

FINISH:21

STOP CONDITION: All EST values are greater than HBL in the last pass.

A feasible schedule found, READ "ss.a" file.

73

THE OUTPUT "ss.a" FILE CREATED AS STATIC SCHEDULE FOR THE FIRST ALGORITHM:

with TL; use TL;

with DS PACKAGE; use DSPACKAGE;

with PRIORITYDEFINITIONS; use PRIORITY-DEFINITIONS;

with CALENDAR; use CALENDAR;

with TEXT 10; use TEXT_10;

procedure STATIC SCHEDULE is

OP_4_TIMINGERROR : exception;

OP_3_TIMINGERROR : exception;

OP_2_TIMINGERROR : exception;

OPITIMINGERROR : exception;

task SCHEDULE is

pragma priority (STATICSCHEDULE PRIORITY);

end SCHEDULE;

task body SCHEDULE is

PERIOD : constant := 24;

OP 1 STOP TIME1 : constant := 1.0;

OP 2 STOP TIME2 : constant := 2.0;
OP 3 STOP TIME3 : constant := 3.0;

OP 4 STOP TIME4 constant := 5.0;

OP 1 STOP TIME5 : constant := 13.0;
OP 2 STOP TIME6 : constant := 14.0;

OP 3 STOP TIME7 constant 15.0;

OP 4 STOP TIMEB constant 17.0;

OP 2 STOP TIME9 : constant :=

OP_3_STOPTIME10 constant := 19.0;

OP 4 STOP TIME11 : constant := 21.0;

SLACK TIME : duration;

STARTOFPERIOD : time := clock;

begin

loop

begin

OP_1;

SLACKTIME := STARTOFPEPIOD + OP I STOP TIMEl - CLOCK;

if SLACK TIME >= 0.0 then

delay (SLACKTIME);

else

raise OP 1_TIMING ERRQR;

end if;

delay (STARTOFPERIOD + 1.0 - CLOCK);

OP_2;
SLACK-TIME := START OF PEPI(+ Or 2 ST, P TIME2 - CLYr'V;

if SLACKTIME >- 0.0 then

delay (SLACKTIME);

else

raise OP 2_TIMINGERROR;

end if;

delay (START OF PEPI2L + . - CL'YIY)

74

OP_3;

SLACK TIME := START OF PERIOD + OP 3 STOP TIME3 - CLOCK;

if SLACK TIME >= 0.0 then

delay (SLACKTIME);

else

raise OP_3_TIMINGERROR;

end if;

delay (STARTOFPERIOD + 3.0 - CLOCK);

OP_4;

SLACK TIME := START OF PERIOD + OP_4_STOPTIME4 - CLOCK;

if SLACK TIME >= 0.0 then

delay (SLACKTIME);

else

raise OP_4_TIMINGERROR;

end if;

delay (START OF PERIOD + 12.0 - CLOCK);

OP_1;
SLACKTIME := STARTOFPERIOD + OP_1_STOPTIME5 - CLOCK;

if SLACK TIME >= 0.0 then

delay (SLACKTIME);

else

raise OP_1_TIMINGERROR;

end if;

delay (STARTOFPERIOD + 13.0 - CLOCK);

OP_2;

SLACK TIME := START OF PERIOD + OP_2_STOPTIME6 - CLOCK;

if SLACK TIME >= 0.0 then

delay (SLACKTIME);

else

raise OP_2_TIMINGERROR;

end if;

delay (START OF PERIOD + 14.0 - CLCCK);

OP_3;

SLACK TIME := START OF PERIOD + OP_3_STOPTIME7 - CLOCK;

if SLACK TIME >= 0.0 then

delay (SLACKTIME);

else
raise OP_3_TIMINGERROR;

end if;

delay (START OF PERIOD + 15.0 - CLOCK);

OP_4;

SLACKTIME :- STARTOFPERIOD + OF 4 STOP TIME8 - CLOCY;

if SLACKTIME >= 0.0 then

delay (SLACKTIME);

else

raise OP_4 TIMING ERROR;

75

end if;
delay (STARTOFPERIOD + 17.0 - CLOCK);

OP_2;
SLACK TIME := START OF PERIOD + OP_2_STOPTIME9 - CLOCK;
if SLACK TIME >- 0.0 then

delay (SLACKTIME);
else

raise OP_2_TIMINGERROR;
end if;
delay (START OF PERIOD + 18.0 - CLOCK);

OP_3;
SLACK TIME := START OF PERIOD + OP_3_STOPTIME10 - CLOCK;
if SLACK TIME >- 0.0 then
delay (SLACKTIME);

else
raise OP_3_TIMINGERROR;

end if;
delay (STARTOFPERIOD + 19.0 - CLOCK);

OP_4;
SLACK TIME := STARTOFPERIOD + OP 4_STOPTIME11 - CLOCK;

if SLACK TIME >= 0.0 then
delay (SLACKTIME);

else
raise OP_4_TIMINGERROR;

end if;
START OF PERIOD := STARTOFPERIOD + PERIOD;

delay (STARTOFPERIOD - clock);
exception

when OP_4_TIMINGERROR =>
PUTLINE("timing error from operator OP_4");
STARTOFPERIOD := clock;

when OP_3_TIMINGERROR =>

PUT LINE("timing error from operator OP_3");
STARTOFPERIOD := clock;

when OP_2_TIMINGERROR =>
PUTLINE("timing error from operator OP_2");

STARTOFPERIOD := clock;
when OP_1_TIMINGERROR =>
PUTLINE("timing error from operator OP_1");
STARTOFPERIOD := clock;

end;

end loop;

end SCHEDULE;

begin
null;

end STATIC SCHEDULE;

76

APPENDIX C. PREPROCESSOR and DECOMPOSER OUTPUTS

1) Preprocessor Output

LINEAGE
Cl
read numbers

sort numbers
write-numbers

END LINEAGE

Cl
LINK
a
read numbers
0
sort-numbers
LINK

b

sort-numbers
0

write numbers
read numbers

MET

10
PERIOD

20
sort-numbers

MET
2

PERIOD
20
write-numbers
MET
2
PERIOD
20

LINEAGE

read-numbers
ATOMIC

ENDLINEAGE
read-numbers
read-numbers
LINEAGE

sortnumbers
ATOMIC

END LINEAGE

77

sort-numbers
sort numbers
LINEAGE

write-numbers

ATOMIC

ENDLINEAGE

write-numbers

write numbers

2) Decomposer Output

ATOMIC

read-numbers
MET
10

PERIOD
20

ATOMIC

sort-numbers

MET
2
PERIOD
20

ATOMIC
write-numbers

MET
2

PERIOD
20

LINK

a
read numbers
0
sort numbers
LINK

b

sort numbers
0
write numbers

78

APPENDIX D. PROGRAM DOCUMENTATION

1. STANDALONE MENU DRIVEN VERSION AS IMPLEMENTED IN THIS THESIS

preprocessor - generates the text file used by decomposer

(not implemented)
decomposer b.a - validates and decomposes output of preprocessor

(not implemented yet)
decomposers.a - validates and decomposes output of preprocessor

(not implemented yet)
driver.a - interface for standalone static scheduler
e handler b.a - exception routines used by driver
e_handler s.a - exception routines used by driver
files.a - global types and declarations for all ss programs
fpb.a - file processor

fp_s.a - file processor

graphsb.a - generic type graph structure
graphs s.a - generic type graph structure

hbb b.a - harmonic block builder
hbb s.a - harmonic block builder
schedulerb.a - operators scheduler (scheduling algorithms)

schedulers.a - operators scheduler (scheduling algorithms)
sequenceb.a - generic type list structure
sequences.a - generic type list structure

static scheduler* - executable static scheduler
t sort b.a - topological sorter
t sort s.a - topological sorter

static scheduler is compiled by:
a.make static scheduler -f *.a -o static scheduler
(where *.a uses all files listed above which have a .a suffix

static scheduler is executed by the command line equivalent

staticscheduler (expects to read an input file "atomic.info")

Dependencies:

files.a is dependent upon:
vstrings
sequences

graphs

decomposerb.a, decomposer_s.a, ehandlerb.a, e_handlers.a,
fpb.a, fp s.a, hbbb.a, hbb s.a, schedulerb.a, scheduler_s.a,

79

t sort b.a, tsorts.a are all dependent upon:
files (files.a)

driver.a is dependent upon
decomposer (decomposerb.a, decomposers.a)

(atomic.info file is given to the system)
exception-handler (e_handler b.a, e handlers.a)
file_processor (fp_b.a, fps.a)
harmonicblockbuilder (hbb b.a, hbb_s.a)

operatorscheduler (schedulerb.a, schedulers.a)

topologicalsorter (t sortb.a, tsorts.a)

since decomposer is not implemented yet, atomic.info file is given.
Fileprocessor reads atomic.info
Fileprocessor creates noncrits.a

Operator scheduler creates ss.a

2. DOCUMENTATION FOR THE COMPLETE DESIGN AS IT WILL BE USED IN CAPS:

decomposerb.a - validates and decomposes output of preprocessor
(not implemented yet)
decomposer_s.a - validates and decomposes output of preprocessor
(not implemented yet)
driver.a - interface for standalone static scheduler
e handlerb.a - exception routines used by driver
e handler s.a - exception routines used by driver
files a - global types and declarations for all ss programs
fp_b.a - file processor
fp_s.a - file processor

graphsb.a - generic type graph structure
graphss.a - generic type graph structure
hbb b.a - harmonic block builder
hbb s.a - harmonic block builder
kc script to compile static scheduler preprocess press.k

pre_ss* - executable preprocessor
pre_ss.k - kodiyacc specifications for preprocessor
schedulerb.a - operators_scheduler (scheduling algorithms)
scheduler s.a - operatorsscheduler (scheduling algorithms)
sequenceb.a - generic type list structure
sequences.a - generic type list structure
static scheduler* - executable static scheduler
t_sortb.a - topological sorter
t_sorts.a - topological sorter

The caps static scheduler consists of two executable modules.

press is compiled by:
kc pre_ss.k -o press

pre_ss is executed by the command line equivalent
pre_ss <filename> -o operator.info

80

static scheduler is compiled by:
a.make static scheduler -f *.a -o static scheduler
(where *.a uses all files listed above which have a .a suffix

staticscheduler is executed by the command line equivalent
staticscheduler (expects to read an input file "atomic.info")

Dependencies:

files.a is dependent upon:
vstrings

sequences
graphs

decomposerb.a, decomposer_s.a, ehandlerb.a, ehandler_s.a,
fp_b.a, fp_s.a, hbb b.a, hbbs.a, schedulerb.a, schedulers.a,
t_sortb.a, t_sorts.a are all dependent upon:

files (files.a)

driver.a is dependent upon
decomposer (decomposerb.a, decomposer s.a)
exceptionhandler (ehandler b.a, ehandler s.a)
file-processor (fp_b.a, fp_s.a)
harmonicblockbuilder (hbb-b.a, hbbs.a)

operator scheduler (schedulerb.a, schedulers.a)
topological_sorter (tsortb.a, tsorts.a)

pre_ss creates operator.info
decomposer reads operator.info and creates atomic.info
Fileprocessor reads atomic.info
Fileprocessor creates noncrits.a

Operator_6cheduler creates ss.a

81

APPENDIX E. IMPLEMENTATION OF THE STATIC SCHEDULING ALGORITHMS

This appendix contains the entire implementation for the Static Scheduler.

-- SEQUENCES - this is a generic package used by the FILES and GRAPHS package
-- to generate Linked Lists.

with FILES; use FILES;

package OPERATORSCHEDULER is

procedure TESTDATA (INPUTLIST : in DIGRAPH.V LISTS.LIST;
HARMONICBLOCKLENGTH : in INTEGER);

procedure SCHEDULEINITIALSET (PRECEDENCELIST : in DIGRAPH.VLISTS.LIST;
THESCHEDULEINPUTS in out SCHEDULEINPUTSLIST.LIST;
HARMONICBLOCKLENGTH in INTEGER;
STOPTIME in out TNTEGER);

procedure SCHEDULERESTOFBLOCK(PRECEDENCELIST : in DIGRAPH.VLISTS.LIST;
THESCHEDULEINPUTS in out SCHEDULEINPUTSLIST.LIST;

HARMONICBLOCKLENGTH in INTEGER;
STOPTIME in INTEGER);

procedure SCHEDULEWITHEARLIESTSTART (THEGRAPH : in DIGRAPH.GRAPH;
AGENDA : in out SCHEDULEINPUTSLIST.LIST;
HARMONICBLOCKLENGTH : in INTEGER);

procedure SCHEDULEWITHEARLIESTDEADLINE (THEGRAPH : in DIGRAPH.GRAPH;

AGENDA : in out SCHEDULEINPUTSLIST.LIST;
HARMONICBLOCKLENGTH : in INTEGER);

procedure CREATESTATICSCHEDULE (THEGRAPH : in DIGRAPH.GRAPH;
THESCHEDULEINPUTS : in SCHEDULEINPUTSLIST.LIST;

HARMONIC BLOCK LENGTH : in INTEGER);

MISSEDDEADLINE : exception;
OVERTIME : exception;
MISSEDOPERATOR : exception;

end OPERATORSCHEDULER;

with UNCHECKED DEALLOCATION;

package body SEQUENCES is

procedure FREE is new UNCHECKED DEALLOCATION(NODE, LIST);

82

function NONEMPTY(L : in LIST) return BOOLEAN is

begin
if L = null then

return FALSE;
else

return TRUE;
end if;

end NONEMPTY;

procedure NEXT(L : in out LIST) is

begin
if L I- null then

L := L.NEXT;

end if;

end NEXT;

function LOOK4(X : in ITEM; L in LIST) return LIST is
Li : LIST := L;

begin
while NONEMPTY(L1) loop

if LI.ELEMENT = X then
return Li;

end if;
NEXT (LI);

end loop;

return null;
end LOOK4;

procedure ADD(X : in ITEM; L in out LIST) is

-- ITEM IS ADDED TO THE HEAD OF THE LIST
T : LTST := new NODE;

begin

T.ELEMENT :- X;
T.NEXT := L;
L := T;

end ADD;

function SUBSEQUENCE(L1 : in LIST; L2 in LIST) return BOOLEAN is

L : LIST := Li;

begin
while NONEMPTY(L) loop

if not MEMBER(VALUE(L), L2) then
return FALSE;

end if;
NEXT(L);

end loop;
return TRUE;

end SUBSEQUENCE;

function EQUAL(L1 : in LIST; L2 : in LIST) return BOOLEAN is

83

begin
return (SUBSEQUENCE(L1, L2) and SUBSEQUENCE(L2, Li));

end EQUAL;

procedure EMPTY(L : out LIST) is

begin
L := null;

end EMPTY"

function MEMBER(X : in ITEM; L in LIST) return BOOLEAN is
begin

if LOOK4(X, L) /- null then
return TRUE;

else
return FALSE;

end if;
end MEMBER;

procedure REMOVE(X : in ITEM; L in out LIST) is

CURR : LIST L;

PREV : LIST null;
TEMP : LIST := null;

begin
while NON EMPTY(CURR) loop

if VALUE(CURR) = X then
TEMP :- CURR;
NEXT (CURR);
FREE (TEMP);
if PREV /= null then
PREV.NEXT := CURR;

else
L := CURR;

end if;
else

PREV := CURR;

NEXT (CURR);
end if;

end loop;
end REMOVE;

procedure LIST REVERSE(L1 in LIST; L2 in out LIST) is

L : LIST :- LI;
begin

EMPTY (L2);

while NON EMPTY(L) loop

ADD (VALUE (L), L2);
NEXT (L);

end loop;
end LISTREVERSE;

procedure DUPLICATE(L1 : in LIST; L2 in out LIST) is

84

TEMP : LIST;

L : LIST := LI;

begin
EMPTY(L2);
while NONEMPTY(L) loop

ADD (VALUE (L), TEMP);

NEXT (L);

end loop;

LIST REVERSE(TEMP, L2);

end DUPLICATE;

function VALUE(L : in LIST) return ITEM is

begin
if NONEMPTY(L) then

return L.ELEMENT;

else

raise BADVALUE;

end if;

end VALUE;

end SEQUENCES;

85

-- GRAPHS - a generic package used by the FILES package to generate
-- Graph Structure.

with SEQUENCES;

with VSTRINGS;

generic

type VERTEX is private;

package GRAPHS is

package V LISTS is new SEQUENCES(VERTEX);
use VLISTS;

package V STRING is new VSTRINGS(80);

use VSTRING;

subtype DATA STREAM is VSTRING;

subtype MET is NATURAL;

type LINK DATA is
record
THEDATASTREAM : DATASTREAM;

THEFIRSTOPID : VLISTS.LIST;
THELINKMET : MET := 0;
THE SECOND OP ID :V LISTS.LIST;

end record;

package E_LISTS is new SEQUENCES(LINKDATA);

use ELISTS;

type GRAPH is
record
VERTICES V LISTS.LIST;

LINKS ELISTS.LIST;
end record;

function EQUALGRAPHS(GI : in GRAPH; G2 : in GRAPH) return BOOLEAN;

procedure EMPTY(G out GRAPH);

function ISNODE(X in VERTEX; G GRAPH) return BOOLEAN;

function IS LINF(X in VERTEX; Y in VERTEX;
G in GRAPH) return BOOLEAN;

procedure ADD(X in VERTEX; G : in out GRAPH);

procedure ADD(L in LINK-DATA; G : in out GRAPH);

86

procedure REMOVE(X in VERTEX; G in out GRAPH);

procedure REMOVE(X in VERTEX; Y in VERTEX; G in out GRAPH);

procedure SCANNODES(G : in GRAPH; S : in out VLISTS.LIST);

procedure SCANPARENTS(X in VERTEX; G in GRAPH;
S in out VLISTS.LIST);

procedure SCANCHILDREN(X in VERTEX; G in GRAPH;
S in out VLISTS.LIST);

procedure DUPLICATE(G1 : in GRAPH; G2 : in out GRAPH);

procedure TSORT(G : in GRAPH; S : in out V LISTS.LIST);

end GRAPHS;

with UNCHECKEDDEALLOCATION;

package body GRAPHS is

procedure FREE is new UNCHECKEDDEALLOCATION(ELISTS.NODE, ELISTS.LIST);

function EQUALGRAPHS(G1 : in GRAPH; G2 : in GRAPH) return BOOLEAN is

function SUB SET(Gl in GRAPH; G2 : in GRAPH) return BOOLEAN is
L1 : VLISTS.LIST GI.VERTICES;
L2 : ELISTS.LIST GI.LINKS;

begin
if not SUBSEQUENCE(LI, G2.VERTICES) then

return FALSE;
end if;
while NONEMPTY(L2) loop

if not ISLINK(VALUE(VALUE(L2).THEFIRST OP ID),
VALUE(VALUE(L2).THE SECONDOPID), G2) then

return FALSE;

end if;
NEXT (L2);

end loop;
return TRUE;

end SUBSET;
begin

-- equal_graphs
return (SUBSET(G1, G2) and SUBSET(G2, Gi));

end EQUALGRAPHS;

procedure EMPTY(G : out GRAPH) is
begin

EMPTY(G.VERTICES);
EMPTY(G.LINKS);

87

end EMPTY;

function ISNODE(X : in VERTEX; G : GRAPH) return BOOLEAN is

begin
if LOOK4(X, G.VERTICES) /= null then

return TRUE;

else

return FALSE;
end if;

end ISNODE;

function IS LINK(X in VERTEX; Y : in VERTEX; G in GRAPH) return BOOLEAN is

L : ELISTS.LIST := G.LINKS;

begin
while L /= null loop

if VALUE(VALUE(L).THE FIRST OP ID) = X and
VALUE(VALUE(L).THESECOND OP ID) = Y then

return TRUE;

end if;
L :- L.NEXT;

end loop;
return FALSE;

end ISLINK;

procedure ADD(X : in VERTEX; G : in out GRAPH) is

begin

ADD(X, G.VERTICES);

end ADD;

procedure ADD(L : in LINKDATA: G : in out GRAPH) is

begin
if LOOK4(L.THE FIRST OP ID.ELEMENT, G.VERTICES) /= null and

LOOK4(L.THESECONDOP ID.ELEMENT, G.VERTICES) /= null then

ADD(L, G.LINKS);

end if;

end ADD;

procedure REMOVE(X : in VERTEX; G in out GRAPH) is
S : V_LISTS.LIST;
L : V_LISTS.LIST;

PREV : VLISTS.LIST := null;

begin

SCAN CHILDREN(X, G, S);
while NONEMPTY(S) loop

REMOVE(X, VALUE(S), G);

NEXT(S);

end loop;

SCAN PARENTS(X, G, S);
while NON EMPTY(S) loop

88

REMOVE(VALUE(S), X, G);

NEXT(S);

end loop;

REMOVE(X, G.VERTICES);

end REMOVE;

procedure REMOVE(X in VERTEX; Y in VERTEX; G in out GRAPH) is

L : ELISTS.LIST := G.LINKS;

PREV : E LISTS.LIST null;

TEMP : ELISTS.LIST := null;

begin

while NONEMPTY(L) loop

if VALUE(VALUE(L).THE FIRST OP ID) = X and
VALUE(VALUE(L) .THESECONDOPID) = Y then

TEMP := L;

NEXT (L);

FREE (TEMP);

if PREV /= null then

PREV.NEXT := L;

else

G.LINKS :- L;

end if;

else

PREV := L;

NEXT (L);

end if;

end loop;

end REMOVE;

procedure SCAN NODES(G : in GRAPH; S in out V LISTS.LIST) is

L : V LISTS.LIST := G.VERTICES;

begin

EMPTY(S);
while NONEMPTY(L) loop

ADD (VALUE (L), S);
NEXT (L);

end loop;

end SCANNODES;

procedure SCANPARENTS(X : in VERTEX; G in GRAPH;

S in out VLISTS.LIST) is

L :E LISTS.LIST :- G.LINKS;

begin

EMPTY(S);

while NON EMPTY(L) loop

if VALUE(VALUE(L).THESECONDOPID) X then

ADD(VALUE(VALUE(L).THEFIRSTOPID), S);

end if;

NEXT (L);

end loop;

89

end SCANPARENTS;

procedure SCANC-HILDREN(X :in VERTEX; G in GRAPH;
S in out VLISTS.LIST) is

L :ELISTS.LIST :- G.LINKS;

begin
EMPTY(S);
while NONEMPTY(L) loop

if VALUE(VALUE(L).THEFIRSTOPID) - X then
ADD(VALUE(VALUE(L) .THESECOND OPID), S);

end if;
NEXT (L);

end loop;

end SCANCHILDREN;

procedure DUPLICATE(Gl in GRAPH; G2 :in out GRAPH) is
begin
DUPLICATE(G1.VERTICES, G2.VERTICES);
DLJPLICATL(Gl.i.INKS, G2.LINKS);

end DUPLICATE;

procedure T_-SORT(G :in GRAPH; S :in out V LISTS.LIST) is

Gl :GRAPH;
T, L, P :V LISTS.LIST;

begin
EMPTY(T);
DUPLICATE (G, Gl);
SCANNODES(Gl, L);

while NONEMPTY(L) loop
SCAN PARENTS(VALUE(L), Gl, P);
if not NONEMPTY(P) then

ADD (VALUE (L) , T) ;
REMOVE (VALUE (L), Gi);

SCANNODES(G1, L);
else

NEXT (L);

end if;
end loop;
SCANNODES(G1, L);
if NONEMPTY(L) then

EMPTY(S);
else

LISTREVERSE(T, 5);
end if;

end TSORT;
end GRAPHS;

90

-- VSTRINGS - "vstrng s.a, vstrng b.a"; this is a generic package used within

-- the Static Scheduler for variable length string types.

with TEXTIO; use TEXT_IO;
generic

LAST : NATURAL;

package VSTRINGS is

subtype STRINDEX is NATURAL;
FIRST : constant STRINDEX := STRINDEX'FIRST + 1;
type VSTRING is private;
NUL : constant VSTRING;

-- Attributes of a VSTRING

function LEN(FROM VSTRING) return STRINDEX;

function MAX(FROM VSTRING) return STRINDEX;
function STR(FROM : VSTRING) return STRING;
function CHAR(FROM: VSTRING; POSITION : STRINDEX := FIRST)

return CHARACTER;

-- Comparisons

function "<" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function ">" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function "<=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

function ">=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function EQUAL (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function NOTEQUAL (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

-- Input/Output

procedure PUT(FILE : in FILE TYPE; ITEM : in VSTRING);
procedure PUT(ITEM : in VSTRING);

procedure PUTLINE(FILE : in FILE TYPE; ITEM : in VSTRING);
procedure PUT LINE(ITEM : in VSTRING);

procedure GET(FILE : in FILE TYPE; ITEM : out VSTRING;
LENGTH : in STRINDEX := LAST);

procedure GET(ITEM : out VSTRING; LENGTH : in STnINDEX := LAST);

procedure GET LINE(FILE : in FILETYPE; ITEM in out VSTRING);
procedure GETLINE(ITEM : in out VSTRING);

-- Extraction

function SLICE(FROM: VSTRING; FRONT, BACK : STRINDEX) return VSTRING;
function SUBSTR(FROM: VSTRING; START, LENGTH: STRINDEX) return VSTRING;

91

function DELETE(FROM: VSTRING; FRONT, BACK : STRINDEX) return VSTRING;

-- Editing

function INSERT(TARGET: VSTRING; ITEM: VSTRING;

POSITION: STRINDEX := FIRST) return VSTRING;

function INSERT(TARGET: VSTRING; ITEM: STRING;

POSITION: STRINDEX :- FIRST) return VSTRING;

function INSERT(TARGET: VSTRING; ITEM: CHARACTER;

POSITION: STRINDEX := FIRST) return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: VSTRING; POSITION: STRINDEX)

return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: STRING; POSITION: STRINDEX)

return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: CHARACTER; POSITION: STRINDEX)

return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: VSTRING) return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: STRING) return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: CHARACTER) return VSTRING;

function REPLACE(TARGET: VSTRING; ITEM: VSTRING;

POSITION: STRINDEX := FIRST) return VSTRING;

function REPLACE(TARGET: VSTRING; ITEM: STRING;

POSITION: STRINDEX := FIRST) return VSTRING;

function REPLACE(TARGET: VSTRING; ITEM: CHARACTER;

POSITION: STRINDEX := FIRST) return VSTRING;

-- Concatenation

function "&" (LEFT: VSTRING; RIGHT : VSTRING) return VSTRING;

function "&" (LEFT: VSTRING; RIGHT : STRING) return VSTRING;

function "&" (LEFT: VSTRING; RIGHT : CHARACTER) return VSTRING;

function "&" (LEFT: STRING; RIGHT : VSTRING) return VSTRING;

function "&" (LEFT: CHARACTER; RIGHT : VSTRING) return VSTRING;

-- Determine the position of a substring

function INDEX(WHOLE: VSTRING; PART: VSTRING; OCCURRENCE : NATURAL := 1)

return STRINDEX;

function INDEX(WHOLE : VSTRING; PART : STRING; OCCURRENCE : NATURAL := 1)

return STRINDEX;

function INDEX(WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE : NATURAL := 1)

return STRINDEX;

function RINDEX(WHOLE: VSTRING; PART: VSTRING; OCCURRENCE : NATURAL := 1)

return STRINDEX;

function RINDEX(WHOLE : VSTRING; PART : STRING; OCCURRENCE : NATURAL := 1)

return STRINDEX;

92

function RINDEX(WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE NATURAL := i)

return STRINDEX;

-- Conversion from other associated types

function VSTR(FROM : STRING) return VSTRING;

function VSTR(FROM : CHARACTER) return VSTRING;
function "+" (FROM : STRING) return VSTRING;

function "+" (FROM : CHARACTER) return VSTRING;

generic

type FROM is private;
type TO is private;
with function STR(X : FROM) return STRING is <>;
with function VSTR(Y STRING) return TO is <>;

function CONVERT(X : FROM) return TO;

private

type VSTRING is
record

LEN : STRINDEX := STRINDEX'FIRST;
VALUE : STRING(FIRST .. LAST) :- (others => ASCII.NUL);

end record;

NUL : constant VSTRING := (STRINDEX'FIRST, (others => ASCII.NUL));

end VSTRINGS:

package body VSTRINGS is

-- local declarations

FILLCHAR : constant CHARACTER := ASCII.NUL;

procedure FORMAT(THESTRING: in out VSTRING;
OLDLEN : in STRINDEX:=LAST) is

-- fill the string with FILLCHAR to null out old values

begin -- FORMAT (Local Procedure)

THESTRING.VALUE(THESTRING.LEN + 1 .. OLDLEN)
(others => FILLCHAR);

end FORMAT;

-- bodies of visible operations

function LEN(FROM : VSTRING) return STRINDEX is

begin -- LEN

return(FROM.LEN);

end LEN;

93

function MAX(FROM : VSTRING) return STRINDEX is

begin -- MAX

return(LAST);

end MAX;

function STR(FROM : VSTRING) return STRING is
begin -- STR

return (FROM.VALUE (FIRST .. FROM.LEN));
end STR;

function CHAR(FROM : VSTRING; POSITION : STRINDEX FIRST)
return CHARACTER is

begin -- CHAR

if POSITION not in FIRST .. FROM.LEN

then raise CONSTRAINT ERROR;

end if;
return (FROM.VALUE (POSITION));

end CHAR;

function "<" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- "<"

return(LEFT.VALUE < RIGHT.VALUE);

end "<";

function ">" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- ">"

return(LEFT.VALUE > RIGHT.VALUE);

end ">";

function "<=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is
begin -- "<="

return(LEFT.VALUE <- RIGHT.VALUE);

end "<=";

function ">" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- "

return(LEFT.VALUE >- RIGHT.VALUE);
end ">=";

function equal (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- equal

return(LEFT.VALUE = RIGHT.VALUE);

end equal;

94

function notequal (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- notequal

return(LEFT.VALUE /- RIGHT.VALUE);

end notequal;

procedure PUT(FILE : in FILETYPE; ITEM : in VSTRING) is

begin -- PUT

PUT(FILE, ITEM.VALUE(FIRST .. ITEM.LEN));

end PUT;

procedure PUT(ITEM : in VSTRING) is

begin -- PUT

PUT(ITEM.VALUE(FIRST .. ITEM.LEN));

end PUT;

procedure PUTLINE(FILE : in FILE TYPE; ITEM : in VSTRING) is

begin -- PUT LINE

PUTLINE(FILE, ITEM.VALUE(FIRST .. ITEM.LEN));

end PUTLINE;

procedure PUT LINE(ITEM : in VSTRING) is

begin -- PUT LINE

PUTLINE(ITEM.VALUE(FIRST .. ITEM.LEN));

end PUTLINE;

procedure GET(FILE : in FILETYPE; ITEM : out VSTRING;

LENGTH : in STRINDEX := LAST) is

begin -- GET

if LENGTH not in FIRST .. LAST

then raise CONSTRAINTERROR;

end if;

ITEM := NUL;

for INDEX in FIRST .. LENGTH loop

GET(FILE, ITEM.VALUE(INDEX));

ITEM.LEN :- INDEX;

end loop;

end GET;

procedure GET(ITEM : out VSTRING; LENGTH : in STRINDEX := LAST) is

begin -- GET

if LENGTH not in FIRST .. LAST

then raise CONSTRAINTERROR;

end if;

ITEM := NUL;

for INDEX in FIRST .. LENGTH loop

95

GET (ITEM.VALUE (INDEX));

ITEM.LEN := INDEX;

end loop;

end GET;

procedure GETLINE(FILE : in FILETYPE; ITEM in out VSTRING) is

OLDLEN constant STRINDEX :- ITEM.LEN;

begin -- GETLINE

GET LINE(FILE, ITEM.VALUE, ITEM.LEN);

FORMAT(ITEM, OLDLEN);

end GETLINE;

procedure GETLINE(ITEM : in out VSTRING) is

OLDLEN constant STRINDEX := ITEM.LEN;

begin -- GET LINE

GETLINE(ITEM.VALUE, ITEM.LEN);

FORMAT (ITEM, OLDLEN);

end GETLINE;

function SLICE(FROM : VSTRING; FRONT, BACK : STRINDEX) return VSTRING is

begin -- SLICE
if ((FRONT not in FIRST .. FROM.LEN) or else

(BACK not in FIRST .. FROM.LEN)) and then FRONT <= BACK

then raise CONSTRAINTERROR;

end if;

return(Vstr(FROM.VALUE(FRONT .. BACK)));

end SLICE;

function SUBSTR(FROM : VSTRING; START, LENGTH : STRINDEX) return VSTRING is

begin -- SUBSTR
if (START not in FIRST .. FROM.LEN) or else

((START + LENGTH - 1 not in FIRST .. FROM.LEN)

and then (LENGTH > 0))

then raise CONSTRAINTERROR;

end if;

return(Vstr(FROM.VALUE(START .. START + LENGTH -1)));

end SUBSTR;

function DELETE(FROM : VSTRING; FRONT, BACK : STRINDEX) return VSTRING is

96

TEMP : VSTRING := FROM;

begin -- DELETE

if ((FRONT not in FIRST .. FROM.LEN) or else

(BACK not in FIRST .. FROM.LEN)) and then FRONT <= BACK

then raise CONSTRAINTERROR;

end if;

if FRONT > BACK then return(FROM); end if;

TEMP.LEN := FROM.LEN - (BACK - FRONT) - 1;

TEMP.VALUE(FRONT .. TEMP.LEN) := FROM.VALUE(BACK + 1 .. FROM.LEN);

FORMAT(TEMP, FROM.LEN);

return(TEMP);

end DELETE;

function INSERT(TARGET: VSTRING; ITEM: VSTRING;

POSITION : STRINDEX := FIRST) return VSTRING is

TEMP : VSTRING;

begin -- INSERT

if POSITION not in FIRST .. TARGET.LEN

then raise CONSTRAINTERROR;

end if;

if TARGET.LEN + ITEM.LEN > LAST

then raise CONSTRAINT ERROR;

else TEMP.LEN TARGET.LEN + ITEM.LEN;

end if;

TEMP.VALUE(FIRST POSITION - 1) := TARGET.VALUE(FIRST POSITION - 1);

TEMP.VALUE(POSITION (POSITION + ITEM.LEN - 1))

ITEM.VALUE(FIRST ITEM.LEN);

TEMP.VALUE((POSITION + ITEM.LEN) .. TEMP.LEN) :=

TARGET.VALUE(POSITION .. TARGET.-EN);

return(TEMP);

end INSERT;

function INSERT(TARGET: VSTRING; ITEM: STRING;

POSITION : STRINDEX := FIRST) return VSTRING is

begin -- INSERT

return INSERT(TARGET, VSTR(ITEM), POSITION);

end INSERT;

function INSERT(TARGET: VSTRING; ITEM: CHARACTER;

POSITION : STRINDEX := FIRST) return VSTRING is

begin -- INSERT

97

return INSERT(TARGET, VSTR(ITEM), POSITION);

end INSERT;

function APPEND(TARGET: VSTRING; ITEM: VSTRING; POSITION : STRINDEX)

return VSTRING is

TEMP VSTRING;

POS : STRINDEX := POSITION;

begin -- APPEND

if POSITION not in FIRST .. TARGET.LEN

then raise CONSTRAINTERROR;

end if;

if TARGET.LEN + ITEM.LEN > LAST

then raise CONSTRAINT ERROR;

else TEMP.LEN TARGET.LEN + ITEM.LEN;

end if;

TEMP.VALUE(FIRST POS) := TARGET.VALUE(FIRST POS);

TEMP.VALUE(POS + 1 .. (POS + ITEM.LEN)) := ITEM.VALUE(FIRST ITEM.LEN);

TEMP.VALUE((POS + ITEM.LEN + 1) .. TEMP.LEN)

TARGET.VALUE(POS + 1 .. TARGET.LEN);

return(TEMP);

end APPEND;

function APPEND(TARGET: VSTRING; ITEM: STRING; POSITION : STRINDEX)

return VSTRING is

begin -- APPEND

return APPEND(TARGET, VSTR(ITEM), POSITION);

end APPEND;

function APPEND(TARGET: VSTRING; ITEM: CHARACTER; POSITION : STRINDEX)

return VSTRING is

begin -- APPEND

return APPEND(TARGET, VSTR(ITEM), POSITION);

end APPEND;

function APPEND(TARGET: VSTRING; ITEM: VSTRING) return VSTRING is

begin -- APPEND

return(APPEND(TARGET, ITEM, TARGET.LEN));

end APPEND;

function APPEND(rARGET: VSTRING; ITEM: STRING) return VSTRING is

begin -- APPEND

return(APPEND(TARGET, VSTR(ITEM), TARGET.LEN));

end APPEND;

98

function APPEI:D(TARGET: VSTRING; ITEM: CHARACTEP) return V.STRING is

begin -- APPEND

return (APPEND (TARGET, VSTR(ITEM), TARGET.LEN));

end A-PEND;

function REPLACE(TARGET: VSTRING; ITEM: VSTRING;

POSITION :STRINDEX :- FIRST) return VSTRING is

TEMP :VSTRING;

begin -- REPLACE

if POSITION not in FIRST .. TARGET.LEN

hen raise CONSTRAINTERROR;

end if;

if POSITION 4- ITEM.LEN - I <= TARGET.LEN

then TEMP.LEN :=TARGET.LEN;

elsif POSITION + ITEN.LEN - 1 -LAST

then raise CONSTRAINTERROR;

else TEMP.LEN :=POSITION + ITEM.LEN - 1;

end if;

TEMP.VALUE(FIRE-' POSITION - 1) : TARGET.VALUE(FIRST POSITION-1)

TEMP.VALUE(POSITION (POSITION + ITEM.LEN - 1)) :

ITEM.VALUE(FIRST ITEM.LEN);

TEML.VALUE((POS1710F + ITEM.LEN) .. TEMP.LEN)

TARGET.VALUE((POSITION + ITEM.LEN) .. TARGET.LEN);

ret urA-i(TEMP);

end REPLACE;

function REPLACE(TARGET: VSTRING; ITEM: STRING;

POSITION : STRINDEX :- FIRST) return VSTRING is

begin -- REPLACE

return REPLACE(TARGET, VSTR(ITEM), POSITION);

end REPLACE;

function REPLACE(TARGET: VSTRING; ITEM: CHARACTER;

POSITION :STRINDEX :- FIRST) return VSTRING is

begin -- REPLACE

return REPLACE (TARGET, VSTR(ITEM), POSITION);

end REPLACE;

function "&"(LEFT:VSTRING; RIGHT :VSTRI1NG) return VSTRING is

TEMP : VSTRING;

begin -- &

if LEFT.LEN + RIGHT.LEN > LAST

99

then raise CONSTRAINTERROR;

else TEMP.LEN :- LEFT.LEN + RIGHT.LEN;

end if;

TEMP.VALUE(FIRST TEMP.LEN) := LEFT.VALUE(FIRST .. LEFT.LEN) &
RIGHT.VALUE(FIRST .. RIGHT.LEN);

return(TEMP);

end "&";

function "&"(LEFT:VSTRING; RIGHT : STRING) return VSTRING is

begin -- "&"

return LEFT & VSTR(RIGHT);

end "&";

function "&"(LEFT:VSTRING; RIGHT : CHARACTER) return VSTRING is

begin -- "&"

return LEFT & VSTR(RIGHT);

end "&";

function "&"(LEFT : STRING; RIGHT : VSTRING) return VSTRING is

begin -- "&"

return VSTR(LEFT) & RIGHT;

end "&";

function "&"(LEFT : CHARACTER; RIGHT VSTRING) return VSTRING is

begin -- "6"

return VSTR(LEFT) & RIGHT;

end "&";

Function INDEX(WHOLE ; VSTRING; PART VSTRING; OCCURRENCE NATURAL := 1)

return STRINDEX is

NOT FOUND : constant NATURAL := 0;
INDEX NATURAL := FIRST;

COUNT NATURAL 0;

begin -- INDEX

if PART = NUL then return(NOTFOUND); -- by definition

end if;

while INDEX + PART.LEN - 1 <= WHOLE.LEN and then COUNT < OCCURRENCE loop
if WHOLE.VALUE(INDEX PART.LEN + INDEX - 1) =

PART.VALUE(I .. PART.LEN)

then COUNT := COUNT + 1;
end if;
INDEX :- INDEX + 1;

end loop;

if COUNT - OCCURRENCE

then return(INDEX - 1);

else return(NOTFOUND);
end if;

end INDEX;

Function INDEX(WHOL : VSTRI1C; PART : STRING; OCCURRENCE : NATURAL := 1)

return STRINDEX is

begin -- Index

return(Index(WHOLE, VSTR(PART), OCCURRENCE));

end INDEX;

Function INDEX(WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE : NATURAL := 1)

return STRINDEX is

begin -- Index

return(Index(WHOLE, VSTR(PART), OCCURRENCE));
end INDEX;

function RINDEX(WHOLE: VSTRING; PART:VSTRING; OCCURRENCE:NATURAL := 1)

return STRINDEX is

NOT FOUND : constant NATURAL 0;
INDEX INTEGER WHOLE.LEN - (PART.LEN -1);

COUNT NATURAL := 0;

begin -- RINDEX

if PART = NUL then return(NOTFOUND); -- by definition
end if;

while INDEX >= FIRST and then COUNT < OCCURRENCE loop

if WHOLE.VALUE(INDEX .. PART.LEN + INDEX - 1) =

PART.VALUE(1 .. PART.LEN)

then COUNT := COUNT + 1;
end if;

INDEX := INDEX - 1;
end loop;

if COUNT = OCCURRENCE

then
if COUNT > 0

then return(INDEX + 1);

else return(NOTFOUND);

end if;
else return(NOTFOUND);

end if;

end RINDEX;

Function RINDEX(WHOLE : VSTRING; PART STRING; OCCURRENCE NATURAL := 1)

return STRINDEX is

101

begin -- Rindex

return(RINDEX(WHOLE, VSTR(PART), OCCURRENCE));

end RINDEX;

Function RINDEX(WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE NATURAL :- 1)
return STRINDEX is

begin -- Rindex

return(RINDEX(WHOLE, VSTR(PART), OCCURRENCE));

end RINDEX;

function VSTR(FROM : CHARACTER) return VSTRING is

TEMP : VSTRING;

begin -- VSTR

if LAST < 1
then raise CONSTRAINT ERROR;
else TEMP.LEN := 1;

end if;

TEMP.VALUE(FIRST) :- FROM;

return (TEMP);
end VSTR;

function VSTR(FROM : STRING) return VSTRING is

TEMP : VSTRING;

begin -- VSTR

if FROM'LENGTH > LAST

then raise CONSTRAINTERROR;
else TEMP.LEN FROM'LENGTH;

end if;

TEMP.VALUE(FIRST FROM'LENGTH) :- FROM;

return(TEMP);

end VSTR;

Function "+" (FROM : STRING) return VSTRING is

begin -- "+"

return(VSTR(FROM));

end "+";

Function "+" (FROM : CHARACTER) return VSTRING is

begin

return(VSTR(FROM));

102

end ""

function CONVERT(X :FROM) return TO is

begin -- CONVERT
return (VSTR (STR (X)));

end CONVERT;:
end VSTRINGS;

103

-- FILES - "files.a" has the global data tyre declerations used by all the

-- other packages.

with VSTRINGS;
with SEQUENCES;
with GRAPHS;

package FILES is

package VARSTRING is new VSTRINGS(80);

use VARSTRING;

subtype OPERATOR ID is VSTRING;
subtype VALUE is NATURAL;

subtype MET is VALUE;

subtype MRT is VALUE;
subtype MCP is VALUE;
subtype PERIOD is VALUE;
subtype WITHIN is VALUE;
subtype STARTS is VALUE;
subtype STOPS is VALUE;

subtype LOWERS is VALUE;
subtype UPPERS is VALUE;

ExceptionOperator : OPERATORID;

TESTVERIFIED : BOOLEAN := TRUE;

type OPERATOR is
record
THEOPERATORID : OPERATORID;
THEMET : MET 0;
THEMRT : MRT 0;
THEMCP : MCP 0;
THEPERIOD : PERIOD 0;

THE WITHIN : WITHIN 0;

end record;

package DIGRAPH is new GRAPHS(OPERATOR);

type SCHEDULEINPUTS is
record
THEOPERATOR : OPERATORID;

THESTART : STARTS 0;
THESTOP : STOPS 0;

THELOWER : LOWERS 0;

THE UPPER : UPPERS :- 0;
end record;

package SCHEDULEINPUTSLIST is new SEQUENCES(SCHEDULE INPUTS);

104

type OPINFO is
record

NODE : OPERATOR;
SUCCESSORS : DIGRAPH.V LISTS.LIST;
PREDICESSORS : DIGRAPH.VLISTS.LIST;

end record;

package OPINFOLIST is new SEQUENCES(OPINFO);

end FILES;

105

-- FILE-PROCESSOR - "fp_s.a, fp_b.a"; includes the procedures which are used to
-- validate the information in the 'atomic.info' file and
-- costruct the Graph Structure.

with FILES; use FILES;

package FILEPROCESSOR is

procedure SEPARATEDATA (THEGRAPH in out DIGRAPH.GRAPH);

procedure VALIDATE DATA (THEGRAPH in out DIGRAPH.GRAPH);

CRIT OP LACKS MET exception;
ME- NOT LESSTHANPERIOD exception;
MET NOT LESS THAN MRT exception;
MCP NOT LESS THAN MRT exception;
MCP LESS THAN-MET exception;

MET 13 GREATERTHANFINISHWITHIN exception;
SPORADIC OP LACKS MCP exception;
SPORADIC OP LACKSMRT exception;
PERIODLESSTHANFINISH WITHIN exception;

end FILEPROCESSOR;

with TEXT 10;
with FILES; use FILES;

package body FILEPROCESSOR is

procedure SEPARATEDATA (THEGRAPH in out DIGRAPH.GRAPH) is

-- This procedure reads the output file which has the link information with
-- the Atomic operators and depending upon the keywords that are declared
-- as constants separates the information in the file and stores it in the
-- graph data structure, where GRAPH has the operator and link information

-- in it.

package VALUE IO is new TEXT IO.INTEGERIO(VALUE);

MET constant VARSTRING.VSTRING := VARSTRING.VSTR("MET");
MRT constant VARSTRING.VSTRING :- VARSTRING.VSTR("MRT");
MCP constant VARSTRING.VSTRING VARSTRING.VSTR("MCP");

PERIOD constant VARSTRING.VSTRING VARSTRING.VSTR("PERIOD");
WITHIN constant VARSTRING.VSTRING VARSTRING.VSTR("WITHIN");

LINK constant VARSTRING.VSTRING VARSTRING.VSTR("LINK");
ATOMIC constant VARSTRING.VSTRING VARSTRING.VSTR("ATOMIC");
EMPTY constant VARSTRING.VSTRING := VARSTRING.VSTR("EMPTY");

CurrentValue VALUE;
NewStream DIGRAPH.DATASTREAM;
New Word VARSTRING.VSTRING;

106

CurOpt : OPERATOR;
CurLink : DIGRAPH.LINKDATA;

NONCRITS : TEXTIO.FILETYPE;

AGOUTFILE : TEXTIO.FILETYPE;
INPUT : TEXTIO.FILEMODE TEXT_IO.INFILE;
OUTPUT : TEXTIO.FILEMODE := TEXTIO.OUTFILE;
PRINTEDGES : DIGRAPH.ELISTS.LIST;

Si, S2, Li : DIGRArH.V LISTS.LIST;
IDI, ID2 : OPERATOR;
STARTNODE : OPERATOR;
ENDNODE : OPERATOR;

procedure INITIALIZEOPERATOR (OP in out OPERATOR) is

begin

OP.THEMET 0;
OP.THEMRT 0;
OP.THEMCP 0;

OP.THEPERIOD 0;
OP.THEWITHIN 0;

end;

begin
TEXTIO.OPEN (AGOUTFILE, INPUT, "atomic.info");
TEXTIO.CREATE(NONCRITS, OUTPUT, "noncrits");
VARSTRING.GETLINE (AGOUTFILE, NewWord);
while not TEXTIO.ENDOFFILE(AGOUTFILE) loop

if VARSTRING.EQUAL (NewWord,LINK) then -- keyword "LINK"
STARTNODE.THEOPERATORID z= EMPTY;
ENDNODE.THEOPERATORID :- EMPTY;
DIGRAPH.V STRING.GETLINE(AGOUTFILE,NewStream);

CurLink.THEDATASTREAM := New-Stream;
VARSTRING.GETLINE(AGOUTFILE, NewWord);
Li := THE GRAPH.VERTICES;
while DIGRAPH.VLISTS.NONEMPTY(L1) loop

if VARSTRING.EQUAL(DIGRAPH.VLISTS.VALUE(Li).THEOPERATORID,NewWord)

then
START NODE :- DIGRAPH.VLISTS.VALUE(L);

exit;

end if;
DIGRAPH.VLISTS.NEXT(Li);

end loop;
VALUEIO.GET(AGOUTFILE, CurrentValue);
TEXTIO.SKIPLINE(AGOUTFILE);
CurLink.THELINKMET := CurrentValue;
VARSTRING.GETLINE (AGOUTFILE, NewWord);

Li := THEGRAPH.VERTICES;
while DIGRAPH.VLISTS.NONEMPTY(Li) loop

if VARSTRING.EQUAL(DIGRAPH.VLISTS.VALUE(LI).THEOPERATORID,NewWord)

then

107

END NODE := DIGRAPH.VLISTS.VALUE(L1);

exit;
end if;
DIGRAPH.VLISTS.NEXT(Li);

end loop;
-- when either starting node or ending node of a link is EXTERNAL,

-- the link information will not be added to the graph. Assuming
-- that all external data coming in is ready at start time.

if VARSTRING.NOTEQUAL(STARTNODE.THEOPERATORID,EMPTY) and
VARSTRING.NOTEQUAL(ENDNODE.THEOPERATORID,EMPTY) then

DIGRAPH.V__LISTS.ADD(STARTNODE, Cur_Link.THEFIRST OP ID);
DIGRAPH.VLISTS.ADD(ENDNODE, Cur Link.THESECONDOPID);
DIGRAPH.ADD(CurLink, THEGRAPH);

end if;
VARSTRING.GETLINE (AGOUTFILE, NewWord);

elsif VARSTRING.EQUAL (NewWord,ATOMIC) then -- keyword "ATOMIC"
VARSTRING.GETLINE (AGOUTFILE, NewWord);

CurOpt.THEOPERATORID := NewWord;
VARSTRING.GETLINE (AGOUTFILE, NewWord);

if (VARSTRING.EQUAL(NewWord, ATOMIC)) or
(VARSTRING.EQUAL(NewWord, LINK)) or

(TEXT IO.ENDOFFILE(AGOUTFILE)) then

VARSTRING.PUTLINE(NONCRITS, CurOpt.THEOPERATORID);

else

while VARSTRING.NOTEQUAL (NewWord, ATOMIC) and
VARSTRING.NOTEQUAL (New Word, LINK) and

not TEXTIO.ENDOFFILE(AGOUTFILE) loop

if VARSTRING.EQUAL (NewWord,MET) then -- keyword "MET"

VALUEIO.GET(AGOUTFILE,CurrentValue);
TEXT IO.SKIPLINE(AGOUTFILE);

CurOpt.THE MET := CurrentValue;

elsif VARSTRING.EQUAL (NewWord,MRT) then -- keyword "MRT"
VALUEIO.GET(AGOUTFILE,CurrentValue);

TEXT IO.SKIPLINE(AGOUTFILE);
CurOpt.THE MRT:= CurrentValue;

elsif VARSTRING.EQUAL (NewWord,MCP) then -- keyword "MCP"
VALUEIO.GET(AGOUTFILE,Cu-rentValue);
TEXTIO.SKIPLINE(AGOUTFILE);

CurOpt.THEMCP := CurrentValue;

elsif VARSTRING.EQUAL (NewWord,PERIOD) then -- keyword "PERIOD"
VALUEIO.GET(AGOUTFILE,CurrentValue);

TEXT IO.SKIPLINE(AGOUTFILE);
CurOpt.THEPERIOD := CurrentValue;

elsif VARSTRING.EQUAL (NewWord,WITHIN) then -- keyword "WITHIN"

108

VALUEIO.GET(AG OUTFILE,CurrentValue);
TEXTIO.SKIPLINE(AGOUTFILE);

CurOpt.THEWITHIN :- CurrentValue;

end if;

VARSTRING.GET LINE(AGOUTFILE,NewWord);

end loop;

DIGRAPH.ADD(CurOpt, THEGRAPH);
INITIALIZEOPERATOR(CurOPt);

end if;

end if;
end loop;

end SEPARATEDATA;

procedure VALIDATEDATA (THEGRAPH : in out DIGRAPH.GRAPH) is
-- check the correctness of the operator and the link information before
-- running the algorithms. If any check fails in this procedure, the
-- program halts.

TARGET : DIGRAPH.VLISTS.LIST;

package VALIO is new TEXTIO.INTEGERIO(VALUE);

begin
TARGET := THE GRAPH.VERTICES;
while DIGRAPH.VLISTS.NONEMPTY(TARGET) loop

-- ensure that there is no operator without an MET.
if DIGRAPH.V LISTS.VALUE(TARGET) .THE MET - 0 then

Exception_Operator := DIGRAPH.VLISTS.VALUE(TARGET).THEOPERATORID;
raise CRITOPLACKSMET;

end if;

if DIGRAPH.V LISTS.VALUE(TARGET).THE PERIOD - 0 then
-- Check to ensure that MCP has a value for sporadic operators
if DIGRAPH.V LISTS.VALUE(TARGET).THE MCP = 0 then

ExceptionOperator := DIGRAPH.VLISTS.VALUE(TARGET).THEOPERATORID;
raise SPORADIC OP LACKSMCP;

elsif DIGRAPH.VLISTS.VALUE(TARGET).THEMET >
DIGRAPH.V LISTS.VALUE(TARGET).THEMCP then

ExceptionOperator := DIGRAPH.V LISTS.VALUE(TARGET).THEOPERATOR ID;
raise MCP_LESSTHANMET;

end if;

-- Check to ensure that MRT has a value for sporadic operators
if DIGRAPH.V LISTS.VALUE(TARGET).THEMRT = 0 then
Exception_Operator := DIGRAPH.VLISTS.VALUE(TARGET) .THEOPERATORID;

raise SPORADICOPLACKSMRT;

end if;

-- Check to ensure that the MRT is greater than the MET.
if DIGRAPH.V LISTS.VALUE(TARGET).THE MET >

109

DIGRAPH.VLISTS.VALUE(TARGET).THE_-MRT then
ExceptionOperator :- DIGRAPH.VLISTS.VALUE(TARGET).THEOPERATOR ID;
raise METNOTLESSTHANMRT;

end if;

-Guarantees that an operator can fire at least once
-before a response expected.

if DIGRAPH.VLISTS.VALUE(TARGET).THEMCP >

DIGRAPH.VLISTS.VALUE(TARGET).THEMRT then
raise MCPNOTLESSTHANNRT;

end if;

else
-- Check to ensure that the PERIOD is greater than the MET.
if DIGRAPH.VLISTS.VALUE(TARGET).THEMET >

DIGRAPH.V_-LISTS.VALUE (TARGET) .THEPERIOD then
ExceptionOperator :=DIGRAPH.V_-LISTS.VALUE(TARGET).THEOPERATOR ID;
raise METNOTLESSTHANPERIOD;

end if;

-- Check to ensure that the FINISH -WITHIN is grater than the MET.
if DIGRAPH.VLISTS.VALUE(TARGET).THEWITHIN /= 0 then

if DIGRAPH.VLISTS.VALUE (TARGET) .THE_-MET >
DIGRAPH.VLISTS.VALUE (TARGET) .THEWITHIN then

ExceptionOperator := DIGRAPH.VLISTS.VALUE (TARGET) .THEOPERATORID;
raise MET_-IS_-GREATERTHANFINISHWITHIN;

elsif DIGRAPH.VLISTS.VALtIE(TARGET).THE_-PERIOD <
DIGRAPH.VLISTS.VALUE (TARGET) .THE_-WITHIN then

ExceptionOperator :=DIGRAPH.V LISTS.VALUE(TARGET).THE OPERATOR ID;
raise PERIODLESSTHANFINISH WITHIN;

end if;
end if;

end if;
DIGRAPH.VLISTS.NEXT (TARGET);

end loop;
end VALIDATEDATA;

end FILE-PROCESSOR;

110

-- TOPOLOGICALSORTER - nt sort s.a, t sort b.a"; this package contains one

procedure that does a topological sort of a linked list

with FILES;use FILES;

package TOPOLOGICALSORTER is

procedure TOPOLOGICAL SORT (G: in DIGRAPH.GRAPH;

PRECEDENCE LIST: in out DIGRAPH.V LISTS.LIST);

end TOPOLOGICAL SORTER;

with TEXT_10;
with FILES; use FILES;

package body TOPOLOGICALSORTER is

-- This package determines the precedence order in which operators must

-- execute in the final schedule. This information is determined
-- from the graph.

procedure TOPOLOGICALSORT (G: in DIGRAPH.GRAPH;
PRECEDENCELIST: in out DIGRAPH.VLISTS.LIST) is

-- This procedure determines which operators in the graph must

-- be executed before another.

Q : DIGRAPH.VLISTS.LIST;

begin

DIGRAPH.TSORT(G,PRECEDENCELIST);

Q := PRECEDENCELIST;

end TOPOLOGICALSORT;

end TOPOLOGICAL-SORTER;

111

-- HARMONICBLOCKBUILDER - "hbb s.a, hbbb.a"; this package determines the
periodic equivalents of the sporadic operators,
and the length for the harmonic block.

with FILES; use FILES;

package HARMONICBLOCKBUILDER is

procedure CALCPERIODICEQUIVALENTS (THEGRAPH : in out DIGRAPH.GRAPH);

procedure FINDBASEBLOCK (PRECEDENCELIST in DIGRAPH.VLISTS.LIST;
BASEBLOCK out VALUE);

procedure FINDBLOCKLENGTH (PRECEDENCELIST : in DIGRAPH.V LISTS.LIST;
HARMONICBLOCK LENGTH : out INTEGER);

NOBASEBLOCK : exception;

NOOPERATORINLIST : exception;
METNOTLESSTHANPERIOD : exception;

end HARMONICBLOCKBUILDER;

with TEXT_10;

with FILES; use FILES;

package body HARMONICBLOCKBUILDER is

procedure CALCPERIODICEQUIVALENTS (THEGRAPH : in out DIGRAPH.GRAPH) is

V : DIGRAPH.V LISTS.LIST := THEGRAPH.VERTICES;

E : DIGRAPH.E LISTS.LIST := THE GRAPH.LINKS;
OPT : OPERATOR;

NEW P : VALUE := 0;

package val io is new TEXTIO.INTEGERIO(value);

procedure VERIFY_1 (0 : in OPERATOR) is

-- Check to ensure that MRT has a ralue for sporadic operators

begin

if O.THEMET >= O.THEPERIOD then

Exception Operator : O.THEOPERATORID;

raise MET NOT LESS THAN PERIOD;

end if;

end VERIFY 1;

procedure CALCULATENEW PERIOD (0: in OPERATOR; NEW PERIOD: in out VALUE) is

DIFFERENCE : VALUE;
package VALUE_10 is new TEXTIO.INTEGERIO(VALUE);

begin

DIFFERENCE :- O.THE_ MRT - O.THEMET;

if DIFFERENCE < O.THE MCP then

NEW PERIOD :- DIFFERENCE;

112

else
NEWPERIOD := O.THEMCP;

end if;

end CALCULATENEWPERIOD;

procedure MODIFY LINKINFO (EDGES : in out DIGRAPH.ELISTS.LIST;
TARGET : in OPERATOR) is

P : DIGRAPH.E LISTS.LIST :- EDGES;
START NODE : DIGRAPH.VLISTS.LIST;

ENDNODE : DIGRAPH.VLISTS.LIST;
VI, V2 : OPERATOR;

begin
while DIGRAPH.E LISTS.NON EMPTY(P) loop

START NODE DIGRAPH.E LISTS.VALUE(P) .THE FIRST OP ID;
ENDNODE DIGRAPH.ELISTS.VALUE(P).THESECONDOPID;

Vi DIGRAPH.VLISTS.VALUE(STARTNODE);
V2 DIGRAPH.VLISTS.VALUE(ENDNODE);
if VARSTRING.EQUAL(V.TH- E_OPERATOR ID, TARGET.THE OPERATORID) then

STARTNODE.ELEMENT.THEPERIOD := TARGET.THEPERIOD;
elsif VARSTRING.EQUAL(v2.THEOPERATORID, TARGET.THEOPERATORID) then
ENDNODE.ELEMENT.THEPERIOD :- TARGET.THE PERIOD;

end if;
DIGRAPH.E LISTS.NEXT(P);

end loop;

end MODIFYLINKINFO;

begin -- main CALCPERIODIC EQUIVALENTS
while DIGRAPH.VLISTS.NON EMPTY(V) loop

OPT := DIGRAPH.V LISTS.VALUE(V);
if OPT.THEPERIOD = 0 then

CALCULATENEWPERIOD(OPT, NEWP);
OPT.THEPERIOD := NEWP;
VERIFI_1 (OPT);
MODIFYLINKINFO(E, OPT);
V.element.the_period := new-p;
E := THEGRAPH.LINKS;

end if;

DIGRAPH.VLISTS.NEXT(V);

end loop;
end CALCPERIODI._EQUIVALENTS;

procedure FINDBASEBLOCK (PRECEDENCELIST in DIG-APH.VLISTS.LIST;

BASEBLOCK out VALUE) is

PLIST : DIGRAPH.VLISTS.LIST := PRECEDENCELIST;
DIVISOR : VALUE;
ALTERNATESEQUENCE DIGRAPH.VLISTS.LIST;
BASEBLOCKSEQUENCE DIGRAPH.V_IISTS.LIST;

function FIND MINIMUM PERIOD (PLIST : in DIGPAPH.VLISTS.LIST)

return VAL"E is

113

V : DIGRAPH.VLISTS.LIST := P_LIST;

MIN-PERIOD : VALUE := 0;

begin

if DIGRAPH.V LISTS.NON EMPTY(V) then

MINPERIOD :- DIGRAPH.VLISTS.VALUE(V) .THEPERIOD;

DIGRAPH.VLISTS.NEXT(V);

while DIGRAPH.V_LISTS.NONEMPTY(V) loop

if DIGRAPH.V LISTS.VALUE(V).THE PERIOD < MIN PERIOD then

MINPERIOD := DIGRAPH.VLISTS.VALUE(V) .THEPERIOD;

end if;

DIGRAPH.VLISTS.NEXT(V);

end loop;

return MINPERIOD;

else

raise NOOPERATORINLIST;

end if;

end FINDMINIMUMPERIOD;

function MODEDIVIDE (THEPERIOD : in VALUE) return VALUE is

begin

return (THEPERIOD mod DIVISOR);

end MODEDIVIDE;

procedure INITIAL PASS (PLIST : in out DIGRAPH.VLISTS.LIST;

BASEBLOCKSEQUENCE in out DIGRAPH.V LISTS.LIST;

ALTERNATESEQUENCE in out DIGRAPH.VLISTS.LIST) is

ORIGSEQUENCE : DIGRAPH.VLISTS.LIST := P LIST;

OPFROMORGSEQ : OPERATOR;

REMAINDER VALUE;

THEPERIOD VALUE;

begin
while DIGRAPH.VLISTS.NONEMPTY(ORIGSEQUENCE) loop

THEPERIOD DIGRAPH.VLISTS.VALUE(ORIGSEQUENCE).THEPERIOD;

REMAINDER MODEDIVIDE (THEPERIOD);

OPFROMORGSEQ := DIGRAPH.VLISTS.VALUE(ORIGSEQUENCE);

if REMAINDER - 0 then

DIGRAPH.VLISTS.ADD (OPFROMORGSEQ, BASEBLOCKSEQUENCE);

else

DIGRAPH.VLIS1S.ADD (OPFROMORGSEQ, ALTERNATESEQUENCE);

end if;

DIGRAPH.V LISTS.NEXT(ORIGSEQUENCE);

end loop;

end INITIALPASS;

begin -- main FIND BASE BLOCK

DIVISOR :- FINDMINIMUMPERIOD(PLIST);

INITIALPASS(PLIST, BASEBLOCKSEQUENCE, ALTERNATESEQUENCE);

while DIGRAPH.VLISTS.NONEMPTY(ALTERNATESEQUENCE) loop

if DIVISOR = I then

114

raise NOBASEBLOCK;
-- exit and terminate the Static Scheduler

else
DIVISOR :- DIVISOR - 1;
ALTERNATESEQUENCE null;

BASE BLOCKSEQUENCE null;
INITIALPASS(PLIST, BASE_BLOCKSEQUENCE, ALTERNATESEQUENCE);

end if;

end loop;

BASEBLOCK := DIVISOR;

end FINDBASEBLOCK;

procedure FINDBLOCK LENGTH (PRECEDENCE-LIST : in DIGRAPH.VLISTS.LIST;
HARMONICBLOCKLENGTH : out INTEGER) is

ORIGSEQUENCE : DIGRAPH.VLISTS.LIST := PRECEDENCE-LIST;

NUMBER1 VALUE;
NUMBER2 * VALUE;

LCM VALUE;
GCD VALUE;
TARGETNO VALUE;

function FIND GCD (NUMBER1 : in VALUE; NUMBER2 : in VALUE) return VALUE is

NEWGCD VALUE;
begin

while GCD / 0 loop

if (NUMBERI mod GCD 0) and (NUMBER2 mod GCD = 0) then

NEWGCD := GCD;

return NEWGCD;

else

GCD := GCD - 1;
end if;

end loop;

end FINDGCD;

function FINDLCM (NUMBERl, NUMBER2 VALUE) return VALUE is

begin
return(NUMBERl * NUMBER2) / GCD;

end FINDLCM;

begin -- main FIND BLOCKLENGTH

if DIGRAPH.VLISTS.NON EMPTY(ORIGSEQUENCE) then

NUMBERI := DIGRAPH.VLISTS.VALUE(ORIGSEQUENCE).THEPERIOD;
DIGRAPH.VLISTS.NEXT(ORIGSEQUENCE);
while DIGRAPH.VLISTS.NONEMPTY(ORIGSEQUENCE) loop

NUMBER2 := DIGRAPH.V LISTS.VALUE(ORIGSEQUENCE).THE PERIOD;
if NUMBER2 > NUMBER1 then

GCD :- NUMBER1;
TARGETNO := NUMBER2;

else

GCD := NUMBER2;

115

TARGETNO :- NUMBERI;

end if;

GCD :=FINDGCD(GCD, TARGETNO);
LCM :=FINDLCM(NUMBER1, NUMBER2);

NUMBERi :- LCM;

DIGRAPH.V_-LISTS.NEXT(ORIGSEQUENCE);
end loop;
HARMONICBLOCKLENGTH :- LCM;

else
raise NOOPERATORIN-LIST;

end if;

end FINDBLOCKLENGTH;

end HARMONIC BLOCK BUILDER;

116

-- OPERATORSCHEDULER - "schedulers.a, schedulerb.a"; contains all the
-- scheduling algorithms implemented. It creates a static
-- schedule into the 'ss.a' file, if possible.

with FILES; use FILES;

package OPERATORSCHEDULER is

procedure TESTDATA (INPUTLIST : in DIGRAPH.VLISTS.LIST;
HARMONICBLOCKLENGTH : in INTEGER);

procedure SCHEDULEINITIALSET (PRECEDENCELIST : in DIGRAPH.VLISTS.LIST;

THE SCHEDULE INPUTS : in out SCHEDULEINPUTS LIST.LIST;
HARMONIC BLOCK LENGTH : in INTEGER;

STOPTIME : in out INTEGER);

procedure SCHEDULERESTOFBLOCK(PRECEDNCELIST : in DIGRAPH.VLISTS.LIST;
THE SCHEDULEINPUTS in out SCHEDULEINPUTS LIST.LIST;

HARMONIC -BLOCK-LENGTH in INTEGER;

STOPTIME in INTEGER);

procedure SCHEDULEWITHEARLIESTSTART (THEGRAPH : in DIGRAPH.GRAPH;
AGENDA : in out SCHEDULEINPUTSLIST.LIST;

HARMONICBLOCKLENGTH : in INTEGER);

procedure SCHEDULEWITHEARLIESTDEADLINE (THEGRAPH : in DIGRAPH.GRAPH;
AGENDA : in out SCHEDULEINPUTSLIST.LIST;

HARMONICBLOCKLENGTH : in INTEGER);

procedure CREATE STATICSCHEDULE (THEGRAPH : in DIGRAPH.GRAPH;
THESCHEDULEINPUTS : in SCHEDULEINPUTS LIST.LIST;
HARMONIC BLOCK LENGTH : in INTEGER);

MISSED DEADLINE : exception;

OVERTIME : exception;
MISSEDOPERATOR : exception;

end OPERATOR SCHEDULER;

with FILES; use FILES;
with TEXT_10;

package body OPERATORSCHEDULER is

procedure TESTDATA (INPUTLIST in DIGRAPH.VLISTS.LIST;
HARMONICBLOCKLENGTH in INTEGER) is

procedure CALCTOTALTIME (INPUTLIST : in DIGRAPH.V LISTS.LIST;
HARMONIC BLOCK LENGTH : in INTEGER) is

V : DIGRAPH.V LISTS.LIST :- INPUTLIST;

TIMES FLOAT 0.0;

OP TIME FLOAT := 0.0;

117

TOTALTIME : FLOAT := 0.0;
PER : OPERATOR;
BADTOTALTIME : exception;

function CALCNOOFPERIODS (HARMONICBLOCKLENGTH : in INTEGER;
THE PERIOD : in INTEGER) return FLOAT is

begin
return FLOAT(HARMONICBLOCKLENGTH) / FLOAT(THEPERIOD);

end CALCNOOFPERIODS;

function MULTIPLY BYMET (TIMES in FLOAT;
THE MET in VALUE) return FLOAT is

begin
return TIMES * FLOAT(THEMET);

end MULTIPLY BY MET;

function ADDTOSUM (OPTIME : in FLOAT) return FLOAT is
begin

return TOTAL TIME + OPTIME;

end ADDTOSUM;

begin --main CALC TOTAL TIME
while DIGRAPH.VLISTS.NONEMPTY(V) loop
PER := DIGRAPH.VLISTS.VALUE(V);
TIMES:= CALCNOOFPERIODS (HARMONICBLOCKLENGTH , PER.THEPERIOD);
OPTIME := MULTIPLYBYMET (TIA4ES, DIGRAPH.VLISTS.VALUE(V) .THEMET);
TOTALTIME := ADDTOSUM (OPTIME);
if TOTALTIME > FLOAT (HARMONICBLOCKLENGTH) then

raise BADTOTALTIME;
else
DIGRAPH.VLISTS.NEXT(V);

end if;
end loop;
exception
when BAD TOTAL TIME =>

TESTVERIFIED :- FALSE;
TEXTIO.PUT("The total execution time of the operators exceeds ");
TEXTIO.PUTLINE("the HARMONICBLOCK LENGTH");
TEXTIO.NEWLINE;

end CALCTOTALTIME;

procedure CALCHALFPERIODS (INPUTLIST : in DIGRAPH.VLISTS.LIST) is

V : DIGRAPH.VLISTS.LIST := INPUT-LIST;

HALFPERIOD : FLOAT;
FAILHALFPERIOD : exception;

function DIVIDEPERIODBY_2 (THEPERIOD : in VALUE) return FLOAT is
begin

return FLOAT(THE PERIOD) / 2.0;
end DIVIDE PERIOD BY 2;

118

begin --main CALCHALFPERIODS;
while DIGRAPH.V LISTS.NON EMPTY(V) loop

HALF PERIOD := DIVIDEPERIODBY_2(DIGRAPH.VLISTS.VALUE(V).THEPERIOD);
if FLOAT(DIGRAPH.VLISTS.VALUE(V).THEMET) > HALFPERIOD then

ExceptionOperator := DIGRAPH.VLISTS.VALUE(V).THEOPERATORID;

raise FAILHALFPERIOD;

else
DIGRAPH.VLISTS.NEXT(V);

end if;

end loop;
exception

when FAIL HALFPERIOD ->

TEST VERIFIED := FALSE;

TEXT IO.PUT ("The MET of Operator ");
VARSTRING.PUT (Exception_Operator);

TEXTIO.PUTLINE (" is greater than half of its period.");
end CALCHALFPERIODS;

procedure CALCRATIOSUM (INPUTLIST : in DIGRAPH.VLISTS.LIST) is
V : DIGRAPH.VLISTS.LIST := INPUT LIST;
RATIO : FLOAT;
RATIOSUM : FLOAT := 0.0;
THEMET : VALUE;
THEPERIOD : VALUE;

RATIOTOOBIG : exception;

function DIVIDE-MET BY PERIOD (THEMET : in VALUE;
THEPERIOD : in VALUE) return FLOAT is

begin
return FLOAT(THEMET) / FLOAT(THEPERIOD);

end DIVIDEMETBYPERIOD;

function ADD TO TIME (RATIO : in FLOAT) return FLOAT is

begin
return RATIO SUM + RATIO;

end ADDTOTIME;

begin --main CALC RATIO-SUM
while DIGRAPH.V LISTS.NONEMPTY(V) loop

THE MET := DIGRAPH.VLISTS.VALUE(V) .THEMET;
THEPERIOD :- DIGPAPH.V LISTS.VALUE(V) .THE PERIOD;

RATIO :- DIVIDEMET BY PERIOD(THEMET,THEPERIOD);

RATIOSUM := ADD TOTIME(RATIO);
DIGRAPH.V LISTS.NEXT(V);

end loop;
if RATIO SUM > 0.5 then

raise RATIOTOOBIG;

end if;

exception
when RATIO TOO BIG >

TEST VERIFIED FALSE;

119

TEXTIO.PUT ("The total MET/PERIOD ratio sum of operators is ");
TEXTIO.PUTLINE ("greater than 0.5");

end CALCRATIOSUM;

begin --main TESTDATA
CALCTOTALTIME(INPUTLIST, HARMONICBLOCKLENGTH);
CALCHALFPERIODS(INPUTLIST);
CALCRATIOSUM(INPUTLIST);

end TESTDATA;

procedure VERIFYTIMELEFT (HARMONICBLOCKLENGTH : in INTEGER;
STOPTIME : in INTEGER) is

begin
if STOP TIME > HARMONICBLOCKLENGTH then

raise OVERTIME;
--exit and terminate the Static Scheduler

end if;
end VERIFYTIMELEFT;

procedure CREATEINTERVAL (THEOPERATOR in OPERATOR;
INPUT in out SCHEDULE INPUTS;
OLDLOWER in VALUE) is

LOWERBOUND : VALUE;

function CALC LOWER BOUND return VALUE is
begin

-- since CREATE INTERVAL function is used in both SCHEDULE INITIAL SET and

-- SCHEDULEREST OF BLOCK (OLDLOWER /- 0) check is needed.In case of the
-- operator is scheduled somewhere in its interval and (OLDLOWER 1= 0),

-- this check guarantees that the periods will be consistent.
if (OLDLOWER / 0) and (OLDLOWER < INPUT.THESTART) then
LOWERBOUND := OLDLOWER + THEOPERATOR.THEPERIOD;

else
LOWERBOUND := INPUT.THESTART + THEOPERATOR.THEPERIOD;

end if;
return LOWERBOUND;

end CALCLOWERBOUND;

function CALCUPPERBOUND return VALUE is
begin

if THEOPERATOR.THEWITHIN - 0 then

return LOWERBOUND + THEOPERATOR.THEPERIOD - THEOPERATOR.THEMET;
-- if the operator has a WITHIN constraint, the upper bound of the
-- interval is reduced.

else

return LOWER WoJ!UD + THEOPERATOR.THE WITHIN - THE OPERATOR.THEMET;

end if;
end CALCUPPERBOUND;

begin --main CREATE INTERVAL
INPUT.THELOWER :- CALCLOWERBOUND;
INPUT.THE UPPER CALCUPPER BOUND;

120

end CREATEINTERVAL;

procedure SCHEDULEINITIALSET (PRECEDENCELIST : in DIGRAPH.VLISTS.LIST;

THESCHEDULEINPUTS : in out SCHEDULEINPUTS LIST.LIST;

HARMONICBLOCKLENGTH : in INTEGER;

STOPTIME : in out INTEGER) is

V : DIGRAPH.VLISTS.LIST :- PRECEDENCELIST;

STARTTIME : INTEGER :- 0;

NEWINPUT : SCHEDULEINPUTS;

OLD LOWER : VALUE :-0;

package INTEGERIO is new TEXTIO.INTEGERIO(INTEGER);

use INTEGERIO;

begin -- SCEDULE INITIAL SET

while DIGRAPH.V LISTS.NON EMPTY(V) loop

ExceptionOperator := DIGRAPH.VLISTS.VALUE(V).THEOPERATORID;

NEWINPUT.THEOPERATOR := DIGRAPH.V _LISTS.VALUE(V).THEOPERATORID;

NEWINPUT.THESTART := STARTTIME;
STOPTIME := STARTTIME + DIGRAPH.VLISTS.VALUE(V).THEMET;

VERIFYTIMELEFT(HARMONICBLOCKLENGTH, STOPTIME);

NEWINPUT.THESTOP := STOP-TIME;

STARTTIME := STOP-TIME;

-- for every operator in SCHEDULEINITIALSET, OLDLOWER is zero. So we

-- always send zero value to CREATEINTERVAL.

CREATEINTERVAL(DIGRAPH.VLISTS.VALUE(V), NEWINPUT, OLDLOWER);

SCHEDULEINPUTSLIST.ADD (NEWINPUT, THESCHEDULEINPUTS);

DIGRAPH.V LISTS.NEXT(V);

end loop;

end SCHEDULEINITIALSET;

procedure SCHEDULERESTOFBLOCK(PRECEDENCELIST:in DIGRAPH.VLISTS.LIST;

THESCHEDULEINPUTS : in out SCHEDULEINPUTSLIST.LIST;

HARMONIC BLOCKLENGTH : in INTEGER;

STOPTIME : in INTEGER) is

V : DIGRAPH.VLISTS.LIST :- PRECEDENCELIST;

TEMP : SCHEDULEINPUTSLIST.LIST := THESCHEDULEINPUTS;

VLIST : DIGRAPH.VLISTS.LIST;

P : SCHEDULE INPUTS LIST.LIST;

S : SCHEDULE INPUTS LIST.LIST;

START TIME INTEGER 0;

TIME STOP INTEGER :- STOPTIME;

NEWINPUT SCHEDULE INPUTS;

OLDLOWER VALUE;

package INTEGERIO is new TEXTIO.INTEGERIO(INTEGER);

use INTEGERIO;

begin

DIGRAPH.VLISTS.DUPLICATE(PRECEDENCELIST, VLIST);

121

SCHEDULEINPUTSLIST.LISTREVERSE(THESCHEDULEINPUTS, P);

loop
while SCHEDULE_-INPUTS_-LIST.NON_-EMPTY(P) loop

if SCHEDULE_-INPUTS_-LIST.VALUE(P).THELOWER < HARMONICBLOCKLENGTH then

NEWINPUT.THE_-OPERATOR :- DIGRAPH.VLISTS.VALUE(V) .THEOPERATORID;

-- check if the operator can be scheduled in its interval

if SCHEDULEINPUTS LIST.VALUE (P).THEUPPER - TIMESTOP
>- DIGRAPH.V -LISTS.VALUE(V).THEMET then

if SCHEDULE_-INPUTS_-LIST.VALUE (P).THELOWER >- TIMESTOP then

STARTTIME : SCHEDULEINPUTSLIST.VALUE(P)'.THE LOWER;

else

START_-TIME :=TIMESTOP;

end if;

NEW-INPUT.THESTART :-START-TIME;

NEWINPUT.THESTOP :STARTTIME + DIGRAPH.VLISTS.VALUE(V) .THEMET;

TIME_-STOP :=NEWINPUT.THESTOP;

OLDLOWER SCHEDULEINPUTSLIST.VALUE(P) .THELOWER;

CREATEINTERVAL(DIGRAPH.VLISTS.VALUE(V), NEWINPUT, OLDLOWER);

SCHEDULE_-INPUTS_-LIST.ADD(NEW-INPUT, TEMP);
SCHEDULEIINPUTS_-LIST.ADD(NEW-INPUT, S);

Exception_Operator :- DIGRAPH.V_-LISTS.VALUE(V) .TREOPERATOR ID;

VERIFYTIMELEFT (HARMONICBLOCKLENGTH, TIMESTOP);

DIGRAPH.VLISTS.NEXT(V);

SCHEDULEINPUTSLIST.NEXT(?');

-if the operator can not be scheduled in its interval raise the

-exception

else
ExceptionOperator :- DIGRAPH.V LISTS.VALUE(V) .THE OPERATOR ID;

raise MISSEDDEADLINE;

end if;
else

DIGRAPH.VLISTS.REMOVE
(DIGRAPH.V_-LISTS.VALUE(V), VLIST);

DIGRAPH.VLISTS.NEXT CV);
SCHEDULE_-INPUTSLIST.NEXT(P);
end if;

end loop;
if SCHEDULEINPUTSLIST.NON_-EMPTY(S) then

SCHEDULE INPUTS LIST.LIST REVER~SE(S, P);

SCHEDULEINPUTSLIST.EMPTY(S);
V :- VLIST;

else
exit;

end if;
end loop;
SCHEDULE INPUTSLIST.LISTREVERSE(TEMP, THESCHEDULE INPUTS);

end SCHEDULERESTOFBLOCK;

procedure BUILDOPINFOLIST(THEGRAPH in DIGRAPH-GRAPH;

122

THEOPINFOLIST : in out OPINFOLIST.LIST) is

-- this procedure finds each operator's successors and predicessors first
-- and creates the OPERATOR INFO LIST.

V : DIGRAPH.V LISTS.LIST := THEGRAPH.VERTICES;
S : DIGRAPH.V LISTS.LIST;

P : DIGRAPH.V LISTS.LIST;
NEWNODE : OPINFO;

begin
while DIGRAPH.V LISTS.NONEMPTY(V) loop
DIGRAPH.SCANCHILDREN(DIGRAPH.VLISTS.VALUE(V), THE_GRAPH, S);
DIGRAPH.SCANPARENTS(DIGRAPH.VLISTS.VALUE(V), THEGRAPH, P);
NEWNODE.NODE := DIGRAPH.VLISTS.VALUE(V);
NEWNODE.SUCCESSORS := S;

NEWNODE.PREDICESSORS :- P;
OPINFOLIST.ADD(NEWNODE, THEOPINFOLIST);

DIGRAPH.VLISTS.NEXT(V);
end loop;

end BUILDOPINFOLIST;

procedure PROCESS EST END NODE
(MAYBE AVAILABLE: in out SCHEDULEINPUTSLIST.LIST;

OPT : in OPERATOR) is

-- transfer the OPERATOR record into SCHEDULE INFO record and adds that
-- into the MAYAVAILABLELIST for the Earliest Start Scheduling Algorithm.

-- Initially all the values are zero.

NEW-NODE : SCHEDULEINPUTS;

begin
NEW NODE.THEOPERATOR := OPT.TffEOPERATORID;

SCHEDULEINPUTSLIST.ADD(NEWNODE, MAYBEAVAILABLE);

end PROCESSESTENDNODE;

procedure PROCESS EDL ENDNODE
(MAYBE AVAILABLE: in out SCHEDULEINPUTSLIST.LIST;

OPT : in OPERATOR) is
--transfer the OPERATOR record into SCHEDULE INFO record and adds that
--into the MAYAVAILABLELIST for the Earliest Deadline Scheduling Algorithm

--Initially all the values are zero.
NEWNODE : SCHEDULEINPUTS;

begin
NEW NODE.THE OPERATOR :- OPT.THE OPERATOR ID;
NEWNODE.THELOWER := 0; -- we can omit this, because it's already zero.

if OPT.THEWITHIN /= 0 then
NEWNODE.THEUPPER OPT.THEWITHIN;

else
NEWNODE.THEUPPER := OPT.THEPERIOD;

end if;

SCHEDULEINPUTSLIST.ADD(NEWNODE, MAY BE AVAILABLE);

end PROCESSEDLENDNODE;

123

fur'ction FINDOPERATOR(THEOPINFOLIST in OPINFOLIST.LIST;
ID in OPERATORID)

return OP INFOLIST.LIST is

-- finds the operator that we use currently to get the required information.
TEMP : OPINFOLIST.LIST := THEOPINFOLIST;

-- assumed that it's guaranteed to find an operator.

begin
while OPINFO_LIST.NONEMPTY(TEMP) loop

if VARSTRING.EQUAL(OP INFOLIST.VALUE(TEMP) .NODE.THEOPERATORID, ID) then
return TEMP ;

end if;
OPINFOLIST.NEXT(TEMP);

end loop;

end FINDOPERATOR;

function CHECKAGENDA(THENODE : in OPINFO;
AGENDA : in SCHEDULEINPUTSLIST.LIST)

return BOOLEAN is
-- checks the AGENDA list to see if all the predicessors of the operator are
-- in there.

P DIGRAPH.V LISTS.LIST := THENODE.PREDICESSORS;
A SCHEDULE INPUTSLIST.LIST := AGENDA;
OK BOOLEAN :- FALSE;

begin
while DIGRAPH.VLISTS.NONEMPTY(P) loop

while SCHEDULEINPUTSLIST.NONEMPTY(A) loop
if VARSTRING.EQUAL(DIGRAPH.V_LISTS.VALUE (P) .THEOPERATORID,

SCHEDULEINPUTSLIST.VALUE (A) .THEOPERATOR) then
OK : TRUE;
exit;

end if;

SCHEDULE INPUTSLIST.NEXT(A);
end loop;
if OK then
DIGRAPH.V LISTS.NEXT(P);

A := AGENDA;

OK := FALSE;

else
-- if the pointer reached to the end of the AGENDA, it means the
-- operator is not in AGENDA, if so return FALSE.
return OK;

end if;
end loop;
-- if the pointer reached to the end of the predicessor list, it means the

-- operator is in AGENDA.

OK :- TRUE;

return OK;
end CHECK AGENDA;

124

procedure EST-INSERT (TARGET in SCHEDULE-INPUTS;
MAY BE AVAILABLE in out SCHEDULE INPUTSLIST.LIST) is

-- used to insert the operators into the MAY BE AVAILABLE list to schedule
-- for the Earliest Start Scheduling Algorithm.
PREV : SCHEDULE INPUTS LIST.LIST := null;
T : SCHEDULEINPUTSLIST.LIST := MAYBEAVAILABLE;

begin
if NOT(SCHEDULEINPUTSLIST.NONEMPTY(T)) then

-- when MAYBEAVAILABLE list is empty, add the operator immediately.

SCHEDULEINPUTSLIST.ADD(TARGET, MAYBEAVAILABLE);
else

-- in case the target operator's EST is smaller than the first operator's
-- EST add the operator to the list immediately.
if TARGET.THE LOWER < SCHEDULE INPUTSLIST.VALUE(T) .THE LOWER then
SCHEDULEINPUTSLIST.ADD(TARGET, MAYBEAVAILABLE);

-- in case the operator with the same EST is in the list, do not insert,
-- otherwise; insert the operator in its order.

elsif NOT(SCHEDULEINPUTSLIST.MEMBER(TARGET, MAYBE AVAILABLE)) then
while SCHEDULE INPUTSLIST.NONEMPTY(T) loop

if TARGET.THE LOWER > SCHEDULEINPUTS LIST.VALUE(T).THE LOWER then
PREV := T;

SCHEDULEINPUTS LIST.NEXT(T);
else

exit;

end if;
end loop;
SCHEDULE INPUTS LIST.ADD(TARGET, T);
if SCHEDULE INPUTS LIST.NONEMPTY(PREV) then

PREV.NEXT := T;
else
MAYBEAVAILABLE := T;

end if;
end if;

end if;

end EST-INSERT;

procedure EDLINSERT (TARGET : in SCHEDULE INPUTS;
MAYBEAVAILABLE : in out SCHEDULEINPUTSLIST.LIST) is

-- used to insert the operators into the MAY BE AVAILABLE list to schedule
-- for the Earliest Deadline Scheduling Algorithm.
PREV SCHEDULE INPUTS LIST.LIST := null;
T SCHEDULEINPUTSLIST.LIST MAYBEAVAILABLE;

begin
if NOT(SCHEDULEINPUTS LIST.NON EMPTY(T)) then

SCHEDULE INPUTS LIST.ADD(TARGET, MAY BE AVAILABLE);
else

125

if TARGET.THE UPPER < SCHEDULE INPUTS LIST.VALUE(T).THE UPPER then

SCHEDULE INPUTS LIST.ADD(TARGET, MAY BE AVAILABLE);
elsif NOT(SCHEDULEINPUTSLIST.MEMBER(TARGET, MAYBEAVAILABLE)) then

while SCHEDULE INPUTS LIST.NON EMPTY(T) loop

if TARGET.THEUPPER > SCHEDULE INPUTS LIST.VALUE(T) .THEUPPER then
PREV :- T;
SCHEDULEINPUTSLIST.NEXT(T);

else

exit;
end if;

end loop;
SCHEDULE INPUTS LIST.ADD(TARGET, T);
if SCHEDULEINPUTS LIST.NONEMPTY(PREV) then

PREV.NEXT := T;
else

MAY BE AVAILABLE :- T;

end if;
end if;

end if;
end EDLINSERT;

function OPERATORINLIST(OPTID in OPERATORID-
IN_LIST in SCHEDULEINPUTSLIST.LIST)

return BOOLEAN is

-- this is used to check if the operators in successors list are already in
-- the complete MAYBEAVAILABLE list for both EST and EDL a~gorithms.
TEMP OPERATORID;
L SCHEDULEINPUTSLIST.LIST :- INLIST;

begin
while SCHEDULEINPUTSLIST.NON_EMPTY(L) loop

TEMP := SCHEDULEINPUTS LIST.VALUE(L) .THEOPERATOR;
if VARSTRING.EQUAL(TEMP, OPTID) then

return TRUE;

else

SCHEDULE INPUTSLIST.NEXT(L);
end if;

end loop;
return FALSE;

end OPERATORINLIST;

procedure ESTINSERTSUCCESSORSOFOPT
(THENODE : in OPINFO;
STOPTIME : in VALUE;

MAY BE AVAIABLE : in out SCHEDULE INPUTS 1IST.LIST) is
-- inserts the successors of the selected operator into MAY BE AVAILABLE
-- list in their orders if they do not exist in the list.

S : DIGRAPH.V LISTS.LIST :- THE NODE.SUCCESSORS;

T : OPERATOR;
OPT : OPERATOR :- THE NODE.NODE;
TARGET : SCHEDULE INPUTS;

126

begin
while DIGRAPH.V LISTS.NON EMPTY(S) loop

T := DIGRAPH.V LISTS.VALUE(S);
if NOT(OPERATORINLIST(T.THEOPERATORID, MAYBEAVAILABLE)) then
TARGET.THEOPERATOR :- DIGRAPH.VLISTS.VALUE(S) .THE OPERATOR ID;
TARGET.THELOWER := STOP TIME;
ESTINSERT(TARGET, MAYBE AVAILABLE);

end if;
DIGRAPH.V LISTS.NEXT(S);

end loop;
end ESTINSERTSUCCESSORSOFOPT;

procedure EDL INSERT SUCCESSORS OF OPT

(THENODE : in OPINFO;
STOPTIME : in VALUE;

COMPLETELIST : in out SCHEDULE INPUTS LIST.LIST;
MAY BE AVAILABLE : in out SCHEDULEINPUTSLIST.LIST) is

-- inserts the successors of the selected operator into MAY BE AVAILABLE
-- list in their orders if they do not exist in the list.
S : DIGRAPH.V LISTS.LIST := THE NODE.SUCCESSORS;
T : OPERATOR;
OPT : OPERATOR := THENODE.NODE;
TARGET : SCHEDULEINPUTS;

begin
while DIGRAPH.VLISTS.NONEMPTY(S) loop

T := DIGRAPH.V LISTS.VALUE(S);
if NOT(OPERATORINLIST(T.THEOPERATORID, COMPLETELIST)) then
TARGET.THEOPERATOR := T.THE OPERATORID;
TARGET.THELOWER := STOPTIME;
-- while we are adding the successnrz, the deadline of these operators
-- are calculated by adding either their finish within if exists, or
-- period to the stop_time of the last operator.
if T.THEWITHIN /= 0 then
TARGET.THEUPPER := STOPTIME + T.THEWITHIN;

else
TARGET.THEUPPER STOPTIME + T.THEPERIOD;

end if;

EDLINSERT (TARGET, MAYBE AVAILABLE);
end if;
DIGRAPH.VLISTS.NEXT(S);

end loop;
end EDLINSERTSUCCESSORSOFOPT;

procedure PROCESS EST AGENDA(THEOPINFOLIST: in OPINFOLIST.LIST-

MAYBE AVAILABLE: in uut SCHEDULE INPUTS LIST.LIST;
AGENDA : in out SCHEDULEINPUTSLIST.LIST;

HARMONICBLOCKLENGTH : in INTEGER) is

-- process the MAY BE AVILABLE list to produce AGENDA list which is used to
-- create a schedule for Earliest Start Scheduling Algorithm.
V : SCHEDULE INPUTS LIST.LIST := MAY BE AVAILABLE;

127

A : SCHEDULEINPUTSLIST.LIST;
TEMP : OP INFO LIST.LIST;
TARGET : SCHEDULEINPUTS;
NEWINPUT : SCHEDULEINPUTS:

THENODE : OPINFO;

CONTINUE : BOOLEAN;

STOP TIME : VALUE := 0;
OPT : SCHEDULEINPUTS;

EST : INTEGER;

package INTEGERIO is new TEXTIO.INTEGERIO(INTEGER);

begin
while SCHEDULEINPUTSLIST.VALUE(V).THELOWER < HARMONICBLOCKLENGTH loop

--no need to check if all the predicessors are in the AGENDA, because this
-- is the first node and has no predicessors.

OPT SCHEDULE INPUTS LIST.VALUE(V);
TEMP := FINDOPERATOR(THEOPINFOLIST, OPT.THEOPERATOR);
THE NODE := OPINFOLIST.VALUE(TEMP);
if OPT.THE LOWER > 0 then

CONTINUE : CHECKAGENDA(THENODE, AGENDA);
else

CONTINUE := TRUE;
end if;

-- if the opt.is not an end node check if all its successors in AGENDA.
-- if not, select the other operator and repeat the same procedure.
while NOT CONTINUE loop

SCHEDULE INPUTS LIST.NEXT(V);
OPT SCHEDULE INPUTS LIST.VALUE(V);
TEMP := FINDOPERATOR(THEOPINFOLIST, OPT.THEOPERATOR);
THE NODE := OP INFO LIST.VALUE(TEMP);
if OPT.THE LOWER > 0 then

CONTINUE : CHECKAGENDA(THENODE, AGENDA);
else

CONTINUE TRUE;
end if;

end loop;
TARGET := SCHEDULE INPUTSLIST.VALUE(V);

SCHEDULEINPUTSLIST.REMOVE(TARGET, MAYBEAVAILABLE);
ExceptionOperator := TARGET.THEOPERATOR;
VERIFY TIMELEFT(HARMONIC BLOCKLENGTH, STOPTIME);

if TARGET.THE LOWER > STOPTIME then

TARGET.THESTART TARGET.THELOWER; --zero initially for the first one
else

TARGET.THESTART STOP-TIME;

end if;
STOPTIME :- TARGET.THESTART + THENODE.NODE.THE MET;

TARGET.THE STOP := STOPTIME;
SCHEDULEINPUTSLIST.ADD(TARGET, AGENDA);
EST := TARGET.THESTART + THENODE.NODE.THEPERIOD;
NEW INPUT.THEOPERATOR := TARGET.THEOPERATOR;

128

NEWINPUT.THELOWER := EST;

ESTINSERT(NEWINPUT, MAYBEAVAILABLE);
ESTINSERTSUCCESSORSOFOPT(THENODE, STOPTIME, MAY BE AVAILABLE);

V :- MAY BE AVAILABLE;
end loop;
A := AGENDA;

SCHEDULEINPUTSLIST.LISTREVERSE(A, AGENDA);
end PROCESSESTAGENDA;

procedure PROCESSEDLAGENDA(THEOPINFOLIST: in OPINFOLIST.LIST;

COMPLETE LIST in out SCHEDULE INPUTS LIST.LIST;
AGENDA : in out SCHEDULE INPUTS LIST.LIST;
HARMONICBLOCKLENGTH : in INTEGER) is

-- process the MAY BE AVILABLE list to produce AGENDA list which is used to
-- create a schedule for Earliest Deadline Scheduling Algorithm.
V : SCHEDULEINPUTSLIST.LIST :- COMPLETELIST;
TEMP : SCHEDULEINPUTSLIST.LIST := COMPLETELIST;
A SCHEDULE INPUTS LIST.LIST;

T OP INFOLIST.LIST;
PREV : SCHEDULE INPUTS LIST.LIST := null;
TARGET : SCHEDULE INPUTS;
NEWINPUT : SCHEDULEINPUTS;
THENODE : OPINFO;

CONTINUE : BOOLEAN;
STOP TIME : VALUE := 0;
OPT : SCHEDULE INPUTS;
EST INTEGER;
package INTEGERIO is new TEXTIO.INTEGERIO(INTEGER);

begin
while SCHEDULEINPUTSLIST.NONEMPTY(TEMP) loop

if SCHEDULEINPUTSLIST.VALUE(TEMP) .THELOWER < HARMONICBLOCKLENGTH then
-- no need to check if all the predicessors are in the AGENDA, because
-- for the first node there is no predicessors.

OPT SCHEDULE INPUTS LIST.VALUE(V);
T := FINDOPERATOR(THEOPINFOLIST, OPT.THEOPERATOR);

THE NODE := OP INFOLIST.VALUE(T);
if OPT.THELOWER > 0 then

-- when the earliest start time of the operator is not zero, we need

-- to check if all the predicessors of the operator are in AGENDA. No
-- check otherwise.

CONTINUE : CHECKAGENDA(THENODE, AGENDA);
else

CONTINUE := TRUE;

end if;

-- if the opt.is not an end node check if all its successors in AGENDA.
-- if not, select the other operator and repeat the same procedure.
while NOT CONTINUE loop

129

SCHEDULE INPUTSLIST.NEXT(V);
OPT SCHEDULE INPUTS LIST.VALUE(V);
T FINDOPERATOR(THEOPINFOLIST, OPT.THEOPERATOR);

THE NODE := OPINFOLIST.VALUE(T);
if OPT.THELOWER > 0 then
CONTINUE := CHECKAGENDA(THENODE, AGENDA);

else

CONTINUE :- TRUE;

end if;
end loop;
TARGET := SCHEDULE INPUTS LIST.VALUE(V);
SCHEDULE INPUTSLIST.REMOVE(TARGET, TEMP);
if SCHEDULEINPUTSLIST.NONEMPTY(PREV) then

PREV.NEXT :- TEMP;

else

COMPLETELIST TEMP;

end if;
ExceptionOperator TARGET.THEOPERATOR;
VERIFYTIMELEFT(HARMONICBLOCKLENGTH, STOPTIME);
if TARGET.THE LOWER > STOP TIME then

TARGET.THESTART TARGET.THELOWER; --zero initially for the first one

else

TARGET.THESTART STOP-TIME;

end if;

STOPTIME := TARGET.THESTART + THENODE.NODE.THEMET;
TARGET.THESTOP := STOPTIME;
SCHEDULEINPUTSLIST.ADD(TARGET, AGENDA);

EST :- TARGET.THESTART + THENODE.NODE.THEPERIOD;
NEWINPUT.THEOPERATOR := TARGET.THE_OPERATOR;
NEWINPUT.THELOWER :- EST;

if THENODE.NODE.THEWITHIN /- 0 then
NEWINPUT.THEUPPER EST + THENODE.NODE.THEWITHIN;

else
NEWINPUT.THEUPPER := EST + THENODE.NODE.THEPERIOD;

end if;

EDLINSERT(NEWINPUT, TEMP);

-- this is to keep track of the COMPLETELIST pointer

if SCHEDULEINPUTSLIST.NONEMPTY(PREV) then
-- the pointer is pointing a record other than first one.

PREV.NEXT := TEMP;

else
-- the pointer is pointing the first record in the list.

COMPLETELIST := TEMP;

end if;

EDLINSERTSUCCESSORSOFOPT(THENODE, STOPTIME, COMPLETE-LIST, TEMP);

V := TEMP;

-- this is to keep track of the COMPLETE LIST pointer

130

if SCHEDULEIINPUTSLIST.NONEMPTY(PREV) then
-- the pointer is pointing a record other than first one.
PREV.NEXT :- TEMP;

else
-- the pointer is poi..t ing the first record in the list.
COMPLETELIST :-TEMP;

end if;

else
PREV : TEMP;
SCHEDULEINPUTSLIST.NEXT(TEMP);
V :- TEMP;

end if;
end loop;

-If any operator is missed to be scheduled then exception MISSEDOPERATOR
-- is raised.

while SCHEDULE_-INPUTS_-LIST.NON_-EMPTY(TEMP) loop
if not(OPERATORINLIST(SCHEDULEINPUTSLIST.VALUE(TEMP).THEOPERATOR,

AGENDA)) then
Exception_-Operator :=SCHEDULEINPUTSLIST.VALUE(TEMP) .THE OPERATOR;
raise MISSEDOPERATOR;

endi f;

SCHEDULE_-INPUTSLIST.NEXT(TEMP);
end loop;
A :- AGENDA;
SCHEDULE_-INPUTS_-LIST.LISTREVERSE(A, AGENDA);

end PROCESSEDL_-AGENDA;

procedure SCHEDULEWITHEARLIESTSTART (THEGRAPH :in DIGRAPH.GRAPH;
AGENDA :in out SCHEDULEINPUTSLIST.LIST;
HARMONICBLOCKLENGTH :in INTEGER) is

-used to find a feasible schedule for Earliest Start Scheduling Algorithm.
THEOPINFOLIST :OPINFOLIST.LIST;
MAY_-BETAVAILABLE :SCHEDULEINPUTSLIST.LIST;
HBL :INTEGER := HARMONICBLOCKLENGTH;

L OPINFOLIST.LIST;
P OPINFO;

begin
BUILD OP INFOLIST(THEGRAPH, THE OP INFO LIST);
L :- THEOPINFOLIST;

-put all the end nodes, which has no predicessors, into MAYBEAVAILABLE
-- list

while OPINFOLIST.NONEMPTY(L) loop
P := OPINFOLIST.VALUE(L);
if NOT(DIGRAPH.VLISTS.NONEMPTY(P.PREDICESSORS)) then
PROCESSESTENDNODE(MAYBEAVAILABLE, P.NODE);

end if;
OP_-INFOLIST.NEXT(L);

end loop;
PROCESSESTAGENDA(THEOPINFOLIST, MAY BE AVAILABLE, AGENDA, HBL);

131

end SCHEDULE WITH EARLIEST START;

procedure SCHEDULEWITHEARLIESTDEADLINE(THEGRAPH : in DIGRAPH.GRAPH;
AGENDA : in out SCHEDULE INPUTSLIST.LIST;
HARMONICBLOCK LENGTH : in INTEGER) is

-- used to find a feasible schedule for Earliest Deadline Scheduling

-- Algorithm

THEOPINFOLIST : OPINFOLIST.LIST;
MAYBEAVAILABLE : SCHEDULEINPUTSLIST.LIST;

HBL : INTEGER := HARMONICBLOCK LENGTH;

L : OP INFO LIST.LIST;

P : OPINFO;

begin
BUILD OP INFO LIST(THEGRAPH, THEOPINFOLIST);

L := THE OP INFOLIST;
-- put all the end nodes, which has no predicessors, into MAY BE AVAILABLE

-- list

while OPINFOLIST.NONEMPTY(L) loop
P := OP INFOLIST.VALUE(L);

if NOT(DIGRAPH.VLISTS.NONEMPTY(P.PREDICESSORS)) then
PROCESS EDLENDNODE(MAYBEAVAILABLE, P.NODE);

end if;
OP INFOLIST.NEXT(L);

end loop;
PROCESS EDLAGENDA(THE OP INFOLIST, MAY BE AVAILABLE, AGENDA, HBL);

end SCHEDULEWITHEARLIESTDEADLINE;

procedure CREATESTATICSCHEDULE (THEGRAPH : in DIGRAPH.GRAPH;

THESCHEDULEINPUTS : in SCHEDULEINPUTSLIST.LIST;
HARMONIC BLOCKLENGTH : in INTEGER) is

-- creates the static schedule output and prints to "ss.a" file.
VLIST : DIGRAPH.VLISTS.LIST THE GRAPH.VERTICES;

S : SCHEDULEINPUTSLIST.LIST :m THESCHEDULEINPUTS;
SCHEDULE : TEXTIO.FILETYPE;

OUTPUT : TEXTIO.FILEMODE :- TEXT_IO.OUTFILE;

COUNTER : INTEGER := 1;

package VALUE 10 is new TEXT IO.INTEGERIO(VALUE);

use VALUE_10;

package INTEGERIO is new TEXTIO.INTEGERIO(INTEGER);

use INTEGERIO;

package FLOATIO is new TEXTIO.FLOATIO(FLOAT);
use FLOATIO;

begin
TEXT IO.CEATE(SCHEDULE, OUTPUT, "ss.a");

TEXT IO.PUT LINE(SCHEDULE, "with TL; use TL;");

TEXT IO.PUT LINE(SCHEDULE, "with DSPACKAGE; use DSPACKAGE;");

TEXT IO.PUT(SCHEDULE, "with PRIORITYDEFINITIONS; ");

132

TEXT IO.PUTLINE (SCHEDULE, "use PRIORITYDEFINITIONS;");

TEXTIO.PUTLINE(SCHEDULE, "with CALENDAR; use CALENDAR;");

TEXT IO.PUT LINE(SCHEDULE, "with TEXTIO; use TEXTIO;");

TEXTIO.PUTLINE(SCHEDULE, "procedure STATIC-SCHEDULE is");

while DIGRAPH.VLISTS.NONEMPTY(V_LIST) loop

TEXTIO.SETCOL(SCHEDULE, 3);

VARSTRING.PUT(SCHEDULE, DIGRAPH. V_LISTS.VALUE (VLIST) .THEOPERATORID);

TEXTIO.PUTLINE(SCHEDULE, " TIMING ERROR : exception;");

DIGRAPH.VLISTS.NEXT(VLIST);
end loop;

TEXTIO.SETCOL(SCHEDULE, 3);

TEXT IO.PUTLINE(SCHEDULE, "task SCHEDULE is");

TEXTIO.SETCOL(SCHEDULE, 5);

TEXTIO.PUTLINE(SCHEDULE, "pragma priority (STATICSCHEDULEPRIORITY);");

TEXTIO.SETCOL(SCHEDULE, 3);

TEXTIO.PUTLINE(SCHEDULE, "end SCHEDULE;");

TEXT IO.NEW LINE(SCHEDULE);

TEXTIO.SETCOL(SCHEDULE, 3);

TEXTIO.PUTLINE(SCHEDULE, "task body SCHEDULE is");

TEXTIO.PUT(SCHEDULE, " PERIOD : constant := ");

INTEGERIO.PUT(SCHEDULE, HARMONICBLOCKLENGTH, 1);

TEXTIO.PUTLINE(SCHEDULE, ";");

S :- THE SCHEDULE INPUTS;

while SCHEDULE INPUTS LIST.NONEMPTY(S) loop

TEXT IO.SETCOL(SCHEDULE, 5);

VARSTRING.PUT (SCHEDULE, SCHEDULEINPUTSLIST.VALUE (S) .THEOPERATOR);

TEXTIO.PUT(SCHEDULE, "_STOPTIME");

INTEGERIO.PUT(SCHEDULE, COUNTER,l);

TEXT IO.PUT(SCHEDULE, " : constant

FLOATIO.PUT(SCHEDULE, FLOAT(SCHEDULEINPUTSLIST.VALUE(S) .THESTOP),3, 1,0);
TEXTIO.PUTLINE(SCHEDULE, ";");

SCHEDULEINPUTSLIST.NEXT(S);

COUNTER := COUNTER + 1;

end loop;
TEXTIO.SETCOL(SCHEDULE, 5);

TEXTIO.PUTLINE(SCHEDULE, "SLACKTIME : duration;");

TEXTIO.SETCOL(SCHEDULE, 5);

TEXTIO.PUTLINE(SCHEDULE, "STARTOFPERIOD : time := clock;");

TEXTIO.PUTLINE(SCHEDULE, "begin");

TEXT IO.PUT LINE(SCHEDULE, " loop");

TEXTIO.SETCOL(SCHEDULE, 5);
TEXTIO.PUT(SCHEDULE, "begin");

S :- THESCHEDULEINPUTS;

COUNTER :- 1;
while SCHEDULE INPUTS LIST.NON EMPTY(S) loop

TEXTIO.SETCOL(SCHEDULE, 7);

VARSTRING.PUT(SCHEDULE, SCHEDULE INPUTS LIST.VALUE(S) .THEOPERATOR);

TEXTIO.PUTLINE(SCHEDULE, ";");

133

TEXTIO.SETCOL(SCHEDULE, 7);

TEXT IO.PUT(SCHEDULE, "SLACK TIME := START OF PERIOD + ");

VARSTRING.PUT(SCHEDULE, SCHEDULEINPUTSLIST.VALUE(S).THEOPERATOR);

TEXTIO.PUT(SCHEDULE, "_STOPTIME");

INTEGERIO.PUT(SCHEDULE, COUNTER,I);

TEXTIO.PUTLINE(SCHEDULE, " - CLOCK;");

TEXT IO.SETCOL(SCHEDULE, 7);

TEXT IO.PUT LINE(SCHEDULE, "if SLACKTIME >- 0.0 then");

TEXTIO.SETCOL(SCHEDULE, 9);

TEXTIO.PUTLINE(SCHEDULE, "delay (SLACKTIME);");

TEXTIO.SETCOL(SCHEDULE, 7);

TEXT IO.PUTLINE(SCHEDULE, "else");

TEXTIO.SETCOL(SCHEDULE, 9);

TEXTIO.PUT(SCHEDULE, "raise ");
VARSTRING.PUT(SCHEDULE, SCHEDULEINPUTSLIST.VALUE(S).THEOPERATOR);

TEXTIO.PUTLINE(SCHEDULE, "_TIMINGERROR;");

TEXTIO.SETCOL(SCHEDULE, 7);

TEXTIO.PUTLINE(SCHEDULE, "end if;");

SCHEDULEINPUTSLIST.NEXT(S);

if SCHEDULEINPUTSLIST.NONEMPTY(S) then
-- pointer is pointing to the next record after this.

TEXTIO.SETCOL(SCHEDULE, 7);

TEXTIO.PUT(SCHEDULE, "delay (START OF PERIOD + ");
FLOATIO.PUT(SCHEDULE,FLOAT(SCHEDULEINPUTSLIST.VALUE(S).THE_START),3,1,0);

TEXTIO.PUTLINE(SCHEDULE, " - CLOCK);");

TEXTIO.NEWLINE(SCHEDULE);

end if;

COUNTER := COUNTER + 1;

end loop;

TEXTIO.SETCOL(SCHEDULE, 7);
TEXTIO.PUTLINE(SCHEDULE, "STARTOFPERIOD := START OFPERIOD + PERIOD;");

TEXT IO.SET COL(SCHEDULE, 7);

TEXTIO.PUTLINE(SCHEDULE, "delay (STARTOFPERIOD - clock);");

TEXTIO.SETCOL(SCHEDULE, 7);
TEXTIO.PUTLINE(SCHEDULE, "exception");

V_LIST :- THEGRAPH.VERTICES;

while DIGRAPH.VLISTS.NON EMPTY(VLIST) loop

TEXTIO.SETCOL(SCHEDULE, 9);

TEXTIO.PUT(SCHEDULE, "when ");

VARSTRING.PUT(SCHEDULE, DIGRAPH.VLISTS.VALUE(VLIST).THEOPERATORID);

TEXT _O.PUT LINE(SCHEDULE, " TIMINGERROR ->");

TEXTIO.SETCOL(SCHEDULE, 11);

TEXTIO.PUT(SCHEDULE, "PUTLINE(""timing error from operator ");
VARSTRING.PUT(SCHEDULE, DIGRAPH.VLISTS.VALUE(VLIST).THEOPERATORID);

TEXTIO.PUTLINE(SCHEDULE, """;");
TEXTIO.SETCOL(SCHEDULE, 11);
TEXTIO.PUTLINE(SCHEDULE, "STARTOF PERIOD := clock;");

DIGRAPH.VLISTS.NEXT(VLIST);

end loop;

134

TEXTIO.SETCOL(SCHEDULE, 7);
TEXT IO.PUTLINE(SCHEDULE, "end;");
TEXT IO.SETCOL(SCHEDULE, 5);
TEXTIO.PUTLINE(SCHEDULE, "end loop;");
TEXTIO.SETCOL(SCHEDULE, 3);
TEXTIO.PUTLINE(SCHEDULE, "end SCHEDULE;");
TEXTIO.NEWLINE(SCHEDULE);
TEXTIO.PUTLINE(SCHEDULE, "begin");

TEXTIO.SET COL(SCHEDULE, 3);
TEXT IO.PUTLINE(SCHEDULE, "null;");
TEXTIO.PUTLINE(SCHEDULE, "end STATICSCHEDULE;");

end CREATESTATICSCHEDULE;

end OPERATORSCHEDULER;

135

-EXCEPTIONHANDLER - "e-handler-s.a, e-handler-b"; handles most of the
-- exceptions, and inform~ the user about the situation.

with FILES; use FILES;

package EXCEPTION-HANDLER is

procedure CRIT_0_LMET(ExceptionOerator :in OPERATORID);

procedure METNLTPERIOD(Exception,_Operator :in OPERATORID);

procedure MET N L T MRT(Exception _Operator :in OPERATORID);

procedure MCPNLTMRT(Exception _Operator :in OPERATORID);

procedure MCPLTMET(Exception_Operator :in OPERATORID);

procedure METIGTFINISHWITNIN(Exception_Operator in OPERATORID);

procedure PERIOD L T FINISH WITHIN(Exception Operator in OPERATORID);

procedure SPORADIC_0_LMCP (ExceptionOperator :in OPERATORID);

procedure SPORADIC_0_LMRT(Exception _Operator :in OPERATORID);

procedure SILBADVALUE;

procedure VLBADVALUE;

procedure E L BAD VALUE;

procedure NOBBLOCK;

procedure NOOPINLIST;

end EXCEPTIONHANDLER;

with TEXT_10;
with FILES; use FILES;

package body EXCEPTION HANDLER is

procedure CRIT_0_LMET(ExceptionOperator in OPERATORID) is
begin
TEXTIO.PUT ("Critical Operator)
VARSTRING.PUT (ExceptionOperator);
TEXTIO.PUTLINE (" must have an MET");

end CRIT_0_LMET;

procedure MET N L T PERIOD (ExceptionOperator :in OPERATORID) is

136

begin
TEXTIO.PUT ("MET is greater than PERIOD in operator ");
VARSTRING.PUTLINE (ExceptionOperator);

end MET N L T PERIOD;

procedure METNLTMRT(Exception_Operator : in OPERATORID) is

begin
TEXTIO.PUT ("MET is greater than MRT in operator ");
VARSTRING.PUTLINE (ExceptionOperator);

end MET N L T MRT;

procedure MCPNLTMRT(Exception_Operator : in OPERATORID) is

begin
TEXTIO.PUT ("MCP is greater than MRT in operator ");
VARSTRING.PUTLINE (Exception_Operator);

end MCP N L T MRT;

procedure MCPLTMET(ExceptionOperator : in OPERATORID) is

begin
TEXTIO.PUT ("MCP is less than MET in operator ");
VARSTRING.PUTLINE (ExceptionOperator);

end MCPLTMET;

procedure METIGTFINISHWITHIN(Exception_Operator : in OPERATORID) is

begin
TEXTIO.PUT ("MET is greater than FINISHWITHIN in operator ");
VARSTRING.PUT LINE (ExceptionOperator);

end MET I G T FINISHWITHIN;

procedure PERIODLTFINISHWITHIN(ExceptionOperator : in OPERATORID) is

begin
TEXTIO.PUT ("PERIOD is less than FINISHWITHIN in operator ");

VARSTRING.PUT LINE (ExceptionOperator);
end PERIODLTFINISHWITHIN;

procedure SPORADIC_0_LMCP(ExceptionOperator : in OPERATORID) is

begin
TEXTIO.PUT ("Sporadic Operator ");
VARSTRING.PUT (Exception_Operator);
TEXT IO.PUT LINE (" must have an MCP");

end SPORADIC_0_LMCP;

procedure SPORADIC_0_LMRT(Exception_Operator in OPERATORID) is

begin
TEXTIO.PUT ("Sporadic Operator ");
VARSTRING.PUT (Exception Operator);
TEXT IO.PUT LINE (" must have an MRT");

end SPORADIC_0_LMRT;

procedure S I L BAD VALUE is

begin

137

TEXT IO.PUT ("You try to get a schedule input where your pointer ");

TEXT IO.PUT LINE ("is pointing a null record.");

end SILBADVALUE;

procedure VLBADVALUE is

begin
TEXT IO.PUT ("You try to get an operator where your pointer ");
TEXT IO.PUT LINE ("is pointing a null record.");

end VLBADVALUE;

procedure ELBADVALUE is
begin

TEXT IO.PUT ("You try to get a link data where your pointer ");

TEXT IO.PUT LINE ("is pointing a null record.");

end ELBADVALUE;

procedure NOBBLOCK is

begin
TEXT IO.PUTLINE ("There is no BASE BLOCK in this system.");

end NOBBLOCK;

procedure NOOPINLIST is

begin

TEXT IO.PUTLINE ("There is no CRITICAL OPERATOR in this system.");

end NOOPINLIST;

end EXCEPTION HANDLER;

138

-- STATICSCHEDULER - "driver.a"; this is the driver program of the Menu driven

standalone scheduler.

with TEXT 10;

with FILES; use FILES;

with FILEPROCESSOR;

with EXCEPTIONHANDLER;

with TOPOLOGICALSORTER;

with HARMONIC BLOCK BUILDER;

with OPERATORSCHEDULER;

procedure STATIC SCHEDULER is

THE GRAPH DIGRAPH.GRAPH;

PRECEDENCE LIST DIGRAPH.V LISTS.LIST;

SCH INPUTS SCHEDULEINPUTSLIST.LIST;

AGENDA SCHEDULE INPUTS LIST.LIST;

BASE BLOCK INTEGER;

HBLENGTH INTEGER;

STOP TIME INTEGER 0;

CHOICE INTEGER;

procedure MAINMENU is

begin

TEXTIO.NEWPAGE;

TEXT IO.NEW LINE(4);

TEXT IO.PUT LINE(" MAIN MENU");

TEXTIO.PUTLINE(" -------)- ;

TEXT IO.NEW LINE (2);

TEXTIO.PUTLINE(" 1) THE HARMONIC BLOCK WITH PRECEDENCE");

TEXTIO.PUTLINE(" CONSTRAINTS SCHEDULING ALGORITHM");

TEXT IO.NEW LINE;

TEXTIO.PUT_LINE(" 2) THE EARLIEST START SCHEDULING ALGORITHM");

TEXTIO.NEWLINE;

TEXTIO.PUT_LINE(" 3) THE EARLIEST DEADLINE SCHEDULING ALGORITHM");

TEXT IO.NEW LINE;

TEXT IO.PUT LINE(" 4) EXIT");

TEXTIO.NEWLINE(2);

end MAINMENU;

begin

FILEPROCESSOR.SEPARATEDATA (THE GRAPH);

FILEPROCESSOR.VALIDATEDATA(THE_GRAPH);

HARMONICBLOCKBUILDER.CALCPERIODICEQUIVALENTS (THE_GRAPH);

TOPOLOGICALSORTER.TOPOLOGICALSORT(THE_GAPH, PRECEDENCELIST);

HARMONICBLOCKBUILDER.FINDBASEBLOCK (PRECEDENCELIST, BASEBLOCK);

HARMONICBLOCKBUILDER.FIND BLOCK LENGTH (PRECEDENCELIST,HBLENGTH);

OPERATORSCHEDULER.TESTDATA(PRECEDENCELIST, H B LENGTH);

TEXTIO.PUTLINE("passed TESTDATA");

loop

139

declare

WRONG ENTRY : exception;

begin
MAINMENU;
if NOT(TESTVERIFIED) then
TEXTIO.PUT("Although a schedule may be possible, there is no ");

TEXTIO.PUTLINE("guarantee that it will execute");
TEXTIO.PUTLINE("within the required timing constraints.");
TEXTIO.NEWLINE;

TEXT IO.PUTLINE("IF YOU STILL WANT TO RUN THE ALGORITHMS '");

end if;
TEXT IO.PUT(" Enter your choice (1/2/3) :");

INTEGERIO.GET (CHOICE);

case CHOICE is
when 1 =>

begin
TEXTIO.NEWPAGE;
OPERATORSCHEDULER.SCHEDULEINITIALSET

(PRECEDENCELIST,SCHINPUTS,H_B_LENGTH,STOPTIME);
TEXTIO.PUTLINE("passed SCHEDULEINITIALSET");

OPERATORSCHEDULER.SCHEDULERESTOFBLOCK
(PRECEDENCELIST,SCHINPUTS,H_B_LENGTH,STOPTIME);

TEXTIO.PUTLINE("passed SCHEDULERESTOFBLOCK");
OPERATORSCHEDULER.CREATESTATICSCHEDULE(THEGRAPH,SCHINPUTSH_BLENGTH);
TEXTIO.PUT_LINE("passed CREATESTATICSCHEDULE");
TEXTIO.PUTLINE("A feasible schedule found, READ schedule.out FILE...");

SCHINPUTS := null;
delay 3.0;

exception
when OPERATOR SCHEDULER.MISSEDDEADLINE =>

TEXTIO.PUT ("The Operator ");
VARSTRING.PUT (ExceptionOperator);
TEXTIO.PUT (" MISSED ITS DEADLINE.");

delay 5.0;
when OPERATOR SCHEDULER.OVER TIME >
TEXTIO.PUT ("The Operator ");
VARSTRING.PUT (ExceptionOperator);

TEXTIO.PUT (" is OVERTIM3.");
delay 5.0;

end;

when 2 =>

begin
TEXTIO.NEWPAGE;

text io.put_line("OK I AM IN EARLIESTSTART!!!");
OPERATORSCHEDULER.SCHEDULEWITHEARLIESTSTART

(THE GRAPHAGENDA,H B_LENGTH);

OPERATORSCHEDULER.CREATESTATICSCHEDULE(THEGRAPH,AGENDAHB_LENGTH);
TEXTIO.PUTLINE("A feasible schedule found, READ schedule.out FILE...");

AGENDA :- nu'l;

140

delay 5.0;

exception
when OPERATOR SCHEDULER.MISSEDDEADLINE =>

TEXTIO.PUT ("The Operator ");
VARSTRING.PUT (Exception Operator);
TEXTIO.PUTLINE (" MISSED ITS DEADLINE.");
delay 5.0;

when OPERATOR SCHEDULER.OVER TIME ->
TEXTIO.PUT ("The Operator ");
VARSTRING.PUT (Exception-Operator);

TEXT IO.PUT LINE (" is OVER TIME.");
delay 5.0;

end;

when 3 =>
begin
TEXTIO.NEWPAGE;
OPERATORSCHEDULER.SCHEDULEWITHEARLIESTDEADLINE

(THEGRAPH,AGENDA,H_B LEhGTH);
OPERATOR SCHEDULER.CREATE STATIC SCHEDULE(THE_GRAPH,AGENDA,H_BLENGTH);
TEXTIO.PUTLINE("A feasible schedule found, READ schedule.out FILE...");
AGENDA := null;
delay 3.0;

exception
when OPERATOR SCHEDULER.MISSEDDEADLINE =>

TEXTIO.PUT ("The Operator ");
VARSTRING.PUT (Exception Operator);

TEXTIO.PUT (" MISSED ITS DEADLINE.");
delay 5.0;

when OPERATOR SCHEDULER.OVER TIME =>

TEXTIO.PUT ("The Operator ");
VARSTRING.PUT (Exception Operator);

TEXTIO.PUTLINE (" is OVER TIME.");

delay 5.0;
when STATIC SCHEDULER.MISSEDOPERATOR =>
TEXTIO.PUT ("The Operator ");
VARSTRING.PUT (Exception Operator);
TEXTIO.PUTLINE (" can not be scheduled in this algorithm.");
TEXTIO.PUTLINE (" There is no feasible solution.");

delay 5.0;
end;

when 4 -> exit;

when others => raise WRONGENTRY;

end case;

exception
when WRONG ENTRY =>
TEXTIO.PUTLINE("THE NUMBER ENTERED IS NOT IN MENU !");
TEXTIO.PUTLINE("Please try again...");

delay 3.0;

141

end;
end loop;

exception
when FILEPROCESSOR.CRITOPLACKSMET =

EXCEPTIONHANDLER.CRIT_0_LNET(ExceptionOperator);

when FILE -PROCESSOR.MET NOT LESSTHANPERIOD ->
EXCEPTIONHANDLER.MET N L T PERIOD(Exception Operator);

when FILE_-PROCESSOR.METNOTLESSTHLANMRT ->I

EXCEPTIONHANDLER.MET N L T MRT(ExceptionOperator);

when FILE -PROCESSOR.MCP NOT LESS_-THANMRT =>
EXCEPTIONHANDLER.MCP N L T MRT(ExceptionOperator);

when FILE_-PROCESSOR.MCPLESSTHANMET ->
EXCEPTIONHANDLER.MCPLTMET(ExceptionOperator);

when FILE_-PROCESSOR.METISGREATERTHANFINISHWITHIN ~
EXCEPTION HiANDLER.MET I G T FINISH WITHIN(Exception _Operator);

when FILEPROCESSOR.PERIODLESSTHANFINISHWITHIN>

EXCEPTIONHANDLER.PERIODLTFINISHWITHIN(ExceptionOperator);

when FILE_-PROCESSOR.SPORADICOPLACKSMCP =>
EXCEPTION HANDLER.SPORADIC 0 LMCP(Exception Operator);

when FILE_-PROCESSOR.SPORADICOPLACKSMRT =>
EXCEPTIONHANDLER.SPORADIC_0_LMRT(Exception Operator);

when SCHEDULEINPUTSLIST.BADVALUE =

EXCEPTIONHANDLER.SILBADVALUE;

when DIGRAPH.VLISTS.BAD_-VALUE =>
EXCEPTIONHANDLER.VLBAD_-VALUE;

when DIGRAPH.ELISTS.BAIDVALUE =>

EXCEPTIONIIANDLER.ELBADVALUE;

when HARMONIC -BLOCK -BUILDER.NOBASE BLOCK ->

EXCEPTIONHANDLER.NOBBLOCK;

when HARMONIC_-BLOCK_-BUILDER.NO_-OPERATORINLIST =>
EXCEPTIONHANDLER.NOOPINLIST;

when HARMONIC_-BLOCK_-BUILDER.ME2 -_NOTLESSTHANPERIOD =>
EXCEPTIONHANDLER.MET N L T PERIOD(ExceptionOperator);

end STATIC SCHEDULER;

142

APPENDIX F. DRIVER PROGRAM USED IN CAPS

with TEXT_10;

with FILES; use FILES;

with FILEPROCESSOR;

with EXCEPTIONHANDLER;

with TOPOLOGICALSORTER;

with HARMONICBLOCKBUILDER;

with OPERATORSCHEDULER;

procedure STATICSCHEDULER is

THEGRAPH :DIGRAPH.GRAPH;

PRECEDENCELIST :DIGRAPH.VLISTS.LIST;

SCHINPUTS :SCHEDULEINPUTSLIST.LIST;

AGENDA :SCHEDULEINPUTSLIST.LIST;

BASEBLOCK :INTEGER;

HBLENGTH :INTEGER;

STOPTIME :INTEGER :=0;

begin

FILEPROCESSOR.SEPARATEDATA (THEGRAPH);

FILEPROCESSOR.VALIDATEDATA(THEGRAPH);

TOPOLOGICALSORTER.TOPOLOGICALSORT(THE ,GRAPH, PRECEDENCELIST);

HARMONICBLOCKBUILDER.CALCPERIODICEQLIVALENTS (PRECEDENCELIST);

HARMONICBLOCKBUILDER.FINDBASEBLOCK (PRECEDENCELIST, BASEBLOCK);

HARMONICBLOCKBUILDER.FINDBLOCKLENGTH (PRECEDENCELIST,HBLENGTH);

OPERATORSCHEDULER.TESTDATA(PRECEDENCELIST, HBLENGTH);

loop

if NOT(TESTVERIFIED) then

TEXTIO.PUT("Although a schedule may be possible, there is no)

TEXTIO.PUT_LINE("guarantee that it will execute");

TEXT IO.PUTLINE("within the required timing constraints.");

TEXTIO.NEWLINE;

end if;
begin

OPERATORSCHEDULER.SCHEDULEINITIALSET

(PRECEDENCE_-LIST,SCHINPUTS,HBLENGTH,STOPTIME);

OPERATOR SCHEDULER.SCHEDULERESTOFBLOCK

(PRECEDENCE_-LIST,SCH INPUTS,HBLENGTH,STOPTIME);

OPERATORSCHEDULER.CREATESTATICSCHEDULE

(THEGRAPH,SCHINPUTS,HBLENGTH);

TEXTIO.PUT("A feasible schedule found, ");

TEXTIO.PUTLINE("the Harmonic Block with Precedence Constraints)

TEXTIO.PUTLINE("Scheduling Algorithm Used.)

SCH INPUTS :-null;

143

exit;
except ion

when OPERATORSCHEDULER.MISSEDDEADLINE =>

null;
when OPERATOR SCHEDULER.OVER TIME ->

null;
end;

begin
HARMONICBLOCKBUILDER.CALCPERIODICEQUIVALENTS (THEGRAPH.VERTICES);

OPERATORSCHEDULER.SCHEDULEWITHEARLIESTSTART
(THE_GRAPH,AGENDA,HBLENGTH);

OPERATORSCHEDULER.CREATE_-STATIC_-SCHEDULE (THEGRAPH,AGENDA,HBLENGTH);

TEXT IO.PUTLINE(-A feasible schedule found, the Earliest Start");

TEXTIO.PUTLINE("Scheduling Algorithm Used.")
AGENDA :- null;

exit;

exception
when OPERATOR SCHEDULER.MISSED DEADLINE>

null;
when OPERLATORSCHEDULER.OVERTIME =>

null;
end;

begin
OPERATORSCHEDULER.SCHEDULEWITHEARLIESTDEADLINE

(THE_-GRAPH,AGENDA,HBLENGTH);

OPERATOR SCHEDULER.CREATESTATICSCHEDULE (THE GRLAPH,AGENDA,HBLENGTH);-

TEXTIO.PUTLINE("A feasible schedule found, the Earliest Deadline)

TEXT IO.PUTLINE("Scheduling Algorithm Used.)

AGENDA :-null;
exit;

except ion
when OPERATORSCHEDULER.MISSEDDEADLINE>

null;
when OPERATORSCHEDULER.OVERTIME =>

null;

end;

end loop;

except ion
when FILEPROCESSOR.CRITOPLACKS MET =

EXCEPTION HANDLER.CRIT 0 L MET(ExceptionOperator);

when FILEPROCESSOR.METNOTLESSTHANPERIOD =>

EXCEPTIONHANDLER.MET N L T PERIOD(ExceptionOperator);

when FILEPROCESSOR.METNOTLESSTHANMRT ->

EXCEPTIONHANDLER.MET N L T MRT(ExceptionOperator);

when FILEPROCESSOR.MCP NOT LESSTHANMRT =

144

EXCEPTIONHANDLER.MCP N L T MRT(ExcceptionOperator);

when FILEPROCESSOR.MCPLESSTHANMET ->
EXCEPTIONHANDLER.MCPLTMET(Exception Operator);

when FILE_-PROCESSOR.METISGREATER THANFINISHWITHIN ->
EXCEPTIONHANDLER.MET I G T FINISHWITHIN(Exception _Operator);

when FILEPROCESSOR.SPORADICOPLACKSMOP ->
EXCEPTIONHANDLER.SPORADIC_0_LMCP(Exception _Operator);

when FILE_-PROCESSOR.SPORADICOPLACKSMRT ->
EXCEPTIONHANDLER.SPORADIC_0_LMRT(Exception_Operator);

when SCHEDULEINPUTSLIST.BA.DVALUE =

EXCEPTIONHANDLER.SILBADVALUE;

when DIGRAPH.V LISTS.BAD -VALUE =>
EXCEPTIONHANDLER.VLBADVALUE;

when DIGRAPH.ELISTS.BADVALUE =>
EXCEPTIONHANDLER.ELBAD_-VALUE;

when HARMONIC_-BLOCKBUILDER.NOL.NSE BLOCK>
EXCEPTIONHANDLER.NOBBLOCK;

when HARMONIC_-BLOCK_-BUILDER.NOOPERATORINLIST =>
EXCEPTIONHANDLER.NOOPINLIST;

when HARMONIC_-BLOCK_-BUILDER.MET_-NOTLESSTHANPERIOD =>
EXCEPTION HANDLER.MET N L T PERIOD(ExceptionOperator);

end STATICSCHEDULER;

145

LIST OF REFERENCES

1. Faulk, S., Pamas, D. "On Synchronization in Hard Real-Time Systems" CACM,
P.274-187 (Mar, 1987)

2. Jahanian, F., Mok, A. "Safety Analysis of Timing Properties in Real-Time Systems"
IEEETSE, SE-12, P. 890-904

3. Jensen, E., Locke, C., Tokuda, H. "A Time-Driven Scheduling Model for Real-
Time Operating Systems" Proc. of the Real-Time Systems Symposium, San Diego,
CA.IEEE, P. 112-122 [1985]

4. Luckenbaugh, G. 'The Activity List: A Design Construct for Real-Time Systems"
Master's Thesis, Department of Computer Science, UNIV of Maryland [1984]

5. Luqi, Berzins, V. "Execution of a High Level Real-Time Language" Proc. of the
Real-Time Systems Symposium, Huntsville, Alabama (Dec, 1988)

6. Marlowe, L. "A Schedular for Critical Timing Constrains.", M.S. Thesis, Computer
Science, Naval Postgraduate School, Monterey CA. (Dec, 1988)

7. Moitra, A. "Analysis of Hard Real-Time Systems" Computer Science Department,
Cornell University [1985]

8. Quirk W. J. "Verification and Validation of Real-Time Software" SPRINGER,
[1985]

9. Zave, P. "The Operational Versus the Conventional Approach to Software
Developement" CACM, P.104-118 (Feb, 1984)

10. Stankovic J.A., Ramamritham K., Shiah P., Zhao W. "Real-Time Scheduling
Algorithms for Multiprocessors", COINS Technical Report 89-47, [1989]

11. Lui Sha, Lehoczky J., Rajkumar R., "Task Scheduling in Distributed Real-Time
Systems" Department of CS, Department of Statistics, Department of Electrical and
Computer Engineering, Carnegie Mellon University, [19881

12. Sheng-Chang Cheng, Stankovic J.A., Ramamritham K. "Scheduling Algorithms for
The Real-Time Systems - A Brief Survey", COINS Technical Report 87-55,
(June, 1987)

13. Janson D.M. "A Static Scheduler for The Computer Aided Prototi'ping SI'stem",
M.S. Thesis, Computer Science. Naval Postgraduate School, Monterey CA. (Sep,
1988)

146

14. O'hern J.T. "A Conceptual Level Design for a Static Scheduler for Hard Real-Time
Systems", M.S. Thesis, Computer Science, Naval Postgraduate School, Monterey
CA. (Sep, 1988)

15. LuQi, "Execution of Real-Time Prototypes", Technical Report NPS52-87-012, Nid
Postgraduate School, Monterey, CA, 1987 and in "ACM First International
Workshop on Computer-Aided Software Engineering", Cambridge, MA, [Vol. 2: pp.
870-884] (May, 1987)

16. LuQi and Ketabchi, M., "A Computer Aided Prototype System", Technical Report,
NPS52-87-011, Naval Postgraduate School, Monterey, CA, 1987 and in [IEEE
Software, pp. 66-721, (March, 1988)

17. LuQi, "Handling Timing Constraints in Rapid Prototyping", Technical Report
NPS52-88-036, Naval Postgraduate School, Monterey, CA, (Sep, 1988)

18. Moffitt, C. R., "A Language Translator for a Computer Aided Rapid Prototyping
System", M.S. Thesis, Computer Science, Naval Postgraduate School, Monterey CA.
(Sep, 1988)

19. LuQi, "Rapid Prototyping for Large Software System Design", Ph.D. Thesis,
University of Minnesota, Duluth, Minnesota (May, 1986)

20. Bra,Flo,Rob7l, "Scheduling with Earliest Start and Due Date Constraints", Naval
Research, Logistic Quarterly 18(4), (Dec, 1971)

21.Baker K.R., Sue Z.S., "Sequencing with Due-data and Early Start Times to
Minimizing Maximum Tardiness", Naval Research, Logistic Quarterly 21, [1971]

22.Baker K.R., Martin J.B., "An Experimental Comparison of Scheduling Algorithms
for the Single-Machine TArdiness Problem", Naval Research, Logistic Quarterly
[1974]

23. Horn W.A., "Some Simple Scheduling Algorithms", Naval Research, Logistic
Quarterly 21, [1974]

24.Biyabaul S.R., Stankovic J.A., Ramanritharn K., "The Integration of Deadline and
Criticabess in Hard-Real Scheduling", CH 2618 --7/88/0000/0152

25.Liv C.L., Laylan J.W., "Scheduling Algorithms for Multipro, ramming in a Hard
Real-Time Environment", Journal of Association for Computing Machinery, Vol
20, No 1 [Jan. 1972: pp. 46-61]

26.Chung Jen-Yao, Liu Jane W. S., 'Algorithms for Scheduling Periodic Jobs to
Minimize Average Error", [1987]

147

27. Locke C.D., Tokuda H., Jensen E.D., "A Time-Driven Scheduling Model for Real-
Time Operating Systems", Technical Report, Carnegie Mellon University [19851

28. Mok A., Sutanthavibul S. "Modeling and Scheduling of Dataflow Real-Time
Systems", Proc. of the Real-Time Systems Symposium, San Diego, IEEE, P.178-
187(Dec, 1985)

29. Booch G. "Software Engineering with Ada", Menlo Park: The Benjamin/Cummings
Publishing Company, 1987

30. Mok A., "A Graph Based Computational Model for Real-Time Systems", Proc. of
the IEEE International Conference on Parallel Processing, Pennsylvania State Univ.,
PA, [Aug. 20-23, 1985: pp. 619-623]

31. White J. L., "The Development of a Rapid Protoyping Environment", M.S. Thesis,
Computer Science, Naval Postgraduate School, Monterey CA. (Dec, 1989)

32. Palazzo F., "Integration of the Execution Support System for Computer Aided
Prototyping System", M.S. Thesis, Computer Science, Naval Postgraduate School,
Monterey CA. (Dec, 1989)

33. Cervantes J. J., "An optimal Static Scheduling Algorithm for Hard Real-Time
Systems Specified in a Prototyping Language. ", M.S. Thesis, Computer Science,
Naval Postgraduate School, Monterey CA. (Dec, 1989)

34. Eaton S.L., "An Implementation Design of a Dynamic Scheduler for a Computer
Aided Protoryping System", M.S. Thesis, Computer Science, Naval Postgraduate
School, Monterey CA. (Mar, 1988)

148

INITIAL DISTRIBUTION LIST

1. Defence Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

4. Dr. Uno R. Kodres, Code 52Kr 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Luqi, Code 52Kr 5
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Laura J. White, Code 52Wh I
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

7. Julian Jaime Cervantes 1
Department ,f Computer Science
Naval Postgraduate School
Monterey, CA 93943

8. Murat Kilic I
Merkez Mah. 31. Sokak
No:6, D.1 41650
Golcuk-Kocaeli/TURKEY

9. Deniz Kuvvetleri Komutanligi I
Personel Daire Baskanligi
Bakanliklar-Ankara/rULRKEY

10. Deniz Harp Okulu Komutanligi Kutuphanesi I

Tuzla-Istanbul/TURKEY

149

11. Golcuk Tersanesi Koniutanligi1
ARGE Sube Mudurlugu
Golcuk-KocaeWiiURKEY

12. Ortadogu Teknik Universitesi Kutuphanesi1
AnkarafrUTRKEY

13. Istanbul Teknik Universitesi Kutuphanesi
Gumussuyu-IstanbulfrURKEY

14. Bogazici Universitesi Kutuphanesi1
Bebek-Istanbul/TURKEY

15. Mr. John WhiteI
PMTC Code 1051
Point Mugu, CA 93042

150

