I @
NAVAL POSTGRADUATE SCHOOL

AD-A225 835

LAy]
AT B ,
E.J'\,;n sj

Monterey, California

ELECTE S

THESIS @B

STATIC SCHEDULERS
FOR
EMBEDDED REAL-TIME SYSTEMS
by
Murat Kilic
December 1989

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited.

'\“\ 9 . ’ k

Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE

la Report Security Classificanon Unclassified 1b Restrictive Markings
2a Secunty Clasaification Authority 3 Dustribution Availability of Report
2b Declassification Downgrading Schedule Approved for public release: distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
na Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Orgamzation
Naval Postgraduate School (if applicable) S2 Naval Postgraduate School
oc Address ¢ ciny. state, and ZIP code) 7b Address (citv, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Identification Number

(i applicakle)
8¢ Address (city, state, and ZIP code) 10 Source of Funding Numbers

Program Elemem NoIPrOJect No | Task No I\\ ork Unit Accession No

11 Tutle i includr securiey classiteation) STATIC SCHEDULARS FOR EMBEDDED REAL-TIME SYSTEMS
12 persoral Authorisi Murat Kilic
13aType of Repaort 13 T ime Covered 14 Date of Report (year, monti. day) 15 Page Ceount
Master's Thesis Fr To December 1989 159

16 Supplementary Notation The views uprnwd in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the US. Government.

17 Cocan Codes 18 Subject Terms i continue on reverse if necessary and idertify Eyv block number)
Frold Group Subgroup o Static Schedulers, Single Processor SChLdUhﬂQ. Nonpreemtive Scheduling. Implementation
of Static Schedulars _ ¢ .- -

Y

19 Abstract (continue on reverse i necessary and identifyv by block number)

= Because of the need for having efficient scheduling algorithms in large scale real time svstems. software engincers put a lot
of effort on developing scheduling algorithms with hxgh performance But algotithms. developed upto now. are not perfect
for all cases. At this stage. instead of having one scheduling algorithm in the svstem. more than one different algonthm which
will try to find a feasible solution to the scheduling problem according to the initial properties of tasks would be very useful
to reach a high performance scheduling {or the system.

This report presents the effort to provide static schedulers for the Embedded Real-Time Systems with single processor
using Ada programming language. The independent nonpreemptable algorithms used used in three static schedulers are run
according to the timing constraints and precedence relationships of the critical operators extracted from high level source
program. The final schedule guarantees that timing constraints for the critical jebs are met. The primary goal of this report
1s to support the Computer Aided Rapid Prototyping for Embedded Real-Time Systems so that we determine whether the
systemn. as designed. meets the required timing specifications. Secondary goal is to demonstrate the significance of Ada as the
implementation language and a modeling tool for a prototyping system.

20 Distribution Availabiiity of Abstract 21 Abstract Security Classification

O unclassified uniimited D) same as report O DTIC users Unclassified

22a Name of Responsible Individual 22b Telephone {inciude Area code) 22c¢ Office Symbol

Uno R. Kodres (J408) 646-2197 Code S2Kr
DD FORNM 147384 MAR 83 APR edition may be used unti) exhausted security classification ot this page

All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.
Static Schedulers
for
Embedded Real-Tiine Systems
by
Murat Kilic
Lieutenant J. G., Turkish Navy

B.S., Turkish Naval Academy

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

December 1989
Author: /%

- 4 Murat Kilic

Approved by: /&\A [. éé“‘ae“““

Uno R. Kodres, Thesis Advisor

Lon
i LuC; Sccom

Robert B. McGhee, Chairman
Department of Computer Science

ABSTRACT

Because of the need for having efficient scheduling algorithms in large scale real-
time systems, software engineers put a lot of effort on developing scheduling algorithms
with high performance. But neither algorithm developed upto now is perfect for all cases.
At this stage, instead of having one scheduling algorithm ir the system, more than one
different algorithms which will try to find a feasible solution to the scheduling problem
according to the initial properties of the tasks would be very useful to reach a high
performance scheduling for the system.

This report represents the effort to provide static schedulers for the Embedded Real-
Time Systems with single processor using the Ada programming language. The
independent nonpreemptable algorithms used in these static schedulers are run according
to the timing constraints and precedence relationships of the critical operators extracted
from a high level source program. The final schedule guarantees that timing constrairits
for the critical jobs are met. The primary goal of this report is to support the Computer
Aided Rapid Prototyping for Embedded Real-Time Systems so that we will determine
whether the system, as designed, will meet the required timing specifications. Secondary

goal is to demonstrate the significance of Ada as the implementation language.

Accession For
[NTIS GRAsI @
DTIC TAB a
Unanneunced O

Justification

By

Distribution/

Avail and/er
Speclal

iii
Diat

Y|

Aveailability dees

A.
B.
C.
D.

TABLE OF CONTENTS

. PREVIOUS RESEARCH AND SURVEY OF

STATIC SCHEDULING ALGORITHMS

A. PREVIOUS RESEARCH

2.

1.

2.

THE HARMONIC BLOCK WITH PRECEDENCE CONSTRAINTS
SCHEDULING ALGORITHM

a. PREEMPTABLE VERSION
b. NONPREEMPTABLE VERSION
THE EARLIEST DEADLINE SCHEDULING ALGORITHM . .
MINIMIZE MAXIMUM TARDINESS WITH EARLY START

TIMES SCHEDULING ALGORITHM

v

.

6. THE RATE-MONOTONIC PRIORITY ASSIGNMENT

SCHEDULING ALGORITHM 23
C. SUMMARY e 26
o. IMPLEMENTATION OF STATIC SCHEDULERS 27
A. ASSUMPTIONS e 27
B. DATA STRUCTURES UTILIZED 28
1. LINKED LISTS e 30
2. GRAPH e 33
3 VARIABLE LENGTH STRINGS 34
C. ARCHITECTURAL DESIGN FOR STATIC SCHEDULERS 36
D. EXCEPTION HANDLING, 38
E. PACKAGE PRESENTATIONS OF "THE HARMONIC BLOCK WITH
PRECEDENCE CONSTRAINTS SCHEDULING ALGORITHM" 40
1. "FILES" Package, 41
2. "FILE_PROCESSOR" package 41
3. "TOPOLOGICAL_SORTER" package 44
4. "HARMONIC_BLOCK_BUILDER" package 44
5. "OPERATOR_SCHEDULER" package 46
F. IMPLEMENTATION OF "THE EARLIEST START SCHEDULING
ALGORITHM" e 48
1. "OPERATOR_SCHEDULER" package 50
G. IMPLEMENTATION OF "THE EARLIEST DEADLINE SCHEDULING

1. "OPERATOR SCHEDULER" package 53

H. SUMMARY ... e e e e e e 55
IV. DEVIATIONS FROM PREVIOUS WORKo ... 56
A. ASSUMPTIONS e s e 56
B. DATA STRUCTURES e e 57
C. ARCHITECTURAL DESIGN 57
D. EXCEPTION HANDLING ittt 58
E. PACKAGE IMPLEMENTATION, 58
V. CONCLUSIONS AND RECOMMENDATIONS u.... 60
A. SUMMARY e 60
B. CONCLUSIONS e s e e 61
yi

LIST OF TABLES

Table 1 Record Fields for OPERATOR 30

Table 2 Record Fields for LINK_DATA 31

Table 3 Record Fields for SCHEDULE_INPUTS 31

Table 4 Record Fields for OP_INFO 32

Table 5 Record Fields for DIGRAPH 33

Table 6 Exceptions used in Static Schedulers 39
vii

LIST OF FIGURES
Figure 1 Major Software Tools of CAPS
Figure 2 CAPS Architecturet uennnenn.,
Figure 3 The Execution Support System
Figure 4 1" Level DFD i e
Figure 5 Linear and Acyclic Graphs
Figure 6 Example of Scheduling with Earliest Start Time (preemptable)
Figure 7 Example of Scheduling with Earliest Start Time (Nonpreemptible)
Figure 8 Schedule for Two Tasks
Figure 9 Graphical Representation of the system and the data types used
Figure 10 New DFD for Static schedulers
Figure 11 PSDL Graph and its representation in implemented Graph Structure
Figure 12 Finding a time interval for the system
Figure 13 Graph Model for Example 1
Figure 14 Graph structure for Example 2
Figure 15 Linked List representations used in Algorithm 2 and Algorithm 3.

Figure 16 Example graph assumed for non-critical operators

vili

18
24
35
37
45
46
48
49

52

1. INTRODUCTION

A. BACKGROUND

Large scale Real-Time Systems are important to both civilian and military
operations. They are used in the control of modemn systems, in air traffic control, in
tele-communication systems, and in defense. In these systems, many tasks have explicit
deadlines. This means that the task scheduling is an important component of the
systems. In Hard Real-Time Systems, tasks have to be performed not only correctly,
but also in a timely fashion. Otherwise, there might be some severe consequences.[Ref.
12: p.3]

The scheduling algorithm in a Hard Real-Time System can be either static or
dynamic, and is used to determine whether a feasible execution schedule for a set of
tasks exists so that the tasks’ deadlines and resource requirements are satisfied, and
generate a schedule if one exists [Ref. 10]. A static approach calculates schedules for
tasks off-line and it requires the complete prior knowledge of tasks’ characteristics. A
dynamic appsoach determines schedules for tasks on the fly and allows tasks to be
dynamically invoked. Although static approaches have low run-time cost, they are
inflexible and can not adant to a changing enviionment or to an environment wliose
behavior is not completely predictable. When new tasks are added to a static system,
the schedule for the entire system must be recalculated, which is expensive in terms
of time and money. In contrast, dynamic approaches involve higher run-time costs, but,

because of the way they are designed, they are flexible and can easily adapt to changes

in the en;onment.[Ref. 12: p. 3] In Hard Real-Time Systems, tasks are also
distinguished as preemptable and nonpreemptable. A task is preemptable if its execution
can be interrupted by other tasks and resumed afterwards. A task is nonpreemptable if
it must run to completion once it starts.

To meet timing constraints, we must schedule software tasks according to well
understood algorithms, so that the resultant timing behavior of the system is
understandable, maintainable and predictable. The use of well understood Real-Time
scheduling algorithms will also set the stage for eliminating many of the time
dependant problems encountered in Real-Time Systems today, thereby avoiding some
of the most difficult problems to debug, with a resultant increase in system reliability

and with reduced system integration time and cost [Ref. 11].

B. THE STATIC SCHEDULER

If there exists a possible solution, the static scheduler builds a static schedule for
the execution of a prototype, which is a sequence of tasks being developed from the
Prototype System Description Language(PSDL) input specification for the prototype that
obey some predefined properties, in our case these are timing constraints and
precedence relationships. This schedule gives the precise execution order and timing of
operators with hard real-time constraints in such a manner that all timing constraints
are guaranteed to be met [Ref. 14].

Tasks are divided into two classes: time-critical and non time-critical. A task is

time-critical if it has at least one timing constraint associated with it, otherwise it is

non time-critical. Time critical tasks need more work to et a feasible schedule,
therefore they are handled by static scheduler before running a prototype.

And an auxiliary scheduler, called dynamic scheduler, executes the time-critical
task sequence generaied by static scheduler and tries to allocate the non time-critical
tasks obeying the precedence relationship for the free time slc;ts of CPU. The
importance of the static scheduler is that it obtains a sequence for the critical tasks

off-line, thus avoiding execution time during run time.

C. OBJECTIVES
This thesis describes the application of the schedulers that use different scheduling
algorithms to find feasible schedules for the real-time prototypes satisfying the critical

timing constraints and precedence relationships among operators in the prototype.

D. ORGANIZATION

Chapter II describes the previous research done in general. It includes a
discussion of Computer Aided Prototype System(CAPS) and Prototype System
Description language(PSDL). This chapter also presents a survey of The Static
Scheduling Algorithms for single processor environment. Chapter III outlines the
analysis and programming decisions that were made during the implementation. The
deviations from the earliest implementation are described in Chapter IV. Conclusions

and recommendations for the future work will be presented in Chapter V.

II. PREVIOUS RESEARCH AND SURVEY OF
STATIC SCHEDULING ALGORITHMS

A. PREVIOUS RESEARCH
The research previously done in static scheduler is associated with the Computer
Aided Prototyping System(CAPS) and the Prototype System Description Language
(PSDL). CAPS is a tool that is being designed to aid software designers in the rapid
prototyping of large software systems. The original design of the Static Scheduler was
described in [Ref. 19]. This design was further developed as The Conceptual Design
for the Pioneer Prototype of the Static Scheduler as a part of the CAPS execution
support system.[Ref.14] Then we see a pioneering effort to develop a static scheduler
as a pant of the CAPS execution support system, using the Ada® programming
language.[Ref. 13] Thereafter a static scheduler was partly implemented in the Ada®
programming language. [Ref. 6]
1. CAPS
The CAPS is a tool that’s being designed for development of Hard Real-
Time or Embedded Systems to speed up the design and implementation. CAPS process
is an iterative approach to designing complex software systems. CAPS is the major

system that requires more than one static scheduler.

' Ada® is a registered trademark of the United States Government, Ada Joint
Program Office

The CAPS architecture contains the following elements:

» User Interface

+ Prototyping System Description Language

e Rewrite Subsystem

» Software Design Management System

» Prototype Data Base and Software Base

» Execution Support System(ESS)

Détailed information about CAPS is contained in [Ref.31], [Ref. 16], [Ref. 13],

and [Ref. 6] Figure 1 below graphically describes the major software tools of CAPS,

and the Figure 2 on page 6 describes the architecture of CAPS.

CAPS
User Software Execution
Interface Database Support
Systen System

Figure 1 Major Software Tools of CAPS

CAPS makes use of specifications and reusable software components to

automate the rapid prototyping methodology [Ref. 16: p. 66], which offers promising

User Interface [-—

!

Prototype Systen
Description Language

v

Rewrite Systen

]

Software Design Execution Support
Hanagment System System

Y

Prototype

Database

Software Base

Figure 2 CAPS Architecture
advantages in improved software engineering productivity, increased reliability of the
finished product, more realistic cost estimates based on identified system complexity,
and a reduction in the total system design to implementation timelog [Ref. 15: pp. 11-
12].

The Execution Support System is necessary for the execution and testing of
the prototype. The ESS contains a Static Scheduler, a Translator, and a Dynamic
Scheduler. [Ref. 32] The interfaces between these components are shown in figure 3
on page 7. The Translator translates the statements in the PSDL prototype into

statements in an underlying programming language. The underlying programming

PSDL
Specifications

trnasic
Scheduler

Non Tise
R

Static

Translstor scheduler

Dynewic

ic
Stat Schedule

Schedule

tn ADA 1R APA

ADA Compiler/Linker

Executable

Prototype

Liecuting
Prototype

Figure 3 The Execution Support System

language for the CAPS is Ada®. The development of the translator is presented in
Moffitt [Ref. 18].
Static Scheduler is a part of the ESS and attempts to find a static schedule

for the operators in PSDL prototype with real-time constraints. An implementation

guide for the Static Scheduler can be found in [Ref. 13]. The operators that do not
have real time constraints are controlled by Dynamic Scheduler during run time.

The Dynamic Scheduler is a run time executive which controls the execution
of the prototype, it schedules operators which do not have real time constraints, and
provides facilities for debugging and gathering statistics. The first design for the
Dynamic Scheduler is contained in [Ref. 28] and the latest changes can be found in
Palazzo [Ref. 32].

The translator translates the PSDL code into Ada source code, thz Static
Scheduler extracts operator timing information from the PSDL source code and creates
a static schedule in Ada source code.

The Static Scheduler provides the Dynamic Scheduler with the non time-
critical operators. Dynamic Scheduler uses the "non_crits" text file to create a dynamic
schedule in a Ada source code. And, the Ada source code from the Translater, the
Static Scheduler, and the Dynamic Scheduler are compiled, linked and an executable

Prototype is generated.[Ref.32]

2. PSDL
PSDL is a language designed for clarifying the requirements of complex
real-time systems and for determining properties of proposed designs for such systems
by means of prototype execution. The language was designed to simplify the
description of such systems and to support a prototyping method that relies on a novel
decomposition criterion. PSDL is also the basis for the CAPS that speeds up the

prototyping process by exploiting reusable software components and providing execution

support for high level constructs appropriate for describing large real-time systems in

terms of an appropriate set of abstractions. [Ref. 17: p. 7]

B. SURVEY OF STATIC SCHEDULING ALGORITHMS
This section includes a survey of The Static Scheduling Algorithms for Hard
Real-Time Systems, and presents an overview of previous work and discusses their

characteristics.

1. THE FIXED PRIORITIES SCHEDULING ALGORITHM

In many conventional hard real-time systems, tasks are assigned with fixed
priorities to reflect critical deadlines, and tasks are executed in an order determined by
the priorities. During the testing period, the priorities are (usually manually) adjusted
until the system implementer is convinced that the system works. Such approach can
only work for relatively simple systems, because it is hard to determine a good priority
assignment for a system with a large number of tasks by such a test-and-adjust method.
Fixed priorities is a type of static scheduling. Once the priorities are fixed in a system,

it is very hard and expensive to modify the priority assignment.[Ref. 27].

2. THE HARMONIC BLOCK WITH PRECEDENCE CONSTRAINTS
SCHEDULING ALGORITHM

This scheduling algorithm is being used by the CAPS, a general description

of the implementation is furnished above, and a Data Flow Diagram(DFD) is given in

Figure 4 on page 10. After the first design efforts of this algorithm [Ref. 13] [Ref. 14]

even though the data flow diagram didn’t change since the first Architectural Design,

some structural changes were made to the algorithm. Description below includes these
final structural changes [Ref. 6].
The first component of the DFD, the "PSDL_Reader", reads and processes

the PSDL prototype program. The output of this step is a file containing operators

identifiers, timing information and link statements.

TOPOLOGICAL
SORTER

PRECEDENCE
LINKS

LIST LIST

PSDL
SOURCE
FILE

PSDL_

FILE_ OPERATORS

READER PROCESSOR

SCHEDULER

ATONIC
OPERATORS
LIST

HARNMORIC
BLOCK
LENGTH

STATIC
HARNONIC_
BLOCK _

SCHEDULE

NON-CRITS
FILE

BUILDER

Figure 4 1" Level DFD

The second component is the "File_Processor”, the file generated in the first
step is analyzed and the data is divided into three parts based on its destination or if

additional processing required. The "Non_Crits" file contains the names of all

10

noncritical operators. The Atomic Operators list contains all critical operators identifiers
and their associated timing constraints. The Links List contains the link statements
which syntactically describe the PSDL implementation graphs. During this step some
basic validity checks on the timing constraints are performed. If any of the checks fails,
an exception is raised and an appropriate error message is submitted to the user.

The "Topological_Sorter” performs a topological sort of the link statements
contained in the Links List. The requirements for a topological sort implies that the
statements being sorted have natural continuity and connectedness. These properties
define the execution precedence of the time critical operators regardless of whether the
graphs are linear or acyclic. In an acyclic digraph, like on Figure 5, the decision to
choose the "link a" first and the "link b” last is arbitrary in (b). The output from either
sort is a precedence list of critical operators stipulating the exact order in which they
must be executed. The linear sort will produce one precedence list while the acyclic
sort can produce two or more precedence lists.

The second output of the "File_Processor”, the Atomic Operators list, is the
input to the "Harmonic_Block_Builder”. An hammonic block is defined as a set of
periodic operators where the periods of all its component operators are exact multiples
of a calculated base period. Each hammonic block is treated as an independent
scheduling problem. When multiprocessors are utilized, then one processor for harmonic
block is necessary. The implementation being developed [Ref. 6] utilizes a single
processor, therefore the final static schedule assumes that only one harmonic block is
created. All the operators must be periodic, then all the sporadic operators are

converted to their periodic equivalents. The periodicity helps to insure that execution

11

—

a) Linear Graph

external . a . b ‘ externsl

A B C
— —

b) Acyclic Graph

external - external

Figure § Linear and Acyclic Graphs

is completed between the t;eginning of a period and its deadline, which defaults to the
end of the period.
in order to convert a sporadic operator into its equivalent periodic operator,
the following parameters of the sporadic operator must be known :
» Maximum Execution Time (MET).
* Minimum Calling Period (MCP).

¢ Maximum Response Time (MRT).

12

Some rules must be obeyed by the parameters described above to obtain an
equivalent periodic operator, the rules are the following :
« MET < MRT. This rules insures that (MRT - MET) produces a positive value.

» MCP < MRT. This condition is necessary, but not sufficient, to guarantee that
an operator can fire at least once before a response is expected.

« MET < MCP. This restriction insures that the period calculated will conform to
a single processor environment.

The periodic equivalent is then calculated as P = min (MCP, MRT - MET),
the value of P must be greater than MET, in order for the operator to complete
execution within the calculated period. As a last resort, setting P equal to MCP, is a
worst case scheduling constraint.

After all the operators are in periodic form, they are sorted in ascending
order based on the period values. A second preliminary step is to calculate the base
block and its period for the sorted sequence of operators. The base period is defined
as the greatest common divisor (GCD) of all the operators in one sequence that will
be scheduled together.

The last preliminary step is to evaluate the length of time for the harmonic
block. The actual harmonic block length is the least common multiple (LCM) of all
the operators’ period contained in the block. The harmonic block and its length are an
integral part of the static schedule. This block represents an empty timeframe within
which the operators will be allocated time slots for execution.

The outputs of the "Topological_Sorter” and the "Harmonic_Block_Builder"
are used by the "Operators_Scheduler” in order to create a static schedule for the time

critical operators. The resulting static schedule is a linear table giving the exact

13

exccution start time for each critical operator and the reserved MET within which each
operator completes its execution.

This linear table is evaluated in two iterative steps. In the first step an
execution time interval is allocated for each operator based on the equation
INTERVAL = (current time, current time + MET). Next the process creates a firing
interval for each operator during which the second iterative step must schedule the
operator. The firing interval stipulates the lower and upper bound for the next possible
start time for an operator based on its period. The second step, initially, uses the lower
bound of each firing interval, when it schedules operators during subsequent iterations.
The sequence of operators is allocated time slots according to the earliest lower bound
first. Before an operator is allocated a time slot, this step verifies that :

* (current time + MET) = < harmonic block length.

This condition is applicable to every operator scheduled in that harmonic
block. This step also calculates new firing intervals for each operator scheduled. Once
all the operators are correctly scheduled within an entire harmonic block, a static
schedule is available. All subsequent harmonic blocks are copies of the first.

A theoretical development and implementation guideline of this algorithm
is available in the [Ref. 14] and [Ref. 13].

Part of the actual implementation of this algorithm and the anmalysis of its

performance is described in the [Ref. 6].

14

3. THE EARLIEST START SCHEDULING ALGORITHM

This algorithm considers the scheduling of n tasks on a single processor.
Each task becomes available for processing at time a, must be completed by time b,
and requires d; time units for processing.

There are two versions of the criteria : one allows the job splitting
(preemptable tasks), under this assumption it is only required to complete d*, (where
d'+d’+..+d"=d,, and n is the total number of splits of the task i) units of processing
between a, and b; and the other version assumes that job splitting is not allowed

(nonpreemptable tasks).

a. PREEMPTABLE VERSION

Consider the rectangular matrix that has a column for each job and a
line for each unit of time available. There are max(b,) lines and n columns. In this
matrix it is necessary to distinguish between admissible and inadmissible cells. For job
i the cell (i,j) is admissible, if a<j=<b, and inadmissible otherwise. The admissible
cells correspond to the time where the task may be performed. The Figure 6 below
shows an example.

Associated with each row there is an availability of one unit of time,
and with each column a requirement of d,. If the task i is being processed at time j,
a | is placed in the admissible cell. This problem is equivalent to that of finding a set
of I’s placed in admissible cells such that column sums satisfy the requirements d, and
each line contains at most one single 1.[Ref. 20: pp. 511-514]

This type of algorithm does not take into account any precedence

constraints. In order to include the precedence constraints in this algorithm, it is

1 1 2 3 ¢

a, 2 (] 3 1

b, 7 s 5 7

¢ 2 1 2 2 !
TASKS 1

TIRE

AVAILABILI t
PERIOD LABILITIES

~ oo N o W™
-
-k e e e e e

2 1 2 2

NETVORK REPRESENTATION
DEMANDS

Figure 6 Example of Scheduling with Earliest Start Time (preemptable)

necessary to do some modifications. The modification can utilize some concept like the
harmonic block discussed in the former algorithm and also include the constraints that
a job j, that is preceded by i and k, is admissible only after a<j=<b, and i and k are
already scheduled. The [Ref. 20: pp. 518-519] presents an implementation in
FORTRAN to solve the case without precedence constraints. This type of algorithm
is not taken into account for precedence constraints, and is not applicable to our case

because it assumes that all the tasks are preemptable.

16

This algorithm is bounded by O(n) in time, and as most hevristic algorithms, does
not guarantee that the solution (assuming that at least one is available for the problem)
is found.

b. NONPREEMPTABLE VERSION

In this approach, also, the precedence constraints are not included in
the analysis, but they may be easily taken into account during the construction of all
the feasible sequences.

The main idea is to enumerate implicitly all the possible orderings by
a branch, exclude and bound algorithm. During the branch all infeasible sequences due
to violation of the due date are discarded (here it is possible to include the precedence
constraints).

All the possible sequences are enumerated by a tree type construction.
From the initial node we branch to n new nodes on the first level of descendent nodes.
Each of these nodes represents the assignment of task i, 1 =< i =< n, to be the first
in the sequence. Associated with such node there is the completion time t¥ of the task
j in the position i, ie., t' = a, + d,. Next we branch from each node on the first level
to (n-1) nodes on the second level. Each of these nodes represents the assignment of
each of the (n-1) unassigned tasks to be second on the sequence. As before, we
associate the corresponding node the completion time of the task t¥ = max (t", a) +
d. We continue in a similar fashion. The initial node is a dummy node, in the
unccastrained case all the node must be present in the level 1 (level 0 is assumed to
be the dummy root of the complete tree), in case with precedence constraints in the

level 1 we allocate only the tasks that have only external input or no predecessor.

17

Consider the (n-k+1) new nodes generated at the level k of the tree
construction, if the finish time t¥ associated with at least one of these nodes exceeds
its due date then the subtree rooted at each one of the nodes that are unfeasible may
be excluded from further consideration.

The bounding condition applies only when there are no precedence
constraints and is intended to find an optimal (minimizing the length of the ble-k)

ordering of the sequence. Figure 7 illustrates the application of this criteria.

Tasks
1 1 2
a, 4 1
b 7 5
1
i a, 2 1

Figure 7 Example of Scheduling with Earliest Start Time (Nonpreemptible)
In the case with precedence constraints this algorithm does not

guarantee an optimal solution, another disadvantage is the time complexity which tends

18

to factorial in the number of tasks. A more detailed explanation, as well, a step by step
definition of the algorithm, may be found in [Ref. 20 : p. 514-519].

This algorithm is implemented in this thesis including the precedence
constraints. It utilizes the concepts: length of the harmonic building block and the firing
interval for each task which are described before in this chapter. The implementation

details are explained in Chapter III of this thesis.

4. THE EARLIEST DEADLINE SCHEDULING ALGORITHM
This algorithm also considers the scheduling of n tasks on a single processor.
It is a varient of the Earliest Start Scheduling Algorithm, only the earliest deadline
should be considered as the criteria instead of the earliest start time. The

implementation details are explained step by step in the Chapter III of this thesis.

5. MINIMIZE MAXIMUM TARDINESS WITH EARLY START TIMES
SCHEDULING ALGORITHM
This algorithm considers a sequencing problem consisting of n tasks and
a single processor. Task i is described by the following parameters :

« the ready time (a,), the earliest point in time at which processing may begin on
i (i.e., an earliest start time).

» the processing time (d,), the interval over which task i will occupy the processor.
o the due date (b)), the completion deadline for task i.
The three characteristics a,, d,, and b, are known in advance and no preemption
is allowed in the processing of the tasks.
As a result of scheduling, task i will be completed at time C; and will be

tardy if C, > d,, The tardiness of task(T,) is defined by T, = max {0, C-d,}. The

19

scheduling objective is to minimize the maximum task tardiness, which is simply
Tow = max; { T; }.

| For the static version of the n tasks single processor problem without
precedence constraints(all a, s are equal), T,,, is minimized by the sequence by, =<
by =< .. =< by, that is, by processing the tasks in nondccmasi‘ng order of their
deadlines.[Ref. 21: p. 172]

In the dynamic version of the problem, the statement above can also be
applied if the tasks can be processed in a preemptable fashion, in this case sequencing
decisions must be considered both at task completion and at task ready time. Then we
have the following :

» At each task completion, the task with minimum b, among available tasks is
selected to begin processing.

» At each ready time, a, the deadline of the newly available task is compared to
the deadline of the task being processed. If b, is lower, task i preempts the task
being processed otherwise the task i is simply added to the list of available tasks.

The solution to the preemptive case is not difficult to construct because the
mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained
in the set of all preemptive schedules, the optimal value of T,,, in the preemptive case
is at least a lower bound on the optimal T, for the nonpreemptive schedules. This
principle is the basis for the algorithm.

In the nonpreemptive problem, there is a sequence corresponding to each
permutation of the integers 1, 2, ..., n. Thus there are at most n! sequences, but several

of these sequences do not need to be considered. The number of feasible sequences

depends on the data in a given problem, but will be usually less than n!.

20

—

A branch and bound algorithm will be used to systematically enumerate all
the feasible permutations.

The branching tree is esséntially a tree of partial sequences. Each node in
the tree at level k corresponds to a partial permutation containing k tasks. Associated
with each node is a lower bound on the value of the maximum tardiness which could

be achieved in any completion of the corresponding partial sequence (obtained using

the preemptive adaptation). The calculation of lower bound allows the algorithm to
enumerate many sequences only implicitly. If a complete sequence has been found with
a value T™ less than or equal to the bound associated with some partial sequence, then
it is not necessary to complete the partial sequence in the search for optimum solution.

The branch and bound algorithm maintains a list of nodes ranked in
nondecreasing order of their lower bounds. At each stage the node at the top of the list
is removed and replaced on the list by several nodes corresponding to augmented
partial sequences. These are formed by appending one unscheduled task to the removed
partial sequence. The algorithm terminates when the node at the top of the list
corresponds to a complete sequence. At this point, the complete sequence attains a
value of T,,, which is less than or equal to the lower bound associated with every
partial sequence remaining on the list, and the complete sequence is therefore optimal.

Before the tree search begins, the algorithm uses a heuristic initial phase to
obtain a feasible solution to the problem. This initial feasible solution allows the tree
search to begin with a complete schedule already on hand, and allows several partial
schedules to be discarded in the course of the tree search, simply because their bound

exceed the value of the initial solution.

21

There are four heuristics which can be used:
» Ready time : sequence the tasks in nondecreasing order of their ready time, a
» Deadline : sequence the tasks in nondecreasing order of their deadlines, b,
» Midpoint : sequence the tasks in nondecreasing order of the midpoints of their
ready times and deadlines (a, + b,)/2. hence use the nondecreasing order of a, +

b,

e PIO : sequence the tasks in the order of their first appearance in the optimal
preemptive schedule, which is constructed by the dynamic version.

The [Ref. 21: pp. 171-176] contains a complete and detailed description of
the algorithm as also an analysis of the performance of the algorithm®. Considering
each heuristic, the global time complexity of this algorithm is O(n?). As can be
visualized, this algorithm does not take into account the possible precedence constraints
among the tasks, these precedence constraints must be taken into account during the
evaluation of the branch and bound solution of the tree search. The inclusion of the
precedence constraints in the evaluation of the heuristics must also be considered. The
algorithm can be extended to handle the case where tasks can be started only after
some instance of time in the future (this happens when some of the tasks are periodic),

the modification necessary is in the definition of task’s scheduled start time.

*When all tasks are available simultaneously the [Ref. 22: pp.187-199] presents
some useful algorithms and an experimental comparison among them, also in [Ref. 23:
pp.177-185] we may find some simple and quick algorithms for the same set of
conditions.

22

6. THE RATE-MONOTONIC PRIORITY ASSIGNMENT SCHEDULING
ALGORITHM
This algorithm assumes the following premises :

+ The requests for all the tasks for which hard deadlines exist are periodic, with
period (p,).

* Deadlines consist of run-ability constraints, that is each task must be completed
before the next request for it occurs.

» The tasks are independent in that requests for a certain task do not depend on
the initiation or the completion of requests for other tasks.

* Run-time for each task is constant (d) and does not vary with time. Run-time
here refe'rs to the time which is taken by a processor to execute the task without
interruption.

An important concept in determining the rule is that of the critical instant
for a task. The deadline of a request for a task is defined to be the time of the next
request for the same task. The response time of a request for a certain task is defined
to be the time span between the request and the end of the response to that request.
A critical instant of a task is defined to be an instant at which a request for that task
will have the largest response time. A critical time zone for a task is the time interval
between a critical instant and the end of the response to the corresponding request to
the task.

Based on the definitions above it is possible to infer that a critical instant
for any task occurs whenever the task is requested simultaneously with requests for all
higher priority tasks. One of the values of this result is that a simple direct calculation

can determine whether or not a given priority assignment will yield a feasible

scheduling algorithm. Specifically, if the requests for all tasks at their critical instants

23

are fulfilled before their respective deadlines, then the scheduling algorithm is feasible.
As an example consider two tasks T, and T, with p, = 2, p,=5,and d, = 1,d, = 1.
If we let T, be the higher priority task then from Figure 8 (a) on page 25 we see that
such priority assignment is feasible. Moreover, the value of T, can be increased at most
to 2 but not further as illustrated in Figure 8 (b). On the other hand, if we let T, be
the higher priority task, then neither of the values of d, and d, can be increased beyond

1 as illustrated in Figure 8 (c).

TONER N s, : T N Em am
1 1
1 2 3 4 5 1 2 3 4 5
T, L s et T, L mmm e -t
CRITICAL TIME 20NE 5 CRITICAL TIME 20NE 5
(a) (b)
T, - .y
5
- -t
CRITICAL TINE Z0NE 2
(c)

Figure 8 Schedule for Two Tasks

The analysis of the example above suggests a priority assignment. Let p,

and p; b¢ the request periods of the tasks, with p, < p,. If we let T, be the higher

F

24

priority task then, according to the definition of critical instant, the following inequality
must be hold I_ py/p, _I d, + d, =< p,.

If we let T, be the higher priority task, then, the following inequality must
be satisfied d, + d, =< p,. In other words, whenever the p, < p, and d,, d, are such
that the task schedule is feasible with T, at higher priority than T, it is also feasible
with T, at higher priority than T,, but the opposite is not true. Thus we should assign
a higher priority to T, and lower priority to T,. Hence, more generally, it seems that
a reasonable rule of priority assignment is to assign priorities to tasks according to
request rates, independent of their run-times. Specifically, tasks with higher recjucst
rates will have higher priorities. Such an assignment of priorities is known as the Rate-
Monotonic Priority Assignment. Such priority assignment is optimum in the sense that
no other fixed priority assignment rule can schedule a task set which cannot be
scheduled by the rate-monotonic priority assignment.

A formal development and analysis of this algorithm, as well the theoretical
develof)ment of maximum achievable processor utilization of this type of algorithm is
available in Liv [Ref. 25: pp. 46-61].

Some algorithms for scheduling periodic tasks to minimize average error
utilizes the rate-monotonic priority assignment algorithm in order to solve the
scheduling of the mandatory part of all the tasks, a complete description of these

algorithms may be found in [Ref. 26: pp. 142-150].

*This condition is necessary but not sufficient to guarantee the feasibility of the
priority assignment. The symbol I_ x _{ denotes the largest integer smaller than or
equal to x.

25

ﬁ

C. SUMMARY

This survey presented some of the previous single processor static scheduling
algorithms for hard real-time systems. Many of the algorithms discussed do not address
the problem of how to schedule tasks that have precedence constra.ints. When it was
necessary to obey an earliest ready time, usually an algorithm based in a tree branch
and bound was used. The concept of a cost function to evaluate the schedule was

shown in the minimize maximum tardiness with early start times scheduling algorithm.

When precedence constraints were considered in the algorithms, the solution adopted
was to use some kind of graphical representation (directed graphs), and the notion of
a base timeframe was used (harmonic block). None of the algorithms presented gives
an optimal solution to the problem of scheduling hard real-time system with precedence
constraints. A general survey of Static Scheduling Algorithms can be found in
Cervantes [Ref. 33].

The approach that will be followed in this thesis is to develop the ideas exposed
in the harmonic block with precedence constraints scheduling algorithm (in order to
define a timeframe), and implement the three of the algorithms presented in this

chapter.

26

OI. IMPLEMENTATION OF STATIC SCHEDULERS

When we looked at the history in developing the implementation of the Static
Schedulers we see some variations in basic data structures used. The first guidelines
about the Static Schedulers’ current implementation were outlined in O’Hem [Ref. 14].
O’Hem introduced the "Graph Type Model" developed by Mok and Sutanthavibul [Ref.
28] as a basic unit. Johnson [Ref. 13] wrote the first pseudo code with some deviations
from O’Hern. Then Marlowe [Ref. 6] did a part of the first implementation of the basic
design. In her implementation, the tree structure was used as a basic unit. In this
chapter, the implementation of the basic design which is declared as "The Harmonic
Block with Precedence Constraints Scheduling Algorithm" has been completed with
some deviations from Marlowe’s [Ref. 6]. Besides, two other algorithms, The Earliest
Start Scheduling Algorithm and The Earliest Deadline Scheduling Algorithm are also
implemented. In the implementation of the Static Scheduling algorithms in this thesis,
Ada® Language has been used as a basic language. The Appendix D of this thesis has
the dependency information of the programs implemented, and Appendix E has the Ada

source code of all the programs and data structures utilized.

A. ASSUMPTIONS
First, this design assumes that the PSDL Prototype is syntactically correct. This
implies that each line begins with a PSDL keyword or reserved word. Second, the

designer structured the PSDL prototype program using a top-down design. This implies

27

that the program begins with the highest level and then decomposes all composite
operators, with the last(or lowest) level being the Ada® implementation modules. The
implementation design in this thesis addresses a single processor environment only.
All operators are nonpreemptable, and except non-time critical operators, all critical
operators should have a Maximum Execution time(MET). If the operators are sporadic,
they have an MET, Maximum Response Time(MRT) and a Minimum Calling
Period(MCP). It is also assumed that all timing constraints are non-negative integer
values. The system may include state machines, and external inputs and outputs. It can
handle the acyclic digraphs as linear digraphs. The data coming in from any External
input is assumed ready at execution time. The implemented algorithms use the
precedence relationships between the operators. The Static Schedulers implemented here
only accept the critical timing information extracted from the output file of
"PSDL_Reader". Normally this Text File has the timing and link information of the

atomic operators only.

B. DATA STRUCTURES UTILIZED
The major data structure used in the current implementation of static schedulers
utilizes Graph Type Model. This model is defined in [Ref. 28] and explained in [Ref.
14]. For this model, a Graph Type is created by using a generic type Graph Package.
Five data type abstractions are used in current implementations. They are as follows:
* OPERATOR
 LINK_DATA

» THE_GRAPH

28

« SCHEDULE_INPUTS
« OP_INFO
OPERATOR contains all the critical timing information of each operator extracted
from the "atomic_info" file. LINK_DATA contains the link information among the
operators and is utilized in THE_GRAPH. THE_GRAPH is the basic unit of the static
schedulers in this thesis. SCHEDULE_INPUTS contains the scheduling information of
all operators and is used to create the final output.

Data types and their corresponding data structures are as follows :

Abstract Data Types Data_Structures
OPERATOR Linked List
LINK_DATA Linked List
THE_GRAPH Graph
SCHEDULE_INPUTS Linked List
OP_INFO Linked List

OPERATOR, SCHEDULE_INPUTS, and OP_INFO, as global data types, are
encapsulated in an Ada® package called FILES which allows the other packages to use
them directly. The LINK_DATA and THE_GRAPH are utilized in an Ada® generic
package called GRAPHS which is used to create the Graph Structure for the Static
Scheduler in FILES. So the complete structure is created in package FILES. Files were
only used for the storage of information that would be used outside of the Static

Scheduler by the Execution Support System.

29

1. LINKED LISTS

A single operator is implemented with type OPERATOR as a record with
six fields as originally designed [Ref. 6]. These fields are shown in Table 1. Although
it is not necessary to fill all the fields in the record for all the operators, these fields
are required as a whole considering the different type of operators(e.g. periodic and
sporadic). Section E of this chapter explains the required fields in details. It is the
basic unit to store the atomic operator information within a Linked List in Graph
Structure. It is also utilized to construct a precedence list in the implementation of the
first algorithm.

Table 1 Record Fields for OPERATOR

FIELDS CONTENTS

THE_OPERATOR_ID The name of the operator

THE _MET maximum execution time for the operator
THE_MRT maxlmum response time for the operator
THE_MCP minimum calling period for the operator
THE_PERIOD the operator's period

THE _WITHIN the time within which the operator must finish

A single instance of the type LINK_DATA was implemented as a record
with four fields. These four fields are shown in Table 2. This is the basic unit of the
link information, which is implemented as a Linked List in the graph. The link
information of the graph is available in the input text file and the Linked List is

constructed. A defined order is not required for the Linked List which stores the link

30

.

information in Graph. Figure 9 shows the relationship between the Graphical and Data
Structure representation in a link statement.
The third abstract data type used in the Static Scheduler is
- SCHEDULE_INPUTS. It is a record which consists of five fields. These fields are

shown in TABLE 3. It has the final scheduling information about each operator and

it is utilized to create the static schedule output.

Table 2 Record Fields for LINK_DATA

FIELDS CONTENTS
THE _DATA STREAM The name of the link
THE FIRST 0P _ID Start of the link
THE LINK MET Maximum execution time for data transfer
THE _SECOND_CP_ID End of the link

- Tab!e 3 Reco;d fi;lgs_fpi S{?H,EDULE—H\{PUTSA o

FIELDS | CONTENTS

THE OPERATOR The nane of the operator

THE _START Start time for the execution
THE_STOP Stop time for the execution
THE_LOWER Lower bound for the firing interval
THE_UPPER Upper bound for the firing interval

OP_INFO is the last abstract data type which is used in the "Earliest Start
Scheduling Algorithm" and "Earlicst Deadline Scheduling Algorithm". The fields are

shown in Table 4. Detailed Linked List representation will be given in Section F.

31

The Linked Lists used in this implementation is constructed by using an Ada
generic package called SEQUENCES, so that any data type could be stored in the
nodes of the list. The SCHEDULE_INPUTS_LIST, V_LISTS, E_LISTS, and
OP_INFO_LIST in the generic Graph package are constructed by using SEQUENCES.
The required functions and procedures are encapsulated in SEQUENCES generic
package which enables the user to operate on the List without knowledge of its

internal structure.

Table 4 Record Fields for OP_INFO

FIELDS CONTENTS
NODE The operator information
SUCCESSORS Successors of the operator defined 1n the NODE
PREDECESSORS Predecessors of the operator defined in the NODE

These operations include, but are not limited to, the following :
« EQUAL -- determine if the two lists are equal to each other
¢ EMPTY -- create an empty list
¢ NON_EMPTY -- determine if the list is empty
e SUBSEQUENCE -- determine if a list is a subsequence of the original list
e MEMBER -- determine if the operator is in the list
« ADD -- add the operator into the list
« REMOVE -- remove the operator from the list
o LIST REVERSE -- reverse the order of the original list

» DUPLICATE -- duplicate the original list

32

« LOOK4 -- determine if the operator is in the list
» NEXT -- point to the next operator in the list
e VALUE -- return the operator record values.
The complete specification and implementation of this Linked List can be
found in Appendix E.
2. GRAPH
The Graph type represents the Graph Type Model and has the complete
information about the Graph, including operators and links information. Figure 8 shows
how the graph type is implemented. 1« only presents the information required according
to the operators being either periodic or sporadic. It is a record which consists only
two fields, VERTICES and LINKS. They are shown in TABLE 5. VERTICES is a
pointer for the V_LISTS which is a linked list to store the operators information and
uses the OPERATOR type as a basic unit, and the LINKS is a pointer for the

E_LISTS which stores the link information and uses the LINK_DATA type.

Table 5§ Record Fields for DIGRAPH

FIELDS CONTENTS
VERTICES Operator list of the graph
LINKS Link list of the graph

The graph model is constructed by using an Ada Generic Package called
GRAPHS, so that any data type could be stored in the nodes of the graph. In the case

of the Static Scheduler, the nodes are of the type OPERATOR. The required functions

33

and procedures were encapsulated in GRAPHS generic package enabling the user to

operate on the graph without knowledge of its intemal structure. These operations

include, but are not limited to, the following :

EQUAL_GRAPHS -- determine if the two graphs are equal to each other
EMPTY -- creates an empty graph

IS_NODE -- determine if the operator is in the graph

IS_LINK -- determine if a link is in the graph

ADD -- add a link into the graph

ADD -- add an operator into the graph

REMOVE -- remove a link from the graph

REMOVE -- remove an operator from the graph

SCAN_NODES -- search the graph for a given operator
SCAN_PARENTS -- find the parents of a given operator in the graph
SCAN_CHILDREN -- find the children of a given operator in the graph
DUPLICATE -- duplicate the given graph

T_SORT -- sort the operators of the graph in a topological order.

Operations on the graph are easy to use. The use will be explained in details

later in this Chapter. A complete listing of the specification and implementation of the

Graph can be found in Appendix E.

3. VARIABLE LENGTH STRINGS

The Ada language has a predefined "string" type, but this couldn’t be used

as the base type for the operator and data stream fields within the OPERATOR,

LINK_DATA, and SCHEDULE_INPUTS types, because the string must have a pre-

34

—

defined fixed length. Since these fields are necessarily of a variable length, to
accommodate the Ada identifiers that would be assigned to them, a variable length
string abstract data type was necessary. A generic variable length string package from
a public domain library was chosen for the implementation. It has functions to convert
a standard Ada string to a variable length string, functions for comparison, and
procedures for input and output. These were the main functions necessary for the static
scheduler, though there are many others in the package.[Ref. 6] Utilization of the
package is very simple, and a complete listing of the specification and implementation

for the variable length strings abstract data type can be found in Appendix E.

™~

THE_GRAPH
o (V_LI5TS LIST)
—] ELEMENT ELENENT ELEMENT
(OPERATOR) (OPERATOR) (OPERATUR)
VERTICES
NEXT] A NEXT > FEXT
(E_LISTS LIST)
— ELEMENT ELEMENT ELENENT
(LINK_DATA) (LINK_DATA) (LINK_DATA)
LINKS
NEXT ___LNEXT +— REXT]
THE _SCHEDULE _
INPUTS
ELEMENT ELEMENT ELEMENT
SCHEDULE_IRPUTS) SCHEDULE_INPUTS) SCHEDULE_INBUTS)
NEXT] r NEXT Il o NEXT

35

Figure 9 Graphical Representation of the system and the data types used

C. ARCHITECTURAL DESIGﬁ FOR STATIC SCHEDULERS

The general DFD for the Static Schedulers is shown in Figure 2. Although there
are strong similarities with the original static scheduler for CAPS, the architectural
design is slightly modified to allow the system to run more than one algorithm and
simplify the decomposition process. The "PSDL_Reader” in described in Chapter II is
called "Preprocessor” in White [Ref. 30] and in this thesis. The "Preprocessor” and
"Decomposer” were not implemented in this thesis. An example graph with its
"PSDL_Reader" output file and the file which would be the output of the
"Decomposer” were given in Appendix C. Except the "Topological_Sorter" module
which is used only by the first static scheduling algorithm, the other modules are
shared by all the algorithms.

In this design the first module, known as "File_Processor”, reads the input file
"atomic.info" which has the timing constraints and link information of the operators,
and extracts the information in this file to construct the Graph Structure. The operators
which have no critical timing information are separated to another output file, referred
as "non_crits". This file is used by the Dynamic Scheduler which schedules non-time
critical operators for execution.

The "Harmonic_Block_Builder" module first calculates the periodic equivalents
of the sporadic operators which have no predefined periods. Then checks, if an
Harmonic Block can be found for a single processor. If yes, it calculates The Harmonic
Block Length, which is used to schedule the operators in their time intervals.

The module "Topological_Sorter" takes the Graph Structure as an input and builds

a precedence relationship, that specifies which operators must complete execution before

36

opological _
sorter

.

THL_PRECEDEACE_LIST

"operator info” *atoaic info*
file file

PSDL code static.

schedule

Operator_
Scheduler

File_
Processor

Preprocessor Decomposer

HARNONIC BLOCK_LENGTH

Harmonic_
Block_
Builder

"RON_CTits'
file

Exception_
Handler

Figure 10 New DFD for Static schedulers

other operators can execute.

The module "Operator_Scheduler" combines the Precedence List and the

Harmonic Block Length for the for the first algorithm to produce a final Static

Schedule, if possible. Since the Earliest Start and Earliest Deadline Scheduling

Algorithms do not need THE_PRECEDENCE_LIST, they use only the graph structure

and the Harmonic Block Length. To keep the design DFD as simple as it is, all the

static scheduling algorithms are included in this module.

37

The "Exception_Handler" is the last module and handles all the exceptions which
are critical for the execution of the Static Scheduler. It terminates the program to let

the designer correct the errors.

D. EXCEPTION HANDLING

In this thesis, the schedulers are designed in order to build a static schedule by
using the atomic operator information extracted from the "atomic.info" input text file,
unless the conditions are found which would make the construction of the schedule
infeasible. If none of these conditions are found, the schedulers construct a schedule
for all the operators that were known for the system. During the operation, an
exception is raised in two conditions. One of them is to notify the designer that a
schedule is infeasible with the information provided, if any condition is found that
makes the construction of a schedule impossible. In this case the scheduler terminates
the execution. The other one is to notify that although a schedule may be possible,
there is no guarantee that it will execute within the required timing constraints. In both
cases. In this case the scheduler tries to find a feasible solution without terminating
the execution.

As we know, Ada® includes several predefined exception conditions, but it also
permits us to declare user-defined exceptions. Although an exception is technically not
an object, user-defined conditions may be declared anywhere an object declaration is
appropriate (except as a subprogram parameter).[Ref. 29]

Three different types of exception handling will be noticed throughout the

implementation, which are shown in Table 6. Number 1 through 3 are the examples

38

Table 6 Exceptions used in Static Schedulers

1 MISSED_DEADLINE
2. OVERTIME
3. MISSED_OPERATOR
4. NO_BASE_BLOCK
5 CRIT_OP_LACKS MET
6. MET_NOT_LESS_THAN_MRT
7 MCP_NOT_LESS_THAN_ MRT
8. MCP_LESS_THAN_MET
9. SPORADIC OP_LACKS_MCP
10 SPORADIC_OP LACKS_MRT
11 MET_NOT_LESS_THAN PERIOD
12 MET IS _GREATER _THAN FINISH WITHIN
13 PERIOD_LESS_THAN_FINISH WITHIN
14 BAD _TOTAL TIMNE
15 FAIL_HALF_PERIOD
16 RATIO_TOO BIG

of the first type and used to notify the designer that there is no feasible schedule
exists which meets the requirements of the system in the running scheduling algorithm.
This type of exception is handled inside the driver program to allow more than one
static scheduler to run. The second type of exception handling is used to raise
exception in the local program unit, but passes exception handling to the driver
program. In this case, when the Static Scheduler discovers an exception, the following
occur. A variable, named Exception_Operator, is set by the Static Scheduler and a
procedure call to the Static Scheduler Exception Handler is made to transfer control to

the Exception Handler. This allows the Exception Handler to handle the exception and

39

gives the designer the name of the operator that caused the exception. This is done in
the Static Schedulers by having a global variable named "Exception_Operator” set by
the local programs before any of this type of excevtion condition is discovered. This
shows that a schedule is infeasible with the information set provided, which means the
scheduler will end the execution without producing a schedule, and thus lets the
designer make the corrections. Exceptions 4 through 13 indicate that either required
constraints are missing or they are logically inconsistent. These are the examples of the
second type. The third type also has the concept of "Exception_Operator” as the second
type, it is handled inside the packages and its only function is to change a global
variable, "Exception_Operator”, and print a descriptive message. Exceptions 14 through
16 indicate that, a feasible schedule may be possible, but there is no guarantee that it

will execute within the required timing constraints These are the examples of the third

type.

E. PACKAGE PRESENTATIONS OF "THE HARMONIC BLOCK WITH
PRECEDENCE CONSTRAINTS SCHEDULING ALGORITHM"

This Static Scheduler, as implemented in this thesis, contains six package
programming units. Four packages represent primary functional groupings, with two
additional packages EXCEPTION_HANDLER and FILES The
EXCEPTION_HANDLER package has the exception-handling procedures used by all
the other packages, which are called by the driver program, and the FILES contains
global data type declarations. The packages utilized in this algorithm are described

below:

40

1. "FILES" Package

The variable length string, discussed earlier in this chapter, is in the package
because it is an essential data structure for the implementation. It enables the operator
names and the data streams of variable length in the implementation, up to a maximum
of 80 characters. The number of characters was chosen arbitrarily and can be changed,
however, it seems that an Ada identifier of more than 80 characters wouldn’t be
necessary.

All the values used for the critical timing information within. the data types
are natural numbers to correspond with PSDL, which makes comparison of values
within these fields simpler; which in tum would be important when the algorithms were
utilized in CAPS.

All the packages are instantiated for each of the data types given. This
includes the DIGRAPH for the graph structure, and linked list for the
SCHEDULE_INPUTS. This encapsulation of the major data structures allows the rest

of the packages to proceed.

2. "FILE_PROCESSOR" package
This module has two procedures in it, SEPARATE_DATA and
VALIDATE_DATA. All the identified exceptions in the procedure VALIDATE_DATA
in the FILE_PROCESSOR package include :
1. CRIT_OP_LACKS_MET
2. MET_NOT_LESS_THAN_MRT
3. MCP_NOT_LESS_THAN_MRT

4. MCP_LESS_THAN_MET

41

e —

5. SPORADIC_OP_LACKS_MCP
6. SPORADIC_OP_LACKS_MRT
7. MET_NOT_LESS_THAN_PERIOD

8. MET_IS_GREATER_THAN_FINISH_WITHIN

9. PERIOD_LESS_THAN_FINISH_WITHIN

The non-time critical operators are separated in SEPARATE_DATA and put
into the "non_crits" file for future use in Dynamic Scheduler. While the non-time
critical operators are separated, all its dependent link information is also checked and
extracted without putting them into the graph structure. It is assumed that time critical
operators always have an MET and non-time critical operators never have any time
constraints. All the periodic and sporadic operators are extracted from the input text file
in SEPARATE _DATA and a Graph structure is constructed. This procedure also
extracts the EXTERNAL input and output link information in that file.

The example shown in Appendix. B for the Fig. 14 is an Acyclic type of graph.
In the graph, OP_3 is a sporadic operator and OP_5 is non-time critical. It has
EXTERNAL input and output data streams with the two data streams from OP_1 to
OP_2. The current implementation of the static scheduler will extract the non-time
critical operator OP_5 from the graph by using SEPARATE_DATA procedure in
FILE_PROCESSOR package and put it into the "non_crits" file. The EXTERNAL
input-output data streams are assumed ready whenever needed, the graph doesn’t have
this information either. Fig. 11(b) shows the latest form of the graph structure. The

links which are related with this non-time critical operator are excluded from the graph

42

later in the same procedure. OP_3 is converted into its periodic equivalent with the
CALC_PERIODIC_EQUIVALENTS procedure in HARMONIC_BLOCK_BUILDER
pa;ckage.

The procedure VALIDATE_DATA is one of the most important procedures
within the static scheduler. Static Scheduler performs some basic vali;iity checks on the
timing constraints contained in the "atomic.info" file, which is accomplished after the
Graph structure is built. The first check CRIT_OP_LACKS_MET verifies that all
critical operators have an MET. Checks 2 through 6 are valid for Sporadic Operators;
if the Sporadic Operator doesn’t have an MCP, the exception
SPORADIC_OP_LACKS_MCTP is raised, or else MCP_LESS_THAN_PERIOD ensures
that MCP is less than MET. The SPORADIC_OP_LACKS_MRT ensures that MRT has
a value and MET_NOT_LESS_THAN_MRT ensures that MRT is greater than the MET
for the Sporadic Operators. The MCP_NOT_LESS_THAN_MRT guarantees that an
operator can fire at ieast once beforg a response expected. The significance of these
validity checks will become apparent in the section for
"HARMONIC_BLOCK_B'TILDER" package. Checks 7 through 9 are for the periodic
operators; MET_NOT_LESS_THAN_PERIOD ensures that the PERIOD is greater than
MET, MET_IS_GREATER_THAN_FINISH_WITHIN ensures that FINISH_WITHIN
is greater than MET, and PERIOD_LESS_THAN_FINISH_WITHIN is included for the
correct execution of the algorithms. In all nine cases, if any one of these checks fails,

an exception is raised and an appropriate error message is submitted to the user.

43

3. "TOPOLOGICAL_SORTER" package

The TOPOLOGICAL_SORTER package contains only one procedure which
utilizes T_SORT in the generic GRAPH package. It is a simple algorithm that
essentially finds the operator, which must precede all others in a set, concatenates that
operator to a sequence of operators, which is called PRECEDENCE_LIST and then
deletes this operator and all its incoming and outgoing edges from the graph. This
cycle is repeated until all operators have been deleted from the graph. The final
sequence in PRECEDENCE_LIST should contain all operator names, in order, by
precedence. Fig. 14(a) shows a PSDL graph implementation with its EXTERNAL input
and outputs, but this graph is represented as seen in Fig. 14(b) in the graph structure
implemented in this thesis, the assumption of incoming data from EXTERNAL sources
are ready at start allows us to do this. Since all the links are deleted after the operator
was added into the PRECEDENCE_LIST, there wouldn’t be any duplicates of the same

operator in this list.

4. "HARMONIC_BLOCK_BUILDER" package

The same graph structure is also the input for this package. A time frame
in this thesis is a set of periodic operators where the periods off all its component
operators are exact multiples of a calculated base period [Ref. 15: p. 7). This package
is implemented as described in Chapter II, Section B, with the exception of sorting of
the operators in ascending order, based on the period values after all the operators are
in periodic form. Instead, the minimum period is found for calculation of GCD because
only the smallest period was required for finding GCD, and this was simpler to

implement than sorting the list.

(a) PS5DL Graph Implementation

EXTERNAL

EXTERNAL a_in2 @/ /\J

(c) Topological Sort

A8 _pC D (0

Figure 11 PSDL Graph and its representation in implemented Graph Structure

The procedure CALC_PERIODIC_EQUIVALENTS was used to determine
the equivalent periods for sporadic operators. And FIND_BASE_BLOCK was used to
find a base block which verifies that an Hamrmonic Block Length can be determined for
the designed system. The two algorithms that can be used to determine the GCD which
is described in Janson [Ref. 13: p. 38]. Within this thesis the secend algorithm is used
since the implementation was more straightforward, and, for a single-processor
environment, the second pass verifies that all periods were assigned correctly to the
first sequence if the alternate sequence equals the null set [Ref. 13: p. 38]. The last

procedure is the FIND_BLOCK_LENGTH which uses an algorithm to calculate the

45

TIllllllIllIIIIIllIllIIIIIIlllIllIIlIIlIIIlllllllIIIIIIIIllIIIIIIIIIIlIllllllllIlllllIIl-I-t*

length of time for the Harmonic Block known as The Least Common Multiple(LCM)
of all the operators’period contained in the block. Figure 12 describes the algorithm
which is explained in detail in Janson{Ref. 13: p. 39]. Two exceptions are reasonable

to have in this package. One of them is NO_BASE_BLOCK which means that it is not

possible to find a length for the time frame. The other is
MET_NOT_LESS_THAN_PERIOD which verifies that the calculated period of the

sporadic operator is greater than MET of the same operator.

Period of A (AF) Period of B (B p) Period of C (C) Period of D (D)
P P

l J

(GCD1)

|

[(A ‘BP)/GCDll

(LCX!)

L

(GCD2)
[(LCN1*C)/GCD2)

(LCn2)
L

(GCD3)

[(LCHZ2*D 2 GCDh3)

Figure 12 Finding a time interval for the system

5. "OPERATOR_SCHEDULER" package
The PRECEDENCE_LIST and HAKMONIC_BLOCK_LENGTH were used

as input in the OPERATOR_SCHEDULER for this scheduling algorithm. Procedure

46

TEST_DATA tests the operators if they follow three basic rules which verifies that a
feasible static schedule always exist. These basic rules include:

* The MET of the operator should be less than half of its period

* The total MET/PERIOD ratio sum of operators should be less than 0.5

» Tha total execution time of the operators should not exceed the
HARMONIC_BLOCK_LENGTH.

Detailed information can be found in Mok [Ref. 3Uf. If some of these tests are
not satisfied, the static schedulers will try to find a feasible schedule, but there is no
guarantee to have one.

Part of the OPERATOR_SCHEDULER which belongs to the first algorithm is
implemented in two steps as mentioned in Chapter II; the procedure
SCHEDULE_INITIAL_SET performs the first step process, and allocates an execution
time with a firing interval for each operator to use in the next step. The
SCHEDULE_REST_OF_BLOCK performs the second step and completes the rest of
the process. The procedure CREATE_INTERVAL is wused by the
SCHEDULE_INITIAL_SET in the first step and by the
SCHEDULE_REST_OF_BLOCK for the next firing intervals. Appendix A shows the
static schedule for the linear graph in Fig. 13 at the end of the process. The operators
are scheduled in the order {read_numbers, sort_numbers, write_numbers} during the
first iteration of this process. Since all the operators have a period of 20 with a
harmonic block length 20, they are scheduled only once in the block. Since all the
firing intervals are greater than the harmonic block length in this example, we do not

need a second process. Before an operator is allocated a time slot, this process verifies

47

vrite_
numbers

b
read _ sort_
numbers numbers

Figure 13 Graph Model for Example 1

for all the operators that:
e (current_time + MET) <= harmonic block length
In the example shown in Appendix B, for Fig. 14 ,we have the second process
as the continuation of the first process. In this example, since the OP_2 has a
FINISH_WITHIN constraint, this is considered in calculating the firing interval of
OP_2. This means that for the upper limit of the intervals of OP_2 the

FINISH_WITHIN is used instead of PERIOD.

F. IMPLEMENTATION OF "THE EARLIEST START SCHEDULING
ALGORITHM"

The nonpreemptable version of this algorithm is implemented in this thesis, and
precedence constraints are included.

This algorithm utilizes all the packages that the previous algorithm does with the
exception of TOPOLOGICAL_SORTER. Although this algorithm doesn’t use that
package, it considers the precedence relationships among the operators, with the way

it is implemented in this thesis.

48

First, the Graph Structure is constructed as being described in previous algorithm,
and all the tests in FILE_PROCESSOR package are applied. When the Graphical
rebresentation of the system is approved, the Harmmonic Block Length is calculated.
Then the algorithm starts to deviate from the first algorithm. The rest of this section
describes in details, how the algorithm works with the proced;xrcs used in the

OPERATOR_SCHEDULER.

a) PSDL Graph

[fintsh_vithin]
(PERIODIC)

(PERIODIC)
al

finish
start

EXTERRAL EXTERNAL

(non-time criticaij

b) Graph Structure constructed

{finish_vithin)
(PERIODIC)

(PERIODIC)

Figure 14 Graph structure for Example 2

49

1. "OPERATOR_SCHEDULER" package
This is the same package used for the first algorithm. It includes the the

procedure for the Earliest Start -Time Scheduling Algorithm which is called
SCHEDULE_WITH_EARLIEST_START. The final output listtAGENDA) of this
procedure is used by the procedure CREATE_STATIC_SCHEDULE for the final
output. There are some other functions and procedures that the
SCHEDULE_WITH_EARLIEST START procedure uses. They are as follows:

1. procedure BUILD_OP_INFO_LIST

2. procedure PROCESS_EST_NODE

3. function FIND OPERATOR

4. function CHECK_AGENDA

5. procedure EST_INSERT

6. function OPERATOR_IN_LIST

7. procedure EST_INSERT_SUCCESSORS_OF_OPT

8. procedure PROCESS_EST AGENDA

Two examples are shown in Appendix A and Appendix B for Fig. 13 and

Fig. 14. In the example .. Appendix B, the total MET/PERIOD ratio sum of the
operators is greater than 0.5. This message is printed on the screen, but since this is
not a fatal constraint, the algorithm proceeds to run for a feasible schedule. As soon
as the Time Interval is determined, the OP_INFO_LIST as shown in Fig. 15(a) is
constructed in procedure BUILD_OP_INFO_LIST. The AGENDA lis: includes the final
operators list with their start and stop times which are used by

CREATE_STATIC_SCHEDULE for the final static schedule, shown in Fig. 15(b), and

50

MAY_BE_AVAILABLE list includes the available operators with their EST’s for the
scheduling, shown in Fig. 15(c). The processes of this algorithm are explained in the
following steps:

1. Find the operators which has no predecessors and put them all into the
MAY_BE_AVAILABLE list. Since all these operators have the same Earliest Start
Time(EST), the order of the operators is not important in here. The EST for all of
these end ncdes is zero. Since EST is the same, we can pick any one of them
according to which one is first in the list.

2. Select the first operator and put it into AGENDA list with a calculated start
time(THE_START) and stop time(THE_STOP).

3. Define a new EST for the selected operator and put it back into the
MAY_BE_AVAILABLE list.

4. Assign THE_STOP of the selected operator to its successors as their EST’s and
insert them into the MAY_BE_AVAILABLE list in an order according to their
EST’s.

5. Get the first operator with the smallest EST in MAY_BE_AVAILABLE list and
look if all its predecessors are in AGENDA. If the answer is no, then get the
next operator and check the predecessors again. Repeat the process until the

answer is yes. Then assign a new EST for the selected operator and put it back #

the MAY_BE_AVAILABLE_LIST in an order according to its EST.

6. If any successor of the selected operator is not ALREADY in the
MAY_BE_AVAILABLE list, assign THE_STOP of the selected operator to that
successor as its EST and insert into the MAY_BE_AVAILABLE list in its

order.

7. Repeat the process 5 and 6 above until the EST of the selected operator in
MAY_BE_AVAILABLE list is greater or equal to the time interval(HBL).

During the implementation of this algorithm, the abstract data types are tried
to be utilized instead of creating new data types. This is preferred to avoid the
complexity of the programs and reduce the time spent for creating the new data
structures. Besides, this was very practical for the comparisons among the operators.

As a result of this, the SCHEDULE_INPUTS abstract data type is used for the

51

operators in AGENDA and MAY_BE_AVAILABLE list. For the EST information of

OP-INIO.LIST gl SCHEDULE_INFO
> LENERT
SUCCESSORS (0P_1D) l (oP_10)
PREDECESSORS I3
— ELENENT
NEXT (op_1) (oe_10)
. —prr—
| L e T
I lSCREDULE_lNFO
= - ELEAERT
SUCCESSORS tor_1p) or_10)
P . =
PREDECESSORS ——j
——-ELTAENT
NEXT (OP_1D) (op_1p})
WEXT] ‘Ll
AGERDA
SCHEDULE _ SCHEDULE SCHEDULE_
INPUTS INPUTS INPUTS
NEXT o NELXT
e T o —
MAY_BE_
AVAILABLE]| SCHEDULE SCHEDULE SCHEDULE _
IKPUTS INPUTS INPUTS
— NEXT | [REXT |
____.‘.. NEXT r ,H.. 4+

Figure 15 Linked List representations used in Algorithm 2 and Algorithm 3.

the operators THE_LOWER field in the SCHEDULE_INPUTS abstract data type is
used. THE_START and THE_STOP fields are as being used in the first algorithm.
Whenever an operator was selected from MAY_BE_AVAILABLE list and verified that
all its predecessors are in AGENDA, it was taken out of the list. After it is processed,
it was put back again in its order with new EST. The MAY_BE_AVAILABLE_LIST
is kept in order because if all the predecessors are not in AGENDA during process 5,

that operator is is skipped and the process is repeated for the next operator. In this

52

ordered form, there is no necessity to look for the smallest EST in the list. The first
operator always has the smallest EST. During the scheduling, if THE_STOP time of
any operator is greater than the HARMONIC_BLOCK_LENGTH, then exception
OVER_TIME is raised for that operator. This algorithm is not optimal as the branch
and bound tree explained in Chapter III, but has the advantage that it is more compact

in time and space.

G. IMPLEMENTATION OF "THE EARLIEST DEADLINE SCHEDULING
ALGORITHM

The implementation of this algorithm is very similar to the “Earliest Start
Scheduling Algorithm". Package utilization is the same as in the preceding algorithm.
It also considers the precedence constraints among the operators. The only difference
from the preceding algorithm is that the operators are selected according to their
earliest deadlines instead of their earliest start times.The rest of this section describes
in details, how the algoritin works with the procedures used in the
OPERATOR_SCHEDULER.

1. "OPERATOR SCHEDULER" package

This package is shared with the other algorithms. It includes the procedure

for the Earliest Deadline Scheduling Algorithm which is called
SCHEDULE_WITH_EARLIEST_DEADLINE. The final output listtAGENDA) of this
procedure is used by the procedure CREATE_STATIC_SCHEDULE for the final

output. Procedure number 1 and functions number 3,46 shown on page 50 for the

53

Earliest Start Scheduling Algorithm are shared. The other procedures used by this
algorithm are:

» procedure PROCESS_EDL_NODE

» procedure EDL_INSERT

» procedure EDL_INSERT_SUCCESSORS_OF_OPT

« procedure PROCESS_EDL_AGENDA

The two examples are given in Appendix A and Appendix B. The second

example gives the same warning message as the others. Most of the criteria in this
algorithm is the same as the Earliest Start Scheduling Algorithm. The major difference
is the order of the MAY_BE_AVAILABLE_LIST which is ordered according to the
earliest deadlines(EDL) of the operators. And this is considered during the scheduling
process. The processes of this algorithm are explained in the following steps:

1. Find the operators which has no predecessors and put them all into the

MAY_BE_AVAILABLE list in their orders according to their Earliest

Deadlines(EDL). Since all these operators have different EDL, the order of the

operators are important in here. Because of all the operators are in their orders

according to their EDLs, we can pick the first one in the list. Since these have m

predecessors, we do not need to check if the predecessors are in the AGENDA.

2. Select the first operator and put it into AGENDA list with a calculated
THE_START and THE_STOP.

3. Define a new EDL for the selected operator and put it back into the
MAY_BE_AVAILABLE list.

If the operator has a FINISH_WITHIN in it then,
EDL := EST + FINISH_WITHIN;
otherwise;

EDL := EST + THE_PERIOD;

54

4. Assign new EDL to each successor of the selected operator and insert them into
the MAY_BE_AVAILABLE list in an order according to their EDL’s.

5. Get the first operator with the smallest EDL in MAY_BE_AVAILABLE list and
look if all its predecessors are in AGENDA. If the answer is no, then get the
next operator and check the predecessors again. Repeat the process until the

answer is yes. Then assign a new EDL for the selected operator and put it back #

the MAY_BE_AVAILABLE_LIST in an order according to its EDL.

6. If any successor of the selected operator is not ALREADY in the
MAY_BE_AVAILABLE list, assign a new EDL to that successor and insert into
the MAY_BE_AVAILABLE list in its order.

7. Repeat the process 5 and 6 above until the EDL of the selected operator in

MAY_BE_AVAILABLE list is greater or equal to the time interval(HBL). This is

the stop condition and where “pointer = null".

H. SUMMARY

When the three algorithms are compared with eachother, The Earliest Start
Scheduling Algorithm is more flexible and more efficient than the others. The way that
it is presented in Chapter II uses a branch, exclude, and bound method. It searches all
the branches in the tree one by one. But when the precedence relationships are
considered, the disadvantage of this algorithm is the time complexity. Besides, it
doesn’t guarantee an optimal solution anymore. For these reasons, this algorithm is
implemented with the Graph Structure. It was possible to construct the same structure
as in Chapter two with Graph Structure, but it would be very hard to implement and
we would need a very big storage capacity. Instead, the branches that we will not use

are eliminated at the beginning, and this was the tradeoff between an optimal solution,

and fast and easy implementation with less memory.

55

IV. DEVIATIONS FROM PREVIOUS WORK

There are some deviations from the previous implementation presented in Marlow
[Ref.6] in this thesis. The assumptions made for the data requirements of the operators
differentiates from the earlier assumptions to overcome some problems. The Graph
Model is used as a basic structure instead of a N-ary tree structure for efficiency and
simple process of the operators. The rest of the packages which are not implemented
in Marlowe [Ref. 6] are completed. The "Exception_Handler" module included in this
design is not the only level of exception handling, because the existance of some
nonfatal exceptions raised during the execution do not require the programs to exit.

Three different level exception handling exist in the implementation in this thesis.

A. ASSUMPTIONS

In Marlowe [Ref. 6. pp. 52-54], there was a problem mentioned in handling the
non-time critical operators. The problem was how to separate the non-time critical
operators whose data is required for a critical operator. Fig. 16 shows the situation. In
this thesis, it is assumed that the operator between the two critical operators is always
critical unless there is another path connecting the two critical operators. In this case,
the output data of the non-time critical operator should be initialized. This handles the
problem in separation of the non-time critical operators and so, since the OP_2 will not
depend on the data of OP_4, OP_2 uses the new output data of OP_4 only when the

dynamic scheduler executes the operator OP_4.

56

CRITICAL CRITICAL CRITICAL

EXTERNAL finish
EXTERNAL

NON-CRITICAL
Figure 16 Example graph assumed for non-critical operators

B. DATA STRUCTURES

Although the abstract data types used for operator information and final
scheduling is kept the same, the LINK_DATA abstract data type used for the link
information is changed and some other data types are included for the other algorithms
implemented. The LINK_DATA has a field called THE_LINK_MET; this field was not
used during the implementation, but it is kept zero to show that we assume the time
for the data flow for a single processor is zero. All the data structures are explained

in details in Chapter III.

C. ARCHITECTURAL DESIGN

The architectural design in this implementation mostly looks like that presented
in Marlowe [Ref. 6]. The Fig.4 and Fig.10 shows the differences in the two DFDL’s.
Since this implementation is the standalone static schedulers, an exception handler was
needed, which is the same as the Debugger in CAPS. The second thing is the
separation of the "PSDL_Reader” into “Preprocessor’ and "Decomposer”. The

"Preprocessor” reads in the PSDL source file for the prototype being designed and

57

produces a text file containing the information of the composite and atomic operators
together. The resultant text file becomes the input to the module "Decomposer” which
separates the atomic operator and link information, and does the validity checks
between the composite and atomic operators. It produces a text file containing only the
atomic operator and link information which becomes the input to the module
"File_Processor". This separation makes the decomposition process easy and reduces

the complexity.

D. EXCEPTION HANDLING

There are three different types of exception handling in this implementation. One
of them is the outmost level exception handling which handles the major errors
encountered during the execution. This is the same idea mentioned in Marlowe [Ref.
6]. Other level of exceptions are needed to run the static schedulers as standalone and
to give wamings to the user without exiting the program. The details of the exception

levels are given in Chapter III, Section D.

E. PACXAGE IMPLEMENTATION

The pseudo code listing given in Janson [Ref. 13] and the variable length string
abstract data type, VSTRINGS, are utilized for the implementation of the first
algorithm.

The OPERATOR_SCHEDULER package consists all the three static schedulers.
The reason for not having different modules for every other static_scheduler is that all
the static schedulers implemented here have the same time interval concept and share

most of the procedures in this package.

58

In this implementation, the modules in the original 1" DFD are tried to have

minimum change to keep the original design as simple as possible.

59

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This thesis provide, three static schedulers which ar: the first complete
implementations that support the Computer Aided Prototyping for Embedded Real-
Time Systems. These schedulers can also be executed as standalone in the way that
they are implemented.

Most of the algorithms written in the past do not address the problem of how to
schedule tasks that have precedence constraints. Since the precedence constraints are
considered in these algorithms, the graphical representation(directed graphs), and the
notion of a base timeframe was used. None of the algorithms presented in this thesis
gives an optimal solution to the problem of scheduling Hard Real-Time Systems with
precedence constraints. But these schedulers are important in supporting the Execution
Support System(ESS) within the framework of CAPS.

The contribution of this thesis to CAPS and Hard Real-Time Systems was the
implemented static schedulers for non-preemptable, single processor systems. These
static schedulers allow operators from any type of software system, even those with
control based on data flow, to be scheduled in a way that meets all critical timing

constraints.

00

B. CONCLUSIONS

With the implementation of these static schedulers in this thesis, the major part
of the Static Scheduler in the ESS within CAPS is completed. These are integrated into
the Execution Support System, with the simulation of "Decomposer”. The new data
structures like Graph Structure are introduced to the Static Scheduler. The Graph Model
was very successful to capture the computational requirements of the Hard Real-Time
Systems.

The schedulers are imported into the Execution Support System where
"Decomposer” is simulated for the current STATIC_SCHEDULER. Since the composite
operator information is not included in the graph data type, the names of the operators
in STATIC_SCHEDULER output should start with the names of their composites to
avoid the naming conflicts with the TRANSLATOR shown in Fig.3 The information
of how these are related to eachother can be found in Palazzo [Ref. 32]. The driver
program that runs the standalone static schedulers is adopted for the CAPS environment
which is shown in Appendix F. Otherwise the schedulers were successfully used in
CAPS.

All the programs in this thesis are implemented in Ada. Ada’s modularization and
generic package advantages with its exception handling mechanism were utilized to
model the static schedulers for single processor. Even though Ada was very efficient
for single processor environment, since it uses a FIFO queue for the parallel tasks,
there would be a very big problem in the implementation of the schedulers for

multiprocessor systems. When the tasks are queued during the parallel processing, we

61

can not use any priority, or precedence relationship in the schedulers. This means Ada
will need some changes for the implementation of optimal static schedulers.
Several areas for further research include the following:
+ Implementation of the "Decomposer”

» Implementation of more efficient algorithms which give optimal solution to the
scheduling problem

» Implementation of the static schedulers for preempted, multiprocessor systems

» To find a solution for the FIFO queue restriction for parallel tasking in Ada.
As soon as the "Decomposer” is completed and imported to the implementation,
CAPS will not need any simulation for running the static schedulers. So the CAPS

system will have a complete ESS running in its environment.

62

APPENDIX A. LINEAR GRAPH EXAMPLE

The following is the "atomic.info" file used as an input for the satic scheduleing
algorithms in Figure 13,

ATOMIC

read numbers
MET

10

PERIOD

20

ATOMIC
sort_numbers
MET

2

PERIOD

20

ATOMIC

write numbers
MET

2

PERIOD

20

LINK

a

read numbers
(4]

sort numbers
LINK

b
sort_numbers
0

write numbers

63

IMPLEMENTATION

—————— - -

HARMONIC_ BLOCK_LENGTH (HBL} = 20

OPERATOR_1ID MET PERIOD
read_numbers 10 20
sort_numbers 2 20
write_ numbers 2 20

1) FIRST ALGORITHM:

PRECEDENCE_LIST |{ read_numbers, sort_numbers, write_numbers }
STATIC SCHEDULE:

Message to the user:

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.

2- Although a schedule may be possible, there is no guarantee that
it will execute within the required timing constraints.

OPERATOR_ID START_TIME END TIME FIRING_INTERVAL
read numbers 0 10 (20,30)
sort_numbers 10 12 (30,48)
write numbers 12 14 (32,50)

STOP CONDITION: All firing intervals are greater than HBL in the last pass.
A feasible schedule found, READ "schedule.out" file.

64

2) SECOND ALGORITHM: (EBarliest_ Start time Scheduling Algorithm)

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2= Although a schedule may be possible, there is no guarantee that
it will execute within the required timing constraints.

SUCCESSORS : PREDECESSORS :
read numbers ([sort_numbers] read_numbers [-]
sort_numbers [write_numbers] sort_numbers [read numbers]
write_numbers [-] write numbers {sort_numbers]
AGENDA : MAY BE_AVAILABLE :
STEP_1) [1} [read numbers] (end node)
(EST:0)
STEP_2) [read_numbers] [sort_numbers,read_pumbers]
START: 0 (EST:10) (EST:20)
FINISH:10
STEP_3) [read_ numbers,sort_numbers] [write_numbers, read numbers, sort_ numbers]
START: 0 START:10 (EST:12) (EST:20) (EST:30)
FINISH:10 FINISH:12

STATIC SCHEDULE:

—— o ——— ———

STEP_4) [read numbers, sort_numbers,write numbers]
START: 0 START:10 START:12
FINISH:10 FINISH:12 FINISH:14

{read_numbers, sort_numbers,write_numbers]
(EST:20) (EST:30) (EST:32)

STOP CONDITION: (All EST values are greater than HBL).
A feasible schedule found, READ "ss.a" file.

65

3) THIRD ALGORITHM : (Earliest Deadline Scheduling Algorithm)

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2~ Although a schedule may be possible, there is no guarantee that
it will execute within the required timing constraints.

SUCCESSORS : PREDECESSORS :
read numbers (sort_numbers] read numbers [-]
sort_numbers (write numbers] sort numbers [read numbers]
write numbers [-] write numbers [sort_numbers]
AGENDA : MAY_BE_AVAILABLE :
STEP_1) []} [read numbers] (end node)
(EST:0)
(EDL:20)
STEP_2) [read numbers]) [sort_numbers, read numbers]
START: 0 (EST:10) (EST:20)
FINISH:10 (EDL:30) (EDL:40)

STEP_3) [read numbers, sort_numbers] [write_numbers,read_numbers,sort_numbers]
START: 0 START:10 (EST:12) (EST:20) (EST:30)
FINISH:10 FINISH:12 (EDL:32) (EDL:40) (EDL:50)

STATIC SCHEDULE:
STEP_4) (read numbers,sort numbers,write numbers]
START: O START:10 START:12
FINISH:10 FINISH:12 FINISH:14

[read numbers,sort numbers,write numbers)
(EST:20) (EST:30) (EST:32)
(EDL:40) (EDL:50) (EDL:52)

STOP CONDITION: (All EST values are greater than HBL).
A feasible schedule found., READ "ss.a" file

66

The output "ss.a" file created as static schedule for the first algorithm
with TL; use TL;
with DS _PACKAGE; use DS_PACKAGE;
with PRIORITY DEFINITIONS; use PRIORITY DEFINITIONS;
with CALENDAR; use CALENDAR;
with TEXT_IO; use TEXT_IO;
procedure STATIC_SCHEDULE is
write numbers_TIMING_ERROR : exception;
sort_numbers TIMING_ERROR : exception;
read numbers TIMING ERROR : exception;
task SCHEDULE is
pragma priority (STATIC_SCHEDULE PRIORITY);
end SCHEDULE;

task body SCHEDULE is
PERIOD : constant := 20;

read_numbers_STOP_TIMEl : constant := 10.0;
sort_numbers_STOP_TIME2 : constant := 12.0;
write numbers STOP_TIME3 : constant := 14.0;
SLACK TIME : duration;
START_OF PERIOD : time := clock:
begin
loop
begin
read numbers;
SLACK_TIME := START_OF_PERIOD + read numbers_STOP_TIMEl - CLOCK;

if SLACK TIME >= 0.0 then
delay (SLACK TIME);
else
raise read numbers TIMING_ ERROR;
end if;
delay (START_OF_PERIOD + 10.0 - CLOCK);

sort numbers;
SLACK_TIME := START_OF_PERIOD + sort_numbers STOP_TIME2 - CLOCK;
if SLACK TIME >= 0.0 then
delay (SLACK TIME);
else
raise sort_numbers TIMING ERROR;
end if;
delay (START_OF_PERIOD + 12.0 - CLOCK);

write numbers;
SLACK_TIME := START_OF_ PERIOD + write numbers_ STOP_TIME3 - CLOCK;
if SLACK _TIME >= 0.0 then

delay (SLACK_TIME);

else
raise write_numbers TIMING ERROR;
end if;
START_OF_PERIOD := START_OF_ PERIOD + PERIOD;

67

delay (START_OF_PERIOD - clock);
exception
when write_ numbers_ TIMING_ERROR =>
PUT_LINE ("timing error from operator write_numbers®):
START_OF PERIOD := clock;
when sort_numbers_ TIMING_ERROR =>
PUT_LINE("timing error from operator sort_numbers"); 8
START_OF_ PERIOD := clock;
when read numbers_TIMING_ERROR =>
PUT_LINE("timing error from operator read numbers®);
START_OF_ PERIOD := clock;
end;
end loop;
end SCHEDULE;

begin

null;
end STATIC_SCHEDULE;

68

APPENDIX B. ACYCLIC GRAPH EXAMPLE

The following is the "atomic.info" file used as an input for the
Static Schedulers for Figure 16.
ATOMIC
oP_1
MET

1
PERIOD
12
ATOMIC
OP_2
MET

1
PERIOD
8
WITHIN
9
ATOMIC
OP_3
MET

1

MCP

8

MRT

12
ATOMIC
OP_4
MET

2
PERIOD
8
ATOMIC
OpP_5
LINK
al
oP_1

0

OP_2
LINK
a2
OP_1

0

op_2
LINK

69

op_2

op_3
LINK

oP_4
LINK

op_4
LINK

oP_5
LINK

OP_3
LINK
start
EXTERNAL
0

OPT_1
LINK
£inish
OPT_4

0
EXTERNAL

70

IMPLEMENTATION :

-——— e = - - ——

HARMONIC_ BLOCK_LENGTH (HBL) = 24

OPERATOR_ID MET PERIOD FINISH WITHIN
oP_1 1 12 -
op 2 1 8 7
op 3 1 8 (EQUIVALENT) -
or_4 2 8 -

1) FIRST ALGORITHM: {(Earliest Start Scheduling Algorithm)

PRECEDENCE_LIST { OP_1, OP_2, OP_3, OP_4)}
STATIC SCHEDULE:

Message to the user:

1- The total MET/PERIOD ratio sum of operators is greater than 0.5.
2- Although a schedule may be possible, there is no guarantee that
it will execute within the required timing constraints.

OPERATOR_1ID START_TIME END_TIME FIRING_ INTERVAL

opP_1 0 1 (12,23)
opP_2 1 2 *(9,15)
op_3 2 3 (10,17)
OP 4 3 5 (11,17)
Second Process

OP_1 12 13 (24, 35)
op_2 13 14 *(17,23)
OP_ 3 14 15 (18, 25)
OP_4 15 17 (19,25)
op_2 17 18 *(25,31)
OP_3 18 19 (26,33)
oP 4 19 21 (27, 33)

STOP CONDITION: All firing intervals are greater than HBL in the last pass.
A feasible schedule found, READ "ss.a" file.

71

o ——

2) SECOND ALGORITHM: (Earliest Deadline Scheduling Algorithm)

————————— ——— f— —— " T T T — T Y " . o — T —— T — —— —————— " ————

1~ The total MET/PERIOD ratio sum of operators is greater than 0.5.
2~ Although a schedule may be possible, there is no guarantee that
it will execute within the required timing constraints.

SUCCESSORS : PREDECESSORS :
Or_1 [OP_2] op_1 (-]
Op_2 [OP_3,0P_4] OP_2 {OP_1]
OP_3 [OP_4) Op_3 [OP_2]
Oo°P_4 [-] Op_4 (OP_2,0P_3]
AGENDA : MAY_BE_AVAILABLE :
STEP_1) [] CP_1} (end node)
(EST:0)
STEP_2) [OP_1] [op_2, OP_1]
START: 0 (EST:1) (EST:12)
FINISH:1
STEP 3) [..vvvenen.. ,OP 2]} (op_3, op_ 4, OP_ 2, OP 1]
START:1 (EST:2) (EST:2) (EST:9) (EST:12)
FINISH:2
STEP_4) [....ovun... ,OP_3] [OP_4, OP_2, OP_3, OP_1]
START:2 (EST:2) (EST:9) (EST:10) (EST:12)
STEP_5) [.vuuvn... .,OP_4] [OoP_2, OP_ 3, OP 4, OP_ 1)
START:3 (EST:9) (EST:10) (EST:11) (EST:12)
FINISH:5
STEP_6) [...........,0P_2] [OP_3, Op_4, OP_1, OP_2]
START: 9 (EST:10) (EST:11) (EST:12) (EST:17)
FINISH:10
STEP_7) [.....v..... ,OP_3] { or_4, oP_1, OP_2, OP_3]
START:10 (EST:11) (EST:12) (EST:17) (EST:18)
STEP _8) {........... (OP_4] { op_1, Op_2, OP_3, OP_4]
START:11 (EST:12) (EST:17) (EST:18) (EST:19)
FINISH:13
STEP_9) [..vcvnuunn. ,OP_1] (op_2, o©OP_3, OP 4, OP_1]
START:13 (EST:17) (EST:18) (EST:19) (EST:25)
FINISH:14
STEP_10) [...... «e...,0P_2) {op_3, ©oOP_4, OP_1, OP 2]
START:17 (EST:18) (EST:19) (EST:25) (EST:25)
FINISH:18
STEP_11) [....c..... ,OP_3) [op_4, oOP_1, OP 2, OP 3]
START:18 (EST:19) (EST:25) (EST:25) (EST:26)
FINISH:19
72

STEP_12) [......... ..,OP_4] [op_1, opP_2, OP_3, op_4]
START:19 (EST:25) (EST:25) (EST:26) (EST:27)
FINISH:21

STOP CONDITION: All EST values are greater than HBL in the last pass.

A feasible schedule found, READ "ss.a" file.

73

r-----I---II-I-I-IIIIIlIIIIIIIlllllI.--IIII-IIII------A*

THE OUTPUT "ss.a"™ FILE CREATED AS STATIC SCHEDULE FOR THE FIRST ALGORITHM:
with TL; use TL;
with DS_PACKAGE; use DS_PACKAGE;
with PRIORITY DEFINITIONS; use PRIORITY DEFINITIONS;
with CALENDAR; use CALENDAR;
with TEXT_ IO; use TEXT_IO;
procedure STATIC_ SCHEDULE is

OP_4_TIMING_ERROR : exception;

OP_3_ TIMING_ERROR : exception;

OP_2_TIMING_ERROR : exception;

OP_1 TIMING_ERROR : exception;

task SCHEDULE is

pragma priority (STATIC_SCHEDULE_PRIORITY);
end SCHEDULE;

task body SCHEDULE is

PERIQOD : constant := 24;

OP_1 STOP_TIME1l : constant := 1.0;
OP_ 2 STOP_TIME2 : constant := 2.0;
OP_3_STOP_TIME3 : constant := 3.0;
OP_4 _STOP _TIME4 : constant := 5.0;
OP_1_STOP_TIMES : constant := 13.0;
OP_2_STOP_TIME6 : congtant := 14.0;
OP_3 STOP_TIME7 : constant := 15.0;
OP_4_STOP_TIMES8 : constant := 17.0;
OP_2 STOP TIMEY9 : constant := 38.0;
OP_3_STOP_TIME10 : constant := 1°2.0;
OP_4_STOP_TIMEIl : constant := 21.0;

SLACK_TIME : duration;
START_OF PERIOD : time := clock;
begin
loop
begin
OP _1;
SLACK_TIME := START_OF PERIOD + OP_1 STOP_TIMEl - CLOCK;
if SLACK_TIME >= 0.0 then
delay (SLACK TIME);

else
raise OP_1_ TIMING_ERROR;
end if;
delay (START_OF_ PERIOD + 1.0 - CLOCK);
OP_2;

SLACK TIME := START OF PERIOD + OF 2 ST F TIMEZ - CLOCK;
if SLACK_TIME >= (.0 then
delay (SLACK_TIME);

else
raise OP_2 TIMING ERROR;
end if;
delay (START_OF_PEPIOD + <. = CLOUKY

74

OoP 3;
SLKCK_TIME := START_OF_PERIOD + OP_3_ STOP_TIME3 =- CLOCK;
if SLACK_TIME >= 0.0 then
delay (SLACK_TIME);
else
raise OP_3_TIMING_ERROR;
end if;
delay (START_OF_ PERIOD + 3.0 - CLOCK);

OP 4;
SLACK_TIME := START OF PERIOD + OP_4_STOP_TIME4 - CLOCK;
if SLACK _TIME >= 0.0 then
delay (SLACK_TIME);
else
raise OP_4_TIMING_ERROR;
end if;
delay (START NF_PERIOD + 12.0 - CLOCK);

OP 1;
SLACK TIME := START _OF PERIOD + OP_1_STOP_TIMES - CLOCK;
if SLACK_TIME >= 0.0 then
delay (SLACK_TIME) ;
else
raise OP_l_TIMING_ERROR;
end if;
delay (START_OF PERIOD + 13.0 -~ CLOCK);

oP 2;
SLACK_TIME := START_OF_PERIOD + OP_2 STOP_TIME6 - CLOCK;
if SLACK TIME >= 0.0 then
delay (SLACK_TIME);
else
raise OP_2 TIMING_ERROR;
end if;
delay (START_OF PERIOD + 14.0 - CLCCK);

OP 3;
SLACK_TIME := START_OF_PERIOD + OP_3_STOP_TIME7 - CLOCK;
if SLACK_TIME >= 0.0 then
delay (SLACK_TIME);
else
raise OP_3 TIMING_ERROR;
end if;
delay (START_OF PERIOD + 15.0 - CLOCK):

oP 4:
SLACK_TIME := START_OF_PERIOD + OF_4_STOP TIMEE - CLOCE;
if SLACK _TIME >= 0.0 then
delay (SLACK TIME);
else
raise OP_4_TIMING EFPROR;

75

end if;
delay (START_OF_PERIOD + 17.0 - CLOCK);

OP 2;
SLACK_TIME := START OF PERIOD + OP 2 STOP_TIME9 - CLOCK;
if SLACK_TIME >= 0.0 then
delay (SLACK_TIME);
else
raise OP_Z_TIMING_ERROR;
end if;
delay (START_OF PERIOD + 18.0 - CLOCK);

OP 3;
SLACK_TIME := START OF PERIOD + OP 3 STOP TIME10 - CLOCK;
if SLACK _TIME >= 0.0 then
delay (SLACK_TIME):
else
raise OP_3_ TIMING_ERROR;
end if;
delay (START OF_PERIOD + 19.0 - CLOCK);

OoP 4;
SLACK_TIME := START_OF_PERIOD + OP_4_ STOP_TIME1ll - CLOCK;
if SLACK_TIME >= 0.0 then
delay (SLACK_TIME);
else
raise OP_4_ TIMING_ERROR;
end if;
START_OF _PERIOD := START_OF_PERIOD + PERIOD;
delay (START_OF PERIOD ~ clock);
exception
when OP_4_TIMING_ERROR =>
PUT_LINE("timing error from operator OP_4");
START_OF_PERIOD := clock;
when OP_3 TIMING_ERROR =>
PUT_LINE ("timing error from operator OP 3");
START_OF PERIOD := clock;
when OP_2 TIMING_ERROR =>
PUT_LINE ("timing error from operator OP_2");
START_OF PERIOD := clock;
when OP_l_TIMING_ERROR =>
PUT_LINE ("timing error from operator OP_1"):
START_OF PERIOD := clock;
end;

end loop;
end SCHEDULE;

begin

null;
end STATIC_SCHEDULE;

76

APPENDIX C. PREPROCESSOR and DECOMPOSER OUTPUTS

1) Preprocessor OQutput

LINEAGE

Cl

read numbers
sort_numbers
write numbers
END_LINEAGE
Cc1

LINK

a

read _numbers
0

sort_ numbers
LINK

b
sort_numbers
0

write numbers
read_numbers
MET

10

PERIOD

20
sort_numbers
MET

2

PERIOD

20

write numbers
MET

2

PERIOD

20

LINEAGE

read numbers
ATOMIC
END_LINEAGE
read_numbers
read numbers
L1NEAGE
sort_numbers
ATOMIC

END LINEAGE

77

sort_numbers
sort_numbers
LINEAGE

write numbers
ATOMIC

END _LINEAGE
write numbers
write numbers

2) Decomposer Output

ATOMIC
read_numbers
MET

10

PERIOD

20

ATOMIC
sort_numbers
MET

2

PERIOD

20

ATOMIC

write numbers
MET

2

PERIOD

20

LINK

a

read numbers
0

sort _numbers
LINK

b
sort_numbers
0

write numbers

78

APPENDIX D. PROGRAM DOCUMENTATION

1. STANDALONE MENU DRIVEN VERSION AS IMPLEMENTED IN THIS THESIS

preprocessor - generates the text file used by decomposer
(not implemented)

decomposer_b.a -

validates and decomposes output of preprocessor

(not implemented yet)

decomposer_s.a -

validates and decomposes output of preprocessor

(not implemented yet)

driver.a -
e _handler b.a
e_handler_s.a
files.a

fp b.a

fp_s.a

graphs_b.a -
graphs_s.a -
hbb b.a

hbb_s.a
scheduler b.a
scheduler_s.a
sequence_b.a
sequence_s.a
static_scheduler*
t_sort_b.a -
t_sort_s.a -

static_scheduler is
a.make static

interface for standalone static scheduler
- exception routines used by driver
- exception routines used by driver
- global types and declarations for all ss programs
- file processor
- file processor
generic type graph structure
generic type graph structure
- harmonic block builder
- harmonic block builder
- operators_scheduler (scheduling algorithms)
- operators_scheduler (scheduling algorithms)
- generic type list structure
- generic type list structure
executable static_scheduler
topological sorter
topological sorter

compiled by:
scheduler -f *.a -o static_scheduler

(where *.a u;es all files listed above which have a .a suffix)

static_scheduler is

executed by the command line equivalent

static_scheduler (expects to read an input file "atomic.info")

Dependencies:

files.a is dependent upon:

vstrings

sequences

graphs

decomposer b.a, decomposer_s.a, e_handler_b.a, e_handler_s.a,
fp_b.a, fp _s.a, hbb_b.a, hbb_s.a, scheduler b.a, scheduler_ s.a,

79

t_sort_b.a, t_sort_s.a are all dependent upon:

driver

since decomp
File_process
File_process
Operator_sch

2. DOCUMENTA

decomposer b
(not impleme
decomposer_s
(not impleme
driver.a
e_handler_b.
e_handler_s.
files a

fp b.a
fp_=.a
graphs_b.a
graphs_s.a
hbb_b.a
hbb_s.a

kc

pre_ss*
pre_ss.k
scheduler b.
scheduler_ s.
sequence_b.a
sequence_s.a
static_sched
t_sort_b.a
t_sort_s.a

The caps sta
pre_ss is col
kc pre

pre_ss is ex
pre_ss

files (files.a)

.a is dependent upon

decomposer (decomposer b.a, decomposer_ s.a)
(atomic.info file is given to the system)

exception_handler (e_handler b.a, e_handler s.a)

file_processor (fp b.a, fp_s.a)

harmonic_block builder (hbb _b.a, hbb_s.a)

operator_scheduler (scheduler b.a, scheduler_s.a)

topological_sorter (t_sort_b.a, t_sort_s.a)

oser is not implemented yet, atomic.info file is given.
or reads atomic.info

or creates non_crits.a

eduler creates ss.a

TION FOR THE COMPLETE DESIGN AS IT WILL BE USED IN CAPS:

.a ~ validates and decomposes output of preprocessor
nted yet)
.a -~ validates and decomposes output of preprocessor
nted yet)

- interface for standalone static scheduler
a - exception routines used by driver
a - exception routines used by driver

- global types and declarations for all ss programs

- file processor
- file processor
- generic type graph structure
- generic type graph structure
- harmonic block builder
- harmonic block builder

- script to compile static scheduler preprocess pre ss.k

~ executable preprocessor
-~ kodiyacc specifications for preprocessor

a - operators_scheduler (scheduling algorithms)
a - operators_scheduler (scheduling algorithms)

- generic type list structure

- generic type list structure
executable static_scheduler
- topological sorter
- topological sorter

uler*

tic scheduler consists of two executable modules.
mpiled by:
_s8s.k =~o pre_ss

ecuted by the command line equivalent
<filename> -o operator.info

80

static_scheduler is compiled by:
a.make static_scheduler -f *.a -o static_scheduler
(where *.a uses all files listed above which have a .a suffix)

static_scheduler iz executed by the command line equivalent
static_scheduler (expects to read an input file "atomic.info")

Dependencies:

files.a is dependent upon:
vstrings
sequences
graphs

decomposer_b.a, decomposer_s.a, e handler b.a, e_handler_s.a,
fp_b.a, fp_s.a, hbb_b.a, hbb_s.a, scheduler_b.a, scheduler_s.a,
t_sort _b.a, t_sort_s.a are all dependent upon:

files (files.a)

driver.a is dependent upon
decomposer (decomposer b.a, decomposer_s.a)
exception_handler (e_handler b.a, e_handler_s.a)
file processor (fp b.a, fp s.a)
harmonic_block_builder (hbb_b.a, hbb_s.a)
operator_scheduler (scheduler b.a, scheduler s.a)
topological_sorter (t_sort_b.a, t_sort_s.a)

pre_ss creates operator.info

decomposer reads operator.info and creates atomic.info
File processor reads atomic.info

File processor creates non _crits.a

Operator_scheduler creates ss.a

81

APPENDIX E. IMPLEMENTATION OF THE STATIC SCHEDULING ALGORITHMS

This appendix contains the entire implementation for the Static Scheduler.

-~ SEQUENCES - this is a generic package used by the FILES and GRAPHS package

to generate Linked Lists.

with FILES;

use FILES;

package OPERATOR_SCHEDULER is

procedure TEST DATA (INPUT_LIST : in DIGRAPH.V_LISTS.LIST;
HARMONIC BLOCK LENGTH : in INTEGER);

procedure SCHEDULE_INITIAL_SET (PRECEDENCE LIST : in DIGRAPH.V_LISTS.LIST;
THE_SCHEDULE_INPUTS : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC_BLOCK_LENGTH : in INTEGF.R;
STOP_TIME : in out INTEGER);

procedure SCHEDULE_REST_OF_BLOCK(PRECEDENCE_LIST : in DIGRAPH.V_LISTS.LIST;
THE_SCHEDULE _INPUTS : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC_ BLOCK LENGTH : in INTEGER;
STOP_TIME : in INTEGER);

procedure SCHEDULE_WITH_EARLIEST_START (THE_GRAPH : in DIGRAPH.GRAPH;
AGENDA ! in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK _LENGTH : in INTEGER);

procedure SCHEDULE_WITH_EARLIEST_DEADLINE (THE_GRAPH : in DIGRAPH.GRAPH;
AGENDA ! in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK LENGTH : in INTEGER) ;

procedure CREATE_STATIC_SCHEDULE (THE GRAPH : in DIGRAPH.GRAPH;

THE_SCHEDULE_INPUTS : in SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK_LENGTH : in INTEGER):

MISSED DEADLINE : exception;

OVER_TIME exception;

MISSED_OPERATOR : exception;

end OPERATOR_SCHEDULER;

- - — —— ————

with UNCHECKED DEALLOCATION;

package body SEQUENCES is

procedure

FREE is new UNCHECKED_ DEALLOCATION (NODE, LIST);

82

function NON_EMPTY(L : in LIST) return BOOLEAN is
begin
if L = null then
return FALSE;
else
return TRUE;
end if;
end NON _EMPTY;

procedure NEXT(L : in out LIST) is
begin
if L /= null then
L := L,NEXT;
end if;
end NEXT;

function LOOK4(X : in ITEM; L : in LIST) return LIST is
L1 : LIST := L;
begin
while NON_ EMPTY (L1l) loop
if L1.ELEMENT = X then
return L1;
end if;
NEXT (L1) ;
end loop;
return null;
end LOOK4;

procedure ADD(X : in ITEM; L : in out LIST) is
-- ITEM IS ADDED TO THE HEAD OF THE LIST
T : LIST := new NODE;
begin
T.ELEMENT := X;
T.NEXT := L;
L :=T;
end ADD;

function SUBSEQUENCE (L1 : in LIST; L2 : in LIST) return BOOLEAN is
L : LIST := L1;
begin
while NON_EMPTY (L) loop
if not MEMBER (VALUE (L), L2) then
return FALSE;
end if;
NEXT (L) ;
end loop;
return TRUE;
end SUBSEQUENCE;

function EQUAL(L1 : in LIST; L2 : in LIST) return BOOLEAN is

83

begin
return (SUBSEQUENCE (L1, LZ2) and SUBSEQUENCE (L2, L1)):;
end EQUAL;

procedure EMPTY(L : out LIST) is
begin

L := null;
end EMPTY:*

function MEMBER(X : in ITEM; L : in LIST) return BOOLEAN is
begin
if LOOK4 (X, L) /= null then
return TRUE;
else
return FALSE;
end if;
end MEMBER;

procedure REMOVE(X : in ITEM; L : in out LIST) is
CURR : LIST := L;

PREV : LIST := null;
TEMP : LIST := null;
begin

while NON_EMPTY (CURR) loop
if VALUE (CURR) = X then
TEMP := CURR;
NEXT (CURR) ;
FREE (TEMP) ;
if PREV /= null then
PREV ,NEXT := CURR;

else
L := CURR;
end if;
else

PREV := CURR;
NEXT (CURR) ;
end if;
end loop;
end REMOVE;

procedure LIST REVERSE(L1l : in LIST; L2 : in out LIST) is
L : LIST := L1;
begin
EMPTY (L2);
while NON_EMPTY (L) loop
ADD (VALUE (L), L2):;
NEXT (L) ;
end loop;
end LIST_REVERSE;

procedure DUPLICATE(Ll : in LIST; L2 : in out LIST) is

84

—_—

TEMP : LIST;

L : LIST := L1;
begin
EMPTY (L2) ;

while NON_EMPTY (L) loop
ADD (VALUE (L), TEMP);
NEXT (L) ;
end loop;
LIST_REVERSE (TEMP, L2);
end DUPLICATE;

function VALUE(L : in LIST) return ITEM is
begin
if NON_EMPTY (L) then
return L.ELEMENT;
else
raise BAD_VALUE;
end if;
end VALUE;

end SEQUENCES:

85

-- GRAPHS -~ a generic package used by the FILES package to generate
- Graph Structure.

with SEQUENCES;
with VSTRINGS;

generic
type VERTEX is private;

package GRAPHS is

package V_LISTS is new SEQUENCES (VERTEX) ;
use V_LISTS;

package V_STRING is new VSTRINGS (80);
use V_STRING;

subtype DATA STREAM is VSTRING;
subtype MET is NATURAL;

type LINK DATA is

record
THE_DATA_STREAM : DATA_ STREAM;
THE_FIRST OP_ID : V_LISTS.LIST;
THE_LINK_MET : MET := 0;

.

THE_SECOND_OP_ID : V_LISTS.LIST;
end record;

package E_LISTS is new SEQUENCES(LINK DATA);
use E_LISTS;

type GRAPH is

record
VERTICES : V_LISTS.LIST;
LINKS : E_LISTS.LIST;

end record;
function EQUAL GRAPHS (Gl : in GRAPH; G2 : in GRAPH) return BOOLEAN;
procedure EMPTY (G : out GRAPH);
function IS_NODE(X : in VERTEX; G : GRAPH) return BOOLEAN;

function IS LINK(X : in VERTEX; Y : in VERTEX;
G : in GRAPH) return BOOLEAN;

procedure ADD(X : in VERTEX; G : in out GRAPH):;

procedure ADD(L : in LINK DATA; G : in out GRAPH);

86

procedure REMOVE (X : in VERTEX; G : in out GRAPH);
procedure REMOVE (X : in VERTEX; Y : in VERTEX; G : in out GRAPH);
procedure SCAN NODES(G : in GRAPH; S : in out V_LISTS.LIST);

procedure SCAN_PARENTS(X : in VERTEX; G : in GRAPH;
§ : in out V_LISTS.LIST);

procedure SCAN CHILDREN(X : in VERTEX; G : in GRAPH;
S : in out V_LISTS.LIST);

procedure DUPLICATE(Gl : in GRAPH; G2 : in out GRAPH);
procedure T SORT(G : in GRAPH; S : in out V_LISTS.LIST);
end GRAPHS;
with UNCHECKED DEALLOCATION;
package body GRAPHS is
procedure FREE is new UNCHECKED_ DEALLOCATION(E_LISTS.NODE, E_LISTS.LIST);

function EQUAL GRAPHS (Gl : in GRAPH; G2 : in GRAPH) return BOOLEAN is

function SUB_SET(Gl : in GRAPH; G2 : in GRAPH) return BOOLEAN is

L1l : V_LISTS.LIST := Gl.VERTICES;
L2 : E_LISTS.LIST := G1l.LINKS;
begin

if not SUBSEQUENCE (L1, G2.VERTICES) then
return FALSE;
end if;
while NON_EMPTY (L2) loop
if not IS_LINK(VALUE(VALUE(LZ).THE_FIRST_OP_ID),
VALUE(VALUE(LZ).THE_SECOND_OP_ID), G2) then
return FALSE;
end if;
NEXT (L2) ;
end loop;
return TRUE;
end SUB_SET;
begin
-- equal graphs
return (SUB_SET (Gl, G2) and SUB_SET (G2, Gl));
end EQUAL_GRAPHS;

procedure EMPTY (G : out GRAPH) is
begin

EMPTY (G.VERTICES) ;

EMPTY (G.LINKS) ;

87

end EMPTY;

function IS_NODE(X : in VERTEX; G : GRAPH) return BOOLEAN is
begin
if LOOK4 (X, G.VERTICES) /= null then
return TRUE;
else
return FALSE;
end if;
end IS_NODE;

function IS _LINK(X : in VERTEX; Y : in VERTEX; G : in GRAPH) return BOOLEAN is
L : E_LISTS.LIST := G.LINKS;

begin
while L /= null loop
if VALUE (VALUE (L) .THE_FIRST OP_ID) = X and
VALUE (VALUE (L) .THE_SECOND_OP_ID) = Y then
return TRUE;
end if;
L := L.NEXT;
end loop;

return FALSE;
end IS_LINK;

procedure ADD(X : in VERTEX; G : in out GRAPH) is
begin

ADD (X, G.VERTICES) .
end ADD;

procedure ADD(L : in LINK DATA: G : in out GRAPH) is
begin
if LOOK4(L.THE_FIRST_OP_ID.ELEMENT, G.VERTICES) /= null and
LOOK4 (L.THE_SECOND_ OP_ID.ELEMENT, G.VERTICES) /= null then

ADD (L, G.LINKS);

end if;
end ADD;

procedure REMOVE(X : in VERTEX; G : in out GRAPH) is
S : V_LISTS.LIST;
L : V_LISTS.LIST;
PREV : V_LISTS.LIST := null;
begin
SCAN_CHILDREN(X, G, S);
while NON_EMPTY (S) loop
REMOVE (X, VALUE(S), G):;
NEXT (S) ; .
end loop:
SCAN_PARENTS (X, G, S);
while NON EMPTY (S) loop

REMOVE (VALUE (S), X, G);
NEXT (S) ;
end loop;
REMOVE (X, G.VERTICES);
end REMOVE;

procedure REMOVE (X : in VERTEX; Y : in VERTEX; G : in out GRAPH) is
L : E_LISTS.LIST := G.LINKS;

PREV : E LISTS.LIST := null;
TEMP : E_LISTS.LIST := null;
begin
while NON_EMPTY (L) loop
if VALUE (VALUE (L) .THE_FIRST OP_ID) = X and
VALUE (VALUE (L) . THE_SECOND OF_1ID) = Y then
TEMP := L;
NEXT (L) ;
FREE (TEMP) ;
if PREV /= null then
PREV.NEXT := L;
else
G.LINKS := L;
end if;
else
PREV := L;
NEXT (L) ;
end if;
° end loop;
end REMOVE;

procedure SCAN_NODES(G : in GRAPH; S8 : in out V_LISTS.LIST) is
L : V_LISTS.LIST := G.VERTICES;
begin
EMPTY (S) ;
while NON_EMPTY (L) loop
ADD (VALUE (L), S);
NEXT (L) ;
end loop;
end SCAN NODES;

procedure SCAN PARENTS(X : in VERTEX; G : in GRAPH;
S : in out V_LISTS.LIST) is
L : E_LISTS.LIST := G.LINKS;

begin

EMPTY (S) ;

while NON_EMPTY (L) loop
if VALUE(VALUE(L).THE*SECOND_OP_ID) = X then

ADD (VALUE (VALUE (L) . THE_FIRST OP_ID), S§):

end if;
NEXT (L) ;

end loop:

89

end SCAN PARENTS;

procedure SCAN CHILDREN(X : in VERTEX; G : in GRAPH;
S : in out V_LISTS.LIST) is
L : E_LISTS.LIST := G.LINKS;
begin
EMPTY (S) ;
while NON_EMPTY (L) loop
if VALUE (VALUE (L) .THE_FIRST _OP_ID) = X then
ADD (VALUE (VALUE (L) . THE_SECOND OP_1ID), S);
end if;
NEXT (L) ;
end loop;
end SCAN_CHILDREN;

procedure DUPLICATE(Gl : in GRAPH; G2 : in out GRAPH) is
begin

DUPLICATE (G1.VERTICES, G2.VERTICES):;

DUPLICATE (G1.LINKS, G2.LINKS);
end DUPLICATE;

procedure T SORT(G : in GRAPH:; S : in out V_LISTS.LIST) is
Gl : GRAPH;
T, L, P : V_LISTS.LIST;
begin
EMPTY (T) ;
DUPLICATE (G, Gl);
SCAN_NODES(G1, L);
while NON_EMPTY (L) loop
SCAN_PARENTS (VALUE (L), G1, P);
if not NON_EMPTY (P) then
ADD (VALUE (L), T):;
REMOVE (VALUE (L), Gl);
SCAN_NODES (Gl1, L);
else
NEXT (L) ;
end if;
end loop:;
SCAN_NODES (Gl, L);
if NON_EMPTY (L) then
EMPTY (S) ;
else
LIST _REVERSE(T, S);
end if;
end T_SORT;
end GRAPHS;

90

-- VSTRINGS - "vstrng_s.a, vstrng b.a"; this is a generic package used within
- the Static Scheduler for variable length string types.

with TEXT IO; use TEXT_IO;
generic

LAST : NATURAL;
package VSTRINGS is

subtype STRINDEX is NATURAL;

FIRST : constant STRINDEX := STRINDEX'’FIRST + 1;
type VSTRING is private;

NUL : constant VSTRING;

-— Attributes of a VSTRING

function LEN(FROM : VSTRING) return STRINDEX;

function MAX(FROM : VSTRING) return STRINDEX;

function STR(FROM : VSTRING) return STRING;

function CHAR (FROM: VSTRING; POSITION : STRINDEX := FIRST)
return CHARACTER;

-- Comparisons

function "<" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function ">" (LEFT: VSTRING; RIGHT: VSTRING} return BOOLEAN;
function "<=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function ">=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function EQUAL (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;
function NOTEQUAL (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

-~ Input/Output

procedure PUT(FILE : in FILE_TYPE; ITEM : in VSTRING);
procedure PUT(ITEM : in VSTRING);

procedure PUT_LINE(FILE : in FILE_TYPE; ITEM : in VSTRING);
procedure PUT LINE(ITEM : in VSTRING) ;

procedure GET(FILE : in FILE_TYPE; ITEM : out VSTRING;
LENGTH : in STRINDEX := LAST):
procedure GET(ITEM : out VSTRING; LENGTH : in 3TRINDEX := LAST);

procedure GET_ LINE(FILE : in FILE TYPE; ITEM : in out VSTRING);
procedure GET_LINE(ITEM : in out VSTRING);

-- Extraction

function SLICE (FROM: VSTRING; FRONT, BACK : STRINDEX) return VSTRING:
function SUBSTR(FROM: VSTRING; START, LENGTH: STRINDEX) return VSTRING;

91

function
-- Editing
function
function

function

function
function
function
function
function
function

function

function

DELETE (FROM: VSTRING;

INSERT (TARGET: VSTRING;
POSITION:
INSERT (TARGET: VSTRING;

POSITION: STRINDEX :=

INSERT (TARGET: VSTRING;

POSITION: STRINDEX

APPEND (TARGET: VSTRING;
return VSTRING;
APPEND (TARGET: VSTRING;
return VSTRING;
APPEND (TARGET: VSTRING;
return VSTRING;

APPEND (TARGET: VSTRING;
APPEND (TARGET: VSTRING;
APPEND (TARGET: VSTRING;

REPLACE (TARGET: VSTRING:

POSITION: STRINDEX

REPLACE (TARGET: VSTRING;

POSITION: STRINDEX

FRONT, BACK :

STRINDEX

STRINDEX) return VSTRING;

ITEM: VSTRING;

FIRST) return VSTRING;
ITEM: STRING;

FIRST) return VSTRING;
ITEM: CHARACTER;

FIRST) return VSTRING;

ITEM: VSTRING; POSITION: STRINDEX)

ITEM: STRING; POSITION: STRINDEX)

ITEM: CHARACTER; POSITION: STRINDEX)

ITEM: VSTRING) return VSTRING;
ITEM: STRING) return VSTRING;
ITEM: CHARACTER) return VSTRING;

ITEM: VSTRING;
FIRST) return VSTRING;
ITEM: STRING;
:= FIRST) return VSTRING;

function REPLACE (TARGET: VSTRING; ITEM: CHARACTER;

POSITION: STRINDEX := FIRST) return VSTRING;

-- Concatenation

function "&" (LEFT: VSTRING; RIGHT : VSTRING) return VSTRING;
function "&" (LEFT: VSTRING; RIGHT : STRING) return VSTRING;
function "&" (LEFT: VSTRING; RIGHT : CHARACTER) return VSTRING;
function "&" (LEFT: STRING; RIGHT : VSTRING) return VSTRING;
function "&" (LEFT: CHARACTER; RIGHT VSTRING) return VSTRING;

-- Determine the position of a substring

function

function

function

function

function

INDEX (WHOLE: VSTRING; PART: VSTRING; OCCURRENCE NATURAL := 1)
return STRINDEX;

INDEX (WHOLE VSTRING; PART STRING; OCCURRENCE NATURAL := 1)
return STRINDEX;

INDEX (WHOLE VSTRING; PART CHARACTER; OCCURRENCE NATURAL := 1)
return STRINDEX;

RINDEX (WHOLE: VSTRING; PART: VSTRING; OCCURRENCE NATURAL := 1)
return STRINDEX;

RINDEX (WHOLE VSTRING; PART : STRING; OCCURRENCE NATURAL := 1)

return STRINDEX;

92

function RINDEX (WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE : NATURAL
return STRINDEX;

-- Conversion from other associated types

function VSTR(FROM : STRING) return VSTRING;
function VSTR(FROM : CHARACTER) return VSTRING;
function "+" (FROM : STRING) return VSTRING;
function "+" (FROM : CHARACTER) return VSTRING;

generic
type FROM is private;
type TO is private;
with function STR(X : FROM) return STRING is <>;
with function VSTR(Y : STRING) return TO is <>;
function CONVERT (X : FROM) return TO;

private
type VSTRING is
record
LEN : STRINDEX := STRINDEX'FIRST;
VALUE : STRING(FIRST .. LAST) := (others => ASCII.NUL);

end record;

NUL : constant VSTRING := (STRINDEX’'FIRST, (others => ASCII.NUL));
end VSTRINGS:

package body VSTRINGS is
-~ local declarations
FILL CHAR : constant CHBARACTER := ASCII.NUL;
procedure FORMAT (THE_STRING: in out VSTRING;
OLDLEN : in STRINDEX:=LAST) is

-— fill the string with FILL CHAR to null out old values

begin -- FORMAT (Local Procedure)
THE_STRING.VALUE(THE_STRING.LEN + 1 .. OLDLEN) :=

(others => FILL_CHAR);
end FORMAT;

-~ bodies of visible operations

function LEN(FROM : VSTRING) return STRINDEX is

begin -- LEN
return (FROM. LEN) ;
end LEN;

93

1)

function MAX(FROM : VSTRING) return STRINDEX is
begin -- MAX
return (LAST) ;
end MAX;

function STR(FROM : VSTRING) return STRING is

begin -- STR
return (FROM.VALUE (FIRST .. FROM.LEN));
end STR;
function CHAR(FROM : VSTRING; POSITION : STRINDEX := FIRST)
return CHARACTER is
begin -- CHAR
if POSITION not in FIRST .. FROM.LEN
then raise CONSTRAINT_ERROR;
end if;
return (FROM.VALUE (POSITION)) ;
end CHAR;

function ®"<" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- "<"
return (LEFT.VALUE < RIGHT.VALUE) ;
end "<";

function ">" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is
begin -~ ">"
return (LEFT.VALUE > RIGHT.VALUE);
end ">";

function "<=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is
begin -~ "<="
return (LEFT.VALUE <= RIGHT.VALUE);
end "<=";

function ">=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is
begin --= ">="
return (LEFT.VALUE >= RIGHT.VALUE) ;
end ">=";

function equal (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is
begin -~ equal
return(LEFT.VALUE = RIGHT.VALUE);
end equal;

94

function notequal (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is
begin -- notequal
return (LEFT.VALUE /= RIGHT.VALUE);
end notequal;

procedure PUT(FILE : in FILE_TYPE; ITEM : in VSTRING) is
begin -- PUT
PUT(FILE, ITEM.VALUE(FIRST .. ITEM.LEN));
end PUT;

procedure PUT (ITEM : in VSTRING) is

begin -- PUT
PUT (ITEM.VALUE (FIRST .. ITEM.LEN));
end PUT;

procedure PUT_LINE(FILE : in FILE_TYPE; ITEM : in VSTRING) is
begin -~ PUT_LINE
PUT_LINE (FILE, ITEM.VALUE (FIRST .. ITEM.LEN));
end PUT_LINE;

procedure PUT _LINE (ITEM : in VSTRING) is
begin ~- PUT_LINE
PUT_LINE (ITEM.VALUE (FIRST .. ITEM.LEN)):
end PUT LINE;

procedure GET(FILE : in FILE TYPE; ITEM : out VSTRING;
LENGTH : in STRINDEX := LAST) is
begin ~- GET
if LENGTH not in FIRST .. LAST
then raise CONSTRAINT_ ERROR;
end if;

ITEM := NUL;
for INDEX in FIRST .. LENGTH loop
GET(FILE, ITEM.VALUE (INDEX))
ITEM.LEN := INDEX;
end loop;
end GET;

procedure GET (ITEM : out VSTRING; LENGTH : in STRINDEX := LAST) is

begin -- GET
if LENGTH not in FIRST .. LAST
then raise CONSTRAINT ERROR;
end if;

ITEM := NUL;
for INDEX in FIRST .. LENGTH loop

95

GET (ITEM.VALUE (INDEX)) ;
ITEM.LEN := INDEX;
end loop;
end GET;

procedure GET_LINE (FILE in FILE_TYPE;

OLDLEN : constant STRINDEX := ITEM.LEN;

begin -- GET_LINE
GET_LINE(FILE, ITEM.VALUE,
FORMAT (ITEM, OLDLEN) ;

end GET_LINE;

ITEM.LEN) ;

procedure GET LINE (ITEM : in out VSTRING)
OLDLEN : constant STRINDEX := ITEM.LEN;
begin -- GET_LINE
GET_LINE(ITEM.VALUE, ITEM.LEN) ;
FORMAT (ITEM, OLDLEN) ;
end GET_LINE;
function SLICE (FROM : VSTRING; FRONT, BACK

begin -- SLICE
if ((FRONT not in FIRST ..
(BACK not in FIRST ..
then raise CONSTRAINT ERROR;
end if;

return (Vstr (FROM.VALUE (FRONT
end SLICE;

function SUBSTR (FROM VSTRING; START,
begin -- SUBSTR
if (START not in FIRST

((START + LENGTH - 1 not in FIRST
and then (LENGTH > 0))
then raise CONSTRAINT_ ERROR;
end if;

return (Vstr (FROM, VALUE (START
end SUBSTR;
function DELETE (FROM VSTRING;

96

ITEM

LENGTH

FRONT, BACK

in out VSTRING) is

is

STRINDEX) return VSTRING is

FROM.LEN) or else
FROM.LEN)) and then FRONT <= BACK

BACK))) ;

STRINDEX) return VSTRING is

FROM.LEN) or else

FROM. LEN)

START + LENGTH -1))):

STRINDEX) return VSTRING is

TEMP : VSTRING := FROM;

begin -~ DELETE
if ((FRONT not in FIRST .. FROM.LEN) or else
(BACK not in FIRST .. FROM.LEN)) and then FRONT <= BACX
then raise CONSTRAINT ERROR;
end if;

if FRONT > BACK then return(FROM); end if;
TEMP .LEN := FROM.LEN - (BACK - FRONT) - 1;

TEMP . VALUE (FRONT .. TEMP.LEN) := FROM.VALUE(BACK + 1 .. FROM.LEN);
FORMAT (TEMP, FROM.LEN);
return (TEMP) ;

end DELETE;

function INSERT (TARGET: VSTRING; ITEM: VSTRING;
POSITION : STRINDEX := FIRST) return VSTRING is

TEMP : VSTRING:

begin -- INSERT
if POSITION not in FIRST .. TARGET.LEN
then raise CONSTRAINT ERROR;
end if;

if TARGET.LEN + ITEM.LEN > LAST
then raise CONSTRAINT ERROR;

else TEMP.LEN := TARGET.LEN + ITEM.LEN;
end if;
TEMP . VALUE (FIRST .. POSITION - 1) := TARGET.VALUE (FIRST .. POSITION - 1)
TEMP .VALUE (POSITION .., (POSITION + ITEM.LEN - 1)) :=
ITEM.VALUE (FIRST .. ITEM.LEN);
TEMP . VALUE ((POSITION + ITEM.LEN) .. TEMP.LEN) :=
TARGET.VALUE (POSITION .. TARGET..LEN);

return(TEMP) ;
end INSERT;

function INSERT (TARGET: VSTRING; ITEM: STRING;
POSITION : STRINDEX := FIRST) return VSTRING is
begin -- INSERT
return INSERT (TARGET, VSTR(ITEM), POSITION) ;
end INSERT;

function INSERT (TARGET: VSTRING; ITEM: CHARACTER;

POSITION : STRINDEX := FIRST) return VSTRING is
begin -- INSERT

97

return INSERT (TARGET, VSTR(ITEM), POSITION);
2nd INSERT;

function APPEND (TARGET: VSTRING; ITEM: VSTRING; POSITION : STRINDEX)
return VSTRING is

TEMP : VSTRING;
POS : STRINDEX := POSITION;

begin -- APPEND

if POSITION not in FIRST .. TARGET.LEN
then raise CONSTRAINT ERROR;
end if;

if TARGET.LEN + ITEM.LEN > LAST
then raise CONSTRAINT ERROR;

else TEMP.LEN := TARGET.LEN + ITEM.LEN;
end if;
TEMP .VALUE (FIRST .. POS) := TARGET.VALUE (FIRST .. POS);
TEMP .VALUE (POS + 1 .. (POS + ITEM.LEN); := ITEM.VALUE(FIRST .. ITEM.LEN);
TEMP .VALUE ((POS + ITEM.LEN + 1) .. TEMP.LEN) :=
TARGET.VALUE(POS + 1 .. TARGET.LEN);

return (TEMP) ;
end APPEND;

function APPEND (TARGET: VSTRING; ITEM: STRING; POSITION : STRINDEY)
return VSTRING is
begin -- APPEND
return APPEND (TARGET, VSTR(ITEM), POSITION);
end APPEND;

function APPEND (TARGET: VSTRING; ITEM: CHARACTER; POSITION : STRINDEX)
return VSTRING is
begin -- APPEND
return APPEND (TARGET, VSTR(ITEM), POSITION);
end APPEND;

function APPEND (TARGET: VSTRING; ITEM: VSTRING) return VSTRING is
begin -- APPEND
return (APPEND (TARGET, ITEM, TARGET.LEN));
end APPEND;

function APPEND (LARGET: VSTRING; ITEM: STRING) return VSTRING is
begin -- APPEND
return (APPEND (TARGET, VSTR(ITEM), TARGET.LEN)}):;
end APPEND;

98

function APPELD (TARGET: VSTRING; ITEM: CHARACTER) return VSTRING is

begin =-- APPEND
return (APPEND (TARGET, VSTR(ITEM), TARGET.LEN));

end A PEND;

function REPLACE (TARGET: VSTRING; ITEM: VSTRING;
POSITION : STRINDEX := FIRST) return VSTRING is

TEMP : VSTRING;

begin -- REPLACE

if POSITION not in FIRST .. TARGET.LEN
--hen raise CONSTRAINT_ERRCR;
end if;

i1f POSITION + ITEM.L&EN - 1 <= TARGET.LEN
then TEMP.LEN := TARGET.LEN;
elsif POSITION + ITEM.LEN - 1 > LAST
then raise CONSTRAINT_ ERROR;
else TEMP.LEN := POSITION + ITEM.LEN - 1;

end if;
TEMP .VALUE (FIRS. .. POSITION - 1) := TARGET.VALUE(FIRST .. POSITION - 1);
TEMP . VALUE (POSITION .. (POSITION + ITEM.LEN - 1)) :=
ITEM.VALUE (FIRST .. ITEM.LEN);
TEM. .VALUE ((POSITIOM™ + ITEM.LEN) .. TEMP.LEN) :=
TARGET.VALUE ((POSITION + ITEM.LEN) .. TARGET.LEN);

retura (TEMP) ;
end REPLACE;

function REPLACE (TARGET: VSTRING; ITEM: STRING;
POSITION : STRINDEX := FIRST) return VSTRING 1is
begin -- REPLACE
return REPLACE (TARGET, VSTR(ITEM), POSITION);
end REPLACE;

function REPLACE (TARGET: VSTRING; ITEM: CHARACTER;
POSITION : STRINDEX := FIRST) return VSTRING is
begin -- REPLACE
return REPLACE (TARGET, VSTR(ITEM), POSITION);
end REPLACE;
function "&" (LEFT:VSTRING; RIGHT : VSTRING) return VSTRING is
TEMP : VSTRING;
begin -- "&"

if LEFT.LEN + RIGHT.LEN > LAST

99

then raise CONSTRAINT_ERROR;
else TEMP.LEN := LEFT.LEN + RIGHT.LEN;

end if;
TEMP .VALUE (FIRST .. TEMP.LEN) := LEFT.VALUE (FIRST .. LEFT.LEN) &
RIGHT.VALUE (FIRST .. RIGHT.LEN);
return (TEMP) ;
end "&%;

function "&" (LEFT:VSTRING; RIGHT : STRING) return VSTRING is
begin -- "&"
return LEFT & VSTR(RIGHT);
end "&";

function "&" (LEFT:VSTRING; RIGHT : CHARACTER) return VSTRING is

begin -- "&"
return LEFT & VSTR(RIGHT) ;
end "&";

function "&" (LEFT : STRING; RIGHT : VSTRING) return VSTRING is

begin -- "&"
return VSTR(LEFT) & RIGHT;
end "&";

function "&" (LEFT : CHARACTER; RIGHT : VSTRING) return VSTRING is

begin -- "&"
return VSTR(LEFT) & RIGHT;
end "&";

Function INDEX (WHOLE : VSTRING; PART : VSTRING; OCCURRENCE : NATURAL := 1)
return STRINDEX is

NOT_FOUND : constant NATURAL := 0;
INDEX : NATURAL := FIRST;
COUNT : NATURAL := 0;
begin -- INDEX
if PART = NUL then return(NOT FOUND); -- by definition
end if;

while INDEX + PART.LEN - 1 <= WHOLE.LEN and then COUNT < OCCURRENCE loop

if WHOLE.VALUE (INDEX .. PART.LEN 4+ INDEX ~ 1) =
PART.VALUE (1 .. PART.LEN)
then COUNT := COUNT + 1;
end if;
INDEX := INDEX + 1;
end loop;

if COUNT = OCCURRFNCE
then return(INDEX - 1);

100

else return(NOT_FOUND) ;
end if;
end INDEX;

Function INDEX (WHOLE : VSTRING; PART : STRING; OCCURRENCE : NATURAL

return STRINDEX is

begin -- Index
return (Index (WHOLE, VSTR(PART), OCCURRENCE));

end INDEX;

Function INDEX (WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE
return STRINDEX is

begin -- Index
return (Index (WHOLE, VSTR (PART), OCCURRENCE));

end INDEX;

NATURAL

function RINDEX (WHOLE: VSTRING; PART:VSTRING; OCCURRENCE:NATURAL := 1)

return STRINDEX 1is

NOT_FOUND : constant NATURAL := (VH
INDEX : INTEGER := WHOLE.LEN - (PART.LEN -1);

COUNT : NATURAL := 0;

begin -- RINDEX
if PART = NUL then return(NOT FOUND); -- by definition

end if;

while INDEX >= FIRST and then COUNT < OCCURRENCE loop
if WHOLE.VALUE (INDEX .. PART.LEN + INDEX - 1) =

PART.VALUE(1 .. PART.LEN)
then COUNT := COUNT + 1;
end if;
INDEX := INDEX - 1;
end loop;

if COUNT = OCCURRENCE
then
if COUNT > O

then return(INDEX + 1);
else return(NOT_FOUND) ;
end if;

else return(NOT_FOUND) ;

end if;

end RINDEX;

Function RINDEX(WHOLE : VSTRING; PART : STRING; OCCURRENCE
return STRINDEX is

101

NATURAL

= 1)

r= 1)

= 1)

begin -- Rindex
return (RINDEX (WHOLE, VSTR(PART), OCCURRENCE));
end RINDEX;

Function RINDEX (WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE : NATURAL
return STRINDEX is

begin -- Rindex
return (RINDEX (WHOLE, VSTR(PART), OCCURRENCE)) ;
end RINDEX;

function VSTR(FROM : CHARACTER) return VSTRING is
TEMP : VSTRING;

begin -- VSTR
if LAST < 1
then raise CONSTRAINT_ERROR;
else TEMP.LEN := 1;
end if;

TEMP .VALUE (FIRST) := FROM;

return (TEMP) ;
end VSTR;

function VSTR(FROM : STRING) return VSTRING is
TEMP : VSTRING;
begin -~ VSTR

if FROM’ LENGTH > LAST
then raise CONSTRAINT ERROR;

else TEMP.LEN := FROM’LENGTH;
end if;
TEMP .VALUE (FIRST .. FROM’LENGTH) := FROM;
return (TEMP) ;
end VSTR;

Function "+" (FROM : STRING) return VSTRING is

begin -~ "+"
return (VSTR (FROM)) ;
end "+";

Function "+4+" (FROM : CHARACTER) return VSTRING is
begin
return (VSTR (FROM)) ;

102

end "+%;

function CONVERT (X : FROM) return TO is

begin -- CONVERT
return (VSTR(STR(X))) ;
end CONVERT:
end VSTRINGS;

103

-—- FILES - "files.a" has the global

data tyre declerations used
other packages.

by all the

with VSTRINGS;
with SEQUENCES;
with GRAPHS;

package FILES is

package VARSTRING is new VSTRINGS (80);

use VARSTRING;

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

OPERATOR_ID is VSTRING;
VALUE is NATURAL;

MET is
MRT is
MCF is
PERIOD
WITHIN
STARTS

VALUE;
VALUE;
VALUE;
is VALUE;
is VALUE;
is VALUE;

STOPS is VALUE;
LOWERS is VALUE;
UPPERS is VALUE;

Exception Operator
TEST_VERIFIED :

type OPERATOR is

BOOLEAN

OPERATOR_ID;

TRUE;

record
THE_OPERATOR_ID : OPERATOR_ID;
THE MET : MET := 0;
THE_MRT : MRT := 0;
THE_ MCP : MCP := 0;
THE_PERIOD PERIOD = 0;
THE_WITHIN WITHIN = 0;

end record;

package DIGRAPH is new

GRAPHS (OPERATOR) ;

type SCHEDULE INPUTS is
record
THE_OPERATOR : OPERATOR_ID;
THE_START : STARTS := 0;
THE_STOP STOPS = 0;
THE_LOWER : LOWERS = 0;
THE UPPER : UPPERS := (;

end record;

package SCHEDULE_ INPUTS_LIST is

104

new SEQUENCES (SCHEDULE_INPUTS) ;

type OP_INFO is

record
NODE : OPERATOR;
SUCCESSORS : DIGRAPH.V_LISTS.LIST;

PREDICESSORS : DIGRAPH.V_LISTS.LIST;
end record;

package OP_INFO_LIST is new SEQUENCES (OP_INFO);

end FILES;

105

-— FILE_PROCESSOR - "fp s.a,
validate
costrucc

fp b.a"; includes the procedures which are used to
the information in the
the Graph Structure.

fatomic.info’ file and

with FILES; us

e FILES;

package FILE PROCESSOR is

procedure SEPARATE DATA (THE_GRAPH

procedure VALIDATE DATA (THE_GRAPH

CRIT_OP_LACKS_MET : exception;
ME™ NOT_LESS_THAN_PERIOD : exception;
MET NOT_LESS_THAN MRT : exception;
MCP_NOT_LESS_THAN_MRT : exception;
MCP_LESS_THAN MET exception;
MET I35 _GREATER_THAN FINISH WITHIN : exception;
SPORADIC_OP_LACKS_MCP exception;
SPORADIC OP_ LACKS_ MRT : exception;
PERIOD LESS_THAN_FINISH_WITHIN : exception;

end FILE_ PROCE

SSOR;

- —— s o —— T —— - f—

with TEXT_IO;
with FILES; us

e FILES;

package body FILE PROCESSOR 1is

in out DIGRAPH.GRAPH);

in out DIGRAPH.GRAPH) ;

procedure SEPARATE DATA (THE_GRAPH : in out DIGRAPH.GRAPH) is

-- This procedure reads the output file which has the link information with
-- the Atomic operators and depending upon the keywords that are declared
-- as constants separates the information in the file and stores it in the
-- graph data structure, where GRAPH has the operator and link information

-- in it.

package VALUE_IO is new TEXT_IO.INTEGER_IO (VALUE);

MET
MRT
MCP :
PERIOD :
WITHIN
LINK
ATOMIC
EMPTY

Current Va
New_Stream
New_ Word

constant
constant
constant
constant
constant
constant
constant
constant

lue

VARSTRING.VSTRING
VARSTRING.VSTRING
VARSTRING.VSTRING
VARSTRING.VSTRING
VARSTRING.VSTRING
VARSTRING.VSTRING
VARSTRING.VSTRING
VARSTRING.VSTRING

VALUE;

:= VARSTRING.VSTR ("MET") ;

-

VARSTRING.

= VARSTRING.

VARSTRING.

= VARSTRING.

DIGRAPH.DATA STREAM;

VARSTRING.VSTRING;

106

VARSTRING.
VARSTRING.
VARSTRING.

VSTR ("MRT") ;
VSTR ("MCP") ;
VSTR ("PERIOD") :
VSTR ("WITHIN") ;
VSTR ("LINK") ;
VSTR ("ATOMIC") ;
VSTR ("EMPTY") ;

Cur_Opt : OPERATOR;

Cur_Link : DIGRAPH.LINK_DATA;

NON_CRITS : TEXT_IO.FILE_TYPE;

AG_OUTFILE : TEXT_IO.FILE_TYPE;

INPUT : TEXT_IO.FILE_MODE := TEXT_IO.IN FILE;
OUTPUT : TEXT_IO.FILE_MODE := TEXT_IO.OUT FILE;
PRINT_EDGES : DIGRAPH.E_LISTS.LIST;

S1, S§2, L1 : DIGRAFH.V_LISTS.LIST;

ipl, ID2 : OPERATOR;

START_NODE : OPERATOR;

END_NODE : OPERATOR;

procedure INITIALIZE OPERATOR (OP : in out OPERATOR) is
begin
OP.THE_MET 1=
OP .THE_MRT 1=
OP . THE_MCP
OP .THE_PERIOD
OP.THE_WITHIN :=
end;

. we

L]
oOo0oo0ooo

~e

~a

begin
TEXT_IO.OPEN (AG_OUTFILE, INPUT, "atomic.info");
TEXT_IO.CREATE (NON_CRITS, OUTPUT, “non_crits“);
VARSTRING.GET_LINE (AG_OUTFILE, New Word):;
while not TEXT_IO.END_OF_FILE(AG_OUTFILE) loop

if VARSTRING.EQUAL (New_Word, LINK) then -- keyword “LINK"
START_NODE.THE_OPERATOR ID := EMPTY;
END_NODE.THE_OPERATOR_ID := EMPTY;
DIGRAPH.V_STRING.GET_LINE(AG_OUTFILE,New_Stream);
Cur_Link.THE_DATA_STREAM := New_Stream;
VARSTRING.GET_LINE(AG_OUTFILE, New_Word);
Ll := THE_GRAPH.VERTICES;
while DIGRAPH.V_LISTS.NON EMPTY (L1l) loop
if VARSTRING.EQUAL(DIGRAPH.V_LISTS.VALUE(Ll).THE_OPERATOR_ID,New_Word)
then
START_NODE := DIGRAPH.V_LISTS.VALUE(Ll);
exit;
end if;
DIGRAPH.V_LISTS.NEXT(LI);
end loop:;
VALUE_IO.GET (AG_OUTFILE, Current Value);
TEXT_IO.SKIP_LINE (AG_OUTFILE) ;

Cur_Link.THE_LINK MET := Current Value;
VARSTRING.GET_LINE (AG_OUTFILE, New_Word);
Ll := THE_GRAPH.VERTICES;

while DIGRAPH.V_LISTS.NON _EMPTY (L1l) loop
if VARSTRING.EQUAL(DIGRAPH.V_LISTS.VALUE(Ll).THE_OPERATOR_ID,New_Word)
then

107

END_NODE := DIGRAPH.V_LISTS.VALUE(L1);
exit;
end if;
DIGRAPH.V_LISTS.NEXT(L1l):;
end loop;
-- when either starting node or ending node of a link is EXTERNAL,
~- the link information will not be added to the graph. Assuming
~- that all external data coming in is ready at start time.

if VARSTRING.NOTEQUAL (START NODE.THE OPERATOR_ ID,EMPTY) and
VARSTRING.NOTEQUAL(END_NODE.THE_OPERATOR_ID,EMPTY) then
DIGRAPH.V_LISTS.ADD (START_NODE, Cur_Link.THE_FIRST_OP_ID);
DIGRAPH.V_LISTS.ADD (END_NODE, Cur_ Link.THE_SECOND_OP_ID});
DIGRAPH.ADD(Cur_Link, THE_GRAFPH) ;
end if;
VARSTRING.GET_LINE (AG OUTFILE, New_Word);

elsif VARSTRING.EQUAL (New_ Word, ATOMIC) then -~ keyword "ATOMIC"
VARSTRING.GET_LINE (AG_OUTFILE, New_Word);
Cur_Opt .THE_OFERATOR_ID := New_ Word;

VARSTRING.GET_LINE (AG_QUTFILE, New_Word);
if (VARSTRING.EQUAL(New_Word, ATOMIC)) or
(VARSTRING.EQUAL(New_Word, LINK)) or
(TEXT_IO.END_OF_FILE(AG_OUTFILE)) then
VARSTRING.PUT_LINE (NON_CRITS, Cur_Opt.THE_OPERATOR_ID);
else
while VARSTRING.NOTEQUAL (New_Word, ATOMIC) and
VARSTRING.NOTEQUAL (New_Word, LINK) and
not TEXT_IO.END OF FILE (AG_OUTFILE) loop

if VARSTRING.EQUAL (New_Word,MET) then -~ keyword "MET"
VALUE_IO.GET (AG_OUTFILE, Current_Value);
TEXT_IO.SKIP_LINE (AG_OUTFILE) ;
Cur_Opt .THE MET := Current_ Value;

elsif VARSTRING.EQUAL (New_Word,MRT) then -~ keyword ®“MRT"
VALUE_IO.GET (AG_OUTFILE,Current_Value);
TEXT_IO.SKIP_LINE (AG_OUTFILE);
Cur Opt.THE_MRT:= Current_Value;

elsif VARSTRING.EQUAL (New_Word,MCP) then -- keyword "MCP"
VALUE_I10.GET (AG_OUTFILE, Current Value);
TEXT_IO.SKIP_LINE (AG_OUTFILE) ;
Cur_Opt.THE MCP := Current_Value:;

elsif VARSTRING.EQUAL (New_Word, PERIOD) then -- keyword "PERIOD"
VALUE_IO.GET (AG_OUTFILE,Current Value);
TEXT_IO.SKIP_LINE (AG_OUTFILE);
Cur_Opt.THE_PERIOD := Current Value;

elsif VARSTRING.EQUAL (New Word,WITHIN) then ~-—- keyword "WITHIN"

108

VALUE IO.GET(AG_OUTFILE, Current_Value);

TEXT_IO.SKIP_LINE(AG_OUTFILE);

Cur_Opt.THE _WITHIN := Current_Value;
end if;

VARSTRING.GET_LINE (AG_OUTFILE, New_Word) ;
end loop:;

DIGRAPH.ADD (Cur_Opt, THE GRAPH);
INITIALIZE OPERATOR (Cur_ OPt);
end if;
end if;
end loop;
end SEPARATE DATA;

procedure VALIDATE DATA (THE_GRAPH : in out DIGRAPH.GRAPH) is
-- check the correctness of the operator and the link information before
=~ running the algorithms. If any check fails in this procedure, the
—-- program halts.

TARGET : DIGRAPH.V_LISTS.LIST;

package VAL_IO is new TEXT_ IO.INTEGER IO (VALUE);
begin

TARGET := THE_GRAPH.VERTICES;

while DIGRAPH.V_LISTS.NON_EMPTY (TARGET) loop

-- ensure that there is no operator without an MET.

if DIGRAPH.V_LISTS.VALUE (TARGET) .THE MET = 0 then
Exception_Operator := DIGRAPH.V_LISTS.VALUE(TARGET).THE_OPERATOR_ID;
raise CRIT_OP_LACKS_MET;

end if;

if DIGRAPH.V_LISTS.VALUE (TARGET) .THE_PERIOD = 0 then

-- Check to ensure that MCP has a value for sporadic operators

if DIGRAFH.V_LISTS.VALUE (TARGET) .THE_MCP = 0 then
Exception Operator := DIGRAPH.V_LISTS.VALUE(TARGET).THE_OPERATOR_ID;
raise SPORADIC_OP_LACKS_MCP;

elsif DIGRAPH.V_LISTS.VALUE(TARGET).THE_MET >

DIGRAPH.V~LISTS.VALUE(TARGET).THE_MCP then

Exception_Operator = DIGRAPH.V_LISTS.VALUE(TARGET).THE_OPERATOR_ID;
raise MCP_LESS_THAN MET;

end if;

=~ Check to ensure that MRT has a value for sporadic operators
if DIGRAPH.V_LISTS.VALUE (TARGET) .THE_MRT = 0 then

Exception Operator := DIGRAPH.V_LISTS.VALUE (TARGET) . THE_OPERATOR_ID;
raise SPORADIC OP_LACKS_MRT;
end if;

-- Check to ensure that the MRT is greater than the MET.
if DIGRAPH.V_LISTS.VALUE(TARGET).THE_MET >

109

DIGRAPH.V_LISTS.VALUE(TARGET).THE_MRT then
Exception_Operator := DIGRAPH.V;LISTS.VALUE(TARGET).THE_OPERATOR_ID;
raise MET NOT LESS_THAN MRT;
end if;

-- Guarantees that an operator can fire at least once
-- before a response expected.
if DIGRAPH.V_LISTS.VALUE (TARGET) .THE MCP >
DIGRAPH.V_LISTS.VALUE(TARGET).THE_MRT then
raise MCP_NOT_LESS_THAN MRT;
end if;

else
-= Check to ensure that the PERIOD is greater than the MET.
if DIGRAPH.V_LISTS.VALUE(TARGET).THE_MET >
DIGRAPH.V_LISTS.VALUE (TARGET) .THE_PERIOD then
Exception_Operator := DIGRAPH.V_LISTS.VALUE (TARGET) .THE_OPERATOR ID;
raise MET NOT_LESS_THAN PERIOD;
end if;

-—- Check to ensure that the FINISH WITHIN is grater than the MET.
if DIGRAPH.V_LISTS.VALUE (TARGET) .THE_WITHIN /= 0 then
if DIGRAPH.V_LISTS.VALUE (TARGET) .THE_MET >
DIGRAPH.V_LISTS.VALUE (TARGET) .THE_WITHIN then
Exception_Operator := DIGRAPH.V_LISTS.VALUE (TARGET) . THE_OPERATOR_ID;
raise MET IS _GREATER_THAN FINISH WITHIN;
elsif DIGRAPH.V_LISTS.VALUE (TARGET) .THE_PERIOD <
DIGRAPH.V_LISTS.VALUE (TARGET) . THE_WITHIN then

Exception_Operator = DIGRAPH.V_LISTS.VALUE(TARGET).THE_QPERATOR_ID;
raise PERIOD_LESS_THAN FINISH WITHIN;
end if;
end if;
end if;
DIGRAPH.V_LISTS.NEXT (TARGET) ;
end loop;

end VALIDATE_ DATA;

end FILE_PROCESSOR;

110

-- TOPOLOGICAL_SORTER -~ "t sort_s.a, t_sort b.a"; this package contains one
procedure that does a topological sort of a linked list

with FILES;use FILES;
package TOPOLOGICAL_SORTER is

procedure TOPOLOGICAL SORT (G: in DIGRAPH.GRAPH;
PRECEDENCE LIST: in out DIGRAPH.V_LISTS.LIST);

end TOPOLOGICAL_ SORTER;

with TEXT_I0;
with FILES; use FILES;

package body TOPOLOGICAL_SORTER is
-- This package determines the precedence order in which operators must
-~ execute in the final schedule. This information is determined

-~ from the graph.

procedure TOPOLOGICAL SORT (G: in DIGRAPH.GRAPH;
PRECEDENCE_LIST: in out DIGRAPH.V_LISTS.LIST) is

-- This procedure determines which operators in the graph must
-- be executed before another.

Q : DIGRAPH.V_LISTS.LIST;
begin

DIGRAPH.T SORT (G, PRECEDENCE_LIST);
Q := PRECEDENCE_LIST;

end TOPOLOGICAL_SORT;

end TOPOLOGICAL_SORTER;

111

-- HARMONIC BLOCK BUILDER - "hbb_s.a, hbb_b.a"; this package determines the
- periodic equivalents of the sporadic operators,
- and the length for the harmonic block.

with FILES; use FILES;
package HARMONIC BLOCK BUILDER is

procedure CALC PERIODIC EQUIVALENTS (THE_GRAPH : in out DIGRAPH.GRAPH);

procedure FIND_ BASE_BLOCK (PRECEDENCE_LIST : in DIGRAPH.V_LISTS.LIST;

BASE BLOCK : out VALUE);
procedure FIND BLOCK LENGTH (PRECEDENCE_LIST : in DIGRAPH.V_LISTS.LIST;
HARMONIC BLOCK_LENGTH : out INTEGER);
NO_BASE_BLOCK : exception;
NO_OPERATOR_IN_LIST : exception;

MET_NOT_LESS_THAN PERIOD : exception;

end HARMONIC_BLOCK_BUILDER;

with TEXT_IO;
with FILES; use FILES;
package body HARMONIC BLOCK_BUILDER 1is

procedure CALC_PERIODIC_EQUIVALENTS (THE_GRAPH : in out DIGRAPH.GRAPH) is
V : DIGRAPH.V LISTS.LIST := THE_GRAPH.VERTICES;
E : DIGRAPH.E_LISTS.LIST := THE_GRAPH.LINKS;
OPT : OPERATOR;
NEW P : VALUE := 0;
package val_io is new TEXT_IO.INTEGER_IO(value);
procedure VERIFY_1 (O : in OPERATOR) is

~= Check to ensure that MRT has a value for sporadic operators

begin
if O.THE_MET >= O.THE_PERIOD then
Exception_Operator := O.THE_OPERATOR_ ID;
raise MET_NOT LESS_ THAN PERIOD;
end if;

end VERIFY 1;

procedure CALCULATE_NEW_PERIOD (O: in OPERATOR; NEW_PERIOD: in out VALUE) is
DIFFERENCE : VALUE;
package VALUE_10 is new TEXT_IO.INTEGER_IO(VALUE) ;
begin
DIFFERENCE := O.THE_MRT - O.THE_MET;
if DIFFERENCE < O.THE MCP then
NEW_TFERIOD := DIFFERENCE;

112

else
NEW_PERIOD := O.THE_MCP;
end if;
end CALCULATE_NEW_PERIOD;

procedure MODIFY LINK INFO (EDGES : in out DIGRAPH.E_LISTS.LIST;
TARGET : in OPERATOR) is

P : DIGRAPH.E LISTS.LIST := EDGES;
START_NODE : DIGRAPH.V_LISTS.LIST;
END_NODE : DIGRAPH.V_LISTS.LIST;
v1i, v2 : OPERATOR;
begin

while DIGRAPH.E_LISTS.NON_EMPTY (P} loop

START_NODE := DIGRAPH.E_LISTS.VALUE (P) .THE_FIRST OP_ID;
END_NODE = DIGRAPH.E_LISTS.VALUE (P) .THE_SECOND OP ID;
vl = DIGRAPH.V_LISTS.VALUE (START NODE) ;

v2 = DIGRAPH.V_LISTS.VALUE (END_NODE) ;

if VARSTRING EQUAL (V1.THE_OPERATOR_ID, TARGET.THE _OPERATOR_ID) then
START_NODE.ELEMENT.THE PERIOD := TARGET.THE_ PERIOD;

elsif VARSTRING.EQUAL /(V2.THE_OPERATOR_ID, TARGET.THE_OPERATOR_ID) then
END_NODE.ELEMENT.THE_PERIOD := TARGET.THE_PERIOD;

end if;

DIGRAPH.E_LISTS.NEXT(P);

end loop;
end MODIFY_ LINK INFO;

begin -- main CALC_PERIODIC_EQUIVALENTS
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop

OPT := DIGRAPH.V_LISTS.VALUE (V);

if OPT.THE_PERIOD = 0 then
CALCULATE_NEW_PERIOD (OPT, NEW_P);
OPT.THE_PERIOD := NEW _P;
VERIFY 1(OPT);
MODIFY LINK_INFO(E, OPT);
V.element.the_period := new_p;

E := THE_GRAPH.LINKS;
end if;
DIGRAPH.V_LISTS.NEXT (V) ;

end loop;

end CALC_PERIODI._EQUIVALENTS;

procedure FIND_BASE_BLOCK (PRECEDENCE_LIST : in DIGRAPH.V_LISTS.LIST;
BASE BLOCK : out VALUE) is

P_LIST : DIGRAPH.V_LISTS.LIST := PRECEDENCE_LIST;
DIVISOR : VALUE;

ALTERNATE_SEQUENCE : DIGRAPH.V_LISTS.LIST;
BASE_BLOCK_SEQUENCE : DIGRAPH.V_ILISTS.LIST;

function FIND MINIMUM PERIOD (P_LIST : in DIGPAPH.V_LISTS.LIST)
return VALE is

113

V : DIGRAPH.V_LISTS.LIST := P_LIST;
MIN_PERIOD : VALUE := 0:
begin

if DIGRAPH.V_LISTS.NON EMPTY (V) then
MIN_PERIOD := DIGRAPH.V_LISTS.VALUE (V) .THE_PERIOD;
DIGRAPH.V_LISTS.NEXT (V) ;
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop
if DIGRAPH.V_LISTS.VALUE (V) .THE_PERIOD < MIN PERIOD then
MIN_PERIOD := DIGRAPH.V_LISTS.VALUE (V) .THE_PERIOD;

end if;
DIGRAPH.V_LISTS.NEXT (V)
end loop;
return MIN PERIOD;
else
raise NO_OPERATOR_IN_LIST;
end if;

end FIND_MINIMUM PERIOD;

function MODE_DIVIDE (THE_PERIOD : in VALUE) return VALUE is
begin

return (THE PERIOD mod DIVISOR);
end MODE DIVIDE;

procedure INITIAL PASS (P_LIST : in out DIGRAPH.V_LISTS.LIST;

BASE _BLOCK_SEQUENCE : in out DIGRAPH.V_LISTS.LIST;
ALTERNATE_SEQUENCE : in out DIGRAPH.V_LISTS.LIST)

ORIG_SEQUENCE : DIGRAPH.V_LISTS.LIST := P_LIST;

OP_FROM_ORG_SEQ : OPERATOR;

REMAINDER : VALUE;

THE_PERIOD : VALUE;

begin
while DIGRAPH.V_LISTS.NON_EMPTY (ORIG_SEQUENCE) loop
THE_PERIOD := DIGRAPH.V_LISTS.VALUE(ORIG_SEQUENCE).THE_PERIOD;

REMAINDER := MODE_DIVIDE (THE_PERIOD);
OP_FROM ORG_SEQ := DIGRAPH.V_LISTS.VALUE (ORIG_SEQUENCE) ;
if REMAINDER = U then

DIGRAPH.V_LISTS.ADD (OP_FROM ORG_SEQ, BASE_BLOCK_SEQUENCE) ;

else
DIGRAPH.V_LiSYS.ADD (OP_FROM ORG_SEQ, ALTERNATE_SEQUENCE);
end if;
DIGRAPH.V_LISTS.NEXT (ORIG_SEQUENCE) ;
end loop;

end INITIAL_ PASS;

begin -- main FIND_BASE_BLOCK
DIVISOR := FIND_MINIMUM_PERIOD(P_LIST);
INITIAL_PASS (P_LIST, BASE_BLOCK_SEQUENCE, ALTERNATE_SEQUENCE) ;
while DIGRAPH.V_LISTS.NON_EMPTY(ALTERNATE_SEQUENCE) loop
if DIVISOR = 1 then

114

raise NO_BASE_BLOCK;
-- exit and terminate the Static Scheduler

else
DIVISOR := DIVISOR - 1;
ALTERNATE_SEQUENCE := null;

BASE_BLOCK_SEQUENCE := null;

INITIAL PASS (P_LIST, BASE_BLOCK_SEQUENCE, ALTERNATE SEQUENCE);
end if;

end loop;
BASE_BLOCK := DIVISOR;
end FIND BASE_BLOCK;

procedure FIND BLOCK LENGTH (PRECEDENCE_LIST : in DIGRAPH.V_LISTS.LIST;
HARMONIC BLOCK_LENGTH : out INTEGER) is

ORIG_SEQUENCE : DIGRAPH.V_LISTS.LIST := PRECEDENCE_LIST;

NUMBER1 : VALUE;
NUMBERZ2 ;. VALUE;
LCM : VALUE;
GCD : VALUE;

TARGET_NO : VALUE;

function FIND_GCD (NUMBER1 : in VALUE; NUMBER2 : in VALUE) return VALUE is
NEW_GCD : VALUE;
begin
while GCD /= 0 loop
if (NUMBER1 mod GCD = 0) and (NUMBER2 mod GCD = 0) then
NEW_GCD := GCD;
return NEW_GCD;
else
GCD := GCD - 1;
end if;
end loop;
end FIND_ GCD;

function FIND_ LCM (NUMBER1, NUMBER2 : VALUE) return VALUE is
begin

return (NUMBER1 * NUMBERZ2) / GCD;
end FIND_ LCM;

begin -- main FIND_BLOCK LENGTH
if DIGRAFPH.V_LISTS.NON_EMPTY (ORIG_SEQUENCE) then
NUMBER1 := DIGRAPH.V_LISTS.VALUE(ORIG_SEQUENCE).THE_PERIOD;

DIGRAPH.V_LISTS.NEXT (ORIG_SEQUENCE) ;
while DIGRAPH.V_LISTS.NON_EMPTY(ORIG_SEQUENCE) loop
NUMBERZ := DIGRAPH.V_LISTS.VALUE (ORIG_SEQUENCE) .THE_PERIOD;
if NUMBERZ > NUMBER1l then
GCD := NUMBER1;
TARGET_NO := NUMBERZ2;
else
GCD := NUMBER2;

115

TARGET_NO := NUMBERL1;
end if;
GCD := FIND_GCD(GCD, TARGET_NO) ;
LCM := FIND_ LCM(NUMBERI1, NUMBERZ2) ;
NUMBER1 := LCM;
DIGRAPH.V_LISTS.NEXT (ORIG_SEQUENCE) ;

end loop;

HARMONIC_BLOCK LENGTH := LCM;
else

raise NO_OPERATOR IN_LIST;
end if;

end FIND_BLOCK_LENGTH;

end HARMONIC_BLOCK_ BUILDER;

116

-- OPERATOR_SCHEDULER - "scheduler_s.a, scheduler_b.a"; contains all the
- scheduling algorithms implemented. It creates a static
-- schedule into the ‘ss.a’ file, if possible.

with FILES; use FILES;
package OPERATOR SCHEDULER is

procedure TEST_DATA (INPUT_LIST : in DIGRAPH.V_LISTS.LIST;
HARMONIC BLOCK_LENGTH : in INTEGER);

procedure SCHEDULE_INITIAL SET (PRECEDENCE LIST : in DIGRAPH.V_LISTS.LIST;

THE_SCHEDULE_INPUTS : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC_BLOCK_LENGTH : in INTEGER;
STOP_TIME : in out INTEGER);

procedure SCHEDULE_REST OF BLOCK (PRECEDENCE LIST : in DIGRAPH.V_LISTS.LIST;

THE_SCHEDULE_ INPUTS : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIT BLOCK LENGTH : in INTEGER;
STOP_TIME : in INTEGER);

procedure SCHEDULE_WITH EARLIEST START (THE_GRAPH : in DIGRAPH.GRAPH;
AGENDA : in out SCHEDULE INPUTS_LIST.LIST;
HARMONIC BLOCK_LENGTH : in INTEGER);

procedure SCHEDULE _WITH_EARLIEST DEADLINE (THE GRAPH : in DIGRAPH.GRAPH;
AGENDA : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK_LENGTH : in INTEGER);

procedure CREATE_STATIC_ SCHEDULE (THE_GRAPH : in DIGRAPH.GRAPH;
THE_SCHEDULE_INFPUTS : in SCHEDULE_ INPUTS_LIST.LIST;
HARMONIC BLOCK_LENGTH : in INTEGER);

MISSED_DEADLINE : exception;
OVER_TIME : exception;
MISSED_OPERATOR : exception;

end OPERATOR_SCHEDULER;

with FILES; use FILES;

with TEXT_IO;

package body OPERATOR SCHEDULER is

procedure TEST DATA (INPUT_LIST : in DIGRAPH.V_LISTS.LIST;
HARMONIC BLOCK_LENGTH : in INTEGER) is

procedure CALC_TOTAL_ TIME (INPUT_LIST : in DIGRAPH.V_LISTS.LIST;
HARMONIC_BLOCK_LENGTH : in INTEGER) is
v o DIGRAPH.V_LISTS.LIST to= INPUT_LIST;
TIMES : FLOAT := 0.0;
OP_TIME : FLOAT := 0.0;

117

TOTAL _TIME : FLOAT := 0.0;
PER : OPERATOR;
BAD_ TOTAL TIME : exception;

function CALC_NO_OF_PERIODS (HARMONIC BLOCK LENGTH : in INTEGER;
THE_PERIOD : in INTEGER) return FLOAT is
begin
return FLOAT (HARMONIC BLOCK_LENGTH) / FLOAT (THE_PERIOD) ;
end TALC_NO_OF PERIODS;

function MULTIPLY BY MET (TIMES : in FLOAT;
THE_MET : in VALUE) return FLOAT is
begin
return TIMES * FLOAT(THE_MET);
end MULTIPLY BY_ MET;

function ADD_TO SUM (OP_TIME : in FLOAT) return FLOAT is
begin

return TOTAL TIME + OP_TIME;
end ADD_TO_SUM;

begin ~-~main CALC_TOTAL_ TIME
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop
PER := DIGRAPH.V_LISTS.VALUE (V);
TIMES:= CALC_NO_OF PERIODS (HARMONIC BLOCK_LENGTH , PER.THE_PERIOD);
OP_TIME := MULTIPLY BY MET (TIES, DIGRAPH.V_LISTS.VALUE (V) .THE_MET) ;
TOTAL_TIME := ADD_TO_SUM (OP_TIME);
if TOTAL_TIME > FLOAT (HARMONIC BLOCK_LENGTH) then
raise BAD TOTAL TIME;
else
DIGRAPH.V_LISTS.NEXT(V);
end if;
end loop:
exception
when BAD_TOTAL_ TIME =>
TEST_VERIFIED := FALSE;
TEXT_IO.PUT ("The total execution time of the operators exceeds ");
TEXT_IO.PUT_LINE ("the HARMONIC BLOCK LENGTH");
TEXT_IO.NEW_LINE;
end CALC_TOTAL_TIME;

procedure CALC_HALF_ PERIODS (INPUT_LIST : in DIGRAPH.V _LISTS.LIST) is

V : DIGRAPH.V_LISTS.LIST := INPUT_LIST;
HALF_PERIOD : FLOAT;
FAIL HALF_PERIOD : exception;

function DIVIDE PERIOD BY 2 (THE_PERIOD : in VALUE) return FLOAT is
begin

return FLOAT (THE_PERIOD) / 2.0;
end DIVIDE_PERIOD_BY 2;

118

begin --main CALC_HALF_PERIODS;
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop
HALF _PERIOD := DIVIDE_PERIOD_BY 2(DIGRAPH.V_LISTS.VALUE (V) .THE_PERIOD);
if FLOAT (DIGRAPH.V_LISTS.VALUE (V) .THE_MET) > HALF_PERIOD then
Exception Operator := DIGRAPH.V_LISTS.VALUE (V) .THE_OPERATOR_ID;
raise FAIL HALF_PERIOD;
else
DIGRAPH.V_LISTS.NEXT(V);
end if;
end loop;
exception
when FAIL HALF_PERIOD =>
TEST_VERIFIED := FALSE;
TEXT_IO.PUT ("The MET of Operator ");
VARSTRING.PUT (Exception Operator);
TEXT_IO.PUT_LINE (" is greater than half of its period.");
end CALC_HALF_PERIODS;

procedure CALC_RATIO SUM (INPUT_LIST : in DIGRAPH.V_LISTS.LIST) is

V : DIGRAPH.V_LISTS.LIST := INPUT_LIST;
RATIO : FLOAT;
RATIO_SUM : FLOAT := 0.0;

THE_MET : VALUE;
THE_PERIOD : VALUE;
RATIO_TOO_BIG : exception;

function DIVIDE MET BY PERIOD (THE_MET : in VALUE;
THE_PERIOD : in VALUE) return FLOAT is
begin
return FLOAT (THE_MET) / FLOAT (THE_PERIOD);
end DIVIDE_MET_BY_PERIOD;

function ADD_TO TIME (RATIO : in FLOAT) returr FLOAT is
begin

return RATIO_SUM + RATIO;
end ADD_TO_TIME;

begin --main CALC_RATIO_SUM

while DIGRAPH.V_LISTS.NON EMPTY (V) loop
THE_MET := DIGRAPH.V_LISTS.VALUE (V) .THE MET;
THE_PERIOD := DIGRAPH.V_ LISTS.VALUE (V) .THE_PERIOD;
RATIO := DIVIDE_MET BY PERIOD(THE_MET, THE_PERIOD) ;
RATIO_SUM := ADD_TO_TIME (RATIO);
DIGRAPH.V_LISTS.NEXT (V) ;

end loop:;

if RATIO_SUM > 0.5 then
raise RATIO_TOO BIG;

end if;

exception
when RATIO TOO_BIG =>

TEST_VERIFIED := FALSE;

119

T e
~

TEXT_IO.PUT ("The total MET/PERIOD ratio sum of operators is ");
TEXT_IO.PUT_LINE ("greater than 0.5"):
end CALC_RATIO SUM;

begin --main TEST_DATA
CALC_TOTAL_TIME (INPUT_LIST, HARMONIC BLOCK_LENGTH) ;
CALC_HALF_PERIODS(INPUT_LIST);
CALC_RATIO_SUM(INPUT_LIST);

end TEST DATA;

procedure VERIFY TIME_LEFT (HARMONIC_BLOCK_LENGTH : in INTEGER;
STOP_TIME : in INTEGER) is
begin
if STOP_TIME > HARMONIC_BLOCK_LENGTH then
raise OVER_TIME;
~--exit and terminate the Static Scheduler
end if;
end VERIFY_TIME_LEFT;

procedure CREATE_INTERVAL (THE OPERATOR : in OPERATOR;
INPUT : in out SCHEDULE_INPUTS;
OLD_LOWER : in VALUE) is
LOWER_BOUND : VALUE;

function CALC_LOWER_BOUND return VALUE is
begin
-- since CREATE_INTERVAL function is used in both SCHEDULE_INITIAL SET and
—-= SCHEDULE_REST OF BLOCK (OLD_LOWER /= 0) check is needed.In case of the
-— operator is scheduled somewhere in its interval and (OLD_LOWER /= 0),
-- this check guarantees that the periods will be consistent.
if (OLD_LOWER /= 0) and (OLD_LOWER < INPUT.THE_START) then
LOWER_BOUND := OLD_LOWER + THE_OPERATOR.THE_PERIOD;
else
LOWER_BOUND := INPUT.THE_START + THE_OPERATOR.THE_ PERIOD;
end if;
return LOWER_BOUND;
end CALC_LOWER_BOUND;

function CALC_UPPER_BOUND return VALUE is
begin
if THE_OPERATOR.THE WITHIN = 0 then
return LOWER_BOUND + THE_OPERATOR.THE_PERIOD - THE_OPERATOR.THE MET;
-= if the operator has a WITHIN constraint, the upper bound of the
-- interval is reduced.
else
return LOWER ROUND + THE_OPERATOR.THE_WITHIN - THE_OPERATOR.THE_MET;
end if;
end CALC_UPPER_BOUND;
begin --main CREATE_INTERVAL
INPUT.THE_LOWER := CALC_LOWER_BOUND;
INPUT.THE_UPPER := CALC_UPPER_BOUND;

120

end CREATE_INTERVAL;

procedure SCHEDULE_INITIAL_SET (PRECEDENCE_LIST : in DIGRAPH.V_LISTS.LIST;
THE_SCHEDULE_INPUTS : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC_BLOCK_LENGTH : in INTEGER;
STOP_TIME : in out INTEGER) is

V : DIGRAPH.V_LISTS.LIST := PRECEDENCE LIST;
START_TIME : INTEGER := 0;

NEW_INPUT : SCHEDULE_INPUTS;

OLD_LOWER : VALUE :=0;

package INTEGERIO is new TEXT_IO.INTEGER_IO (INTEGER);
use INTEGERIO;

begin --SCEDULE_INITIAL_SET
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop

Exception_Operator := DIGRAPH.V_LISTS.VALUE (V) .THE_OPERATOR ID;
NEW_INPUT.THE_OPERATOR := DIGRAPH.V_LISTS.VALUE(V).THE_OPERATOR_ID;
NEW_INPUT.THE_START := START_ TIME;

STOP_TIME := START TIME + DIGRAPH.V_LISTS.VALUE(V).THE_MET;
VERIFY_TIME LEFT (HARMONIC_BLOCK_LENGTH, STOP_TIME) ;
NEW_INPUT.THE_STOP := STOP_TIME;
START_TIME := STOP_TIME;
-- for every operator in SCHEDULE_INITIAL SET, OLD_LOWER is zero. So we
-- always send zero value to CREATE_INTERVAL.
CREATE_INTERVAL (DIGRAPH.V LISTS.VALUE (V), NEW_INPUT, OLD_LOWER) ;
SCHEDULE_INPUTS_LIST.ADD (NEW_INPUT, THE_SCHEDULE_INPUTS) ;
DIGRAPH.V_LISTS.NEXT (V) ;
end loop;
end SCHEDULE_INITIAL SET;

—— e - e o et T " = = ————— — ———— ———— — ————— —

procedure SCHEDULE_REST OF_BLOCK (PRECEDENCE_LIST:in DIGRAPH.V_LISTS.LIST;

THE_SCHEDULE_INPUTS : in out SCHEDULE_INPUTS LIST.LIST;
HARMONIC_BLOCK LENGTH : in INTEGER;
STOP_TIME : in INTEGER) is

V : DIGRAPH.V_LISTS.LIST := PRECEDENCE LIST;

TEMP : SCHEDULE_INPUTS_LIST.LIST := THE_SCHEDULE_INPUTS;

V_LIST : DIGRAPH.V_LISTS.LIST;

P : SCHEDULE_INPUTS_LIST.LIST;
S : SCHEDULE_INPUTS_LIST.LIST;

START_TIME : INTEGER := 0;
TIME_STOP : INTEGER := STOP_TIME;
NEW_INPUT : SCHEDULE_INPUTS;

OLD_LOWER : VALUE;

package INTEGERIO is new TEXT_10.INTEGER_IO (INTEGER);
use INTEGERIO;

begin

DIGRAPH.V_LISTS.DUPLICATE (PRECEDENCE_LIST, V_LIST);

121

SCHEDULE_INPUTS_LIST.LIST_ REVERSE (THE_SCHEDULE_INPUTS, P);

loop
while SCHEDULE INPUTS_LIST.NON_EMPTY (P) loop
if SCHEDULE_INPUTS_LIST.VALUE (P) .THE_LOWER < HARMONIC_BLOCK_LENGTH then
NEW_INPUT.THE_OPERATOR e DIGRAPH.V_LISTS.VALUE(V).THE_OPERATOR_ID;
-- check if the operator can be scheduled in its interval
if SCHEDULE_INPUTS_LIST.VALUE(P).THE_UPPER ~ TIME_STOP
>= DIGRAPH.V_LISTS.VALUE (V) .THE_MET then
if SCHEDULE_INPUTS_LIST.VALUE(P).THE_LOWER >= TIME STOP then
START TIME := SCHEDULE_INPUTS_LIST.VALUE(P).THE_LOWER;
else
START _TIME := TIME_STOP;
end if;
NEW_INPUT.THE_START := START_TIME;
NEW_INPUT.THE_STOP := START_TIME + DIGRAPH.V_LISTS.VALUE (V) .THE_MET;

TIME_STOP := NEW_INPUT.THE_STOP;

OLD_LOWER := SCHEDULE_INPUTS_LIST.VALUE (P) .THE_LOWER;
CREATE_INTERVAL(DIGRAPH.V_LISTS.VALUE(V), NEW_INPUT, OLD_ LOWER);
SCHEDULE_INPUTS_LIST.ADD (NEW_INPUT, TEMP);
SCHEDULE_INPUTS_LIST.ADD(NEW~INPUT, S):

Exception Operator := DIGRAPH.V_LISTS.VALUE(V).THE_OPERATOR_ID;
VERIFY_TIME_LEFT (HARMONIC BLOCK LENGTH, TIME_STOP);

DIGRAPH.V_LISTS.NEXT(V);

SCHEDULE_INPUTS_LIST.NEXT (?);
-— if the operator can not be scheduled in its interval raise the
-- exception

else

Exception_ Operator := DIGRAPH.V_LISTS.VALUE (V) .THE_OPERATOR_ID;

raise MISSED_DEADLINE;
end if;
else
DIGRAPH.V_LISTS.REMOVE
(DIGRAPH.V_LISTS.VALUE(V), V_LIST);
DIGRAPH.V_LISTS.NEXT(V);
SCHEDULE_INPUTS_LIST.NEXT(P);
end if;
end loop;
if SCHEDULE INPUTS_LIST.NON_EMPTY(S) then
SCHEDULE_INPUTS_LIST.LIST_REVERSE(S, P);
SCHEDULE_INPUTS_LIST.EMPTY(S);
V := V_LIST;
else
exit;
end if;
end loop;
SCHEDULE_INPUTS_LIST.LIST_REVERSE(TEMP, THE_SCHEDULE_INPUTS);

end SCHEDULE_REST_OF BLOCK;

- o - - —— - — " f— —— o ——] ——

procedure BUILD OP_INFO_LIST (THE_GRAPH : in DIGRAPH.GRAPH;

122

THE_OP_INFO_LIST : in out OP_INFO LIST.LIST) is
—-- this procedure finds each operator's successors and predicessors first
-~ and creates the OPERATOR INFO_LIST.
V : DIGRAPH.V_LISTS.LIST := THE_GRAPH.VERTICES;
S DIGRAPH.V_LISTS.LIST;
P DIGRAPH.V_LISTS.LIST;
NEW_NODE : OP_INFO;

begin
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop
DIGRAPH.SCAN_CHILDREN (DIGRAPH.V_LISTS.VALUE (V), THE_GRAPH, S):
DIGRAPH.SCAN_ PARENTS (DIGRAPH.V_LISTS.VALUE (V), THE GRAPH, P):
NEW_NODE.NODE := DIGRAPH.V_LISTS.VALUE (V});
NEW_NODE.SUCCESSORS := S;
NEW_NODE.PREDICESSORS := P;
OP_INFO_LIST.ADD (NEW_NODE, THE_OP_INFO_LIST) ;
DIGRAPH.V_LISTS.NEXT (V) ;
end loop;
end BUILD OP_INFO_LIST;
procedure PROCESS_EST_END_NODE
(MAY BE_AVAILABLE: in out SCHEDULE_ INPUTS_ LIST.LIST;
OPT : in OPERATOR) is
-- transfer the OPERATOR record into SCHEDULE_ INFO record and adds that
-- into the MAY AVAILABLE LIST for the Earliest Start Scheduling Algorithm.
-- Initially all the values are zero.
NEW_NODE : SCHEDULE_ INPUTS;

begin
NEW_NODE.THE_OPERATOR := OPT.THE OPERATOR_ ID;
SCHEDULE_INPUTS_LIST.ADD (NEW_NODE, MAY BE_AVAILABLE);
end PROCESS_EST_END NODE;
procedure PROCESS_EDL_END_NODE
(MAY BE_AVAILABLE: in out SCHEDULE_INPUTS_LIST.LIST;
OPT : in OPERATOR) is
--transfer the OPERATOR record into SCHEDULE_INFO record and adds that
--into the MAY AVAILABLE_LIST for the Earliest Deadline Scheduling Algorithm
--Initially all the values are zero.
NEW_NODE : SCHEDULE_INPUTS;

begin
NEW_NODE.THE_OPERATOR := OPT.THE OPERATOR_ID;
NEW_NODE.THE LOWER := 0; -~ we can omit this, because it’s already zero.
if OPT.THE WITHIN /= 0 then
NEW_NODE.THE_UPPER := OPT.THE_WITHIN;
else
NEW_NODE.THE_UPPER := OPT.THE_PERIOD;
end if;

SCHEDULE_INPUTS_LIST.ADD (NEW_NODE, MAY BE_AVAILABLE) ;
end PROCESS_EDL_END_ NODE;

123

—— " T — - — - A - - — " T — " o - -

furction FIND_OPERATOR (THE_OP_INFO_LIST : in OP_INFO_LIST.LIST;
ID : in OPERATOR_ID}
return OP_INFO LIST.LIST is
-- finds the operator that we use currently to get the required information.
TEMP : OP_INFO_LIST.LIST := THE_OP_INFO_LIST;

-- assumed that it’s guaranteed to find an operator.
begin
while OP_INFO LIST.NON EMPTY (TEMP) loop
if VARSTRING.EQUAL (OP_INFO_LIST.VALUE (TEMP) .NODE.THE_OPERATOR ID, ID) then
return TEMP ;
end if;
OP_INFO_LIST.NEXT (TEMP) ;
end loop;
end FIND_OPERATOR;
function CHECK_AGENDA (THE_NODE : in OP_INFO;
AGENDA : in SCHEDULE_INPUTS LIST.LIST)
return BOOLEAN is
== checks the AGENDA list to see if all the predicessors of the operator are

-- in there.
P : DIGRAPH.V_LISTS.LIST := THE_NODE.PREDICESSORS;
A : SCHEDULE_INPUTS_LIST.LIST := AGENDA;
OK : BOOLEAN := FALSE;
begin

while DIGRAPH.V_LISTS.NON_EMPTY (P) loop
while SCHEDULE_INPUTS_LIST.NON EMPTY (A) loop
if VARSTRING.EQUAL(DIGRAPH.V_LISTS.VALUE(P).THE_OPERATOR_ID,
SCHEDULE_INPUTS_LIST.VALUE(A).THE_OPERATOR) then
OK := TRUE;
exit;
end if;
SCHEDULE_INPUTS_LIST.NEXT(A);
end loop;
if OK then
DIGRAPH.V_LISTS.NEXT(P):;
A := AGENDA;
OK := FALSE;
else
~- if the pointer reached to the end of the AGENDA, it means the
—-- operator is not in AGENDA, if so return FALSE.
return OK;
end if;
end loop;
-=- if the pointer reached to the end of the predicessor list, it means the
-~ operator is in AGENDA.
OK := TRUE;
return OK;
end CHECK_AGENDA;

- ———————— T —— T —— =t — o

procedure EST_ INSERT (TARGET : in SCHEDULE_INPUTS;
MAY BE_AVAILABLE : in out SCHEDULE_INPUTS_LIST.LIST) is
-~ used to insert the operators into the MAY BE_AVAILABLE list to schedule
-- for the Earliest Start Scheduling Algorithm.
PREV : SCHEDULE INPUTS_LIST.LIST := null;
T : SCHEDULE_INPUTS_LIST.LIST := MAY BE_AVAILABLE;

begin
if NOT (SCHEDULE_INPUTS_LIST.NON EMPTY (T)) then
-- when MAY BE AVAILABLE list is empty, add the operator immediately.
SCHEDULE_INPUTS_LIST.ADD (TARGET, MAY BE_AVAILABLE) ;

else

-- in case the target operator’s EST is smaller than the first operator’s

-~ EST add the operator to the list immediately.

if TARGET.THE_LOWER < SCHEDULE_INPUTS_LIST.VALUE(T).THE_LOWER then
SCHEDULE_INPUTS_LIST.ADD (TARGET, MAY BE_AVAILABLE) ;

-- in case the operator with the same EST is in the list, do not insert,
-—- otherwise; insert the operator in its order.
elsif NOT(SCHEDULE_INPUTS_LIST.MEMBER (TARGET, MAY BE_AVAILABLE)) then
while SCHEDULE_INPUTS_LIST.NON_EMPTY (T) loop
if TARGET.THE_LOWER > SCHEDULE_INPUTS_LIST.VALUE(T).THE_LOWER then
PREV := T;
SCHEDULE INPUTS_LIST.NEXT(T);
else
exit;
end if;
end loop;
SCHEDULE_INPUTS LIST.ADD (TARGET, T);
if SCHEDULE_INPUTS_LIST.NON_EMPTY (PREV) then

PREV.NEXT := T;
else
MAY BE_AVAILABLE := T;
end if;
end if;
end if;

end EST_INSERT;

procedure EDL_INSERT (TARGET : in SCHEDULE_INPUTS;
MAY BE_AVAILABLE : in out SCHEDULE_INPUTS LIST.LIST) is

-- used to insert the operators into the MAY BE AVAILABLE list to schedule
-- for the Earliest Deadline Scheduling Algorithm.

PREV : SCHEDULE_INPUTS_LIST.LIST := null;

T : SCHEDULE_INPUTS_LIST.LIST := MAY BE_AVAILABLE;

begin
if NOT (SCHEDULE_INPUTS_LIST.NON EMPTY (T)) then
SCHEDULE INPUTS_LIST.ADD (TARGET, MAY BE_ AVAILABLE);
else

125

if TARGET.THE_UPPER < SCHEDULE_INPUTS_LIST.VALUE (T) .THE_UPPER then
SCHEDULE_INPUTS_LIST.ADD(TARGET, MAY BE AVAILABLE) ;
elsif NOT(SCHEDULE_INPUTS_LIST.MEMBER(TARGET, MAY BE_AVAILABLE)) then
while SCHEDULE_INPUTS_LIST.NON EMPTY (T) loop
if TARGET.THE_UPPER > SCHEDULE INPUTS_LIST.VALUE(T).THE_UPPER then
PREV := T;
SCHEDULE_INPUTS_LIST.NEXT(T);
elsge
exit;
end if;
end loop;
SCHEDULE_INPUTS_ LIST.ADD (TARGET, T);
if SCHEDULE INPUTS LIST.NON_EMPTY (PREV) then

PREV.NEXT := T;
else
MAY BE AVAILABLE := T;
end if;
end if;
end if;

end EDL_INSERT;
function OPERATOR_IN_LIST(OPT_ID : in OPERATOR_ID-
IN_LIST : in SCHEDULE INPUTS_LIST.LIST)
return BOOLEAN is
-- this is used to check if the operators in successors list are already in
-~ the complete MAY BE AVAILABLE list for both EST and EDL algorithms.
TEMP : OPERATOR_ID;
L : SCHEDULE_INPUTS_LIST.LIST := IN_LIST;

begin
while SCHEDULE_INPUTS_LIST.NON_EMPTY (L) loop
TEMP := SCHEDULE_INPUTS_LIST.VALUE(L).THE_OPERATOR;
if VARSTRING.EQUAL(TEMP, OPT_ID) then
return TRUE;
else
SCHEDULE INPUTS_LIST.NEXT(L);
end if;
end loop;
return FALSE;
end OPERATOR_IN_LIST;
procedure EST_INSERT_SUCCESSORS_OF_OPT
(THE_NODE : in OP_INFO;
STOP_TIME : in VALUE;
MAY BE_AVAILABLE : in out SCHEDULE_INPUTS_IIST.LIST) is
-- inserts the successors of the selected operator into MAY BE_AVAILABLE
-- list in their orders if they do not exist in the list.

S ¢ DIGRAPH.V_LISTS.LIST := THE NODE.SUCCESSORS;
T : OPERATOR;
OPT : OPERATOR := THE NODE.NODE;

TARGET : SCHEDULE_INPUTS;

126

begin
while DIGRAPH.V_LISTS.NON_EMPTY (S) loop
T := DIGRAPH.V_LISTS.VALUE (S);
if NOT (OPERATOR_IN_LIST(T.THE_OPERATOR_ID, MAY BE AVAILABLE)) then
TARGET.THE OPERATOR := DIGRAPH.V_LISTS.VALUE(S).THE_OPERATOR_ID;

TARGET.THE_LOWER := STOP_TIME;
EST_INSERT (TARGET, MAY BE AVAILABLE);
end if;
DIGRAPH.V_LISTS.NEXT(S);
end loop;

end EST_INSERT_ SUCCESSORS_OF OPT;

procedure EDL_INSERT_SUCCESSORS_OF_ OPT

(THE_NODE : in OP_INFO;
STOP_TIME : in VALUE;
COMPLETE_LIST : in out SCHEDULE_INPUTS LIST.LIST;

MAY BE_AVAILABLE : in out SCHEDULE_INPUTS_LIST.LIST) is
—-- ingerts the successors of the selected operator into MAY BE_AVAILABLE
—- list in their orders if they do not exist in the list.

S ¢ DIGRAPH.V _LISTS.LIST := THE_NODE.SUCCESSORS;
T : OPERATOR;
OPT : OPERATOR := THE_ NODE.NODE;
TARGET : SCHEDULE INPUTS;
begin
while DIGRAPH.V_LISTS.NON_EMPTY(S) loop
T := DIGRAPH.V_LISTS.VALUE (S);
if NOT (OPERATOR IN_LIST(T.THE_OPERATOR_ID, COMPLETE_LIST)) then
TARGET.THE_OPERATOR := T.THE_OPERATOR_ID;
TARGET.THE LOWER := STOP_TIME;

-- while we are adding the success~nrs, the deadline of these operators
-- are calculated by adding either their finish _within if exists, or
-- period to the stop_time of the last operator.

if T.THE WITHIN /= 0 then

TARGET.THE_UPPER := STOP_TIME + T.THE_WITHIN;
else
TARGET.THE_UPPER := STOP_TIME + T.THE_PERIOD;
end if;
EDL_INSERT(TARGET, MAY_BE_AVAILABLE);
end if;
DIGRAPH.V_LISTS.NEXT(S);
end loop;

end EDL_INSERT_SUCCESSORS_OF OPT;
procedure PROCESS_EST AGENDA (THE OP_INFO LIST: in OP_INFO LIST.LIST-
MAY BE_AVAILABLE: in cut SCHEDULE_INPUTS LIST.LIST;

AGENDA : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK LENGTH : in INTEGER) is

-- process the MAY BE_AVILABLE list to produce AGENDA list which is used to

-— create a schedule for Earliest Start Scheduling Algorithm.
\ : SCHEDULE_INPUTS_LIST.LIST := MAY BE AVAILABLE;

127

A : SCHEDULE_INPUTS_LIST.LIST;
TEMP : OP_INFO LIST.LIST;
TARGET : SCHEDULE_INPUTS;
NEW_INPUT : SCHEDULE_INPUTS;

THE_NODE : OP_INFO;

CONTINUE : BOOLEAN;
STOP_TIME : VALUE := 0;

OPT : SCHEDULE_INPUTS;
EST : INTEGER;

package INTEGERIO is new TEXT IO.INTEGER_IO(INTEGER);

begin
while SCHEDULE_INPUTS_LIST.VALUE (V) .THE_LOWER < HARMONIC_BLOCK_LENGTH loop
--no need to check if all the predicessors are in the AGENDA, because this
-- is the first node and has no predicessors.

OPT := SCHEDULE_INPUTS_LIST.VALUE (V) ;
TEMP := FIND_OPERATOR (THE_OP_INFO_LIST, OPT.THE_OPERATOR) ;
THE_NODE := OP_INFO_LIST.VALUE (TEMP) ;

if OPT.THE_LOWER > 0 then

CONTINUE := CHECK_AGENDA(THE~NODE, AGENDA) ;
else

CONTINUE := TRUE;
end if;

—- if the opt.is not an end node check if all its successors in AGENDA.
-- if not, select the other operator and repeat the same procedure.
while NOT CONTINUE loop

SCHEDULE_INPUTS_LIST.NEXT (V) ;

OPT := SCHEDULE_INPUTS LIST.VALUE(V);
TEMP := FIND_OPERATOR (THE_OP_INFO_LIST, OPT.THE_OPERATOR);
THE_NODE := OP_INFO_LIST.VALUE (TEMP) ;

if OPT.THE_LOWER > 0 then
CONTINUE := CHECK_AGENDA (THE_NODE, AGENDA);

else
CONTINUE := TRUE;
end if;
end loop;
TARGET := SCHEDULE_INPUTS_ LIST.VALUE (V)

SCHEDULE_INPUTS_LIST.REMOVE (TARGET, MAY BE_AVAILABLE) ;
Exception_Operator := TARGET.THE_OPERATOR;
VERIFY_TIME_LEFT (HARMONIC_ BLOCK_LENGTH, STOP_TIME) ;

if TARGET.THE_LOWER > STOP_TIME then

TARGET.THE_START := TARGET.THE_LOWER; ~-zero initially for the first one
else

TARGET.THE_START := STOP_TIME;
end if;

STOP_TIME := TARGET.THE_START + THE_NODE.NODE.THE MET;
TARGET.THE_STOP := STOP_TIME:
SCHEDULE_INPUTS_LIST.ADD (TARGET, AGENDA);

EST := TARGET.THE_START + THE_NODE.NODE.THE_PERIOD;
NEW_INPUT.THE_NPERATOR := TARGET.THE OPERATOR;

128

NEW_INPUT.THE_LOWER := EST;
EST_INSERT (NEW_INPUT, MAY BE_AVAILABLE);
EST_INSERT_SUCCESSORS_OF_OPT(THE_NODE, STOP_TIME, MAY BE_AVAILABLE);
V := MAY BE AVAILABLE;
end loop;
A := AGENDA;
SCHEDULE_INPUTS_LIST.LIST_REVERSE (A, AGENDA);
end PROCESS_EST AGENDA;
procedure PROCESS_EDL_AGENDA (THE_OP_INFO_LIST: in OP_INFO_LIST.LIST;
COMPLETE_LIST : in out SCHEDULE_ INPUTS_LIST.LIST;
AGENDA : in out SCHEDULE_INPUTS LIST.LIST;
HARMONIC_BLOCK_LENGTH : in INTEGER) is

-=- process the MAY BE AVILABLE list to produce AGENDA list which is used to
-- create a schedule for FEarliest Deadline Scheduling Algorithm.

\ : SCHEDULE_INPUTS_LIST.LIST := COMPLETE_LIST;
TEMP : SCHEDULE_INPUTS_LIST.LIST := COMPLETE_LIST;
a : SCHEDULE_INPUTS_LIST.LIST;

T : OP_INFO_LIST.LIST;

PREV : SCHEDULE_INPUTS_LIST.LIST := null;

TARGET : SCHEDULE_INPUTS;

NEW_INPUT : SCHEDULE_INPUTS;

THE_NODE : OP_INFO;

CONTINUE : BOOLEAN;

STOP_TIME : VALUE := 0;

OPT : SCHEDULE_INPUTS;

EST : INTEGER;

package INTEGERIO is new TEXT IO.INTEGER IO (INTEGER);

begin
while SCHEDULE_INPUTS_LIST.NON_ EMPTY (TEMP) loop
if SCHEDULE_INPUTS_LIST.VALUE(TEMP).THE_LOWER < HARMONIC_ BLOCK_LENGTH then
~=- no need to check if all the predicessors are in the AGENDA, because
~- for the first node there is no predicessors.
OPT SCHEDULE_INPUTS_LIST.VALUE(V);
T := FIND_OPERATOR (THE_OP_INFO_LIST, OPT.THE_OPERATOR);
THE_NODE := OP_INFO_LIST.VALUE(T);
if OPT.THE LOWER > 0O then

-- when the earliest start time of the operator is not zero, we need
-== to check if all the predicessors of the operator are in AGENDA. No
-- check otherwise.
CONTINUE := CHECK_AGENDA(THE_NODE, AGENDA) ;

else
CONTINUE := TRUE;

end if;

~- if the opt.is not an end node check if all its successors in AGENDA.

-- if not, select the other operator and repeat the same procedure.
while NOT CONTINUE loop

129

SCHEDULE_INPUTS_LIST.NEXT (V) ;
OPT := SCHEDULE_INPUTS_LIST.VALUE (V) ;
T := FIND_OPERATOR (THE_OP_INFO_LIST, OPT.THE_OPERATOR) ;
THE_NODE := OP_INFO_LIST.VALUE(T);
if OPT.THE_LOWER > 0 then
CONTINUE := CHECK_AGENDA (THE_NODE, AGENDA)