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ABSTRACT

Tt;:i.s research develops a general method that combines
optimization methods and an interior ballistics model to
automate the design process for propellent grains. It is a
nulti-variable constrained optimization problem. The
augmented Lagrange multiplier method is used to contreol the
constrained problem while two zero-order methods (Powell'’s
and Hooke-Jeeves) perform the unconstrained minimization.
The interior ballistics model IBRGAC, developed at the
Interior Ballistics Laboratory, Aberdeen Proving Grounds,
Maryland, is used as the objective cost function. To
validate the process a representative 120mm tank gun system
is used with four propellent combinations. The examples
demonstrate that the scheme works and can be used as an

effective design tool. -~

Accession Por

o

NIIS GRAXI g
DTIC TAB 0
Unannounced 4
Justification

By

Disttigutiqgi

Avallability Cod;s

Avail and/or
Dist \ Special

i




INTERIOR BALLISTICS OPTIMIZATION

by

JOE ROBERT GONZALEZ JR.

B.S., United states Military Academy, 1978

A THESIS

submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE

Department of Mechanical Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1990
Approved by:
Major Professor

90 08 20 013




TABLE OF CONTENTS

Chapter Page
I IntrodUction. i iieeeeeccecccccsosccccsassnsacns 1
II Background....c.ceecoccecescsnccsonsascscncsscss 5
1. Optimization and Design....cceeeeecencnen 5
2. BallisSticCS.cceeevoctescccceccsconccccnns 13
3. Gun Nomenclature...ccecevceecsscccccascs 16
III Optimization Method....ccveeeeececvoscscccccnsns 20
1. Introduction.....ccvceveecncnnccccncacen 20
2. General Problem Statement.......cccc.0e. 20
3. Augmented Lagrange Multiplier Method.... 21
4. Powell’s Method...cecececevscceccccccasce 22
5. The Hooke-Jeeves Method......ccccevecann 24
6. Description of the Optimization Code.... 25
Iv Interior Ballistics Model......c.ccveeanncenns 29
1. Introduction...cceeeeceeecceiioccncnnnces 29
2. Interior Ballistic Cycle.....cceeeeccannsn 30
3. Projectile Equations of Motion.......... 30
4. Base Pressure Derivation................ 32
5. Mean Pressure Derivation........¢.ccc.. 34
6. Mean Temperature Derivation............. 36
7. Work and LOSSE@S.ccceecncvcsrsnasscsccscns 38
8. Propellent and Rate of Burning.......... 41
9. GUN RECO1l.:cuceecsensessesesccccsonsnncs 43
10. Modeling Approximations.........cccc000 45




v

VI

11. Description of IBRGAC.....'.l'..........

12. Program Organization.....ccececececccccses

Example ProbleMS.ccccecccecsccccasccsocssossosa

1. IntroductioN.e.ceeeeceecsccscccscssonasaes

2. Baseline Equipment

3. Problem Objective Function..........

4. Problem Constraint

SOOnQQQQ.--ooooao.

5. optimization Initialization.........

6. Example Problemns..
Example Problem
Example Problem
Example Problem
Example Problem

7. Analysis of Result

¢ ® 0 ® 8000 0850000005

100..-.0....000..

2.....0-0..0..000

3...-...005......

4....--....-.....

s.-.o.occocouoooou

Conclusions and RecommendationS...ccceeeee

10 COHCIuSionSoo.o-.........-..--.......

2. Recommendations for Further Research..

References-c..0...........l..c..o-oon..ooolo

Appendix I

- Optimization Code....ccovvewee

Appendix II - Interior Ballistics Code.......

Appendix III - Input Files and Sample Output..

ii

46

48

51

51

51

53

56

58

59

64

72

82

91

101

106

106

106

108

110

128

154




Term

oo QuUu e

e/

W BWOT TS IS HhHEEHQ

EI<dt3 g

E 3

£
o

=i

<RXTHR NN XN

<

0 k-

o

[l

LIST OF SYM
Definition:
Area

Acceleration
Covolume

Initial mass of propellent (or igniter)

Specific heat at consta

Specific heat at constant pressure

Diameter

Distance between perforation centers

Energy
Force
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ly burned
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J/kg-K
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Lagrange multiplier (Except in Chapter
IV where it is the Nordheim friction
factor.)

density

Yield point strength

Subscripts:
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base of projectile
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chamber

air pressure in front of projectile
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original value

projectile

recoiling parts of gun

bore resistance

total of igniter and propellent
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iv
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CHAPTER I

INTRODUCTION

The advancing capabilities of digital computers has
allowed numerical optimization to develop into an effective
and useful analysis and design tool for the engineer. It
is applied successfully to many design problems in various
disciplines. Optimization schemes allow the engineer to
evaluate a large number of design alternatives in a
systematic and efficient manner to find the best design.
The approach is used to improve performance and/or decrease
cost while meeting the constraints appropriate to the
problem.

Interior ballistics is the applied physics required to
impart motion to a projectile inside a gun tube. Despite
its long history and wide application, active research
continues with efforts to build more realistic models of
the complicated chemical, thermodynamic, and dynamic
processes involved. The classic interior ballistics
problem is: given the characteristics of the gun, charge,
and projectile determine the muzzle velocity of the
projectile and the peak pressure in the gun. There is a
large knowledge base of both theoretically sound and
experimentally proven concepts that make the solution of
the interior ballistics problem possible.

The burning of chemical compounds, called propellents,




is an important part of interior ballistics. The
combustion processes depend on many factors including the
propellent material and its geometry, the rate of burn,
propellent packing and packaging, and environmental
factors. The resulting gases produce the pressure field
that imparts acceleration to the projectile. The design of
the propellent grain shape to achieve the desired pressure-
time history, given the constraints imposed by the gun
system and projectile, is part of the design effort. The
purpose is usually to maximize the projectile muzzle
velocity.

Presently there are a number of computer based
interior ballistic models with a wide range of
capabilities. These models allow the interior kallistician
to predict the performance of a particular gun, charge, and
projectile combination.

Interior ballistics depends on parameters and
variables so numerous that a complete initial investigation
of them is not practical. To demonstrate that optimization
can be successfully applied, a specific gun system is
chosen as an example. The example used is the optimum
design of the propellent grain geometry for kinetic energy
projectiles that are fired from 120mm tank cannons. The
propellent g.ain is considered improved if there is a net
increase in muzzle velocity without violating gun

constraints. This is done by application of numerical




optimization in conjunction with the interior ballistic
model.

The approach taken in tﬁis thesis is to use an
interior ballistic model, and combine it with an efficient
and easy to use optimization method that searches the
design space for the maximum muzzle velocity without
violating the constraints of the problem.

The optimization method used is a sequential
unconstrained minimization technique (SUMT) called the
augmented Lagrange multiplier method (ALM). In che version
of the ALM used in this thesis the wunconstrained
minimization is done by Powell’s method or the Hooke-
Jeeves method. The interior ballistics model used is
IBRGAC, developed at the Ballistic Research Laboratory,
Aberdeen Proving Grounds, Maryland.

A Dbackground section that provides the information
necessary for understanding the problem is provided in
Chapter 2. This covers optimization, interior ballistics,
and gun nomenclature. Chapter 3 details the optimization
process and describes the algorithms and computer code
used. Chapter 4 outlines the laws, theories, assumptions,
and equations used to solve the interior ballistic problem.
At the end of the chapter is a description of the interior
ballistics code used. Chapter 5 contains the example
problems, results, and an analysis of the process. Chapter

6 discusses the conclusions and recommerd.tions for further




research.

The optimization scheme is not 1limitcd to the
particu.ar example considered but has general applicability
in interior ballistics, as well as ballistics in general.
Although the scope of the problem in this thesis 1is

restricted, the method is not.




CHAPTER 1II

BACKGROUND

This chapter provides the background to understand the
contextual scope and contribution of the thesis. If is
comprised of three parts. Part one covers optimization and
engineering design. Part two covers ballistics and
discusses currently available interior ballistics models.
Part three gives a brief background of how gun systems

function along with terminology.

1. Optimization and Design.

optimization is part of human nature. There is no
endeavor that man has attempted that he has not tried to
improve. Mathematically the problem of finding the extrema
of functions, by hand calculation, has a long history (4).
The development of the digital computer provided the
impetus for the full scale development of numerical
optimization. Since Davidon introduced variable-metric
methods in 1959 (8) there has been an explosion in the
development of optimization schemes, resulting in dozens of
reliable, efficient algorithms.

In engineering design, the goal is to produce the
vbest" design for the desired system or component. The
purpose of numerical optimization is to provide a tool to

aid the engineer in this task. Engineering problems are




normally not confined to one design variable nor 1is the
design space infinite. This results in multi-variable
design problems with constraints. The general form for a
nonlinear constrained optimization problem can be stated as
(17)

Minimize: F(X).«.ec2vees......0bjective function,

Subject to:

gj(ﬁ) <0 j=1,n..........inequality constraints

he(X) =0 k=1,l..........equality constraints

xi(lower) < %5 < xi(upper) side constraints
i=1,n,

where xT = {(X9,X5,.+.,%,) design variables.
The use of the term "minimize" means that any optimization
scheme will locate the minimum function value. If a
maximum is desired multiplying the objective function by
negative one (-1.0) will convert the problem into an
equivalent minimization. The two general approaches to
solving this problem are direct methods and sequential
unconstrained minimization techniques (SUMT) (Figure 2.1).

Direct methods incorporate information about the
constraints directly into the optimization problenm.
Sequential linear programming (SLP) (17) is one such method
where the problem and constraints are first linearized by a
Taylor series expansion. The resulting linear problem is
solved and the process is repeated until the nonlinear

minimum is found. Another approach is the method of
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feasible directions. From a constraint boundary the
gradients of the objective function and any active
constraints are determined and a linear approximation of
the problem at that point (X) is found. A search direction
is then calculated that reduces the objective function
without violating the active constraints. Constraints are
active if the design vector is near the constraint boundary
so that any small move in that direction will intersect the
constraint or produce an infeasible design. It should be
noted that all these direct methods require gradient
information for the objective and constraint functions.

The second approach, SUMT was first developed by
Fiacco and McCormick (12) and incorporates the constraints
into a pseudo-objective function that can be minimized by
unconstrained techniques. The general form for the SUMT is

®(X,rp) = F(X) + rpP(X). 2.1
Here ¢ is the pseudo-objective function, F(X) the original

objective function, r, a scalar multiplier that determines

P
the magnitude of the penalty, and P(X) is a penalty
function that is determined from the constraints. The

penalty function affects o(X,r only when the

p)
corresponding constraint is violated. When the pseudo-
objective function is minimized, the original constrained
objective function is minimized. Three current methods

used to solve Equation 2.1 are the exterior penalty

function, the interior penalty function, and the augmentead




Lagrange multiplier (ALM).

The exterior penalty function method creates a P(X)
that penalizes the design only when the constraints are
violated. The interior penalty function method penalizes
the design as it approaches the constraint boundary from
within the feasible region. Constraint violations are not
allowed and the initial design vector must start in the
feasible region of the parametric space (17).

The ALM is a modification of the Lagrange multiplier
method for functions with equality constraints. The
inequality constraints are modified into equality
constraints and incorporated into the Lagrange multiplier
equation, therefore the name augmented Lagrange.

For SUMT the problem is converted to a sequence of
unconstrained minimizations of n-variables. There are
three classes of methods used to solve the unconstrained
multivariable minimization problem; zero, first, and second
order.

Z2ero order methods use no explicit derivative
information to locate the minimum. These methods are best
when derivatives cannot be calculated or are difficult to
determine, but they do generally require more function
evaluations to obtain convergence. Powell’s method of
conjugate directions is a widely used method of this class
(8). The direction vectors 8% and 8J are conjugate to each

other if




EHT 53 = o. 2.2
where H, the Hessian, is the matrix of second derivatives.
Powell’s method assumes that a quadratic approximation can
be made of the objective function and proceeds to build a
corresponding approximation of the Hessian. For a
quadratic function, a minimum exists when then Hessian is
positive definite. This method has produced many
variations, most notably by Brent (4). These subsequent
variations attempt to improve determination of the search
directions. Rosenbrock’s method (5) generates orthogonal
search directions to improve convergence. The method of
Hooke-Jeeves (8) uses the coordinate unit direction vectors
as the search directions and uses an acceleration step
during the search. Both Rosenbrock and Hooke-Jeeves
utilize the direction of the change in the design vector
between complete search sets to accelerate the minimization
process.

First order methods rely on computed first derivatives
to determine search directions and will converge more
quickly than 2ero order methods for most quadratic
functions. The method of Fletcher-Reeves (9) generates
gradient-based directions that are conjugate to each other.
A class of methods know as quasi-Newton methods approximate
the inverse of the Hessian matrix and wuse this
approximation for generating the search directions, without

actually requiring second derivative calculations (13).

1o




Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-
Shanno are the two the most common quasi-Newton methods,
differing only in the way in which the search directions
are updated.

Second order methods utilize both first and second
derivative information. Newton’s method (13) expands the
objective function and constraints using a second order
Taylor series expansion and solves for the search direction
matrix S defined by

HS = -VF. 2.3
If the function is quadratic, the method will converge in
one iteration. Both first and second derivatives must be
provided.

The interior ballistic model selected (see Section 3)
has multiple variables and is constrained. For some
propellents there are dependencies that will not allow the
model to evaluate certain combinations of parameters,
producing holes in the parametric space. The number and
combinations of analytical and empirical equations in the
model in addition to a different surface area and volunme
regression equation for each propellent make the evaluation
of the first derivatives difficult. These factors make the
direct methods, with their dependence on explicit
derivative information, less desirable than SUMT using zero
order methods.

Of the SUMT methods, the exterior penalty function

11




method approaches the solution from the infeasible region.
If this method is terminated early, it may 1lead to an
infeasible design. The interior penalty fﬁnction method
approaches the solution from the feasible region. However,
it may have problems dealing with discontinuities of
-] (i,rp) at the boundaries because of the way the penalty
function is generated. The ALM will approach the solution
from either the feasible or infeasible region and will
ensure constraint compliance at the solution and therefore
is the method of choice for this thesis.

The selected interior ballistic model is time
efficient. Since the parametric space is nonlinear and
this is a first try at this problem, the choice of zero-
order methods is indicated. Powell’s method provides
good convergence and uses the idea of conjugate directions
without an explicit dependence on derivative information.
Hooke~-Jeeves with fixed orthogonal search directions
combined with an acceleration step is robust.

optimization methods are tools for assisting the
engineer in design and analysis, not for replacing him.
Optimization techniques, when properly applied, result in
more efficient and economical designs. A more correct
description of the optimization process is '"design
improvement''. Despite the best algorithm and applications,
few designs are truly the "“best designs®. Some advantages

from including optimization in design are (17):

12




1. A reduction in design time, especially when one
scheme can be applied to numerous problems.

2. A systematic design procedure.

3. A wide variety of design variables and constraints
can be handled.

The following disadvantages are also present:

1. Computational time increases as the number of
variables increase. This can make the process
prohibitively expensive or numerically ill-
conditioned.

2. The process does not have experience to draw on
during problem solving.

3. If the analysis is not theoretically precise, the

results of the process may be misleading.

2. Ballistics.

Ballistics is the science that deals with the
propulsion, flight, and impact of projectiles from guns.
Ballistics is organized into three phases. Interior
ballistics is the propulsion of the projectile inside the
gun system. Exterior ballistics is the flight of the
projectile through the atmosphere. Terminal ballistics is
the impact and penetration of the projectile into the
target. The sequence of events from the ignition of the
propellent in the projectile, to departure of the

projectile from the stabilizing tube is the interior

13




ballistic cycle and the subject of this thesis.

Ballistics started as an art not a science. 1Initially
interior ballistics was not differentiated from general
ballistics because there was no practical way to measure
muzzle velocity or pressure in the gun. 2all that could be
said was that given a certain charge mass, projectile, gun,
and angle of elevation a certain range could be obtained
(7).

Prior to valid theoretical models and the ability to
solve them, the practical approcach was to solve the problem
experimentally. For example, LeDuc (11) fit a hyperbolic
curve to experimental data and generated ballistic tables.
Some analytical models existed, but their solution was not
practical for day to day use. A vorkable form of the
analytical solution d4id not come until Charbonnier in 1908
(11). Numerous assumptions and simplifications were
necessary, since accurate measurement of the pressure-
time curve was still not possible.

The development of a reliable piezoelectric gauge
around 1935 provided the means to accurately record the
pressure-time events in the gun and provided the impetus
to connect interior ballistics to the physics and
chemistry. The central problem was still the same but more
questions could be asked, and answered, by combining
theoretical models and empirical data.

The development of the digital computer caused a

14




change in ballistic modeling. Before the digital computer,
closed-form solutions to the governing differential
equations or tabular and data curve fitting were
predominant. Most notable of the latter were the ballistic
tables of Bennet (11) in 1921, some of which are still in
use today. The first uses of digital computers were to
solve the governing differential equations. In 1962 Baer
and Frankle (2) introduced the first direct numerical
solution of the ordinary differential equations of interior
ballistics on a case by case basis. The solution of the
one dimensional (1-D) partial differential equations began
in the late 1960’s. The first 1~D code was developed by
Baer, and subsequently numerous 1-D models have been
developed, most notably NOVA (16). The modeling of flame
speading phenomena, two phase flow, the condensed
propellent and products of combustion are examples of work
to improve the simulation of the events in the gun. These
are active research efforts(1il).

One of the most widely used interior ballistics models
today is called IBHVG2 (Interior Ballistics of High
Velocity Guns, version 2) (1). It was derived from the
Baer-Frankle methodology and includes elements of MPRGUN
(Multipurpose Gun Code) (2). It is a lumped parameter
model in that it assumes the reaction chamber is well mixed
and represented by the rate of burning. The results from

IBHVG2 correspond with experimental data and there is a

15




high degree of reliability in the model. Projectile Design
and Simulation PRODAS (6) is a model in use that takes
projectile design through all three ballistic phases. It
uses IBHVG2 as its interior ballistics model. Another
lumped parameter model, IBRGAC (Interior Ballistics Model,
Robbins-Gough-Anderson, Chambrage) (15), is derived from
the NATO technical cooperative program (TTCP), model IBRGA.
It is used both as a design tool and to verify predicted
results from other codes. Its primary advantages are that
it is a straightforward code, not expensive to run, and
based on an accepted international model. For these
reasons this code is selected as the interior ballistic

model to be used in this research.

3. Gun Nomenclature.

The typical gun system consists of a fire control
system, a cannon (Figure 2.2), and a round of ammunition
(Figure 2.3). The fire control system calculates the
exterior ballistic solution for the flight of the
projectile. It applies the correction to the elevation and
deflection of the gun tube prior to firing.

The cannon is a tube that is closed at one end for
firing. The barrel provides a guide and support for the
projectile as it is accelerated by the impulse of the
p.opellent gases during the interior ballistic cycle. The
breech is opened to allow the projectile to be loaded and

is closed for firing. In front of the breech is the

16
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Figure 2.2 Typical Tank Gun Nomenclature (11).
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Figure 2.3 Typical Kinetic Energy Tank Round.
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reaction chamber that usually has a greater diameter than
the remainder of -he barrel. It holds the propellernt and it
is here that ignition and the initial pressure build-up
occurs. At the front end of the reaction chamber is an
area whose walls taper down to the barrel diameter. This
area is called the shoulder. Forward of the shoulder the
gun barrel has a uniform diameter, called the gun bore,
which continues to the muzzle.

There are two ways to stabilize the projectile in
flight. The first way is to impart spin to the projectile
as it is traveling down the gun tube. To do this the gun
barrel is rifled. Parallel grooves are cut into the barrel
that twist down the tube. The rotating band that
translates the twist of the rifling to projectile spin is
part of the case cap assembly. It is engraved by the
rifling as the projectile travels down the tube. The other
method is to fin stabilize the projectile. This is done by
attaching a boom and fins to the projectile. Normally a
smooth bore gun is used and the rotating band seals the
propellent gases behind the projectile. 1In both cases the
pressure behind the projectile must overcome the resistance
from the rotating band/gun tube interface.

The base of the round is the cartridge case. It holds
the propellent and ingiter and is designed to fit snugly in
the reaction chamber. The part of the round that travels

to the target is either a chemical energy or kinetic energy

18




projectile. The remainder of the round is called the case
cap assembly. It consists of the parts necessary to secure
and stabilize the projectile in the gun tube. It is
discarded by aerodynamic drag after the projectile 1leaves

the gun.

A chemical energy projectile has an explosive charge
that detonates upon impact. All the energy needed at
impact is provided by this charge. The terminal velocity
is not critical. A kinetic energy projectile does not
contain any explosive charge. Its destructive force is
dependent upon its kinetic energy at impact. The kinetic
energy is given as
%Mvz, 2.4
where M is the mass of the projectile and V is the velocity

KE =

at impact. It 1is essential that kinetic energy

projectiles have high velocity and mass.
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CHAPTER III

OPTIMIZATION METHOD

1. Introduction.

This chapter develops the specific optimization
methods and computer code that will be applied in Chapter V
to the interior ballistic problem. The code is set up to
accept the physical variables for ballistics that are

explained in Chapter IV.

2. General Problem Statement.

The nonlinear constrained optimization problem is
stated as

Minimize: F(X)....e2ev.......0bjective function.

Subject to:

gj(i) <0 j=1,m..........inequality constraints

hye (X) = 0 k=1,1..........equality constraints

xi(lower)s Xy < xi(upper) side constraints
i=1,n.

Here the design variables are viewed as the vector X given
as
ET = {xlle’oco,xn},

where the superscript T means transpose.

3. Augmented Lagrange Multiplier Meth~d.
The material in the background section of Chapter II

justified the choice of the augmented Lagrange multiplier

20




(ALM) method for solving the <constrained interior
ballistics problem.

The ALM includes all constraint conditions in the
optimization scheme. This is done by generating a pseudo-
objective function that combines the objective function
with the equality and inequality constraints as in Equation
3.1. Side constraints are included in the inequality
constraint set. The pseudo-objective function is then
minimized as an unconstrained function of the n design
variables and (m+l) Lagrange multipliers. Minimizing the
new objective function results in the minimum of the
original cost function with all constraints satisfied. The
form of the general Augmented Lagrangian is (17)
A(E,X,rp)=F(§)+_gl[kj¢5+rp¢32]+k£ikk+mhk(i)+rp[hk(i)]2),3.1
where ’

vy = max[gj(i),- Aj/2r 3.2

pl-
Here F(X) is the function to be minimized, h(X) the
equality constraints and g(i) the inequality constraints.
The A’s are the Lagrange multipliers. They are a measure

of the magnitude of the constraint violation and are

updated between iteration as follows:

pHL P %y =A% ,

xj = kj + 2rp(max[gj(X), j/2rp]}, j=1,m 3.3
XP+1 XP -

k+m = “x4m = 2rphk(x) . k=1,1 3.4

The Tp is a scaling factor that weights each constraint.

It is updated by a constant multiplying factor

21




rp = 7rp. 3.5

is also established so that r,. does

An upper limit Ipmax p

not increase indefinitely.

Given the initial conditions, Equation 3.1 is
minimized. IS a solution is found, the algorithm is exited.
If not, the A’s and rp are updated by Equation 3.3, 3.4,
and 3.5, and the process continues (Figure 3.1).

The ALM is considered successful when the change in
the As, the change in the original objective function, and
the change in the constraint functions are within specified
tolerances between <consecutive iterations. A(i,k,rp) is
minimized by a suitable unconstrained minimization method.

As discussed earlier, the zero order methods selected
are Powell’s and Hooke-Jeeves. These approaches solve the

problem by function evaluations alone and do not use

gradient information to locate the minimum.

4. Powell’s Method.

Powell’s is one of the most popular and reliable of
the zero order methods (8). It performs n+l line searches
per iteration. The methcd assumes quadratic behavior of
the function and generates directions that are conjugate to
an approximation of the Hessian matrix. The matrix H is
initialized as an nxn identity matrix. The columns are
initially set to have the coordinate directions as the
directions. After each set of searches along all current

directions, the search directions S1 are updated by
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Figure 3.1 ALM Method Algorithm (17).
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st = a;s*, i=1,n, 3.6

where a;

i is the scalar multiplier determining the amount of

change in X for the ith direction. After n searches, a new

st*l jis generated by connecting the initial X

direction
with the current X and the n+l search is performed (17).
If the process has not converged the search directions are
reassigned as

si = gi+l, i=1,n 3.7
and become the new set of search directions.

In each direction, Powell’s method uses a uniform grid
search to determine an interval within which a 1local
minimum exists. Either a three ©point quadratic
approximation or the Golden Sections method is wused to
locate the minimum within the given interval. Although a
quadratic approximation is less expensive in terms of
function evaluations, it is 1less robust than the Golden
Sections method. The convergence criteria is the change in

the design vector, within a specified tolerance, from

iteration to iteration.

5. The Hooke~Jeeves Method.

Hooke-Jeeves uses the coordinate directions as
exploratory search directions. Hook-Jeeves searches in
discrete steps for each direction. After a complete set of
exploratory searches, a scalar multiplier accelerates the

search in the direction indicated by AX. If the objective
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function value is not improved after the acceleration
step, the method returns to the previous X, reduces the
search increment and continues. It may require more
function evaluations since Hooke-Jeeves always makes use of
the coordinate directions, regardless of the behavior of
the function. However, it is less likely to fail through
numerical ill-conditioning. Convergence is achieved when
the search increment is reduced to a value that is less
than a predetermined tolerance.

6. Description of the Optimization Code.

The optimization code is written by the author in
FORTRAN 77. The code is designed as a series of shells.
The outer shell contains the ALM subroutines. In the next
shell are the one dimensional unconstrained minimization
subroutines. In the inner most shell are the objective and
constraint function subroutines. A copy of the code is
included in Appendix I. A short description of the code
follows.

There is one master header file,
‘declarations.ins.f’. This file contains the variable
declarations, parameters, and common block definitions for
the outer twec shells. It is appended to the beginning of
each subroutine and includes common and passed variables.
Each subroutine declares local variables as needed.

The main program is called ‘optimum.ftn’. It

controls the process and calls the subroutines that monitor
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the optimization. All user interaction is done in
‘optimum’. From this program the following subroutines are
called.

1. read_data: This subroutine reads the interior
ballistics code input records and assigns the
initial values to the design vector.

2. powell: It drives Powell’s method and keeps track
of search directions and convergence criteria.

3. hook_jeeves: This is the Hooke-Jeeves algorithm
and controls the search and convergence criteria.

4. check_print: This program prints out the current
ALM iteration values and other diagnostic
information.

5. tol_test: This performs the ALM convergence test
of the equality, inequality and original objective
function convergence criteria.

6. update: Here the updates of Tp and the A’s for the
ALM pseudo~-objective function by Equation 3.3,
3.4, 3.5 are performed.

7. printit: This subroutine prints the final
objective function value and the final design
vector.

The second shell is the unconstrained minimization

shell that contains the method of Powell and Hooke-Jeeves.
The Hooke-Jeeves subroutine is self contained and calls

no other subroutines. The subroutine ’powell’ calls the
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subroutine ’search’ and this subroutine calls the fol.cwing
subprograms.

8. ugrid_1id: The uniform grid search algorithm
isolates the interval where the minimum is located
by conducting a one dimensional unconstrained line
search of uniform step sizes until such an
interval is found.

9. gold: The Golden Sections interval reducer locates
the minimum in the interval found by ‘ugrid_1id-
through the use of an iterative reduction of the
interval. This reduction is done with the use of
the Golden Section’s ratio of 6.18 and 3.82.

10. quad: This quadratic approximation subroutine uses
gaussian elimination to solve the system of
equations generated by the interval sent from
rugrid_1d/. It assumes quadratic behavior in the
interval.

Both methods call the subroutine /funx.ftn-’. It
performs the transformation of the objective function and
the constraint functions to the ALM pseudo-objective
function, Equation 3.1. Subroutine ‘funx’ calls the
following two subprograms. The first, /fun_con.ftn’/, is a
user supplied subroutine that contains all of the equality
and inequality constraints and evaluates them for each
function call. The second, ‘fun_int.ftn’ is the modified

version of IBRGAC described in Chapter IV and found in
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Appendix II.

The user is responsible for providing the input data
as required by the interior ballistics code, the constraint
subroutines, and the subroutines that allow the transfer of
the variables from the optimization code to the interior
ballistics code. They are ‘var_in.ftn’, ’var_out.ftn’, and
part of ‘read_data.ftn-’. The user must also specify in
roptimum.ftn- the number of variables, equality

constraints, inequality constraints, and tolerances.
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CHAPTER IV

INTERIOR BALLISTICS

1. Introduction.

The first part of this chapter presents the
conservation equations and empirical relationships used in
a lumped parameter model to solve the interior ballistics
problem. It is primarily drawn from three sources; the
IBRGAC User’s Manual (15), the IBVGH2 User’s Manual (1),
and the derivation by Krier and Adams (11). Many of the
equations in these sources are repeated from previous work
that will not be cited here. The sequence of events during
the interior ballistic cycle are described in Section 2.
Section 3 defines the projectile equations of motion as a
function of time and their dependence on projectile base
pressure. The base pressure’s relation to mean pressure in
the tube and the rate of propellent gas generation is
derived in Section 4. 1In Section 5, mean gas pressure and
its dependence on mean gas temperature and rate of
propellent gas generation is derived. Section 6 defines
the mean temperature and its relationship to the rate of
gas generation and losses to the system, which are detailed
in Section 7. 8Section 8 derives the rate of gas generation
and discusses propellent properties. In Section 9 the gun
recoil equations of motion are derived. Finally, Section

10 lists the modeling approximations used in the previous
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sections.
The second part of the chapter describes the IBRGAC

code and its organization (Sections 11 and 12).

2. Interior Ballistic Cycle.

The interior ballistic cycle starts at propellent
ignition. After the propellent is ignited, pressure and
heat rapdily increase inside the chamber from the
generation of combustion gases (Figure 4.1). Projectile
motion begins after this pressure has overcome the
resistance caused by the initiation of engraving the
projectile’s rotating band by the bore. Pressure
increases until the rate of volume increase overcomes the
rate of propellent gas generation. Acceleration continues
as long as there is a pressure differential across the
projectile. The interior ballistic cycle ends when the

projectile leaves the gun tube.

3. Projectile Equations of Motion.

A gun is a simple heat engine in which chemical energy
of the propellent is transformed into kinetic energy of the
projectile and heat (16). Newton’s Second Law is

a=E, 4.1

m
where at time t projectile acceleration equals the net
force generated by propellent combustion divided by
effective mass. The projectile maintains a constant in-

bore mass. The integral of acceleration with respect to
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time yields velocity while a subsequent integration gives
the distance the projectile has travelled (travel).
Newton’s Second Law for this problem is

Ap

a =—(Pb-Pr-P 4.2

P gl
where ap is projectile acceleration, A, projectile base

area, P, the pressure at the projectile base, P. the bore

r
resistance to friction and engraving (as an equivalent

pressure), P, the pressure of the air in the tube ahead of

g
the projectile, and m, the projectile mass. The solution
for projectile velocity as a function of time is obtained
by determining the pressures in the parenthesis of Equation
4.2 as functions of time and integrating. P,(t) is
interpoclated from tabular resistance pressure data and
Pg(t) is given as a constant average value. The remaining
parameter to be found is the base pressure Pp(t).
Projectile travel, in the ground based coordinate
system, is the sum of projectile displacement and the
recoiling gun displacement. Summing the integrals with
respect to time of projectile velocity and gun recoil

velocity (Equation 4.34) gives travel as

x =foirpdt +fo°vrpdt. 4.3

4. Base Pressure Derivation.

From initial projectile movement (initial volume is
chamber volume minus the volume occupied by propellert)
until the projectile leaves the gun tube, the volume

occupied by the combustion gases is constantly
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increasing. As the available volume and quantity of gases
increases during propellent consumption, the gases are
accelerating down the tube. This is caused by the
difference in pressure from the breech to projectile
base. A solution for the distribution of pressure,
density, and gas velocity in the gqun during firing is
obtained by the Lagrange pressure gradient approximation.
It states that 'the velocity of the gas at any instant
increases linearly with distance along the bore, from 2zero
at the breech to the full shot velocity at the base of the
projectile (7).

The approximations made in this model are: the chamber
is a cylindrical extension of the bore with the same total
volume, the entire charge may at any time be treated as
gaseous and gas density is uniformly distributed in the
gun tube at any time. If the distance from the breech is x
and y is the position of the base of the projectile, the

gas velocity v, can be expressed as

g

= X dy ‘ 4.4a

Vg =, at”
The all gaseous propellent charge assumption means that

density is

C
t
p= ’ 4.4Db
Apy
where Cy is the initial mass of propellent and igniter.
Uniformly distributed gas density means %% = 0. When x=y

the gas velocity v equals projectile velocity Vp-

g
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Therefore, Newton’s First Law can be written as
—= = —(Py - Pp - pg), 4.4c

where previous definitions apply. Integrating the equation
of motion for the gas using the previous three equations

gives the pressure P(x) as a function of distance as

ct

2
- X
P(x) = Py + S=(1 - ;2)(Pb - Pp - P 4.4d

2mp g)'

The mean pressure P, between the breech and projectile
base, can then be determined as
m

117 ct
P = =|"Pdx = + = (P, - P. - P_.). 4.5
yfo Pp 3mp( b r g)

Solving for the base pressure P, gives

Ce(Pyp + P

)
91/ 11+ S&. 4.6

3mp 3mp

To determine the base pressure Pb(t), the mean pressure

Pp(t) = [Pp(t) +

Pp(t) must be determined.

5. Mean Pressure Derivation.
Van der Waals’ equation of state is (16)

(P + a/vV3) (Vv - B) = RT. 4.7
Here R is the universal gas constant, V is the molar volume
of gas, the term a/V2 is the increase in pressure due to
intermolecular attractions, and B is the decrease in free
volume due to the finite v-olume of the molecules. This
means the available free volume for the gas to move about

is less than the free chamber volume. At low pressure and
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densities these volumes are nearly identical. At high
pressure and densities the free volume difference is
noticeable.

As temperature and pressure increase in the gun, the
effect of intermolecular attractions decreases causing the
a./V2 term in Equation 4.7 to become negligible. Van der
Waals’ equation is reduced to

P(V - B) = RT. 4.8
To use the preceding equation with the mass and volume of
gas, R is substituted in Equation 4.8 by the relation
R = R(Vm/V), 4.9
where R is the specific gas constant, m the mass, and V the
volume of gas. This form of Van der Waals’ equation, after
simplification, is known as the Noble-Abel equation
P(V - mb) = nRT. 4.10
In Equation 4.10 the covolume b is defined as the Van der
Waals’ constant B divided by the molecular weight of the
gas. Using mean values of the pressure P, and temperature
Tn, OvVer the temperature range, Equation 4.10 is
Pp(v - ? mijb; - myby) = ( ? miR;+ myRy) Ty . 4.11
The subscript I is the igniter and for multiple propellents
the subscript i indicates the ith (i=1,n) propellent.
Substituting for the specific gas constant R in the above
equation with the propellent force F, defined as
F = RT,, 4.12

with T, being the adiabatic flame temperature of the
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product gases, the mean pressure P, can be stated as

Fimj Fymy
=——+7—1/(V = £ m3b; - mgbp). 4.13a
.70l ol 1

Pp = TulZ
2

At time t, the mean pressure is calculated from Equation
4.13a for values of the mass of gas present, or

Pp(t) = Tm(t)[i + 1/(V(t)-Z mj (t)bj-mybr). 4.13b
1

Toi Tox

The mass of gas present my (t) at time t is equal to the

fraction of propellent mass burned z4 (t), Equation 4.31,

multiplied by the original propellent mass C; or
FiC;23(t)Fmy

Pm(t)=Tm(t)[? + ]/(V(t)-? Ciz; (t)by-myby) . 4.13c

Toi Tor

The volume available for the gases at time t is
V(t) = Vg + Apx(t) - V. (t), 4.14
where x(t) 1is projectile travel, Ay is area of the
projectile base, and V. is initial chamber volume. The
total volume of unburnt propellent vr(t) is calculated
from the fraction of mass burned by
Vp(t) =2 %i(l - z4(t)). 4.15
The gas density is p. To determine the mean pressure P (t)

in Equation 4.13c, the mean temperature T (t) must be

known.

6. Mean Temperature Derivation.
From the First Law of Thermodynamics, the energy

balance in the gun tube can be stated as: the initial
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energy of the gases is equal to the internal energy of the
gases plus any losses. Losses include work done by and
heat transfered from the system and are discussed in the
next section. Using average values of specific heats over
the temperature range, the initial energy of the gases is
1 = Z Bi%viToi + MrCviTor 4.16

where m: is mass,

i specific heat (at constant volume),

Cvi
and T,; adiabatic flame temperature of the propellent
product gases. The same definitions apply for the igniter.
The internal energy of the gases in terms of the mean
temperature T is

Equation 4.17 and 4.18 are used in the energy balance
statement. The specific heat ¢, is first expressed as

where v is the ratio of specific heats, and the results are
solved for mean temperature T, to obtain

> + - L
U o ¥ O :

(
m F.m, Fymy '

[z — __Toi ¥+ ___Tor ]
i (r4=1) (vg=1)

4.19%a

At time t, the mean temperature is calculated from Equation

4.19a as
) + - L(t
L1 (v4-1) \rr-1) (®) ]
Tm(t) = Fimi(t) Fomy . 4.19b

[ To; + Tor 1

-1 0 T

-
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Again m;(t), the mass of the gas present at time t, is
calculated from the fraction of propellent mass burned
z; (t), Equation 4.31, multiplied by the original propellent

mass Ci or

Z -
LY == " oD L))
T (t) = . 4.19
m( ) Ficizi(t) FImI ©
lz ————Toi ¥+ —__Torl
P T (D) (77-1)

For both the mean pressure and temperature, the derivation

of the fraction of mass burned z; (t) is in section 8.

7. Work and Losses.

In the previous section there is loss L(t) due to work
performed and heat transferred from the system. There are
three general classes of loss. The first is work done to
the projectile and gun. They are; loss to projectile
translation and rotation and recoil of the gun. The
second is work lost to the propellents and resistances.
They are; energy losses to propellent gas and unburned
propellent motion, bore resistance due to engraving and
friction and air resistance in front of the projectile.
The third is heat transfer to the chamber wall. All these
can be written as follows:

L(t) = Epy + Epp + Exp + E

pr rp P
These losses and the relevant equations are listed in Table

+ Epp + Eo. + Ep. 4.20

4.1.
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Type of Energy Loss

projectile translation
projectile rotation
recoil of the gun

propellent gas and
unburnt propellent motion

bore resistance due to
engraving and friction

loss to air resistance

heat transfer to the chamber
walls and gun barrel

=1 2
Fpt ¥ 2 "p'p

- 22
Fpr = ¢ "p'p TV

=1 2
Frp ¥ 2 "rp'rp

=1 1
Ep -zabfox’/'gdx s C¢
Epr = By [ PrVpat
E. =AbfPth
E, = font

Table 4.1 Table of losses for Equation 4.20.
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For energy loss to projectile rotation E Tw is the

pr’
twist of rifling in turns per caliber. More precisely, Tw
is the ratio of complete revolutions to bore diameter for
the rifled grooves down the length of the gun tube.

Energy due to heat transfer to the internal chamber
walls and gun barrel by convection Ep, is assumed to be
proportional to the difference of the mean temperature of
the system and average temperature of the wall. At time
t, this heat loss can be stated as

Ep, =focht, 4.21

where
Q(t) = A (t)h(Ty(t)-Ty(t}), 4.22
and T,(t) is the temperature of the chamber wall. The

exposed chamber wall area A, is

A (t) = % 7Dy + 2Ry + TDpx(t), 4.23
b

where Dy, is bore diameter, Vo initial chamber volume, and

the heat transfer coefficient is given by

h = Acppvq + ho' 4.24
Here c¢., P, and V., are mean values for the previously

P g
defined symbols and h, is a natural convective term which

allows heat transfer if the projectile is not moving. The

Nordheim friction factor A is empirically derived from gun
tube experimentation and found to be

N= [13.2 + 410g10[100.CDy]1] 2. 4.25

The chamber wall temperature T, in Equation 4.22 is

derived from an energy balance that says
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heat transfer + work = A internal energy.
The heat transfer is E, and work is given by Ep, multiplied
by an empirical factor f, the fraction of work done against
bore friction that preheats the chamber. The change in
internal energy of the chamber wall is
A= 'l‘wc:lwmw - chpwmw, 4.26
where the w subscript indicates the chamber wall properties
for specific heat (at constant pressure) and mass of the
chamber wall. The initial chamber wall temperature is T,.
flacing the above terms into the conservation equation and
substituting mass with density and volume yields
Ep + fEBpp = cpwprwa(Tw - TS 4.27
Here D, is the chamber wall thickness. In terms of the

chamber wall temperature T,, Equation 4.27 is
v, = EB+fEbr . o

14
CpwPuwPwDy  °

and can be placed into Equation 4.22 for T,(t) at time t.

4.28

8. Propellent and Rate of Burning.A

Propellents are composed of compounds that ignite and
burn quickly, producing large quantities of gas rapidly.
Conventional propellents are primarily nitrocellulose and
their basic geometric wunit is the grain.

The burning rate of the propellent is the rate at
which the surface of the propellent regresses. The
empirical equation is the steady state burning law (7)

r = 8Pg, 4.29
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where 8is the burning rate coefficient and a is the burning
rate exponent. The unit of r is meter per second.
Experimental burning rate data are fitted to the equation
to determine the coefficients, which are functions of
propellent temperature.

The burning of the propellent grains produces the
pressures necessary to overcome the initial resistive
forces and accelerate the projectile down the gun tube.
The model states that grains burn uniformly and without
deformation. At constant pressure the mass of the
combustion gases produced is proportional to the surface
area exposed. As burning continues, the rate of mass
produced depends on the surface area as a function of time.
The equations for the recession of the exposed surface area
for propellents are determined from geometric analysis of
the grain.

The mass fraction burning rate 2 is the rate at
which the propellent mass is being consumed and therefore
_ the rate gas is generated. The relationship is

z; = 8573/ Vgir 4.30

where 8; is the remaining propellent grain surface area, r;

is the linear burning rate from Equation 4.29 and Vgi is

the initial grain volume. Integrating equation 4.30 yields
the fraction of mass burned at time t as

24 .—.f:zidt. 4.31

The physical configuration of the grains within the
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chamber (packing) has an effect on the rate of burning and
the resultant chamber pressure. This effect is not
considered within the scope of this research.

There are three types of propellent grain geometry:
regressive, neutral, and progressive. Regressive burning
grains reduce their surface area during burning. Neutral
burning grains maintain a constant surface area until
consumed. Progressive burning grains increase in surface
area as they burn. For progressive burning grains, once
the grain has burned a certain distance the perforations
intrude upon each other and burning becomes regressive. An
example of each type is depicted in Figure 4.2.

Another factor in propellent performance is the
density of loading. It is the weight of the propellent in
the chamber, divided by the volume of the chamber available
to the propellent. The loading density is a measure of how
much propellent is present and therefore how many moles of
gas will be generated. An increase in the density of

loading will generally increase pressure in the chamber.

9. Gun Recoil.

Recoil is the rearward movement of the gun in the
ground reference frame during firing. Recoil is caused by
reaction to the forward motion of the projectile and
propellent gases. Recoil systems are d4usigned to absorb

this energy so that the gun will remain stable during
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Figure 4.2 Typical Propellent Grain Burning Types.
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firing. The equation of motion from Newton’s Second Law is

a
rp mrp

=Ab (p - %2 - P). 4.33
b

Here Py, is the breech pressure, RP is the resistive force

to recoil motion, and the subscript rp means recoiling

parts. The acceleration of the recoiling parts is zero

until the pressure at the breech is greater than the

combined resistive forces to recoil motion and barrel

resistance. Integration of arp gives the corresponding

velocity Vep a8
[
Vep _foarpdt, 4.34

10. Modeling Approximations.

Modeling the interior ballistic cycle uses the

following conditions:

1. The propellent gas mixture is described by the
Noble-Abel equation of state. This means that the
gases are well mixed and no solid or liquid
phases exists.

2. The propellent gas flow is taken to be one-
dimensional, inviscid, and compressible.

3. The steady state burning rate law can be used to
describe the recession of the rate of the
propellent grains.

4. The base of the projectile is flat and
perpendicular to the direction of travel.

5. Propellent grains are all the same size and
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configuration for a given propellent load. For
perforated propellerts, all holes are placed in
the grain symmetrically.

6. All propellent is ignited simultaneously and
uniformly. The igniter is consumed by t=o0.

7. All exposed burning surfaces recede at the same
rate and perpendicular to the surface. That is,
the grains shrink uniformly without deformation.

8. Decomposition of a unit mass of propellent will
always liberate the same amount of energy, which
heats product gases to the same temperatures.

9. The main constituents of ihe propellent yas
mixture do not suffer further chemical or physical

reactions.

11. Description of IBRGAC.

IBRGAC is a lumped parameter interior ballistics code
written in FORTRAN. It was developed in 1987 at the
Ballistic Research Laboratory, Aberdeen Proving Ground,
Maryland and validated by experimental data.

IBRGAC uses the Lagrange and chambrage method for the
breech to base pressure gradient. The chambrage gradient
equation takes into account the narrowing of the front of
the chamber to calculate the pressure gradient in the gun
tube. It is demonstrated in the User’s Marual that both
methods result in comparable projectile performance

predictions. The Lagrange method is used exclusively in
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this research for consistency.

The user provides a input file organized into 9

records that are defined as follows.

1. Record 1:; Gun system data and pressure gradient
calculation selection flag.

2. Record la; If the chambrage gradient is selected,
this record is read and contains chamber dimension
data.

3. Record 2; Projectile mass, air resistance flag, and
f, the fraction of work done against bore friction
that preheats the chamber, data.

4. Record 3; Barrel resistance point data.

5. Record 4; Recoil data.

6. Record S5; Heat transfer data.

7. Record 6; Igniter data.

8. Record 7; Propellent data (up to 10 propellents).

9. Record 8; Propellent burning rate point data (for
each propellent used).

10. Record 9; Time increment data.
The data are read from the input file and printed in the
output file. All input data are required to be in the MKS
systen. The example problem input files are in Appendix
III.

The model uses 4th order Runge-Kutta integration to

calculate projectile velocity and travel, projectile

resistance energy, system heat loss, recoil velocity and

47




12.

travel, and energy loss to air resistance. The time rate
of change of mass and surface area of propellent are
determined from the linear burning rate.

The algorithm continues until either the projectile
has left the tube or the stop time has been reached. The
program will terminate for detected errors in input and
output records or unacceptable grain dimensions. If time
expires before the projectile has exited the tube, current
projectile velocity rather than muzzle velocity is
displayed. For each time step, elapsed time,
acceleration, velocity, travel, breech and mean and base
pressures are calculated. Once the program is complete,
initial and residual propellent gas energy and all losses

from Section 7 are calculated for the cycle.

Program Organization.

The code has been reorganized into a main program
and six subprograms. This was done to allow integration
with the optimization code. A complete listing of each file
is in Appendix II. There is one master header file
rintball.ins.f’. This file possesses the variable
declarations, parameters and common block definitions. It
is appended to each subroutine. Each subroutine declares
local variables. A description of each file follows:

1. fun_int; This is the main program and performs the

interior ballistic calculations with the exception
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of surface area and volume rate of change
calculations done in ’/prfoi17’ and the 1loading
density in ‘mass_check’. It is called by
subprogram ’funx’ from the optimization program
(see Chapter III). All subroutines are called by
fun_int’ except ‘read_data-’.

read_data; This subroutine is called by the
optimization code. The input file values are
assigned to a backup set of variables and the
initial design vector is created.

reset_data; The subroutine resets all 1local
variables used in /fun_int’ from their values and
sets the working variables to their initial values
for each iteration.

var_in; This subprogram is modified by the user
and assigns the values from the design vector X
to the respective working variables in /fun_int’.
mass_check; This subroutine determines the density
of loading and maximum propellent charge for each
problem. The actual propellent volume is
calculated and compared to the maximum charge
volume. It can be quickly modified to accept any
factor for maximum propellent load.

prfol7; This subprogram determines the
acceptability of the propellent dimensions and

calculates the mass fraction and surface fraction




of propellent burned.
var_out; This subroutine returns the respective
working variables to the design vector after each

iteration.
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CHAPTER V

EXAMPLE PROBLEMS

1. Introduction.

The purpose of this chapter is to specify the
equipment used in the example problems, state the problems
solved, and critique the results. Section 2 describes the
hardware used in the example problems and includes the
specifications of the gun, projectile, and propellent. 1In
Section 3 the optimization objective function for the
interior ballistics problem is stated, while Section 4
develops the constraints by category. Section 5 explains
the parameters initialized in the optimization scheme. The
selected example problems, their purpose, organization,
input, and output are in Section 6. The analysis of the

results is in Section 7.

2. Baseline Egquipment.

The gun, projectile, and propellents are described in
this section. The gun system is representative of the
current tank main gun.

The cannon is 4.57 meters long with a 120 mm bore
diameter. The chamber is 54.0 cm long and 15.4 cm in
diameter. In the forward 8.0 cm of the chamber its
diameter constricts to 12.7 cm, then reduces to 12.0 cm at

the barrel. The chamber volume is 9832 cm>. The gun is
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smooth bore with no twist.
The design factor of safety n for gun tube strength is

1.15 (19). The yield point strengths ¢ of the gun, as a

yp
function of distance down the bore, are:

Syp (MPa) Bore Location (m)
696.0 0.00 < %, < 1.50
276.0 xp = 4.00
171.0 xp = 4.57
Here x_ indicates the projectile’s 1location in the gun

P
tube. The von Mises-Hencky failure criteria (18) is used to

determine the maximum pressure Pp_.. for the gun as

X

Ppax = ‘YP/1.732%n. 5.1

From 1.50 meters to the muzzle, a 1st order least squares

fit provides the distance-pressure functions (Pp,, in MPa,
xp in meters)
Prax (Xp) = 346.0, 0.00 < X, < 1.50 5.2
Pmax(xp) = 479.8 - 83.20*xp, 1.50 < xp < 4.00 5.3
Ppax(¥p) = 502.9 - 91.23%x . 4.00 < X, < 4.57 5.4

The pressure Pp,, is used as the upper limit on breech and
base pressure. Breech pressure is checked against Equation
5.2. This pressure occurs at X, = 0.0 for the entire
cycle. Base pressure is checked against all three
equations as a function of Xp. This pressure occurs at Xp
throughout the cycle.

The kinetic energy projectile weighs 9.796 kg,

including the case cap assembly. It is fin stabilized and
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does not require applied spin. The projectile base is
assumed to be a flat disk perpendicular to direction of
travel.

There are two propellent compounds and three
propellent grain geometries. The two compounds resemble
the M6 and M8 military propellents. Their thermodynamic
properties are listed in Table 5.1. All three grain
geometries are cylindrical (cord) propellents with zero,
one, and seven perforations. Figure 5.1 shows their
critical dimensions. The seven perforation propellent must
have the outer perforations (Pg) equally spaced about the

center. The three webs (w, w W,) need not be equal and

il
are determined from the input dimensions L, D, pj, Pg, and

da.

3. Problem Objective Function.

The objective is to maximize projectile velocity for
the given conditions, without violating constraints. The
objective function 1is the projectile velocity equation
(the time integral of Equation 4.2), including all required
ancillary equations discussed in Chapter IV. All function
evaluations will be multiplied by negative one (-1.0) to
make the objective (maximum velocity) and formulation

(function minimization) compatible.

4. Problem Constraints.

The constraints fall into three categories; dimension,
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Propellent Impetus Adiabatic Covolume Density Ratio of

Flame Specific
Temperature Heats
J/g °k em3/g g/cm3 none
Sample (M6) 1135.99 3141 <9755 1.6605 1.23
M8 1168.90 3768 .9550 1.2119 1.62

Table 5.1 Propellent Thermodynamic Properties (15 and 16).
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mass, and pressure. Constraints include both general and
specific criteria and need not directly involve design
variables. The constraints are developed for each component
of the problem, then as each example problem is developed a
specific constraint set is developed from this general set.
The size constraints for the propellent grains
include non-negative values for all sizes and mass, in the
form
X, 20,
or
gl(i) = =Xq. 5.5
For the given chamber size a practical 1limit of 6.0 cm is
put on grain length. This allows propellent grain to lay
in the reaction chamber and extend no farther than from
chamber wall to ingiter probe in the center of the chamber.
The form of this constraint is
L < 6.0,
or
- L
gz (X) = —= = 1.0. 5.6
Equation 5.6 is normalized so the constraint magnitudes
will be comparable to each other. After normalization, the
constraints are multiplied by scaling factors to ensure
that they are of sufficient magnitude to affect the
objective function. For the zero perforation propellent
(see Figure 5.1 for propellent dimensions) "%e constraints

are:
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1) 3 non-negative constraints (L, D, mass).

2) L > D.
The one perforation propellent diameter D must be greater
that the diametei of the inner perforation p;, giving

1) 4 non-negative constr;ints (L, D, pj, mass),

2) L > D, and

3) D> pj;-
For the seven perforation propellent there are three other
size constraints. The first is that the propellent
diameter must be greatér that the sum of the inner pP; and
two outer p, perforations. The second is that the distance
between the perforation centers 4 must be greater than the
sum of the inner and outer perforation radius. Finally, two
adjacent outer perforations and the inner perforation form
an equilateral triangle. The outer perforation p, must be
less than one side of the triangle 4. This leads to:

1) 6 non-negative constraints (L, D, Py, Pir 4, mass),

2) L > D,

3) D > pj + 2*p,,

4) 4d > pj/2 + py/2,

5) Po > d.

The mass constraint for propellents says that
propellent volume must be less than chamber volume. This
is determined by comparing the total volume occupied for

all propellents to initial chamber volume V, or
my
Z — =<V

i Pi

co

57




No reduction factor is included to account for volume lost
due to packing. Equation 5.7 is the only non-negative mass
related <constraint, regardless of the number of
propellents.

Maximum pressure constraints are both equality and
inequality constraints. The maximum pressure in the gun
will occur at the breech. This pressure is key to
projectile performance. To keep pressure at maximum

without exceeding P the breech pressure is constrained

max

to equal P ., so that

Ppr = Ppaxy:
or
P

hl(x) - - 1¢0c 5.9

br
The constraint is normalized. The base pressure constraint

is an inequality constraint utilizing Equation 5.2, 5.3,
and 5.4. In this form

485.3 -~ 86.8%X_ > Pb(MPa), 5.10

P

where Xp is checked to determine which equation to use.

5. Ooptimization Initialization.

The values used for the tolerances and multipliers
that are required for the optimization method are developed
in this section. The multiplier Ip is initialized at
100.0. This is to ensure the constraints affect the
objective function value as quickly as possible. The Ty

update factor Y is set at 2 to provide a geometric

increase for the magnitude of rp, per iteration. The
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maximum multiplier value r is set at 108 to provide a

pmax

reasonable upper limit for r All Lagrange multipliers

p*
A’s are initially set to 1.0 to provide a neutral start
point. The updﬁte formulas will determine final A values.
From Chapter II the convergence criteria for the ALM
is set at .2. This is appropriate for the magnitude of the
velocity (10%) and the \’s of the scaled and normalized
constraint values. The tolerance sent to the line searches
is .0001. This ensures that the search is not more precise
than the grain manufacturing tolerance, .007cm (19). This

value is not inconsistent since alil input values are

convertel to meters in the interior ballistics code so that

.0001 is equivalent to a .01 tolerance for centimeter
values.
6. Example Problems.

The optimized and automated design process proposed
must be able to accomplish several tasks. This process
must attain, at 1least, the performance level of current
design methods. It must achieve a practical optimum
design reyardiess of the relative size of the parametric
space. It also must be flexible, work for various
combinations of variables, and be easy to use. The example
problems are designed to answer these questions.

In Appendix D of the IBRGAC User’s Manual there is

a seven perforation propellent "optimized" under current
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design techniques for a maximum breech pressure of 346 MPa.
This design was performed by holding all variables constant
and varying only the propellent inner web. The model was
executed once for each each web increment and the mass was
incremented manually until 346 MPa was attained.

The first example problem addresses the questions of
whether the proposed method c¢an attain comparable
projectile performance compared to current design methods
and does the current method attain an optimum design? The
optimization process is started from the current best
design for the seven perforation propellent and from a
random point in the parametric space. These results will
indicate the optimization process performance against the
current design procedures and provide a measure of the
ability of the process to search the same parametric space
from different points to achieve an optimum.

The second example problem examines whether the
process continues to work for a slightly more complex
parametric space. Two propellents of differing geometries
are used i.e. one and seven perforation. This example
problem has two parts. In Part 1 an optimum design is
determined from the initial propellent geometry. In Part 2
the optimization is restarted from the final design of Part
1 to determine if the process has converged at the optimum
design in the parametric space.

The third example problem again addresses the question
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of the optimization process performance in a larger
parametric space. Three propellents are used; zero, one,
and seven perforation.

The fourth example continues to examine the
optimization process performance, in a different parametric
space. In this example, two seven-perforation propellents
with different thermodynamic properties are used. As in
Example 2 a second optimization iteration is performed
starting from the first iteration’s final design. This
checks the optimization performance of a different point in
a different space than Example 2.

All four examples will address the question of the
optimization method’s flexibility and ease of use. The
first three will also allow a comparison of the effects of
a gradually increasing parametric space on the optimization
process and projectile performance.

The input files for each example problem and a sample
output file are listed in Appendix III. The output file
demonstrates the format and calculated results available
from IBRGAC.

Each example is organized into the following parts:
problem statement, initial and final design table, initial
and final performance table, constraint set, ALM iteration
history, pressure-time, and pressure-travel charts.

The problem statement covers the conditi.ns of the

problem and its objective. Also in the problem statement
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is the identification of figure and table numbers
appropriate to the problem and the specification of the
design vector X for the example. Numerically subscripted
components of the design vector indicate propellent type
in multiple vropellent examples. The number of constraints
for the problem is also stated.

The initial and final design table shows the original
specifications for the propellents used for the example and
compares them to the final values obtained by the
optimization process. The initial and final performance
table compares the velocity and maximum pressures of the
initial and final designs. This allows a comparison of
the change in performance resulting from the optimization.

The constraint set is taken directly from the
subroutine used in the code. This allows all of the
constraints in their actual format to be exanined. An
explanation of each constraint is included 1in the
subroutine comments. The constraint set is generated from
Section 4 derivations for different propellent types. All
example problems have the pressure (Equation 5.9 and 5.10)
and mass (Equation 5.7) constraints included.

The ALM history shows the performance of the
optimization method for each example. The number of ALM
iterations, the number of function calls, the objective
function value (FCOST), and the Lagrange pseudo-objective

function value (ALM) are measures of the optimization
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method’s performance. This allows a comparison of the
relative performance of the method in various parametric
spaces.

The pressure~time and pressure~travel profiles for the
initial and final designs allows a graphic portrayal of the
performance of the propellent design and a time history of
the projectile’s velocity. The pressure-time curve
indicates the impulse for the propellent while the
pressure-travel curves gives the work performed. An
increase in the area under either curve indicates an
increase in projectile velocity.

The last figure of each example is a breech pressure
comparison graph. It show the difference between the
initial and final breech pressure as pressure-travel
profiles. This graphically displays the change in work
performed on the projectile from initial to final design.

Each example problem and its results are 1listed in

order and are analyzed in Section 7.
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Example 1: This example contains two parts.
First, the process is started from the "optimized" design
from Appendix D of the IBRGAC User’s Manual. This is done
to check the performance of the optimization scheme against
the current design method, as described earlier in this
section. Second, the same propellent is used but started
at a different point. This is done to compare the
optimum design attained from two distinct starting points
in the same parametric space. The initial and final design
results are given in Table 5.1.1. The initial and final
performance values of the optimization are in Table 5.1.2.
The set of constraints are stated in Table 5.1.3. The ALM
iteration history for Example la is given in Figure 5.1.1.
The pressure-time and pressure-travel profiles for Example
la are Figures 5.1.2 and 5.1.3. The pressure differential
curve is Figure 5.1.4.

The parametric space for this problem consists of six
variables, the five critical dimensions for the seven
perforation propellent used and its mass. The design vector

X for Example 1 is

xl = L,

XZ = pi,
X3 = Po,
x4 = D,

Xg = 4,

Xs = mass.

The propellent dimension terms are defined at the beginning
of the thesis. There is one equality constraint and 13

inequality constraints.
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Initial vValues Example 1a Example 1b

Propellent 1 . Propellent 1
Type Sample Sample
No. Perf 7 7
Mass (kg) 8.70 8.90
Dimensions (cm)
L 3.175 4.000
D 1.702 2.000
P; .0508 .0200
Po .0508 .0400
d .2807 .4000
Final Values Example la Example 1b
Propellent 1 Propellent 1
Type Sample Sample
No. Perf 7 7
Mass (kgqg) 8.91 8.94
Dimensions (cm)
L 3.225 4.370
D .987 1.040
P; .0108 .0100
Po .0208 .0400
d .2507 «2700

Table 5.1.1 Initial/Final Propellent Values.
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Example 1la

Initial Final
Projectile Velocity (m/s) 1398 1408
Max Breech Pressure (MPa) 346 345
Max Base Pressure (MPa) 240 237
Example 1b
Initial Final
Projectile Velocity (m/s) 573 1407
Max Breech Pressure (MPa) 64 345
Max Base Pressure (MPa) 44 237

Table 5.1.2 1Initial/Final Performance Values.

66




-/

c******i***t***************i*****************************i***ttt*******

SUBROUTINE FUN_CON7(X, NOVAR)

C*******ﬁ**t********;********i*t******i********t****************t******

C THIS IS THE CONSTRAINT SET FOR EXAMPLE 1. 7 PERFORATION GRAIN.

%XNCLUDE ‘declarations.ins.f'

COMMON/limits/?pmaxba ,dpmaxbr, pmaxbr, pmaxba,d_l, total_vol_prop,
+ cham_vo

REAL*4 X(NOVAR) ,dpmaxba,dpmaxbr, pmaxbr, pmaxba,d_L, pmax,cham_vol,
+ total vol _prop

FOR 7 PERF PROPELLENT.....icveninnnirinciennecncaacasaas dimensions..
fh1 :max breech pressure constraint Pa

fgl :prop grain length .GT. 0 constraint m

fg2 :inner perf diam .GT. 0 constraint m

fg3 :outer perf diam .GT. 0 constraint m

fgb :prop grain diam .GT. O constraint m

fg5 :dist between perf centers .GT. 0 constraint m

fgé :mass .GT. than 0 constraint kg

fg7 :prop diam .GT. (inner+outer perf diams) constraint

fg8 :dist between perf centers .GT. (inner + outer radius) constraint
fg9 :length .GT. diameter constraint

fg10 :max length for the cord écm

fg11 :equilateral triangle requirement

fg12 :max base pressure constraint

£913 :maximum volume of propelient cannot exceed the space in the chamber

FG(1) 1000*(-x(1))

FG(2) 1000*(-x(2))

FG(3) 1000*(-x(3))

FG(4) 1000*(-x(4))

FG(5) 1000*(-x(5))

FG(6) 100*(-x(6))

FG(7) 100*(2*x(3)/x(4) + x(2)/x¢4) - 1.0)
FG(8) 100*(.5*x(3)/x(5) + .5*x(2)/x(5) - 1.0)
FG(9) 100%(x(4)/x(1) - 1.0)

FG(10) 100*(xC1)/.06 - 1.0)

FG(11) 100*(x(5)/x(3) - 1.0)

3.46e8
pmaxbr/pmax - 1.0

000000000000 00

pmax
FH(1)

¢ Determ1ne acceptable pressure .....ouieeceirereviiinereansracenceannss e
f (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
pmax = -8.320e7*dpmaxba + 4.708e8
else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
pmax = -9, 123e?*dpmaxba + 5.02%e8
else if (dpmaxba.gt.4.57) then
pmax = .86e8
end if
FG(12)= 5*(pmaxba/pmax - 1.0)
FG(13)= 100*(total vol_prop/cham vol - 1.0)

RETURN

END

C END OF FUN_CON. . vueuoreueanesenunnnsonnssonsesosanoanoosasnsnscnnnsnsos

Table 5.1.3 Example 1 Constraint Set.
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NUMBER OF DESIGN VARIABLES H
NUMBER OF EQUALITY CONSTRAINTS HER|
NUMBER OF INEQUALITY CONSTRAINTS : 13

YOU HAVE SELECTED POWELLS METHOD

AT ITERATION NUMBER 1 AND CALL NUMBER 48
CURRENT FCOST = -1545.046
CURRENT ALM = -1499,489

AT ITERATION NUMBER 2 AND CALL NUMBER 79
CURRENT  FCOST -1501.847
CURRENT ALM -1451.523 .

AT ITERATION NUMBER 3 AND CALL NUMBER 110
CURRENT FCOST = -1450.726
-1409.354

AT ITERATION NUMBER 4 AND CALL NUMBER 162
CURRENT  FCOST -1394.,435
CURRENT ALM -1401.103

AT ITERATION NUMBER 5 AND CALL NUMBER 213
CURRENT FCOST = -1415.718
CURRENT ALM = -1405.178

CURRENT ALM

AT ITERATION NUMBER 6 AND CALL NUMBER 248
CURRENT FCOST = -1408.722
CURRENT ALM = -1405.803

AT ITERATION NUMBER 7 AND CALL NUMBER 300
CURRENT FCOST = -1409.944
CURRENT ALM = -1407.968

AT ITERATION NUMBER 8 AND CALL NUMBER 335
CURRENT  FCOST -1404,827
CURRENT ALM -1407,929

AT ITERATION NUMBER 9 AND CALL NUMBER 389
CURRENT FCOST -1409.682
CURRENT ALM -1408.929

AT ITERATION NUMBER 10 AND CALL NUMBER 443
CURRENT  FCOST -1408.634
CURRENT ALM -1408.958

AT [TERATION NUMBER 11 AND CALL NUMBER 480
CURRENT FCOST = -1408.864
CURRENT ALM = -1408.933
AT ITERATION NUMBER 12 AND CALL NUMBER 517
CURRENT FCOST = -1409.094
CURRENT ALM = -1408.939

AT ITERATION NUMBER 13 AND CALL NUMBER 554
CURRENT FCOST -1408.864
CURRENT ALM -1408.946

AT ITERATION NUMBER 14 AND CALL NUMBER 573
CURRENT  FCOST -1408.864
CURRENT ALM -1408.884

THE FINAL FUNCTION VALUE IS (m/s): 1408.884
THE 6 VARIABLE VALgES ARE (cm & gm):

noau

X(1) = .22500
X(2) = 0.01080
X(3) = 0.02080
X(4) = 0.98709
X(5) = 0.25072
X(6) =  891.00050
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 573
THE FINAL ALM FUNCTION VALUE WAS : -1408.884

Figure 5.1.1 Example la ALM Iteration History.
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Pressure-Time Profile
Example la, Initial

Pressure (MPa)

Veloclty (m/s)

400 T r 1600
1397
350 - e T 1400
300 1 -+ 1200
250 W - 1000
200 1 T 800
150 A T 600
100 T 400
50 A _ - 200
0 0.002 0.004 0.006 0.008 0.0l 0.012
Time (sec)
— Base Pressure —— Brch Pressure Pressure Limit
~— Veloclty ¥  Max Veloctty
Pressure-Time Profile
Example la, Optimized
Pressure (MPQ) Veloclly (m/s)
400 T : : T 14600
: 1408
350 e T 4+ 1400
200 - | + 1200
250 + -~ 1600
200 + + 800
160 T T 600
100 + T 400
50 + : + 200
0 pac i P i 0
0 0.002 0.004 0.006 0.008 0.0l 0.012
Time (sec)
—=— Base Pressure — Brch Pressure Pressure Limit
- Veloclity ¥ Max Veloctty

Table S5.1.2

Example la Pressure-Time Profiles.
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Pressure-Travel Profile
Example la, Initial

Pressure (MPQ) Velocty {(m/s)
400 - : : : T IQOO
i : 1367 3
350 4 e ; : - 1400
300 + e 1200
250 + T 1000
200 + ‘ ~ ' - 800
150 T : : : i T 600
100 1 — . T400
50 - + 200
0 i i i i g
0 1 2 3 4 S
Travel (rn)
— Base Pressure — Brch Pressure - Pressure Limlt
—— Veloclity ¥  Max Veloctity
Pressure-Travel Profile
Example la, Optimized
Pressure (MPq) Velocltty (m/s)
400 T : : : : T [.OOO
1402
; - 1400
T 1200
-+ 1000
<+ 200
T 500
=400
- 200
i L i i i 3
l 2 3 4 2
Travel (m)
—— Base Pressure —— Brch Pressure Pressure Limit
— Veloctty ¥ Max Velocity

Figure 5.1.3 Example la Pressure-Travel Profiles.
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Breech Pressure Differential
Example la

Pressure (MPa)

D i l | |
G l 2 3 4
Travel (m)

n

—— Brch Pres Flnal — Brch Pres [nitlal

Figure 5.1.4 Example la Breech Pressure Differential.
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Example 2: This example expands the parametric space
of the first problem to include both a one and a seven
perforation propellent. This gradual increase allows
analysis of the optimization method in steps. A second
optimization is started from the final design of the first
optimization. This will check the ability of the
optimization process in finding the best design. The
initial and final design results are given in Table 5.2.1.
The initial and final performance values of the
optimization are in Table 5.2.2. The set of constraints
are stated in Table 5.2.3. The ALM iteration histories for
both parts of Example 2 are given in Figure 5.2.1 and
5.2.2. The pressure-time and pressure-travel profiles for
Example 2 are Figure 5.2.3 and 5.2.4. The pressure
differential curve is Figure 5.2.5.

The parametric space for this problem consists ten
variables, the five critical dimensions for the seven
perforation propellent, the three critical dimensions of
the one perforation propellent, and their masses. The

design vector X for Example 2 is

X3 = Ly,
X2 = Pjy
§3 = oY

4 = D
Xg f dl'
X; = Pya.
xa = ’
X9 = mass,,
xlo = massz.

The propellent dimension terms are defined at the beginning
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of the thesis. The subscript 1 indicates the seven
perforation and the 2 indicates the one perforation
propellent. There is one equality constraint and 19

inequality constraints.
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Initial Vvalues

Example 2

Propellent 1 Propellent 2

Type

No. Perf

Mass (kg)
Dimensions (cm)

L

Final values

Sample Sample
7 1
4.35 4.35
3.175 3.175
1.702 1.702
.0508 .0508
.0508 ————
.2807 ———

Example 2

Propellent 1 Propellent 1

Type

No. Perf
Mass (kg)
Dimensions (cm)

L

D

Po

Table 5.2.1

Sample Sample
7 1l
4.22 3.85
5.560 5.240
.8321 .4946
.0183 .0000
.0008 -
.2182 g

Initial/Final Propellent Values.




Example 2

Initial Intermediate Final

Projectile Velocity (m/s) 1104 1397 1430
Max Breech Pressure (MPa) 211 346 340
Max Base Pressure (MPa) 142 236 235

Table 5.2.2 1Initial/Final Performance Values.

75




Cit"wt******ﬁﬁl’**t***********Q**t*ﬁ***t**t****ﬁ*i*ti*i***********ﬁt*tﬂ

SUBROUTINE FUN_CON(X,NOVAR)
P*ﬁ:tt e v oir ol Jr W ok Ar o ok ktt;*********A**t***ﬁ*********t*******i*t***# A 2222423
C THIS IS5 THE CONSTRAINT SET FOR EXAMPLE 2. FH =1 FG = 19
%INCLUDE 'declarations.ins.f!'

COMMON/t imi ts/dpmaxba, dpmaxbr, pmaxbr, pmaxba,d_t, total_vol_prop,

+ cham_vol

REAL*4 X(NOVAR),dpmaxba,dpmaxbr , pmaxbr, pmaxba,d_l , pmax,cham_vot,

+ total vol _prop

FOR 7 PERF PROPELLENT . ..ttt etiiniiinnsaonsseanssrssanennnanan
fgl is the prop grain length .GT. 0 constraint

fg2 is the inner perf diam .GT, 0 constraint

fg3 is the outer perf diam .GT. 0 constraint

fgé is the prop grain diam .GT. 0 constraint

fg5 is the dist between perf centers .GT. 0 constraint

fgé is the prop diam .GT. (inner+outer perf diams) constraint
fg7 is the dist between perf centers .GT. (inner + outer radius) constraint
fg8 is the length .GT. diameter constraint

fg9 is the max length for the cord 6cm.

fg10 is the equilateral triangle requirement

1000*(-x(1))

1000*(-x(2))

1000*(-x(3))

1000*(-x(4))

1000*(-x(5))

100*(2*x(3)/x(4) + x(2)/x(4) - 1.0)
100*(.5%x(3)/x(5) + .5*x(2)/x(5) - 1.0)

100*(x(4) - x(1))

100*(x(4)/x(1) - 1.0)

FG(9) 100*(x(1)/.06 - 1.0)

FG(10)=  100*(x(5)/x(3) - 1.0)

FOR 1 PERF PROPELLENTS IS ....i.iuicrriieeennracenooosnencsncannas
fg11 is the .gt. zero for length
fg12 is the .gt. zero for perforation
fg13 is the .gt. zero for diameter
fg1é is the max diameter constraint
fg15 is the perf size must be less than the diameter
fg16 is that the length cannot be less than the diameter
fg17 is the max length for the cord écm.

FG(11) = 1000.*(-x(6))

FG(12) = 1000.*(-x(7))

FG(13) = 1000.*(-x(8))

FG(14) = 100.*(x(8)/.04 - 1.0)

FG(15) = 100.*(x(7)/x(8) - 1.0)

FG(16) = 100.*(x(8)/x(6) - 1.0)

FG(17) = 100.*(x(6)/.06 - 1.0)

O0O0OO00O00O00000
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¢ Determine acceptable pressures............ceeieiiniiinennannnnns
¢ fht is the max base pressure constraint
¢ fg18 is the max brch pressure constraint

pmax = 3.46e8

FH(1)= pmaxbr/pmax - 1.0

if (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
pmax = -8.320e7*dpmaxba + 4.708e8

else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
omax = -9, 123e7'dpmaxba + 5.029e8

else if (dpmaxba.gt.4.57) then

pmax = .86e8
end if
FG(18)= 5*(pmaxba/pmax - 1.0)
C MASS CONSTRAINT ... . eitiiiiiiniertesorneearssesancnsncnseancannn
FG(19)= 100*(total_vol_prop/cham_vol - 1.0)
RETURN
END

Table 5.2.3 Example 2 Constraint Set.
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NUMBER OF DESIGN VARIABLES : 10
NUMBER OF EQUALITY CONSTRAINTS H
NUMBER OF INEQUALITY CONSTRAINTS : 19
YOU HAVE SELECTED HQOKE-JEEVES

SEARCH DELTA = 1.0000000€-04

ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 80
CURRENT FCOST = -1329.755 .

CURRENT ALM = -1329.787

AT ITERATION NUMBER 2 AND CALL NUMBER 160
CURRENT FCOST = -1466.381

CURRENT ALM = -1423.137

AT ITERATION NUMBER 3 AND CALL NUMBER 241
CURRENT FCOST = -1354.288

CURRENT ALM = -1346.637

AT ITERATION NUMBER 4 AND CALL NUMBER 352
CURRENT FCOST = -1389.058

CURRENT ALM = -1360.571

AT ITERATION NUMBER 5 AND CALL NUMBER 435
CURRENT FCOST -1353.227
CURRENT  ALM -1365.933

AT ITERATION NUMBER & AND CALL NUMBER 489

(1]

CURRENT FCOST = -1381.153
CURRENT ALM = -1373.239
AT ITERATION NUMBER 7 AND CALL NUMBER 575
CURRENT FCOST = -1373.145
CURRENT ALM = -1371.509

AT ITERATION NUMBER 8 AND CALL NUMBER 662
CURRENT FCOST -1378.692
CURRENT ALM -1380.083

AT ITERATION NUMBER 9 AND CALL NUMBER 779
CURRENT FCOST -1395.569
CURRENT ALM -1393.360

AT ITERATION NUMBER 10 AND CALL NUMBER 836
CURRENT FCOST = -1391.755
CURRENT ALM = -1393.354

THE FINAL FUNCTION VALUE IS (m/s): 1391.755
THE 10 VARIABLE VALUES ARE (m & kg):

nou

X( 1) = 0.031200

X( 2) = 0.000183

X( 3) = 0.000458

X( 4) = 0.009546

X( 5) = 0.002532

X( 6) = 0.027800

X( 7) = 0.000058

X( 8) = 0.006571

X( 9) = 4.360002

X(10) = 4.144999
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 836
THE FINAL ALM FUNCTION VALUE WAS ¢ -1393.354

Figure 5.2.1 Example 2, Part 1 ALM Iteration History.
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NUMBER OF DESIGN VARIABLES : 10
NUMBER OF EQUALITY CONSTRAINTS 1
NUMBER OF INEQUALITY CONSTRAINTS : 19

YOU HAVE SELECTED POWELLS METHUD

AT ITERATION NUMBER 1 AND CALL NUMBER 81
CURRENT  FCOST -1564.146
CURRENT  ALM -1528.375

AT ITERATION NUMBER 2 AND CALL NUMBER 134
CURRENT FCOST = -1548.266
CURRENT ALM = -1465.383

AT ITERATION NUMBER 3 AND CALL NUMBER 215
CURRENT FCOST = -1447.,220
CURRENT ALM = -1404.940

AT ITERATION NUMBER 4 AND CALL NUMBER 272
CURRENT FCOST = -1418.827
CURRENT ALM = -1399.732

AT ITERATION NUMBER 5 AND CALL NUMBER 331
CURRENT FCOST = -1403.700
CURRENT ALM = -1401.875

AT ITERATION NUMBER 6 AND CALL NUMBER 447

CURRENT FCOST = -1421.262
CURRENT ALM = -1420.808
AT ITERATION NUMBER 7 AND CALL NUMBER 616
CURRENT FCOST = -1427.592
CURRENT ALM = -1428.370

AT ITERATION NUMBER 8 AND CALL NUMBER 790
CURRENT FCOST = -1430.584
CURRENT ALM = -1429.993

AT ITERATION NUMBER 9 AND CALL NUMBER 935
CURRENT  FCOST 30.577
CURRENT ALM

-1430.759

AT ITERATION NUMBER 10 AND CALL NUMBER 1024
CURRENT FCOST = -1430.334
CURRENT ALM = -1430.790

THE FINAL FUNCTION VALUE IS (m/s): 1430.334
THE 10 VARIABLE VALUES ARE (m & kg):

X( 1) = 0.055600

X( 2) = 0.000183

X( 3) = 0.000008

X( 4) = 0.008321

X( 5) = 0.002182

X( 6) = 0.052400

X( 7) = 0.000000

X( 8) = 0.004946

XC 9 = 4.217497

X(10) =  3.849896
~N
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1024
THE FINAL ALM FUNCTION VALUE WAS 1 -1430.790

Figure 5.2.2 Example 2, Part 2 ALM Ifteration History.
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Pressure-Time Profile
Example 2, Initial

Pressure (MPa) Velocily (n/s)
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: : : : , 1000
300 +
250 - T 800
200 + + 600
150 + -+ 400
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-4
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0 ; i A i i 0
0] 0.002 0.004 0.006 0.008 o0l 0012 0.0l4
Time (sec)
—— Base Pressure — - Brch Pressure Pressure Limit
— Veloctty ¥  Max Veloctity
Pressure-Time Profile
Example 2, Optimized
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Figure 5.2.3 Example 2 Pressure-Time Profiles.
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Pressure-Travel Profile
Example 2, Initial

Pressure (MPa) Velocity (m/s)
400 T ; : : 1104 T 1200
3 --1 ..............
190 + 100V
300 +
250 1+ <+ 800
200 1+ - 600
150 ]F T 400
50 - ‘F 200
0 i i i i 0
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Pressure-Travel Profile
Example 2, Optimized
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Figure 5.2.4 Example 2 Pressure-Travel Profiles.
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Breech Pressure Differential

Pressure (MPaQ)
400 T

Example 2

350 +
300 -
250 -
200 -

i i i

2 3 4 5
Travel (m)

Figure 5.2.5

—— Brch Pres Flnal — Brch Pres [nlilal

Example 2 Breech Pressure Differential.

81




Example 3: This example further expands the
parametric space of the fifst and second problem to include
a zero, one, and seven perforation propellent. This final
increase further examines the performance of the
optimization method in an even larger parametric space. The
initial and final design results are given in Table 5.3.1.
The initial and final performance values of the
optimization are in Table 5.3.2. The set of constraints
are stated in Table 5.3.3. The ALM iteration history for
Example 3 is given in Figure 5.3.1. The pressure-time and
pressure~travel profiles for Example 3 are Figure 5.3.2 and
5.3.3. The pressure differential curve is Figure 5.3.4.

The parametric space for this problem consists
thirteen variables, the two critical dimensions for the
zero perforation propellent, the three critical dimensions
of the one perforation propellent, the five critical
dimensions for the seven perforation propellent, and their

masses. The design vector X for Example 3 is

X3 = Lz,

Xqg = Pjias
Xg = D,

X7 = Pjiz,
Xg = ZFo3v
X10 = 43,
xll - massl,
xlz = massz,
313 = mass3.

The propellent dimension terms are defined at the beginning
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of the thesis. The subscript 1 indicates the zero
perforation, the 2 indicates the one perforation
propellent, and the 3 indicates the seven perforation
propellent. There is one equality constraint and 25

inequality constraints.
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Initial Values

Propellent 1

Example 3

Propellent 2

Propellent 3

Type
No. Perf

Mass (kg)

Sample

Dimensions (cm)

L

D

Po

3.175

1.702

Final Values

Propellent 1

Sample

3.175
1.702

.0508

Example 3

Propellent 2

Sample

3.175

1.702
.0508
.0508

.2807

Propellent 3

Type

No. Perf
Mass (kg)
Dimensions

L

Table 5.3.1

Sample
0
.99
(cm)
2.494

1.285

84

Sample

5.943
.580

.0000

Sample

5.996

5.996
.0018
.0018

.2170

Initial/Final Prcpellent Values.




ExXample 3

Initial Final
Projectile Velocity (m/s) 1049 1368
Max Breech Pressure (MPa) 218 346
Max Base Pressure (MPa) 149 239

Table 5.3.2 Initial/Final Performance Values.
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Cwt**tt**ﬁ*ii******ﬁ*i********************ki**ﬁ*t***ti*itﬁkit*t**ttt**t

SUBROUTINE FUN_CON(X,NOVAR)

Ctttttttit***t#***'*;*t**tﬁ*******t*'***ﬁ*i*ﬁxx*****tﬂ**t*******t*t*ttt
C THIS IS THE CONSTRAINT SET FOR EXAMPLE 3. FH = 1 = 25
%#INCLUDE 'declarations.ins,f!

COMMON/ | imi ts/dpmaxba, dpmaxbr, pmaxbr, pmaxba,d_L, total_vol_prop,

+ cham_vol
REAL*4 X(NOVAR),dpmaxba,dpmaxbr , pmaxbr ,pmaxba,d_L ,pmax, cham_vot ,
+ total_vol_prop
C FOR O PERF PROPELLENT .. i e ctinnencavauecnconmannosnnnnns dimensions.........
¢ fgl :prop grain length .GT. 0 constraint m
¢ fg2 :prop grain diam .GT. 0 constraint m
¢ fg3 :mass .GT. than 0 constraint kg
c fgb :length .GT. diameter constraint
¢ fg5 :max length for the cord écm.

FG(1)
FG(2)
FG(3)
FG(4)
FG(5)

1000*(-x(1))

10007 ¢ -x(2))
100*(-x(11))
100*(x(2)/x(1) - 1.0}
100*(x(1)/.06 - 1.0)

FOR 1 PERF PROPELLENT .. iciiriintrnntennannscnnnnncasans dimensions.........
fg6 :prop grain length .GT. 0 constraint m

fg7 :inner perf diam .GT. O constraint m

fg8 :prop grain diam .GT. O constraint m

fg9 :mass .GT. than 0 constraint kg

fg10 :prop diam .GT. inner perf diam constraint

fg11 :length .GT. diameter constraint

fg12 :max length for the cord écm.

I T I |}

OO0 0O0ONn

FG(6) = 1000*(-x(3))

FG(7) = 1000*(-x(4))

FG(8) = 1000*(-x(5))

FG(9) = 100*(-x(12))

FG(10) = 100*(x(4)/x(5) - 1.0)
FG(11) = 100*(x(5)/x(3) - 1.0)
FG(12) = 100*(x(3)/.06 - 1.0)

FOR 7 PERF PROPELLENT .. .vutinncerinnennenccensocnnannenas dimensions.........
fg13 :prop grain length .GT. 0 constraint

fg14 :inner perf diam .GT. O constraint

fg15 :outer perf diam .GT. Q constraint

fg16 :prop grain diam .GT. 0 constraint

fgl7 :dist betweer: perf centers .GT. 0 constraint

fg18 :mass .GT. than 0 constraint

fg19 :prop diam .GT. (inner+outer perf diams) constraint
fg20 :dist between perf centers .GT. (inner + outer radius) constraint
fg21 :length .GT. diameter constraint

fg22 :max length for the cord 6cm.

fg23 :equilateral triangle requirement.

tg24 :max base pressure constraint

fg25 :maximum volume of propellent cannot exceed the space in the chamber

x~333313

OO0 NDOOO00O000000
[(+]

FG(13) = 1000*(-x(6))

FG(14) = 1000*(-x(7))

FG(15) = 1000%(-x(8))

FG(16) = 1000*(-x(9))

FG(17) = 1000*(-x(10))

FG(18) = 100*(-x(13))

FG(19) = 100*(2*x(8)/x(9) + x(7)}/x() - 1.0)

FG(20) = 100%(.5*x(8)/x(10) + .5*x(7)/x(10) - 1.0)

FG(21) = 100%(x(9)/x(6) - 1.0)

FG(22) = 100%(x(6)/.06 - 1.0)

FG(23) = 100%(3.0*x(B)/(4.0*x(9)) + x(7)/(4.0*x(9)) - 1.0)
¢ fhl :max breech pressure constraint

pmax = 3,46e8

FHC1Y = axbr/pmax - 1.0

if (dpmaxba.gt.1.5.and. dpmaxba le.4.0) then
pmax = -8.320e7*dpmaxba + 4.708e8
else lf (dpmaxba.gt.4.0.and. dpmaxba le.4.57) then
= -9, 123e7*dpmaxba + 5.0
else 1f (dpmaxba.gt.4.57) then

pmax = ,86e8
end if
FG(24) 5*(pmaxba/pmax - 1.0)

FG(25) = 100*(total_vol_prop/cham _vol - 1.0)

RETURN
END

Table 5.3.3 Example 3 Constraint Set.
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NUMBER OF DESIGN VARIABLES : 13
NUMBER OF EQUALITY CONSTRAINTS: 1
NUMBER OF EQUALITY CONSTRAINTS: 25
YOU HAVE SELECTED HOOKE-JEEVES

SEARCH DELTA = 1.0000000€E-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 101

CURRENT FCOST = -1491.332
CURRENT ALM = -16461.602
AT ITERATION NUMBER 2 AND CALL NUMBER 167
CURRENT FCOST = -1467.293
CURRENT ALM = -14064.639

AT [TERATION NUMBER 3 AND CALL NUMBER 236
CURRENT  FCOST -1417.090
CURRENT ALM -1361.723

AT ITERATION NUMBER 4 AND CALL NUMBER 306
CURRENT FCOST -1366.709
-1355.552

CURRENT  ALM
AT ITERATION NUMBER 5 AND CALL NUMBER 375
CURRENT  FCOST -1361.439

-1357.584

CURRENT  ALM

AT (TERATION NUMBER 6 AND CALL NUMBER 519
CURRENT FCOST = -1364.183

CURRENT ALM = -1365.158

non

AT ITERATION NUMBER 7 AND CALL NUMBER 664
CURRENT FCOST = -1365.460
CURRENT ALM = -1366.705

AT ITERATION NUMBER 8 AND CALL NUMBER 777
CURRENT FCOST = -1367.985
CURRENT ALM = -1367.011

AT ITERATION NUMBER 9 AND CALL NUMBEK 853
CURRENT  FCOST -1367.394
CURRENT ALM -1366.895

AT ITERATION NUMBER 10 AND CALL NUMBER 930
CURRENT FCOST -1366.816
CURRENT ALM -1366.905

AT ITERATION NUMBER 11 AND CALL NUMBER 1121
CURRENT FCOST -1367.399
CURRENT ALM -1367.278

AT ITERATION NUMBER 12 AND CALL NUMBER 1316
CURRENT FCOST = -1367.478

4

n ot

o

[

CURRENT ALM = -1367.605
AT ITERATION NUMBER 13 AND CALL NUMBER 134
CURRENT  FCOST = -1367.565
CURRENT ALM = -1367.590

THE FINAL FUNCTION VALUE 1S (m/s): 1367.565
THE 13 VARIABLE VALUES ARE (m & kg):

XC 1) = 0.024935

X¢ 2) = 0.012850

X( 3) = 0.059425

X¢ 4) = 0.000000

X( 5) = 0,005798

X( 6) = 0.059960

XC 7y = 0.000018

X¢ 8) = 0.000018

X¢C 9) = 0.008613

X(10) = 0.002171

X(11) = 0.992000

X(12) = 3.625999

X(13) = 4.,130000
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1394
THE FINAL ALM FUNCTION VALUE WAS : -1367.590

Figure 5.3.1 Example 3 ALM Iteration History.
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Pressure-Time Profile
Example 3, Initial

Pressure (MPc; Ve.oclly ma/s)
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Example 3, Opti:nized
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Figure 5.3.2

Example 3 Pressure-Time t.ofiles.
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Pressure-Travel Profile
Example 3, Initial

Pressure (MPa) Veloclty (my/s)
400 T : . _ T 1200
550 & : 1649
350 e, o | _: L 1000
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250 1 A T
200 + + 600
%0 / f e
: : R —— ’20
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0 { 2 3 4 5
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Pressure-Travel Profile
Example 3, Optimized
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Figure 5.3.3 Example 3 Pressure-Travel Profiles.
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400
380

3
2
2
l

Breech Pressure Differential

Example 3
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00 A
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Figure 5.3.4

Example 3 Breech Pressure Differential.
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Example 4: This example demonstrates the optimization
of two propellents with different thermodynamic
characteristics. Two seven perforations propellents are
used. This allows the comparison of the optimization method
in a different parametric space. Just 1like the second
example, a second optimization is started from the final
design of the first optimization. This checks the ability
of the optimization process in finding the best design.
The initial and final design results are given in Table
5.4.1. The initial and final performance values of the
optimization are in Table 5.4.2. The set of constraints
are stated in Table 5.4.3. The ALM iteration histories for
both parts of Example 4 are given in Figure 5.4.1 and
5.4.2. The pressure-time and pressure-travel profiles for
Example 4 are Figure 5.4.3 and 5.4.4. The pressure
differential curve is Figure 5.4.5.

The parametric space for this problem consists twelve
variables, the five critical dimensions for the first seven
perforation propellent, the five critical dimensions for
the second seven perforation propellent, and their masses.

The design vector X for Example 4 is

Xy = Ll'
¥ = Pyi/
X3 = Pgy,
X4 = Dl'
Xg = dl'
X7 = Py
Xg = Poazr
X9 = Dz,
X130 = 43,
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r- i - """

Xqq f mass,,
X,, = mass,.

The propellent dimension terms are defined at the beginning
of the thesis. The subscript 1 indicates the first seven
perforation propellent and the 2 indicates the second seven
perforation propellent. There is one equality constraint

and 24 inequality constraints.
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Initial values Example 4

Propellent 1 Propellent 2
Type Sample M8
No. Perf 7 7
Mass (kqg) 4.35 4.35
Dimensions (cm)
L 3.175 3.175
D 1.702 1.702
Pi .0508 .0508
Po .0508 .0508
d .2807 .2807
Final Values Example 4
Propellent 1 Propellent 2
Type Sample M8
No. Pert 7 7
Mass (kg) 5.37 3.20
Dimensions (cm)
L 3.576 3.548
D .9821 1.002
Pi .0800 .0383
Po .0400 .0508
d .2607 .2707

Table 5.4.1 Initial/Final Propellent Values.
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Example 4

Initial Intermediate Final

Projectile Velocity (m/s) 1341 1391 1395
Max Breech Pressure (MPa) 325 346 345
Max Base Pressure (MPa) 226 234 234

Table 5.4.2 1Initial/Final Performance Values.
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Cr***t*****t*******t*****it*********'w*tntw**tf*t*t*****'**ﬁ*****’***t*

SUBROUTINE FUN_CON(X,NOVAR)
c***k**k*****t****ﬁ*;tﬁ**************ti******tttt**t***i****tﬂ****t*tit
C THIS IS THE CONSTRAINT SET FOR EXAMPLE 4 FH = 1 FG = 24
%INCLUDE ‘declarations.ins.f’

COMMON/ L imi ts/dpmaxba, dpmaxbr , pnaxbr, pmaxba,d_L, total_vol_prop,

+ cham_vol
REAL*4 X(NGVAR),dpmaxba,dpmaxbr, pmaxbr, pmaxba,d_{, pmax, cham_vol,
+ total_vol_prop

FOR SAMPLE 7 PERF PROPELLENT . iii it ittt it eiitenananeronnecnnnnnan
fgl is the prop grain length .GT. 0 constraint
fge is the inner perf diam .GT. 0 constraint
fg3 is the outer perf diam .GT. 0 constraint
fgé is the prop grain diam .GT. 0 constraint
fgs is the dist between perf centers .GT. 0 constraint
fgbé is the mass .GT. 0 constraint
fg7 is the prop diam .GT. (inner+outer perf diams) constraint
fg8 is the dist between perf centers .GT. (inner + outer radius) constraint
fg9 is the length .GT. diameter constraint
fg10 is the max length for the cord écm
fg11 is the equilateral triangle requirement
FG(1) 1000*C (1))
FG(2) = 1000*%(-x(2))
FG(R) = 1000*(-x(3))
FG(4) = 1000*(-x(4))
FG(5) = 1000*(-x(5))
FG(6) 100*(-x(11))
FG(7) 100*(2*%x(3)/x(4) + X(2)/x(4) - 1.0)
FG(8) 100*(.5%x(3)/x(5) + .5*x(2)/x(5) - 1.0)
FG(9) 100*(x(4)/>(1) - 1.0)
FG(10 100*(x(1)/.06 - 1.0)
FG(1M 100*(x(5)/x(3) - 1.0)

OO0 0N0O0O0O00000

~

FOR M8 7 PERF PROPELLENTS IS ..ouinimiieoiiiiiiianannannacannanannns
fg12 is the prop grain length .GT. 0 constraint
fg13 is the inner perf diam .GT. 0 constraint
fgl4 is the outer perf diam .GT. 0 constraint
fg15 is the prop grain diam .GT. 0 constraint
fg1é is the dist between perf centers .GT. 0 constraint
fg17 is the mass .GT. 0 constraint
fg18 is the prop diam .GT. (inner+outer perf diams) constraint
fg19 is the dist between perf centers .GT. (inner + outer radius) constraint
fg20 is the length .GT. diameter constraint
921 is the max length for the cord écm.
fg22 is the equilateral triangle requirement
fg23 is the max base pressure constraint
fh1 is the max brch pressure constraint
FG(12)= 1000*(-x(6))
FG(13)= 1000*(-x(7))
FG(14)= 1000*(-x(8))
FG(15)= 1000*(-x(9))
FG(16)= 1000*(-x(10))
FG(17)=  100*(-x(12))
FG(18)= 100*(2*x(8)/x(9) + x(7)/x(9) - 1.0)
FG(19)= 100%(.5*x(8)/x(10) + .5*x(7)/x(10) - 1.0)
FG(20)= 100*(x(9)/x(6)- 1.0)
FG(21)= 100*(x(6)/.06 - 1.0)
FG(22)= 100*(x(10)/x(8) - 1.0)

OO0O0O00O0000000000

¢ Determine acceptable pPressUreS.....c.viveiinineenasnenaeenaanans
pmax = 3.46e8
FH(1)= pmaxbr/pmax - 1.0

if (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
pmax = -8.320e7*dpmaxba + 4.708e8

else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
pmax = -9.123e7*dpmaxba + 5.029e8

else if (dpmaxba.gt.4.57) then
pmax = .86e8

end if

FG(23)= S5*(pmaxba/pmax - 1.0)
FG(24)= 100*(total_vol_prop/cham_vol - 1.0)

RETURN
END

Table 5.4.3 Example 4 Constraint Set.
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NUMBER OF DESIGN VARIABLES 012
NUMBER OF ECUALITY CONSTRAINTS A
NUMBER OF INEQUALITY CONSYRAINTS : 24

YOU HAVE SELECTED HOOKE-JEEVES

SEARCH DELTA = 1.0000000€-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 92
CURRENT FCOST = -1519.152
CURRENT ALM = -1487.421

AT ITERATION NUMBER 2 AND CALL NUMBER 155
CURRENT  FCOST -1480.552
CURRENT ALM -1419.600

AT ITERATION NUMBER 3 AND CALL NUMBER 217

CURRENT  FCOST = 23.870
CURRENT ALM = -1374.297
AT TERATION NUMBER 4 AND CALL NUMBER 279
CURRENT FCOST = -1371.400
CURRENT ALM = -1359.452

AT [TERATION NUMBER 5 AND CALL NUMBER 381
CURRENT  FCOST -1367.596
CURRENT ALM -1365.239

AT ITERATION NUMBER 6 AND CALL NUMBER 483
CURRENT  FCOST -1365.586
CURRENT  ALM -1367.228

AT ITERATION NUMBER 7 AND CALL NUMBER 620
CURRENT  FCOST -1368.504
CURRENT ALM -1368.291

AT ITERATION NUMBER 8 AND CALL NUMBER 827
CURRENT  FCOST -1377.971
CURRENT ALM -1378.822

AT ITERATION NUMBER 9 AND CALL NUMBER 1039
CURRENT FCOST -1392.342
CURRENT ALM -1391.591

AT ITERATION NUMBER 10 AND CALL NUMBER 1144
CURRENT  FCOST -1391.594
CURRENT  ALM -1391.761

THE FINAL FUNCTION VALUE IS (m/s): 1391.594
THE 12 VARIABLE VALUES ARE (m & kg):

"o

X( 1) = 0.035075
X( 2) = 0.000233
X( 3) = 0.000458
X( 4) = 0.009871
X( 5) = 0.002607
X( 6) = 0.034775
XC 7) = 0.000983
X( 8) = 0.000458
X( 9) = 0.010621
X(10) = 0.002857
X(11) = 5.323147
X(12) = 3.254370

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1144
THE FINAL ALM FUNCTION VALUE WAS : -1391.761

Figure 5.4.1 Example 4, Part 1 ALM Iteration History.
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NUMBER OF DESIGN VARIABLES : 6

NUMBER Of EQUALITY CONSTRAINTS R

NUMBER OF INEQUALITY CONSTRAINTS : 13
YOU HAVE SELECTED POWELLS METHOD

AT {TERATION NUMBER 1 AND CALL NUMBER 95

CURRENT FCOST = -1542.902
PREVIOUS FCOST = 1.0000000E-06
CURRENT ALM = -1501.385

PREVIOUS ALM 1.0000000€-06
AT ITERATION NUMBER 2 AND CALL NUMBER 158
CURRENT  FCOST 02.262

PREVIOUS FCOST = -1542.902
CURRENT ALM = -1442.825
PREVIOUS ALM = -1501.385

AT ITERATION NUMBER 3 AND CALL NUMBER 222

CURRENT FCOST = -1443.458
PREVIOUS FCOST = -1502.262
CURRENT ALM = -1402.508
PREVIOUS ALM = -1442.825

AT ITERATION NUMBER &4 AND CALL NUMBER 291
CURRENT  FCOST 07.329

PREVIOUS FCOST = -1443.458
CURRENT ALM = -139%.635
PREVIOUS ALM = -1402.508

AT ITERATION NUMBER 5 AND CALL NUMBER 362

CURRENT FCOST = -1394.807
PREVIOUS FCOST = -1407.329
CURRENT ALM = -1393.702
PREVIOUS ALM = -1394.635

AT ITERATION NUMBER 6 AND CALL NUMBER 467

CURRENT FCOST = -1395.328
PREVIOUS FCOST = -1394.807
CURRENT ALM = -1395.892
PREVIOUS ALM = -1393.702

AT ITERATION NUMBER 7 AND CALL NUMBER 535

CURRENT FCOST = -1395.332
PREVIOUS FCOST = -1395.328
CURRENT ALM = -1396.150
PREVIOUS ALM = -1395.892

THE FINAL FUNCTION VALUE IS (m/s): 1395.332
THE 12 VARIAB&EOVALUES ARE (m & kg):
Ve

X( 1) = 5740

X( 2) = 0.000083

X( 3) = 0.000408

X( 4) = 0.009821

X( 5) = 0.002607

X( 6) = 0.035480

X( 7) = 0.000383

X( 8) = 0.000508

X( 9 = 0.010021

X¢10) = 0.002707

X(11) = 5.368001

X(12) = 3.204000
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 535
THE FINAL ALM FUNCTION VALUE WAS r -1396.150

Figure 5.4.2 Example 4, Part 2 ALM Iteration History.
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Pressure-Time PFrofile
Example 4, Initial

Pressure (MPa) BloCity (g )
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Pressure-Time Profile
Example 4, Optimized
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Figure 5.4.3
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Pressure-Travel Profile
Example 4, Initial

Pressure (MPa) Velaclyy (m/s)
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Example 4, Optimized
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Figure 5.4.4 Example 4 Pressure-Travel Profiles.
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Breech Pressure Differential
Example 4

Preszure (MPa)
4GC - 1

380 ~
200 A
250
250 +
150 7

(9]

O | 1 1 1
0 i 2 3 4
Travel (m)

(9]
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Figure 5.3.5 Example 4 Breech Pressure Differential.
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7. Analysis.

The analysis is divided into two parts. The first
part is an individual examination of each example problem
and the second part is an overall analysis of the trends
the example problems indicate.

Both optimizations in Example 1 intialized at the
current design and a random point in the parametric space,
attain identical projectile performance of 1408 m/s without
violating constraints. This indicates that the process is
insensitive to the starting points. An analysis of the
differences in the grain dimensions between Example 1la and
1b show that the primary difference is in the outer
perforation diameter p, and the grain length L. The
relationship between the two values in the region is, for
constant velocity, an increase in p, results in a
concurrent decrease in L. This results in similar initial
grain surface areas, resulting in comparable projectile
velocities. There is also a .7 percent increase in
projectile velocity from the current design. This
indicates that the process is comparable to current design
methods.

In Example 2 the projectile velocity is improved from
a non-optimum starting point in the parametric space.
Again no constraints are violated. 7The second optimization
improves the projectile velocity from 1397 to 1430 m/s, a

difference of 2.7 percent. The optimum is therefore nearly
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attained in the first optimization. Examination of the one
perforation propellent, Propellent 2, shows that the
process eliminated the single perforation p; during
optimization. This demonstrates that the process can
simplify geometries to improve performance This example
demonstrates that the method continues to perform for
larger parametric spaces.

The third example resulted in improved projectile
performance from a non-optimum point in the parametric
space. The velocity, 1368 m/s, is the lowest of the four
examples and is a 2.1 percent decrease from Example 1.
Since the same propellent thermodynamics are used and
identical geometries are present, a closer value could be
expected. Analysis of the differences in the problen
statements show that the mass constraints prohibited the
attainment of the higher velocities reached in Example 1 or
2. When a propellent mass (for a multiple propellent
problem) is the active design variable, it is incremented
to locate a local optimum. For each change in the active
propellent mass, there is no corresponding change for any
other propellent mass in the problem. This prohibits a
propellent from total elimination by reduction of its mass
to zero. Despite this, Example 3 does demonstrate
continued performance of the optimization method in a
larger parametric space.

Example 4 also improves projectile performance within
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the constraints. The velocity attained in the first
optimization, 1391 m/s is only improved by .30 percent in
the second optimization to 1395 m/s. This indicates that
in this new parametric space the optimum is nearly
attainead. The similarity to the previously optimized
projectile velocities is due to the relative closeness of
the two propellents used, M6 and M8 (see Table 5.1). The
question, can the method perform in a different parametric
space, 1is still answered since the propellents are
different.

In each example the projectile velocity is improved
within the given constraint conditions. Example 1
demonstrates that the scheme will approach the optimum from
reasonable starting points and that it matches well with
current design techniques. Table 5.2 compares optimized
velocities and net improvements.

In Examples 2, 3, and 4 the scheme continues to
perform for multiple grains and types of propellents. In
Examples 2 and 4 the second optimization provides small
improvement indicating that the optimum is nearly
attained. This demonstrates the method will 1locate the
optimum in most cases with built in tolerances.

In Example 2 the inner perforation was reduced to
zero, showing that the propellent geometry can be
simplified if performance is improved. However the mass

constraint prohibits elimination of a propellent, through
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Example Inital Final Percent 2nd Itr
Velocity Velocity Change Change
m/s m/s % %
la 1398 1408 +.7 n/a
2 1104 1430 +29.5 +2.4
3 1049 1368 +23.3 n/a
4 1341 1395 +3.9 +.39
Figure 5.2 Performance Synopsis
Example No. of No>. Method
Function Calls Variables
la $73 6 Powell’s w/ Golden
2(itr 1) 836 10 Hook-Jeeves
(itr 2) 1024 10 Powell’s w/ Golden
3 1394 13 Hook-Jeeves
4(itr 1) 1144 12 Hook-Jeeves
(itr 2) 535 12 Powell’s w/ Quadratic

Figure 5.3

Optimization Method Comparison.
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the reduction of mass to =zero, in multiple propellent
problenms.

The higher dimensioned parametric space appears to be
well behaved as can be seen by the optimization method
performance and resultant velocities. Hook-Jeeves and
Powell’s performed equally, neither showing a distinct
advantage. Powell’s method used with the three point
quadratic approximation (Example 4, Optimzation 2) does
converge in less function calls. However, if this method is
used near an unfeasible region in the parametric space this
advantage will be offset. Table 5.3 compares optimization
performance by example.

The questions from Section 6 have been answered by the
example problems. Example 1 demonstrated that the method
attains comparable performance levels with current design
methods. All four of the example problems show that a
practical optimum design is attained regardless of the size
of the parametric space. Finally, the differences in the
four example problems and the relative ease with which the
design vector and constraint set can be set show the

flexibility and ease of use of the method.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions.

A general method is developed for optimum and
automated propellent grain design of a constrained
multivariable interior ballistics system. The results
obtained in Chapter V indicate that the method is
computationally feasible and yieldé results comparable with
current hunt and search design methods.

This automated design process is an aid to the
interior ballistician. It is straightforward to implement
and does not require heavy computational support. The
interior ballistics model can be quickly changed or
improved without affecting the optimization scheme. The
process does include constraint effects directly and is
flexible in that constraint parameters can be changed
without difficulty. The method is tested on a specific
problem, but the application is not restricted since the
example’s characteristics are shared by a large class of

interior ballistics problems.

2. Recommendations for Future Research.
The software developed in this research should be
tested on several more problems with different parametric

spaces. The accuracy of the program can be estimated by
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solving a variety of actual problems with known solutions.
The numerical techniques used in this present work can be
improved, both in computational efficiency and convergence
speed. A first order method should be integrated into the
ALM process to allow greater flexibility.

The integration of both exterior and terminal ballistic
models to extend the design capabilities is a long term

goal.
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APPENDIX T

OPTIMIZATION CODE

This appendix contains the optimization code used in
this thesis. The first item is the declaration file
followed by the main progam and the appropriate
subroutines. Three called subprograms are not included.
The objective function ‘fun_int.ftn’ is Appendix II. The
constraint subroutines ’fun_con.ftn’ are included with each
example problem. The subroutine that reads the input file
‘read_data.ftn’, although called by the main program, is
included in Appendix II. The files are listed below.

1. declaration.ins.f.

2. optimum. ftn.

3. hook_jeeves.ftn.

4, powell.ftn.

5. search.ftn.

6. ugrid_1d.ftn.

7. gold.ftn.

8. quad.ftn.

9. gaussz.ftn.

10. funx.ftn.

11. check_print.ftn.

12. printit.ftn.

13. tol_test.ftn.

14. update.ftn.
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C*i*ﬁ**t****ﬁtt*t**i****i*’ﬁ******i*ﬁlii**li*i*iittt**t*ﬁ***tt*tti*t**ti*

c* ideclarations.ins. f! *
C* x
c* DECLARATIONS, PARAMETERIZATION & COMMON BLOCK FILE FOR *
c* THE AUGMENTED LAGRANGIAN MULTIPLIER *
c* JOE ROBERT GONZALEZ *
c* 562-88-9645 *
C*t**i***ﬁ******i**'ﬁ*i***ii********t*it**i*i****************itt*********
c* THIS FILE IS CALLED FROM THE PROGRAM ‘optimum.ftn:® *

C***'ﬁi*************ﬁ***************i*i******'ﬁ***********t***t********t**

¢ In the common /PARTIALS/ block the following definitions apply:

¢ rpa = the ALM pseudo-objective function rp.

c rp_max = the maximum value rp is allowed to attain.

c Lam_h(i) = the LaGrangian multiplier for the equality

c constraints (that is lambda for the H's).

c lam_g(j) = the LaGrangian multiplier for the inequality

c constraints (that is lambda for the G's).

c fh(i) = the calculated value of the respective equality
¢ constraint.

c fa(j) = the calculated value of the respective inequality
c constraint.

¢ In the common /CONTROLS/ block the following defiritions apply:

c calls = the number of function evaluation calls.

c ifault = the 'no local minimum can be found® flag.

c flag = 3 general purpose integer flag.

¢ In the main portion of the program the following definitions apply in
¢ addition to those listed above:

c af = the acceleration factor for hooke-jeeves.

c converge = the ‘convergance’ flag for the ALM.

c d = detla, the search interval for hooke jeeves.

c eps = epsilon, the tolerance for use in the line searches.
¢ fcost = the current value of the ALM function.

¢ fcost_p = the previous value of the ALM function.

c fun_cost = the current value of the objective function.

c fun_costp = the previous vatue of the objective function,

¢ gamma = the gamma in the ALM pseudo-objective function.
c 1,i,k,,m,n = working counters.

c imax = the maximum array size allocated.

c itr = the number of ALM iterations performed.

c Lam_hp(i) = the previous lamda for the equality constraints.
c lam_gp(j) = the previous lamda for the inmequality constraints.
c novar = the number of independent variables (n).

c num_h = the number of equality constraints.

c p = a 'p' appended to a variable name is used to

c designate the previous value of that variable.

c technique = the selection for the line search technique.

c 1 = Powell's method.

c 2 = Hook-Jeeves method.

c tolerance = the ALM tolerance for use in the main program.

¢ xfinal(n) = the final calculated solution.

c xinit(n) = the start point for the optimization.

[t bt bt bl it bt d b i d it il it LA RSttt ia s sl ittt st sd il sdds

¢ subroutines defined in header of 'opti.f'. ... . ... iiveiiriennnn...
EXTERNAL FUNX, FUN_FHG, SEARCH,UGRID,GOLD,QUAD , GAUSSZ

INTEGER*2 [ _WANT,I,J,K,L,M,N,NOVAR,NUM G,NUM_H, FLAG
INTEGER*2 CALLS, IFAULT lMAX ITR TECHNIGUE

¢ parameter establishment........... . Ceeeatriaieatiat et
PARAMETER (IMAX = 30)

REAL*4  XINIT(IMAX),XFINALCIMAX), FCOST,FCOST_P, FG(IMAX), FUN_COST
REAL*4  LAM_H(IMAX) ,LAM_HP(IMAX) LAM GCIMAX ) LAM GP(IMAX)

REAL*4 RPATRP_MAX,RP PRIME,GAMMA_PRTME,GAMMA, FHTIMAX), FUN_COSTP
REAL*4  AF,D,EPS, TOLERANCE

€ COMMON DLOCKS . utetsesviassrroneotosnsoerosssasessserssasnsasenannnnes
COMMON/PARTIALS/RPA ,RP_MAX, LAM H LAM G FH,FG
COMMON/CONTROLS/CALLS TFAULT FLAG NUM H NUM_G
COMMON/VALUES  /FUN_ COST FUN COSTP

LOGJCAL CNNVERGE

c*I*f*t**tft*tﬁﬁﬁﬁ’**ﬁ#**ﬁ’ﬁ*t**ﬁ*t**ﬁﬁ***i***'i**********ﬁ**i***ii****i
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ctt*'*ﬁ*t***#*i*tii****i***tiﬁi*t****ﬁﬁt**i**ttt*kkt*t*ttttittt*i*itﬁ*tt

c* THE AUGMENTED LAGRANGIAN MULTIPLIER METHOD *
c* BY: JOE ROBERT GONZALEZ *

C*t'ﬁi*tﬁ**'*t*ﬁtt*iﬁii****"*ttt***i**i‘*****ﬁ***i*tttl**l"*tt**t**tﬁ*’tt

C*  TO MINIMIZE FUNCTIONS OF MORE THAN ONE DIMENSION THAT HAVE *
C*  EQUALITY AND/OR [NEQUALITY CONSTRAINTS. *
C* *
C*  THIS PROGRAM USES FOLLOWING CONSTRAINING ALGORITHM: *
c* 1) THE AUGMENTED LAGRANGIAN MULTIPLIER *
C* *
C*  WITH THE FOLLOWING MINIMIZATION ROUTINES: *
C* 1) POWELL'S METHOD W/ LINE SEARCH .
C*  2) THE METHOD OF HOOK-JEEVES -
c‘ , *
C*  TO MINIMIZE UNCONSTRAINED FUNCTIONS THAT HAVE EQUALITY AND/OR *
C*  INEQUALITY CONSTRAINTS OF MORE THAN ONE DIMENSION. *
c* *

[Rabdebo b R bbb dt A AR bbbl At bbbt S R St AR ERE ettt s ettt ettty ssd

C*  THE SUBROUTINES CALLED FROM USER_MAIN ARE (INDENTED NAMES ARE
C* CALLED BY THE PRECEEDING SUBROUTTNES):

c*

C*  TOL_TEST : DETERMINES IF THE ALM TOLERANCE HAS BEEN MET.

C*  UPDATE : UPDATES THE LAGRANGIAN MULTIPLIERS FOR THE PSUEDC-
c* OBJECTIVE FUNCTION.

C*  CHECK_PRINT : PRINTS OUT CURRENT VALUES FOR EACH ALM ITERATION.

*
*
*
*
»*
*
*
C*  PRINTTT : PRINTS OUT THE FINAL VALUES. *
C* POWELL : CONTROLS THE POWELL'S METHOD SEARCH. *
c* SEARCH : CONTROLS THE LINE SEARCH SUBROUTINES. *
c* UGRID : UNIFORM GRID SEARCH METHOD FOR MINIMUM BRACKETING. *
c* GOLD : THE GOLDEN SECTIONS METHOD FOR THE MINIMUM. *
c* QUAD : THE QUADRATIC APPROXIMATION METHOD FOR THE MINIMUM, *
c* GAUSSZ  : SOLUTION TO SYSTEM OF EQUATIONS BY GAUSSIAN *
c* REDUCTION WITH PARTIAL PIVOTING. *
C*  HOOK_JEEVES : PERFORMS THE HOOK-JEEVES METHOD. *
C* READ_DATA  : THE INPUT DATA SUBROUTINE FILE FOR FUN INT.FTN *
C*  FUNX : PERFORMS THE ALM MODIFICATIONS TQ DETERMINE THE *
c* VALUE OF THE PSEUDO-OBJECTIVE FUNCTION. *
c* FUN_INT : PERFORMS THE CALCULATION OF THE COST FUNCTION. *
c* FUN_CON : PERFORMS THE ASSOCIATED EQUALITY AND INEQUALITY *
C: CONSTRAINT FUNCTION EVALUATIONS. *
c *

ctt*it*******t*t*iit*t*lt**ti*ﬁt*****tt**kt**i*******iit*t***t*t**t*t*i*
PROGRAM OPTIMUM

%INCLUDE 'declarations.ins.f!
INTEGER*2 ITYPE

C INITIALIZATION OF COUNTERS AND FLAGS.....coivvieiunerrriianncenonannens
ITR

=1
CALLS =0
IFAULT = 0
VIRGIN = 0
ITYPE =0
RPA = 100.0
RP_MAX = 1.00e8
GAMMA = 2.0
FCOST = .00
FUN_COST = .00
FCO3T P = 1.00e-6
FUN_COSTP = 1.00e-6
CONVERGE = ,FALSE.
TOLERANCE = .2
EPS = .0001

C USER INPUT ...ivvunneneenn. eertreeeeaeeaaaa, e rtteeeeeae,

PRINT*,' ENTER NUMBER OF DESIGN VARIABLES:'

READ*, NOVAR

PRINT*,' ENTER NUMBER OF EQUALITY/INEQUALITY CONSTRAINTS:'
READ* , NUM_H ,NUM_G

PRINT*, ' NUMBER OF DESIGN VARIABLES :!, novar
PRINT*, * NUMBER OF EQUALITY CONSTRAINTS:', num_h
PRINT*, ' NUMBER OF EQUALITY CONSTRAINTS:', num_g

C INITIALIZE Lamda's............ ceeennane chesaans e meeeeteneen e
DO 10 I=1,NUM_
LAM_HP(D)
10 LAM_H(T)
D0 20 1=1,NUl
LAM_GP(I)
20 LAM_G(I)

0
.0
0
0

= OO0 0Ox

[ L = S TR 1}
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C READ DATA INPUT SET .. uivsiruvvnenrersacanonssssnosonseassnans acaonas
CALL READ DATA(X!NXT NOVAR)

C MINIMIZATION ROUTINE SELECTTON. .. vvutnnineecrinii i iinnnenennnerenones
90 PRINT*,' SELECT MINIMIZATION TECHNIQUE:'

PRINT* ! POWELLS METHOD => 1!

PRINT* ! HOOKE - JEEVES => 2!

READ*, TECHNIQUE

IF (TECHNIQUE.EQ.1) THEN
PRINT*,' YOU HAVE SELECTED POWELLS METHOD'
PRINT*,' ENTER “O" FOR GOLDEN SECTIONS.'
PRINT*,' ENTER "1 FOR QUADRATIC APPROXIMATION.'
READ*, [ TYPE

ELSE if (TECHNIQUE.EQ.2) then
PRINT*,' YOU HAVE SELECTED HOOKE- JEEVES'
PRINT*,' ENTER SEARCH DELTA [<1] AND ACCELERATION FACTOR [>=1]"
READ*,D, AF
PRINT*,! SEARCH DELTA =',D
PRINT*,+ ACCEL FACTOR =',AF

ENS IF

C MINIMIZATION EXECUTION. ... . uieiiiennetiirenenreennionnneocnnnnenannnns
100 IF (TECHNIQUE.EQ.1) THEN
CALL POWELL(XINIT, EPS,NOVAR, XFINAL,FCOST,ITYPE)
ELSE IF (TECHNIQUE.EQ.2) THEN
£ CALL HOOK_JEEVES(XINIT, EPS,NOVAR,D, AF, XFINAL,FCOST)
ND IF

C DIAGNOSTIC PRINT ., . iiiiireyiitiuonntnrneesoeenecnsssanccasasannnnenns
CALL CHECK_PRINT(ITR, XFINAL FCOST FCOST_P,NOVAR)

C CHECKING FOR CONVERGENCE. ... ..iuiveeuieniunancomonanenonanansensncnannns
CALL TOL_TEST(LAM_HP, LAM_GP,TOLERANCE,CONVERGE, FCOST_P,FCOST)

C IF CONVERGENCE FAILED CONTINUE (check alm max itr)..........coveunnnn.
IF ((CONVERGE).EQV.(.FALSE.)) THEN
IF (ITR.GE.25) THEN
PRINT* ¢  #%* MAX [TERATIONS EXCEEDED ***'

PRINT™*, THE LAST SET OF VALUES ARE:'
CALL CHECK_PRINT(ITR,XFINAL,FCOST, FCOST_P,NOVAR)
ELSE
CALL UPDATE(LAM_HP,LAM_GP, GAMMA)
1TR = [TR + 1
FCOST P = FCOST
FUN_COSTP = FUN_COST
po 7011 =1 NOVAR
101 XINIT(1) = XFINALCI)
GOTO 100G
END IF
END [F

C PRINT RESULTS ... inieentreunnannacasoaeensonesenaeansnnennsononannnns
1000 CALL PRINTIT(XFINAL,FCOST NOVAR)

sTO0P

END
C END OF USER_MAIN...... Criciecceeasaas Cereseerieteiie ettt
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ct********ii*ﬂ*&t'**t****ﬁ***'**i*itt***i***tﬁ**t***tt*iili*tttttt**iﬁ't

SUBROUTINE HOOK_ JEEVES(IX,EPS,NOVAR,DELTA, ALFA, X1, FXI)

C*ﬁ****'**'****t*****w*****‘“Iiﬁ*'t*****tﬁﬁ*****ﬁt*ﬁ**t*ti****i*iﬁiﬁ'*t

C This is the Hook-Jeeves unconstrained minimization algorithm.
Ctt*ttit**ii*******'t**'*i**t**"**ttt*i**tti**ii**t**tt*tiitﬁIt*tl'ttta

C WHERE THE FOLLOWING DEFINTIONS APPLY:

C

c NOVAR = NUMBER OF VARIABLES (HEREAFTER REFERED TO AS "N").
C CALLS = THE NUMBER OF FUNCTION CALLS.

C IX(N) = THE START POINT FOR THE SEARCH.

C XI(N) = THE CURRENT X SET.

c XP(N) = THE PREVIOUS X SET.

o YI(N) = THE CURRENT Y ScT7.

C YSP(N) = THE CURRENT Y SET + DELTA* DJ(N) .

C YSM(N) = THE CURRENT Y SET - DELTA* DJ(N) .

o DJ(N) = THE UNIT DIRECTION VECTOR FOR VARIABLE N.

o DELTA = THE STEP SIZE FOR THE SEARCH.

C ALFA = THE ACCELERATION FACTOR FOR THE SEARCH.

o EPS = THE "EPSILON" OR TOLERANCE FOR THE SOLUTION.

o TIMES_THROUGH = THE NUMBER OF SEARCH SETS FOR THE METHOD.

C*******ﬁi*:*'*t*****'ﬁﬁ***ii*ﬁt***i*i************ﬁ***i*i'*ﬁﬁ*'*****ﬁiti

%INCLUDE 'declarations.ins.f!

REAL*4  IXCIMAX), XI(IMAX), YI(IMAX),DJ(IMAX), YSP(IMAX), YSM(IMAX),
+ XP(IMAX),FXI,FYSP,FYSM, FYI, TIMES_THROUGH,ALFA,DELTA

TIMES_THROUGH = 0

C ASSIgN the WOrKIiNG VECTOrS .. vciteentsenersaerosansssnrcsansncesaaonnass
DO 100 N=1,NOVAR
XI(N)=IX(N)
YI(N)=IX(N)
100 CONT INUE

C Main loOP..cveeeceeneenaann e eeeacarrioenstieeen s tase e e
70 DO 200 N=1,NOVAR
C AsSign the search direClioNS . . vu.ueeeereeeaneeeserocnensesnneonnnnennn
DO 150 M=1,NOVAR
150 DJ(M)=0
DJ(N)=1

DO 160 M=1,NOVAR
160 YSP(M)=YI(M)

YSP(N)=YI(N)+DELTA*DJ(N)
CALL FUNX(YI,FYI, NOVAR)
CALL FUNX(YSP,FYSP,NOVAR)

IF (FYSP.LT.FYI) THEN
YI(N)=YSP(N)
FYI=FYSP
ELSE
DO 170 M=1,NOVAR
170 YSM(M)=YT (M)
YSM(N)=YT(N)-DELTA*DJ(N)
CALL FUNX(YSM,FYSM,NOVAR)
IF (FYSM.LE.FYI) THEN
YI(N)=YSM(N)
FYI=FYSM
END IF
END IF
200 CONTINUE

C Improvement so accelerate.........ccuvuvriecennnnne e e eeeeaan
CALL FUNX(X!,FXI,6NOVAR)
[F (FYI.LT.FXI) THEN
DO 250 N=1,NOVAR
XP(N)=XI(N)
XI(N)=YI(N)
YICN)=XT(N)Y+ALFA*(XT(N)-XP(N))
250 CONTINUE
TIMES_THROUGH = TIMES_THROUGH +1
GoTO 70

C Max iteration CheCK......oiuviirnvineneeeeianenareeanennsennnoananaann
ELSE IF (TIMES_THROUGH.GT.50) THEN
PRINT*® + *** hooke jeeves iterations .GT. S50 *=*!
RETURN

C End of MinimizZation. .. e e oo eeeeanereaneneeneeeearananenesannnnans

ELSE IF (DELTA.LT.EPS) TPEN
RETURN
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ELSE
DELTA=DELTA/2
DO 300 N=1,NOVAR
300 YI(N)=XI(N)
END IF
TIMES_THROUGH =TIMES_THROUGH + 1
GOTO 70
END

C END OF HOOK-JEEVES . . iueiti ittt ittt neeanriraninnanannananns

115




C**i**i************iﬂi*i******ﬁ*i***i**'ﬁtﬁ*********'*ii**tttittittﬁiti

SUBROUTINE POWELL(IX, EPS NOVAR,XI FXI, ITYPE)
ciFiiti*i****i**ti**l*i*****i*****i**it***i**t**t**it***t**ti'***tﬁitwn
C This subroutine is the alogirthm for Powell's method. It controls
C the search directions and the convergence in at this level. The
C searches are conducted in the following subroutines:

SEARCH= THE CONTROLLING SEARCH SUBROUTINE.

QUAD = A QUADRATIC APPROXIMATION FOR THE MINIMUMIN LINE SEARCH.

(USES 'GAUSSZ' TO SOLVE FOR MINIMUM).
GOLD = THE GOLDEN SECTIONS METHOD FOR THE MINIMUM IN LINE SEARCH.
D = UNIFORM GRID SEARCH METHOD FOR MINIMUM BRACKETING.

ARAAERERARRTRTT AR RAARRRRRAARR AR AR AR TR AR TR dr i dese sk dedrde dede s o e dr e e de ke de s s s e o
VARIABLE DEFINTIONS: -
= INTIAL GUESS OF MINIMUM POINT

IX(N) =

X1(N) = THE CURRENT WORKING X MINIMUM DURING YHE SEARCH
XN(N) = THE HOLDER DURING THE REASSIGNMENT OF THE NEXT XI
XP(N) = THE PREVIOUS X MINIMUM AS THE SEARCH PROGRESSES
YI(N) = THE CURRENT WORKING Y SEARCH LOCATION

YS(N) = THE Y POINT THAT IS "S"ENT INTO THE LINE SEARCH
YM(N) = THE LINE SEARCH Y "M"INIMUM THAT IS RETURNED

DJ(N) = THE CURRENT DIRECTION VECTOR OF UNIT LENGTH

DJNORM = THE NORM OF THE CALCULATED DJ VECTOR

LAMXDJ = RUNNING SUM OF THE PRODUCT OF THE LAMDA AND THE DJ
DJSUM = THE RUNNING SUM OF THE NORM CALCULATION

EPS = THE TOLERANCE

XNS = X POINTS NORMAL CALCULATION SUM HOLODER

H(N,N) = THE H MATRIX WHERE THE DIRECTION VECTORS ARE STORED

HOLD(N,N+1) THE TRANSITION MATRIX WHERE THE NEW DIRECTION
VECTORS ARE DETERMINED.

THE NORM OF THE XI AND XP VECTOR TO DETERMINE THE
TOLERANCE FIT.

= THE NUMBER OF ITERATIONS OF POWELL'S DONE.

C****it*********t**********tt*t***********t****i*********i****it********

%INCLUDE 'declarations.ins.f'

NORMX

AOOOOO0OOO00O0O00O0O0O0OO000OO00

INTEGER*2 LOOKER, ITYPE

REAL*4  XI(IMAX), IXCIMAX),XPCIMAX),DJCIMAX), HCIMAX, IMAX),
+  FYM,FXI,FYI,YI(IMAX), LAMCIMAX), HOLD( IMAX, IMAX+1) | xn( IMAX),
+  YMCIMAX),YSCIMAX),NORMX,DJNORM,DJSUM, XNS, LAMXDJ, dnpn( IMAX)

INTRINSIC SQRT
LOOKER = 0

DO 100 N=1,NOVAR
XI(N) = IX(N)
YICN) = IX(N)
100 CONTINUE

C INITIALIZING THE HOLD MATRIX & PUTTING THE ORIGINAL DIRECTION VECTORS
C IN THE H MATRIX. e enununennencnanneemnnconnenss e teetenaeeaenaeas
99 DO 150 K=1,NOVAR
HOLD(K,NOVAR+1) = 0
DO 150 M=1,NOVAR
HOLD(K,M) = O
IF (K.EQ.M) THEN

H(K, M) = 1
ELSE

H(K,M) = 0
END IF

150  CONTINUE

C GETTING THE CURRENT OJ OUT OF THE H MATRIX FOR THE CURRENT N.........
C START OF THE MAIN N COUNTING LOOP FOR THE NUMBER OF VARIABLES........
200 DO 300 N=1,NOVAR+1

C ASSIGNING THE SENDING Y FOR THE SEARCH....eueveuevnvenrunennes e
DO 250 M=1,NOVAR

250 YS(M) = YI(M)

¢ CURRENT SEARCH DIRECTION. .. eueuuneennennaeancuncnnsnneennnns s

201 DO 225 M=1,NOVAR

225 DJCM) = H(M,N)

€ THE SEARCH CALL . eeuavssunssnsnennnesnnenuennsnnsesesnnsenasanennsnnns

CALL SEARCH (YS,DJ,EPS,N,FYM,YM,LAM,NOVAR, i type)
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C A FUNCTION EQUALITY PROBLEM CHECK, I1F=1 THEN CAN'T FIND MIN [N SEARCH
C SO RESET SEARCH DIRECTIONS AND START OVER FROM LAST FEASIBLE POINT.
IF (IFAULT.EQ.1) THEN
STOP 'RESTART PROCESS'

END IF
€ SAVING THE DIRECTION VECTOR FOR THE CURRENT Nuo'vuenennernnrrnennnnn.
DO 275 M=1,NOVAR
HOLD(M,N) = LAM(M)*DJ(M)

H(M,N) = HOLD(m,n)
YI(M) = YM(M)
275 CONT I NUE
FYl = FYM
C THE N#1 SEARCH DIRECTION. . vuuvernetne e seeneeeae e e eenaaaaanss

[F (N.EQ.NOVAR) THEN
DO 280 M=1,NOVAR

280 H(M,NOVAR+1)=YI(M) - XI(M)
END IF
300 CONTINUE
C SETTING THE X'S AND Y'S TO THEIR NEW VALUES......ccvuiiniiiinnnanenns

DO 325 M=1,NOVAR
XP(M) = XI(M)
XI(M) = YI(M)
325 CONTINUE
FX1 = FYI
looker = looker + 1

C CALCULATING THE NORM OF THE LAST 2 X POINTS TO CHECK CONVERGANCE.....
XNS=0
00 350 M=1,NOVAR

350 XNS = XNS+(XI(M)-XP(M))**2
NORMX = SQRT(XNS)
C IF CONVERGANCE HAS BEEN REACHED, XI, FXI 1S RETURNED 7O MAIN.........
IF (NORMX.LT.EPS) then
RETURN
c iterations exceeding allowable.....civeininnneiniiiniocrnnnncacnnnnss

ELSE IF (LOOKER.GT.50) then
PRINT*, '### POWELL ITERATIONS > 50 ###'

RETURN
ELSE
C UPDATING THE SEARCH DIRECTIONS (DJ‘S) FOR THE NEXT PASS......cccuenuss
DO 410 J=1,NOVAR
LAMXDJ = 0
DO 400 M=1,NOVAR
400 LAMXDJ = LAMXDJ+HOLD(J, M)
410 HOLD (J,NOVAR+1) = LAMXDJ
¢ adding the directions together......oceerieianenceraerrcnnnacanncaseas
DO 420 J=1,NOVAR+1
DJSUM = 0
DO 430 K=1,NOVAR
430 DJSUM = DJSUM+HOLD (K, j)**2

DJINORM = SQRT(DJSUM)

DO 440 K=1,NOVAR
C SETTING THE NEW DJ'S TO A UNIT LENGTH TO PREVENT CRAWLING TO A SOLUTION
440 HOLD(K, j) = HOLD(Ck, j)/DJNORM
420 CONTINUE

C POSITION OF THE REVISED DJ'S IN THE H MATRIX FOR USE.....coevevnenns
DO 450 n=1,NOVAR
DO 450 m=1,NOVAR

450 H(M,N) = HOLD(M,N+1)
END IF
GOTO 200
END
C END OF POWELL....c.veunane N
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SUBROUTINE SEARCH(YS,DJ,EPS,N,FYMIN,YMIN, LAMNORM,NOVAR, i type)

c*'t*It**ﬁﬁ.******i*ﬁ*****i*******i*f*t*ﬁ*****ﬁit**ﬁt**ﬁi*ti**!'tt***'t

C THIS SUBROUTINE CONTROLS THE SEARCH PROCEDURES FOR POWELL' METHOD.
C WHERE TO FOLLOWING DEFINTIONS APPLY....uiiiinnerrnnncnnnnnasennnnnnns
C YS = THE SENT VALUE TO START FROM

C DIR = THE DIRECTION OF THE SEARCH

o DJ = THE SENT DIRECTION TO SEARCH

o IFAULT = THE EQUALITY PROBLEM FLAG

o ITYPE = THE LINE SEARCH SELECTION FLAG

c LAMNORM = THE NORMALIZED DELTA OF THE SEARCH

C YMIN = THE RETURNED MINIMUM IN THAT DIRECTION

C XASTRT = THE INTERVAL START FROM UGRID

C XBEND = THE INTERVAL END FROM UGRID

C SAV_YS = THE RETAINED VALUES OF THE START POINT

Ct**tt*tf*itt'k**ttt**ttt******t*******t**tit*****it*'ﬁ*t**iitti**ttttﬁ**

%INCLUDE '‘declarations.ins.f'

INTEGER*2 ITYPE
REAL*4 YS(IMAX) ,DJ(IMAX), YMINCIMAX), FYMIN DIR,SAV_YS(IMAX),

+ LAMNORM( IMAX) , LAMRAW, XASTRT ( IMAX) , XBEND ( IMAX)
INTRINSIC SQRT

DIR = 1.0

IFAULT = 0

C SAVING THE INCOMING START POINT VALUES......uueuneuennnnnsnsnnnnens
D0 25 1=1,NOVAR
25 SAV_YS(1)=YS(1)

C CALLING THE UNIFORM GRID SEARCH SUBROUTINE. .. ..u.eueenrenneenncnnenn.
CALL UGRID_1d(YS,DJ,NOVAR,XASTRT,XBEND,DIR)
IF (IFAULTTEQ.1) THEN
RETURN
END 1F

IF (ITYPE.EQ.1) THEN
C CALLING THE QUADRATIC APPROXIMATION INTERVAL REDUCER................
CALL QUAD(XASTRT,XBEND,YMIN,FYMIN, K NOVAR)
ELSE
C CALLING THE GOLDEN SECTIONS INTERVAL REDUCER......cvvvveeeronunnnnnn
CALL GOLD(XASTRT, XBEND,EPS,FYMIN,YMIN,KNOVAR)
END IF

C CALCULATING THE FINAL LAMBDA FOR POWELLS METHOD TO RETURN TO POWELL..
LAMRAW=0
DO 100 1=1,NOVAR

100 LAMRAW=LAMRAW+(YMIN(1)-SAV_YS(1))**2
LAMNORM(N)=SQRT(LAMRAW)*DIR

RETURN
END

C END OF SEARCH........... teeteesanercecseiotaenasasescttaenanaannn ceaes
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SUBROUTINE UGRID_1D(XS,DJ, NOVAR,XP, XN ,DIR)
ckttﬁt*t****t****iiii*;*i**t*tﬁi*i*******t*t*******t****t**t**'*ttiii'tt
C This subroutine performs a 1 dimensional uniform step search until
C a interval is found that contains a minimum is found.
Cil**t***t******i****t**********t**********t*******ﬁ*******ii*t**i***tt't

C WHERE THE FOLLOWING DEFINITIONS APPLY:

C

c XS(N) = THE CURRENT X VALUE

¢ XP(N) = THE PREVIOUS X VALUE, INTERVAL START

C XN(N) = THE NEXT X VALUE, INTERVAL END

o DJ = THE DIRECTION VECTOR FOR THE SEARCH

C DEL = THE INCREMENT OF THE SEARCH

o FXS,

c FXN,

c FXs = THE FUNCTION VALUES FOR EACH RESPECTIVE X

c DIR = IF THE SEARCH IS NEGATIVE THIS SETS A NEGATIVE DISTANCE

T = THE NUMBER OF STEPS TAKEN TO FIND A MINIMUM

C*ii*ii*it******t*i*****t*t******i***********t*****i***itt**i**ﬁ***ttti

%INCLUDE ‘declarations.ins.f!

INTEGER*2 count

REAL*S DJ(IMAX) ,XSCIMAX) , XN(IMAX) XP(IMAX) ,DEL,FXS,FXN, FXP,DIR
DEL 0.001
count = 0

C ADDING AND SUBTRACTING THE DEL TO THE INITIAL VALUE.............. .en
DO 100 N=1,NOVAR
XN(N) = XS(N)+DEL*DJ(N)
XP(N) = XS(N)-DEL*DJ(N)
100  CONTINUE

CALL FUNX(XS,FXS,NOVAR)
CALL FUNX(XN,FXN,NOVAR)
CALL FUNX(XP,FXP,NOVAR)

¢ CASES LISTED OUT.......... cieiiarens cetssensaseranatannn eerctar e
c case 1. \/
IF FXP.GT.FXS.and.FXN.gt.FXS) THEN
RE .r

c case 2. /\
ELSE IF (*XP.LT.FXS.and.FXN.lt.FXS) THEN
GOTO 300
c case 3. -\
ELSE IF (FXP.EQ.FXS.AND.FXN.lt.FXS) THEN
GOTO 300
¢ case §. \
else i¥ (FXP.GT.fxs.AND.FXN,eq.FXS) then
goto 300
¢ case 5. \\
else if (FXP.GT.fxs.AND.FXN.lt.FXS) then
goto 300
¢ case 6. //
else if (FXP.LT.fxsS.AND.FXN.gt.FXS) then
goto 290
c case 7. /
else 1f (FXP.EQ.fxs.AND.FXN.gt.FXS) then
goto 290
c case 8, /-
else if (FXP.LT.fxs.AND.FXN.eq.FXS) then
goto 290
c case 9. --
ELSE IF (FXP.EQ.FXS.AND.FXN.EQ.FXS) THEN
goto 390
END IF

C IF THE SEARCH IS TO LEFT THEN THIS RESETS THE VALUES TO ALLOW IT....
290 DO 295 N=1,NOVAR
295 XN(N)=XP(N)

DEL = -DEL
FXN = FXP
DIR = -1.0
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C THIS IS THE MAIN SEARCH STEP LOOP. ...t seuneuneemnnauaeesnnneennnns
300 DO 310 N=1,NOVAR
XPCN) = XS(N)
XS(N) = XN(N)
310 XN(N) = XNCN)+DEL*DJCN)
FXS=FXN
CALL FUNX(XN,FXN,NOVAR)

IF (FXN.LT.FXS) THEN
C STEP CHECK. . uuetusoavsoaseaeannsonsassosconocasnoastoonnsanatonnanns
IFf (COUNT.EQ.100) THEN
PRINT*,' no minimum found in 100 steps'
RETURN .
END [F
COUNT = COUNT +1
GOTO 300

C THE FUNCTION VALUES ARE EQUAL AND NO MINIMUM 1S FOUND, IFAULT IS SET

ELSE IF (FXN.EQ.FXS) THEN
390 PRINT*, 'THERE MAY BE AN EQUALITY PROBLEM IN THIS EQUATION.'
IFAULT=1
END IF

C AN INTERVAL HAS BEEN FOUND.....iieuiienieneienetnencniaioanenernaennes
RETURN
END

C END OF UNIFORM GRID...ucunerniinrianereecneneacnennoneennenronnnnnans
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SUBROUTINE GOLD(AX,BX,TOL,FXMIN, XMIN, NOVAR)
L S L e L e e
C THIS SUBROUTINE PERFORMS A GOLDEN SECTIONS SEARCH FOR THE LOCAL
C MINIMA IN A GIVEN INTERVAL

C WHERE THE FOLLOWING DEFINITIONS APPLY

c AX = THE START OF THE SEARCH INTERVAL

c AX = END OF THE SEARCH INTERVAL

C XMIN = THE RETURNED MINIMUM VALUE FOR X

o MU = THE GOLDEN SECTIONS MU OF .618 OF INTERVAL

C LAMDA = THE GOLDEN SECTIONS LAMDA OF .382 OF INTERVAL

C ToL = THE TOLERANCE OF THE SOLUTION (COMPARED TO ABNORM)

C ABNORM = IS THE LINEAR DISTANCE BETWEEN THE ENDS OF THE INTERVAL
C MIN = THE END OF INTERVAL LOWEST VALUE VARIABLES

o = THE F PREFIX INDICATES A FUNCTION VALUE

c**************'k****i*tt*******ﬁ*********ii****'ﬁ*tt***ﬁ***i**t**i***t*t

%INCLUDE 'declarations.ins.f’

REAL*4  AX(IMAX),BX(IMAX), LAMDA(IMAX),XMIN(CIMAX), MU(IMAX), AB,
+ ABNORM, TOL,FA,FB FMU, FLAMDA FXMIN,MIN1(IMAX),
+ MIN2(IMAX), FMINT, FMIN2

INTRINSIC SQRT

C CALCULATION OF THE FIRST MU AND LAMDA.....cuuvneennenneenannnnnnnnn.
DO 100 N=1,NOVAR
MUCN) = AXCN)*.618%(BX(N)-AX(N))
LAMDACN)Y = AX(N)+.382*(BX(N)-AX(N))
100 CONTINUE

C THE INITIAL FUNCTION CALLS..... Cereenen Ceeaesstceeratenaesasraeruen
CALL FUNX(AX,FA,NOVAR)
CALL FUNX(BX,FB,NOVAR)
CALL FUNX(MU, FMU,NOVAR)
CALL FUNX(LAMDA, FLAMDA, NOVAR)

C THE START OF THE INTERVAL CHECK WITH A DETERMINATION OF ABNORM......
110 AB=0

DO 125 N=1,NOVAR
125 AB=AB+(BX(N)-AX(N))**2

ABNORM=SQRT(AB)

200 IF (ABNORM.LE.TOL) THEN
GOTO 400
ELSE IF (FLAMDA.LT.FMU) THEN
C THE INTERVAL IS CONVERGING TO THE LEFT......cvvuininrieunrninnnnnnns
300 DO 350 N=1,NOVAR
BX(N) = MU(N)
MU(N) = LAMDA(N)
LAMDA(N) = AX(N)+.382*(BX(N)-AX(N))
350 CONTINUE
FB = FMU
FMU = FLAMDA
CALL FUNX(LAMDA, FLAMDA NOVAR)
GOTC 110

ELSE
C THE INTERVAL IS CONVERGING TO THE RIGHT .....euerunernnennnennrnnennns
DO 250 N=1,NOVAR
AXN) LAMDA(N)
LAMDA(N) = MUCN)
MUCN) AXCN)+.618*(BX(N)-AX(N))
250 CONTINUE
FA = FLAMDA
FLAMDA = FMU
CALL FUNX(MU, FMU,NOVAR)
GOTO 110
END IF

121




C ONCE THE TOLERANCE IS MET THE LOWEST VALUE 1S USED

400
405

410

415

425

430

C END OF GOLDEN SECTIONS

IF (FA.LT.FLAMDA) THEN
do 405 i=1,novar
min1(i) = ax(i)
fmini = fa

do 410 i=1,novar
MINT(i) = LAMDA(1)
FMIN1 = FLAMDA

[F (FB.LT.FMU) THEN
do 415 i=1,novar
MIN2(1) = Bx(i)
FMINZ fB
ELSE
do 420 i1=1,novar
MIN2(T) = MUC)
FMIN2 FMU
END IF

IF (FMINT.LT.FMINZ) THEN
do 425 i=1,novar

XMINCi) = MINTCP)

SE
do 430 i=1,novar
XMINCi) = MIN2(i)
END IF
CALL FUNX(XMIN,FXMIN,NOVAR)

RETURN
END
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SUBROUTINE QUAD(AX,BX,XQMIN,FXQMIN, NOVAR)
c**t**t*t**t*'***"****i*********i**i****ﬁ**t*i***tit**i**'*t*tﬁ***ti**
THIS SUBROUTINE PERFORMS THE QUADRATIC APPROXIMATION OF THE LINE
SEARCH MINIMUM. IT CALLS GAUSSZ.FTN TO SOLVE THE SYSTEM OF
EQAUTIONS.

NOTE: SEE GOLD FOR ALL OTHER VARIABLE NAMES
ORIG = THE MATRIX OF THE SYSTEMS OF EQUATION GENERATED FOR
EACH DIRECTION TO ESTIMATE THE MINIMUM OF X(N)
CX = THE MIDPOINT OF THE AX - BX INTERVAL
= THE RETURNED SOLUTION VECTOR FOR EACH ORIG

C*********t****tﬁ****t******************t*****t***t*****t*******t*i***t

%INCLUDE '‘declarations.ins.f!

O000O00000

REAL*4  AX(IMAX),BX(IMAX),CX(IMAX),XQMINCIMAX), FXQMIN,ORIG(3,4)
REAL*4  YY(3),FA,FB,FC

C DETERMINING THE VALUE OF C.o.iiunrnnini it iiiiitateinrrnnonaaennns
DO 100 N=1,NOVAR
100 CX(N)=(AX(N)+BX(N))/2

CALL FUNX(AX,FA,NOVAR)
CALL FUNX(BX, FB,NOVAR)
CALL FUNX(CX,FC,NOVAR)

C MAKING EACH ORIG MATRIX, N NUMBER OF TIMES........cccuuunn certenevans
DO 200 N=1,6NOVAR
ORIG(1,1)=AX(N)*AX(N)
ORIG(2, 1)=BX(N)*BX(N)
ORIG(3, 1)=CX(N)Y*CX(N)

ORIG(1,2)=AX(N)
OR1G(2,2)=BX(N)
ORIG(3,2)=CX(N)

PO 150 1=1,3
150 ORIG(1,3)=1.0

ORIG(1,4)=FA
ORIG(2,4)=FB
ORIG(3,4)=FC

C THE EQUALITY CHECK IN ANY N DIRECTION FOR A DEFAULT XMIN(N).........
IF (AX(N).EQ.BX(N)) THEN
XQMIN(N)=AX(N)
ELSE

C THE CALL TO THE MATRIX SOLUTION SUBROUTINE TO SOLVE ORIG............
CALL GAUSSZ(ORIG,YY,3,4)
XQMINCN)=-YY(2)/(2*YY(1))
END IF
200 CONTINUE
CALL FUNX(XQMIN,FXQMIN,NOVAR)

RETURN
END

CEND OF QUAD ... .icurencnrennaunennceoatanasonsenanannns .
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C******ti*****i******ﬁ****************t**ﬁ****t't*ﬁ**********'tt******it

SUBROUTINE FUNX(X,F ALM,NOVAR)
c*itﬁi*it******it***i****;*f*iﬁ************ﬁ**tt*****i**i***it*ttttt*tt*
o This subroutine converts the objective function to the pseudo-

C ojective function of the ALM method.
C******i*i**iﬁ****#***tt*ii*****ﬁ******tti****tt****tit*tti*ti*ttti*ittt

%INCLUDE 'declarations.ins.f!

REAL*4  X(IMAX),F_ALM,SUMFLH, SUMFH2,SUM_PSI1,SUM_PS12,PSI(IMAX)
REAL*4  SUM_ FHZ sUM_ FGT FGT( IMAX)

INTRINSIC MAX

flag
calls

[¢]
calls + 1

C CALLING THE COST FUNCTION AND CONSTRAINT FUNCTION EVALUATIONS........
CALL FUN_INT(X, NOVAR,FCOST,virgin,flag)
CALL FUN_CON(X, NOVAR)

C ALM TERM GENERATION............. cieatsireaenns teeeteensenancne ceeeens
SUMFLH = 0
SUMFH2 = 0
DO 100 I=1,NUM_H
SUMFLH = SUMFLH+LAM_H(I)*FH(I)

100 SUMFH2

DO 110 I=1,NUM_G
110 PSI(I) = MAX(FG(I) -LAM_G(1)/(2*RPA))

SUMFH2+FH(T)**2

SUM_PSI =0
SUMTPSI2 = 0
00 T30 I=1,NUM_G
SUM_PS1 = SUM_PSI+LAM_G(I)*PSI(I)

130 SUM_PS12 = SUM_PSI2+RPA*PSI(I)**2

¢ THE PSEUDO-OBJECTIVE FUNCTION. ...vevverreeneannnnnns Ceeeerrecanaan,
F_ALM = FCOST+SUM_PSI+SUM PSIZ+SUMFLH+RPA*SUMFh2
FUN_COST = FCOST

c MAX ITERATION FOR FUNCTION CALLS CHECK....... seesesireansans eeaecasan
IF (CALLS.EQ..2000) THEN
sTOP "ttt max iterations for method reached™ ~~~"~
END IF f
RETURN
END
C END OF ALM FUN............. et eeseernreanstasreseasacarsansna o nsans
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C***ﬁi't*t'ﬁ*******i*******ﬁ***i'ﬁ****i*******'**ﬁttttti*t******tit**ttt*

SUBROUTINE GAUSSZ(A,X,N,N1)
i Rt e S L e L
C THIS SUBROUTINE PERFORMS GAUSSIAN REDUCTION TO SOLVE THE SYSTEM OF
C EQUATIONS.

INTEGER*2 [,d,K,L,M,N,d1,Jd,N1
REAL*&  AlLJ,X(N),A(N,N1),FA,FB,FC,BIG,DUMMY

00 100 J=1,N
AlJ=A(J,d)
J1=Jd+1
1F (J1.GT.N) GO TO 980
BIG=ABS(A(J,4))
M=J
DO 900 L=J1,N
IF CABS(A(L,J)).LE.BIG) GOTO 900

900 CONTINUE
DO 990 JJ=J,N1
DUMMY = A(M,Jd)
A(M,J0) = ACJ,dd)
A(Jd,JJ) = DUMMY
990 CONTINUE
980 CONTINUE
DO 200 K=J,N1
200 ACJ,K)=A(J,K) /AL
00 300 I=1,N
IF (1.EQ.J) GO TO 300
ALJ=ACT, )
DO 400 K=J,N1
400 ACT,K)=ACL,K)-ALJ*ACJ,K)
300 CONT INUE
100 CONTINUE
DO 500 1=1,N
500 XC1)=ACT,N1)
RETURN
END
C END OF GAUSSZ..... e e, eeeeeieaas
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ct*'t***i****t‘*'t*ti*ti*'i*****ﬁﬁ*****ﬁii******t**i***t***tt*ti*t**iﬁt

SUBROUTINE CHECK PRINT(ITR,XFINAL,FCOST,FCOST_P,6NOVAR)
CiiR*‘ﬁ*“**'ﬁ***ttttt**wt*tﬁﬁ***tt***ﬁ***t*'ﬁ*'*t***ﬁ;*i‘****ﬁ'**'iii**tt
¢ This subroutine prints the design vector, function value and pseudc-
¢ objective function value for each complete ALM iteration.
Ciii!ti****i****i*t*it*i***********ht***i**t***i*****ﬁ******it*ttt*ti*t

%INCLUDE ‘declarations.ins.f!'

PRINT*,' AT ITERATION NUMBER',ITR,'! AND CALL NUMBER',CALLS
PRINT*,! THE VALUES OF THE VARIABLES ARE:'

¢ Print the current design VECTO . i nen it ivrereeanneenssnnannraananns
do 7 I=1,novar

7 WRITE(*,10)1,xfinal(l) )

10 FORMAT(5X,' X(',12,') = ',1F10.6)
WRITE(*,11)

1" FORMAT (/)
IF (FLAG.EQ.1) PRINT*,' *** NOTE: ALL PROPELLENT EXPENDED ***!

¢ Print the current and last function and ALM values..................
PRINT*, ' CURRENT FCOST = ', fun_cost
PRINT*,* PREVIOUS FCOST = ', fun_costp
PRINT*,' CURRENT ALM = !, fcost
PRINT*,' PREVIOUS ALM = ', fcost_p
WRITE(*,11)
PRINT*,' RP = ', rpa
¢ Print the current lambda and value of the constraint function.......
do 20 I=1,NUM _H i
20 WRITE(*,60)7,fh(i), i, lam_h(i)
do 30 I=1,NUM G .
30 WRITE(*,50)7,fg(i),i,lam_g(i)
50 format(ix,'FG(',12,') = ',e18.6,' & LAM_G(',12,') =',e18.6)
60 format(1x,'FH(',12,') = ',e18.6,* & LAM_H(',12,') =',e18.6)
WRITE(*,11)
RETURN
END
C END OF CHECK PRINT....vcuvencacnnns eeseeaaenans Cetencariiearsonnans

C**ii******i************i***************ﬁi*****ﬁ******i*******ittttt*it

SUBROUTINE PRINTIT(XFINAL,FCOST ,NOVAR)
Ct***t********i***i*************************ti*****t****i*******ﬁ*t***i
¢ This subroutine prints the final design vector, function value and
¢ number of function calls.
Ct*************t*ﬁ*ti*t****************************t********t*it**ttttt

%INCLUDE ‘'declarations.ins.f!

PRINT*, ' THE FINAL FUNCTION VALUE IS (m/s):', FUN_COST*(-1.0)
PRINT*, ' THE ' ,NOVAR,' VARIABLE VALUES ARE:'
DO 7 1=1,novar

7 WRITE(*,10)1,xfinal(1)
10 FORMAT(5X,' X(',12,') = ',1F10.6)
WRITE(*,11)

1 FORMAT(/)

WRITE(*,20)((xfinal(1)*100),1=1,NOVAR)
20 FORMAT(10X,8F12.5)
PRINT*, ' THE TOTAL NUMBER OF FUNCTION CALLS WAS :', CALLS
1

PRINT*, ' THE FINAL ALM FUNCTION VALUE WAS s, FCOST
RETURN
END

C END OF PRINT IT...... cetescesassseserastsaane tetasrerene tseseean .
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ci*i.tfﬁ*t****i****t'**ﬁ***ﬁﬁﬁi**t***ﬁttt*ttﬁtﬁ*'ﬁiﬁ**i*'ﬁttii*ti*i**t't

SUBROUT INE TOL_TEST(LAMgHP,LAM_GP,TOLERANCE,CONVERGE,FCOST_P,
FCOST
C**i*tﬁ******t****ﬂ**t*****iﬁ**2*I*i**ti*'i******lt**t*tttt*tttttitt*tﬁf
C This subroutine determines if the convergence has occured for the
C ALM method to terminate.
C LOCAL DEFINTIONS. it ii et eaccavacacronvesssoonnnnanssosacasanacanns

TOTAL = THE SUM OF THE NUMBER OF INEQUALITY AND EQUALITY
CONSTRAINTS.
DIFFH = THE DIFFERENCE BETWEEN THE CURRENT AND PREVIOUS LAMBDA

FOR EQUALITY CONSTRAINTS.
DIFFG = SEE ABOVE, FOR INEQUALITY CONTRAINTS.
ALM _SUM = THE COUNTER FOR THE NUMBER OF CONSTRAINTS IN TOLERANCE.
DELTA_C = THE CHANGE IN THE COST FUNCTION SINCE LAST ITERATION.

OO0OOOOOO0

%INCLUDE 'declarat!ons ins.f!

INTEGER*2 TOTAL,ALM_SUM
REAL*4 DIFFH, DIFFG DELTA_C

INTRINSIC SQRT

ALM_SUM = 0
DELTA_C = ABS(FUN_COST - FUN_COSTP)
TOTAL™ = NUM_H + NUM_G

DO 100 I=1,NUM_H
DIFFH = LAM HCI)-LAM_HP(I)
1F (DIFFH.LE.TOLERANCE) THEN
ALM_SUM = ALM_SUM+1
END IF
100  CONTINUE

DO 110 1=1,NUM_G
DIFFG = LAM GCI)-LAM_GP(I)
IF (DIFFG.LE.TOLERANCE) THEN
ALM_SUM = ALM_SUM+1
END IF
110 CONTINUE

IF (DELTA_C.LE.TOLERANCE .AND.ALM_SUM.EQ.TOTAL) THEN
CONVERGE = .TRUE.

ELSE
CONVERGE = .FALSE.
END IF

RETURN
END

C END CF TOL TEST..veciraeecocannncnnnncannss Ceeesataeniteeearanaanans

cﬁti*tt*'***i*ii****ii*t*t*i******i***ii*'t***iﬁ**i*****i*t**t*i******t*

SUBROUTINE UPDATE(LAM_HP, LAM_GP, GAMMA)
Chtt**tt*i#tt****t*tﬁﬁ*Q***?i*t*ﬁ*;*****i*t****ﬁ****i**ﬁit*tit*****k****
C This subroutine updates the lambda's and the rp for the ALM method.
%INCLUDE ‘'declarations.ins.f!'

INTRINSIC MAX

¢ alm update of lambda's for equality constraints.......cceeuierrnnannns
DO 200 I=1,NUM_H
LAM_HP(1)=LAR_H(T)
200 LAMHCT)=LAM_H(1)+2*RPA*FH(I)

¢ alm update of lambda's for inequality constraints...........ceeuiua..
DO 210 1=1,NUM G
LAM GP(I) LAM_G(I)
210 LAM_G(1)=LAM_G(1)+2*RPA*MAX(FG(1),-LAM_G(1)/(2*RPA))

crpupdate...c.ccuiiiacnenans Ceearanas ceedecaans Ceeereseessaraanaan .
RPA=GAMMA*RPA
IF (RPA.GE.RP_MAX) THEN
RPA=RP_| MAX™
END IF

RETURN
END

C END OF UPDATE...... Ceneean Ceteratecanciateatatecraansannns cerenaes
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APPENDIX II

INTERIOR BALLISTICS CODE

This appendix contains the interior ballistics code
used in this thesis. This is a modified version of IBRGAC
(15) to fit the optimization model. The first item is the
declaration file followed by the main progam. It is
organized by subroutine and includes all of the design
vector assignment and return subroutines. The files listed
below.

1. intball.ins.f.

2. fun_int.ftn.

3. prfol7.£ftn.

4. read data.ftn.

5. reset_data.ftn.

6. mass_check.ftn.

7. var_in.ftn (Example 1-4).

8. var_out.ftn (Example 1-4).
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c*ﬁtttt*'f'"***'*!’tﬁtttﬁiﬁitt****ﬁ*ttﬁ**Ittii***ttt**ﬁ***i***i*tt*tttttitt*tttt

c* ‘intball.ins.f!' *
c* -
c* DECLARATIONS, PARAMETERIZATION & COMMON BLOCK FILE FOR *
c* THE INTERIOR BALLISTICS CODE, IBRGAC (FRC:i BRL) *
ct*i*i**’**t't***t*t****t***ii***ﬁt*”ﬁﬁ'*t't'ﬁi'ﬁﬂ#**t’t*tit**it’ttttI-ttﬁit*itt
c* *
c* THIS FILE IS CALLED FROM THE SUBROUTINE 'fun_int' IN 'optimum.f' *
c* *

C*****'*t***ﬁ******ﬁﬁ*'***ﬁ**ﬁ't***t***k'ttt*t***tt*t******iiiiﬁ*ttﬁt*'#i*ttitt*ﬁ

¢ The following defintions apply (The s_ prefix indicates the saved original
C of the variable):

c Variable Type: Variable Units:
c Name: Meaning:
€ RECOF 1.ttt iiiereercansonnraceeneecanearennasosenseneeanncassosnananns
[ CHAM REAL*L CHAMBER VOLUME cm™3
c GRVE REAL*4 GROOVE DIAMETER cm
c ALAND REAL*4 LAND DIAMETER cm
[ GLR REAL*4 GROOVE/LAND RATIO none
c TWST REAL*S TWIST turns/caliber
c TRAVP REAL*4 PROJECTILE TRAVEL cm
c 1GRAD INTEGER*2 GRADIENT FLAG none
[+ 1 = Lagrange
c 2 = Chambrage
€ RECOMA 18, uueuneinncuacncenanensoasnesansonnneaseesnsosassasrsnnossonenronas
c NCHPTS INTEGER'Z NUHBER POINTS TO DESCRIBE CHAMBER none
¢ For I=1,nchpts
c CHDIST(1) REAL*4 INITIAL DISTANCE FROM BREECH cm
c CHDIAM(I) REAL*4 DIAMETER AT CHDIST(I) cm
¢ Record 2...... ereeneans e e s aeeieeaateeeeneaaaae e taaaeatectaaaae e e
c PWRT REAL*4 PROJECTXLE MASS kg
c TAIR INTEGER*2 CALCULATE ENERGY LOST TO AIR
c RESISTANCE FLAG none
c HTFR REAL*4 FRACTION OF WORK DONE AGAINST
c BORE TO HEAT TUBE none
c PGAS REAL*4 GAS PRESSURE IN FRONT OF PROJECTILE Pa
€ REEOMA Bt i iiitireeetnesoanonesneeaasnanesonessnenesoansanasssnesnnneeennenns
c NPTS lNTEGER*Z NUMBER OF BARREL RESISTANCE POINTS none
¢ For I=1,npts
[ BR(I) REAL*4 BORE RESISTANCE MPa
c TRAV(I) REAL*4 TRAVEL cm
¢ Record b4...cvvinnn.. et tsaisessectatetaettnanarsaneenn et tteeraesetearaeane
c RCWT REAL*Q MASS OF RECIOLXNG PARTS kg
[ NRP INTEGER*2 NUMBER OF RECOIL PAIR POINTS none
¢ For I=1,nrp
c RP(I) REAL*4 RECOIL FORCE N
c TR(I) REAL*4 RECOIL TIME s
¢ Record 5..........cc0uun. St easesesnaasesetenear et ascasnasetanaaseetasasanes
c HO REAL*4 FREE CONVECTION HEAT TRANSFER
c COEFFICIENT w/cm 2-k
c TSHL REAL*4 CHAMBER WALL THICKNESS cm
[+ CSHL REAL*4 HEAT CAPACITY OF STEEL OF CHAMBER WALL J/g-k
c TWAL REAL*4 INITIAL TEMPERATURE OF CHAMBER WALL k
c HL REAL*4 HEAT LOSS COEFFICIENT none
c RCHOS REAL*4 DENSITY OF CHAMBER WALL STEEL g/cm’3
C  REEOPA G itntcteieeenseaaonenennseaneeenooasaennesneanssenaesesnnesnnennanas
[ FORCIG REAL*4 IMPETUS OF IGNITER PROPELLENT J/9
c ovi REAL*4 COVOLUME OF IGNITER cm'3/g
[ TEMPI REAL*4 ADIABATIC FLAME TEMP OF IGNITER k
c CHW! REAL*4 INITIAL MASS OF IGNITER kg
c GAMA] REAL*4 RATIO OF SPECIFIC HEAT FOR IGMNITER none
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¢ Record 7...... et seesecateancantetettoeracsetatatoeraannrosanan Chesererenees
c NPROP INTEGER*2 NUMBER OF PROPELLENT TYPES none
¢ For 1=1,nprop
c FORCP(I) REAL*4 IMPETUS OF PROPELLENT J/g9
c TEMPP(I) REAL*4 ADIABATIC TEMPERATURE OF PROPELLENT k
c CovpP(Il) REAL*S COVOLUME OF PROPELLENT cm”3/g
c CHWP(1) REAL*4 INIT{AL MASS OF PRGIELLENT kg
c RHOP(1) REAL*4 DENSITY OF PROPELLENT g/em’3
c GAMAP(I) REAL*4 RATIO OF SPECIFIC HEATS FOR PROPELLENT none
c NPERFS(1) INTEGER*2 NUMBER OF PERFORATIONS ON PROPELLENT none
c GLENP(I) REAL*4 LENGTH OF PROPELLENT GRAIN cm
c POPI(I) REAL*4 DIAMETER OF INNER PERFORATIONS
c IN PROPELLENT GRAINS cm
c PDPO(I) REAL*4 DIAMETER OF OUTER PERFORATIONS
c IN PROPELLENT GRAINS cm
c GDIAP(I) REAL*&4 OUTSIDE DIAMETER OF PROPELLENT GRAIN cm
c DBPCP(I) REAL*4 DISTANCE BETWEEN PERFORATION CENTERS cm
¢ Record 8........... tesasecnans ceesesssanaen hediesees et eateesetetaat e
¢ For J=1,nprop
c NBR(J) INTEGER*2 NUMBER OF BURNING POINTS none
¢ For I=1,nbr(j)
c ALPHA(J, 1) REAL*4 EXPONENT none
¢ BETA(J,1) REAL*4 COEFFICIENT cm/s-MPa“ (aplha(j))
c PRESS(J,1) REAL*4 PRESSURE MPa
¢ Record 9.............. fetesacncereseteaneann et tiecesiesectecaaaeanaaeaaan
c DELTAT REAL*4 TIME INCREMENT (STEP) ms
c DELTAP REAL*4 PRINT INCREMENT ms
c TSTOP REAL*4 STOP TIME FOR CALCULATIONS ms
gt*’****ﬁi'***'k**t**********'k*************t*****i***********i******t*****t***i‘*t*
¢ parameter defintions............. teeceetseseansanas Ceeeeeneseenaanan
INTEGER*2 IMAX
REAL*4 Pl
PARAMETER(IMAX = 20)
PARAMETER(PI = 3.14159)
c File Input/Output....coveennnns cemaeen Ceeeeteeeieetese e
CHARACTER*10 bdfile,outfil
¢ interior ballistics definitions..coiiierieenieiinninereenneeeeennnns
€ RECOFd T.iuuioniiniiieinsnaseuanaceseosotoseasnsassasnsrannen [ ves
REAL*4 cham,grve,aland,glr,twst, travp
INTEGER*2 igrad
REAL*4 s_cham,s_grve,s_aland,s_glr,s_twst,s_travp
INTEGER*2 s_igrad
¢ Record 1a.....ivvnn... Ceteecessereanteetannraanas e etesatesineataanns
REAL*4 chdist(10),chdiam(10)
INTEGER*2 nchpts
REAL*4 s_chdist(10),s_chdiam(10)
INTEGER*2 s_nchpts
€ RecOrd 2..cevrivuensincneenceanaonsnsncsansancanas eeieerssanaanaseaaas
REAL*4 prut, htfr, pgas
lNTEEER*Z iair hes
REAL s_prwt,s_htfr,s as
INTEGER*2 s:?air P8
c Record 3....ciunveinnunnnn “eeseerarersiaesesananasanns Ceeeecetenaaaa
REAL*4 br(10), trav(10
INTEGER*2 npts
REAL*4 s_br(10),s_trav(10)
INTEGER*2 s_npts
€ ReCOMd 4...vniriiniianenceenceseanssneacssesnnnssanonanennn eereeaanas
REAL*S rewt, rp(10),tr¢10)
INTEGER*2 nrp
REAL*4 s_rcwt,s_rp(10),s_tr(10)
INTEGER*2 s_nrp
€ RECOMA 5.t . ceivneseeesesesassacsansnsssonsanacossnsnoasaonnnncesonas
REAL*4 ho, tshi,cshl,twal hl,rhocs
REAL*4 s_ho,s_tshl,s_csh(,s_twal,s_hl,s_rhocs
¢ Record 6......000uvue et e st eusasenseteatnennanec st assraranaatstannn

REAL*4 forcig,covi, tempi,chwi,gamai
REAL*4 s_forcig,s_covi,s_tempi,s_chwi,s_gamai
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€ RECOMA 7t tiianeeroaceeosoaenenanasanesscassasneesnesonaseasesnanans
REAL™4 forcp(10), tempp(10),covp(10),chwp(10), rhop(10),
+ gamap(10),9lenp(10),pdpi(10),pdpo(10),gdiap(10),
+ dbpcp(10)

INTEGER*2 nprop,nperfs(10)

REAL*4 s_forep(10),s_tempp(10),s_covp(10),s_chwp(10),
+ s_rhop(10),s _gamap(10),s _glenp(10),s_pdpi(10),
+ s_pdpo(10) s_gdiap(10),s_dbpcp(10)

INTEGER*2 s_nprop,s_| nperfs(10)

C RECOMd Biiiiiiniiiireerintetenneaacoassrassenacasanoasnnssonensnnnnn
REAL*4 alpha(10,10),beta(10,10),pres(10,10)
INTEGER*2 nbr(10)
REAL*4 s alpha(10 10),s beta(10 10),s_pres(10,10)
INTEGER*2 s nbr( 0)

REAL*4 del tat,deltap, tstop
REAL*4 s_deltat,s_deltap,s_tstop

c end of record declarationS. . uueeeesneenierenscsonenecsseenossnnnanes
¢ Lagrange chamber volume values.....ccouiiiiiinnonnnnneennneanennnns
REAL*4 bore,bl,b2,b3,b4,22,bint(4),bvol,r1,r2,diam,area, temp,
+ chmlen
REAL*4 s_bint(4),s_bvol,s_chmlen,s_bore
¢ local use declarations. ... .ieeeirnneinioeeroancecnecascaniansncnonss
REAL*4 step, tmpi, lambda, pmaxm, pmaxba, tpmaxm, tpmaxbr, pmaxbr,
+ tpmaxba, tpmax, qs(é) bs(4), ak(&) vp0,tr0, tew, ibo(10),
+ volg1,pmean volg wallt pt1me z(ZO) y(20)
REAL*4 xba,dpmaxbr,max_mass,t_d,p_f,m_r,total_vol_prop,
+ c am_ vol

INTEGER*2 ibrp,nde,iswl,i1,i,j,k,l,m, y_axis, x_axis
REAL*4 velocity, values(20,20)
REAL*4 resp,elpt,elpr,pt,vzp, jézp,elgpm,elbr,elrc,areaw, avep,

+ avc,avden, z18, z19 avvel htns,elht,air,elar,rfor, areab
+ grop,rpro tenergy,tgas vi cov1 pbase pbrch j1Z
+ zp,j3zp, alf, ale,bt, bata gamma, delta ds(20), p(ZO)
+ t,rmvelo, tmve o, d)sto dfract efi efp,tenerg,tengas
+ frac(10) surf(10),p01nts rmvel tmvel u
C COMMON BLOCKS . .vvteunenecenscsaacnososcssssaseancsscansssasannsnunnnns

COMMON/RECORDS  /cham,grve,aland,glr, twst, travp,igrad,chdist,
chdiam,nchpts,prut htfr ,pgas, iair, br trav,npts, rewt, rﬁ
tr,nrp,ho, tsh[ csh[ tual ht, rhocs forc:g covi, tempi,chwi,
gamai, forcp, empp,covp,chu ,rhop, gamap,nperfs glenp, pdpi,
ggpo gdlap,dbpcp,nprop,alpﬁa pres,nbr,deltat deltap,tstop,

+ + + ++

COMMON/S_RECORDS/s_cham,s_grve,s_aland,s_glr,s_tust,s_travp,
s_igrad,s chdist, s chdiam,s_nchpts,s_prwt,s_htfr,s_pgas,
s_iair,s_br,s trav s_npts,s_rcwt,s_rp,s_tr,s. nrp,s “ho,
s_tshl,s cshl S tual s_hi,s_ rhocs 3 forc1g s_covi,s temp1
s_chwi, s_ gama1 s forcp,s tempp,s covp,s chwp,s rhop,

s gamap,s nperfs s_glenp,s_pdpi,s_pdpo,s_gdiap,s_dbpcp,
s_nprop,s_alpha,s_tstop,s_beta,s_pres,s_nbr,s_deltat,
S deltap,s bint,s_bvol,s chmlen S bore

+ 4+ 4+ 4+ 4+

COMMON/LIMITS  /dpmaxba,dpmaxbr, pmaxbr, pmaxba,max_mass,l_d,
+ total_vol_prop,cham_vol

COMMON/LOCALS  /bore,bl, b2 b3,b4,zz,bint,bvol,r1,r2,diam,areab,
temp,chmlen, step,tmp1 L ambda , pmaxm, tpmaxm tpmaxbr
tpmaxba, tpmax, as, bs, ak N trO tcw, ibo, volgi, pmean, volg,
wallt,ptime,z,y, povnts i p,nde lsu1,area,resp,
elpt, elpr vzp,jkzp,elgpm,elbr e(rc areaw,avcp,avc,avden,
218, z19 avvel htns,elht,air, elar rfor €| rop,rprop,tenergy,
tgas pt,v1 cov1 pbase pbrch,j1zp,122p j3zp,a2t,alf,alt,bt,
bata,samma de(ta ds,p,t,rmvelo, tmvelo,disto, dfract efi efp,
tenerg, tengas, frac surf rmvel, tmvel 11 u

COMMON/FILES soutfil bdfile
¢ end of TInthall.ins.f.i. ... iiiiiiiiisioeonoaaeeenaninnnnaneseneeanrosasanorans

+F 4+t
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cii*.it*ﬁ.i**i*ﬁﬁﬁ*i*ﬁi'*l*'.*ﬁ**i***t**ﬁi*ittit*i******tiﬁ'ﬁ**tﬁﬁti't'i

SUBROUTINE FUN_INT(X,NOVAR,FX,BURNED UP)
cttiﬁ**iit*it*itt'tﬁ'i*****i***ttiﬁ**t*t**:*tiii***t**i****t*tt*t*tii*ﬁt
c This subroutine is called from 'funx.ftn'. It is a modified
version of the lumped parameter interior baliistics code IBRGAC,

from the Interior Ballistics Laboratory, Maryland. It has been
modified to accept iterative changes the input data. The following
changes have been made:

1. The input file is now read by an external subroutine,
‘read_data.ftn'

2. The data is initialized by an external subroutine,
'‘reset_data.ftn'

3. Subroutine 'mass_check.ftn' checks the volume of propellent to
see if it will fit into the chamber.

defintions apply: .
burned _up = the propellent is all burned up flag.
bad web = the flag for a web violation.
[ 1 a2 s T R T2 2 T L R R S A TR 2 2R R R AT T Y 2

INCLUDE 'intball.ins.f'

ROODOOOOOOOONOOOHOOOG

INTEGER*2 NOVAR,BURNED_UP
REAL*4 X(NOVAR),FX,BAD_WEB

BAD WEB = 0.0
BURNED_UP = 0
FX = 0.0
C RESET VARIABLES FOR RUN..uvuuvuurncnnraniusnnenenrnnenensenrneasnnnas

CALL reset_data

¢ VARAIBLE ASSIGNMENT........ e ettt nr e e aaaaanaaaa,
CALL VAR_IN(X,NOVAR, FX)
IF (FX.LT.0.0) RETURN

c CHECK MASS OF PROPELLENT ...t ttiiinnaeeeacenoncanscaasonansscsesnnnn
CALL MASS_CHECK
c START INTERIOR BALLISTICS CALCULATIONS.....ivinuiinennnnncannsacscans
¢ Calculate total mass of propellent and igniter...........covuivnnnn..
tmpi = 0.0
do 20 i=1,nprop
20 tmpi = tmpi + chwp(i)
tmpi = tmpi + chwi
C Use Chambrage..ceesereereesneessreoosscssesnsssonasasavsosaasansnnnns
if(igrad.gt.1) then
go to 131
else
¢ Calculate the diameter of the bore [eq 1.3).....ciiiiiiiiiiennnnnnnn.

bore = (glr*grve**2+aland**2)/(glr+1.0)
bore = sqrt(bore)

end if
¢ Calculate the area of the bore.......civeiiiiiiinniireeeeienncnananns
131  areab = pi*bore**2/4.0
¢ Calcutate the Nordheim Friction Factor [eq 7.15)..cciiciniennnrnnnnnns
lambda = 1.0/((13.2+4.0*10g10(100.0*bore))**2)
¢ Initialization of Runge-Kutta values.........covuiiieiiiiannnanarnnnnns
as(1) = 0.5
as(2) = 1.-sqrt(2.)/2.
as(3) = 1.+sqre(2.)/2.
as(4) = 1.0/6.0
bs(1) = 2.0
bs(2) = 1.0
bs(3) = 1.0
bs(4) = 2.0
ak(1) = 0.5
ak(2) = as(2)
ak(3) = as(3)
ak(4) = 0.5
doS5 i = 1,nﬁrop
vp0 = chwp(i)/rhop(i)+vpd
5 continue

132

See 'intball.ins.f' for variable definitions. In addition the following




volgi cham - vp0 - chwi * covi

pmean = forcig * chwi / volgi
volg = volgi

volgi = volgi + vp0

wallt = twal

ptime = 0.0

ibrp =8

z(3) = 1.0

nde = ibrp + nprop

write(6,132)areab, pmean, VpO volgi
132 format(1x, area bore m2 e16 6,' pressure from ign pa',e16.6,/

+1x,' volume of unburnt prop m"3 ' ,e16.6,' init cham vol-cov ignm

+°3 ',e16.6)
¢ write(0,6)
c write(6,6)
cb format(1x, time acc vel dis mpress
= + pbase pbrch v)
iswl=0
19 continue
do 11 J=1,4
Clvneoaaesoscannanssonsasnonssnosnsacaaassssosesonsaneonssecanasnnonsonns
¢ For loop the following applies to the z & y arrays:
¢ variable defintion variable defintion
c (N proj accel ¥ proj velocity
¢ z2(2) proj velocity y(2) proj travel
¢ 2(3) d(time) y(3) time
¢ z(4) d(proj resistance y(4) proj resistance
c energy) energy
c 25 d(heat loss) y(5) heat loss
[ 1¢-3) recoil accel y(6) recoil velocity
c KN recoil velocity y(7) recoil travel
[ 1¢:5) d(air resistance ¥{(8) energy loss from air
c energy) resistance
C FIND BARREL RESISTANCE. .. eeuteanencvaorssoaocasansasnsnssancncannssns
do 201 k=2,npts
if(y(2)+y(7).ge.trav(k)) then
go to 201

end if

go to 203
201 continue

k = npts

¢ determine bore resistence due to friction and engraving [eq 7-8]
203 resp = (trav(k)-y(2)-y(7))/(trav(k)-trav(k-1))
resp = br(k)-resp*(br{k)-br(k-1))

c FIND MASS FRACTION BURNING RATE......veeervseneencecancssnannsncanas
do 211 k=1,nprop
if(ibo(k).ne.1) then
c*******ﬁ***iit*t*t****it**********i*******i****t******i*******ti***t**
CALL prf017(de°(k) pdpi(k),gdiap(k), dbpcp(k) gleng(k),
+ surf(k), frac(k) y(1brp+k) nperfs(k),u,bad web)

c*tt***t*****ﬁ****t***t*it*t***ﬁ**i*ﬁt***********ti**i*****t***;i**t***

if (bad ueb 1£.0.0) then

100.0*bad_web
return

end if
¢ if surf is less than minimum then propellent all burned up..........

if(surf(k).lt.1.e~10) ibo(k)=1

end if
211 continue
¢ ENERGY LOSS TO PROJECTILE TRANSLATION leq 7-4) .. civiiiiiiiennnnnnnns
elpt=prut*y(1)**2/2.
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O

ENERGY LOSS DUE TO PROJECTILE ROTATION (eq 7-S).......cciviiunon...
elpr=pi**2*prut*y(1)**2*twst**2/4.0

ENERGY LOSS DUE TO GAS AND PROPELLANT MOTION..........cviiiinunn .
Chambrage
if(igrad.eq.2) then
net projectile travel
pt = y(2)+y(7)
¢ total current volume behind projectile
vzp = bvol+areab*pt
¢ J4 determined at zp
jbzp= bint(4)+((bvol+areab*pt)**3-bvol**3)/(3.0*areab**2)
c {eq 7.7}
4 elgpm = tmpi*y(1)**2*areab**2*j4zp/(2.0*vzp**3)

O 0

(]

€ Lagrange [ 7.0) .. .vuiieiiineineeeeenacearnnsesosoasnsenanaesenannas
else
elgpm = tmpi*y(1)**2/6.0
end i
C ENERGY LOSS FROM BORE RESISTANCE . .....ciiveieiiennronecananeonannnss
elbr = y(4)
2(4) = areab*resp*y(1)
¢ ENERGY LOSS DUE TO RECOIL g 7.9 it eiriieiiiii it ietennncnraannnns
elre = rewt*y(6)**2/2.
C ENERGY LOSS DUE TO HEAT LOSS. ... .titienernennncennaasonanonennenens
c (eq 7.13)
areaw = cham/areab*pi*bore+2.0*%areab+pi*bore*(y(2)+y(7))
avden = 0.0
ave = 0.0
avep = 0.0
218 =0
219 =20

do 213 k=1,nprop

¢ 218 is the left hand numerator term in eq 7.19

218 = forcp(k)*gamap(k)*chwp(k)*frac(k)/(gamap(k)-1.)

+ /tempp(k)+218

¢ 219 is the left hand denominator term in eq 7.19

219 = chuwp(k)}*frac(k)+z19
¢ the top left numerator term in eq 7.17

avden = avden+chup(k)*frac(k)
213 continue

¢ leq 7.19) specific heat at constant pressure of propellent gasses
avep = (z18+forcig*gamai*chwi/(gamai-1.)/tempi)/(219+chwi)
c [(eq 7.17) mean gas density
avden = (avden+chwi)/(volg+covi)
¢ (eq 7.16] mean gas velocity
avvel = .5*y(1)
¢ [eq 7.14) Nordheim heat transfer coefficient
htns = lambda*avcp*avden*avvel+ho
c (eq 7.12) Q dot
2(5) = areaw*htns*(tgas-wallt)*hl
¢ [eq 7.11) heat loss
elht = y(5)
¢ wall temperature
wallt = (elht+htfr*elbr)/(cshl*rhocs*areaw*tshl)+twal

c ENERGY LOSS DUE TO AIR RESISTANCE
air=iair
z(8)=y(1)*pgas*air
elar=zareab*y(8)

..............................................................

rfor=rp(2)
if(y(3)-5£g.ge.tr(2)) then

rfor = (tr(2)-(y(3)-tr0))/(tr(2)-tr(1))
rfor = rp(2)-rfor*(rp(2)-rp(1))
222 z(6) = areab/rcwt*(pbrech-rfor/areab-resp)
if(y(6).1t.0.0) then
y(6) = 0.0
else
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2(7) = y(&)
end if
goto 223
221 tr0 = y(3)
223 continue

¢ CALCULATE GAS TEMPERATURE
~prop =
rprop =
do 231 k

............................................

-
(=R}

Nprop
eprop+forep(k)*chwp(k)*frac(k)/(gamap(k)-1.)
231 rprop rprop+forcp(k)*chug(k)*frac(k)/(gamap(k)-1.)/tempp(k)
tenergy = elpt+elpr+elgpm+elbr+elrc+elht+elar
tgas = (eprop + forcig*chwi/(gamai-1.0) - tenergy)/
+ (rprop + forcig*chwi/((gamai-1.0)*tempi))

C FIND FREE VOLUME. ... o0 veeiinnnnenvecsocooeonsnsossassaaronnonnsnanen
vi =0.0
covl = 0.0
do 241 k=1,nprop
vl = chwp(k)*(1.-frac(k))/rhop(k)+vl
covl = covi+chwp(k)*covp(k)*frac(k)

HHWNOD

241 continue
volg = volgi+areab*(y(2)+y(7))-v1-covi
c CALCULATEOMEAN PRESSURE ... cvieneuierenanreeensasasonesseensansnannos
rt = 0.
do 251 k=1,nprop
251 r1 = rl+forcplk)*chup(k)*frac(k)/tempp(k)
pmean = tgas/volg*(ri+forcig*chwi/tempi)

resp = resp+pgas*air

if(igrad.eq.2) then
if(iswl.ne.0) then

pbrch = pmean

if (pbase.gt.resp+1.0) then
iswt = 1

end if

go to 257

¢ USE CHAMBRAGE PRESSURE GRADIENT EQUATION........ciiniuieninnnannannnn
253 jizp = bint(1)+(bvol*pt+areab/2.*pt**2)/areab
(bvol+areab*pt)**2/areab**2

j2zp
bint(3)+areab*bint(1)*pt+bvol*pt**2/2.0+areab*pt**3/6.

132p

alt
alf
alt
bt

-tmpi*areab**2/pruwt/vzp**2

1.0-22t*j;§p by (1y*42
tmpi*areab*(areab*y(1)**2/vzp+areab*resp/prut)/vzp**2
-tmpi*y(1)**2*%areab**2/(2.0*vzp**3) e/e P
bata = -alt*jlzp-bt*j2zp

gamma = alf+aldt*j3z2p/vzp

delta = bata+ait*j3zp/vzp+bt*jézp/vzp

¢ CALCULATE BASE PRESSURE

pbase = (pmean-delta)/gamma
¢ CALCULATE BREECH PRESSURE

pbrch = alf*pbase+bhata

wonuwn

else
¢ USE LAGRANGE PRESSURE GRADIENT EQUATION
252 if(iswl.ne.0)go to 256

..............................

556CALCULATE BASE PRESSURE . cuuuvenecueeansscesianassononsnseosannsnnanons

pbase=(pmean+tmpi*resp/3./prut)/(1.+tmpi/3./prut)
if(pbase.gt.resp+1.) then

iswi=1
end if

€ CALCULATE BREECH PESSURE.....cccvietennverenenennrocsennsesonsancnnans

ngbqﬁh = pbase+tmpi*(pbase-resp)/(2.0*prut)
end i
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¢ CALCULATE PROJECTILE ACCELERATICN. .t it iite et i te v annnnnaennnanan
z(1) = areab*(pbase-resp)/prwt
if(z(1).1t.0.0) t-en
go to 257
else
go to 258
end if
257 if(iswl.eq.0) z(1
258 if(y(1).(t.0.0) y(1
z(2)=y(1)

C GET BURNING RATE . iuuir i tntinnrueenonnuooseaeonononenaasinonsocanceanns
do 264 m=1,nprop ..
2(ibrp+m)=0.0
if(ibo(m).eq.1) then
goto 264
end if
do 262 k=1,nbr(m)
if(pmean.gt.pres(m,k)) then

~
nn
oo

oo

go to 262
end if
go to 263
262 continue
k=nbr(m)
¢ [eq 5.2] linear burning Mrate. . ..o iiiieirennenreaaeraenaenannnennan
263 z(ibrp+m)=beta(m, k)*(pmean*1.e-6)**alpha(m, k)
264 continue
¢ 4th order Runge-Kutta integration. . cuueeeeeieeeenineernnreasnseneennan,
do 21 i=1,nde

ds(i) = (z(i)-bs{j)*p(i))*as(j)

y(i) = deltat*ds(i)+y(i)

p(i) = 3.*ds(i)-ak(j)*z(i)+p(i)
21 continue
1 continue

t = t+deltat

€ Set MAX MeAN PreSSUME. ... ..ccuuuanocereonsannressoonncroasenoneenennns
if(pmaxm. le.pmean) then
pmaxm = pmean

tpmaxm = y(3)
end if
C Set MAX DasSe PreSSUMe. ... euiiinneeneesnsetonseoneseorenasesosseenas
if(pmaxba.le.pbase) then
pmaxba = pbase
tpmaxba = y(3)
dpmaxba = y(2)
end if
C set Max breeCh PresSUMre. . ..ceieieenieeasrionrenonrosecnnseecnnennnnns
if(pmaxbr,le.pbrch) then
pmaxbr = pbrch
tpmaxbr = y(3)
dpmaxbr = y(2)
end if

if(y(3).ge.ptime) then
ptime = ptime+deltap
c write(0,7)y(3),2(1),y(1),y(2), pmean, pbase, pbrch
c write(6,7)y(3),z(1),y(1),y(2),pmean, pbase, pbrch
c7 nd f?rmat(1x,7e11.4)
end i

¢ STOP CRITERIA: time is up or tube length ismet......c..vcvvueennn...
if(t.gt.tstop.or.y(2).ge.travp) then
go to 200
else
rmvelo = y(
disto = y(
tmvelo = y(
goto 19
end if

D
2)
3
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C END OF CALCULATION OUTPUT . .ttt itiiiieaenronenenenonnneanonnnennenns

200  write(6,311)t,y(3)

311 format(lx,' deltat t', el4d. 6, ' intg t',el4.6)
write(é,312)pmaxm, tpmaxm

312 format(1x,'PMAXMEAN Pa ',e14.6,' time at PMAXMEAN sec ', el4.8)
write(é,313)pmaxba, tpmaxva

313 format(1x, 'PMAXBASE Pa ',e14.6,' time 2t PMAXBASE sec ',el4.6)
write(6,314)pmaxbr, tpmaxbr

316 format(1x, 'PMAXBRCH Pa ',e14.6,' time at PMAXBRCH sec ',el4.6)

316 format(ix)

€ FX value aSSTgMmeNt. i cusesreenessesotnncssanoaseasssnsonsoaneseanans
¢ it has either met the muzzle velocity criteria or current proj vel...
if(y(2).le.travp) then
write(6,327)y(1),y(3),y(2)-travp, l_d

327 format(1x, 'proj VELOCITY m/s ',e14.6,' at time sec ',el4.5,
+ v ooevl diff(-) =+, £10.6,0 d_l=',f10.4)
€ veloCity CheCK. i ii ittt iiiiritierastecaenecanerosunenanennenns
fx = -y(1)
go to 319
else
dfract = (travp-disto)/(y(2)-disto)
rmvel = (y(1)-rmvelo)*dfract+rmvelo
tmvel = (y(3)-tmvelo)*dfract+tmvelo
c write(6,318)rmvel , tmvel  y(2)-travp,l_d
c318 format(ix,‘muzzle VELOCITY m/s ',el4.6,' at time sec ',eis.6,
¢ + ' otvl diff(+) =4,£10.6,' p_f=*,f10.4)
fx = - rmvel
end if
€ Energy CaloUlations ... uiieeeneienoeaeeaearanonsonesnenssaennnennans
319 efi = chwi*forcig/(gamai-1.)
efp = 0.0

do 315 i=1,nprop
efp = efp + chwp(i) * forcp(i) / (gamap(i)-1.0)
315  continue

tenerg = efi+efp
write(6,317)tenerg
317  format(ix,'total initial energy available J = ', e14.6)
tengas = chwi*forcig*tgas/(gamai-1.)/tempi
do 135 i=1,nprop
tengas=(frac(i)*chwp(i)*forcp(i)*tgas/tempp(i)/(gamap(i)-1.))
* + tengas
write(6,328)i,frac(i)
328 format(' FOR PROPELLANT ',12,' MASSFRACT BURNT IS ',el4.6)
135 continue

¢ variable return......cvviienne.. et esoeasesanansascassnenocsnnasannnns
CALL VAR_OQUT(X, NOVAR)
if (frac(1).ge.1.0) burned_up = 1

return
end

¢ End of fun int.ftn.. ... i i i i i
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SUBROUTINE PRFO17(P,P1,D ,01,L, SURF,MASSF ,X,NP U, BAD _WEB)
Ci*i*i*'ﬁt**’.*i'.*ﬁii*'ltt'ﬁ***ti“iii***i*ﬁttt***it*****t****wﬁiiﬁ*iiﬁt*iti*
c This subroutine is called from ‘fun_int.ftn'. [t is a modified

version of the 'PRFO17' found in IBRGAT, from the Interior Ballistics
Laboratory, Maryland. It has been modlfled only to ease understanding
of its operation. it performs the calculations of mass fraction and
surface fraction of progellent burned Tor zero, one, and seven
perforation propellent of unequal web.
e e v e vir e v e e v e e o T e vk 92 W vy ol Y 9 e ok v T U T ol ol o o ol i e vl e ok v ke Yo o v vk e O U ol Sk v ol T ok o e T ke i e S e T Ve e T T v e e o
The followlng definitions apply...veeriiiinriiiiiiiinniienennnannn
QUTER PERF DIA
INNER PERF DIA
OUTER DIA
DISTANCE BETWEEN PERF CENTERS
GRAIN LENGTH
NUMBER OF PERFS
OUTPUT SURFACE AREA
OUTPUT MASS FRACTION OF PROPELLANT BURNER
WEB BETWEEN OUTER PERFS
OUTER WEB
WEB BETWEEN OUTER AND INNER PERFS
MINIMUM WEB
UNACCEPTABLE WE3B FLAG TO ENSURE FUNCTION VALUE
1S WEIGHTED
DISTANCE THE PROPELLENT IS BURNED INTO SURFACE
ORIGINAL VOLUME OF PROPELLENT GRAIN
ORIGINAL SURFACE AREA OF 7 PERF PROPELLENT

e e ke i e e Wp v v e e v 3 3k e e gk s e ol i e o i e e ol e 3 ok e de e i 3k sie e d 9 vk ol ke 3k T e ok e o ok e e v 3 e e T o e e v e e e e

c
waun

OOOOOOO0ONOOOOOONO0OO0000CO000
w
[
P
n
LI T IO ¥ IO O TR { I T 1}

INTEGER*2 NP

REAL*4 pifor,d1sq,pl2xsq, twopi, lm2x p1sq pp2x,pi,dmexsq,d1sq3,
+ d25q3 Egszq,§1p2x ,surf, a,d, twox, XY, 2, a1,a2,a3 a4, a5,
+ dsq,sqrt3 d1 f1, fZ f3 l1 l2 13 hafpl psq,pl, sO
+ s1 sZ v0,v1,v2,w0,xsq,wl, HL x1, x2 massf L, bad web, dmex

DATA PI,SQRT3/3.14159,1.732051/
DATA HAFPI,PIFOR,TWOP1/1.570796,.785398,6.283185/

BAD_WEB = 0.0
DSQ D*D
Psa p*p

1F (NP.EQ.D) THEN
C ZERO PERF CALCULATIONS START HERE (CALC ORIGINAL VOLUME)..............

u = dsq*l*pi

IF (d-2*x.gt. 0 0) THEN
TWOX = X+X
Xsq = x*x
MASSF= TWOX*(DSQ+2.*L*D-4 . *X*D-TWOX*L+4, “XSQ)/(DSQ*L)
SURF = PI*(DSQ/2.-4 . *D*X-TWOX*L+D*L+6.%XSQ)

(LI a]

C PROPELLENT IS ALL BURNED UP........ S ereetseesaenecacteraeetaaranaa,,
ELSE
MASSF = 1.0
SURF = 0.0
END IF
RETURN
ELSE IF (NP.EQ.1) THEN
C ONE PERF CALCULATIONS START HERE (CALC ORIGINAL VOLUME)...............

= dsq*l*pi/4. -psq*l*pu/
IF (d-p-4.*x.9t.0.0) THEN
tWOX = X+X
MASSF = TWOX*(DSQ+2.*L*D-4.*X*D-PSQ+2.*P*L -4 *P*X)

+ /(DSQ*L-PSQ*L)
SURF = PI*(DSQ/2.-4.*0*X-4 . *X*P+D*+P*L-PSQ/2.)
C PROPELLENT 1S ALL BURNED UP.....cniuiniieennnnnoerisansinensasnnansns

ELSE
MASSF = 1.0
SURF = 0.0

END IF

RETURN
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O o0 o

ELSE IF (NP.EQ.7) THEN
SEVEN PERF PROPELLENT ACCEPTASLE DIMENSIONS CHECK....................
OUTER PERFORATION MIDPOINT SURNED THROUGH BY INNER PERF CHECK........
LF(PY.GT.(P+D1*(SQRT3-1))) THEN
bad_web = (P+D1*(SOR73-1))-P1
OUTER PERFORATION MIDPOINT BURNED THROUGH BY OUTER DIAMETER CHECK....
ELSE IF (D.LT.D1*(SCRT3+1.)-P) THEN
BAD_WEB =D-(D1*(SQRT3+1.)-P)
END IF

WEB DIMENSION CALCULATIONS. ... iiirniniiniieeniernnanacreansinsans
W =D1-P
W0 = (D-P-2.*D1)/2.
W1 = (2.*01-P-P1)/2. i
WEB BETWEEN OUTER PERF CHECK. ... iuunierin it itenacnecnrnnnas
[F (W.LT.0) THEN
bad_web = w
OUTER WEB CHECK. .o tveenunoniiunieneuannsensaeeeosrnsesannnnersonaens
ELSE IF (WO.LT.0.) THEN
bad_web = w0

INNER WEB CHECK. . uiuteereioteionenutoneassornoneoenonnsonecnaneneanns
ELSE IF(W1.LT.0.) THEN
bad web = wi
END IF

UNACCPETABLE GRANULATION CHECK....uuvvieenreninnnernnnconnanrannannns
IF (BAD_WEB.LT.0.0) GOTO 60

P1*p1

D1*D1

D1*SQRT3

D1SQ*SQRT3
(P1S0-PSQ+4.*D1SQ-2.*P1*D15Q3)/4./(D1SA3+P-P1)

P1sQ
D1sQ
D1sQ3
p2sa3
X1

u

X2 = (4.*01SQ+D*D-2.*D*D1503-PSQ)/4./(-015a3+P+D)

A = PI*L*(D+P1+6.*P)+HAFPI*(DSQ-P1SQ-6.*PSQ)

U = PI*L/4.*(DSQ-P1SQ-6.*PSQ)

We = AMINT(W,WO,W1)

MASSF = 0.0

TWOX = X+X

XSQ = X*X

P1P2X = P1+TWOX

PP2X = P+TWOX

OM2X = D-TWOX

LM2X = L-TWOX

P12XSQ = PIP2X*P1P2X

PP2XSQ = PP2X*PP2X

DM2XSQ = DM2X*DM2X
SEVEN PERF CALCULATIONS START HERE......ueuveesnereennnensenesnnnnnns
IF LENGTH 1S NOT ALL BURNED UP....uceuvenenrnrenenennsnenonnsnnansnns

IF (LM2X.GT.0) THEN
SO = PI*LM2X*(D+P 146 . *P+12. *X ) +HAFP [ *(DM2X*DM2X
+ -P1P2X*P1P2X-6.*PP2X*PP2X)
VO = PIFOR*LM2X*(DM2X*DM2X-P1P2X*P1P2X-6.*PP2X*PP2X)
SEE 1F SMALLEST WEB IS BURNED THROUGH....e.vvirrriinnieiinnanennnns
IF (X.GT.W4/2.) THEN
IF SO CHECK THE WEBS, ONE BY ONE......civineeuiinncennnnsnnnnnascasnns
FIRST CHECK INNER WEB.....(..ciouuirunnenninennnnnenernensiasarnannns

(2.*01+P+P1+4  *X) /4,
((P1-P)*(P1+P+4.*X)+4,*D1SQ) /4. /D1/P1P2X
ATAN(SQRT(1,-B3*B3)/83)
((P-P1)*(P+P1+4.*X)+4.*D1SQ) /4. /D1/PP2X
ATAN(SQRT(1.-B4*B4)/B4)
A3/4.*P12XSQ+A4/4 . *PP2XSQ-SART(Z*(2-01)*(2.*Z-P-TWOX)
+ *(2.*2-P1-TWOX))

= LM2X*(AL*PP2X+AZ*P1P2X)

.0

>
W
wannnu

—
n
[

»
(7]
Suuwan
cooo
ocoo
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C NEXT CHECK WEB

BETWEEN OUTER PERFORATIONS

IF (X.GT.W/2.) THEN

BS = D1/PP2X
AS = ATAN(SQRT(i.-B5*B5)/B5)
F3 = (A5*PP2XSC-D1*SQRT(PP2XSQ-D150))/2.
L3 = 2.*AS*LM2X~PP2X

ELSE
£3 = 0.0
L3 = 0.0
AS = 0.0

END IF

C NEXT CHECK OQUTER WEB. .o vrvueeiiivmnnueanuntonueniononaenneneanansaes

IF (X.GT.W0/2.) THEN

Y = (2.*D1+P+D)/4. ’
81 = ((D+P)*(D-P-4.*X)-4.*D152)/4./D1/PP2X
A1 = ATAN(SQRT(!.-B1*B1)/81)
IF (AT.LE.O.) AT = P[+A1
B2 = ((D+P)*(D-P-4.*X)+4,*D1S02)/4./D1/DM2X
A2 = ATAN(SQRT(1.-82*B2)/B2)
F1 = A1/4.%PP2XSQ-A2/4 . *DM2XSO+SCRT (Y=(Y-D1)*(2.~Y-P-TWOX)
+ *(2.%Y-D+TWOX))
L1 = LM2X*(A1*PP2X+A2*DM2X)
ELSE
F1 = 0.
L1 = 0.
Al = 0.
A2 = 0.
END IF

C ALL THREE WEBS HAVE BEEN CHECKED
C DETERMINE SLIVERING EQUATIONS

IF (X.LE.W/2.) THEN
SURF = SO+12.*(F1+F2+F3)-6.*(L1+L2+L3)

v = VO+6.*(F1+F2+F3)* | M2X
GO TG 850
END IF

IF (X.LT.X1) THEN

$1 = 3.*D2SQ3-PI*PP2XSQ-HAFPI*P12XSQ+6.*F3+12.*F2
S1 = ST+LM2X*(2.*(P1-3.*AS-3 . *AL)Y*PP2X+(P[-6.%A3)*P1P2X)
V1 = LM2X/2.*(3.*D2SQ3-PI*PP2XSQ-HAFPI*P12XSQ+6.*F3
+ +12.%F2)
ELSE
$1 = 0.0
vl = 0.0
END IF
IF (X.LT.X2) THEN
S2 - HAFPI*DM2XSQ-3.*D2SQ3-TWOPI*PP2XSQ+12.*F1+6.*F3
$2 = S2+LM2X* ((P1-6.*A2)*DM2X+2.* (TWOP[-3.*A1-3.*AS)
+ *pP2X)
V2 = LM2X/2.*(HAFPI*DM2XSQ-3.*D2SQ3- TWOP | *PP2XS0+12.
+ *F1+46.%F3)
ELSE
s2 = 0.0
v2 = 0.0
END IF
SURF = S1+S82
v = Vi+V2
C THE PROPELLENT HAS NO WEB VIOLATIONS. ... .cociririiicnecarnnnacnoansans
ELSE
MASSF = -TWOX/L/(DSQ-P1SQ-6.*PSQ)
MASSF = MASSF*(24.*XSQ+(24.*P+4 *P1+4.*D-12,*L)*X+P1SQ
+ +6.%PSQ-2.AL*D-2.*P1*L- 12, *L*P-DSQ)
SURF = SO
RETURN
END IF
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C THE PROPELLENT HAS BEEN ALL BURNED UP.......conivniiiinininnnnnnn..

ELSE
SURF = 0.0
v = 0.0
END IF

850 MASSF = 1.-V/U
RETURN

C THE NUMBER OF PERFORATIONS DOES NOT EQUAL 0,1 RO 7......cciivvnnennnns
ELSE
60 WRITE(6,90)
90  FORMAT(1X, 'UNACCEPTABLE GRANULATION')
END IF

RETURN
END

¢ end of prf0l17......cvivvet. Ce et etesiaes ettt
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CItt*tt*itt**it'*ti*'**iii.iﬁ*itt*tt**l'!ﬁttﬁ*tttiit't*'t'*i*t't'ktiil't

SUBROUT INE READ_DATA(X,KNOVAR)
Ctt!'iﬂt‘l****ﬂ.‘i*il;tii*i!i**:i"ttit"ﬂﬁttﬁ"lt'It'wt."'tt'.t"litt! "
c This subroutine is called by 'optim.r. ft-' o°nd reads the inpu:
¢ records for 'fun_int.ftn'. [t saves all records into ‘s ' prefixed
C variables. At the end of this subroutine the inital design vector 1s
C assigned. See 'intball.ins.f' for variable definitions.
C*i**t**iii***i*ti*****t**i************ttt*t***tﬁ***tt*'ttt*t*i'iti'tt*t

%INCLUDE 'intball.ins.f'
INTEGER*2 NOVAR

LS 4= T )
¢ Input data file, and open file.

Wi lté(* 15)
15 format( ‘Enter name of data \nput file (10 characters max):')

read(*,10)bdfile
10 format(a10)

open(unit=2,err=30,filesbdfile,status='old’,iostat=ios)
rewind 2

¢ Outout data file, and open file.
write(*,625)
25 format('Enter name of data output file (10 characters max):')
read(*,10)outfil
open(unit=6,err=30,file=outfil)
write(6,16)bdfile

€ Read RECOPd T .iuutitveininonaunnateenennenseneinscasneessennnanenvanenn
16 format(' The data input file is ',310,/)
read(2,*,end=20,err=30)s_cham,s grve s_aland,s_glr,s_twst,
+ s travp,s 1grad

¢ Using chambrage gradient equation...... ..ot iinneinionnnnnanennns
if (s_igrad.gt.1) then
write(6,47,err=30)
47 format(lx i Using chambrage pressure gradient')

¢ Read and echo print Record 1a (for chambrage only)........c.covnn....
read(2,*,end=20,err=30) s_nchpts,(s_chdist(1),s_chdiam(1),
+ I=1,s nchpts)
wr\te(é ;53,err=30) (s_chdist(i},s_chdiam(1),I=1,s _nchpts)
53 format(/// ! chamber distance cm chamber d1ameter cmt,/
+ (5x,el4, 6 Sx,e14.6))

C CONVEMT UNTES.iuiienaeenecensennasecoanananannenns .
do 54 I=1,s_nchpts
s chdrst(l) = 0.01*s_chdist(!)
54 s_chdiam(1) = 0.01*s”chdiam(I)

¢ calculate chamber integrals and volume..........ccovieinnirneunnnas
if (s_nchpts.gt.5) then

s_nchpts = 5
write(6,44,err=30)
b6 format(ix, 'use first 5 points')
end if
C set bore to largest diStante. u.ee e eiinneranrrneennennienereennnnnnss

bore = s_chdiam(s_nchpts)

if(s_chdist(1).ne.0.0) then
write(6,45,err=30)

45 format(1x # points ? V)
end if
s_chdist(1) =

¢ initialization.............. e r e eres ettt Cereiaeeeas
bl = 0.
b2 = 0.0
b3 = 0.0
b4 = 0.0

¢ setting the 1n1t1al number of integration points.........c..cecuuvnnn
points = 25.0

56 points = points + points

c setting the steﬁ ST 2B, ittt ittt i b e aa et
step = dist(s_nchpts)/points
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(a3

(4]

[

©

[eNs)

increment throuch breech/bore distance............... ...
2z = 0.0

[=leolels)

initialize the
bint(1)
bint(3)
pint(4)
bvol

"uwuwan
[oloNoXol sl

radius of the start of current interval.......c.oviiiiinnnnnninnann
r2 = 0.5*s_chdiam(1)
k =1

J

([}

int(points+0.5)

going through the breech/bore travel..... ... ... ... . i iiiiii...
do 57 1=1,]j
2z = 2z+step

if at last dnterval. ..o i i i e i e
if (k.eq.s_nchpts-1) go to 46

looking for current interval in breech/bore........civiveivnninnnn.
do 58 11=k,s_nchpts-1
ir (zz.9t.s_chdist(l1).and. zz.lt.s_chdist(11+1)) go to 59
continue
[1 = s_nchpts-1
k = 1T

diam is first the ratio of the distance into the interval............
diam = (zz-s_chdist(k))/(s_chdist(k+1)-s_chdist(k))

diam is then the diameter of the current location in the interval.
diam = s_chdiam(k)+diam*(s_chdiam(k+1)-s_chdiam(k))

raduis at cuUrrent LlOCaTTON. it it ir i tr it e ineerrnnenenannrnnsnenens
r1 = 0.5*diam

intermediate area of selected interval & step location...............
area = pi*(ri+r2)**2/4,

the current net volume of the chamber.........coiiiiiiieninnnennnnnn
bvol = bvol+step™(pi/3.00*{(r1**2+r1*r2+r2*%2)

calculating the current J(1), J(3), & J(&) values through numerical
L1 T < T P
bint(1) = bint(1) + step * bvol / area
bint(3) = bint(3) + step * area * bint(1)
bint(4) = bint(4) + step * bvol**2 / zrea

set old radius to current radius
r2 = ri

determing if convergence has been reached..............ciiivvnrnnn..
temp = abs(1.0-bl/bint(1))
if(abs(1.0-b3/bint(3)).gt.temp) then
temp = abs(1.0-b3/bint(3))
end if
if(abs(1.0-b4/bint(4)).gt.temp) then

temp = abs(1.0-b4/bint(4))
end if
if converged set values and eXif..i.ieeiieierncioennnnreennenrennanns
if(temp.le.0.001) then
go to 41
else
b1 = bint(1)
b3 = bint(3)
b4 = bint(4)
or go back and close interval and try again.........coovivrvnnnrennnn
go to 56
end if
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C CONVErt UNTLS ANA SaAVE...eutuienounrreresenannencnesniraseososecnen.s
41 s_cham bvol*1.e6

s_chmlen s_chdist(s_nchpts)

s_bint(1) = bint(1)

s_bint(3) = bint(3)

s_bint(4) = bint(4)

s_bvol bvol
_ bore

s_bore

¢ Use LaGrange Pressure Gradient.....usreeeeerroasneesrcnsoreceanennneas
else
write(6,55) .
55 for?at(1x,' Using Lagrange pressure gradient')
end i

write(6,40,err=30) s_cham,s grve s_aland,s_glr,s_twst,s_travp

40 format(1x chamber Volume —cm 3' €14.6, /' groove diam™ em ',
+e14.6,/' land diam cm ! e14 6, /I groove/land ratio el
+4.6,/' tWwist turns/caliber ',e14 8, /' projectile travel cm? e14
+6/)

Lo T o VT4 <
s_cham
s_grve
s_aland
s_travp

W awn
wl
[Fe]
=
<
[

¢ Read and echo print Record 2......cciiivnenarocnnonseacnneeaannnnnnns
read(2,*,end=20,err=30) s_prwt,s_iair,s_htfr,s_pgas
write(6,50,err=30) s_prwt,s_iair,s_htfr,s_pgas

50 format(1x,' projectile mass kg',el4.6,/' switch to calculate en
+ergy lost to air resistance J',i13,/' fraction of work against bor

+e used to heat the tube',6el4.6/1x,' gas pressure Pa',S5x ,el4.6)

¢ Read and echo print Record 3. .. c.iieiuiinereeneinrerrunoensneenananes
read(2,*,end=20,err=30) s_npts,(s_br(i),s_trav(i),i=1,s _npts)
write(6,60,err=30) s_npts, (s br(l) s_trav(i),i=1,s_npts)
60 format(1x, number barrel resistance potnts' i2,/* bore resistan
+ce MPa - travel cm'/(6x,el14.6,3x,e14.6))
write(6,65)
65 format(1ix)
€ CONVENT UNTTS . e euuaneasneeneeaaneeeteaasennnseunesannnssssesreeennns
do 62 i=1,s_npts
s br(l) = s_br(i) *1.0e6
s trav(t) = s_trav(i) *1.0e-2
62 continue
c Read and echo Print RECOPd 4. ... it iiieeieeenenaeeneeeunnnananes
read(2,*,end=20,err=30) s_rcwt,s_nrp,(s_rp(i),s_tr(i),i=1,s_nrp)
write(6,70, err=30) s_rcwt,s_nrp,(s_rp(i),s_tr(i),is 1 s _nrp)
70 format(1x,' mass of recotllng parts kg',5x,eT4.6, 7' number of
+recoil point pairs',6x,i2,/' recoil force N',! recoil time sec
+/,(1x,e14.6,3x,e 14.6))
ur1te(6 65)
¢ Read and echo Print ReCOrd S...uiieererneeneeernnnnrreensrronnnennnnn
read(2,*,end=20,err=30) s_ho,s_tshl,s_cshl,s_twal,s_hl,s_rhocs
write(6,75, err-30) S_ —ho,s_tshl,s_cshl, s_ “twal | .s_hl,s"rhocs
75 format(1x, free convective heat transfer coeff1c1ent w/cm'2 K

+,e14.6,/' chamber wall thickness cm',27x,el4. 6,/' heat capacity
+of steel of chamber wall Jsg K',8x, elé. 6, /' initiat temperature o
+f chamber wall K',615x,e14.6,/" "heat loss coefficient',31x,e14.6,/
+' density of chamber wall steel g/cm3t 16x,e14.6,//)

C convert UNitS.veeceoenenes e taaterveareetanetaaan s et snetnanennn
s_ho = s_ho /1.0e-4
s_tshl = s_tshi *1.0e-2
s_cshl = s”eshl *1.0e+3
s_rhocs = s_rhocs *1.0e-3/1.0e-6

¢ Read and eCho Print ReCOrd B......coviinneeineeneenneinnnnnecenuneens
read(2,*, end=20,err=30) s_forcig,s_covi,s_tempi,s_chwi,s _gamai
write(6,85 err-30) s forc1g s_covi,s_tempi,s chwi,s _gamai

85 format(1x impetus of igniter propellant J/9',19x,e16.8,/1'  covo

+lume of igniter cm**3/g9',25x,e14.6,/" adiabatic flame temperature
+ of igniter propellant X e14 6, /' initial mass of igniter kg', 62
+6x,e14.6,/' ratio of specxflc heats for igniter',17x,e14.67/)
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¢ CONVEIMT UNTTS .. eaueunereoosaroncssnssanssenessscessnseosesnsasonnnes
s_forcig = s_forcig*t.e+3
s_covi = s_covi*l.e-6/1.e-3

¢ Read and echo print Record 7. . .....uuuieinoreneittennnersanannonieen

read(2,*,end=20,err=30) s_nprop, (s_forcp(i),s_tempp(i),s_covp(i),
+ s_chup(i),s_rhop(1},s_gamap(i},s_nperfs(l),s_glenp(l),s_pdpl(l),
+ s_pdpo(i),s_gdiap(i),s_dbpcp(i),i=1,s_nprop) . )
write(6,95,err=30)  (i,s_forcp(i),s_tempp(i),s_covp(i),s_chwp(i),
+ s_rhop(i),s_gamap(i),s nperfs(i),s_glenp(i),s_pdpi(i),s_pdpo(i),
+ s_gdiap(i),s_dbpcp(i),T=1,s_nprop)

95 format((' FOR PROPELLENT NUMBER',i2,/' impetus of propellant J/g
+1,27x,e14.6,/' adiabatic temperature of propellant K',6 16xel4.6,/!
+ covolume of propellant cm*Tg/g',ZSX,e14.6/' initial mass of pro
+pellant kg',624x,e14.6/' density of propellant g/cm**3' 24x,e14.6/
+' ratio of specific heats for propellant', 15x,e14.6/' number of
+perforations of propellant',18x,i2/' length of propellant grain c
+m',24x,e14.6/* diameter of inner perforation in propellant grains
+ cm',e14.6/' diameter of outer perforation of propellant grains c
+m',el4.6/' outside diameter of propellant grain cm', 14x,e14.6/"
+distance between perf centers cm',21x,e14.6)//)

C CONVEPT UNTLS.urveeeaeraossnonssasossnssscasanssasescassssvsnansnonss

do 96 i=1,s_nprop .

s_forep(iy = s_forcp(i) *1.0e+3
s_covp(i) = s_covp(i) *1.0e-6/1.0e-3
s_rhop(i) = s_rhop(i) *1.0e-3/1.0e-6
s_glenp(i) = s_glenp(i) *0.01
s_pdpi(i) = s_pdpi(i) *0.01
s_pdpo(i) = s_pdpo(i) *0.0!
s_gdiap(i) = s_gdiap(i) *0.01
s_dbpep(i) = s_dbpcp(i) *0.01

96 continue

¢ Read and echo print Record 8.....cvvveeueaiatrcnonciocrnnarosnecsenns
do 97 j=1,s_nprop . o o
read(2,*,end=20,err=30) s_nbr(j),(s_alpha(j,i),s_beta(j,i),
+ s_pres(j,i),i=1,s_nbr(jT) . ]
write(6,110,err=30) s_nbr(j),(s_alpha(j,i),s_beta(j,i),
+ s_pres(j,i),i=1,s_nbr(j)) . .
110 format(1x,' no. of Burning rate points',i2/3x,' exponent’, 5x,"*
+ coefficient!,17x,' pressure'/Sx,'-!,16x, 'cm/sec-MPa**ai’, 12x,"
+ MPa',/(1x,e1h.6,5x,e14.6,15x,814.6))

C CONVEIT UNTTS .. euueionesoaeannascesusccasnosasancesossnnransssannnns
do 112 i=1,s_nbr(j)
s_beta(j,iy = s_beta(j,i)*1.e-2
112 s_pres(j,i) = s_pres(j,i)*1.eb
97 continue

write(é,65)

¢ Read and echo print Record 9......uieiinnerrnunesiernsosncsssannarnns
read(2,*,end=20,err=30) s_deltat,s_deltap,s_tstop

write(6,120, err=30) s_deltat,s_deltap,s_tstop
120 format(éx'tlme increment msec',e14.6/2x, 'print increment
+ msec',el14.6/2x, 'time to stop calculation msec',el4.6)

C CONVEPrT UNTES.uenuoeenoseronosseoesncsosnsnssonsssaerossasassnsnsannas
s_deltat = s_deltat *0.001

s_deltap = s_deltap *0.001%

s_tstop = s_tstop *0.001
¢ Design vector assigned here, each is problem specific................
¢ Format is: x(1) = s_glenp(1) etc.
Covrevesonoas e teee e s ssesaena e a et anes sttt aaanas

129 write(0,130)
130 format(ix,! END INPUT DATA ')
return

20 write(*,140)
140 format(ix,'end of file encounter')
return

30 write(*,150)

150 format(1x,'read or write error')
return
end

¢ end of data read

.....................................................




Ct*titt*'*ﬂt't*tt*"t*t***t*tl*tt**ﬁ*##*tﬁ*Qw*tﬁ*t*ﬁ***tﬁ*it*t*tt**'it*i

SUBROUTINE RESET_DATA

Citt***i******“*ki**iﬁ:“‘**!t*t**ﬁ**'ﬁ**t*ﬁ**t**t*'ki****kt'*i*i*til*iﬁt!ﬁ

c
c

This subroutine resets the variables for and is called by
vfun_int.ftn'. It transfers all initial values from their 's

c pref)xed variable to the variable that is used in the calling”

c

subroutine. See 'intball.ins.f' for variable definitions.

C***i***t****ﬁ'*****i**'k*iﬁ********t**t*tilt****iiﬁtt*ii*'k*it*itit**ttt

ZINCLUDE 'intball.ins.f!

o3
=

10

30

40

70

Record IMitialization. . ..o iennceerenronrensaneenroannenaneesananans
RECOMA Tt ieneiiereneeeenesenneareeusoseeansaenssonesneonsonnonnnns
cham = s_cham
grve = s _grve
aland = s aland
gir = s_glr
twst = s _twst
travp = s_travp
igrad = s_igrad
Record 18...vvecrvriennannanans et e e toans e et et et

do 10 i=1 ,S_nchpts
ChdlSt(!) = s_chdist(i)
chdiam(i) = s_chdiam(i)
nchpts = s_nchpts

Record 2....iiveeiverninnsneannsn e e ierteea e ta et et
prwt = s_prwt
htfr = s_htfr
pgas = s_pgas

iair = S_ iair

Yo o T
do 30 i=1,s nprs
br(i) = s_br(i)
trav(i) = s_trav(i)
npts = s_npts

Record &....coouvviinannnnns ceeraesan o eesaneeeerteset et snens
do 40 i=1,s nrp
rp¢i) = s_rp(i)
tr(i) =
reWt =
nrp =

(787
-
2]
x
t

-~
x
(]
—
nuanunn
n
[ad
x
o
—

Record 6..vvviinnnrrncnnennns Ceeeanietttrena et e Cetesirenaes .
forcig i
covi
tempi
chwi
gamai

WU
[}
[ad
g
-

ReCOrd 7.vivivnrenannnnnnans e e tateetates et e e ar s

do 70 i=1,s nprop

foGC(l) s_forcp(i)

tempp(i) = s_tempp(i)

covp(i) s covp(\)

chwp(i) [ Cth(l)

rhop(i) s_rhop(i)

gamap(i) = s_gamap(i)

nperfs(i)= s nperfs(\)

glenp(i) = s_glenp(i)

pdpi(i) s_pdpi(i)

pdpo(i)

gdiap(i) S gdlap(l)

dbpep(i) = s_dbpep(i)
nprop = s_nprop
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€ RECOPG B.viriiet s asannnrnoesoressnsansetnseneneasnasseuoensannneenas
do 80 i=1,10
nbr(i) = s _nbr(i)
do 80 j=1,T0
alpha(i,j) = s_alpha(i,j)
beta(i,j) = s_beta(i,))
80 pres(i,j) = s_pres(i,j)
€ RECOPA Puteieenerseosnnonesonenssseasstsoeosnmsneneneraneserasnnnens
deltat = s_deltat
deltap = s_deltap
tstop = s_tstop
¢ LaGrange Chamber VOlUMe MeSetS. . .uuiuneiiiierenneonnerineennnnennnns
bint(1) = s_bint(1)
bint(3) = s_bint(3)
bint(4) = s_bint(4)
bvol = s_bvol
chmlen = s_chmlen
bore = s_bore
C End of ReCOrd MeSelS ...t uiseeronsecaernsonisrtoansosecnoanroaennnns
c Local use initialization. . .. .iiiiuiniiiiiinerinnaenreineennannrnnnn
r = 0.
r2 = 0.0
areab = 0.0
tmpi = 0.0
tumbda = 0.0
pmaxm = 0.0
pmaxbr = 0.0
pmaxba = 0.0
tpmaxm = 0.0
tpmaxbr = 0.0
tpmaxba = 0.0
tpmax = 0.0
air = 0.0
do 100 i=1,4
as(i) = 0.0
bs(i) = 0.0
100 ak(i) = 0.0
vp0 = 0.0
tr0 =0.0
tew = 0.0
volgi = 0.0
pmean = 0.0
volg = 0.0
wallt = 0.0
ptime = 0.0
do 110 i=1,20
2(i) = 0.0
y(i) = ¢ "
ds(i)= .
110 p(i) = 0.u
points = 0
ibrp =0
nde =0
iswl =0
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bata
gamma
delta
t
rmvelo
tmvelo
disto
dfract
efi
efp
tenerg

do 120 i=1
frac(i)
surf(i)

120 iba(i)

RETURN
END
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C end of reset values
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c**t'l".**i'ﬁ*t*************ﬁ‘************t***tt****i****iiii!tiﬁ*i!**‘*litt

subroutine mass_check
Ct*ti***i************t*;********************t*t**i*****t*ttw****t**it**t*
C THIS SUBROUTINE DETERMINES THE LOADING DENSITY AND CHECKS THE MAXMIMUM
C MASS ALLOWED FOR MULTIPLE PROPELLENTS

Cﬁti!ttﬁ*************************t*****t************i*tti‘llt**ttttt***til

%INCLUDE 'intball.ins.f'

REAL*4 vol_grain(10),vol 1deal(10) m3as_grain(10),num_grain(10),

+ vol_prop(10), mas_prop(10) total _mas_prop
intrinsic sqrt
c check for propellent type.......cioeiiiiiiiiinntneeieerniiianaas
do 100 i=1,nprop
¢ for O perf propellent .................................................
if (nperfs(i).eq.0) then
¢ determine 1 grain volume, actual & ideal..............civiiiiiiL.L.

vol_grain(i) = pi*glenp(i)*(gdiap(i)**2)/4.
vol_ideal(i) = pi*glenp(i)*(gdiap(i)**2)/4.

¢ determine the mass of 1 grain of propellent.........c...iiviiiinenn.an,
mas_grain(i) = rhOp(l)*VOl grain(i)

¢ determine the number of grains of propellent present..................
num_grain(i) = chwp(i)/mas_grain(i)

¢ determine the pure volume of propellent Present.........oeeececenansns
vol ﬁrop(l) = vol_ideal (i)*num_grain(i)

¢ determine the mass of the propellent.. .. ...........c.iiiiiiiiniias.
mas_prop(i) = mas_grain(i)*num_grain(i)

c for 1 perf propellent. .. vt ineiinnerniieainoienneennnannn.

else if (nperfs(i). -€q. 1) then
vol_grain(i) = pi*glenp(i)*(gdiap(i)**2-pdpi(i)==2)/4.
vol_ideal(i) = pi *glenp(i)*(gdiap(i)**2)/4.
mas_grain(i) rhap(i)*vol_grain(i)
num graln(l) chwp(l)/mas grain(i)
vol_prop(i) vol_ideal (iY*num _grain(i)
mas prop(;) mas gra:n())*num grain(¢i)

wnnnnu

¢ for 7 perf propellent...c...cieiniirieriininenrenennneiinoersnvoannns
else if (nperfs(l) eq.7) then
vol_grain(i) = ?1*8lenp(1)*(gd1ap(\)**2 pdpi(i)=*2-pdpo(i)**2)

pi*glenp(i)*(gdiap(i)**2)/4.
rhOp(l)*V0l grain(i)
chwp(i)/mas_grain(i)
vol_ideal (iy*num_ grain(i)
mas_grain(i)*num_grain(i)

vol_ideal(i)
mas gra!n(l)
num_grain(i)
vol_prop(i)
mas_prop(i)
end if
100 continue

oo u

c the total volume the propellents occupy if ideally packed & mass....
total_mas_prop = 0.0
total vol _prop = 0.0
do 200 i=T,nprop
total_mas_prop = total_mas_prob + chwp(i)
200 total_vol _prop = total_vol_prop + vol_prop(i)
¢ the chamber volume (m*3) and loading density (g/cm™3).....ocvunnn...
cham vol = cham
S (total_mas_prop*1000.0)/(cham_vol*1eé)

return
end

c end of check mass

...................................................
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c'k*****ii‘***ii*ﬁt***ﬁt*i*iii*******i****t*iﬁ*t*****ti (228222823 222 ¢ 2 s

SUBROUTINE VAR_IN(x,novar, fx)

c*****i'****i******ﬁ:**i*i*****ﬁﬁ****t*******************tti**tt"****

¢ Example 1 variable conversion for Interior Ballistics Calculation
ct**t*t*t*ﬁ***t*#**i*****ﬁ************i*i*t***i**i******t**i**'it**t*t

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

¢ Negative dimension check. To ensure no negative values are sent...
do 15 1=1,novar
15 if (x(i).le.0.0) fx = fx + x(i)
if (fx.lt.0) then
fx = -1000.0*fx

return

end if
¢ variable assignment......... et ansantaceare e e st
¢ 7 perforation propellent

glenp(1) = x(1)

pdpiC1) = x(2)

pdpo(1) = x(3)

gdiap(1) = x(4)

dbpep(1) = x(5)

chup(1) = x(6)

return

end
c END OF VAR IN..... Cesasecans e esesetercarraeesenereteeeacese e

Ct***********ﬁ**********i***ﬁi*****i****************************!****

SUBROUTINE VAR _OUT(x, novar)

C******t***t**t**ﬁ**?*t************************************t*****t***

¢ Example 1 variable return for Interior Ballistics Calculation
c*****i**********************i*****************t***************t*****

%INCLUDE 'intball.ins.f!

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

C variable retUrn. . .. ee st iieiiieeinenaearcasoncacnaansanannnns
c perf = 7.ieuiininnnnn Ceseceitestrssanecntnnes e tareeceeresaaaaann
x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = pdpo(1)
x(4) = gdiap(1)
x(5) = dbpcp(1)
x(6) = chwp(1)
RETURN
END
¢ END OF VAR OUT........... Cetresreanuraaa PN
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C**i**t**i**********i*****'***I********k*******t*******t*****t*t*i*****

SUBROUTINE VAR_IN(x,novar,fx)
cti**iit*iﬁ*t*tttﬁ*ﬁ;tiﬁ***ittlI‘t**ﬁ****ii**i**tii***'ittt**iﬁ***t*i*tt
¢ Example 2. This subroutine is called from 'fun_int.ftn' and sends
¢ the design vector from the minimization process into the variables
¢ used in the interior ballistics code.
ci*t*iti***i******i**********ii*****************t****i*t***********t***

%INCLUDE 'intball.ins.f!

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

¢ Negative dimension value check.....coiiiiiiniiiinniinannns [
do 15 1=1,novar

15 if (x(i).le.0.0) fx = fx + x(i)
if (fx.1t.0) then
fx = -1000.0*fx
return
end if
¢ variable assignment.......... Cerseceaaes e ieeisesassaasenaas oo
¢ 7 perforation propellent
glenp(1) = x(1)
pdpi(1) = x(2)
pdpo(1) = x(3)
gdiap(1) = x(4)
dopep(1) = x(5)
chup(1) = x(9)
¢ 1 perforation propellent
glenp(2) = x(6)
pdpi(2) = x(7)
gdiap(e) = x(8)
chwp(2) = x(10)
~eturn
end
¢ END OF VAR IN....... veeenn et tsesassaaece ey P

c*********i*****i*******i*i*tii**i*****i********i******i***iiﬁ***ﬂ*****

SUBROUTINE VAR OQUT(x, novar, fx)
ct***i*t*i**t*i*t*t*;******i*****t*****i****ii************ii***********
¢ Example 2. This subroutine is called from 'fun_int.ftn' and returns
¢ the variables used in the interior ballistics code back into the
¢ design vector format for the minimization process.
c*ttk**t*****i***************i*i***i******************************i****

%INCLUDE ‘'intball.ins.f'
INTEGER*2 NOVAR

REAL*4 X(NOVAR)
¢ variable return.............. Ceeterseeese e erecrricas e .
c perf =7
x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = pdpo(1)
x(4) = gdiap(1)
x(5) = dbpcp(1)
x(9) = chwp(1)
¢ perf =1
x(6) = glenp(2)
x(7) = pdpi(2)
x(8) = gdiap(2)
x(10)= chwpf?)
RETURN
END
¢ END OF VAR OUT.....ccvvuunnnns Cheitaaaessetsaar et ces e senenenas
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c*i*i****ﬁ**'******ﬁ*iititﬁ*iﬁ*t***i**i*ﬁ***it*tt************tttt**t***

SUBROUTINE VAR_IN(x, novar, fx)
cir****it**ti*itttt*w*t'*ti*t*t****i*t**t*****t*ittt*********itl******i
¢ Example 3. This subroutine is called from 'fun_int.ftn' and sends
¢ the design vector from the minimization process into the variables
¢ used in the interior ballistics code.
c***i*i#iii******it*i*tt*******t*****i****i*t******t*********i*t*******

%INCLUDE ‘'intball.ins.f!

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

¢ Negative dimension value checK.us.oveeiorioeieiieiansscnnnanccaonnnn

do 15 I=1,novar
15 if (x(i).le.0.0) fx = fx + x(i)

if (fx.lt.0) then
fx = -1000.0*fx

return

end if

C variable asSignmeNnt. . cuureeiiniiiiteriereeseaananeacarsnsnssosanss

¢ 0 perforation propellent
glenp(1) = x(1)
gdiap(1) = x(2)
chwp(1) = x(11)

¢ 1 perforation propellent
glenp(2) = x(3)
pdpi(2) = x(4)
gdiap(2) = x(5)
chwp(2) = x(12)

¢ 7 perforation propellent
glenp§3) = x(?)
pdpi(3) = x(7)
pdpo(3) = x(8)
gdiap(3) = x(9)
dbpcp(3) = x(10)
chwp(3) = x(13)
return
end

C end Of VAr TMeeeerionuuroeesoanatasetoanuessossosesacsoasenasannesnnss

[labdab i At il A b AL e LR Al S d AR ARt s R bl d sl st ottt i ottt il iy

SUBROQUTINE VAR_QUT(x, novar)
c*i****t**tt*t******?**tt**********t*******ti****t****t****ﬁ***t*******
¢ Example 3. This subroutine is called from 'fun_int.ftn' and returns
¢ the variables used in the interior ballistics code back into che
¢ design vector format for the minimization process.
c*t*t***ﬁi****ﬁtt******t******ﬁ*ﬁ*t*****ﬁ****i**********ﬁ**t*i*****ﬁ**i

%INCLUDE 'intball.ins.f!

INTEGER*2 NOVAR
REAL*4 X{NOVAR)

= glenp(1)
x(2) = gdiap(1)
x(11) = chwp(1)

€ PErf = i tiiniiirieueenaoecaceasaatcascoasassoseaanacnnssaasaasonaneas
x(3) = glenp(2)
x(4) = pdpi(2)
x(5) = gdiap(2)
x(12) = chwp(2)
C POrf = Teuuuuuaunnruasarescosnnanasseosasnnstsnnaananncssanasnansennes
x(g) = géenpr)
x(7) = pdpi(3)
x(8) = pdpo(3)
x(9) = gdiap(3)
x(10) = dbpep(3)
x(13) = chwp(3)
RETURN
END
C End of VBI OUL. . .uiiiinianetnaneenaoecasaoaeonnoasneacnssnsnnnannanns




ct*ttﬁﬁﬁf*t**ﬁ**i**ﬁ*iti*********t*****ﬁ**w**ﬁﬁ*i*****tt**t**itﬁﬁti***‘

SUBROUTINE VAR IN(x,novar, fx)
ctiii*k**t**ﬁii*****;***‘*****i************ltt***ti***i*******tttt*tt**
¢ Example 4. This subroutine is called from 'fun_int.ftn' and sends
¢ the design vector from the minimization process into the variables
¢ used in the interior ballistics code.
Cti*ﬁ*i***i*ﬁ*******t**i******************t****k*********t*************

%INCLUDE ‘intball.ins.f’

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

¢ Negative dimension value check............. eiisreaaes Caesersenaens
do 15 {=1,novar
15 if (x(i).le.0.0) fx = fx + x(i)
if (fx.1t.0) then
fx = -1000.0*fx
return
end if
¢ variable assignment.............. et etetaaerater et acteecaanann
¢ 7 perforation propellent
glenp(1) = x(1)
pdpi(1) = x(2)
pdpo(1) = x(3)
gdiap(1) = x(4)
dbpep(1) = x(5)
chwp(1) = x(11)
¢ M8 7 perforation propellent
glenp(2) = x(6)
pdpi(2) = x(7)
pdpo(2) = x(8)
gdiap(2) = x(9)
dbpcp(2) = x(10)
chwp(2) = x(12)
return
end
c END OF VAR IN. .. iverrnernoennnnnnnns et aeuaaes e e aac e

C**t*****i****************!***************t*******************t********

SUBROUTINE VAR OUT(x,novar,fx)

Ct*tt*t*******t*****f****t**t*t*****t*************t**i*****************
¢ txample 4. This subroutine is called fgom_'fun_int.ftn'_and returns
¢ the variables used in the interior ballistics code back into the

¢ design vector format for the minimization process.
c**tt*tti*i***t*****i*****i****i**i*******it*****i*i***********t*****t*

%INCLUDE 'intball.ins.f!
INTEGER*2 NOVAR

REAL*4 X(NGVAR)
¢ variable return............ eceveeevesietenaseseaaennss eetsaansenn
c perf =7
x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = pdpo(1)
x(4) = gdiap(1)
x(5) = dbgcp(1)
x(11) = chwp(1)
c M8 perf =7
x(6) = glenp(2)
x(7) = pdpi(2)
x(8) = pdpo(2)
x(9) = gdiap(2)
x(10) = dbpep(2)
x(12) = chwp(2)
RETURN
END
¢ END OF VAR OUT........... Ceeassesasseoaattosasenansasrresnensaasonnn
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APPENDIX III

INPUT FILES AND SAMPLE OUTPUT

This appendix contains a copy of the input file for
each example and a example copy of the interior ballistic
output file. A format guide is included after the input
files to describe each entry. Each line in the input file

corresponds to a record input.
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Input file for problem la. 7-perforation propellent, sample

9832.2384 12.7 12.7 1.0 0.0 457.21

9.796 0 0.0 0.0
5 0.0 0.00.0 .6 0.01.30.0300. 0. 457.

1.e20 2 3.0e+4 0.0 8.0e+5 0.2

.001135 01143 .46028 273. 1. 7.8612

84.5535 .9755 294. .004712 1.4
1 1135.99 3141. .9755 8.7 1.6605 1.23 7 3.175 .0508 .0508 1.072%1 .2807
1 1.0 .1105187 689.476 .

.005 .05 30.

Input file for problem 1b. 7-perforation propellent, sample
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0
5 0.0 0.00.0.60.01.30.0300. C. 457.
1.20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84,5535 .9755 294. .004712 1.4
1 1135.99 3141. .9755 8.9 1.6605 1.23 7 4.00 .02 .04 2.0000 .400
1 1.0 .1105187 689.474
.005 .05 30.

Input file for problem 2. 7-perforation propellent, sample
1-perforation propellent, sample

9832.2384 12.7 12.7 1.0 0.0 457.21
9.796 0 0.0 0.0
5 0.0 0.00.0 .60.01.30.0300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84,5535 .9755 294. .004712 1.4
2 1135.99 3141. 5755 4.35 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807

1135.99 3141. .9755 4.35 1.6605 1.23 1 3.175 .0000 .0508 1.0721 .0000
1 1.0 .1105187 689.476

1 1.0 .1105187 689.476
.005 .05 30.

input file for problem 2. O0-perforation propellent, sample
1-perforation propellent, sample
7-perforation propellent, sample

9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0
5 0.00.00.0 .60.01.30.0300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84.5535 .9755 294. .004712 1.4
3 1135.99 3141. .9755 3.00 1.6605 1.23 0 3.175 .0000 .0000 1.0721 .0000
1135.99 3141. .9755 3.00 1.6605 1.23 1 3.175 .0000 .0508 1.0721 .0000
1135.99 3141. .9755 3.00 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1.0 . 1105187 689.476
1.0 .1105187 689.476
1.0 .1105187 689.476
.005 .05 30.

—_ -

Input file for problem 4. 7-perforation propellent, sample
7-perforation propellent, M8

9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0

5 0.00.00.0 .6 0.0 1.3 0.0 300. 0. 457,
1.€20 2 3,.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84.5535 9755 294. .004712 1.4

2 1135.99 3141. 9755 4.35 1.6605 1.23 7
1168.90 3768. .9550 4.35 1.2119 1.62 7

1.0 .1105187 689.476

1.0 .1105187 689.476

.005 .05 30.

3.175 .0508 .0508 1.0721 .2807
3.175 .0508 .0508 1.0721 .2807

——
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¢ Format for input files. Each line in file is 1 record. Record la is read

¢ only if IGRAD = 2 in Record 1.

[ - o o«
c CHAM REAL*4 CHAMBER VOLUME cm’3

c GRVE REAL*4 GROOVE DJAMETER cm

[ ALAND REAL*4 LAND DIAMETER cm

c GLR REAL*4 GROOVE/LAND RATIO none

c TWST REAL*4 TWIST turns/cal iber
[ TRAVP REAL*4 PROJECTILE TRAVEL cm

c IGRAD INTEGER*2 GRADIENT FLAG none

c 1 = Lagrange, 2 = Chambrage

o - T Lo« I - N
c NCHPTS INTEGER*2 NUMBER POINTS TO DESCRIBE CHAMBER none

c fFor I=1,nchp ts :

¢ CHDIST(!) REAL*4 INITIAL DISTANCE FROM BREECH cm

c CHDIAM(1) REAL*4 DIAMETER AT CHDIST(I) cm

€ RECOMA 2uiuiniueeanseennsosaseaneeeuesoasnsaacssosnencnnoaseasaaaaonnnenneennss
c PWRT REAL*4 PROJECTILE MASS kg

(4 IAIR INTEGER*2 CALCULATE ENERGY LOST TO AIR

c RESISTANCE FLAG (% = yes) none

c HTFR REAL*4 FRACTION OF WORK DONE AGAINST

c BORE TO HEAT TUBE none

c PGAS REAL*4 GAS PRESSURE [N FRONT OF PROJECTILE Pa

LB <1 < 0
c NPTS INTEGER*2 NUMBER OF BARREL RESISTANCE POINTS none

c For 1=1,npts

c BR(1) REAL*4 BORE RESISTANCE MPa

c TRAV(D) REAL*4 TRAVEL cm

Lo o <
c RCWT REAL*4 MASS OF RECIOLING PARTS kg

¢ NRP INTEGER*2  NUMBER OF RECQIL PAIR POINTS none

c fFor 1=1,nrp

c RP(1) REAL*4 RECOIL FORCE N

c TR(I) REAL*4 RECOIL TIME s

€ RECOMA Sttt ettt ittt aeetateinaaesaenereassasaneensnsenesaaneananannnns
c HO REAL*4 FREE CONVECTION HEAT TRANSFER

c COEFFICIENT w/em™2-k

c TSHL REAL*4 CHAMBER WALL THICKNESS cm

c CSHL REAL*4 HEAT CAPACITY OF STEEL OF CHAMBER WALL J/g-k

c TWAL REAL*& INITIAL TEMPERATURE Of CHAMBER WALL k

c HL REAL*4 HEAT LOSS COEFFICIENT none

c RCHOS REAL*4 DENSITY OF CHAMBER WALL STEEL g/cm™3

€ REEOTA B vt iiiteinnaetteinseeenerannsseesasneeseesuseassasasneenesnnennenanes
c FORCIG REAL*4 IMPETUS Of IGNITER PROPELLENT J/9

c covl REAL*4 COVOLUME OF IGNITER cm3/9

c TEMPI REAL*4 ADIABATIC FLAME TEMP OF IGNITER k

c CHWI REAL*4 INITIAL MASS OF IGNITER kg

c GAMA} REAL*4 RATIO OF SPECIFIC HEAT FOR IGNITER none

€ RECOMA 7ttt eeansevetneasenesatasoesnasneoasssnaseassnenssaesneennsnoannen
c NPROP INTEGER*Z NUMBER OF PROPELLENT TYPES none

c For 1=1,nprop

c FORCP(I) REAL*4 IMPETUS OF PROPELLENT J/9

c TEMPP(1)  REAL*4 ADIABATIC TEMPERATURE OF PROPELLENT 3

c COVP(1) REAL*4 COVOLUME OF PROPELLENT cm’3/g

c CHWP(1) REAL*4 INITIAL MASS OF PROPELLENT kg

c RHOP(1) REAL*4 DENSITY OF PROPELLENT g/cm™3

c GAMAP(I)  REAL*4 RATIO OF SPECIFIC HEATS, PROPELLENT none

c NPERFS(1) [INTEGER*2 NUMBER OF PERFORATIONS ON PROPELLENT  none

c GLENP(1) REAL*4 LENGTH OF PROPELLENT GRAIN cm

c POPI(I) REAL*4 DIAMETER OF INNER PERFORATIONS

c IN PROPELLENT GRAIN cm

c POFO(I) REAL*4 DIAMETER OF QUTER PERFORATIONS

c IN PROPELLENT GRAIN cm

c GOIAP(I) REAL*S QUTSIDE DIAMETER OF PROPELLENT GRAIN cm

c DBPCP(1) REAL*4 DISTANCE BETWEEN PERFORATION CENTERS cm

Lo 7T = - T A P
c For J=1,nprop

c NBR(J) INTEGER*2 NUMBER OF BURNING POINTS none

c For 1=1,nbr(})

[ ALPHA(J, 1) REAL*4 EXPONENT none

c BETA(J,1) REAL*4 COEFFICIENT cm/s-MPa

c PRESS(J,1) REAL*4 PRESSURE MPa

€ RECOPd §.uintiinivenneesorssssassncersasoooneennonnssnsasaannceresnenanns e
c DELTAT REAL*4 TIME INCREMENT (STEP) ms

c DELTAP REAL*4 PRINT INCREMENT ms

c TSTOP REAL*4 STOP TIME FOR CALCULATIONS ms
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The data input file is p3final.in

Using Lagrange pressure gradient

chamber volume cm™3 0.983224E+04
groove diam cm 0.127000E+02
land diam cm 0.127000E+02
groove/land ratio 0.100000E+01
tWist turns/caliber  0.000000CE+00

projectile travel cm 0.457200E+03

projectile mass kg 0.979600E+01 )
switch to calculate energy lost to air resistance J 0
fraction of work acainst bore used tc heat the tube 0.000000E+00

gas pressure Pa 0.000000E+00
number barrel resistance points 5
bore resistance MPa - travel cm

0.000000£+00 0.000000€E+00
0.000000E+00 0.600000E+00
0.000000€+00 0.130000€+01
0.000000E+00 0.300000E+03
0.00000CE+00 0.457000€E+03

mass of recoiling parts kg 0.100000E+21
number of recoil point pairs 2

recoil force N recoil time sec

0.300000E+05 0.000000E+00

0.800000€+06 0.200000€+00

iree convective heat transfer coefficient w/cm2 K 0.113500€E-02
chamber wall thickness cm 0.114300£-01
heat capacity of steel of chamber wall J/g K 0.460280E+00
initial temperature of chamber wall K 0.273000E+03
heat loss coefficient 8.100000E+01

density of chamber wall steel g/cm™3 786120E+01
impetus of igniter propellant J/g 0.845535E+02
covolume of igniter cm**3/g 0.975500E+00
adiabatic flame temperature of igniter propellant K 0.294000E+03
initial mass of igniter kg 0.471200E-02
ratio of specific heats for igniter 0.140000E+01
FOR PROPELLENT NUMBER 1

impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant K 0.314100E+04
covolume of propetlant cm**3/g 0.975500€+00
initial mass of propellant kg 0.992000E+00
density of propellant g/cm**3 0.166050€+01
ratio of specific heats for propellant 0.12300.£+01
number of perforations of propellant 0

length of propellant grain cm 0.249350E+01
diameter of inner perforation in propellant grains cm 0.000000E+00
diameter of outer perforation of propellant grains cm 0.000000€+00
outside diameter of propellant grain cm 0.128500E+01
distance between perf centers cm 0.000000E+00
FOR PROPELLENT NUMBER 2

impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant K 0.314100E+04
covolume of propellant cm**3/g 0.975500€+00
initial mass of propellant kg 0.362600E+01
density of propellant g/cm**3 0.166050E+01
ratio of specific heats for propellant 0.123000E+01
number of perforations of propellant 1

length of propellant grain cm 0.594250E+01
diameter of inner perforation in propellant grains cm 0.00000CE+00
diameter of outer perforation of propellant grains cm 0.000000E+00
outside diameter of propellant grain cm 0.579800E+00
distance between perf centers cm 0.000000€+00
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FOR PROPELLENT NUMBER 3

impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant K 0.314100E+04
covolume of propellant cm**3/g 0.975500€+00
initial mass of propellant kg 0.413000€+01
density of propellant g/cm**3 0.166050€+01
ratio of specific heats for propellant 0.123000E+01
number of perforations of propellant 7
length of propellant grain cm 0.599600E+01
diameter of inner perforation in propellant grains cm 0.180000€-02
diameter of outer perforation of propellant grains c¢cm 0.180000€-02
outside diameter of propellant grain cm 0.861300€E+00
distance between perf centers cm . 0.217000€E+00
no. of burning rate points 1

exponent coefficient pressure

cm/sec-MPa**ai MPa

0.100000€+01 0.110519€+00
no. of burning rate points 1

exponent coefficient

- cm/sec-MPa**ai
0.100000€+01 0.110519€E+00
no. of burning rate points 1

exponent coefficient

- cm/sec-MPa**aj
0.100000€+01 0.110519€+00
0.500000€E-02
0.500000€E-01

MPa

MPa

time increment msec
print increment msec
time to stop calculation msec 0.300000E+02

area bore m” 0.126677E-01 pressure from ign pa
volume of unburnt prop m"3 0.526829E-02

time acc ve dis

0.1050E-03 0.1111E+03 0.1036E-01 0.5216E-06
0.2500E-03 0.1540E+03 0.2943E-01 0.3331E-05
0.4050E-03 0.2154E+03 0.5783E-01 0.9970E-05
0.5550E-03 0.2933E+03 0.9573E-01 0.2134E-04
0.7000E-03 0.3891E+03 0.1449E+00 0.3862E-04
0.8500E-03 0.5129E+03 0.2122E+00 0.6518E-04
0.1000E-02 0.6661E+03 0.3003E+00 0.1033E-03
0.1150E-02 0.8538£+03 0.4138E+00 0.1565E-03
0.1300€-02 0.1083E+04 0.5585E+00 0.2290E-03
0.1450E-02 0.1363E+04 0.7412E+00 0.3260E-03
0.1600E-02 0.1704E+04 0.9704E+00 0.4537E-03
0.1750€-02 0.2122E+04 0.1256E+01 0.6199E-03
0.1900E-02 0.2633E+04 0.1612E+01 0.8341E-03
0.2050€-02 0.3261E+04 0,.2052E+01 0.1108E-02
0.2200E-02 0.4031E+04 0.2597E+01 0.1455E-02
0.2355E-02 0.5012€+04 0.3295E+01 0.1910E-02
0.2505E-02 0.6181E+04 0.4132E+01 0.2464E-02
0.2655E-02 0.7614E+04 0.5163E+01 0.3159€-02
0.2805€-02 0.9371E+04 0.6432E+01 0.4025E-02
0.2955E-02 0.1152E+05 0.7994E+01 0.5103E-02
0.3105€-02 0.1415E+05 0.9912E+01 0.6441E-02
0.3255€-02 0.1735E+05 0.1227E+02 0.8098E-02
0.3405E-02 0.2124E+05 0.1515E+02 0.1015E-01
0.3555€-02 0.2594E+05 0.1868E+02 0.1268E-01
0.3705E-02 0.3162E+05 0.2298E+02 0.1579E-01
0.3855E-02 0.3842E+05 0.2822E+02 0.1962E-01
0.4005E-02 0.4651E+05 0.3457€+02 0.2431E-01
0.4155E-02 0.5608E+05 0.4225E+02 0.3006E-01
0.4305E-02 0.6727E+05 0.5148E+02 0.3706E-01
0.4455E-02 0.8021E+05 0.6251E+02 0.4559E-01
0.4605E-02 0.9497E+05 0.7563E+02 0.5592E-01
0.4755E-02 0.1116E+06 0.9110E+02 0.6840E-01
0.4905E-02 0.1298€+06 0.1092E+03 0.8338E-01
0.5050E-02 0.1489E+06 0.1294E+03 0.1006E+00
0.5200E-02 0.1697E+06 0.1533E+03 0.1218E+00
0.5350€-02 0.1910£+06 0.1803E+03 0.1468E+00
0.5500E-02 0.2122E+06 0.2106E+03 0.1761E+00
0.5650E-02 0.2326E+06 0.2439E+03 0.2101E+00
0.5800E-02 0.2515E+06 0.2803E+03 0.2494E+00
0.5950E-02 0.2682£+06 0.3193E+03 0.2943E+00

mpress
0.1115E+06
0.1546E+06
0.2162E+06
0.2943E+06
0.3905E+06
0.5148E+06
0.6685E+06
0.8569€+06
0.1087E+07
0.1368€+07
0.1710E+07
0.2130E+07
0.2643E+07
0.3273E+07
0.4046E+07
0.5030e+07
0.6203E+07
0.7642E+07
0.9405E+07
0.1156E+08
0.1420E+08
0.1741E+08
0.2131E+08
0.2604E+08
0.3173E+08
0.3856E+08
0.4668E+08
0.5628E+08
0.6751E+08
0.8050E+08
0.9532£+08
0.1120E+09
0.1303E+09
0.1495E+09
0.1703E+09
0.1917€+09
0.2130E+09
0.2334E+09
0.2524E+09
0.2692E+09

158

0.689476E+03
pressure
0.689476E+03
pressure

0.689476E+03

0.873844E+05
init cham vol-cov ign

m "3 0.982764E-02
pbrch
0.1243E+06
0.1723€+06
0.2410E+06
0.3281€+06
0.4353E+06
0.5738E+06
0.7452E+06
0.9552E+06
0.1212E+07
0.1525€+07
0.1907€+07
0.2374€+07
0.2946E+07
0.3648E+07
0.4510E+07
0.5607e+07
0.6915E+07
0.8519€+07
0.1048E+08
0.1289€+08
0.1583E+08
0.1941E+08
0.2376€+08
0.2903€+08
0.3537e+08
0.4298E+08
0.5204E+08
0.6274E+08
0.7526E+08
0.8973E+08
0.1063€+09
0.1248E+09
0.1453E+09
0.1666E+09
0.1898E+09
0.2137e+09
0.2374E+09
0.2602E+09
0.2814E+09
0.3001E+09

se
0.2?30E+05
0.1191E+06
0. 1666E+06
0.2268E+06
0.3009€+06
0.3966E+06
0.5151E+06
0.6603E+06
0.8375E+06
0.1054E+07
0.1318E+07
0.1641E+07
0.2037E+07
0.2522E+Q07
0.3117E+07
0.3876E+07
0.4779E+07
0.5888E+07
0.7247E+07
0.8909E+07
0.1094E+08
0.1342E+08
0.1642E+08
0.2006£+08
0.2445€E+08
0.2971E+08
0.3597€+08
0.4336E+08
0.5202E+08
0.6202E+08
0.7344E+08
0.8627€+08
0. 1004E+09
0.1152E+09
0.1312E+09
0.1477E+09
0.1641E+09
0.1799E+09
0.1945E+09
0.2074E+09




0.6100€-02
0.6250€-02
0.6400E-02
0.6550€-02
0.6700€-02
0.6850€-02
0.7000€-02
0.7150€-02
0.7300€-02
0.7450€-02
0.7600€-02
0.7750€-02
0.7900€-02
0.8050€-02
0.8200£-02
0.8350€-02
0.8500€-02
0.8650E-02
0.8800€-02
0.8950€-02
.9105E-02
.9255€-02
.9405€-02
.9555€-02
.9705E-02
.9855€-02
. 1000€-G1
.1015e-01
.1030E-01
. 1045€e-01

OO0 O0OOo0O0O

deltat time
PMAXMEAN Pa
PMAXBASE Pa
PMAXBRCH Pa

Muzzle VELOCITY (m/s)

Total Initial Energy Availabie J
FOR PROPELLANT 1 MASSFRACT BURNT
FOR PROPELLANT 2 MASSFRACT BURNT
FOR PROPELLANT 3 MASSFRACT BURNT

0.2823£+06 0
0.2935e+06 0
0.3016E+06 0
0.3067E+06 0
0.3090€+06 0.
0.3089€+06 g.
0
0
0
0

0.3066E+06
0.3025€+06
0.2970E+06
0.2905E+06
0.2832E+06 0.
0.2754E+06 0.
0.2673E+06 0.
0.2590£+06 O.
0.2505e+06 O.
0.2395E+06 0.
0.2274E+06 0.
0.2152E+06 0.
0.2033€+06 0.
0.1918£+06 0.
0.1807E+06 0.
0.1706E+06 0.
0.1612E+06 0.
0.1525E+06 0.
0.1444E+06 0.
0.1369E+06 0.
0.1299€+06 Q.
0.1225e+06 0.
0.1156E+06 O.
0.1093E+06 0.

3606€E+03
4038E+03
4485E+Q3
4942E+03
5404E+03
5867E+03
6329€+03
6786E+03
7236E+03
7677E+03
8107€+03
8526E+03
8933E+03
9328E+03
9710E+03
1008E+04
1043E+04
1076E+04
1107€+Q4
1137E+04
1166E+04
1192E+04
1217€+04

241E+04

1284E+04
1304E+04
1323E+04
1341E+04
1358E+04

0.105500€-01

1

0.3453€+00
0.4026€E+00
0.4665E+00
0.5372€+00
0.6148E+00
0.6993e+00
0.7908E+00
0.8892e+00
0.9943E+00
0.1106E+01
0.1225€+01
0.134%9E+01
0.1480E+01
0.1617E+01
0.1760€+01
0.1909€+01
0.2062E+01
0.2221+01
0.2385e+01
0.2553e+01
0.2732E+01
0.2909€+01
0.3090e+01
0.3274€+01
0.3462E+01
0.3653e+01
0.3847E+01
0.4044E+01
0.4244E+01
0.4446E+01

intg time
0.310367E+09 time at PMAXMEAN sec
0.239143E+09 time at PMAXBASE sec
0.345980E+09 time at PMAXBRCH sec
0.136756E+04 at time sec

0.2834E+09
0.2946E+09
0.3027€+09
0.3078E+09
0.3102E+09
0.3100€+09
0.3077E+09
0.3036E+09
0.2981E+09
0.2916E+09
0.2843E+09
0.2764E+09
0.2683E+09
0.2600E+09
0.2514E+09
0.2403e+09
0.2282E+09
0.2160E+09
0.2040E+09
0.1925€+09
0.1813E+09
0.1712E+09
0.1618E+09
0.1531€+09
0.1450E+09
0.1374E+09
0. 1304E+09
0.1230E+09
0. 1160E+09
0.1097e+09

0.432081€+08
0.487515E+00
0.100000€+01
0.100000E+01

59

0.2183e+09
0.2270E+09
0.2332E+09
0.2372E+09
0.2390e+09
0.2388€+09
0.2371E+09
0.2339€+09
0.2297E+09
0.2247E+09
0.2190€+09
0.2130E+09
0.2067€+09
0.2003E+09
0.1937E+09
0.18526+09
0.1759E+09
0.1664E+09
0.1572E+09
0.1483E+09
0.1397€+09
0.1319€+09
0.1247€+09
0.1179E+09
0.1117E+09
0.1059E+09
0.1005E+09
C.9475e+08
0.8939€+08
0.8449€+08

0.105498E-01
0.676509€-02
0.676509€-02
0.676509€-02
0.105473E-01

0.3159€+09
0.3284E+09
0.3374€+09
0.3432E+09
0.3457€+09
0.34556+09
0.3430E+09
0.3384E+09
0.3323e+09
0.3250€+09
0.3169€+09
0.3081E+09
0.2990€+09
0.2898E+09
0.2802E+09
0.2679E+09
0.2544E+09
0.2408E+09
0.2274E+09
0.2146E+09
0.2021E+09
0.1909E+09
0.1804E+09
0.1706E+09
0.1616E+09
0.1532E+09
0.1454E+09
0.1371E+09
0.1293e+09
0.1222+09




