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I

I Introduction

I Composite materials have fully established themselves as workable engineering materials.

I Early military application during World War II led to large-scale commercial and aerospace util-

ization. Today, industries such as aircraft, automobiles, sporting goods, electronics, and appli-

3 ances are quite dependent on composite materials. In particular, advance composite materials

for aerospace, structural, power and propulsion application offer significant advantages in terms

I of efficiency and cost. A widespread and efficient application of composite materials requires

i detailed and reliable knowledge of their physical properties and, in turn, of their behavior under

applied loads. Because of potentially diverse structural and physical variety of reinforced cor-

3 posites, it is neither practical nor economical to rely solely on experimental determination of

their properties. Therefore, similar to any other branch of physical sciences, it is desirable to

1 develop a theory (or theories) so that we can analyze, explain, and predict the behavior of com-

posite materials under various in-use loading conditions.

Generally speaking, composite materials are based on the concept of compounding rein-

forcing elements and matrix materials such that they form a reinforced composite. The mechani-

3 cal behavior of such materials is termed mechanics of composite materials. More specifically, a

composite material is one in which two or more constituents are combined to produce a new

Imaterial with mechanical properties different from those of the individual constituents. It is

assumed that the constituents of a composite material retain their individual chemical and

mechanical integrity and characteristics. A typical composite material consists of a bounding, or

5matrix material containing a second reinforcing material in the form of continuous or discontinu-

ous filaments or laminations. Major parameters involved in mechanics of composite materials

I are: volume fractions of reinforcing elements and matrix, direction of reinforcement, geometr ,

of reinforcing elements and position of reinforcing elements relative to each other. Additional

variety stems from the physical properties of the constituents. Altogether, the variation of the

geometrical and physical parameters can lead to an enormous number of possibilities. It is,
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I therefore, desirable to have theories that can describe the physical behavior of the composite in

3 terms of the known geometrical layout of the composite and the known physical properties of

the consituents.I
An appropriate classification of the mechanics of composite materials may be brought

3 about by the definition of two areas of composite material behavior as follows:

3 Ia) Macromechanics: The study of composite material behavior wherein the material is

presumed homogeneous and the effect of the constituent materials are detected only as averaged

I apparent properties of the composite.

Ib) Micromechanics: The study of composite material behavior wherein the interaction of

5 the constituent materials is examined in detail as part of the behavior of the heterogeneous com-

posite material.I
The properties of a lamina can be experimentally determined in the "as made" state or can

be mathematically derived on the basis of the properties of the constituent materials. That is, we

can predict lamina properties by the procedures of micromechanics and we can measure lamina

I properties by physical means and use the properties in a micromechanical analysis of the struc-

ture. Knowledge of how to predict properties is essential in constructing composites that have

certain apparent or macroscopic properties. Thus, micromechanics is a natural compliment to

3 macromechanics, and the formulation of an adequate (continuum) theory that could describe the

mechanical behavior considering the micro-structure of of composite materials is highly desir-

Iable and of major concern in material engineering, especially in relation to aerospace industries,

due to many advantages that composite materials offer in terms of cost, weight and peformance.

g In the last three decades several continuum theories have been proposed as models of elas-

tostatics or elastodynamics of composite materials. In general these theories may be divided into

3 two major categories as follows:

I BASE
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1) theories that do not account for the effect of microstructure.

U 2) theories that consider the behavior of microstructure and try to account for its effect in

3 continuum.

The so-called "effective modulus" theories replace the actual composite by a homogeneous, gen-

erally anisotropic medium whose material constants are a geometrically weighted average of the

3properties of the constituents. While yielding satisfactory results for certain geometries under

static loads, such an approach exhibits serious deficiencies for virtually all geometries when

applied to dynamic problems such as impact and wave propagation. Specifically, effective

3 modules theories are incapable of reproducing the dispersion and attenuation observed in com-

posite materials. Such a behavior is a well known phenomena in composites and is a result of

5 the microstructure of the particular composite. The dynamic behavior of a composite material

(or a continuum in general) is of great importance when the material is subjected to high-rate

I loads such as the ones that are generated by impact or explosive charges. We briefly elaborate

* on this point.

5The dynamic response of deformable heterogeneous materials may be broadly classified

into two groups as follows.

i) The wave length of the characteristic response of the material is very long compared

with the scale of the inhomogeneity. Then the material response is governed by the

effective properties of the equivalent homogeneous medium. In this case the struc-

I tural response and wave propagation are identical to those of homogeneous materials.

I ii) The wave length of the response is not ideally long with respect to the characteristic

dimension of the inhomogeneity. In this situation very complicated dynamic effects

can occur. The interfaces between material phases cause wave reflection and refrac-

tion. This phenomena is due to the existence of microstructure in the composite.

I BASE
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I Considering (i) and (ii) above, it is clear that any continuum theory designed to account for the

3 dynamic response of a composite must, in some fashion, reflect the effect of microstructure in

the composite. In addition to dynamic response of the composite laminates the issue of inter-

3 laminar behavior of composite laminates is of great importance. This issue is directly related to

delamination and edge effects in composites. In recent years, delamination has become one of

the most feared failure modes in laminated composite structures. This problem has also initiated

5 a great deal of research in the field of composite laminates. What began in 1970 as somewhat of

an academic curiosity turned into a beehive of research activity in recent years. This in turn

3 indicates the desire for having an adequate theory that can account for the effect of interlaminar

stresses.

A review of the literature on continuum theories developed for composite laminates reveals

that most of the theories that, in some fashion, account for the effect of micro-structure are linear

3 Iin nature. Consequently, these theories are not capable to model the behavior of composite lam-

inates undergoing large deformation. Moreover, all continuum theories, with the exception of

3 one, are proposed for composite laminates with initially flat configurations. Hence, these

theories are not appropriate for curved geometries. In addition the available continuum theories

are mainly developed to predict only the dynamic response of the composite laminates. There-

3fore, they do not seem to be adequate for problems involving static response of the laminated

composites with specified boundary conditions. Indeed the literature on the proposed continuum

5 theories of composite laminates may be divided into two groups. One group is concerned with

the formulation of theories that are adequate for dynamic response of composite laminates and

Ianother group that is involved with the formulation of theories that are appropriate for intelam-

3 inar response of composite materials. In fact, there exists no theory that is adequate for treating

static and dynamic problems at the same time.I
Considering the above restrictions of existing theories, the specific objectives of this inves-

3 tigation were to develop a continuum theory for laminated composite materials that could
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U account for the effect of i) microstructure, ii) nonlinearity, and iii) curved geometry. As will

5 become apparent, we have not only met the aforementioned objectives, but we have also

achieved a complete theory which will have a widespread use in related industries. We would

3 like to mention that we are very encouraged with the results of Phase I of the work; in particular,

we have to state that the theory presented here is a coherent continuum theory represented by a

I set of well-defined conservation laws predicated on physical observations which are physically

3sound and mathematically accurate. Within the context of purely mechanical theory, the

developed theory exhibits the following features:

a) It accounts for the effect of micro-structure

3 b) It accounts for the effect of geometric nonlinearity

c) It accounts for the effect of material nonlinearity

d) It accounts for the effect of curvature

I e) It accounts for the effect of interlaminar stresses

Sf) It has a continuum character

g) It is applicable to both static and dynamic analysis.I
The material presented here is divided into six parts (Part A through Part F) which contain

337 sections numbered consecutively.

3 Part A is concerned with some preliminary materials needed for subsequent developments.

This part contains section (2) through section (4). Section (2) discusses the coordinate systems

and other relevant notations. Section (3) provides some general background on spatial and sur-

3 face base vectors and related matters while section (4) presents the relevant results from classical

continuum mechanics in general curvilinear coordinates.I
Part B contains an introductory account of the theory of Cosserat surfaces. This part

3 includes section (5) through section (9). Section (5) presents a concise definition of a shell-like
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I body; section (6) deals with the kinematics of a Cosserat surface while rigid body motions is dis-

cussed in section (7). The definition of various stress resultants are given in section (8) and the

basic field equations of the Cosserat surface are derived in section (9).

Part C deals with the modeling of a composite as a series of Cosserat surfaces and contains

sections (10) through section (22). Section (10) introduces the coordinate systems appropriate for

composite laminate while section (11) gives a precise definition of a shell-like micro-structure.

ISections (12) and (13) are concerned with the kinematics and rigid body motion, respectively.

Section (14) provides definitions of the various quantities associated with micro-structure. Sec-

tion (15) contains the basic field equations for the micro-structure while the associated conserva-

3 tion laws are given in section (16). Section (17) includes the derivation of the composite conser-

vation laws. A summary of basic principles for composite laminates is given in section (18).

I Sections (19), (20) and (21) contain some results concerning composite contact force, composite

contact couple, composite conservation laws, and composite stress and couple stress tensors.

Basic field equations for composite laminates are derived in section (22).

a Part D pertains to elastic composite laminates and includes sections (23) through (26). In

I section (23) the nonlinear constitutive equations of an elastic composite laminate are derived

using the direct approach. Section (24) presents the complete theory while section (25) consid-

5ers the question of constraints in composite laminates. Section (26) contains the three dimen-

sional approach to the derivation of the constitutive relations.

Part E deals with the linearization of the Cosserat composite theory. In section (27) the

linearized kinematics are derived, while the linearization of the basic field equations and consti-

tutive relations are performed in sections (28) and (29).

Part F contains the application of the theory to flat and cylindrical laminates and also com-

parisons with the available theories. Sections (30) and (31) provide some preliminaries. Section

(32) presents a practical approach to the derivation of explicit constitutive relations. Section

3 BASE
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U (33) deals with the case of a normal director while theories of initially flat and initially cylindri-

cal composites are discussed in sections (34) and (35). Section (36) presents comparisons

between the Cosserat composite theory and other available theories. Section (37) contains some

I relevant conclusions regarding composite Cosserat theory.

As mentioned earlier, the results of this phase of research were very promising. In fact, at

this point, we have at hand a complete theory for mechanics of composite laminates which is

based on sound frame-invariant conservation laws and in a rigorous mathematical framework

without any ad hoc assumptions. We plan to continue this development toward explicit deriva-

tions of field equations and constitutive laws for various composite structures and reinforcement

3 Iconfigurations. Examination of delamination phenomena and edge effects, which is a natural

outcome of the present theory, is another line of activity which will be followed. For this pur-

pose we plan to simulate some recent experiments [Pagano, 1989] by using the Composite Cos-

serat Theory and compare the results with experimental data and those of available theories.

3 Recent developments in computational mechanics [Simo, J. C., et al., 1989, 1990] have

proved that classical Cosserat shell theory can be cast into an efficient and accurate numerical

3 framework suitable for nonlinear finite element analysis. The present composite Cosserat theory

was developed based on a systematic extension of classical Cosserat shell theory. We plan to

extend the present theoretical developments to a numerical framework which is based on

3 mathematical principles that their applicability has been demonstrated in the course of previ-

ously mentioned research of J. C. Simo and co-workers. Following the numerical developments.

3 various shell elements for a wide range of composite materials with different reinforcing

configuration and multi-constituent structures, will be designed. The details of these activities

I were presented in Phase II proposal for the subject project.

B
I
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D Part A. Preliminaries

I
In this part we introduce the coordinate systems, and the corresponding notations which

I will be used in the subsequent development. We also record some relevant results from classical

three-dimensional continuum mechanics. We will not provide proofs, as they are available else-

where, and only make reference to appropriate literature on the subject.

2. Coordinate Systems

Let the points of a region Rin a three dimensional Euclidean space be referred to a fixed

right-handed rectangular Cartesian coordinate system xi (i = 1,2,3) and let ri~ (i = 1,2,3) be a gen-

eral convectedcurvilinear system defined by the transformationU
xi = xi(1lT,r 2 ,Tl3) (2.1)

I We assume the above transformation is nonsingular in Rand has a unique inverse

I i = Tli(xl,x 2 ,x 3) (2.2)

I The existence of the unique inverse implies

det(-I-) # 0 (2.3)

I We recall that a convected coordinate system is normally defined in relation to a continuous

g body and moves continuously with the body throughout the motion of the body from one

configuration to another1

Throughout this work, all Latin indices (subscripts or superscripts) take the values 1,2,3; all

Greek indices (subscripts or superscripts) take the values 1,2 and the usual summation

I The subject of convected coordinate system has been discussed in references [Oldroyd, 1950]

3 and [Lodge, 1974].

I BASE
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I convention is employed. We will use a comma for partial differentiation with respect to either

space or surface coordinates such as .1i or ric and a superposed dot for material time derivative,

i.e., differentiation with respect to time holding the material coordinates, such as 71i or rla, fixed.

3 Also, we use a vertical bar ( I ) or a double vertical bar ( II ) for covariant differentiation in 2 and

3 dimensional spaces, respectively. In the course of derivation of various results for the compo-

site laminate we will encounter covariant differentiation with respect to a coordinate system

3 which corresponds to composite continuum 2 . To denote this we will use a single boldfaced vert-

ical bar ( I ). Also, for later convenience, often we set 113 = and adopt the notationU
rli = (Tlo, ) (2.4)

I In what follows, when there is a possibility of confusion, quantities which represent the same

I physical/geometrical concepts will be denoted by the same symbol but with an added asterisk (*)

for classical three dimensional continuum mechanics or an added hat (^) for the Cosserat surface

3 and no addition for composite laminate. For example, the mass densities of a body in the con-

texts of the classical continuum mechanics, the Cosserat surface and the composite laminate will

U be denoted by pS, p and p, respectively.

U
U

I
I

3 2 As it will become clear later, in order to adequately represent the effect of micro-structure in

a continuum composite laminate, we need to introduce an additional dimension (or coordinate) in3 the direction of ply lay-up.

3 BASE
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U 3. General Background

I Consider a three-dimensional body B, embedded in a region Rof the Euclidean 3-space,

i and let the particles (material points) of B be identified by a convected coordinate system (2.2).

Let P denote the position vector, relative to a fixed origin, say 0, of a typical particle of B in a

reference configuration. Then, we have

5 P = P(rla, ) (3.1)

This, in view of (2.2) of section (2), may also be expressed as a function of xi. We recall that, in

general, the numerical values of the coordinates associated with each material point of a contin-

uum varies from one configuration to another. However, when the particles of a continuum are

referred to a convected coordinate system, the numerical values of the coordinates of a particle

5 remain the same for all time. The position vector of a typical particle of B in the deformed

u configuration at time t, relative to the same fixed origin will be denoted by

p = p(la,',t) (3.2)

We note that equation (3.1) specifies the place occupied by the material point T"i in a reference

3 configuration, while the place occupied by the same material point r i in the present (deformed)

configuration is specified by (3.2). We assume that the vector function p in (3.2), which

describes the motion of the body B is differentiable with respect to Tlv, and t as many times as

3 may be required. We recall the formulae

gi =IZ , gij = gi" gj , g = det(gi) , g' 2 = [g= 1 2 g3] # 0

(3.3)3 gi = gij gj , gi. gi = gii , gi. gj = 8ij

where gi and gi are the covariant and the contravariant base vectors at time t, gij is the metric ten-

sor, gli is its conjugate, 8i is the Kronecker symbol in 3-dimensional space, and [ ] denotes

I scalar triple product.

3 BASE
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U Formulae analogous to (3.3), valid in a reference configuration are given by

IGi = - , Gij =Gi'-Gj , G =det(Gij) , G4 [GG2 G3]# #0,

I (3.4)

Gi = Gii Gj , G
i GJ = Gi , G i Gj = 8j(

I A material surface in B can be defined by the equation 4 = (rl). The equations resulting

3 from (3.1) and (3.2) with = (ja) represent the parametric forms of this surface in the refer-

ence and present configuration. In particular, with reference to (3.2)I
= 4(r a ) = constant (3.5)

I defines a one parameter family of surfaces in space each of which is assumed to be smooth and

non-intersecting. Let the surface 4 = 0 in the present (deformed) configuration at time t be

denoted by s. Any point of this surface is specified by the position vector r, relative to the same

3 Ifixed origin 0 in the 3-dimensional space, and we have

3 r = r(Tla,t) = p(ia,0,t) (3.6)

3 Let aa denote the base vectors along the fla-curves on the surface s. Moreover, let a3 =a3(yla,t)

be the unit normal to s. We recall the results

aa= r_ ga(rLO,t) , (3.7)

aa ' a3 =0 , a3 "a 3=1 , a3 
= a3 , [a, a2 a3 ] 0 . (3.8)

We also recall the formulae

N =aa a , a =det(aao) , aa = aa ,
I (3.9)

a.a 0 aaP , aaya.ao = 8at P , 39

I b = boa = -aa " a 3.5 = a3 , a,.a (3.10)

I BASE
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Saa1 = baa3 a = -b'aay , bapIy = bayi (3.11)

3 where aap is the metric tensor of the surface and bap are the coefficients of the second funda-

mental form of the surface. We recall that the three equations given by (3.11) are the formulae

U of Gauss, Weingarten and the Mainardi-Codazzi, respectively.

I Considering expression (3.6), we recall that r is the position vector of a typical point of the

surface s, i.e., the material surface 4 = 0 in the present configuration of the body B at time t. Let

the corresponding surface (i.e., = 0) in the reference configuration be denoted by S. Any point

I of this surface in the reference configuration, is specified by:

R = R(711) = P(laO) (3.12)

It should be clear that if the reference configuration of B is chosen to be the initial configuration

at time t = 0, then we will have

U R =R(ra) =r(l,0) (3.13)

Let Aa be the base vectors along the coordinate curves on the surface S. Then by (3.4) and

I (3.12) we obtain

I Aa= DR - Gca(TO) (3.14)

I and

3 AaA 3 =0 , A3 . A3 = 1 , A3 =A 3 , [AI A2 A3] 0 (3.15)

where A3 is the unit normal to 5. The duals of the relations (3.9) to (3.11) are given byI
Aap = A(,," Ap , A = det(AO) , Aa = Aa3A ,

3 (3.16)

Aa-AO=A5 ,AA = 8a
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Ua Bc= Bq = -AaA 3 ,0 =A 3 Ao (3.17)

IAaii 3 BxpA3 ,A3a=ByaAy ,Baiy=Bayip (3.18)
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4. Basic equations of classical continuum mechanics in general curvilinear coordinates

1 In this section we summarize some preliminary results from the three-dimensional theory

3 for non-polar media in terms of general curvilinear coordinates.

We define a body, designated by B *, as a set of particles (material points) 3. We designate

the particles of the body by P° and assume that the body is smooth and can be put into

correspondence with a domain of the three-dimensional Euclidean space. Thus, by assumption,

a particle P" of the body can be put into a one-to-one correspondence with the triples or real

numbers P1,P2,P3 in a region of Eucidean 3-space. We assume the mapping from the body

manifold to the domain of a Euclidean 3-space is one-to-one, invertible, and differentiable as

many times as desired.I
Consider a body B * with its particles P* and let the boundary of B * (a closed surface) be

designated by DB*. We define a configuration of the body B * to be a mapping onto a domain in

the three dimensional Euclidean space, E3 which assigns a position vector p° to each particle

(material point) of the body. Thus, the configuration of the body at time t is the region of

Euclidean 3-space which is occupied by the particles of the body at the instant t of time

(- - < t <+ c-). We define a motion of the body as a time sequence of configurations. Often it

5 is convenient to select one particular configuration and refer everything concerning the body and

its motion to this configuration. In what follows we shall identify the particle P° of the body

I with its position vector in a configuration (e.g., present or initial).

I Let rji (i = 1,2,3) be a general convected curvilinear coordinates. Consider a body B * and

3 let its boundary be a closed surface and be denoted by aB *. Let

I_ p, = po(rit) (4.1)

3 Note that from now on when we refer to a body in the sense of classical continuum mechan-
ics, we will denote it by an added asterisk (*). The same will be true for the quantities associated
with the body.
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I denote the position vector of a material point in the present configuration of the body B * at time

t. Then we may write

I gi, gi=g".. (4.2)

I and

ds 2 =dp*" dp* = g.! diidij (4.3)

where (4.2)1.2 and (4.3) are the covariant base vectors, the metric tensor, and the square of a line

I element in the present configuration at time t, respectively. In the same manner we denote the

position vector, the covariant base vectors, the metric tensor and the square of a line element in a

reference configuration as followsI
p =p*(11 i)  (4.4)

I
ap"

GI = -- =G , G (4.5)

dS 2 = dP* " dP* = Gi* drlidrli  (4.6)

We define a strain measure through

I ds2 - dS 2 = 2yi driidrji (4.7)

I = 1/2 (g - G ) (4.8)

where yi* are the covariant components of the symmetric strain tensor. Moreover, the velocity is

I given by

v. -- (4,9)

Under a superposed rigid body motion, the position vector p* will be displaced to the posi-

I BAS
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I tion p5 + given by

IP+ = P*+(Tli,t) = po+(t') + Q(t)[p5(rli,t) - po(t)] (4.10)

where t' = t + a' and a' is an arbitrary constant and the second order space tensor Q is a proper

orthogonal tensor function of t which satisfies

Q = Q(t) , QQT = QTQ =I , det Q - 1 (4.11)

We denote the counterpart of yij, after superposed rigid body motion (4.10), by yi + and we recall

that under the motion (4.10) the strain y'i remains unaltered, i.e.,

I! = i+ .(4.12)

N I t is clear from (4.8) that yi vanishes for a rigid deformation, i.e.,

I = 0 . (4.13)

Let P, bounded by a closed surface aP*, refer to an arbitrary part of the body B ° in the

present configuration. Then within the scope of the classical (nonpolar) continuum mechanics,

the system of forces acting over any part P* of the body B * in motion consists of the sum of the

two types of forces, F; and FJ, as described below:I
Let b* = b*(ri,t) be a vector field, per unit mass p", defined for material points in the region

I of the Euclidean space, occuped by B* at time t. This vector field is called the body force. The

resuftant bodyforce acting on the part P" in the present configuration at time t is defined by

F = f P. p"b'dz (4.14)

where drf denotes the element of volume. In addition, let the outward unit normal vector at a

material point on the boundary )P" of the part P* at time t be denoted by n" and be given by

n = nig' i = n'igi*  (4.15)
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I Let V = t*(7i,t;n ") be defined for the material points on the boundary aP" at time t. The vector

t* is called the contact force or the stress vector acting on the part P of B*. The resultant contact

force exerted on the part P* at time t is then defined byI
F *=Jp. C(T,t;n*)da (4.16)

where da ° is the element of area whose outward unit normal is n*. Moreover, we assume the

existence of a strain energy density e* = E*(ri,t) per unit mass p*.

In terms of the above definitions of the various field quantities, with reference to the present

configuration and within the context of the classical (nonpolar) continuum mechanics, the con-

I servation laws in the purely mechanical theory are given by

I a: t fp.p-de =O

b d * ,vd, =.. p,'d,," + J" t "
I (4.17)

c d -' p x v dv = '. p p x b d v 5  + .p × x t  d a "

d d fp. p*(E'+')d v= fJ. p (b x v*de) + t" t v'da"

where E* is the specific internal energy per unit mass p* and K* denotes the kinetic energy per

I unit mass p" and has the form

I K* = 1/2 v" • v* (4.18)

Equations (4 .17 )a to (4 .17 )d represent mathematical statements of conservation of mass, conser-

vation of linear momentum, conservation of moment of momentum, and conservation of energy,

I respectively.

I
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I Under suitable continuity assumptions, the principle of linear momentum and that of

3 moment of momentum imply the existence of a tensor field t *ij = *ij(Tlk,t) such that

(4.19)

T*i g*"h t*iJ gj* = gCA Iti gij

Moreover, with the help of (4.19), the transport theorem, and the divergence theorem, the bal-

ance laws (4.17 )a and (4 .17 )b can be reduced to the Cauchy equations of motion, i.e.,I_
Tii + p" b* g*' - p* c* g*A

1 (4.20)

gixTi=0

where c* is the acceleration vector. In (4.19) and (4.20) r*ij and c*i, are the contravariant and

mixed components of the stress tensor and a comma denotes partial differentiation with respect

to rli. It can be shown that the equations of motion (4.20) are equivalent toI
'r*iJ Ij + p* b *i = p*c*i , r*ij = t*ji (4.21)

I where the double vertical bar (I I) stands for covariant differentiation with respect to gi* and c~i

are the contravariant components of the acceleration

I . = v* (4.22)

and where a superposed dot is the material time derivative with respect to t holding 11i fixed.

I Moreover, with the use of the divergence theorem, i.e., 4

f fP, div v'de" = faT, v". n'da"

I or (4.23)
f ' 1jd~ P (v i fa:. T da

i See [Green and Zerna, 18 1 page 3 1.
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I and the equations of motion, it can be shown that (4 .17 )d reduces to

* P *-" =,*iJ Y+i* (4.24)

For an elastic body we make the constitutive assumption that

E = (Yi) (4.25)

together with a similar assumption for the stress tensor r*ij. In (4.25), the dependence of E* on

the reference metric tensor is understood, although this is not shown explicitly. Making use of

I (4.24) and (4.25), we obtain the results

1ij - - a* (4.26)

i In the last expression, the partial derivative is understood to have the symmetric form

I1 +

Before closing this section we discuss basic jump conditions in the context of three-

3 dimensional classical continuum mechanics. Thus far, all kinematic and kinetical variables

occurring in the conservation laws have been assumed to be continuous throughtout the body

I B. Sometimes we encounter circumstances in which some kinematic/kinetical variables are

discontinuous across a surface which moves through the body; the surface is called a surface of

discontinuity.I
Suppose that at time t an arbitrary material volume of the body occupies a part P* bounded

I by a closed surface aP'. Let P" be divided into two regions P *, P1 (see figure 1) separated by

a moving surface a(t), and let aP', DP"' denote the portions of the surface aP" which form

I parts of the boundaries d'P 1 and aP such that

I
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I DP*=Pa~ *nP" , aP*"DP2-P"

I P"=PwP2* w , P"= P" P*" (4.27)

I a8I = aP" UC(t) , 82 = 8P*" w (t)

I Let the velocity of the surface a(t) along its outward normal, when a is regarded as part of

the boundary a/P*, be denoted by un. Then, - un is the normal velocity of a when this surface is

I regarded as part of the boundary of P2. Let xV be any function which takes different values W,

and V2 on either side of a in the regions P and 2, respectively. We adapt the notation []to

indicate the difference of W2 and xV, and write

[U] = W2 - 1 (4.28)

i! We also adopt the notations

Win = Vin - Un , W2n = V2n -- Un  (4.29)

where vin and V2n are the velocities of the material points in the regions Pj and P 2 along the

normal to a, respectively. In accordance with the notation in (4.28), we can writeI
[wnl = W2n - Win (4.30)

Recall that the transport theorem for a part P* can be written as!
d d!Jp. 0 de = Jf,. (0'+ 0div v*)de = fp -~de + fp * n*d (.1

where in writing the above the divergence theorem has been used. We now proceed to obtain

5 the counterpart of (4.31) for the region under consideration which includes the surface a(t). To

i this end we apply (4.31) to regions Pj* and P for a function p*W as follows:

I
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d- f p V de = j. _t(p'V)d + J ,(p*x)v* n" da"

= T f -(py)dzf + f,,.(p. )v. n*da" + J'o(p'w)v-, n'da* (4.32)

L~and
d + P2'pvdz = T (p*dV)d + S PJ 'q " n'a"

3 f fTt (p V)dzv* + o ,p.(p*Y)v*. nda + ao(p*y)v* - nda (4.33)

Adding both sides of (4.32) and (4.33) we obtain

i d f (p'y)dv = f (py*)dv" + [ [p'yw,] da" (4.34)

where in obtaining (4.34) we have also made use of the - genct theorem and the equation of

continuity. Making use of (4.34) and wi,' rerence to the present configuration, we obtain the

i conservation laws for the part Pj' u PI in the form:

da"-t- f p'dz =O0

I b: • --d **dr f p*bdv + J tda + f [tilda*

(4.35)

C f p(p x v)de= f p*(p* x v*)de + f p x tda + Jp* x t*ida*

I d d f p*(E*'+k*)dv" f p; b P -%-*de" + at* .v-da' +S<L t* %,*da*

Application of ( 4 .1 7 )ab,c.d to parts Pj* and !P2 and subtraction of the results from corresponding

equations in (4.35) yields

I
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I a [p*wJ]=O

I b [p'v'w,- tJ =0

I c no new equation 
(4.36)

d "[p(E*+k*)wn - V v = 0

3
!
!
I
l
£
I
I
I
I
l
I
I
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UB. Introduction to theory of two-dimensional directed continuum, i.e., a Cos-

3 serat theory

3 We introduce in this section the main concepts and ingredients of a theory of two-

dimensional continuum, namely, a Cosserat surface. The concept of oriente6 or directed media

j originated in the work of Duhem in 1893. The first systematic study and development of

theories of oriented media in one, two and three dimensions was conducted by the brothers

Eugene and Francois Cosserat in 1909. Further study on the subject was carried out by Ericksen

3 and Truesdell in 1958 who introduced the terminology of directors. A complete general theory of

a Cosserat surface with a single director in the context of thermomechanics was developed by

IGreen, Naghdi and Wainwright in 1965. A thorough study of the theory of directed surfaces was

conducted by Naghdi in 1972 which in addition to the basic theory, includes certain general con-

siderations regarding the construction of nonlinear constitutive equations for elastic shells. An

3 account of recent developments on one and two dimensional Cosserat continuums with special

attention towards elastic rods and shells was also given by Naghdi in 1982. Our exposition of

5 the two-dimensional Cosserat (directed) surfaces in this part will closely follow the deveop-

V ments given by [Naghdi, 1972].

In general, two different approaches may be adapted for the construction of two-

I dimensional mechanical theories such as those for shells or fluid sheets. One approach starts

3 with the 3-dimensional equations of classical continuum mechanics and by applying approxima-

tion procedures obtains a set of two-dimensional field equations and constitutive equations for

3the continuum under consideration. In the other approach the continuum is modelled as a two-

dimensional directed continuum, called a Cosserat surface, and then the field equations and the

I appropriate constitutive equations are developed. It should be emphasized that in the latter

approach, namely the introduction of an alternative model and formulation of the theory by the

direct approach, the nature of the field equations in the 3-dimensional theory is not ignored. In

5 fact, some of the developments of the field equations by the direct approach are motivated and
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I aided by available information obtained from the 3-dimensional theory. It can be shown that the

3 two foregoing approaches may be put into a one-to-one correspondence. As discussed in

[Naghdi 1972, 1982], most of the difficulties that occur in the derivation from three-dimensional

3 theory are related to the construction of relevant constitutive equ.;ons. These difficulties, how-

ever, do not occur in the direct approach and in this sense the direct approach offers a clear

advantage over the three-dimensional one. The entire development by the direct approach is

exact in the sense that it rests on 2-dimensional postulates valid for nonlinear behavior of materi-

als. However, a theory of this kind cannot be expected to represent all the features that could

3 only be predicted by the relevant full 3-dimensional equations.

I As mentioned previously the ingredients of the two different approaches can be put into a

one-to-one correspondence. For the purpose of this study we make use of the three-dimensional

approach as it is more appropriate to our later development. It is to be emphasized that the

3 relevant equations to be obtained at the end of this section will be the same whether we use the

direct approach or the three-dimensional approach.

I
!
I
I
I
I
!
I
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I5. Definition of a shell-like body

U Consider a body B * in the present configuration and let its boundary be a closed surface,

3 denoted by aB *, and composed of three material surfaces as follows.

g a) The material surfaces

i 0 <0<42 (5.1)
i S2 4 = 2(ra)

with the material surfaceI
So: 4=0 (5.2)

I lying entirely between them.

I b) The material surface

s t: f(rla ) = 0 (5.3)

such that 4 = const. are closed smooth curves on the surface (5.3).

IThe surfaces (5.1)12 are called the major surfaces or the bottom face and the top face, respec-

tively. Since T1i = {fqa, } are defined by (2.2) as convected (material) coordinates, the material

I surfaces (5.1)1.2 will have the same parametric representation in all configurations. In general,

I1 and 2 are functions of the surface coordinates ,la but in special cases they may be constants.

We assume the surfaces so, s and s2 do not intersect themselves, and each other. This implies

the condition (5.1)3 and g" # 0. The surface s, is not necessarily midway between the bounding

surfaces s, and s2. However, in a reference configuration of the body B *, a surface correspond-

I ing to s, may be chosen midway between the surfaces corresponding to s, and s2. Such a three

5 dimensional body (i.e., the body B * as characterized above) is called a s'eff if the dimension of

the body along the normals to the surface s,, called the height, is small in comparison to its other
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I dimensions. A shell is said to be thin if its thickness is much smaller than a characteristic length

of the surface s4, for example the local minimum radius of curvature of so. Figure (2) shows an

element of a shell like body in the present configuration.3
Let p*(il , ,t) and po'(rC , ) be the mass densities of B * in the deformed and reference

3configurations, respectively. Then the conservation of mass (in three dimensions) implies

I p* g' 1 2 = p, G*1 2  (5.4)

We define the surface mass density (i.e., mass per unit area) p, of so at time t in the present

configuration by the expression

I2
p al"2 = p / g 2 d4 , p = p(rla,t) (5.5)

where a is det(aao) of the surface s. . Since the quantity p* g*l is independent of time, it fol-

I lows that p a112 is also independent of time, although both p and a = det(aap) may depend on t.

The mass of an arbitrary part P of the body B bounded by the surfaces (5.1)1.2 and a surface

of the form (5.3) may be expressed

MpfP*p*dv*.j'. f-f:Pg1

TI =1 12;I = f ' f~i { i p - g ' lt2 d } dT11 d712 = p. f.z a U2 drl l dT12

= p.. dd (5.6)

5 where P denotes an arbitrary part of the surface so which corresponds to P* and ^I and T2

denote the applicable ranges of integration for the coordinates T11 and r12, respectively. Also, in

Iobtaining (5.6) we have made use of (5.5) and the following expressions

I d = (g* x g g). g d drd2 d4 = g* 1/2 dq I drl2 d4 (5.7)
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I dd = (a, x a2) • a3 dl] d712 = a/ 2 dqii dT12  (5.8)

I The relation of the surface so 0 to the boundary s: 'I and s2: =2 can be

I fixed by imposing the condition

3 P g 1 /2 4 d4 = I 5 k d = 0 (5.9)

where

I k* = k*(Ta, ) = p* g*If2 = p G*1 2 (5.10)

I We notice that k* is independent of time. Once the position of the surface so: 0 relative to

the positions of the surfaces s, : 4 = 41 and s2 : = r2 is determined by (5.10) in a configuration

I(e.g., a reference configuration) it remains so determined. This completes our description of a

i sheff.-ie body, namely a three dimensional body B * bounded by the surfaces (5.1)1, (5.1)3 and

(5.3).

I We will refer to the duals of the surfaces so, sl, 52 in the reference configuration by

iSo, 3,, 32, respectively. We also note that the dual of (5.5) in the reference configuration is

given by

U0 A2= Po G*/'2 d: (5.11)

andI p0o AI!2- p a1 ' (5.12)

I in view of (5.10).

5
I
I
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6. General kinematical results for shells

I We begin our development of the kinematical results by assuming that the position vectorI p*(T", ,t) of a material point in the deformed thin shell has the form

3 p = r(rla,t) + 4 d(71a,t) (6.1)

The above is a special assumption which is regarded to be valid for thin shells 5.

The velocity vector v* of the three-dimensional shell-like continuum at time t is given by

= = p ( ,,t) (6.4)

where a superposed dot denotes the material time derivative, holding rli = (rja,t) fixed. From

1 (6.1) and (6.4) we obtain

I v =v+ w (6.5)
i where

v=r" , w=di (6.6)

E From (6.1) and (4.2) we have

I ,g;=d(67
ga = aa + g*= (6.7)

where aa are the base vectors of the surface so. The base vectors gi (Tla,4,t) in (6.7) when

3 evaluated on the surface S. reduce to:

5 In a more general approach, we may begin the kinematical development by assuming that
p(lca,4,t) is an analytical function of 4 in the region El < t < t2 and can be represented as (see
[Naghdi. 1975, section 7])

P" = r(rTat) + 4n dN(Ott)

This generality is not needed for our present purposes and we therefore adhere to the assumptioni (6.1).
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ga~rl ,O,t) = aa(r',t)

i g (l^f,O,t) = d(Tjyt) 
(6.8)

3 where g" satisfy the condition

3 [gg* 93*1* 0 (6.9)

I This restriction holds at all times and for all values of T i = { a, }. In particular, it is valid for

= 0 so that by (6.9) we also have

[a, a2 d] # 0 (6.10)

I This condition implies that the director d cannot be tangent to the surface so).

I Let v be some three-dimensional vector field defined on s., and let vi, vi be the covariant

and contravariant components of v referred to the base vectors ai = (aa,a 3) or ai. We then have

Sv = via, = vaac + v3a3 = vi a i = vaaa + v3a3  (6.11)

Recalling the expressions for the gradient of v, we haveI
I ~ ~~~~V~ - v ict = Vi = Vca

Va= via= viaa vaai

via = ai • v a , 
= a i • V a

3 (6.12)

vxa=vxla-baXv3 
, v3a=v3.a+bxvx(

I X a = v XIa - b-av3 , v3 a=v3 + bxvX

3 where a vertical bar ( I ) stands for covariant derivative with respect to aap. The lowering and

raising of indices of the tensor functions such as vi in (6.11) and via in (6.12) is accomplished by

using a space metric tensor defined by

g O(Tla,O,t) = aq , g.(Ta,O,t) = 0 , g3 = 1 (6.13)
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I Considering (6.1) and (6.7) and making use of the general formulae (6.11) and (6.12), we

3 write

d = diai = dial , da =aad , d3 =d 3  (6.14)

I a) ada~ djjcai=iai-Flu- - da- ia i= a

I b) Xa = dp1a - bcd 3 , 3a = d3,a + boadp (6.15)

3 c) Xf.a = a 3  , X3 a X3a

3 We also introduce the notations

I a) d"d=d1dO+Y , o =(d3)2

3 b) d'd,a=dPp+ 0a , oa=d 3X 3 a (6.16)

c) d,a"d.O = Xakp+ Oa , (Tap = X3 a)30

We may now writeI
a) g4=aal+(a- -a+aa--d)+ ad ad3 G & -) ja n

a cp + W(X + ),a) + V ( ,a -+ a ) 
( -7(6.17)

3 b) g3=aad+ d =da+ (dr, +a,)

I c) g 3 =d ' d=dd +o

i The duals of (6.14) to (6.17) in the reference configuration are given by

D= DiA i =DiAi , Da= Aa3D3 , D 3 = D 3  (6.18)
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a) -_-=DaA i =AiaA iI0
b) Ai=Dpia-BaD3 , A3a=D 3,a+B aDO (6.19)

I c) A.=A)A , A.3 =A 3a

I
a) D.D=DODp+l , X=(D 3)2

b) DDa =D X ,a+ya , D313 (6.20)

1 c) Da"D,O1  = A-A + - , r- 
= A3aA31

* and

a) Go =A e ,. DD .+ Aa* )+ 2 D . aD

I = Aac + (Ap3a + AaO) + 2(A.A-& + Za)1 (6.21)

b) G 3 =A " D+ D DD = -_Da + (DYA 
6+.21)

c) G33=D ' D=DYD, + Z

I where Ai = {Aa,A3) are the base vectors and the unit normal of the surface S." = 0 in the

3 reference configuration.

Recalling the expression for the strain "ij*, i.e.,

5iy= '/(gi" "g-GiG j )= (gj Gi) (6.22)

with the help of (6.14) to (6.21) we can readily record the components of the strain y"i as follows:
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I 2y = 2e. + + Ka) + 2[(X -tp - A. tA_) + Sap]

I 2y 3 = ya + [(drw - (DYA~a) + Soj (6.23)

3 2- 3 = (dyd- DYDY) + S

3 where in obtaining (6.23) we have introduced the relative kinematic variables ea, Ki and yj as

followsI
e.0 = 2(ap - Aa ) , Kia = ,a - Aia , Yj = di - Di (6.24)

I We have also made use of the following expressions and definitions:

d. d - D. D = (dYd-t- DyDt) + S , S = (d3)2 - (D3)2

d d3a - D. Da = (dr, a -DtA.a) + Sa , Sa = d3X33a - D3A3, (6.25)

d,"d - D,, = (ay - A'YaA-) + Sap , Sa3 = . - A3 aA3

I Before closing this section we make a remark that the kinematic variables (6.24) represent meas-

ures of surface strains, bending and rotation of normal to the surface, i.e.,

eU is called stretch and is a measure of strain

K ia is a measure of bending

I ~y, is a measure of rotation of the normal.

I
I
I
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I 7. Superposed rigid body motion

IWe recall that when the motion of B * differs from the given motion by a rigid motion, the

3 position vector p*+ has the form

IP+ = P*+(rli,t') = po+(t') + Q(t)[pO(rli,t) - po(t)] (7.1)

where Q(t) is a proper orthogonal tensor function of time. Also, under superposed rigid body

I motion, the position vector r of the surface s, of B is displaced to

r = rl(r1a,t') = r+(t') + Q(t)[r(rTl,t) - ro(t)] (7.2)

IFrom (7.1) and (7.2) we obtain

5 p+ - r= d (7.3)

3 or

5 d+ = { p (t') + Q(t)[p(nli,t) - po(t)]} - {r+(t') + Q(t)[r(rlat) - (ro(t)]}

I = ( p (t') - r (t') ) + Q(t) { p(ni,t) - r(ica,t) ) - Q(t){ po(t) - ro(t) )

Hence,I
d+(T'a,t) = Q(t)d(la,t) (7.4)

where in obtaining (7.4) we have made use of the fact that

p(Tli,t) - r(rTl,t) = d(rlTI,t) (7.5)

IS and

p+(t') - ro(t') =Q(t)( po(t)-r.(t)) (7.6)

3 Considering (7.4) and the fact that Q(t) is a proper orthogonal tensor function, i.e.,
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SQTQ = Q-IQ=I (7.7)

5 we may write

I d =Q d" Q d = QT Q d. d = d- d (7.8)

SIn obtaining (7.8) we have used the relation

SU Q V = QT U V (7.9)

for any two vectors U and V. It is clear from (7.8) that the magnitude of d(rla,t) under super-

posed rigid body motions remains unchanged. In the contemporary literature, any three dimen-

3 sional vector field which transforms according to transformation (7.4) and possesses the property

(7.8) under superposed rigid body motions is called a director.

I
i

I
U
I
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3 8. Stress resultants, stress-couples and other related definitions

IPreliminary to our derivation of equations of motion for a shell-like body, we need to

define appropriate stress-resultants, stress-couples and resultant body forces. This will be

accomplished in this section.

I Consider a shell-like body B bounded by a closed surface aB *, as specified in section 5.

3 whicl-, c.nsists of the material surfaces

3 sl : = 1 (rl' )

£S I2 = 2 (TIC,) ,,I < 0 < :2(81

and a lateral material surface of the form

is, f(Tla) = 0 (8.2)

We recall that the relation of the material surface so: =0 to the bounding surfaces (8.1)1.2 is

I fixed by the condition

IP" g", d= k" d5 , = 0 (8.3)

3where

I k* = k*(Tla,) = p g*,/2 = P_ G"
1/ (8.4)

I Consider an arbitrary region of a material surface so : = 0 in the present configuration,

denoted by P, and let DlP be the boundary curve of P. Also, let P*, with boundary aP*, refer to

I an arbitrary part of the shell-like body B in the present configuration such that:

I
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I a) P* contains P.

I b) DP" consists of portions of the surfaces (8.1)1.2 and a surface of the form (8.2) at time

c) DP* coincides with !P on the surface s, = 0.

5 Moreover, let VI refer to the part of aP* specified by a lateral surface of the form (8.2) such

that

I = aP" = a! on so 0 (8.5)

I Let the boundary aP of P in the present configuration be denoted by a closed curve c and

I defined by the position vector r in P Let

rla = rla(s) (8.6)

be the parametric equations of the curve c, with s as the arc parameter. Further, let . and v

I denote the unit tangent vector and the outward unit normal to c lying in the surface s.: = 0.

*Then we have

x2 = r(rD'(s)" = .a a. , a = dsS (8.7)

Sv = X a 3 
= va aa = vaaac = E3? V aa (8.8)

£. = a3 x v = a 3 x Vaaa = Eaaa, (8.9)

where Eap, EaO are the c-symbols in two-dimensional space;

I
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I t3a = Ea0t3 = a,/ eaO a pzt = E43 = a-/' EaO3

ee(8.10)

Ie 1 1=e22=O ,e1=2 O

I e 12 =-e 2 1 =1 ,e
12 =-e 2 1=

5 We also recall that the elements of area on the surfaces

3 = = (Ta) = constant

(8.11)32 = = 2() = constant

are given by'

da = (g'g' 33) hdrlI dT 2 for .1, 2 constants (8.11)

Moreover, the element of area on the lateral surface ~n* is.I
nj'da= g",' dr 2 d3 =: da=(n*Idrl 2 -n*2dnll)g /2d (8.12)
nda = -g'"dld

where ni are the components of the outward unit normal to the surface n = n*ig i = n*igi*.

ILet N = N(rla,t;v) and M = M(rTl,t;v), represent, respectively, the resuftant force3 and resul-

tant coupfe2 vectors, each per unit length of a curve c in the present configuration. We define

these resultants as follows

> Nds=f .t*da , fJMds=Jfat* da (8.13)

The integration on the right-hand sides of (8.13)1.2 is over the surface . The conditions

II See Appendix I for details.
2 To emphasize the dependence of N,M on v we write N(v) and M(v), in place3 of N and M whenever it is appropriate.
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(7.13)1.2 stipulate that the action of N and M on a portion of a curve c is equiporant (i.e.,

5equivalent in effectiveness) to the action of the stress vector t" upon a corresponding portion of

the normal surface , which coincides with a.P on the surface s: = 0. We also define addi-

I tional resultants

NaalA=J'Tad' , Maa4-J T'ad (8.14)

and

I
m a'/,= T3 dr (8.15)

Recall the relations between the stress vector t*, the stress tensor Tij and the vector T'i in

I classical continuum mechanics:

I _Tini T = *= 'j g*j (8.16)t" = -- =U ~i'i gj , T= g*,A ,t*ij gj8 ~glig, *J (816

I where n = n i gij is the outward unit normal to the surface on which t* acts. Considering (8.13),

I and making use of (8.16), we obtain

LIP N ds =fp t da= faip g -' T inida

= (T"1 drl2 - T*2 dl1 )d

i = Jaia/2(Nldl2 - N2drl1 ) : , Navads (8.17)

Since (8.17) is valid for any arbitrary part .1P with closed boundary diP, it follows that

N = N'av (8.18)

I In a similar manner, from (8.13)2 we can obtain

I BASE



1 -39-

I M = Mavv (8.19)

3 With the help of (8.18) and (8.19) we can obtain results analogous to those of classical contin-

uum mechanics, namely

N(v) = -N(-v) , M(v) = -M(-v) (8.20)

According to expressions (8.20) the resultant force and the resultant couple both per unit length

3 of c, acting on the opposite sides of the same curve at a given point are equal in magnitude and

opposite in direction.

Next we define two-dimensional body forces as follows:I
p " a" = p" b" gV'2 d + [T g"(g 3 3)'] =4 2 + [T g'"(g 33)' ], , (8.21)

P a1' = k2 
p * b" g"h d + [r" (g*g* 33 ),,A]1 = + [T- (g*g* 33),,], j, (8.22)

where t is the prescribed value of t" on the boundary aB of B *. In the above expressions r

represents the prescribed surface loads on the surfaces s,: = and s2: = 2. Making use of

E (8.16), we may reduce (8.21) and (8.22) to

I" a"4 = p* b* g" d4 + fT3 2 2 p* b" g'"'d4 + [T*3]:,. 2 - [T*3]:.. (8.23)

I

p i a", =2 p* b* g /Ird4 + [T-34 = ~ p* b* g",Iid, + [T*3,] , [T*3r,._., (8.24)

I
It is to be remembered that in obtaining the above formulae we have assumed , E2 in

I = 41019, 4 = U2(rlo ) to be constants. Also, in obtaining (8.23) and (8.24) we have used

8
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Un = (g*33)-IhtOO,-g*31 on the surface s, =i(jc)

(8.25)

n* = (g*33)-h(O,O,+g* 31 on the surface S2 = 2(a).

3 for the outward unit normals to the surfaces s, and s2.

II
I

I
I
U
I
I
I
I
I
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I 9. Basic field equations for a shell-like body

I In this section we derive basic field equations of motion for a shell-like body. To this end

3 we make use of the various resultants defined in section 8 and the three-dimensional equations of

motion in classical continuum mechanics, namely

ST*i,i + p* b* g*A/2 = p" v* g A (9.1)

I and

gi* x T i = 0 (9.2)

where

3 t g *' T i ni* , T i g* ' i gj* (9.3)

I The derivation is effected by

3 i) integration of each term in (9.1) and (9.2) with respect to 4, and

ii) integration, after multiplication by 4, of each term in (9.1) and (9.2) with respect to .

Consider equation (9.1) and integrate both sides of the equation with respect to between

and 2 to obtain

I I Ti~id + p" b" */ d f, p v g' , (9.4)

I
I
I
3 BASE!
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I We now consider each term in (9.4) separately. Thus, we write

I
T~~id = ,'T*a,a d + t-T*

3
3 d J T~c d~jIa + [T*3]

I I = (Na a",),(, + IT*,] -, (9.5)

Also,I
p b* g1,/2 d p a'h - [T 31 =2(9.6)

I and

1fZ PV g h d - p gh( ' + *)d -p a'/,r (9.7)

where in obtaining the last result we have made use of

p gA =k , aA=f kd , 2 k d =O (9.8)

I and

v = v + , w (9.9)

with v and w as functions of 7I1 and Tl2 only. Introducing (9.5) to (9.7) in (9.4), we obtainI
(Na a'/),a + fa 'h - p ' a ',' (9.10)

Recalling the tensor identityI
(Nct a/ 2) .ct-a / Na, c (9.11)

I we can reduce (9.10) to

I N + p = a + (9.12)
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I Next, we multiply (9.1) by , and then integrate with respect to 4, i.e.,

I :T' ~ 4 d + ':p" b" g'" d4- p" ' g'" d (913)I
Considering each term in (9.13), we write

I
Tii d =2 T~a  d + 2 T*3. 3 4d

3a - [Q,. dI + [(T*3 b T*3 1d

- .a + [ r T 2 2 *3 d"

I g

= (Ma a/),, + t T 3  - - m a'/ (9.14)

I Also,

2J " b g*V2 d = p i a'/ - [;T*3] (9.15)

I and

Ip9gv d, = ( + E2 i,)d p y' 4 a (9.16)

I where we have made use of (9.8)3 and defined the coefficient ya as follows1

p yaa /zJkc d" (a= 1,2) (9.17)

We notice that the coefficients ya are independent of time but they may be functions of coordi-

I1 Although in this section we do not need to define v] and y 2 (since y = 0 by
(9.8)3), for later use and convenience it is preferable to adhere to the definition3 (9.17).
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I nates 11 = rpja, ). Introducing (9.14) to (9.16) into (9.13), we obtain

(Ma a'/4)a - m a' + P i a4 = p y2 4 a,/ (9.18)

3 Again, by making use of the tensor identity

(Ma a'/2), = a4 Maia (9.19)

3we can reduce (9.18) to

I 1aa - m + p 1= p y2 ; (9.20)

Next, we consider (9.2) and integrate it with respect to between j and 42 to obtain

3(gi x T'i)d" = 0 (9.21)

IRecalling that

3g =aa +4d,a , g3 =d (9.22)

we can rewrite (9.21) as follows

(gi x T*i)d, = f(aa + 4d,0) x T*a + d x T*3]d,:

3 = J [(aa + d,) x Ta]d + Zdx T"3 d

= x T'adr + da x Ta d + d x T-3 d
IT aF1 41

= a. x (Na ah'/ ) + d.a x (Mot a',) + d x (m aA) -0 (9.23)

Since a # 0, we obtain

I
aa x Na + d x m + da x Nla = 0 (9.24)
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I We now proceed to obtain the equation of balance and energy. To this end and within the

scope of the classical continuum mechanics, we recall the principle of balance of energy in

purely mechanical theory, i.e.,I
t (9.25)

where £* = E*(Tli,t) is the specific internal energy. By making use of the transport theorem and

the divergence theorem we can reduce (9.25) to

I fG. g*- '4 T i n v* da" + fp. p- b'. v" de = JP. p '. v de! + fpl. p" d

I or (9.26)

fT. (g-" T'i v*) I dve + f P. p~b* v* dv5 = JT. p* v* de + fl,. p* c dz7

* or

'p g'-(T'i V*),i de5 + fp. p" b*. v* de = fpT. p (W'*" v +(9.27)U or (9.27)

I' -/2(Ti.v'),i+p'b*.v'-p('*.v*+E))dv

where in obtaining (9.27) we have also made use of the tensor identityI _

(g*v',_)i g*h'v Ii (9.28)

U Since (9.27) must hold for any, aribtrary part P" of the body B *, we obtain

g*- (T• v*),i + p" b" • v* - p(• v* + E*) = 0 (9.29)

I This equation, with the help of equation of motion (9.1), may be reduced further

I g --,/ T.*i . v + g -'/ T*i . v.* + p" b*' v" - p" v" = p".v"

(g-/ T,*, + p b" - v" - p ,) v" + g'-':Ti • v, p' &

Bor
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" * Vi g-/ T "v,

Ior

p*g / E" = T i" v; (9.30)

I Integrating both sides of (9.30) with respect to between and 2 we obtain

I P~ 9 g'l *I"E d V 22Ti • .*i d VTi •(v + w).i d

= T i vi d + T-i (r- w)i dr

42

= T'a v'(, d + f'T'a" ( w),a d + T w)* 3 d' ;

3 =v'a'J T-ad +w a -d+ a d + w ' 2T*3d

I = a/2 NO' Va + a'i M a .wa + a i m- w (9.31)

I We now define a two-dimensional (surface) specific internal energy E^ by the condition

I a/2 =F g* * d: (9.32)

I Hence. (9.31) can be reduced to

Sp c = Na . v~e + M a .w~a + m w = P (9.33)

where

I P= Na. va + Ma. wt + m. w (9.34)

I is the mechanical power.

I
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I C. Modeling of a composite laminate as a series of Cosserat (directed) sur-

I faces

3 To begin with, the continuum itself is a model representing an idealized body in some

sense. We may recall that the continuum model (in classical mechanics) is intended to represent

phenomena in nature which appear at a scale larger than the interatomic distances. From such

intuitive notions the well defined classical field theories of mechanics have been constructed and

the "macroscopic" behavior of the general medium in question has been successfully studied. In

the context of classical continuum mechanics a body is thought of as a set of particles (material

points), say x. Each material point has a distinct identity and occupies at each instant of time t

an exclusive place in a Euclidean three-dimensional space, so that one can identfy each material

point x with its place (i.e., the position vector from a fixed reference point) in the space. It is

implied that no more interesting information would be perceived by a finer observation of

material points. Hence, microscopic details, if any, are discarded.

For a large class of bodies, these preconceptions are justified, but there are also cases when

a closer look at a material point reveals some microscopic order and that at least partial informa-

tion of interest could be extracted by considering the effect of the microscopic order. It is there-

fore desirable to construct continuum theories that in some fashion incorporate the effect of the

I microstructure while enjoying, if possible, to some extent the level of generality available in the

classical continuum mechanics. There are different types of materials that exhibit microstruc-

tural behavior. One class of such materials is composites, i.e., bodies in which two or more sub-

3 stances are combined in a specific geometrical fashion to produce a new material with mechani-

cal properties different from those of the individual constituents. Roughly speaking, a contin-

I uum with microstructure is a continuum whose properties and behavior are affected by the local

I deformations of the material points in any of its volume elements.

3 The practical analysis of the mechanical response of composite bodies involves analytical

studies on two levels of abstraction. These areas of investigation are known as micromechanics
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I and macromechanics. In micromechanics, one attempts to recognize the fine details of the

material structure, i.e., a heterogeneous body, consisting of reinforcing element', such ,s fibers,

plies, particles, etc., embedded in a matrix material. In other words, micromechanics establishes

the relation between the properties of the constituents and those of the unit composite ceil. In

macromechanics, on the other hand, one attempts to consider the composite body as an assembly

of interacting cells, and study the overall behavior of the composite. For clarity, we emphasize

that the term micromechanics does not imply studies on the atomic scale. We also note that

within the context of the present discussion, the physical dimensions involved at the microstruc-

tural level are much smaller than the physical dimension involved at the macrostructural level.

In what follows we confine our attention to laminated composite bodies.

We define a composite laminate as a three-dimensional continuum consisting of multiple

layers (two or more) of materials which act together as a single (integral) physical entity. Here

we confine our attention to laminated composites composed of multiple layers of only two

materials, each of which are considered to be homogeneous. The layers are not considered to be

necessarily flat and could have any type of curvature (see figure 3). Thus the laminated medium

under consideration is assumed to consist of alternating layers of two homogeneous materials.

We assume the thickness of each layer (ply) is much smaller than its other two dimer-sions and

3 also smaller than the dimensions of the composite laminate. For example if Oa are curvilinear

surface coordinates of a layer (ply) and 03 is the third out of surface coordinate of the layer and

3 the layers alternate in the direction of 03, the dimension of one set of alternating layers (one of

each material) is much smaller in comparison to the dimension of the composite in the direction

I of 03.

I In order to construct a continuum theory, we should look for a (some) representative

3 (repetitive) feature(s) within the body. For the laminated medium under consideration the most

distinct representative feature is the alternating feature of the layers. Hence, we choose the com-

S bination of one layer of reinforcement and one layer of matrix as a representative element for the
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I laminated composite. We then model this representative element as a Cosserat (directed) sur-

face using the theory described in previous section. Next we assume the composite laminate is

composed of infinitely many of such Cosserat surfaces adjacent to each other. We now proceed

to formalize this idea. Consider a finite three-dimensional body B in a Euclidean 3-space and let

a set of convected coordinates 6i (i = 1,2,3) be assigned to each particle (material point) P of B.

I Assume at each particle P there exists a Cosserat surface, s (i.e., a material surface together with

a deformable vector field called the director) such that ea are the coordinates of the surface. If at

each point P the Cosserat surface is now identified by a representative element (i.e., one layer of

matrix together with one layer of reinforcement) of the laminated composite and if the body B is

identified with the composite laminate itself, the model of a composite laminate with micro-

i structure is at hand. It is to be emphasized that in the present discussion each Cosserat surface is

itself a three dimensional shell-like body B consisting of two layers of different homogeneous

materials. We also notice that the material points within each representative element B * are

regular particles in the sense of classical continuum mechanics while the material points of B are

endowed not only with an assigned mass density but also with a director. For clarity, we will

I refer to the body B as composite laminate, macro-continuum or macro-structure and to the body

B * as representative element, micro-continuum or micro-structure. Also, we will refer to parti-

cles of B as macro-particles or composite particles while the particles of the micro-structures

will be referred to as micro-particles or simply particles (material points). Parameters or vari-

ables that represent similar physical quantities in micro-body, Cosserat surface and macro-body

i will be designated with the same symbol but with an additional asterisk (*) and an over hat C)

for the micro-body and Cosserat surface, respectively. For example, the mass density of the

composite laminate will be called composite mass (or macro-mass) density and will be denoted

by p while the mass densities of the Cosserat surface and that of the micro-structure will be

designated by p and pa, respectively. We recall that each Cosserat surface represents a three-

I dimensional body in the sense of classical continuum mechanics and its boundary consists of a

lateral (normal) surface and two major (upper and lower) surfaces. We assume that at each cor-
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I posite particle the Cosserat surface coincides with the lower surface of the micro-structure.

Hence, each geometric point P of the body B is a point !P on a Cosserat surface and at the same

time is considered to coincide with a point P" on the lower surface of the shell-like micro-

structure.

I 10. Coordinate systems for a composite laminate

3 At each point P of the macro-body B we introduce a set of convected coordinates 8' (i =

1,2,3). Also, at each point P* on the lower surface of the shell-like micro-structure which coin-

I cides with P we introduce another set of convected coordinates Tri (i = 1,2,3). We assume the

transformation from 0i to 71 exists, i.e.,

an d 
0 i  = O i(T k ) = 0 i( 'IllT2, 93 ) 

(10 .1)

and~

det(- I 0 (10.2)

This implies the existence of a unique inverse for the above transformation. At this point we

make the additional assumption that

ell=Iic (0:=1,2) 
(10.3)

03=T13 , :r

The first of the above assumptions is for convenience (not necessary) while the second one is

I needed since the thickness of a representative element (micro-structure) is considered to be

much smaller than the dimension(s) of the composite laminate (macro-structure). We will return

to this point later. As before, for convenience we set 13= and adopt the notation Tri = {,(}c;).

I Using this notation (10.1) and (10.3) reduce to

I i = Oi(Tlk) = fli(rlT' 2 , ) (10.4)
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I and

I , ECI(10.5)
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I11. Definition of a shell-like representative element (micro-structure)

U Within the context of three-dimensional classical continuum mechanics, consider a body

B * in the present configuration and let its boundary be a closed surface, denoted by DB *, and be

composed of the following material surfaces:

a) The material surfacesI
S": =O

S2 0 <42(11.1)

b) The material surface

I s1 " f(r7°:) = 0 (11.2)

SI such that 4 = const. are closed smooth curves on the surface (11.2). We also consider a

material surface of the formI
i Si: 4= 1 (Tj) 0<41 <2 (11.3)

lying entirely between s, and s2. From now on we will refer to surfaces defined above as

3 follows.

I a) so: bottom face (lower major surface) of the micro-structure (representative element).

i b) s, : interface (middle major surface) of the micro-structure (representative element)

3 c) s2 : top face (upper major surface) of the micro-structure (representative element).

3 d) s,: lateral (major) surface or normal surface of the micro-structure (representative ele-

ment).I
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I We recall that since Tli = (Tlc) are defined by (10.4) and (10.5) as convected coordinates,

the material surfaces (11.1) and (11.3) will have the same parametric representation in all

configurations. In general , and 42 are functions of the surface coordinate rla but in special

3 cases they may be constants. We assume the surfaces so, s, and s2 do not intersect themselves,

or each other. This implies the condition (11.3)2 and g° * 0. The surface s, is not necessarily

midway between the bounding surfaces s, and s2. Such a three dimensional body B* as charac-

I terized above and depicted in figure 4, is called a shell-like representative element or a shell-like

micro-structure if the dimension of the body along the normals to the surface s., called the (Liht

3 of the micro-structure, is much smaller in comparison to its other two dimensions or a charac-

teristic length of the surface s,.

Considering our description of the body B*, we may note that B * consists of two distinct

I parts B ° and 'BI as defined below.

I a) Part Bj', a shell-like body bounded by the major surfaces s. and s, and by a lateral sur-

face si, which is the portion of the surface s, bounded by its intersections with so and

S1.

b) Part B2 , a shell-like body bounucd by the major surfaces s, and s2 and by a lateral sur-

3 face si2 which is the portion of the surface s, bounded by its intersections with s, and

I

Considering (a) and (b) above, we have

B" = B*' uB2I (1 1.4)

Sl = SI, U 512

We assume that BI" and B2 consist of two different materials which are perfectly bonded at their

3 interface surface, namely the surface s, = . We will designate the physical quantities asso-
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I ciated with Bj and 95* with subscripts 1 and 2, respectively. For example, the mass densities of

i TBj and B1 will be designated by pj' and p2, respectively. It is clear that the physical quantities

associated with the body B* may have a jump across the surface s : = 41.

Let p (T ,4,t) and po*(r1c,4) be the mass densities of B * in the deformed and reference

I configurations, respectively. Then the conservation of mass (in three dimensions) implies

pag*lt 2 = paG'lt2 (cx= 1,2) (11.5)

We define the surface mass density or micro-structure mass density, defined per unit area of s, at

time t in the present configuration by the expression

!

(11.6)

p = p(1la,t)

where p denotes the mass density and a is det(a0 l3) of the surface so. In view of our description

3of the body B *, we have

I p*a2=J pg1/2 d4 f P, g1'/2 d + p g'l dt (11.7)

Since the quantities pj* g- 1 2 and p2 g'*/ are independent of time, it follows that p ai2 is also

independent of time, although both p and a may depend on t. The total mass of an arbitrary part

I TP of the body B* (composed of parts P1* and P1 of B* and B1, respectively) bounded by the

surface (11.1)1.2 and a surface of the form (11.2) may be expressed

I
I
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I 9f= p*dj T * T71 2k " g-1/2 d~il dj2 dt

I
3 P -. f g 1  d'' dT d 2

1 = f . . 12 glf d + f .pg .12 d ) drl'di 2

*I or
"r '= M I + M 2 f J f a ll' dT I T1 p dd (11.8)

where P denotes an arbitrary part of the surface so, = 0 which corresponds to P" and 1, ^2

3 denote the applicable ranges of integration for the coordinates T1 and T12, respectively. Also, in

obtaining (11.8) we have made use of (11.7) and the following formula:

de = (gl* x g!). g dI'dTr2d g*1 dnldrn2dr (11.9)

dd = (a, x a2) a3 drj'dTl2  al/2 dTlIdl 2  (11.10)I
For later use we define the following quantities

2 Xd , X=pgl/2  
(11.11)

andI
al/2ya= ya= k*'adr , (a = 1,2) (11.12)

In view of (11.7), we may rewrite (11.11) asi
Pa' = = . + 2 (11.13)

where

I
I kBS*dE pl g*112d(fI BASE,
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N 2 = r ~d = p! g*'l/d (11.15)

I Also, expression (11.12) may be rewritten as

1 paY = =qy' + ya (11.16)

3 where

I X yJ x'ad = f 1 pl*g*112 ad (11.17)

I iand

I X~2Y r4' X~~=f 2 gl2 a~(11.18)

3 This completes our description of a shell-like micro-structure (representative element), namely a

three dimensional body B * composed of two shell-like bodies Bj" and BI such that

35 = W u BI (11.19)

where B" is bounded by the surfaces (11.1).2 and (11.2), Bj" is bounded by the surfaces (11.1)i,

I (11.3) and (11.2), BI is bounded by the surfaces (11.3), (1.1) 2 and (11.2) where 'Bj and BI are

i perfectly bonded together at the surface (11.3).

We will refer to the duals of the surface SoSjS2 in the reference configuration by So,31,$2,

respectively. We also note that the duals of (11.6) and (11.7) in the reference configuration are

3 as follows:

I =o,- po G- 2 &: (11.20)

and we have

3 po A 1/2 = p a 12 (11.21)
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Also,

po A 112 k2 G*If2 dt f ipog G-1 /2 d4 +t p 2 G 112 d (11.22)

and we have

I P~ A '1 2 = a l r2  , p 0o 2 A 1 2 a " ( 1 1 .2 3 )

in view of (11.5).

I
I
I
I
I
I
I
I
I

I

I
U 
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U 12. Kinematics of micro- and macro-structures

I We begin our development of the kinematical results by assuming that the position vector

of a particle P" of a representative element (micro-structure), i.e., p*(rja,,0 3,t) in the present

configuration has the form

I p8 = r(Tla',0 3,t) + 4(0 3)d(Tia,0 3,t) (12.1)

I The dual of (12.1) in a reference configuration is given by

I p= = R*(rW1,0 3) + .(03)D(7la,0 3) (12.2)

If the reference configuration is taken to be the initial configuration at time t = 0, we obtain

p*(7a, ,03,0) = r(rLa,03,0) + 4d(rIa,0 3 ,0)

= R(yfa,0 3) + D(Tia,e 3)

= p(Tja, ,e3) (12.3)

The velocity vector v* of the three-dimensional shell-like micro-structure at time t is given

I by

St) = p.(rja,,03,t) (12.4)

3 where a superposed dot denotes the material time derivative, holding Tri and Oi fixed. From

(12.1) and (12.4) we obtainI
V" = v + 4w (12.5)

3 where

v=i , w d (12.6)

From (12.1) and (4.2) we have

3 BASE
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= a g =d (12.7)

Iwhere aa are the surface base vector of the surface so. The base vectors gi*(Tla, ,0 3,t) in (12.7)

3 when evaluated on the surface s. : = 0 reduce to

g (r,0,03,t) = a(rll,03,t)
(12.8)

3 g*(qY,0,0 3,t) = d(lI,0 3,t)

where gi* satisfy the conditionI
tg1g* g : l#0 (12.9)

This restriction holds for all time and values of Tji = {r1a, ) and 03. In particular, it is valid for

U =0 so that by (12.9) we also have

2 [a1 a 2 d] # 0 (12.10)

3 this condition implies that the director d cannot be tangent to the surface so.

3We reall that the director d is a three-dimensional vector and it can be written as

d = dig i = digi , di = gi" d , di = giJdj (12.11)

where di and di denote the covariant and contravariant components of d referred to gi and gi,

I respectively. The gradient of the director d may be obtained as follows:

I d, = (djgj),i = dj,igj + dJgji = dJ.gj + dji k j gj

S= dJ.igj + dki j k)gj

S= (dj.i + i j k )dk)gj

3 = dJIigj (12.12)
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I where { } stands for the Christoffel symbol of the second kind and a vertical bar ( I ) denotes

covariant differentiation with respect to gij- In obtaining (12.12) we have made use of the tensor

identity

gj.i -{i k jgk (12.13)

IFor convenience we introduce the notations

i j = gi" dj = di Ij

(12.14)
I i = gi dj = di j

U From (12.14) it is clear that

3 x kij = gkj (12.15)

i Making use of (12.14) we may rewrite (12.12) as

3di = kjigj = Xigj (12.16)

Consider now the velocity vector v which can be written in the formI
v = vigi = vig i  (12.17)

Since the coordinates 6' are convected, it follows that

i= Vi= gi (12.18)

n Following the same procedure used in (12.12), we can reduce (12.18) to

I

II
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U.i = (vigj).i = vj'igj + vJgj.i = v~ig j + {i k j)vjgk

= vJigj + {iJ k}vIgj

S.(vJ,i + {i j k)vk)gj

= viIigj (12.19)

where in obtaining (12.19) we have made use of (12.13) and (12.17). We now introduce the

notations

vij = gi * vj = vii j

S.=(12.20)

I From (12.20) it is clear that

-vii gikvk j (12.21)

I Making use of (12.20), we may rewrite (12.19) as

SV.i = vjigJ = vJigj (12.22)

We observe that both -jj and vi represent the covariant derivative of vector components and

I hence transform as components of second order covariant tensors.

I Since vij is a second order covariant tensor, we may decompose it into its symmetric and its

3 skew-symmetric parts, i.e.,

Svij V(ij) + V[ij] = Tlij + ODij (12.23)

whereI
Ihi = v(j) (12.24)
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I and

O)ij = = (V- (12.25)

U represent the symmetric and the skew-symmetric parts of vij, respectively. From (12.24) and

I(12.25), after making use of (12.18) and (12.20), we have

3Ihj (vij + vi) (gi "gj + gj * ) = - =) gij = 7lji (12.26)

I and

COij (vii - vij) = " (g "j - 9j) = -i (12.27)

I Also, in iew of (12.18) and (12.23), we may express gi in the form

gi = VJ = (Tlki + o(ki)gk (12.28)

Moreover, the time rate of change of the determinant of gij, i.e., g is obtained as follows

g = det~gj) = k (det(gkj))gki = gggij (12.29)

where we have made use of the formula for the derivative of a determinant, namely

a(det(gij)) = ggkI (12.30)

Also, by making use of the relation

SgiJg= 5ij (12.31)

we obtain an expression for giJ as follows

(giJgkj) = 5= 0

* BAS
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3 or

3 gi = - g ik kj

or

9ik8 gik 9lJ& gk

or

~ij = cikgijIC*Y" (12.32)

Next, we proceed to obtain an expression for the director velocity w. Thus, we write

W =d wgk Wkg,,= (di gi)

= =dig I+ d1  dgi d(gI~gj)

dkgk + d( 'jgj + giig)

=dkgk + d ( - ,ikgIl'g gJf~ + (i~~k

-dkg k - dkgjlg).jgJ + diflkJgk + dj4,jgk

I=dkg k + di O)k g9k - d~i1 kgk +4-drkg

3=dkgk + di wk-gk - dl(2rI~,gk + 'n,'

Idkgk + dl(hjk, - rk;Y (12.33)

3where in obtaining (12.33) wAe have made use of (12.28) and (12.32). The gradient of the direc-

3 BA S
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I tor velocity is obtained in a similar manner:

I~ =~ = (dkgk),i = (Xkjgk) = Xkjgk + ki

= Xkigk + Xki(gkJgj)= ik+Xi6 lj+gjj

= jkgk + kk(-gkmgjl glg) + Xkjgkj(Tlmj + Wmj)g m

3= igk- kmjgrnJg1 + )j(Ilmj + (Oj)gm

5= 4i'- .m j(2Tjmj)gI + Xj1 jkjgk + ,tkg

I= ,,,l+ X),j 1gk - 2)jk + XjTlkJgk

3= kgk+ iWj- Tlkj )gk (12.34)

5 The dual of expressions (12.7) to (12.16) in the reference configuration follows from (12.2)

in a similar manner and is given by:

G = A(,,+ D , G*= D (12.35)

UG;(Tj,O,03) = A(Tlf,6 3,t) 1.6

3 where Gj'. d satisfy the conditions

[GI*GIGfl 0 (12.37)

I and

5 [GI* G *DI 0( 1 8

Nloreover.

B BASE,
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I D=DiGi=DiGi , Di=Gi'D , Di=GiJDi (12.39)

Di = DJ I Gj = AiGj = AjGj (12.40)

* where we have

3Aij = Gi• Dj = Dij (
(12.4 1)

3Aij = G i • Dj = Diij

andI
Ai = GikAkj (12.42)

We now introduce relative kinematical measures yij, and y, such that

Yij= - (gi - Gij)= - (gi • gj -G Gj) =:7i (12.43)

adK-j 
=  ,j - Aij 

(12.44)I

yi = di- Di (12.45)

I Making use of (12.7), (12.11), (12.16), (12.35), (12.39) and (12.40) we mav obtain

I 7a 3 = "[ycp = a (ga + d~c,) " (gp3 + D.5) - (G, + DO,) " (G53 +- D 3

II
1(= -2 gt- Ga ) + '-[(g(, d,13- Gc, D.O) + (gp - d~a GI3 D.O,)

+ 2(da" d. - D.a ' D.) }

or

I
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UYa = Yfla = Y.5 = + O + n.~c) + +1 V0(Xip -'~5 (12.46)

I Also,

'93='a ((ga +xda) d (Ga + 'D~a) D)

1 4-((gac d-Gci D)+ (d d,a-DDa)

* or

Y3 76aT(Y. + (d Aj , D'A i ) 1 (12.47)

I and

Y3 y 3  (d -d - D D)= (d'dj - D1D1) (12.48)

BI
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I 13. Superposed rigid body motion

I We recall that when the motion of the body B * differs from the given motion by a rigid

motion, the position vector p+ has the form

P*+ = P*+(ri't') = Po (t') + Q(t)[p*(rli,t) - po(t)] (13.1)

where Q(t) is a proper orthogonal tensor function of time. Also, under superposed rigid body

I motions, the position vector r of the surface so of B * changes to

Ir = r'(0i,t') = rg(t') + Q(t)[r(rli,t) - ro(t)] (13.2)

I Since

3 p*-r=d , p'+-r=-d+  (13.3)

i with the help of (13.1) and (13.2) we obtain

I3 d+ = p" - r* = [p+(t') - rg(t')] + Q(t)((p - r) - (po - ro)} (13.4)

For a rigid motion we haveI
(po - rJ) = Q(t)(po - ro) (13.5)

Hence, it follows that the vector function di(rla,t) must transform according to

d (Tla,t) = Q(t)d(rla,t) (13.6)

I under superposed rigid body motion. It is easily seen from (13.6) that the magnitude of d(Tla,t)

under superposed rigid body motions remains unchanged:

I - d- = (Qd) .(Q. d) = QTQd. d = d • d (13.7)

since for a proper orthogonal tensor Q we have

I
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I QT =QTQ =I , det(Q)= 1 (13.8)

3 and since for any two vectors U and V we have

3 UQV=QTIJV (13.9)

BI
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I 14. Stress-resultants, stress-couples and other definitions

I Consider a shell-like three-dimensional micro-structure B * bounded by a closed surface

iaB s, as specified in section 11, which consists of the material surfaces

s: 0 <2 (14.1)

and a normal (lateral) material surface of the formI
s, : f(Tla ) = 0 (14.2)

I such that = const. are clo,ed smooth curves on the surface (14.2). Let s, be a material surface

of the form

S, si: (Tict)  0 < 1 < 2 (14.3)

lying e'ntirely between so and s2. Moreover, let B * be composed of two shell-like bodies Bj* and

I B2* witrp. their lateral surfaces aB,* and B2", respectively, as specified in section 11.

I Consider an arbitrary part of the material surface s : 4 = 0 in the present configuration and

I let it be denoted P. Also, let P*, with boundary aP*, refer to an arbitrary part of the shell-like

body 'r in the present configuration such that:I
a P" contains P:

b) aP* consists of portions of the surfaces (14.1)1.2 and a surface of the form (14.2) at

3 time t;

c) aP" coincides with aPon the surface so : = 0.
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I Moreover, let aPL* refer to the part of aP" specified by a lateral surface of the form (14.2) such

that

3 a~P = P on s' =0 (14.4)

Since B is composed of two shell-like bodies B1
° and BI separated by the surface

s, = 41, the part P* is also composed of two parts Pj and P2* with their corresponding boun-

I daries aPj' and a2, respectively.

Let the boundary !P of P, in the present configuration be denoted by a closed curve c and

defined by the position vector r on aP. LetI
TV ' = la(s) (14.5)

be the parametric equations of the curve c, with s as the arc parameter. Further. let X and v

denote the unit tangent vector and the outward unit normal to c lying in the surface s: =0.

Then we haveI
ar.cl~s))=-XIa(, , ?, TIIs (14.6)

V = X a3 = vCla(, = vca c = Ec'Ovoap (14.7)

wa=a 3 x v = a3 x vaa = alvcta (14.8)

where cat3, F5 are the E-symbols in two-dimensional space;

E(15 = Cc,03 = a 12e.l , Ca = C43 = a-l/2ea

Sell =e22=0 , e l =e 22 =0 (14.9)

I el=-e2 1 =1. e 12 -e 2 1

I
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I We also recall that the elements of area on the surfaces

IS2 " = 2( fl) = constant 
(14.10)

I are given by

da =(g'g' 33)ldfdl2 for 2 = const. (14.11)

Moreover, the element of area on the lateral surface aFI* is

I n~da= g11 2dl 2dI da= (n'dTl2 - n* 2dll)gd* 2d (14.12)
n n2d a= -go l/-2drllId!:

where ni" are the components of the outward unit normal to the lateral surface.I
Let N = N(fla,t;v) and M = M(rla,t;v) be, respectively, the resultant force and resultant coupk

3 vectors, each per unit length of a curve c in the present configuration. We define these resultants

as follows:

J Nds= f, .toda , f .Mds= . to da (14.13)

We also define additional resultantsI
Na a1/2 = J T'ad = f " T oad +  Toad; (14.14)

0 0I

Ma=T Toa-d = T d+ T-ad (14.15)f 0f0

mn a 2  Tf T 3 d, =0 T 3 d" + . T*3 dg (14.16)
0 0 %

I Following the same procedure as in (8.17), we can show
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I N=Nava , M=MaVa (14.17)H and

N(v) = -N(-v) , M(v) = -M(-v) (14.18)

I We also need to define two-dimensional body forces, i.e.,

I 1 i" aM' = 42 Ind *I/2(g*33)l/2],,= + * l/(g*33)l/2]4=0

== p b° g'1 d + g' g- + g (14.19)

p i al/2 = f p* b' g*1 f2  d + [t*(g*g* 3 3 ) 1 t/ 2 142 + [i"(g-g- 33 )1 1 2]= 0  (14.20)I
where 1* is the value of t on the boundary aB * of B ". In the same manner as in section (8), by

I making use of (8.16), (14.19) and (14.20), we obtain

I p 0a 2= 42 p* b* g* 1/2 d+ [T*3]o2 - op* b= g/2 d+ [T*3] = , - [T'3] ,--0 (14.21)

H~and
I im -l' = f 2p" b" g.l/-2 d + [T'3 1 0, =" 2 pCb'g'12 d

I + T*3 [T*3 ]-o (14.22)

where in obtaining the above formulae we have assumed 2 in 4 = 2(r a ) to be constant. Also in

i obtaining (14.21) and (14.22) we have used

n = (g*33)-l 2[0,0,-g*31 on the surface so = 0

I (14.23)

n* = (g* 3 3 )- 112 [0,0,+g* 31 on the surface S2 " : =2( T )

for the outward unit normal to the surfaces so and s2.

I
I
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I 15. Basic field equations for a shell-like representative element (micro-structure)

I We now proceed to derive basic field equations of motion for a shell-like representative

3 element (micro-structure) as defined in section (11). To this end we make use of the various

resultants defined in section (14) and procedures described in section (9). Recall the three-

dimensional equations of motion in classical continuum mechanics, namely]

T* + p*b*g*1,2= p.,g*lt 2  (15.1)

I and

gi* x Ti= 0 (15.2)

whereI
t" = g*-l/2T'ini* , T i = g *!,t igj (15.3)

The de-ivation is effected by

i) integration of each term in (15.1) and (15.2) with respect to 4 between , =0 and = 2, and

ii) integration after multiplication by 4, of each term in (15.1) and (15.2) with respect to

between E = 0 and

Consider equation (15.1) and integrate both sides of the equation with respect to between

=0 and =2 to obtain

f2 T' 1 d 4 + f~ p'bg'l/d2d f 0 p* g"lrdr (15.4)

In the literature on continuum formulation of composite materials, it is cus-
tomary to write two sets of equations of motion, i.e., one for the matrix and one
for the reinforcing material. Moreover, to keep equations as simple as possible
and since we have admitted to have jumps in various field quantities across the in-
terface surface S, it suffices to write equations of motion as in (15.1).
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I Considering each term in (15.4) separately, we obtain

-- d", = Jo T13 d = [fT'ad],a + IT ]

Vid f --0

= (Naal/2 ),a + [T43 ] (15.5)

Also,

0f p*bg*1 /2d = P i al /2 - [T*3]  (15.6)

andI
pg *g = I f 42 , + , = p a 12  

' + pyla la v (15.7)

where in obtaining the last result we have made use of (11.11), (11.12) and (12.1), i.e.,I
pa1,2 = =J d , V= p*g ") 2  (15.8)

ia1,a = .ya= JX f 4ad , (ox= 1,2) (15.9)

iH and

v" = v + 4w (15.10)

with v and w as functions of 11 and r 2 only. Introducing (15.5) to (15.7) in (15.4), we obtainI
(N aal/2) .a + P aln2 = pa]n( + yl v)( 5 .1

I Making use of the tensor identity

I (Naali 2),, = al '' N a la (15.12)

i we can reduce (15.10) to
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Na a + R= ( + y14) (15.13)

Next, we multiply (15.1) by and then integrate with respect to between = 0 and =

to obtainI
I J Ti' d + f 4 p*b*g*l 2  dt = k2 p* *g* 1/2  dt (15.14)

Considering each term in (15.14) separately, we write

= T~a  d ]a + 2 ((T 3 {)3 - T°31dt

U (Mcla"2)'a + [T 3] --- - f2 T' 3 d4

I(Mja 1 '2)a + [T 3  42_ mal/2  (15.15)= (Mtal")'a [{T3] 4--0

Hi and

J "b'gl  d2  = p l - [T 3] (15.16)

I Also

p~g , d = f X' (,+ P2wV)d = pal/2ylv + Ii2y2;v

where in obtaining the last result we have made use of (15.8), (15.9) and (15.10). Introducing

rn (15.15) to (15.17) into (15.14), we obtain

3 (Maal2). = mal'2 + pialr2 = p^al/2(yl. + y2w) (15.18)

3 Making use of the tensor identity
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I (Maa1 2),a = al'fMa I a (15.19)

I we reduce (15.18) to

Mal, - m + P1= (yl + y24) (15.20)

INext, we consider (:5.2) and integrate with respect to 4 between 4 = 0 and =

0f 2 (gi x Ti)d =0 (15.21)

Recalling the expressions for gi*, i.e.,

3 = aa + gd,= a , g3" =d (15.22)

we proceed to reduce (15.21) as follows:

, so (gi* x T'i)d = fS4 [(aat + 4d,a) x T'a + d x T*31d4

S= k2 (aa + 4d a) x T'ad + k d x T*3d

S =aa+T d d +d xJ Ta dt +dx f 2T"3d

= xa × (Naal /2) + d,, X (Mta1/2 ) + d x (ma l l) = 0 (15.23)

I Since a # 0, we obtain

aa x Na+ d x m + d. x d Ma= 0 (15.24)

I We continue to obtain the equation of balance of energy. We recall that the conservation of

energy can be reduced to (9.30), repeated here for convenience

pg 1 /k = v, (15.25)
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We integrate both sides of (15.25) with respect to 4 between 0 and = to obtain

t. r.

fp g 112E*dr f T-i" v.d = T'i" (v + 4w)."

0 0

= a 2 Na • v Q + all'M wc + al'm w (15.26)

We now defiae a specific internal energy for the representative element (microstructure) bv

Pa"'k =,f p *"k lr :'dr (15.27)

From (15.26) and (15.27) we obtain the equation of balance of energy for the micro-structure

p(c) =N . vI+M . ,c + m w = P (15.28)

where

P= N va + Ma~ + rn-w (15.29)

is the mechanical power of the micro-structure (representative element. This compietes the

derivation of the field equations for the shell-like micro-structure. These field equations are in

their local forms. The giobal form of these equations will be derived and discussed in the next

section.

Before closing this section we proceed to discuss the continuity of stress throughout the

micro-structure, i.e., at the interface of the matrix and reinforcement. To this ena we recall the

jump conditions (4.35), i.e.,
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I [p'I=0

I p*vw, - to 0 (15.30)

SI p'(E + k*)w, - v" 0

In our case since the surface of discontinuity is a material surface we have v* = u* and we obtain

w =0 (15.31)

Hence, equation (15.30), is identically satisfied and equation (15.30)2 reduces toI
[ t I = 0 (15.32)

This shows that at a material surface of two media the stress vector is continuous. Since this

3 result holds for any material surface of two media, we can conclude that within the shell-like

body B * and at the surface s: = t, the stress vector is continuous.I
To ensure the continuity of displacement across the interface we must require for the direc-

3 tor to be continuous (not to have jump) across the interface. However, at this point, to keep theu formulation general, we do not impose such a condition. Moreover, in some cases (such as

delamination) it may be appropriate to admit jump for displacement.

I
I
I

I
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516. Conservation laws for a shell-like representative element (micro-structure)

This section is concerned with the derivation of the global field equations (conservation

laws) for our shell-like representative element (micro-structure). The derivation is accomplished

by integrating the basic field equations, derived in section 15, over an appropriate region of two

dimensional space covered by T'1, 112 coordinates. To this end we consider an arbitrary part Pof

the materials surface so : = 0 (see 14.1) in the present configuration and let Dd3be the boundary

J (curve) of !A The basic field equations (in local form) for the part Pwere derived in section 15.

For convenience, we rewrite these equations in the forms appropriate tc our development in this

section as follows:

I
a (pal2) = 0

b • pal/2(k + yl'') = (Na'-).a + p aU2

I c • pal/ 2(yli' + y2 .) = (Meal'2).a - mal'2 + pial,2 (16.1)

5 d " ax:Na+dxm+daxMa=0

e I p(E)=Na v c,+Ml -w . +m .w

At this point we need to consider the kinematics of a surface integral and deduce an integral

formula which will be utilized in the rest of the section. Consider a sufficiently smooth scalar-

valued or vector-valued function of position and time, 0, and define the integral

t I=J.oda (16.2)

f over P in the present configuration. Since the above integral is a function of time, its derivative

with respect to t may be calculated as follows:

B
I
I BASE



I -80-

T, 0 j-d f J O~Ji )dA

I : JO, (J + OJ)d: f T J(4 + J-J4I)dA

= (0+ J-JO)da (16.3)

Iwhere dA is the element of area in the reference configuration and where we have made use ofI
da= JdA

(16.4)

I and the region of integration of the last integral in (16.3) is again over !P. We now recall

a = det(ao) = - [det(a,,)I., = aac'k' ,p = 2aflc (16.5)

I where TraI = aaAv. and ilij is given by (12.24).

I By (16.4) and (16.5) we obtain

1 1(1 T)4(a-) ))lr2a'l/2a = T( )1/2a-1/2(2arl )

( a )C/2=JE (16.6)

I Hence, from (16.3) and (16.6) we have

d-- , dd=(+lgo)dd (16.7)

Now consider (16. 1)a and write

IB
I
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(Pa' 2 = [pal/ + p(al 2Y1 = p a112 + - p a-1/2I
= p al2 + p al/ 2 ri = alt 2(p + Tgp) = 0 (16.8)

I If we now integrate both sides of (16.1), with respect to T1', 712 and make use of (16.7) and

I(16.8), we obtain

F . . '1 (p a )d'ldT2 =-J (p + T, p)dd = 0 (16.9)I ~ T12 (p' 2  7'7 2 h +rp Ti7-

or

d fJ.all21 dd=0 (16.10)"T

I where dd is the element of area of the shell-like micro structure. This is the conservation of

5 mass for an arbitrary part P of our shell-like micro-structure.

3 Next we consider (16.1)b and integrate with respect to 7I' and ril to obtain

5 J.i, J ~a12( + y'w)drn'd1 2 = fj. J.(Naa 1 2),a dflld r12 + S , '1 d711dvI 2  (16.11)

I where r1 and 72 denote appropriate ranges of integration for T1I and 7l2. We now utilize Stokes'

theorem and (16.8) to reduce (16.11) as follows:

[fi a1'2( + v-4p)( + ylw)}d 1 d712 =

421pa-'( +v)~jw)+2

aNC'Vads + frPd d
I

or

f (v + YiW l + lll(v+ ylw)] )dd + fifdd + JN ds

or

I3 BASE
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Id fp(v+y'wdd=f pfdd+ JNds (16.12)

I where in obtaining (16.12) we considered the fact that

I N = Nav, (16.13)

3and dd is the element of area of the shell-like micro-structure. Equation (16.12) is the conserva-

tion of linear momentum for an arbitrary part of the shell-like micro-structure.I
Following the same procedure we consider (16.1 )c and integrate with respect to Tj 1, r12I

f4 4. Pa112(y I ' + y2 v)dq I dTl2 =

fs fJ1 (MaaI/ 2),cdlIdr 2 - J. fJ. maI/ 2drjIdrj 2 + J. J. Pia1 Pdj'd 2

Again we make use of (16.7), (16.8) and Stokes' theorem and writeI IJ. sJ. {^al'"(ylV + y2 ,) + alI2( + Tl,3 )(yIv + y2wdr'dnl =

LIP Mcvadd- f dd + fJ, i dd

or

IP(Yv + y2w]+ r[9(yIv+ y2w)ldd= (pi - m)dd+Jf .Mds (16.14)

where we have made use of the expression

M = Maya (16.15)

Equation (16.14) is the conservation of director momentum for an arbitrary part ,. f the shell-like

3 micro-structure.

I
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i We now consider (16.1)b, (16.1)c, (16 . )d and write

I pal,2[r x (, + yl4)] = r x (Naal"2)., + pr x ial,' (16.16)

Ia lU2 [d x (yl, + y24)] = d x (Maal/2)., - d x mal/ + p'd x ial,'-  (16.17)

3 0= al2(aa x Na) + aln(d x m) + al2(d,c x M a) (16.18)

IAdding (16.16), (16.17) and (16.18), we obtain

al/'2[r x ( + y14i)] + p alt 2[d x (yl + y2;')] =I
r x (NaaL 2).a + a. x (Naa 1 2 ) + p a 1/r x f+

d x (Mclal').a + d a x (MNa1 2) + p a1/2 d x

* or

p al/2[r x ( ' + y14)] + p a"i[d x (yl, + y24)] =

(al,2r x Na).a + p alr x f+ (al,'2d x Ma).a + p all2d x (16.19)

I Integrating (16.19) with respect to T', r12 and making use of (16.7), (16.8), (16.13), (16.15) and

Stokes' theorem, we obtain

, 1 {p-[r x 0'+ v14)] + (p + rTlcP)[r x ( '+ Yv,')]}dfld 2 +

nf ' al2{pid x (yl, + y24)] + (p+ T )[d x (yl, + y2 ,)])dl dT2

J j. (alPr x Na) adrl'drl2 + (al/2d x Ma) drLqd2l2 +
* 2 -Th 12

i 4 pa1a(r x i + d x i)dfll

or

I
I
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U p. ~ x + + Th[r x ( + y4MTdd+

I [d x (d x + y2;V)] +7 ra5 [d x (y" + y24fl }dd

J(r x Na )VadflidTl 2 +J fa (d x Ma)vtdflld, 2 +

ofp(r x + d x i)ddI or

I t pp(r x (v x y w) + d x (v v+ v2w))dd=

I Jlp(r x i+ d x i)dd+ f a(r x N + d x M)dd (16.20)

3 This is the conservation of moment of momentum of the shell-like micro-structure.

3 Finally we consider (16 .1)b, (16.1), and form their scalar products with v and w respec-

tively and add the resulting requations to the product of (16.1), with alt2 to obtain

p alr'(, + y4,) • v + pa,'2(yI, + V,') w + Plal 2 (E)=

(Naal"2),a •+ p " va 1 + (NIa 1 /2),• w

I - a1 /2 m w + P^ ai 2  w

I + a1 /2 Na • vL + a1/2 M 1 12c + a mw (16.21)

I Rewnting (16.21), we obtain

p air (E) + p al'2( ' ,' + V" w + yl ,. W + y2w

p a/2([' " v+ i. W) +

(al/'2Na. v).at + (al2NM ca. W),a (16.22)

I Integrating (16.22) with respect to r1 1,T2, making use of Stokes' theorem, and making use of
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I (16.7), (16.8), we obtain

k 42 J pal 12(E)drjldfl 2 + k. 42 pal'2 (v - j + ylv. 4+ yl' .w + y2W iv)&rI'dr 2

3, J4 pal/2F-v + w)d~l1 d, 2 +

I . .(alf2.Nla v),ad~'dT,2 +

5 or

JP(E)dd +f-p(v -v +2vlv W +v2Wwd=

J. p- v + Iw)dd +

3N -. (N '+ Nla -w)ds

or

jP(c + KOdaf ,(r-v + I w)dd+Jf iNa.1+ Nlclw)dsIp

^.(E ~O(~p(+ Odd=f p( P^+J w)dd +Jfa (Na. v +Nla. v)ds

or

I {fp(E + "k))+r 'I(lpE+ Jifddf f v+ IWjdd +f .(N. v+ NMds

or

Id
tC Jp(+ td d fiv +iw)dd+ f.(Na -v + NaI w)ds (62.

3 BASE



-86-

I where in obtaining (16.23) we have used the fact that

S= 1 (v'v+2ylv•w+y2w•w) (16.24)

I Equation (16.23) is the conservation of energy for the shell-like micro-structure.

U
I
'I
U
I
U
I
3
I
I
I
I
I
I

I BASE



3 - 87-

£ 17. Conservation laws for composite laminates

IIn this section we derive various conservation laws of a composite laminate (i.e. global

g forms of equations of motion) from the corresponding conservation laws of a shell-like micro-

structure derived in section (16). We recall that the composite laminate is assumed to consist of

3 infinitely many Cosserat surfaces. This assumption is justified by physical considerations since

the thickness of each ply is small in comparison with the thickness of the laminate itself.I
For convenience, we record below the conservation laws for an arbitrary part !P bounded by

I TPof the micro-structure

d a + dd=oIt
b d f.>3(v+yw)dd=fPdd+ Nds

c <: .JfP,(y1v+y2w)dd=f+(i-m)dd+ Md.

5 (17.1)

d • p rx(v+ylw)+d x(yv+y 2w)jdd=

f P p(r x i + d x i)dd + J (r xN + d xMI)ds

dT e p(E+ + idd f,(f, v + i. w)dd + f(Na<. v + Ma. w)ds

3 The first of (17.1) is a mathematical statement of the conservation of mass, the second that of the

linear momentum, the third is the conservation of the director momentum, the fourth that of the

5 moment of momentum, and the fifth is the conservation of energy. The various quantities

appearing in (17.1) have been defined in the previous sections and in what follows we will make

reference to these definitions when the need arises.

I
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5 We observe that the basic structures of (17 .),be and their forms are analogous to the

corresponding conservation laws of the classical 3-dimensional continuum mechanics. Equation

(17 .1)c does not exist in the classical continuum mechanics whereas equation (17 .1)d although

3 exist it has a simpler form. It should be noted that the conservation laws (17.1) are consistent

with the invariance requirements under superposed rigid body motions, which have wide accep-

3 tance in continuum mechanics.

As described in section (10), we consider two sets of convected coordinate systems one of

which is used to describe the behavior of the micro-structure and is designated by Tli = {T11 ,712,r }.

I The second coordinate system is used to describe the behavior of the composite laminate (i.e. a

3 continuum with micro-structure) and is designated by Oi = {01,0 2,0 3}. In general, the two sets

are related by (10.1) subject to condition (10.2). As before, we also adopt (10.3), i.e.,I
Oa = .a,

(17.2)

I
Consider an arbitrary part Pof the composite laminate in the present configuration and let it

3 be bounded by a closed surface d'P. In view of the choice of the convected curvilinear coordi-

nates 0i we note that coordinate 03 is, roughly speaking, in the direction of the lamination stack

Iup.

I Considering the conservation of mass (17.1)1, we v, rite

I
"Tt p71 dd7 = 0 = -t p ,2I al'2dl'dTi'2 :0

or in view of (17.2)1:

I
d S, f5 P al/ 2 d01d02 = 0 (17.3)
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I where 0 1, 0 2 are appropriate ranges of integration within the region P of the composite lam-

3 inate. We now integrate both sides of (17.3) with respect to 03 to obtain

3 f4 1 -'-t 2 J , al/ 2 d 1d0 2}d0 3 = const. (17.4)

where 8 3 is the appropriate range of integration within the region P. Since coordinates 8i are

convected, and since the quantity pal /2 is independent of time, we obtainI
| d f5' f5' f5, ^ al/2 dOdG0d03 =-0

T. 11 Pad8dd 3 O (17.5)

The element of volume in terms of coordinates 8i is

dv= g1/ 2 d01d0 2d0 3  (17.6)

I where g is the determinant of the metric of the space covered by the coordinates 01, 02, 03. We

now define composite ass~qnedmass d nsity, p, such that

3 pg~ = =112 1  = il ptg2t df + J7 p~gl 1r2

(17.7)
3p = p(Oi't)

U where a = det (aao) and g =det(gij). Substituting (17.7) into (17.5) and making use of (17.6),

we obtainI
d1 1. . pg1/2 d81do2do3=O

I or

d f g l 2pdv=O (17.8)

This is the conservation of mass of the composite laminate. From (17.7) it is clear that since

I pa'/ 2 is independent of time, it follows that pg' 2 is also independent of time, although both p
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3 and g1/2 may depend on t.

IRemark

3 In the rest of this section we will frequently need to perform differentiation with respect to

both coordinate systems T1i and Oi in the same expression. For the sake of clarity in such occa-

3 sions we will use lower case letters to designate differentiation with respect to 71i coordiantes

5 while for the differentiation with respect to 8i coordinates we will make use of capital letters.

For example, T*ii is equal to
I _ _*

@T*1  DT*2  aT*3  aT*1  aT°2  aT*3Vij = T + --7-+ - 7 = 7Tr + + + J

while TA.A is equivalent to

_ T@ OT WTTA A =-- -+- + --

This deviation from our usual notation is temporary and will be adopted when helps to clarify

I the derivation.

Next, we consider the conservation of the linear momentum of the micro-structure, i.e..

tT f,(v+ ylw)dd= pi dd+ JN ds (17.9)

3xhere

p a1 i= f "2p b'g*la2d + 1T*31 2 (17.10)

I and integrate with respect to 03 to obtain

f, {" f p(v + ylw)dd}d3 =J {,f J.p i dd)d03 + f6 { ,Nds)dO 3 + const
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II We require that in the absence of the body and contact forces the total linear momentum of the

I composite laminate must remain constant at all times. In view of this and by making use of

(17.10) and the fact that 03 is a convected coordinate we rewrite the above as

d j j J.. palf2(v + ylw)drjldrl2d03 = f a l 2f drIdrn2drl 3 + f . Navads dO
03 f 1 42 4b 0 3 42i 1h 03 P

or

d f5 f Pg91 (v + ylw)d0d92d@3-f.. J. j. if + gd3 + .3] )dO91d 2d 3
3l 02 2~ f5 02 0 4-

+ f 03 f SP N a I dddo3

5 or

f,, p(v +y' w)d v=f f -V2 f k2 p*b*g*'12d~jdv+ fg/2 (f ' jd

I + J.. J2 f+h (al/ 2Na),cd ldr 2d0 3

3 or
d~ S ,p(v~ylw~idv=f { g1/2 p*b*g*1/2dP)dv+f ,g-1/ 2 { fT33d }d,

or 
~~~+ f .3Jf5 2 fI(f0 T*aI.d!,)dO IdOdO3"I or"

I

d fp(v+y'w)dv= fg112 f p*b*g*1f2d }dv+f g-1/2{ f T. id )dv (17.11)

where in the above derivation, i.e., between (17.10) and (17.11 ) a comma denotes differentiation

Iwith respect to li = {.qct, }. Also, in obtaining (17.11) we have made use of (17.7), (17.10) and
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3 the Stokes' theorem. We now define the composite assind body for a density, b and the composite

ass~ndstrss vectorT i such that

3 pglb = J ° p*b*g'1/ 2d (17.12)

Uand 1

TA A=Tii = T'i,id (17.13)

I Substituting (17.12) and (17.13) in (17.11) we obtain

d J p(v+ ylw)dv=fpbdv+ Jg-l2TA~dv (17.14)

where a comma now denotes differentiation with respect to 9i = {01, 02,03). Making use of the

divergence theorem from (17.14) we obtain

d fp(v + y'w)dv= J'pbdv+ Jag-1t2TAnAda (17.15)

where n = nigi = ni - g, is the outward unit normal to the boundary surface aP. Definining 2

t = g-112TAnA (17.16)

3as the composite assignedtraction, we obtain

d fp(v+ylw)dv=fpbdv+ ,tda (17.17)

I This is the conservation of the linear momentum for the composite laminate.

U We now consider the conservation of the director momentum of the micro-structure, i.e.,

d f (ylv + y2w)dd=fJ,(i-m)dd+ f"Mds (17.18)

3 1.2 See remark after (17.8).
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3 where

pa i k= p'b'gl/2d + [T*3 ] 4--0 (17.19)

Iand integrate with respect to 03 to obtain

3 J , { t d f,(y lv +y2w)dd~do3= {f pidd~d3- fmddd 03

+ f5' fa ,Mds d63 + const.

We require that in the absence of body and contact forces the total director momentum of the

3 Icomposite laminate must remain constant at all time. Hence, making use of (17.19) and the fact

that 3 is a convected coordinate we reduce the above as follows:

d J p a1 a2(y1v + y2w)dlIdil2dk0 3 =pal/2idrldrl2d03

-' J. J. a1/2mdrl1dr2dO3

3 +f6' f, .M~xvdsd63
3 or

or

I fj J pg]12(yV+y2w)dOld@2de3= f 5 '8 If apbg12d [-4 =2)12

I f5 2 f5 J f 2 T3d )d6102dO

I +f B AMaSddd63

or

BI
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iI + \-rIpbg~f~~d~(/
dJ ,v + -l)v - fr o- .. , - fj -, (J T' 3d)dv

+ fg-1/2 k2 (T*3 )3dt)dvI
+ J.... 42 41 (alTMa),,d11ld1

2dO3

5 .~d fJ p(ylV+y 2w)dv=J g-T {k~pb~*1c~vJ~ 2 Td)v

+ JP g-1t2{ (rT3 ).3ddv

+ 9Jg-12 (J (T'a),, 4)d V

* or

I dfp(y'v + y2w)dv= f , g 1 2( fJ .P*b*1lr2 dd-f - fo T3d)dv

+ J g-12 { f " .(T*i4),id }dv (17.20)

3where a comma refers to differentiation with respect to iii = fTijl, ). We now define the composite

3ass~qnnd body couple, c, the composite intrinsic director force, k, and the composite assqned coupe stress

vector, Si, respectively, by 3

U
pg12c = p*b*g*ltd (17.21)

3 gi2k = a/'2 =fk T*3d (17.22)

=sAT J().d4, (17.23)

3 3 See remark after (17.8).
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USubstituting (17.21) to (17.23) into (17.20), we obtain

d p(ylv+y 2w)dv= f,(pc -k)dv+ 9 S Adv (17.24)

IMaking use of the divergence theorem, we can reduce (17.24) as follows

d fp(yt v +y 2w)dv= (pc- k)dv+fa,,g-1SAnAda (17.25)

IDefining

s = g-/2SAnA (17.26)

3as the composite coup(e traction, we obtain

d f,9 (ylv + y2w)dv= I (pc - k)dv+ Jasda (17.27)

This is the conservation of the director momentum for the composite laminate.

3Next we consider the conservation of moment of momentum for the micro-structure, i.e.,

dTt p( r x (v + yw)+ d x (yv + y2w))dd=

J'p(rxf+dxi)dd+f .(rxN+d xMl)ds (17.28)

and integrate with respect to 03

1d l,{f(rx(v+ylw)+dx(ylv+y2w)}ddd03=

f5 , p(r x i + d x i)ddd03 +

f j .(rxN+dxMdsd 3 +const.

We require that in the absence of body and contact forces the angular momentum of the compo-

3site laminate must remain constant at all times. In view of this and since 03 is a convected coor-
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I dinate. we may write

I 3 alIr x (v + yw)+ d X(yV + y2W))d~ldT2d93=

f, f f. f r x (pa 112) + d x (pa 12i))}d~jI'd~j2d6 3

I+Jf5.3 42 J. (r x avdd6

Ior + f 3 f f T (d x Ma~vds d6 3

d-. pgl/(r x (v +vlw)+ d x(yv + 2w))dOld2dO3
8tf 3 f6 81;

f.. (f r x ( fJp*b*g*lf2d + [']4-2)dlO

+fJ (L d x( f 2pbgl~t +[- ))dOlde 2d63

or ~ ~~~+ JI 5I(l x Na),~adlde 2dO3 + fj fj J..f5 (al'/-d xM),MN

81 83B8S8
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Ed
Tt ,ppr x (v + ylw) + dx (ylv + y2w)}dv= p(r x b + dx c)dv

+ Sf' ff, (r x f 2 T*33 d)delde2d63

+fJ ' f (r x J 2T'adt).d0d02d03

1 + , , (d x froa T*3 dt),3d.d0 2d0 3

I + f5 f,, f5 (d x f T'dde).,dd 2d 3

=fp(r x b+ d x c)dvI
+ f g-1/2(r x J 2 T'id)jdv

Sf, g-12(d x f . T'id)'idv (17.29)

where a comma denotes differentiation with respect to Tr1 = {71a, ). Making use of (17.13) and

I (17.23) we can rewrite the above as:

'fp(rx(v+ylw)+dx(ylv+y2w)}dv=.,p(rxb+dxc)dv

3 ,g-1/2(r x TA),Adv

I fg-1/2(d x SA).Adv (17.30)

where a comma now refers to differentiation with respect to 0i = {01,02,03) coordinates. Taking

advantage of the divergence theorem, we proceed to reduce (17.30) as follows:

B
I
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dS
t fpor x (v + y'w) + d x (ylv + y2w))dv= Jp(r x b + d x c)dv

+ fJ (g-l/ 2r x TA) [Adv

+ JT (g-lI/2d X SA) IAdv

= fP(r x b + dx c)dv

3 +f, g-lr x TAnAda

3 +J3 glfld XSAn~da

Then by (17.16) and (17.26) and the above we obtain

Id
d .fpfr x (v +yw) + d x (yIv+y2w))dv=

IP(rxb+dxc)dv+ (rxt+dxs)da (17.31)

3 This is the conservation of the moment of momentum for the composite laminate.

3 Finally, we consider the conservation of energy for the micro-structure, i.e.,

d +p( + tdd=Srp(f-v+i.w)dd+f ,(N v+M'w)ds (17.32)

3 We recall that in the context of purely mechanical theory j = j(1ja,t) is the specific internal

energy while 5( represents the kinetic energy of the Cosserat surface (micro-structure) in the

I present configuration and is given by

3 = -1 (v. v + 2y1v -w+ y2w•w) (17.33)

I We also define the momentum corresponding to the velocity v and the director momentum

corresponding to w by
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I ._p =(v+yw)

3 (17.34)

a = p(ylv + y2w)

3 We now integrate both sides of (17.32) with respect to 03 to obtain

f 53 fJa'(N v + M. w)d.id0 3 + const. (17.35)

We now require that within the context of purely mechanical theory and in the absence of body

and contact forces the total energy of the composite laminate must remain constant at all times.

3In view of this and since 03 is a convected coordinate, we may write

Left hand side of (17.,5) = d J... f J a1/ 2(i + C)drl1drI2d6 3

= (Pal"'2+al2 0dd 2 d0 3

orU
Left hand side of (17.35) = -- J.. p. f.o pg' /2*d + pg29O0d1d 2dO3 (17.36)

where in obtaining (17.36) we have made use of (15.27) and (17. 7). We now define the compo-

I site assnzdstrain energy, and the composite ass ynedkinetic energy, Kboth per unit mass of the com-

3 posite such that

PgME = J2 P' .g'. Mk*d (17.37)

I K= 9k= (v -v+2y1 v . w+y 2w " w) (17.38)

5 We also record the momentum corresponding to the director velocity w

I
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P *v = p(v + ylw)3 (17.39)

P 4 
= P(Ylv 

+ y2w)

U Substituting (17.37) and (17.38) into (17.36), we obtain

I Left hand side of (17.35) = d fp(E + 90dv (17.40)

U Considering the right-hand side of (17.35), we write

3 Right hand side of (17.35) =fff [(Pal 2 -" v + (pal/2i)" wjdTl'dri 2d0 3

+>J.J.[(Nav(,) -v + (Mav(,) -w]dsd0e3

I p3 2 0 p*g*I/ 2bd + [T*J t__0  vd01de2dO3

0f1 Jp * Ji {2**1/2b*~d + [T%] =4 }w dd203

I orf S (N a -v, ,,do 3,< + f5 , 3 f (M w ), ,<, o3
Ior-

I
I
U
I
I
I
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*
Right hand side of (17.35) =p (g-1/2 J p*g'**d4 v dv

+ J (g 1 12 f pg* ' 1b%*d) w dv

3J , a 1 /2 ((alNa. v),a + [T*] =Z v)dd dO3

f f', a-1/2( (al/2Ma" w)'a + [T*4] w)-d-d- 3

I J3 4

= o (g 1 /2  p-g*• 2b*dr) V+ (g- 1 /2 f p*g*l/2b*4d') w dv

I + fgl2{E(f 'Vad ) v], + [(f "T* 3
3 dA). v])dv

f,1r2t- ,q(T Vczd) wf, + [( f (T*34) ) wl)dv

or

I Right hand side of (17.35)= f,g-,2(( , p;g*2 Eb*d), v f + (f2p

gf han sid of 1/b -v + (f pg*1 b* d w)dv

+ fp g12( f Tiid ). v)dv!0
+ fpg-1,2(( f 42 (T'i ).idQ .wvdv (17.41)

Making use of (17.12), (17.13), (17.21), (17.23) and the divergence theorem, we can rewrite

U (17.41) as follows

I
I
I
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I Right hand side of (17.35) = f ,p(b - v + c w)dv

+ fg-/2(TA. V),Adv+ f g-1/2(SA• W).Ad.

I 
=J',p(b' v+c w)dv

+ J'p(g-I/2TA V) IAdv+ 'p(g-lr2SA- W)IAdVI
= fJp(b v + c w)dv

+ Jpg-lt 2TA. vnAda+ fpg-1/ 2SA. wnAdaI
= fp(b -v +c w)dv+ f,t • vda + fps. w (17.42)

where in obtaining (17.41) we have also made use of (17.16) and (17.26). From (17.40) and

I (17.42) we obtain

I -Jp(E+ 9dv=dv=fpp(b•v+c"w)dv+f J(t.v+s.w)da (17.43)

3 This is the composite conservation of energy in purely mechanical theory.

I
I
I
I
I
I
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3 18. Summary of basic principles for composite laminates

I Considering the development in the previous section, we are now in a position to state the

conservation laws (principles) for composite laminates. With reference to the present

configuration, these conservation laws are summarized below:

a a f pdv=0

b : fp(v + yw)dv=fp b dv+LPt da
I

lb"A df.p(ylV+V2w)dv= (p-k)dv+ sda

d Ir x (v + y1w) + d x (ylv + y2w)}dv=

5 JPP(r x b + d x c)dv+ JP(r x t + d x s)da

e d - p(E + "Odv=fp(b'v+c" w)dv+ fP(t'v+s" w)da

5 The first of (18.1) is the mathematical statement of conservation of mass, the second that of

linear momentum principle, the third that of director momentum, the fourth is the principle of

3 moment of momentum, and the fifth represents the balance of energy for composite laminates.

In (18.1) r, d denote the position vector and the director associated with a composite particle.

respectively, while the velocity and the director velocity of the composite particle are given by v

I and w. The definition of the various field quantities in (18.1) and their relation to their counter-

3 parts in micro-structure and the similar three dimensional quantities are given below.

1) p = p(ei,t) is the composite assignedmass density in the present configuration given by

/pg2 = a1 /2- f p'(d 0 8.2I 0

5~ BASE
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where in (18.2) p is the mass density of the micro-structure, p° is the classical 3-dimensional

mass density, g is the determinant of the metric tensor gij associated with the composite coordi-

nate system 8i, g" is the determinant of the metric tensor gij associated with the micro-structure

coordinate system rli = {rla,4} = f{0a, ), a is the determinant of the two-dimensional (surface)

metric tensor aa associated with the Cosserat surface (micro-structure).U
We notice that the dimensions of p and [S are mass per unit volume and mass per unit area,

3 respectively. However, the dimension of p is the dimension of integrated mass per unit volume

of the composite.

2) b = b(Oi,t) is the composite assigned body force density per unit of p, given byI
p g' pgd (18.3)

where b5 is the classical 3-dimensional body force density. The dimension of b should be clear

I from (18.3).

3 3) c = c(0i,t) is the composite assignedbody coup[e density per unit of p, given by4

!t
S9 g1,2 c = J" p*g* lrb* d4 (18.4)

I The dimension of c should be clear from (18.4).0

4) t = t(0i,t;n) is the composite assiqned traction (per unit area of the composite) such that 5

I t = g-1/ 2 Tini (18.5)

34 c may also be called "composite assigned director force" emphasizing the
"directed" nature of the present continuum theory. In the present context, howev-
er, we prefer the terminology in 3 above as it makes the physical nature of c more
apparent.

The nature of the definition (18.5) and (18.6) as well as (18.9) and (18.10)
will be discussed and explained in section (19).
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I a i,i (18.6)
T 0

Ta =J Td4 = aif 2Na (18.7)I
T33 = T*3 14=42 - T*3 14__ = AT .3  (18.8)

where T*i is the classical stress vector and Na is the resultant force of the micro-structure (i.e.,

Cosserat surface). We also recall that a comma on the left-hand side of (18.6) to (18.8) denotes

partial differentiation with respect to 0i. However, a comma on the right-hand side of (18.6) and

I in (18.8) denotes partial differentiation with respect to r i = {T }.

3 5) s = s(0i,t;n) is the composite assignedcoup(e traction 6 per unit area of the composite such that

I S = g-2 Sini (18.9)

I Sii= f2 T'iid, (18.10)

Sa= Tsad = al2MI (18.11)

I 53,3 = (T*3 ) .=V - (T*34)14=0 = A(T3E) (18.12)

I where M a is the resultant couple of the micro-structure (i.e., Cosserat surface) and the same

remark as in (4) above holds for commas and partial differentiation.

6) k = k(ei,t) is the composite assiqned intrinsic (director) force, per unit volume of the composite,

I given by

I glk=alf2mJ T*3d (18.13)

6 s may also be called "composite assigned contact director force" which

reflects the "directed" nature of the present theory. However, the terminology
* given in 5 reflects the physical nature of s more clearly.
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I where m is the intrinsic director force of the micro-structure (i.e., Cosserat surface).

7) ya = ya(0i) are the inertia coefficients which are independent of time and are given by

I ya = fp o *g*l 2 ad (18.14)

I 8) c = c(Oi,t) is the composite ass inedspecific internaenergy per unit of p given by

p gll/2 IE = a p g' tllk2d (18.15)

I where E* is the classical 3-dimensional specific internal energy and F- is the specific internal

3 energy per unit p for the micro-structure (i.e., Cosserat surface).

I 9) K= 9q0i,t) is the composite ass~qnedkinetic eneTy per unit of p and is given by

K= K= -T (v " v + 2ylv w+ y2w w) (18.16)

where 9krepresents the kinetic energy per unit p of the micro-structure (i.e., Cosserat surface).

The momentum corresponding to the velocity v and the director momentum corresponding to w

I are given by

p - P'=p(v+y l w) (18.17)

3 p w = p(y v + y2w) (18.18)

For simplicity in the rest of this development, when there is no possibility of confusion, we

i adopt the following simplified terminology:

P: "composite mass density"

b: "composite body force density"

3 C: "composite body couple density"
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I t "composite traction"

s: "composite traction"

k: "composite intrinsic force"

"E: composite specific internal energy"

K "composite kinetic energy"

B
I
I
I
I
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19. Considerations on composite contact force and composite contact couple

In this section we discuss the physical nature of some of the field variables defined in sec-

I tion (16) and recorded in section (18).

We begin our discussion by considering the composite contact force t, and recall (18.5) and

U (18.6), i.e.,

I t = g-1/2Tini (19.1)

l~and

l TAA = Tii = J2 TiidP (19.2)

I Expression (19.2) may be rewritten as

I TAA J Tiid = 0

* or

I .o -' T d d )a + (T3  -
(19.3)oT- 'T .3- 0 =T 0 (19.3)

We now identify Ta as follows

Ta = f , Tad (19.4)

I From (19.3) and (19.4) we obtain

i T 3 = T 3
14 : 2, -T*3 I --O = AT*3  (19.5)

I It is clear from (19.4) that TO' = (T',T2) are the stress resultants in the directions of get = (glg 2).

In other words the composite stress vectors T'a are in fact the stress resultants of the representa-
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l tive element (i.e., micro-structure). Differentiating both sides of (19.4) with respect to , we

i obtain

*aTa aTa a03 = Tca

or

T*a = Ta, =  Ta.,, = Ta 3  (19.6)

where (, ) and (,03) denote partial differentiation with respect to and 03, respectively, and

where we have made use of (17.2). Expression (19.6) shows that T*a are the derivatives of Ta

with respect to 03 divided by E. We now consider (19.3) and write

AT 3  2 - T *3 140 (19.7)

I The right-hand side (RHS) of (19.7) can be written as

AT*3 - T'3 T'34 -T*34=°_ 2 (T-3 2 * T3 2'=

AT 3 =2 - CI = - A0 3  1) (19.8)

I where .2 is associated with A0 3. The continuity of displacement field at interface, as discussed

I in section 25, justifies this substitution. Left-hand side (LHS) of (19.7) can be written as

3 aT3  lir AT 3  r T 3(0 3 + A03 - T 3 (0 3 ) (19.9)lim ((319.9)VI~
~9A 1QTe-~ A03

I Comparing RHS of (19.9) with RHS of (19.8) and considering the continuity constraints, we can

associate the composite stress vector T3 with T*3 
2, i.e.,I

V = 2T *3  (19.10)

This shows that T3 is proportional to the interlaminar stress vector of the composite laminate. In

3 other words, T3 may be considered, in a mathematical sense, as the resultant of interlaminar
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I stresses in a representative element across the planes parallel to the interface.

I Next, we consider the last term on the right-hand side of (18.1 )b which represents the total

I contact force on the part P of the composite body. Making use of (19.1) and (19.2) and the

divergence theorem, we may write

I fat da= fa g-l2Tinida =S(g- 2Ti)1 idv

I _f gl 2Tiidv= g71t2 2 T~i,id4)dv

I
=fi 3 , f6J ( T~ijd }d@1dq 2d@3

=f (. J 2 i 'idOlde 2d }dO 3

f5'(f2 m 0

I ,, g* /r2T*i,<idv)do 3

I 3s sf, g."',T*inida'jdO3

I Hence,

I aT tda= f5 3 (f,, t'da')d0 3  (19.11)

The above expression relates the composite stress vector to that of the representative element. In

other words, (19.11) is a relationship between the stress vector of the micro-structure and the

stress vector of the macro-structure showing that the total contact force on an arbitrary part Pof

3 the composite laminate is in fact the integral, in 03 direction of the total contact force on the

corresponding part P" of the micro-structure.

I
I BASE



1 - 111-

I Next, we consider the composite contact couple s, and recall (18.9) and (18.10), i.e..

I s = g-1/2Sini (19.12)

H~and
I SAA = Si.i = J o (T*i),id (19.13)

The above expression may be rewritten as follows

I S.i - (Ti4),.id= 0

3 or

[S.a' - 42 (T* ),ad ] + (S3 =(19.14)

I We now identify Sc as follows:

Sa= f02 T*ad4 (19.15)

I From (19.14) and (19.15) we obtain

I S33 = (T*3 ) I - 2 - (T3) 4=o = A(T* 3 ) (19.16)

It is clear from (19.15) that Sa= (S1,S 2) are the stress couples in the directions of g"= (g1,g2).

In other words, the composite couple stress vectors Sa' are in fact the stress couples of the

representative elements (i.e., micro-structure). Differentiating both sides of (19.15) with respect

3 to 4, we obtain

I " q~a _ 
ct  03 = '

3 or
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T*a4 = Sa,4 1 Sa.3 - Sa.3  (19.17)

1 where (,4) and (,03) denote partial differentiation with respect to and 03, respectively, and

where we have made use of (17.2). Expression (19.17) shows that (T'a4) are the derivatives of

Sa with respect to 03 divided by e. We now consider (19.16) and write

aOs = A(f*3 )= (T*3 ) 1 =:4 2 - fT3 ' 14_- = 3  d (19.18)uW (T~ f 0
By differentiating with respect to we obtain

@2S 3 = a(T 3 E) (19.19)

Making use of (16.2) we may write

a _S k ( *
or

a (E- ) DS3 *3 (19.20)

We now integrate the above with respect to 4 to obtainI
EaS3 =-T*34 + D, (19.21)

Assuming that for the unstressed state both T*i and Si and their space derivatives vanish, we can

I put D1 = 0 and write (19.21) as follows:

I $- T3  (19.22)

t where E, is now a function of E and we have El << 1. We now integrate the above with respect

to 4 and obtain
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S3=o 2 '1l (T*3 )d + D2  (19.23)

I This is valid for all times, and in particular must be valid for the stress free state; hence, D2 = 0.

3Then by the mean value theorem for integrals we may write

S3= (2 - 0)(T3 ) = 1'I E

(19.24)
I < 0<_ .2

Since the composite laminate is assumed to be composed of infinitely many Cosserat surfaces in

the limit we have -0, 2--- O , -+ 0 and

S3 = Lim - [1 42T*3-] =0 (19.25)I -O-O,E--*O0 C

Expression (19.25) shows that the component S3 of the contact couple s is identically zero for

the composite laminate. Next, we consider the last term on the right-hand side of (18.1)c which

represents the total contact couple on the part Pof the composite body. Making ue of (19.22),

I (19.13), (19.1) and the divergence theorem, we may write

B
I
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I
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I
s da= fa, g-Sinida- fP (g-1/2Si)dv

I ~= f g-12'Si'idv= f g'12(f , (T'i ),jd }dv

= !i 2f 0f ° 2 { Ti4)ijd4)d@1dO2dO3

aI = ij2 j Ti)i2d4 d3

I =f6' (fv g'- 1 /2(T'i4)idve}d 0 3

I --. f.J (g,_1 2Ti4), jjdeid03

I
Hence f5 (, ,,, g'-1t2(T i4)ni'dd 'd03

I Hence 19(J

Sfasda= f63 (J" tV da*)d0 3  (19.26)

I This expression relates the composite contact couple to the stress vector of the representative

5element. In other words, (19.26) is a relationship between the stress vector of the micro-

structure and the stress couple vector of macro-structure showing that the total contact couple on

3 an arbitrary part Pof the composite laminate is in fact the integral, in 03 direction, of the total

moment of the contact force, in 4 direction on the corresponding part P° of the micro-structure.I
Conditions (19.2) and (19.13) or equivalently (19.11) and (19.26) stipulate that the action

I of Ti and Si over a portion of surface aP, with outward unit normal n, of the composite laminate

is "equipolent" (i.e., equivalent in effectiveness) to the action of the stress vector tV over the

corresponding portion of the surface a1', with outward unit normal n*, of the representative ele-

5 ment (i.e., micro-structure).

I BASE
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£ 20. Further consideration of the composite conservation laws.

1 In this section we proceed to obtain different froms of the basic principles for the composite

laminate, namely expressions (18.1). The derivation of the alternative forms of these equations

may be carried out using either Eulerian or convected coordinate systems. For our present

3development the use of a convected coordinate system simplifies the intermediate manipulations

considerably. For an extensive discussion on convected coordinates, the reader is referred to

I [Oldroyd, 1950] and [Lodge, 1974] where formulae for differentiation with respect to time and

various additional results can be found. It is, however, instructive to carry out the derivation by

direct differentiation, with respect to time. of the integrals on the left hand sides of (18.1). Here

3we adopt this mode of derivation to derive the transport theorem in terms of convected coordi-

nates.

Let P be an arbitrary part (or subset) of the laminated composite body B with a closed

I I boundary surface DP in the present configuration at time t. The counterparts of P and aP in a

fixed reference configuration will be denoted by P, and DP, respectively. Let 0 be any scalar or

tensor-valued field with the following representation in the present configuration at time t:

0 = 0(0i,t) (20.1)

I and consider the volume integal

1 1= h0(0i,tdv (20.2)

Often we encounter an expression of the type (20.2) and we need to calculate its time derivative

dt- Since 0 are convected, we may write

I
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I dI d ( 0(Oi,t)dv= d + (0i't)gl /2 d01 d02d0 3

= f5 3f5" I og-/ + (g"/2))d01 d02 0 3

i = g3 '= g1(0 + )d1d02 d03

3 where in (20.3), 01, 02, 03 denote appropriate ranges of integration for variables 0i.Making use

of the divergence theorem we can write (20.3) in the formI
dl_ d fPO(Oi,t)dv= f Do dv+ JO v' nda (20.4)

We now consider the conservation of mass (1S. 1)a and writeI
d ,. (20.5)

This must be valid for any part P, hence. assuming that p is continuously differentiable we

I obtain

p + . g9 p=O (20.6)

I where in obtaining (20.5) we have made use of (20.3). Equation (20.6) is the local form of the

3 continuity equation for composite laminates.

3 Next we consider the conservation of linear momentum (18.1 )b, i.e.,
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S. -.. fp(v + ylw)dv= p b dv+ falt da (20.7)

I Considering the left hand side of (20.7) and making use of (20.3) we can write

Left hand side of (20.7)= J, {[p(v + y'w)] + g fp(v + ylw)]}dv

! p (v + ylw) + p( '+ y4 )+ 49g p(v + ylw)}dv

I( -(p + *g-)(v + yw) + P(+ y1)Wd (20.8)

i Substituting (20.8) into (20.7), we obtain

f p( + Yt W)dv= fp b dv+ f pt da (20.9)

where we have also made use of (20.6).

Adapting the same approach we consider the conservation of director momentum (18•1),

I and we write

d fJp(ylv + y2w)dv= fp(pc-k)dv+ fasda (20.10)

or

I
orp 

g[~ l ~ ) [p(yIv+ y2w ) ]dv= f,,(p c- k)dv+ fasda

or

I

(p, + y)+ p)(yl,+ y2W)+ p(yl v +y2 v)d = , ,(pc-k)dv+ a8 sda
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3 or

SJpp(ylv + y2j)dv = J(pc - k)dv+ faas da (20.11)

I where in obtaining (20.11) we have made use of (20.6).

Next, we consider the conservation of linear momentum (20 .1)d, i.e.,

d fpprx(v+y2w+d x dv=pp(rxb+d xc)dv

5 =Ja,(r x t + d x s)da (20.12)

Following the same procedure, we can reduce the left hand side of (20.12) as follows:

Left hand side of (20.12)= -pp r x (v +ylw)dv+ d x (ylv+y 2w)dv

I =f ([prx(v+ylw)]+- g [prx(+ylw)])dv

+fJ,[pdx(ylv+y2w)]+g [pdx(yIv+y 2w)])dv

= J {p r x (v+ ylw) + p[r x (v + y1w)] + g pr x (v + ylw)}dv

I~ ~ +Jpxyvyw)+p[dx(y V~y wI 4- p d x(y v +V"W:Jz

= J ((p + 4g p)[r x (v + yw)i + p[r x (v + y'w)]}dv

I = fp[r x (v + ylw)]dv+ J p[d x (ylv + y2w)]dv

3I or
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Left hand side of(20.12) = Jp(i x (v + yt w) + r x (, + y,)dv

+Ifp p (a X(yIv+ y2w) + d x (y, + y2V))dv

S=J p{r x (+y4)+d x (yl +y 2iV)}dv

+ f, p (v x (v + ylw) + w x (yv + y2w)dv (20.13)

where in obtaining (20.13) we have again made use of (20.6) and the fact that

I r=v , d=w (20.14)

I Since

I vxv=O , wxw=0 (20.15)

I and

Sv x w = -w xv (20.16)

The second integral in (20.13) vanishes identically; hence, after substituting the result in (20.12),

we obtain

fp p{rx(v'+y1 w)+d x(yl+Y 2w)}dv=fpp(rxb+dxc)dv+fap(rxt+dxs)da (20.17)

3 Finally, we consider the conservation of energy (18 .1)e, i.e.,

I
d fpf+ Ndv=fp(b, v+c-w)dv+J (t . v+s w)da (20.18)

and 
write
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Left hand side of (20.18) =J' ([p(E + 91 + -I [p(E+ 90])dv

=JfT PCE+ 90 + p(E+ 9Q +- p(E+ 9Q)dv

Left hand side of (20.18)= ((p+ .g p)(E+ go +P(E+ }dv

3p JP( E+ ~d v (20.19)

i where in obtaining (20.19) we have again made use of (20.3) and (20.6). Substituting (20.19)

into (20.18), we obtain

Jfp(E*+ XOdv=J p(b • v +c w)dv+ f , (t v +s w)da (20.20)

For convenience and later use, below we summarize the results of this section:

a: + + -p=0

! b" fp( + y4i)dv= Jpbdv+ jIPtda

i . pty'j'+yW v)dv=f,(pc- k)dv+fpsda (20.21)

d: fpp(rx(,+y'y4)+dx(yl('+y-4))dv=fpp(rxb+dxc)dv+Jp(rxt+dxs)da

e •Jp(E+ 'dv=fp p(b v+c-w)dv+fp(t.v+s. w)da

B
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1 21. Further consideration of composite contact force and composite contact couple

I a) Existence of the composite stress tensor and its relationship to composite stress vector

I Consider an arbitrary part of the composite laminate which occupies a region P in the

g present configuration at time t. Let Pbe divided into two regions P,P 2 separated by a surface,

say a (see figure 5). Further, let aPPjDP2 refer to the boundaries of PP 1,P2, respectively; and

I let

5R = P r) P , aP2 = aP2 r)P (21.1)

Thus, a summary of the above description is as follows:

P= P IU 2  , = U(21.2)

I aP=R T U , T2 =3UP2U

We recall the principle of linear momentum in the formU
fp( + y',v)dv= f ,pbdv+ a , t(n)da (21.3)

The above holds for any arbitrary part of the body including PT,P 2 and P. Application of (21.3)

I to PI,P 2 and Pyields

3 f p(' + yi4)dv= L. pbdv+ aI t(n)da (21.4)

I f p( + y'i4)dv= f p b dv+ fa t(n)da (21.5)

I p ( ' + y' I')dv= fp b dv+ Jat(n)da (21.6)

We notice that if n is the outward unit normal at a point on a when a is a portion of aP1 , the out-

ward unit normal at the same point on a when a is a portion of aP 2 is -n. Subtracting (21.6)

from the combination of (21.4) and (21.5), we obtain
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f Jy (t(n)+ t(-n))da= 0 (21.7)

3 Iover the arbitrary surface a. Assuming that the composite stress vector is a continuous function

of position and n, it follows that

t(n) + t(-n) = 0 (21.8)

or

t(0 , t; n) = -t(Oi, t; -n) (21.9)

I According to the result (21.9), the composite stress vector acting on opposite sides of the

5same surface at a given point are equal in magnitude and opposite in direction. This is the

counterpart of Cauchy's lemma in the classical theory.I
Consider an arbitrary part Pof the composite laminate in the present configuration at time t

I which occupies the region Rin the space covered by the coordinates 0i. Consider some interior

macro-partick P of P having the position vector r and the director d (note that the particles of the

I composite laminate are not like ordinary particles in the sense of classical continuum mechan-

ics). We construct at P a curvilinear tetrahedron, lying entirely within R and in such a way that

the side i (i = 1,2,3) is perpendicular to the coordinate direction 0i and the inclined plane with

3outward unit normal n falls in the octant where 01,02,03 are all positive. This means that the

edges of the tetrahedron are formed by the coordinate curves PP of length dsi (see figure 6). We

I refer to the side i of the tetrahedron by a, and to the inclined plane by a, respectively. Now we

*recall that

ds, = (gjdO1 • gd0')12 = (g, -gj) 12d0' = (g11)1/2d0'I
ds 2 = (g202" g2d0 2)112 = (g2 gi) 1/2d02 = (g22)('2d0 2  (21.10)

ds 3 = (g 3d0 3 g3d6 3 )11 2 = (g3 " g3) 1 2 do 3 = (g33)1 /2 d 0 3

3 where
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IPPi gidO' (no summation on i) (21.11)

3 Moreover,

5dal=4 1I2d62xg930e3 9l2X93 Id62dO3=- I g1/2g1ld 2dO3

I 1(g1t2)(g1 .g1)1'2dO 2dO3 
- (g11 )1/2O2d3 (21.12)

In vector form we may write

da, 4(g 2de2 Xg3d03)=4 g1/ 2 0 2 dN3 g1 =(g)- 11'2dslg1  (2.3

Similarly we obtain

1 da2 -- (gg 22)'1d2010 3

da2 (= (2) 1 2ds2g2

I and

da3 - 19 ( 33)1t2dOldO2

1 (21.15)
da3 =(g

33 )- 1/2d s-;g 3

For the inclined surface we have

I da= I4I PRP1 x P31P2 I I- (g~dO' -g930 3) x (g2de2 -d0)

1 4 (g1 Xg2)dO'd9 2 - (g, x g3)dO1dO3 - (93 x g2)d02dO3 I

U ~~I (g)1ir 2g3ciOici 2 + (g)l 1 0~~e'e + (g)1/2gdedI

1 1-~~- I (g'fdsg + (g22)'1/2dsg" + (g33 1 2 5g

-Ida, +da2 +da~i (21.16)
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U In vector form we may write

3 cla = (da)n = (da)nig i = (da)(nlgl) + (da)(n 2g2) + (da)(n3g2 )

3 = (g"l)-1 /2dalgI + (g22)-1/2da 2g2 + (g33)-1/2da 3g3  (21.17)

where n = nig' is outward unit normal to da. From (21.17) we may writeI
dai = ni(gii) 1t2 da (no summation on i) (21.18)

We also recall that the volume of the tetrahedron is given by

dv= (dh)n • da = dh(nigi) • ((da)njgJ) = (dh)(da)nini • 5ij = (dh)(da)nini (21.19)

Iwhere dh is the height of the tetrahedron.

I We now recall the principle of linear momentum in the form of (2 0.2 1)b and apply it to the

I tetrahedron under consideration; hence, we write

3 p( + y4v)dv= fp b dv+ f,,t da

* or

Sfhfa fP(" + y4)- pb}dh da =f t da - I, tda,-f t2da 2 - ftda3

| or
fh dh fa (p(' + y 41' ) - pb)da = fa t da - fJ tlnl(gll)If2da

- J t2n2(g 22)'2da - Ia t3n3(g 33)1"2da

* or

I dh f fp(' + N4) - pb)da -{t- tjn(g")'}da (21.20)

I where in obtaining (21.20) we have made use of (21.18).
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I If we let h -4 0, we obtain

.f (t t n(gii)1t 2 )da = 0 (21.21)

Since this must hold for any arbitrary surface a, we conclude

I
t tjn(gi' 1/2  (21.22)

Since under general transformation of coordinates, t is an invariant and ni is a covariant vector, it

3 then follows that ti(gii) 1 2 transforms according to a contravariant type of transformation. We

may therefore write

ti(gii) 1/2 = T'ijgj = ij gJ (21.23)

where t'i and ti are contravariant and mixed components of the second order tensor which we

3 call the composite assqnedstress tensor or simply the composite strwss tensor. Combining (21.22) and

(21.23), we can now writeI
£ t = tiJnigj = g- 1/2 T i ni (21.24)

where we have made use of (19. 1). We also notice that by (21.22) and (21.24) we have

I
Ti = (ggii)]/ 2t, (no summation on i) (21.25)

I and

I = 112 T gi (21.26)

I
b) Existence of the composite couple stress tensor and its relation to composite couple stress

3 vector.

3 We now recall the conservation of director momentum in the form
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3 fp(yl, + y2l4)dv= f,(pc - k)dv+ fas(n)da (21.27)

I This holds for any arbitrary part of the body. With reference to figure (5) we apply (21.27) to

PI, P2 and Pto obtain

J p(yl, + y2;V)dv= J, (pc - k)dv+ L,, s(n)da (21.28)

3 J p(yli + y24v)dv= f (pc - k)dv+ fa s(n)da (21.29)

SJ' p(yl" + y24)dv= fp (pc - k)dv+ fas(n)da (21.30)

Recalling the remark made after (21.6), we subtract (21.30) from the combination of

(21.28) and (21.29) to obtain3
f {s(n) + s(-n))da = 0 (21.31)

over the arbitrary surface o. Assuming that the composite contact couple s is a continuous func-

tion of position and n, it follows that

s(n) = -s(-n) (21.32)

or

3 s(0 i, t ; n) = -s(Gi, t ; -n) (21.33)

According to the result (21.33), the composite couple stress (contact couple) vector acting on

I opposite sides of the same surface at a given point are equal in magnitude and opposite in

direction.

We recall the principle of director momentum in the form (20.21)c and apply to the

tetrahedron in figure (6); hence, we write

I
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fpp(yl' + y2 V)dv= f'(pc - k)dv+ fasda

I or

fh . {p (a + y4)_- (pc - k)}dh da = f. s da - f., S1da- f S 2dS2 - f, S 3ds3

* or

3fh dhfa fp ( i + v4)-(pc-k)jda fa sda-fa slnl(gll)1ada

f a s2n2(g22)1/2da - J s3n3(g33)1/2da

orI
3fhdh f ( p( + y ) - (pc - k)}da = f (s - sini(gii)'/2da (21.34)

where in obtaining (21.34) we have made use of (21.18). If we let h --+ 0, we obtainU
fa (S - sini(gii) 1 '2) da = 0 (21.35)

Since this must hold for any arbitrary surface we conclude

3 S= sini(gii) 1/2  (21.36)

Since under general transformation of coordinates, s is an invariant and ni is a covariant vector, it

then follows that si(gii) 1/2 transforms according to a contravariant type of transformation. We

3 may therefore write

3 si(gii) 1/2 = sijgj = silgJ (21.37)

where Sij and s'i are contravariant and mixed components of the second order tensor which ve

call the composite assignzd coupfe stress tensor or simply the composite coup&z stress tensor. Combining

I (21.36) and (21.37), we can now write
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S = sijnigj = g-/ 2Sini (21.38)

I where we have made use of (19.12). We also notice that by (21.35) and (21.38), we can now

I write

Si = (ggii)l"2si  (no summation on i) (21.39)

andI
Si = gI/ 2sijg (21.40)

I Recalling (19.25), we have

I gl/2s 3jgj = 0

5 Since g # 0 and since gj are linearly independent vectors, we arrive at

5 s3j = 0 (21.41)

I
I
I

I
I
U

I
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1 22. Basic field equations for composite laminates

I In this section we derive the basic field equations for a composite lamiante from the conser-

3 vation laws of section (20). The local form of the conservation mass has already been obtained

and we just rerecord it here for completeness

I

In the rest of this section we shall be concerned with the remaining four conservation laws

3 (2 0.2 1)b to (20.21). First we deduce the basic field equations in vector form using an invariant

vector notation, and subsequently we reduce these equations in terms of tensor components.

a) General field equations in vector form:

To start we consider the conservation of linear momentum (2 0 .2 1)b and make use of

I (21.24) to write

f J p( +y 4)dv=f ,pbdv+Jf tda

* or

I f, p( + yv,')dv= fPpb dv+ fL g-12Tinida (22.2)

3 This with the help of the divergence theorem, i.e.,

I fpTiI dv= faPTinida (22.3)

3 and the identity

I g 12Ti ii = (gl/2Ti),i (22.3)

3 may be reduced as follows:
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I f p({, + y)dv=fpp b dv+ f(g-it2Ti) Iidv= Jpp b dv+s g-1 /2 Tij dv

* or

I f { g-1'2 Tii + p b - p(,' + yli))dv= 0 (22.4)

Since this must hold for all arbitrary parts f of the composite laminate, under the usual con-

tinuity assumption, we obtain

or

T i , + p g1,2 b = pglt2(, + yl4f) (22.5)

which is the local form of the conservation of linear momentum.

I Next we consider the conservation of director momentum (2 0.2 1), and make use of (21.38)

5 to write

5 fsp(y' + y2 w)dv= fp(pc - k)dv+ fas da= fs,(pc - k)dv+ fag - 2 Si nida (22.6)

Recalling the divergence theorem in the form

SfJSili dv= fsSinida (22.7)

and the identity

g'/ 2 SiIi = (gl/ 2 Si) i  (22.8)

we can reduce (22.6) as follows:

+fsp(y'v' + y2w)dv- f (pc- k)dv= f (g-'2Si),i jdv= fg-/2 S.dV
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I or

I 1g"r2S + (pc - k) - p(yl' -+ y2 v)}dv= 0 (22.9)

3 This is valid for all arbitrary parts P of the composite laminate; thus, under the usual continuity

assumption we obtain

g-1/2Sii + (pc - k) - p(yl, + y2iV) = 0

orI_
S1.i + g1'2(pc - k) = pgl t2(yl, + y2i4) (22.10)

This is the local form of the conservation of director momentum.

U Considering the conservation of moment of momentum (2 0.2 1)d, making use of the diver-

I gence theorem and the tensor identity of the form (22.3), we may write

p {rx( + ylv)+d X(y ' +y 2 wV)Jdv-f p(rxb+d xc)dv=fa(rxt+dxs)da

=far x g-l Tlnida+ $3d x g-l'2 SinId'i

3 J(g-I-rxT)iidv+f (g-12d x S' dz'

=JfPg- 1[2(r x TI,'j dv + f9 g 1 /2(d xS ),d z'

or

i J {g-1/2[(r x Ti)j + (d x Si),ij + p[(r x b) + (d x c)] - p[r x (v + y4 ,) +

I d x (y, + y2, )]dv= 0 (22.11)

I This must hold for all arbitrary parts P of the composite laminate; hence, assuming the usual

continuity assumption we may write

I
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g-1/2[(r x Ti).i + (d x Si),j + p[(r x b) + (d x c)] - p[r x (, + y4"f) +

d x (y'I + y24)]= 0 (22.12)

3 This may be further reduced as follows:

{(rxi x Ti + r x T'lO + pgl/2(r x b) - pgl/2r x ( , + y14f) ) +I
{(d,i x Si + d x Si~i) + pgIt2(d x C) - pg1f2d x (yl, + y24)} = 0

3 or

(r,i x Ti) + (di x Si) + r x {Ti,i + pgl!2b - pglt2( , + y14 )) + di x Si +

d x {Sii + gl/2(pc - k) - pgln2(y2 , + y24 )) + gIn d x k = 0 (22.13)

IMaking use of (22.5) and (22.10), we obtain

gi x Ti+ di x Si+ gl/2 d x k = 0 (22.14)

I where we have also used the fact that ri = gi. Expression (22.14) is the local form of the conser-

vation of moment of momentum and is the counterpart of the equation for symmetry of stress in

the classical continuum mechanics.

U Finally, we consider the conservation of energy (20.21)e and following the same procedure

3 we obtain the local form of the principle of balance of energy as follows

3 fp(E + 2Qdv= f, p(b • v +c" w)dv+ a(t'v +s' w)da (22.15)

I We consider each term of (22.15) individually

B
I
I
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3 a~p ( v +s -w)da =Jfag-1/2 Ti - v ni da + fa g-1/2 Si -wni

= f(g-111Ti v)idv+ f, (g-1/2Si -w) I dv

fg-fl(Ti v),idv+ Jp gl 1/2(Si -w)*1dv

Jg(Ti~iv + Ti v,i)dv+ f. g-12 (Sij - w + Si.- w~i)dv (22.16)

where we have made use of the divergence theorem. Moreover,

I~p pE+ 7'dv=fJp Ev+I-Tp(v-v+2y'v'-w+y w-w)dv

U =J~p dv±J p(V* "+y"' W+ylV.i'+y 2W.vd

fJ~ Edv+fp[' +yi).V+(yl/±y 2 V)~wd 2.7

I Substituting (22.16) and (22.17) into (22.15), we obtain

Ip JEdv+ fp( + y4) -vdv+ fp (yi + yZ ) -w dvs =fp(b -v + cw)dv

+ fp g-'/' t 'i - v + Ti ' id

+ f, g- l2(S11, - v + SI. %W,)d v

3 or

f,p PE d v= J g- 1/2(Tij + P9g1/2 - pglr2(i' + yl,,)) -v dv+ pg12 Ti v~j dv

.+ fJg412(Si,+ gl!2(pc -k) - pg/2(yl + y2 ?)) -w dv

+Jfpg-12Si - w, dv+ fpk -w dv (22.18)

I We now make use of (22.5) and (22. 10)10o obtain
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I (pE- g- 112 Ti. v, - g-l/2 Si.wi- k" w)dv= 0 (22.19)

I From (22.19) by the usual line of reasoning we obtain

Spg1 2 E= Ti. vi + Si.w,i + g1/2 k- w = g112P (22.20)

where P represents the mechanical power per element of volume of the composite laminate and

is given byI
g1/P = Ti. vi + Si. w i + gl/ 2k .w (22.21)

For future convenience, we summarize below the invariant vector form of the basic field

equations:

3 a: p+*p=0

I b : Ti,, + pglt 2b = pgl/2 ({ + y4W)

c "S i: + g 12(pc - k) = pg'/ 2 (y1l' + y2 v) (22.22)

d : gi x Ti + d x Si + gl/ 2d x k = 0

e : pgl/ 2 E=Ti.v i +Si -w i +g 1f2k-w=g t 2P

I where P is given by (22.21).

3 b) Alternative form of the field equations

3 The basic field equations (22.22) are both simple and elegant in form. In practice, we usu-

ally work with the components of the various fields. Hence, we now proceed to deduce the basic

I field equations in tensor components. We introduce the contravariant and covariant components

of acceleration (ai,ax), director acceleration (i,p13i), body force (bi,bi), body couple (ci,ci), and

those of intrinsic force (ki,ki) as follows:

I
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Iig i =g i , w = Pigi = jgi

I b=bigi=bigi , c=cigi=c igi , k=kigi=kigi  (22.23)

I Sustituting (22.23)1.2,3 into (2 2 .2 2 )b and making use of (21.26), i.e.,

Ti = gl/2 gigj

we may write

(g112Tijgj).i + pg' 2 bgj = pg/ 2 (jgj + yl 3 Jgj)

orI
g112-tiJ,igj + gl'tI'ijgji + (gl/2).i'Tijgj + pgl/2bigj = pgl/ 2(Ctgj + y1I gj) (22.24)

I Recall the following relations from tensor analysis

I gji = i k j)gk (22.25)

H and

(g1/2)'i = 1/2gi = (m m Jg 112  (22.26)

where Iji k) denotes the Christoffel symbol of the second kind. Then substitute (22.25) and

I (22.26) in (22.24) to obtain

glt 2.i.rig j + glatFij i k j) gk + gl/ 2 ij mm gj + Pgl'2bjgj = pgl/ 2 (oJ + ylfJ)gj

orI
(t'iJ.i + ti (ij k) + TiJ Imm }j )gj + pblgj = p(co + y' f~)gj (22.27)

Since the base vectors gj are linearly independent and since

I
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S,[I i =t,'TiJ i + {imm j i+ k(i} ,tik (22.28)

we obtain

3'ii + pbi = p(xJ + y1P33) (22.29)

n This is the local form of the principle of linear momentum in component form. In terms of the

various covariant and mixed components (22.29) takes the form

V UjIi + pbj = P(aj + ylI3j) (22.30)

where -ti, is the mixed component of the composite stress tensor.

I Next we consider (22.22), and make use of (22.23) and (21.38) to write

3 (gII 2sijgj).i + pg1 /2cig j - gl/2kJg j = pgl2(ylojgj + y2pgj)

3 or

3 g1/2siJig j + gl/2sijgj., + (gl/2).isijg j + pgl2cJgj - kJgjgl/2 = pg 1/2(yIxJ + y2N)gj (22.31)

I Making use of (22.25) and (22.26) in (22.31) we obtain after simplification

(siJ.i + sik {i j k) + SiJ(m m iJ )gj + (pci - kJ)gj = p(y tI) + y2P)gj (22.32)

Since the base vectors gj are linearly independent and sinceU
e sJn i = siJ.i + sik {i j k) + S j {mini) (22.33)

we obtain

siJ + (pci - ki) = p(yiox + y23,) (22.34)

I This is the local form of the principle of director momentum in component form. In terms of the

n various covariant and mixed components (22.34) takes the following form
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i siii + (pcj - kj) = p(yICo + y2[3j) (22.35)

I Let us now consider (22.22)d and make use of (21.26), (21.38), (22.23) and

Id = digi = dig i

to write

gi x (glaT'ijgj) + (dmgm),i x (gll2sijgj) + gl/2(digi) x (kJgj) = 0

*i or

EinT'ijg n + (dm,jgm + dmginj) x (sijgj) + cijndikJg n = 0

or

rCijnXTijg n + di Msmg i x gj + dismigi.m x gj + 3ijndikJg n = 0 (22.36)

where Eij denote the permutation symbol in 3 dimensions. Taking advantage of (22.25), we

I proceed to simplify (22.36) as follows:

iintijg n + {Eijndi.msmjg n + smJdi (m n j} gn X gj) + Eiindikng n = 0

*I or

I eFijn'ijg n + (Eijfdi.msmjgn + smidn { m i n) gi x gj) + 13indikJg n = 0

or

iijn{t ij + di imsmj + dikJ}gn = 0 (22.37)

Since the base vectors gn are independent, we obtain

i
Eijn(T ij + di Imsmj + dikJ) = 0 (22.38)

I This condition is the consequence of the moment of momentum principle. Since rin is skew-
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I symmetric with respect to i and j, it follows that the quantity in the parentheses in (22.37) must

be symmetric with respect to i and j. Hence the quantity

TiJ = t'i + di Imsmj + diki = T i + dJ I ms5m' + dik i  (22.39)

is symmetric. We call Tij the composite assindsymmetric tensor or simply the composite symmetric

Itensori. We notice that in the absence of the director, i.e.,

3d=0 or di=0

the composite symmetric tensor ''ij reduces to the classical symmetric tensor.

Finally, we consider (22.22)e and by making use of (22.26), (22.38) and (22.23) reduce it as

follows:I
pglt 2E= glt2 tijgj • vi + gl/2 sijgj • Wi + gI/ 2k • w

or

P E= tijgj • v i + sijgj • wi + k " w = P (22.40)

Iwhere P is now given by

p ='tj • v'i + sjgj- w~ + k • w (22.41)

U Since

v.i = vmIj9gm (22.42)

I and

W i wm igm (22.43)

we can further reduce (22.40):
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I pE= tijgj • (vm 1igm) + sijgj • (wm 
1igm) + (kJgj) " (wmgm)

* or

p E= Tijvm igjm + sijwm igjm + kJwmgjm

* or

pE- =,rljv + siJwj Ii + kiwi = P (22.44)

This is the local form of the principle of balance of energy in component form. The expression

£ for mechanical power is now reduced to

P= TIjvj + siJwj Ii + kiwi (22.45)

3For later convenience we collect the component form of the field equations as follows:

I a:

b " tIJ i + pbi= P(c+yf3J)

3c " siJi + (pcJ - ki) = p(y 1 wc + y2 [) (22.46)

d: .j(t'J + di j smJ + dkJ) = 0

e E: "ljv i + SijWjli + kiwi = P

where P is given by (22.45).

I
I
I
I
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i D. Elastic composite laminates (nonlinear theory)

I This part is concerned mainly with the development of constitutive relations for elastic

I composite laminates, both by direct approach and from three-dimensional equations. Here we

discuss the nonlinear constitutive relation and recapitulate the complete theory. While we

5 confine our attention here to elastic composite laminates, it should be noted that the previous

developments in part C are not limited to elastic laminated composites.

23. Constitutive equations for nonlinear elastic composite laminates. Direct approach.

I Within the scope of the theory developed in part C, we discuss the constitutive relations for

elastic composite laminates in the presence of finite deformation and in the context of purely

5mechanical theory.

3 We recall that a material is defined by a constitutive assumption which characterizes the

mechanical behavior of the medium. The constitutive assumption places a restriction on the

I processes which are admissible in a body - here the composite laminate.

I We define an elastic composite laminate by a set of response functions which, in the con-

text of purely mechanical theory, depend on appropriate kinematic variables. In our present dis-

cussion the set of response functions consists of the following functions

TiSi , k (23.1)

tor an equivalent set

I 'J(or' iJ) J , ki  (23.2)

We introduce constitutive relations which must hold at each composite material point (macro

particle) and for all time (t) in terms of the response functions (23.1). In this connection, we

3 recall that the displacement function r in (12.1) is the place occupied by the composite particle P
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I (with coordinates 6i) in the present configuration, and the function d in (12.1) is the director, at

the same composite material point, representing the effect of micro-structure. Thus the local

state of an elastic composite laminate can be defined by functions r and d and their gradients at

3 each composite material point in the present configuration, namely

3 r , r,i , d , d,i

3 At this point, for convenience we recall the expression for mechanical power P, i.e.,

3S i . w + gUtk -w (23.3)

or equivalently

P "-CVJvj Ii + sijwj Ii + kiwi (23.4)

We continue our discussion by assuming the existence of a strain energy or stored energy

I g = O(ei,t) per unit mass p of the composite laminate such that pV is equal to the mechanical

I power defined by (23.4), i.e.,

3 P=pxY (23.5)

In the development of nonlinear constitutive equations for eiastic composite lamiantes. we

I assume that the strain energy density V at each material point of the composite laminate

3 (macro-particle) and for all t is specified by a response function which depends on r, di and their

partial derivatives with respect to Oi . Hence, the constitutive relation for the composite strain

4 energy density may be stated as

i = y(r,ri,d,di ; X) (23.6)

Since the response function must remain unaltered under superposed rigid body translational dis-

placement, the dependence on r must be excluded. In addition, we have already shown that S3

3 vanishes identically. Therefore, the constitutive assumption for the strain energy density of the
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i composite laminate can now be written as

I = xi(r,i,d,d,, ; X) (23.7)

3 We also make similar constitutive assumptions for T i, Si and k. We make a note that in these

constitutive equations, which represent the mechanical response of the medium, the dependence

I of the response function on the local geometrical properties of a reference state and material

inhomogeneity is indicated through the argument X 1. Here we limit the discussion to an elastic

composite laminate which is homogeneous in its reference configuration and suppose that the

i dependence of the response functions on the properties of the reference state occurs through the

values of the kinematical variables in the reference configuration. Therefore, in place of (23.7)

I we may write

y XS = V(r~i,d,d.a ; R~i,D,D~a) (23.8)

or

V = 4(gi,d,d.i ; Gi,D,D'i) (23.9)

I Since

Igi = r , Gi = Ri (23.10)

Following the same argument, we can arrive at similar constitutive assumptions for Ti,S i and k.

I From (23.9) we obtain 2

See [Carroll and Naghdi, 19721.
2Operators of the form W , where f is a scalar function of a vector variable

occurring in (23.11) and elsewhere are defined as partial derivatives with respect
to x satisfying

lim f(x + EV) - f(x) f[:---*O N -

for all values of the arbitrary vector v.
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I + -+ T- + (23.11)

I Since

I " c)---(v)

- -~e -V. 1  (23.12)

I and

d=w d,i=w ~i (23.13)

I Introducing (23.11) into (22.22)e, we obtain

9 g1,2 { .gi vi + w + •J . = Ti" v.i + Si. wi + g'12k w

Ior
(Ti- Pg/2 ) v., + (Si-pgl 2 -1 ) wi + (g'/ 2k- pg/2--) w = 0 (23.14)

1 This must hold for all arbitrary values of vectors v,i,w,i and w. Since the quantities in the

3 parentheses are independent of v.i,,w,i and w, we conclude that

I Ti = 9g1/2-

Si =Pg"1/2 (23.15)

g'12k = Pgll - -

These are the nonlinear constitutive equations for Ti,Si and k along with the condition

gi x Ti + d. x Si -g1/ 2 d x k = 0 (23.16)

which is imposed by the principle of the moment of momentum of the composite laminate and

must be satisfied by the response function V.
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I As with the equations of motion, it is convenient in applications to specific problems to

3 obtain alternative forms of the above constitutive equations expressed in component forms. To

obtain the appropriate constitutive equations for iJ,siJ and ki we proceed as follows.

Recall the formulasI!
r = ri = rig' , d = dig| = dig' (23.17)

Igi = r.i = (rmgm).i = rm.igm + rmgm.i = rm igm + rm {i n m} gn

3 = (rmi + rn { i m })gi = rm1igm = rm1ig m  (23.18)
and

U
= (dm), = digm + dmgm,i ,igm + r{ i nm n gm= d mIi g m  dm1i gm 23.19)

I Substituting (23.17) to (23.19) into (23.9) and keeping in mind that xV is a scalar valued functior

g we may rewrite (23.9) as

3 = J(rm i,dm,dm a0, ; Rm 1 i,Dm,Dm 1 c) (23.20)

where i is now a different function than gi. From (23.20) by differentiation we obtainI__
~!= =~ (r 1 i) + j'dLdm +~ Lj-(dmi1i) =ii Lv + wmI, (23.21)

I Substituting (23.21) into (22.46)e, we obtain

I P{.r Li Vmli-+ vm+ mL W_' ijvdIi+sijwjIi+kiwi

or

3Tj-P (t'i- -VF+( P Di Wl+k- )io(23.22)

3 This must hold for all arbitrary values of VjIi, wjIi and di. Since the quantities in the parentheses
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I are independent of vj I i, wjIi and di, we conclude that

I riJ = P a

i sii = p a- i  (23.23)

ki= p 0-I-

These are the component forms of the constitutive equations for ,ij siJ and ki along with the con-

E dition

Eiin Itij + dimsmJ + dikJ = 0 (23.24)

which is imposed by the principal of the moment of momentum of the composite laminate and

must be satisfied by the response function xV.

I Befor, proceeding further, we obtain an alternative form of constitutive equations. To this

end we consider the expression for mechanical power (23.3), i.e.,

I93,2P = T i . v i + Si. w i + gI/2k . w

U and bv taking advantage of the expressions (12.23), (21.26), we ;write

I
I

I
I

I BASE



1 - 146-

g 1/2p = (gl/ 2 ,tijgj) . [(Tlki + O.)gk] +

I (gl/ 2sijgj) "- [.kigk + k.(COk - Tlkl)gk ] +

i (g1,/2kmgm) " [dkgk + di(coki - Tki)g k

I = gl/ 2(1iJiki(g j . gk) + Cikt i(gj, gk) +

siJiki(gj gk) + sijXli(,ow - T"ql)(gj . gk) +

3 kJdk(gJ. gk) + kJdi(oiki - nki)(g j . gk)}

or

g2p= gl,'2kj{v irk + t@ick i + siJlbdki + s'iJX/i(co _ Thlj) kJdzk + kid'(w)ki - rlki) }

I or

I P = (1ij - smixim - kJdi)71ji + siJX.i + kidi + (tij + smikim + kjii))ji (23.25)

3 The last term on the right hand side of (23.25) is a produce to a symmetric and a skew-

symmetric tensor component; hence it vanishes identically ard we obtainI
P = (t i- - snn,.im - k-di)Tlji + sOxji + k'd, (23.26)

We now define an alternative form for the symmetric commposite stress tensor t'J by the relation

1' {(VJ-1 lmsmJ_ dkJ) + (JiXJmsmi dJki)) (23.27)

To show that "t'J is equivalent to T'ij defined by (22.39) we proceed as follows. Substituting

I (23.27) into (23.26), we obtain

P ='i+rlj i  + 23.28)

In view of the symmetry of t we may write

I BASE
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I - 1i {j(Tij- ism dik) + (i -Xjsmi-.diki)) =0

rr-lk (£ijU + 'TO) - (kimsmJ + )msmi) - (diki + diki)1 0 (23.29)

We now rewrite (2.*-..29) as follows:

Ei'jkTij T [Ejik(Zji + T'i) - Ejjk(Ximmj + )m~nm) - e,.*(d'k' + dik'))

I ___ kt' + 1i) - EIjk(imsliJ + )jmsnm1) - ijk(dikJ + diki)

__1{Eik(Ti + kim5 m + d'ki) + Eijk(TV' + kjmSmi + diki)

I - k £IJ {(t'i + ximsmJ + dikJ) + (ti + X.Jmsmi + diki)) = 0 (23.30)

U Since

3 Tij + Ximsmj + dikJ = TV1 + X),msmi + diki

I we obtain from (23.30)

I ijk(T1j + Xmm+ dk) = 0 (23.31)

This shows that the relation (23.27) is equivalent to (22.38). Recall the kinematical variables

=j (i- j- - Gj) = 7gij - Gjj)

K = j- Aj(23.32)

I From (23.32) we obtain

__I
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Ii (23.33)

I

Yji di

3The expression of power (23.26) in terms of the kinematical variables yij, Kj and -y is

I = TJiiJ + siJ& + kyii = P (23.34)

where

P = Tiyij + si- + kiyi (23.35)

Rewriting the VJ as a function of the variables yj, Kj and yi, i.e.,I
v= ( 'ij, Kj, y) (23.36)

we obtain

Ii Y+ - Q+ (23.37)

From (23.34) and (23.36) we obtain

ij
('Ti- P ) + (si- )N k p ~~, 2.8

Then by the usual procedure we obtain

I T-
si ai (23.39)

ki pa

I
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I 24. The complete theory

3We recapitulate in this section the complete theory of elastic composite laminate in the

context of purely mechanical theory.

The initial boundary value problem in the general theory.I
The basic field equations of the nonlinear theory consist of the equations of motion and the

Ienergy equation given by (22.46) and repeated below for convenience:

U iJIi + pbj = p(W. + yl' J) (24.1)

I siji + (pci - kJ) = p(yl J + y2pJ) (24.2)

I-ijn( iJ + XinsmJ + dikJ) = 0 (24.3)

3 Q = 'i vj i + sijwjli + kiwi = P (24.4)

i where P is given by

i P = ijvj Ii + sijwj Ii + kiwi (24.5)

or equivalently byI
P = 'T-Ij + si T\,i + kYi (24.6)

The constitutive equations for an elastic composite laminate are specified by

= Vyij, Kj, YJ) (2 4. 7

I and

TOP (24.8)

I
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SsiJ p a. (24.9)

ki=p (24.10)

We recall that (24.9) is subjected to the condition

Si3 = 0 (24.11)

I We note that instead of (24.7) to (24.10), any other alternative equivalent expressions

3 derived in section 23 may be used.

5 The above field equations and constitutive relations characterize the initial boundary-value

problem in the nonlinear theory of an elastic composite laminate.

The problem of establishing boundary conditions is not always clear in the literature on

3 continuum theory of composites. Even in the case of mathematically coherent continuum

theories with micro-structure the physical interpretations are not given or are ambiguous.

I Indeed, most (if not all) of the problems that are treated using various continuum theories for

£composites deal with periodic wave propagation or those problems for which the boundary con-

ditions are not of primary importance.

S The nature of the boundary conditions in the present theory may be seen from the rate of

3 work expression for the composite contact force and the composite contact couple, i.e.,

3 =-fa7 (t " v+s" w)da (24.12)

3 The conditions at the boundary surface of the composite laminate at which the surface forces l-

and the surface couples are prescribed require thatI
t=r , s=- (24.13)

If we express the surface forces F-and the surface couples K in terms of their components, i.e.,
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S='gi =Tigi (24.14)

3 = Pgi = Siigb (24.15)

U and then using (21.24) and (21.38) the boundary conditions take the following forms:

3iJni=-t , Tijni=t (24.16)

SsiJni =V , sijni = 3i (24.17)

To elaborate, we recall that our choice of convected coordinates is such that at a point P with

I coordinates 0 i (i = 1,2,3) of the composite laminate, the coordinates 01, 02 are in fact the coordi-

nate curves of the ply passing through the point P. Moreover, the coordinate 03 is in the direc-

tion of lay-up. This implies that for an arbitrary part P, the boundary surface aPconsists of two

3 material surfaces of the form

and P ap 03 = 03( 0o .) -" C1 2.83 and (24.18)

p " =03 =0 3(a) = C2

* and a lateral material surface of the form

a • f(0 a ) = 0 (24.19)

such that 03 = const. are closed smooth curves on the surface (24.19). With this background, it

should now be clear that T,-f in (24.16)i are the stress resultants in g1, g2 directions, respec-

t tively, while t- is the stress in g3 direction. Similarly, 1,s in (24.17), are the stress couple

resultants in g1, g2 directions, respectively, but V is the stress couple resultant in g3 direction,

I which is identically zero.

B
I
U
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3 25. A constrained theory of composite laminates

3 So far our development of the continuum theory has been general and without any

3 restriction/condition placed on the kinematical variables. Therefore the field equations and the

constitutive relations are applicable to any elastic composite laminate. We did not introduce any

kinematical constraints previously to keep the theory general enough so that it could be utilized

for various physical situations. We now turn to the development of a constrained theory of our

continuum model which may appropriately be called Cosserat composite. First we derive a set of

3 constraint equations for the composite laminate. We then proceed to obtain the relevant

response functions induced by the constraint. Finally we obtain a set of field equations in terms

3 of the displacement and effected by the presence of the constraints.

3 We impose the condition that plies of the composite laminate do not separate from or slide

over each other at all time during the motion of the composite laminate. This means the dis-

placement vector of the material points throughout the body including at the inter-face must be

3 single valued. Hence we require

3 r(0a, 03 + A0 3) = r(0 a, 03) + 2 d(Oc , 03)

or

r(0a, e3 + A03) - r(0a,0 3) = 2 d(ea,0 3)

orI
r(Oa, 03 + A03) - r(Oa,0e 3) = d(0a,63 ) (25.1)

In the limit when 2 -- 0 and r(o0,93 + A03) - r(Oa,0 3) we obtainI
Jim r(Oa, 3 + A03) - r(Oa, 3) - d(0a,0 3)I ASEA
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I or

I g3 = r3 = d (25.2)

3 where we have made use of the fact that

A03 = 2 (25.2.a)

I Expression (25.2) implies the following constraint condition

3 ga. d = 0 ((x = 1,2) (25.3)

Differentiating (25.3) with respect to time, we obtainI
e rc. d + g.= 0 (( = 1,2) (25.4)

We recall

I gi. = 5ij (25.5)

I Differentiating (25.5) with respect to time, we obtain

i . g +g' g +g'g -'Vg'v gi +.gj +gi. (vmljgm)

=i gj + vi gj = gi + vi j

I From this we obtain = " + Vi'mg m 9j = 4 + vilmgm) gj 0 (25.6)

I -i.g i =-g Vj (25.7)

I and

i =vilmgm  (25.8)

I Substituting t25.7), (25.8) into (25.4), we arrive at
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3 ,dgj +ga. w=0

* or

3 dig<" v.i-ga. w=0 (25.9)

I and

-VaLmgm " d + ga. w = 0

or

IVC -v g"* (dngm) + ga.- (wig')

Sdmgimgovj H1i giawi = 0 (cc = 1,2) (25.10)

3 This is another form of the constraints (25.3) which is more appropriate for our present develop-

ment.

For a composite laminate with constraints we assume that each of the functions Ti, Si and ki

3 are determined to within an additive constraint response so that

3 Ti = T'i + ii

i Si = Sl + Si (25.11)

3 k=k+k

where

IT'~ , 5' , k (25.12)

are specified by constitutive equations andI
, , k (25.13)

I which represent the response due to constraints (25.9) are arbitrary functions of O'.t, are workless
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I and independent of the kinematical variables vi, wi and w. Thus, recalling the expression (23.3)

for mechanical power, we set

i i V., + Si. w i + gl/2 k- w = 0 (25.14)

This must hold for all values of the variables v i, w1i and w subject to the constraint condition

I (25.9). Multiplying (25.9) by the Lagrange multipliers 8a (a = 1,2) and subtracting the results

i from (25.14), we obtain

ti v' i + Si. W' + glt2kI. w - (8diga - w) = 0

or

(Ti - 8adigc). v', + Si. w,i + (g'r-k + 36ga) w = 0 (25.15)

From (25.15) and the fact that ti, Si and k are independent of vi, wi and w it follows that

Ti= 5adig (25.16)

I = 0 (25.17)

I gl/2 k =6g a  (25.18)

Expressions (25.16) to (25.18) represent the constraint response induced by the constraint equa-

tions (25.3). Substituting (25.16), (25.17) and (25.18) into linear momentum equation (2 2 .2 2 )b

3 and the director momentum equation (22.22)c, we obtain

I ['i + 5dirg'.j + pg 72 b = pgl'2( + yl V) (25.19)

I and

S' i + pg1 c - [g', 2k - 5ga = pg 1 2(yl . + y2, ) (25.20)

3 Introducing the following temporary variables b and E by

I BAS
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m i =b - ((, + yl*)

and (25.21)
m = C- (yt + y 2 V)

E we can rewrite (25.19) and (25.20) as follows

5 pgl/2 + "i'i + (adiga),i = 0 (25.22)

pg t/2 + sii- g12k + 8,ga = 0 (25.23)

From (25.23) we obtainU
(6adiga),j (pg 1 2diE + diSJj - g1/2dik),i (25.24)

Substitute (25.24) into (25.22) to obtain

m pg'12b + ii - (Pgl/2diE + di,..j - g1/2dik),i = 0 (25.25)

I Moreover, from (25.23) and (25.3) we obtain

3 pg' 2d - E + d -ij - g/2d k =0 (25.26)

Recalling that "i Si and k are specified as functions of various kinematical variables, it is clear

that the system of equations (25.25) and (25.26) represent two equations for the determination of

m the primary unknowns v (or r) and d.

3 We now proceed to obtain the counterparts of (25.25) and (25.26) in component form. To

this end, we assume, for an elastic composite laminate with constraint, the functions i, siJ and ki

are determined to within an additive constraint response so that

m (Tij --= i + Tij

siJ = ij + gij (25.27)

m ki = ki + k

whereim .... B_ AsE ,
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1 , i , ii , ki (25.28)

are specified by constitutive equations and

S,i i , (25.29)

I which represent the response due to constraints (25.10), are arbitrary functions of Oi,t, workless

and independent of kinematical variables vi!j, wil j and wi. Thus, recalling the expression (23.4)

for mechanical power. we set

i tiJv;i + siJwj Ii + i i = 0 (25.30)

3 which must hold for all values of the variables vpj, \"jli and wi subject to the constraint condi-

tions (25.10). Multiplying (25.10) by the Lagrange multipliers X (ax= 1,2) and subtracting the

i results from (25.30), we obtain 3

I tiJvi + iJwj Ii + k wi - (?Xdmgmggjavj 1i - Xgiaw,) = 0

3 or

3 (T-ii Xdigja)vi i + gijwj 1, + (ki + Xagi~a)wi = 0 (25.31)

From (25.31) and the fact that Tii, ij and k are independent of v; w, W ji and w; it follows that

Ti = kadigia (25.32)

gu = 0 (25.33)

i= - Xtgia (25.34)

I Substituting (25.32), (25.33) and (25.34) into (2 2 .4 6 )b and (22.46)c, we obtain

U [.^i + -dig, + pbi = p(aj + yl[J) (25.35)

1 Note that Xa, is now different from 6.
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I and

I i- lk,-kgJ + pcJ = p(yc + y3J) (25.36)

I From (25.21) we have

I i i - (cx) + yll3i)

and (25.37)
i = ci - (ylcj + y2pi)

Making use of (25.37) we rewrite (25.35) and (25.36) as follows

p +'Jli + (idigjYi= 0 (25.38)

I and

I pJ + .giJ ki + x.,g'= 0 (25.39)

U From (25.39) we obtain

3 (-1g'J) I - (pdic J + dismJ I m - diki) I i (25.40)

and substitute into (25.38) to obtain

3p + T-'i i- (pdi;e + pdigmJ Im - dikJ)Ii= 0 (25.4i)

Moreover. from (25.39) we obtainI
pdPj + dj-gij i- dikj + Xkdjg 3j = 0 (25.42)

However, from (25.3) we haveI
djg [3J =0 (25.43)

I Hence. by (25.42) and (25.43) we have

IpdJ + d.j,-d 0 (25.44)
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I Again recalling that Ci, 9'ij and k' are specified, by constitutive equations, as functions of relevant

kinematical variables, it is clear that the system of equations (25.41) and (25.44) represent four

equations for the determination of four primary unknowns vi and d.

U IBefore closing this section, we obtain a relation between the Lagrange multipliers 5a and

I ~ta. Recalling (17.16), we may write (25.16) as follows

i= g1/2 'jgj = 5adigJagj

* or

ogr 
/ 2 ( -ij g- I /6 2 d i g j a ) g j = 0 ( 2 5 .4 5 )

Since g1 2 ;t 0 and gi are linearly independent base vectors, we obtainI
o ctiJ-g-/26adigJQ = 0

or

I' g1 2cdia (25.46)

I A comparison between (25.46) and (25.32) yields

I ?-a = g-1i28a (25.47)

I Similarly, from (25.18) we obtain

g1/2 ig = - 6giCtgi

I or

gi/ 2(ki + g-1/26giug,) = 0 (25.48)

Again. since gi are independent base vectors and since g1/2 0, we obtain

B
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I k =- g-1! 28"gia (25.49)

I Comparing (25.49) and (25.34), we obtain

Xa g-125(x(25.50)

which confirms the results (25.47).
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I 26. Constitutive equations of an elastic composite laminate: Derivation from three-

I dimensional classical continuum theory

The theory developed in the course of this investigation is exact in the context of nonlinear

theory and is based on postulates (conservation laws) that are independent of those in classical

continuum mechanics although their motivation inspired by the classical theory of continuum

mechanics. Due to the material and geometric complexities inherent in composites and due to

I our rather limited (direct) knowledge of composite materials, the study of composite materials

3 has always been conducted via three-dimensional classical continuum mechanics. In particular,

constitutive relations for composites have always been derived from those of the constituents

which are assumed to be elastic in the sense of classical theory of elasticity. It is therefore desir-

able to relate the various field quantities of the present theory to those of classical three-

I dimensional theory. This has already been accomplished, in part, through the relevant

definitions. To complete the correspondence between the present theory and the classical contin-

uum theory we need to establish appropriate relationships between the composite field quantities

T i, Si and k with the classical stress vector T i of the constituents. This section is concerned

with this task.I
We recall that in the three-dimensional theory of classical (non-polar) continuum mechan-

I ics and within the context of purely mechanical theory the constitutive relation for the specific

3 internal energy and the stress tensor of an elastic body can be expressed as follows "

U gt° = Wt(yij) (26.1)

St ij = a .L (26.2)

' Whenever there is no danger of confusion we designate a function and its
value with the same symbol. Mioreover, the function iy" in (26.1) depends also on
zhe reference values Gi*, but we have not exhibited this here. The partial deriva-
tive of a function with respect to a symmetric tensor such as that in (26.2) is un-

derstood to have the symmetric form 1(. - ).
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I We now proceed to deduce the counterparts of the above results for an elastic composite

laminate. To this end, we first recall the expression for yji, i.e.,

Iyij = yjt = - (gi" • gG - G) (26.3)

I and then observe the following relations:

g ' ' (gi gj* - Gi" Gj)]}

3 - - {. (igj + i)}aYj -

I= -"( i ki gj + ±ayij

I__
_1 (. gi +  L gi*) =  gi" (26.4)

I and

= aL.~ ~-g'Sk g, -~ 5a (26.5)I
sinceI

g a3 3,g;=d (26.6)

I i - 8a , -a 0 (26.7)

a- = 5 a k  (26.8)

where in obtaining (26.4) we have also used (26.3). In addition we observe that

--d - - -- 9i g J d- - g1 83k 1 g (26.9)

I BASE



I - 163-

I where we have made use of (26.4) and the fact that from (26.6) we obtain

I _ _0  ag= 1  (26.10)

I
c~d- k(26.11)

Further we observeI
' D 9k I g - (26.12)

Since from (26.6) we haveII
ag ag;(26.13)

I g
=I; 5a k  (26.14)

and we have also made use of (26.4).

3 We now consider the constitutive equations for the components T*'i in (26.2), i.e.,

jy-J (26.15)

Recalling the formula

I T = g 1'/".'*tjgjg (26.16)

IH and

Ta:Sf T'0 d -a"zN a  (26.17)

we "rite
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"=S k" '<d f 42 g'f 2 ',qj'jd = J p* g.12 i ,gj'dI
J g* X d f p g~lf d,

a a g 0ai = J" P*g*l ! vdl (26.18)

We recall that in terms of Oi coordinates and in relation to aa and g, we have

a( ag = a( 85 a= a (26.19)

Hence, we can write (26.18) as

"a f oP*g* "2W(d, (26.20)

Next, recall the formula

Sa = f oJ T'a d, = a Ir2Ma (26.21)

and write

=Td o 9g*ir2 = a 2 .. g 1/2 V" d7 (26.22)

where we have made use of (26.16) and (26.12). Now recall the expression

glk = a1/2k T3 d (26.23)

3 and write

I
3 BASE



U - 165-

I
1/g L--=J d,

= Pgt2 d" d '- J ° P*g 11 2Vy3 d (26.24)

We have shown that the composite stress vector T3 corresponds to interlaminar stresses. We

notice that interlaminar stress vector V acts as an applied contract force for the micro-structure.

Hence the constitutive relation for T3 should be specified directly. This means T3 unlike TO

may not be obtained from the strain energy of the constituents. However, like any other com-

ponent of stress vector (or stress tensor), T3 may either be obtained by solving equations or

motion or obtained through constitutive relations after determination of disDiacement vector

3 from equations of motion.

Consider now the expression

f -1 2 pg 1 (g ,d,da.,)d (26.25)

where the arguments of V" have been defined before. Clearly, in view of kinematical relations

(12. ). the function V can be regarded as a function of the variables g, d and di. Therefore, the

constitutive equations for composite laminate will be given by

= g, d, d~a) (26.26)
I Tl =pgUr2 .g

i S' pg 1/2. (26.27

gir-k = pg, r

where S' vanishes identically since V is not a function of d. This is, of course, in agreement

with (26.39). A comparison between (26.27) and (23.15) reveals that the two sets of constitutivle

relations will be equivalent if kv is given bv (26.25). This establishes the correspondence
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I between the composite laminate's constitutive relations and those of the constituents.

I For completeness, in the rest of this section we obtain the component forms of (26.27)

using a different procedure than that used in section 22. To this end we recall the formulas

r = rigi = rig i , d = digi = dig i  (26.28)

andI
r ~i=rjligj= rjlig j , d,i=dJligj=djligJ (26.29)

It is clear from (26.28) and (26.29) that the function V may be rewritten as

I
Vt = V(gi,d,d,,) = y(r j,d,dt) = (rm i,dm,dm ia) (26.30)

I With the help of the expression for Ti, (26.28), (26.29) and the gradient of a scalar valued func-

tion of a vector, we write 5

! ~ ~~Ti = gi/2-tijgj = pg112 gi=pg112 1/2=pg;,b~ -g (26.31)

3Rewriting the above, we obtain

3 112(Ti. - P )g1=o (26.32)

Since the quantity in the parentheses is independent of g,, we conclude that

I i= p r- (26.33)

I Operators of the form af where f is a scalar valued function of a vector
x = xigi = xig I were defined earlier. The component form of this operator which is
in fact the gradient operator (derivative operator) is given by

df ") f = f g

I
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I In a similar manner, with the help of expression for Si, (26.28) and (26.29) we obtain

=i /2siig =Pg L gj (26.34)

From this we obtain

gfl2(su - p Ai )g 0 (26.35)

Since the quantity in the parentheses is independent of g,, we obtain

I
s J = p - (26.36)

I Next, we consider k and making use of the same procedure we write

rk = gl/'2kig i = pg 2  P = pg 1 /2  g (26.37)

and!
g g"2(k -p -~)g =O0 (26.38)

By the usual argument we obtain

3 k= p -a-(26.39)

Collecting the results (26.33), (26.36) and (26.39), we have
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!P

=ij p . (26.40)

I -p
which are the same as (23.23). It should be mentioned that the development after (23.23) of sec-

3 tion (23) as well as the entire development of section (25) remains applicable and unchanged.

B
I

I
I
I
i
I
i
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I E. Linearized Theory

We now proceed to obtain the linearized version of the theory developed in previous sec-

tions. Linearization will be carried out for the kinematics, the field equations and the constitu-

tive equations. We note that a vertical bar, in the linearized expressions, will denote covariant

3 differentiation with respect to Gij corresponding to the reference configuration.

I 27. Linearized kinematics

3This section is devoted to the linearized form of the kinematical results of section (12). In

particular, we deduce the linearized kinematic measures of a composite laminate with

Iinfinitesimal displacements and infinitesimal director displacements as a special case of the gen-

eral results in section (12).

We recall the expressions,I
-" r(fla,03 ,t) + dO1l~,8 3 ,t) (27.1)

andI
p* = R(T1a,0 3) + D(noa,0 3) (27.2)

I Within the context of linear theory of composite continuum we let

p =P+ Eu (27.3)

3 where c is a non-dimensional parameter and u" is a three-dimensional vector such that

U' =u gi = u i g1 (27.4)

U = u'(rla',, 3,t) = u(Tla,6 3,t) + ,3rc@&,t) (27.5)

The use of £ in this section is temporary, clear from the context and not to be3 confused with the use of the same notation in the previous section.
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I From (27.3) we obtain

I v* = E" (27.6)

S Ir.troducing (27.5) into (27.3) and making use of (27.2), we obtain

p" = R(Tla,0 3) + D(rla,0 3) + E[u(Tla,0 3,t) + 8(rTIa,0 3 ,t)]

= [R(Tla,0 3) + u(rlaT,0 3,t)] + [D(Tja,0 3) + E5(rja,t)I (27.7)

By a comparison between (27.1) and (27.7) we conclude that

5 r(Oi,t) = R(0 i) + Eu(0i,t)

(27.8)3 d(ei,t) = D(Oi) + E6(0i,t)

where we have identified r' with O. The velocity and the director velocity are readily obtained

as

3 V E6L
(27.9)5 W = £

We say that the motion of a laminated composite continuum characterized by (27.8) describes

infinitesimal deformation if the magnitudes of u, 5 and all their derivatives are bounded and are

3 of the same order as R and D and if

3 E 1 (27.10)

i n what follows we shall be concerned with (scalar, vector or tensor) functions of position and

time, determined by cu and £6 and their space and time derivatives. We denote these functions

3 by the customary order symbol O(En) if there exists a real number C, independent of E:,u,6 and

their derivatives such thatI
O(En) I <CEn  E-0 (27.11)

I
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I We would like to emphasize that the infinitesimal theory which we wish to obtain as a spe-

3 cial case of the results in section (12) and in the sense of (27.10) is such that all kinematical

quantities (including the displacement u, the director displacement 5 and other kinematical

5 measures, as well as their space and time derivatives are all of O(E).

3 The base vectors gi" can be obtained from (27.7):

3g = P,*a = (R. + Eu,.) + 4(D.a + ESa)

(27.12)

Ig; = p; = D + £6

Similarly the base vectors gi are obtained from (27.8),

Igi = r., = (R + Eu).i = Gi + Eui (27.13)

We now proceed to obtain the relative kinematic measures yij, IKj and yi. To this end we first

I obtain

gij = gi " gj = (Gi + cui) " (Gj + Euj) = Gij + e(Gi -uj + Gj • u4i) + O(C2) (27.14)

di=gj"d=(Gjtcuj)•(D +8)= D+(G• 5+ui D)+0(£2 ) (27.15)

3-j = gi" dj = (Gi + cui) • (D~j + P-,j) = Aij + e(Gi " 6,j + ui • D3j) + O(E2 ) (27.16)

i From (27.14) to (27.16) we obtain

ij= - (gi • gj - Gi • Gj)= - (Gi uj + Gj • ui) + O( 2) (27.17)

I y= di - D, =(G i - 8 + ui VD) + O( 2) (27.18)

=  -A = (Gi" 6j + uj- D ) + 0(E2 ) (27.19)

At this stage it is desirable to elaborate on the manner in which the process of linearization

I may be carried out. To this end we take u' and 6' to be vector functions defined by
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i u' = = 0( ) u' i = A i u' = O(C) (27.20)

I = E5 = O(E) i = A i - '= O(e-) (27.21)

I Making use of (27.20) and (27.21) we may rewrite (27.17) to (27.19) as

Sij = (Gi " u',j + Gj- u',i) (27.22)

y'i = (Gi" 8'+ u',i" D) (27.23)

5'ij = (Gi" -' j + u',i D,) (27.24)

u where we have introduced y ij, 7'i K'ij which are of O(E) we have

Yij = ' iJ + O(c 2) = O(E) (27.25)

Yi = 7'i + O(c 2) O(E) (27.26)

Kj = 'ij + 0(E2) = O(E) (27.27)

We also have

I
I
I
I
I
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g 1/2 =-(1 x g2) " 93

= [(G 1 + u.) x (G2 + cu 2)] (G3 + Eu3)

= {G 1 x G2) + c(Uj x G2 + G, X u. 2) + E2(u,1 X U2 )) (G3 + Eu, 3)

= (G1 x G2) G3 + c(Gt x G 2) u,3 +

c(u1 x G2) G3 + E(G1 x ui) G3 +

2(U,1 x G2) u 3 + E2(G1 x ui) u., +

E2(ul X u2,) G 3 + E3(U 1 x U2) U.3

=G 1'2 + c{(G 1  2) U.3 + U.1 " (G2 x G 3 ) + u 2 • ((; 3 x G;) + O(c 2 )

=G- /' + E(G'2G 3 'U. 3 + G11 G2  • u1 + G u1'2G2 u.,) + O(E2)

or

gt12 = G']2 + EGIr-Gi. u.i + O(c2) = G 1/2 + GI-(G ii " y'ij) + O(E2 )

or

) 1- 2 1 + , + O(E2)  127.28)

and

I + 2gJ y'ij + O(c2 ) (27.29)

We now retain only terms of O(E) in expressions such as (27.25) and hence approximate yij, y,

and K, by y ',j ^t' and Kw etc. In order to avoid the introduction of unnecessar-y additional

notations we proceed with linearization by retaining only terms of 0(c) and after the approxima-

tion without loss of generality, we set c = I. In this manner the relative kinematic measures YW ,

and X, reduce to
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I Yij = (Gi "u + Gj' u,1 ) (27.30)

Iy = Gi " - + u,i" D (27.31)

Ij = Gi" 6,j + u," D~ j (27.32)

We also obtain

I pgl2 = poG V2

or

pG 2 (1 +'ii) = poG 12

or

IoP O + PO - y ii) (27.33)

B
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I 28. Linearized field equations

I Previously, with reference to the linearization of the kinematical results for a composite, it

was assumed that all kinematic measures such as yij, yi and 2/ij as well as their space and time

derivatives are of O(E). These must now be supplemented by additional assumptions in ti cor-

3 plete infinitesimal theory. We now assume that the vector fields Ti, Si and k are all zero in the

reference configuration. We further assume that Ti, Si and k (or their components) when

I expressed in suitable non-dimensional forms, as well as their space and time derivatives are all

I of 0(c).

Recalling the linearization procedure of the previous section and avoiding the introduction

of additional notations, we now regard Ti, Si and k as infinitesimal quantities of O(E). As a

result of linearization, all tensor quantities are now referred to the initial undeformed surface and

covariant differentiation is with respect to Gij in the reference configuration. It then follows that

I in the equations (22.30), (22.34), (22.38) each term is of 0(c) and that di, and diIm = Xim or Xim

must be replaced to the order of E by D, and Aim or Aim, respectively. We omit the details since

it is a straightforward calculation and merely record the linearized version of the equations of

3 motion as follows:

3j : + pobj = p(ij + ."153) (28.1)

1 s1
' i+ (poc1 - k1) = po(yt 1 + y26j) (28.2)

I E,jn{u + smJAim + Diki) = 0 (28.3)

where the vertical bar in (28.1) to (28.3) and the rest of this section denotes covariant differentia-

I tion with respect to GQ. We also note that all quantities are now referred to the base vectors Gi

of the reference configuration.

3 Moreover, upon linearization we obtain
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:j = T ij - Aims m J - Diki (28.4)

3 In the light of the assumptions stated above and expression (28.4), the energy equation takes the

form

poc = tIji + s'ijijj + kyi = P (28.5)

I
I
I
I
I
I
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I
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I
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29. Linear constitutive relations for elastic composite laminates

I This section is concerned with the derivation of the constitutive relations for a composite

I laminate in terms of those of its constituents. In what follows we assume that each of the consti-

tuents of the laminated composites is a homogeneous isotropic elastic material. We recall that

3 within the scope of the linear theory all kinematical variables are referred to the reference

configuration. Previously we showed that the strain energy function, V may be written as

Y = Yo, Kp,';,') (29.1)

We assume that in the case of the linear theory y/ is given by a quadratic function of the

3 infinitesimal kinematical variables 1j,, NJ and y,. We also recall that after systematic lineanza-

tion of the expression for power, we obtained for the linear theory

POE = p T0 -ji + sin + ks' i = P (29.2)

Since the rates yi,, 9 j and y3 are all independent and since the coefficients are rate independent,

U after substituting (29.2) into (29.3) we obtain

P, j + y + -i 7, =t' J~j + s + Y . + ki (29.3)

| or

| - p0  .. a, p0
( - + -t'J -)^o ii) , , + ( = 0 (2 9 .4 )

I Hence

B
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I_ t'j P0 D

siJ= P . (29.5)

ki =po-iI
The relationship between the strain energy function V, per unit mass of the composite, and those

I of the constituents is given by

o f.i o p.G 1t2 Wd; (29.6)

or 

G7 0

P°'y4J = d i(pgy*)d" = (p.iW*)d + P't(p°2yj)dlI 1

where Pol. and Po2 denote mass densities of the constituents B and 'Br. We recall that in

5 three-dimensional linear theory we have

Ipy -- 1 E mI' .4 y* (m n (29.8)

IL and

I .0 = E; y" n (29.9)

3 We also recall that for isotropic elastic materials we have

Er4 = 'G~'iG, m + I (im n + 5nn6m) (29.10)

I= . .i(G.,G*jn + G~inG.Jm + 2v" G*IjG*mn )Yn 2' 11)
I -- 2v

k 2v t (29.12)

1-2v_
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5 For an explicit set of constitutive relations the integration on the right hand side of (29.7) must

be carried out using (29.8) for poxiV. Here we remark that as in the case of two dimensional

theories of continuum mechanics (such as plates and shells), except possibly in very special

3 cases, it appears to be extremely difficult to calculate the function V in (29.2) from the strain

energy function W* of the classical three dimensional theory. In the case of composite materials

3 this becomes more complicated due to the existence of two (or more) materials.

5 Alternatively, in order to provide constitutive relations in which the coefficients are related

to elastic constants of the constituents we can make use of the so-called specific Gibbs energy

function. This method proves to be more convenient for the derivation of the linear constitutive

5 equations for a composite laminate and will be described in the next section.

I
I
I
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I F. Application and comparison with the available theories

3 In this part we proceed to accomplish two goals. Frist we will apply the theory developed

I earlier (specifically in part E) to the case of initially flat composite laminates in which each ply

is modeled as an initially flat Cosserat surface. We will also apply the theory to the case of ini-

I tially clindrical composite laminates where each ply is modeled as a cylindrical shell (Cosserat

surface). In addition, we develop an alternative method for the determination of the linear con-

3 stitutive relations. This method which makes use of the Gibbs free energy function is more suit-

able for the application of the theory to various cases. Secondly, we will compare the present

theory with the available continuum theories and point out the features that are unique in the

5present theory.

I
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I 30. Preliminaries: Part I

U Before proceeding further, we dispose of some results which are independent of lineariza-

3 tion; however, they will be particular useful in the applications of the linear theory. First, we

recall that the position vector P, of the micro-body B *, in the reference configuration is given

I by

3 P = R(la6,03) + D(Tra,O3) (30.1)

3 In general, D in (30.1) is a three-dimensional vector having components D',D 2,D3 in the direc-

tions of G1,G2,G 3. However. in the reference configuration without loss of generality we may

U pecify D by

SD =DA3 , D, = 0 , D3 = D(rla,63 ) (30.2)

I where A3 = A3 (Tla) is the unit normal to the Cosserat surface, i.e., the shell-like representative

element at composite particle P. From (30.1) and (30.2) it follows that the base vectors G;" and

3 the metric tensor G,,. of the micro-structure, in the reference (initial) configuration are

IG = R'O, + .Dc, = Ga + :(DA- )., = G,, -r ',(D.aA 3 + DA-.c) = Go, +DA3.a -t D.cA 3  (30.3)

I and

S = D =DA3  (30.4)

We recall the results

A3"AO = 0  A3. ' A p + A 3 . A p3.c 
= 0

Hence,U
AO3 " A3.a = - A3 • AO.ct=- Bp=- B(5 (30.5)

I and
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I A3 a = BA 3  (30.6)

where Bap are the components of the second fundamental form of the surface. By (30.3), (30.6)

and the fact that Aa = Ga, we obtain

1G = Ga - DI)aAp + D,aA 3 = GI,85a - DBaGp + DaA3

I =(8 - DB1pa)G5 + D aA3  (30.7)

i Let

3v~ = 55a - IDB (30.8)

Then by (30.4), (30.7) and (30.8) we have

IG, = vcGi + DaA3

G; = DA3 (30.9)

and hence,

GT3 = DD., r (D 2 )a (30.10)

I G_ 3 = D2

3 Let us now introduce a set of curvilinear coordinates i such that r = rc 0 and where 3 is

measured to the scale of the rectangular Cartesian coordinates (say xi = x,) along the positive

3 direction of the uniquely defined normal A3 of the Cosserat surface (i.e., micro-structure). Now

in the reference configuration, which we take to be the initial configuration, the convected gen-

eral curvilinear coordinates 6i can always be related to (i with 3 as a specified function of rC

3 and E. For the purpose of this investigation and to avoid unnecessary complications, we denote

r3 simply by and specify it by

S= (T(r')1 (30.11)

where : is a function of rla only. In the special case that .Xrr) = I we obtain l -, in the
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I reference configuration. The coordinate system (T, ) where is measured along the normal to

the Cosserat surface is called normal coordinate system. Thus with specified by (30.11), the

position vector P" of the micro-body DB in the reference configuration referred to the normal

3 coordinates is given by

3P = R(Tla,O3) + CA3(rla,O3) (30.12)

Let Gi" and Gi denote the base vectors and the metric tensor associated with the normal coordi-

nates. From (30.12) we obtain

G* = R + A3 = G c - BaAp= (65c, - CBIa)Gp

I Hence, we have

(30.13)

I where 
=A 3

0 a = 85 - B~c (30.14)

I From (30.13) we have:

3 ~t = -o.tIG8

G3 = o (30.15)

G;3 = 1

A comparison between (30.1) and (30.2) with D specified by (30.2) reveals thatU
= (30.16)

I which is the transformation relation between and . Moreover, under this transformation, we

I obtain from (30.8), (30.14) and (30.15)
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I v = 85a- DBlc = 80a -Bp a = 0 a  (30.17)

If we let det (v)= l- and det (a) =t we obtain

t= 5 (30.18)

It is worth noting that the metric tensors Gi and Gi become identical when evaluated on the sur-

face = 0 or 0 in the reference configuration and are both given by

G O = Gap = Gap

I 0 =G3 0 (30.19)

G33 = G33 = 1

3 We now proceed to obtain expressions for Gi, Gij and G 1i2 corresponding to coordinates 61.

Consistent with the kinematic assumption (30.2) we take the function R(Oc,0 3) to be

R(Oa,0 3) = R(Oa) + 03A3(0a) (30.20)

From this we have

Ga =Ra = R.a + @3A3, = Rat - 03BYcIAy

5 G3 =R3 = (0 3A3) 3 = A3  (30.21'

and

Gap = (Ra- 03BYaAy) " (R.- 03B35 A5 )

I = R " R. - 03BYaAy" R.5 - 03B8pA8 R,a + (03)2B'(aB5 pAv " A-

I = Ra R,1 - 03(ByaAy - B5pA-y R,o) + (03)2BYaB8OA-y A8

3 = RA R.5 - 03(B(,R,p + B'3R,c) " AT+ (63)2 B'QBSBA- ' A8

3 Hence we have
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Gal = R,a *,1' - 03(B'faR.1 + BTIfRa) Ay + (03)2BaBIAy

I Ga3 = (Ra, - 03B~aA,) " A3 = 0 (30.22)

I G33= A3 A3 = 1

Also, G /2=  [GI,G2,G3] =  (GI × G2) G3 =  (G t G2) A3

= [(RWi - 0 3BY1,Ay) x (R,2 - 63B5 2As)] - A3

I = (R 1 X,2 ) A3 - 03[B71(A' x R.,) + B 2(R1 x A,)] • A3

5 + (e3)2BY'B 5
2(A. x A5) .A 3  (30.23)

3 We now combine the assumptions (30.2) and (30.20) to obtain from (30.1)

I P*(a,63, ) = R + DA 3 = R + 03A3 + DA 3  (30.24)

From this we obtain

G= Rot + (DA3).a = R.a + D.A 3 - DBraAy

Hence. we have

I G= Go, - DB-yGy + D.aA 3 = vyxGy + D.OA3

(30.25)

I G; = DA 3

whereI
vtct = 5Ya - DB'ta (30.26)

Moreover, from (30.25) we obtain
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GaOU = (Vy'aG + ED~aA 3) ' (v 8GS + D*OA 3) = VrfaV IOGY, + 2DD

G 3 = (VMaGy + DaA3) (DA 3) = DD.a = - (D2 ),a (30.27)

IGN3 = (DA 3) ' (DA 3) = D 2

I and

G*" = [G 1',G!,G3] = (G ' x G '). GU
= {(vylG ,+ .D.1 A3) X (V 2Gs + D 2A3 ) (DA3)

= (vylvy2(G- x G8) + D.2v0 1(G. x A3) + ,D.vI2(A 3 x G8)} - (DA 3)

I = Dvriv8
2(G- x Gs) • A3

I = D (viv 2
2(G1 x G2) -i v 2

1v 1
2(G2 x G 1)) A3

= D{v 1 v2
2(G1 x G2) + v 2

1v' 2(G2 x G1)) A3

3 =D(v IV22 - VI~v21)(G1 x G2) G = DG112det(vctl) (30.28)

i where in obtaining (30.28) we have made use of (30.23). Since

3 v = D det(vNa)

we obtain from (30.28)I
Iv = D det(vOC) G)12 (30.29)
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I 31. Preliminaries: Part H

U In the rest of this development we assume each ply of the composite is sufficiently thin and

3 confine our attention to the field equations of the linearized theory (28.1) and (28.2). Moreover,

for the position vector R and the director D, in the reference (initial) configuration, we adopt the

3 assumptions (30.20) and (30.2). Hence, in the reference configuration we have

3 R(Oa,0 3) = R(0a) + 63A3 (31.1)

SD= DA 3 , Da = 0 , D3 
= D(la) = D(@a) (31.2)

I and

P" = R + DA 3 = R + (03 + D)A 3  (31.3)

As mentioned before, within the scope of the linear theory gi,gi*,ai,gl/g " 1/2 and al/2 may be

U replaced by their reference (initial) values in the definitions of the various resultants. We now

3 proceed to obtain the resultants which occur in the linearized equations of motion. Consider Tc

and within the context of the linear theory make use of (18.7), (21.26) to write

Ta= G1/2taJ(;= *d = f 2 G"/ 2 t'aJGJd

I 
0 0

or

U
I
I
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I GI/2(TPGp + Tc'3G3) f 0' Gl(~p +"'G"d

G1 2 (T~a(vpG.,+ ED~A 3) + T*0DA 3 ) df 0

+ f 42 VGif2(,D OTaP + DCa)~4(31.4)

i where in obtaining (31.4) we have made use of (30.25) and (30.29). Since Gp and A3 are

linearly independent vectors and since Gp, A3 and G1/ are independent of , it follows from

U (29.4) that

Cap f I2 VT~ayvo. , TO f 42 v(.DOT*ao + DT*a)d (31.5)

3 We note that the composite stress vector T3 is not related to T13 (within each constituent of the

composite) and must be specified by a constitutive relation separately. In a similar manner, we

I consider Sa and within the context of linear theory we use (18.11), (21.38) to write

Sa = Gl1 'saiGj f 2 Vt~ dt f1 42 G*1 a 4dI
I

or

I
I
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G'1 (s GB + saG 3 ) = f G'12(.'oaoG + Ga3')4 dI
0G* f2 Tt*C'(VlpGt + D~pA 3) + t*a3DA 3 ) 4 d

= 2vG 2lakv~hGy' d4

+ f vGlt2(kD'lr*al + D't'°3)A3t d (31.6)

3 where in obtaining (31.6) we have made use of (30.25) and (30.29). Since Gp and A3 are

linearly independent and since Gp, A3 and G"/2 are not functions of 4, we obtain from (30.6)I
Sao = F o vTzatVP.A d , s013 = f j2 v( D,OT*a + Dt 2'a3) d4 (31.7)3 0

We recall thatU
S3 i = 0 (31.8)

Next, we consider k and in the same manner we write

GI/2k - GI/ 2(kaGa + k 3G3) = Z ,3d= r- Gl/2 *3JGd

I or

II
I
I
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G1/ 2(kaGa + k3A3)= f Gl/2(,C*3cGc + *33G3)d4I
I = G*l2 ( T*3a(vyG, + 4D,aA3) + t*33DA 3 )d

42 J VGI/Iz3aV~aG.A

+ f vGI/2(WDaC*3a + DT* 33 )A 3 d4 (31.9)

I where again in obtaining (31.9) we have made use of (30.25) and (30.29). By the usual argu-

ment it follows from (31.10)I
ka= f * v'E*3'ad , k= [ f2 v(4D,jt'C3a + Dt*33)dt (31.10)

0 0I
Collecting the results of this section, we have

ra = a rap. , T = J2 v(~za + D~Pd

I ' 3 i or V must be specified directly by a constitutive equation.

I = d2 VT .a d, , SO = + D *a) d.11)

I S 0 or S 3 = 0

Ia = fJ Vt3yVa~~, 0 fJ v( D~ar* 3a + D*3d
0 0

I The resultants in (31.11) are defined in terms of the N. ss tensor c*ij referred to the convected

coordinates 1i = {0a, }.

Next, we proceed to obtain the counterparts of (31.11) in terms of normal coordiantes

I i= {ca,r3} = (rla, } = {0, } where we have

I
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I=D4 (31.12)

Let the contravariant stress tensor in the context of classical continuum mechanics, referred to

the normal coordinates i be denoted by r*ij. The relationship between t'.ij and -T'ij is obtained by

I making use of the transformation law between two second order tensors as follows:

I 11 't*k  (31.13)

I Hence,

I~ A~ + t yx ' t*3

=8a8 3 .t*yX = t*ao3  (31.14)

II and

= ~~ D a *D ~-- T kX + ~-k~j3)

-T"33 DC " k "'/*k _ aC3a 3 V-l3

I

I= '-Y + , CV + a *- ) + * C t3

D.,Y ( D.).-t*Y' + D't"Y3 ) + D( D. "*3X + Dr 33 )

I2DaD.3t*aP + 2 DD.t* a3 + D2t*33  (31.16)

I We note that if the thickness of the representative element in the direction of normal is h2, we

I BASE
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I have

=O at 0(31.17)

Hence 
h2  at 4 42

which relates 1.2 to h2 and D. In particular, if D = 1 we obtain D = A3 and

I 2 =h2  (31.19)

3 We now define a new set of composite field quantities in terms of T*ij as follows

4T fh a4 , Va'= 3 =2 ?Od

.3a = O3D,5-0 + Dt 3a

'33 = ( 3)2 D, D, ta + 3 DD, (,ta 3 + ,T3 a) + D 33(31.20)

I -31aY24 dr )- 1 0

I .3i = 0

V3 2 ,(T* 33 -

i where LaW Yand g are given previously by (30.17) and (30.18). Making use of (31.14) to (31.16)

in (31.20) we obtain

I TO=ta , Va ='3 ca3 = Dk a + DBat3 + slaD,p

(31.21)

SJ = DsiJ V 3 = Dk3 - DBcpsap + D,ts" 3

U which relates the two sets of definitions (31.11) and (31.20).
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3 32. Linear constitutive relations for composite laminates: An alternative procedure

3 In this section we introduce an alternative procedure for the derivation of the linear consti-

tutive equations for a composite laminate. The method takes advantage of the specific Gibbs

energy function 2.

I We recall that the central idea in the derivation of the constitutive relation for an elastic

composite laminate was that the specific internal energy is given by a function of the form (29.1)

where in the case of the linear theory it reduces to a quadratic function of its arguments. As

I mentioned previously, although expression (29.6) is elegant, the explicit integration of (29.6) in

most cases becomes exceedingly difficult. Here we provide and alternative approach for explicit

I derivation of the constitutive relations (for the linear theory of a composite laminate) in which

3 the coefficients are related to the elastic constants of the constituents.

I We recall that the constitutive equations of the classical linear theory of elasticity in the

context of purely mechanical theory may be expressed in terms of the three-dimensional specific

Gibbs free energy function, say 0, in the form 3

Ii = - Po . (32.1)

I where y,* is the infinitesimal strain and where 9* and V* are related through

0 Q*('r*iJ) Y *(yiJ) - 'tij (32.2)
PO

I and 0' and W* are quadratic functions of their arguments and both also depend on the reference

3 2 This idea was first introduced by Green, Naghdi and Wenner [1971], in the
context of Cosserat surface theory.
3 The partial derivative I is understood to have the symmetric form

3 BSAS E
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values of G. It may be noted that the function o0 defined by (32.2) is the negative of the

expression for the complimentary energy density. We now recall that the Gibbs function Q* for

an initially homogeneous and isotropic material can be expressed as

i 9. = {l+v* G Gjn + V* Gi!Gr) T*ij,[*mn (32.3)
2E" 22 -*-

where Gi* is the initial metric tensor, E" is Young's modulus of elasticity and v" is Poisson's

ratio.

U Within the scope of the linear theory and corresponding to (29.6) we define a composite Gibbs

free enerqy (or a "composite complementary energy") 0 as follows:

I poG/2 = 1 2 pGwqp., (32.4)

3 From (32.2), by integration with respect to between zero and 2 we obtain

0 poGl/2$*d, = f poG"/ 2Vtd - f /G'r2 -!*iJii;d (32.5)

I Considering (23.6), (32.2) and (32.4), we may rewrite (32.5) as

poG'1 2 o = poG1/21/_ f vG2 1/ty2 ,.d'

I or

=2- ovt .ijuid4 (32.6)

I where in obtaining (3.26) we have made use of (30.29). By making use of the expressions for

TIj. , the expressions for various resultants and the kinematic assumptions for R and D. we can

express the integral in (32.6) in terms of the various resultants and their corresponding relative

I kinematic measures. However, as before the constitutive relations for the interiamnnar stress
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vectors Ti should be specified directly. Keeping this and expressions (32.2) and (32.6) in mind.

we assume the existence of a Gibbs free energy function ¢, such that

Poo = PO0 ('-,siJ,k i) = Po'W - (t'J"ij + siJ!Yj + kiy,} (32.7)

I Differentiating both sides of (32.7) with respect to t, we obtain

POE = poy€ = Poq) + (TO "/ij) + (siJ K) + (ki y'i)

= Poq + t iji + 'tjyij + sijKj + s'jYk7. + k tyi + ki'y (32.8)

Next. we substitute (32.8) in the expression for power (31.3)

PoQ + ' T"I 'Y + sxJ K J + ki"{ti +  T I yij + si 0 9-t- +  k 17i =  r:'lyij +  sJ 0 ..j +  ;i

I or

S( ij + -0 k') + v- +ij + jSi + Yi k =0

or

((ij + Po,- + iK j + P2 -- )s + (+ -+- (32.9)

where we have assumed the rates T'J. J and k' are all indepenoent and their coefficients are rate

independent. From (32.9) it follows

Iij = - P-

I ot0.

I ~"/i= - Po 2.0

I We note that the relationship between the Gibbs energy function o. per unit mass of the compo-
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site, and those of the constituents is given byi

poG V26 poG° tZ'Od (32.11)

or

II
Ph f~~j)~ (~ = fh gi(pJ 101)d4 + i(po2o )d" (32.12)

where o for an isotropic elastic material is given by (32.3). The explicit determination of the

various coefficients in constitutive relations is beyond the scope of this project and is left for a

* follow-on project.

t
t
I
I
I
t
t
I
t
I
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33. Some results for the case of a normal director

We recall that in the context of the present Cosserat composite theory, director d is a three

dimensional vector associated with each composite particle and in general the only restriction

placed on d is that it cannot be tangent to any ply. The case in which the director D, at each

I composite particle in the reference configuration, is taken to be the unit normal to the ply is of

3 special interest. In such case, in order to allude to the direction of D in the present configuration.

we may refer to direcor as "normal director." This section contains some results for the case of a

normal director. The results of this section will be helpful when we apply the theory to the cases

of initially flat and initially cylindrical composite laminates. Therefore, in this section as well as

I in the rest of this development and within the context of the linearized theory we confine our

t attention to the case for which D is unit vector. Hence, we make the followin2 kinematical

assumptions in the reference (initial) configuration:I-
R(Oa,0 3) = R(Oct) + 0 3A3  (33.1)

D-A 3  (33.2)

and

P$(6r,03,,) R(OCt,03) + D(0C,03) = R + (03 + )A, (33.3)

where P" is the position vector of an arbitrary point P" of the micro-body, R is the position vec-

tor of the point P, corresponding to t-". in the macro-body, and D is the director at point P. It is

I worth observing that in (33.1 ) and (33.3) the term involvin accounts for the effect of micro-

I structure while the term ,ivolve 03 represents the continuum behavior of the macro-structure.

namely the composite laminate. In this connection it is important to realize that if, at the outset.

in 133.3), we discard E with respect to b3 we will lose the effect of the micro-structure in the con-

'inuum formulation of composite laminates.

B
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From (33 2) it follows

Dc = 0 D3 =D(Tla) = 1 (33.4)

Iand

r (33.5)

I From (33.1) we obtain
fx _ R -3~a "~ - "3(G

( -= R a = R . (x - 3 A 3 . = R a - 6 3 B Y a A y = R a - 33 B3 .1G6

Ul (33.6)

GI~ = -a-R R = A3
I

Making use of (33.6) we write

Ga = R a R. 3 - 03(BYtR,5 + B37R,a" Ay + (03) 2BYaB 3 Ay

I Ga 3 = (Ra - 03B'taAI) A3 
-O (33.7)

I G33 = A, - A3 =1

andand O-- [12 
= tG 1 x G2) - 3 - (GI x G 2) A3

I = (Rj x R.2 ) A, - @973
1(A, x R.2 ) A3 - 03By2,(R. x A,) " Ai

I + (03) 2BYt BO2(A, , ,.V) A3  (33.8)

3 Moreover. from (33.2) and (33.3) it follows

i = R -. = R.,, - 1B;UA.Y =v;

G A, 33.9)

! ,,,,here

= - = (33.10)

BASE
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and

v = D det'vfa) = det(v'fa) = det(4;',) = L (33.11)

Making use of (33.9), we obtain

Ga t = vYcv55G.8 = iYt.i&53G,

G3 = 0 (33.12)

G-'3 1

and

G12 = Gl'detwvu1 ) = 11/2 = 4G i2

or

V * Li (33.13)

In view of (33.1 to (33.3) and (33.10) to k33.13) expressions (31.11) are reduced to

,rao= ;2zh2 v , , = , a vta'a3d"

,3i or are specified by a constitutive equation directiv.

-,2=h2 . = h2

(31 ) or S-

hh

while definitions (31.20) become

BASE
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I

h h2

= Z(33.15)
hiS 3=h2 hz a r'

h2

~Also. the transformation between '*i and T*iU, namely expressions (33.14) to (33.16), are now

I given by

I "i xij (33.16)

3 Finally the relations between the two sets of definitions (33.14) and (33.15) are reduced to

i c~~TB cO! vat u c3 = [0a = ka + Bats713
(33.17)

j Sij V3 = - B.Os"O

B
I
U
I
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34. Theory of initially flat composite laminates

We are now in a position to apply the theory of Cosserat composite to special initial

I geometric configurations. In this section we apply the theory to the case of an initially flat com-

posite laminate. The case of an initially cylindrical composite laminate will be considered in the

I next section.

I Consider a composite laminate and let its plies be flat (i.e., having no curvature) in the

3reference (initial) configuration. Let el (i = 1,2,3) be the base vectors associated with a system

of Cartesian coordinates xi (i= 1,2,3). The position vector of a plane surface perpendicular to e3

and passing through the point (0.0,c) may be specified by

3 p(xi) = xIe, + x2e 2 + ce 3  (34.1)

3 where c is a constant. In view of (34.1) and recalling formulae (33.1) to (33.3) we adopt the fol-

lowing kinematical assumptions for an initially flat composite laminate:U
R(xcx 3) = xle, + x2 e2 + x 3e3 (34.2)

D = A3 = e3 (34.3)

I and

P*(x' ) = R + re, = x'e, + x'ei + (x3 + :)e 3  (34.4)

We recall that (34.2) specifies the position of an arbitrary macro-particle of the composite lam-

inate while the position vector of the micro-particle corresponding to the macro-particle is given

I bv (34.4).

I Fir.it we proceed to obtain various quantities associated with the surface (34.2). The base

I ectors of the surface are obtained from (34.2) as follows:
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I

A 1 x axa 
(34.5)

i ~ A -TR'-x I e A2= O
X , "e =a e2

The components of the surface metric tensor areI
AaO = Aa • A53 (34.6.a)

All=e el = l , A12 =A 21  =A IA 2
= 0  A22 e 2 e 2 (l

3 or

1 034.6.b)

Moreover, we have

AaPA= 5a7  Aa = (Aao)-I1 (34.7)

3 Hence,

Aa 0 1 0N-1i (34.8)

0. 0

I The conjugate base vectors of the surface are given by

Aa = A(4A5

U Therefore

A1 A I IA I+ \ .\ ,. A =34,9

I The unit normal to the surface follov, s from 3,.);

3 AI A 34.10A AlAS
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which confirms (34.3). In view of (34.5.b) and the expressions for Christoffel symbols of the

3 first and second kind, i.e.,

[ axa + 2. - x

and (34.11)

3 In view of (34.6.b), it is clear that all Christoffel symbols vanish, i.e.,

3 [,y= {a "a } = 0 (34.12)

Coefficients of the second fundamentai form of the surface are given by

3B, = Ac,, ' A3 = - A" A. (34.13)

It then follows from (34.4) and (34.13) thatI
3Be = Bap =0 (34.14)

This shows that for an initially flat ply (plate.) the components of the second fundamental form of

the surface vanish identically.

3Next, we obtain the various kinematical quantities associa:--d with micro and macro contin-
uua for the case of initially flat composite laminate. From (33.6) it foilows

( a- )R O
, a  Ox,"- ,

1 (34.15)
= DR DR

From (34.15) we obtain 
OT =  X7 e

I
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GB=R." RT,=e.- ep

Ga3 = Ra" G3 = e" e3= 0 34.16.a

G3 3 = G3 " G3 = e3" e3 =03 or

I (Gij) 40 1 (34.16.b)
00 1

I Also,

I O =(G(; x G 2)- G 3 =(e xe2) "e = 1 (34.17'

3 Moreover, from 33.9), (34.4) and (34.14) we have

• DR =P _LP"! = Rcc - "By'aAt e

(34.18)

G = = -* = A3 =e3

Also. from (33.10) and (33.11) we obtain

van = = (34.19)

and

I
v = D det(v(,1) = [. = 1 (34.20)

Mlakin2 use of (34.18), we obtain

3 ,; = (; ; =e,•e

G,3 G=(;r; (J " e1 =() C"._l a

5 G3 =( (ei= e 3= 1

GBASE
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(Gij) 1 (34.21.b)

It then follows that

G=1f2 (Gl* x G)" G = (ei x e2) e3  1 (34.22)

By (34.17) and (34.22) we haveI
I* () 1 /2 . =V =. (34.23)

which confirms (34.20). In view of (34.2) to (34.4) and (34.23) formulae (33.14) and (33.15)

I simplify as follows:

C'e3 =at!xdr ,V1 " 3 = vCL = ka= j .o0

I'3i = t3i be specified by a constitutive relation directly

-p= s l = .td - = 3 = a3(,d (34.24)

I s3i -

k 3 3= 2 "

where in obtaining formulae (34.24) Ae have noticed that

3- = t~J (34.25)

3 ,where iJ are now Cartesian components of the classical stress tensor.

3 We recall at this point that because all quantities are now referred to rectanuular Cartesian

axes. covanant differentiation vith respect to metric tensory Gi1 is reduced to partial differentia-

5 tion with respect to x' ,or x,)and no cistinction needs to be made between superscripts and sub-
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scripts. In view of this, expressions (26.30) to (26.32) are reduced to

( = (ui. + u,) (34.26)I
i= 6i + U3 , (34.27)

ij = (34.28)

IFinally, with the help of (34.3) equations of motion for the case of an initially composite lami-

3 ante are reduced to

I iji + pobj -Po(uj + yI1j) (34.29)

g siji + (pcj - kj) = p(yi6A + y'gj) (34.30)

Eijn ij = 0 (34.31)

We observe that in (34.31), Cijn is skew-symmetric with respect to i and j; hence it follows thatI
Tij = tji (34.32)

IThis indicates that in the case of an initially flat composite laminate the components of the com-

posite suess tensor are symmetric. The same conclusion can be reached from expressions

34 .24),.:, i.e.,

I h2

U in view of the symmetry of the classical stress tensor.

I
In expressions like (34.27) the Greek letters such as 6, denote components of

the director displacement vectors. etc. This should not be confused with the use
of Greek letters as indices in various expressions.
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35. Theory of initially cylindrical composite laminates

In this section we continue to apply the theory of Cosserat composite to initially cylindrical

£ composite laminates.

3Consider a composite laminate and let its plies form a set of concentric right circular

cylindrical surfaces. Let xi (i = 1,2,3) and {r,O,z) denote Cartesian and cylindrical coordinates

I with a common origin in a Euclidean three-dimensional space. Let ei (i = 1,2,3) and (er,ee,ez}

I denote the unit base vectors in the foregoing coordinate systems. respectively. We recall that a

right circular cyiinder of radius r may be defined by a position vector of the formI
P = re, + ze, (35.1)

IRecailing the relations between the unit base vectors in Cartesian and cylindrical coordinate sys-

5 tems, i.e.,

er = cos 6 el + sin 0 e2

e= -sin 0 el + cos 0 e- (35.2)

e1 = e

5 we ootain

P = (r cos O)e - r sin O)e2 -I- ze (35.3)

It is worth mentioning that sometimes it is more convenient to consider an alternative represen-

tation of the cvlindriccal surface 135.3) as follows:

P=rcos -)e -(-rsin )e2+ze3 (35.4)

.vhere rO is the arclenzth measured from a tixed point (0 () along the ,'on curvL, LU

j now in:roduce a set of coordinates 0' i = 1.2.3) such that
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e01= , 02= Z 03 =r (35.5)

I Hence. in terms of 8i coordinates we have

p = (03 cos -- )e + (03 sin ..0-)e2 + 02e3  (35.6)

I This representation will facilitate much of the intermediate steps especially in connection to cal-

culation of the various quantities of the surface.

forIn view of the foregoing explanation, we now adopt the following kinematical assumptions

for an initially cylindrical composite laminate

R(r,O,z) = re, + ze,

a D = A3 = e, (35.7)

P*(r,0,z,,) = (r + )e, + ze,

Making use of (35.5), we can rewrite this

R(0a,0 3) = (03 cos 0- + (0 3 sin -)e2 + 02e3

Al 01 3 .'

(A= cos T)e + (sin T)e358)

p'lO'x (9 3 
-+ Jcos n 01

p _(0, _3.6 1(03 . O e 1 (03 + -)sin 01]c2 + 02,C

The base vectors of the surface are obtained from (35.8) as follows

I
A, R

Hence we have

S BASE
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01 1 01

(sin --- )ei + (cos --- )e2 = eE (35.9)

andI
A 2 = R.92 = e3 = e, (35.10)

I From (35.9) and (35.10) we obtain the components of the surface metric tensor A,5

I Ap = A, • A5

3Therefore
A1 1 = A1 •A1 = [-(sin 01)el + cos(0')e] • [-(sin 01)ei + (cos 0-)e

A12 =A2l Al A2 = -(sin 01)el + (cos 0I)e1 •e 3= 0 (35.1 I.a)

or A 2 = A. A 2 = e 3 " e-=

I or 10
(A )= 0  1J = 0  1j (35.11.b

.Moreover, we have

I . -V .= (c) -  (35.12)

£Hence.

..\ LO I = 11 0 35.13;

The conjugate base vectors : the sur'Ice are given bv

£ BASE
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Thus,

I A1 = A'IA, + A12A2 = A! =e 0

(35.14)

A2 = A21Ai + A22A2 = A2 = e3 = e,

g The unit normal to the surface follows from (35.14)

A3  A, x A 2  1 {[-(sin01)el + (cosOl)e2] x eXl

A TIxA21= IAI×Al,

* or

A--(sin 1 e x e, -tcos 0

63- A A 1 -i -1~ C g- -)(e2 x e3 )}

6 1 6 1
= 7A ! x77 A (-(Cos - e I: +(sin -)

(cos -- )ej + sin 0Tie, = er

3We note that A3 could have been obtained from vector product of e0 and e,. However, to illus-

trate the general procedure vke did not make use of e0 and e,. The Christoffel svmbols of the first

and second kind follow from 35.1 1)

4[o, 1  I = 0c":1} = ) (35.16)

I and coefficients of the second fundamental form of the surface are given by

I B 5 = Act5 'Ai=- Act'A.

3 hence.

I
I
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BI = A. 1 A3 = [-(sin )e, + (cos )e:]., • [(cos -- )e, + (sin -- )e2j

[-(cos 0--)e-(sin 60-)e2] ' [(COS 0I-)e, + (sin 0)e2 =- -

B12 = A2 1 A 3 = (e 3) 1 [(cos -- )e, + (sin -0-)e2 ] = 0

I 0  
1  0' 01 1

B21 = A,, A3 = [-(sin )e, + (cos -- e, [cos (- -)e, + (sin -L -eJ = 0

I T 1 - 03 )q

B22 = A-,,,, A- = (e-).2"[(cos -el + (sin - =0

3 Therefore

I (BQ)-- 1/0 3  1 -/r 0j (35.17)

I We also have

£Ba, = Ac'YB.

3Hence.
BlI = , 11B 1, -- .' 2B2, = - r

- r

3 BI = A'1B 2, -. A12B., =0

B 2 = A21B!,-, 1.-. = )

or B 2
2 = A21B12 A22B_ 2 = 0

1- /0 3  Oj - /r i)I

) = ()5.I
Next. '.,e obtain trhC vrIous k'ncmraticai Luantities associated with micro and naicro continua for
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the case of initially cylindricai composite laminates. From (33.6) and (35.8) it follows that

G, =e2 = - (sin-0--)e, + (cos -1)-) = ee

G2 e3 = e. (35.19)

G- = 3RO 2 0e3= ,

Gi= oR = (cos 60')e, + (sin e-7 = er

I From (35.19) we obtain

l = G " = [-sn-L ' 1 + (cos -- 3-)e,] [-(sin-n-.-)e + (cos -- )e2 ]

0.. 01 0" ,
2 :.. = •G [-(sn- j-)e, + (cos -- )e2 •

01 01 01 01
= G = G, (.; = -- (sin -- )e, + (cos -0-)e 2  •(cos -- )e1  + (si -- )e2I = 0

I~~~ G ,22 =G2 2e 3 " = 1

2 2 " = G2  , o ei +

01 01
G'2 = i,= G, -G,= e '[(COS - -)e, + (sin -T)e-J = (

I01 
01 01 01

G 13 (iG - = (cos -- tcI + (sin - e,] [(cos e -- (sin --- ): =

3 Hence

(G ) 1 (35.20)

We aiso have

B
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G' t2 =(G 1 x G2) ' G3

01 01 01 61= ([-(sin -- ) el + (cos -- ) e21 x e3) " [(cos -) e1 + (sin O3-) e2,

91 01 61 01= ([-(sin --3-(-e., + (cos -- )e • [(cos - )ej + (sin 0 )e-} = 1 (35.21)

Moreover, from (33.9), (35.7) and (35.18) we have

_ 03 r 01 r+Gj'= p*[-(sin -0,T)ej + (cos -p -)ei]=  eq
TO" 03.r

_ o =el = e" 35.22)

( P" r= P -
= = .2 ..- = (cos l)el ,- (sinOl e2j r

Also, from (33.10), (33.11) and (35.18) we obtain

=) = +
r r

V-,=

or

i !r+d;,r 35.23

and

7 = d '! '"r+ ,35 .2 4
= . ~,) = CtE\". B = . = E 54
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Making use of (35.22) we obtain

G11= G.G= e-----t)[-(sin 61)e, + (cos e1)e2] • [-(sin 0 1)e, - (cos 9l)e2l = ( 6+2= (.--) -

[3+C sin2sin

G-2 = G,, GI' " G, = ( 0---(sin 61)ej + (cos 01)e 2] • e3 = 0

3 G1'3 =C:=CjG = ' G3" = (-63)[--(sin 01)e, + (cos 0')e 2] [-(cos 01)e, + (sin et )e2 ] = 0

3G12 = G G= = 1

3G2 = G 32 = G* G - (, = ex • [(cos 01)e, + (sin 0 1)e2] = 0

3G3 = G, • G = f(cos 01 )e, + (sin OI)ei] [(cos 0 1)e, + (sin 01)e2j = 1

Hence.U
(1+/0321 0 (I +(r) 2 0 0

(Gj) = 01 0 0 1 0 (35.25)j 00 1 0 0 1.

3 It then follows that

G "I 2"  {dettGi*)} I2  
= - r0 (35.26)

I Bv (35.21) and (35.26) we have

-. 1!2 _ = V =35.27)
-r

3 which confirms 35.24). In view, of(35.S) and (35.27) formulae (33.14) and (33.15 reduce to

r
d . , .,5.2S.a

S.= , 1+ + , + ,:5.2x.b
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1=,t3= (I + )'C a3d =va (35.28.cr
'i be specified by a constitutive relation directly (35.28.d)

r'= = (+(1a = ---; (1+ (35.28.e)

sa2 = sa2 = (1 + r 0 +--)T*a 2 "dC (35.28.f)
r

SW SW (I3 = (+ -. r)tak (35.28.g)
0 r

I s3i=U or S3= 0  (35.28.hl

h2

k 1 + )2kr3 1d k= ( (3 5.2 8. i)

k:f (l++-}) 33dC (35.28.j)

I
+ )[33 - + - (35.28.k)

It is interesting to observe that when me radius of the cylindrical laminate becomes large ti.e..

when the clindrical surface approaches a flat surface) the value of r becomes small and may

he neciected in comparison to unity (deally -=- approaches zero) and the various expression3 - r
obtained in this section will reduce to those obtained for an initially flat comnposte !aminate.!

The relative kinematical measures y1, 7i and Kj are now given byI
SU , ) (35.29)

I= +± =  35.30)
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I = 5;! (35.31)

I where a vertical bar (I) denotes covariant differentiation with respect to coordinates

i 0i (i = 1,2,3) as specified by (35.5). Moreover, equations of motion are given by

3 j'iji + pobj = Po(aj + y I j) (35.32)

si i + (poci - ki) = po(ylcj + y2pj) (35.33)

where ail components in the above are referred to coordinates 6i G = 1,2,3).I
For convenience and systematic reduction of various results of this section we adopted the

3 coordinate system (35.5). However, most of the available results in continuum mechanics

regaraing cylindrical bodies are in terms of the cylindrical coordinates r.O,z. In order to write

the relevant results of this section in terms of r,O,z we consider the representation (35.7) and

3 adopt a system of cylindrical coordinates r.O,z such that

01=6 , 02 =z , 03 =r (35.34)

i From (35.7), and (35.34) it follows

G I = req G, e, Gk = V, 35.35

and

3r 2  I) o1/r-, ()I

I (Go)= 0 1 G'J) = 35.36
o 0 0 1

3G t/2= r (35.37

3 Moreover. from (35.7)3 ,ke obtain

3 (jY == e, G 35.3S)
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(r+2 0 0 F 1/(r+C)2 0 ol
Ii)= , (G~iJ) 0 1 0 (35.39)

0 010 0 1J

G"= (r+ ) (35.40)

From (33.13), (35.37) and (35.40) it followsU
V =t=(1- ) t2= r+C -(1 +r -) (35.41)

as before. In order to calculate expresisons involving covariant differentiation we need to calcu-

late the Christoffel svmbols of the first and second kind. Christoffel symbols of the first kind are

3 given bv

I [ijk] = T (gjk,i - gki. - gijk) (35.42)

3 The only non-vanishing Christoffel symbols of the first kind are

3 [3111=r , [1311=r, [1131=-r (35.43)

Christoffel symbols of the second kind are given by

,k , ,, ,)j (35.44)

From (35.43) and (35.44) the only non-vanishing Christoffel symbols of the second kind are

II
3 I _ (35.45){l ~3)_ =1 r (3 =--) i r

The physical components of the displacement vector u and the director displacement 6 are given

* by

I
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U= -g 1 )-' 2UI = (gl]) W'2u1 -U@

U2 = (g22- 1 2u2 = (g22) 1/u 2 = Uz (35.46)

U 3 = (g332U3 ) 2u3 = Ur

g 6, = (g1 )0-112 5 = (gI) If28 = 69

I 2 = (g22)-'/2'2 = (g22)'1/2 2 = 6z (35.47)

1 63 = (g 33)-lt283 = (g33)I / 8 3 = Or

T he physical com ponents of "f ,, are

I
OT - r

aUz

(35.48)

l -o a DU,

5 (z r TF)

I cuq 1u D U ,~U
or r 5 ) -

au,-' Dul

and the physical components of yare

I (Ji1r Ug3r r

I ).

3 a or
Also. :,e pnsical components or " are .ren B A

1~- S~ E0
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I
9Co=1 8 Or

dr

(JZr

I "T-S _

or r X° = -r - r r

or " -Oz

I Next, we note that the physical components of the stress tensor and stress couple tensor may be

3 written as

Too r

Trr T33 =T33

71o r -

', = 
' 

= 
-- "- " " * - '" - - r "l

9r r

r~~~ A1 Sr)= 3

I :z = :3 =Q3 'z . *32 = 11

I
I
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S22 = S - = S22

Srr = S33 = S33

3 S(35.52)

S~ s2=1 1
se =rs2 1S12 SzO = rs 2 1 = -L S21

ST = Trs 13 = 1 =rs 3 1 = - S31

S= S 3 = S23  ,Srz 
= SS3 2 S3 2

Moreover, the physical components of b, c and k are given byI
b( rbi 1 b, bz = b2 = b2  br = b3 =b 3  (35.53)3r
ce =rc lI Cz = C 2 = c , Cr = C3 C3 (35.54)

r

ko=rkI = = k,  kr= k3  k3  (35.55)I r
Also. from (25.461 and (35.47) Ae have

1 ...

SU1 IZ--- (' , , =U-3 =35.56)

33I = o, 3-i5, ', 33 3 35.57

where a superposed dot denotes partial differentiation with respect to time. Vith the help ol

,5.51 i to 35.57 ,we are ahie :o reduce the equations of motion 3 532) nd 53 to

I
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aFT. 1 1 aT+ zz + po = po(6+yl) (35.58)
iF " -T r --- z r

° 1 0r7 8  Ot7 z Z"-07 +  + "0- 4 "-7 7- + Pobz = po(iz + y 6)

and as , 1 S s . , - s e

rd(por kr) = poTydlr + Y50r)

IIas* 1 d1S,- - .

()g Oz r sot + (Poco - ko) = P.(o 16 ) (35.59)

as, 1 s~q rs- s 1 .. ,.F"- I + (p0 ., - k,) = po(y I-, + v-,)

r 1 CS z r

3 where in obtaining (35.58") and (35.59) we have also made use of the expression for covariant

differentiation of a second order tensor.

I
I!
I

,I
II
I
I
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36. Comparison with the available theories

The use of advanced composite materials in aerospace and other related industries is

rapidly increasing. This is due to significant advantages offered by composite materials in terms

of efficiency and cost. A widespread application of composite materials requires a detailed and

I reliable knowledge of their physical properties and their behavior under the applied loads. One

3 of the important subjects in this field is the development of a theoretically sound generalized

continuum model for composite materials in general and for composite laminates in particular.

3 There are a number of different theories that attempt to model the behavior of composite lam-

intes. These theories make use of a variety of approaches from analytical to numerical and from

U discrete modeling to continuum modeling. It is the purpose of this section to present a com-

parison between the theory developed in the course of this research project with the available

continuum theories. To this end we first recall the main features of the present theory and then

3 we proceed with a rather detailed comparison.

3 We record below the main features of the present continuum theory which will be referred

to as 'Cosserat composite theory."

a) It accounts for the effect of micro-structure.

In the present theory the motion of each material point P of the composite laminate is deter-

U mined by two vector functions of position and time

Sr = r(O',t) , d = d(0,t) , i 1=,2,3 (36.1)

where r is the position vector of the matenal point P and d, called a director. :s a deformable

vector function assigned at each material point P of the composite representing the effect of

micro-structure in the continuum. In other vords, in the present theory a material point (parti-

S cle). in addition to its mass, is endowed with a director (structuring). The kinematics and field

uuantities associated with the micro-structure are determined bv d and its space and time
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derivatives and through relevant field quantifies associated with the director d.I
b) It accounts for the effect of geometric nonlinearity.

The vector functions r and d in (36.1) which determine the motion of the composite lam-

3 inate represent finite quantities and are not restricted by any explicit or implied smallness

assumptions. The complete theory presented in the course of this investigation has been

I developed totally in the context of the nonlinear theory.

I c) I accounts for the effect of material nonlinearity.

I The development of the constitutive relations in the present theory has been carried out in

3 the context of nonlinear theo" -. The same is true for the development of the constraint theory of

composite laminates. should also be mentioned that although we have confined our attention

3 to elastic composite laminates, theory is not restricted to only elastic materials and other types of

materials 'viscoelastic, plastic, etc.) can be treated as well.

d) It accounts for the effect of curvature.

The present theory has been developed with no restriction olacea on the geometry of cor-

I posite laminates. Hence, any type of initially curved composite laminate may be treated by the

3 Cosserat composite theory. TFhe specific cases of composite laminates such as laminated compo-

site piates. laminated composite cylindrical shells. etc.. are obtained as special cases of the

3 present theory without any prior assumptions.

3 el It accounts for the effect of interlaminar stresses.

3 In the present theory the ir-telaminar stresses are incorporated into the tf-rmulaton of th;e

:neorv in a natural and consistent manner and without any ad hoc assumptions. The three com-

I onents or the interlaninar stress vector (i.e., une normai component and tvxo tangential or shear
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components) can be extracted from tne theory. This makes the theory applicable to problems

involving delamination and edge effects in composite laminates both of which are considered

extremely important.

f) It has a continuum character

The Cosserat composite theory possesses a character similar to that of the classical three-

I dimensional continuum mechanics. In particular the theory is represented by a set of conserva-

3 tion laws which are expressed in a coordinate-free notation. Consequently the form of the con-

servation laws are not changed under a transformation of the coordinate system. None of the

3 available theories have been shown to exhibit this characteristic. From the conservation laws, in

a systematic manner similar to classical continuum mechanics, "e can obtain a set of basic field

equations (local forms of equations of motion). The stress vector and stress couple vector in this

3 theory exhibit similar characteristics to the stress vector in the classical continuum mechanics.

The symmetry of the composite stress tensor does not hold as expected due to the presence of

3 other field quantities. In the absence of the micro-structure when the composite laminate is

reduced to a classical continuum body (i.e., d = 0) the conservation laws and their local forms

are reduced systematically to those of the classical continuum mechanics and the symmetry pro-

perty of the stress tensor is recovered automatically. The bounaarv conditions in the present

theory are concise mathematically and are also clear from a physical point of view'.I
g) It is appiicable to both static and dynamic problems.

Practically all continuum theories developed for composite laminates are eventually formu-

S lated in terms of displacements and aimed towards dynamic problems. Hence these theories are

not normally capable of treating static problems or those with stress or mixed boundary condi-

Aions. The Cosserat composite theorv does not suffer from such deticiencv and without any

3 further reformulation is capable of hancling both static and dvnamic problems.
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h) It can be generalized to treat probiems with more than two constituents.

The Cosserat composite theory developed in the course of this study is, like all other con-

tinuum composite theories, applicable to a composite laminate with two constituents (bi-

laminates). However, due to choice of the configuration chosen for the representative element

I (micro-structure) and due to the coordinate systems adapted, this theory can be further general-

ized to include composite laminates with any number of constituents. The extension from bi-

laminate constituents to multi-laminate constituents in the available theories is not present in

most available theories and for those that this generalization is possible, the resulting theories

become extremely complicated.I
Considering items (a) through (h) above, as a general assessment, it should be clear that

I there exists no single theory possessing the above characteristics collectively and at the same

3 time having the relative simplicity of the Cosserat composite theory. Even in the cases where

the available theories share some (but not all) of the above properties the Cosserat composite

3 theory offers more generality and perhaps less complexity.

We now proceed to compare the Cosserat composite theory with some of the available

theories. The conservation laws for composite laminates were summarized in section (17) and

U various field quantities were defined in that section. Also the compiete theory of elastic compo-

site laminates was recapitulated in section (23). In what follows we will frequently refer to these

sections.I
I) One of the earliest and rather elegant efforts in the field of composite materials is due to

3 Sun. Achenbach and Herrmann in w hich they developed a linear continuum theory for a compo-

site laminate. In their work, instead of introducing a representative homogeneous medium by

means of "effective moduli." representative elastic moduli were used for the matrix. and the elas-

3 tic and geometrc properties or the reinforcing elements v.ere combined into effective stiffnesses.

With the aid of certain assum"-ons rceardinz the deformation of the re:nforcina elements and
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by employing a smooth operation, approximate kinetic and strain energy densities for the cor-

posite laminate were obtained. By a subsequent application of Hamilton's principle to the

expression for total energy of the composite, the displacement equations of motion were then

I obtained. In this effective stiffness theory the displacements of the reinforcing layers and the

matrix layers were defined as a two term expansion about the mid-planes of the layers. The

basic premise of effective stiffness theory is that a smoothing operation may be employed to

replace the discrete layers of the laminate by a continuous medium. In other words the smooth-

ing operation is a special assumption introduced so that a sum of discrete points can be replaced

I (mathematically) by an integral. This theory later was used to study the harmonic wave propa-

3 gations in a laminated composite.

We now make a comparison between the effective stiffness theory of Sun. Achenbach and

Herrmann with the Cosserat composite theory (CCT).I
1) The Cosserat composite theory is a nonlinear theory whereas the effective stiffness

theory is linear.

2) The Cosserat composite theor is a general theory applicable to any type of curvature

while the effective stiffness theory is a special theory ,.hich is applicable to a flat composite

I laminate only.

1 3) The Cosserat composite theory is characterized by a set of vell defined and coherent

conservation laws (global-field equations) which are coordinate free and hence invariant under

the transformation of the coordinate systemls). In contrast, the effective stiffness theory does

not offer any conser'ation laws at all.

- The Cosserat composite theory offers a formulation wThich is analogous to those of the

classical continuum mechanics. In particular the local forn of the basic field equations (equa-

tions of motion) are derived svstematicallv from the conservation laws. The resulting equations
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are in terms of various field quantities (i.e., stress, stress couple, etc.) which can easily be

reduced to a system of displacement equations of motion. On the other hand, the tfftive stiff-

ness theory offers a formulation which is based on ad hoc assumptions and at entirely in terms of

the displacement variables and hence is only capable of treating a special class of problems.

5) Because of generality of its formulation the Cosserat composite theory is capable of

treating problems with stress, displacement or mixed boundary conditions. However, the appili-

cability of the efrective stiffness theory seems to be limited to prbL-cms involving displacement

boundary conditions only.

6) The Cosserat composite theory is capable of determining str.,sses, stress coupies and the

interiaminar stresses while in the effective stiffness theory the interlaminar stresses are not

present.

7) The process of extension from the representative element to a continuum model in the

two theories may be considered to have some conceptual or physical similarities, but are not the

same. However. from a mathematical point of view in the effective stiffness theorv the smooth-

ing process is a special assumption whereas in the Cosserat composite theorv the same type of

results is obtained throucn a limiting process.

Il The basic concepts involved in thc derivation of the linear effective stiffness theor,

were used by Grot and A.chenbch to derie an approximate nonlinear theory' to describe the

mechanical behavior of a laminated composite consisting of alternating lavers of homogeneous

materials. The theory is based on two-term expansions of the motion across the thicknesses of

the undeformed lavers. The system of governing equations for the homogeneous continuum

model of the laminated medium are derived in two staes. The first sta,,e ot the derivation

involved certain assumptions and operutions within the discrete system of laiers, in par,;,cular. it

was as>, umed that the motions of the individual layers can he described by two-term extansions

.n tme local coordinate normal to the laverin of the Unc (red body. The kine-matc variables
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that were introduced in the expansions were defined at the ridplanes of the layers only. The

local equations of linear momentum and moment of momentum for the individual layers were

obtained by integration of the classical three-dimensional continuum mechanics across the thick-

ness of the undeformed layers. Next, the definitions of average stress and couple-stress were

I introduced which were defined in discrete planes only. The stresses and couple stresses were

then related to the relevant kinematical quantities through stress potentials which were obtained

by integrating the local stress potentials across the undeformed thicknesses. In the second stage

of the derivation a transition was made from the system of discrete layers to the homogeneous

continuum model. The transition accomplished by essentially following the same line of argu-

ment used in the linear etfective stiffness theory.

j We now make a companson between Grot and Achenbach theory (GA theory) with the

Cosserat composite theory.U
1) Both theories are nonlinear and hence are applicable to large deformations.I
2) The Cosserat composite theory is a general theory applicable to any type of curvature

while GA theor, is applicable to flat composite laminates only.

3 3) The Cosserat composite theorv is based on a set of weil defined and coherent global

principles (conservation iaws) which are coordinate free and hence are invariant under coordi-

nate transformations. In contrast. GA theory does not offer a set of conservation laws at all.

1 4) The Cosserat composite theory offers a systematic formulation similar to those of the

classical continuum mechanics. The GA theory is also systematic (to some deiree): but it 's

based on ad hoc assumptions.I
5, The Cosscrat comnos::t theory' is formuiated in ter:ns of ceneral convc,.tcd cur-iiinear

coordinates in the present coniguratlon resulting ::i simpler expressions. The transformation

i-,teen tne present (dco,'Orme ano the reference (undeformedi conrigurations is cicar and "eie
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defined. On the other hand, the GA theory is formulated in terms of field quantities defined in

the reference (undeformed) configuration. The counterparts of the equations in the present

configuration are not given. It should be mentioned that in the case of large deformations this

Ulatter formulation becomes important.

1 6) The Cosserat composite theory is applicable to laminates with variable mass densities

3 (i.e., the mass densities of the constituents may be variable). On the other hand, in the GA

theory the mass densities of the constituents is assumed to be constant.I
7) The Cosserat composite theory rigorously establishes the existence of interlaminar

3 stresses and accounts for their effect in the global and local field equations. In the GA theory,

although these stresses appear in the equation for linear momentum but it is the consequence of a

I special assumption. The GA theory did not refer to these stresses as interlarrinar stresses and

did not elaborate on the nature of these stresses. Nevertheless, the assumptions that led to the

existence of these stresses in the linear momentum equation, resulted in two equations, one for

3each of the constituents. These equations involve both the average stress couples across the

thickness of the layers and stresses (ordinary three-dimensional) within each laver. This does

not seem to be consistent.

1 8) A remark similar to that in (I-7) above also holds in this case.

I The effective stiffness theory wkas later generalized. in the context of linear theory, where

3 the displacement components were expressed in terms of Legendre polynomials. In this work

Aboudi imposed the condition of continuity of displacement and stress components between the

adjacent layers where all the continuity conditions were satisfied pointwise throughout the com-

mon boundary of the adjacent layers. Aboudi's formulation is more complicated than that of

.\chenbach et al. and hence !2.5 manageable. Aboudi has expanded on his theory and has been

able to apply the theory to nonelastic laminated composites. Because of similarities of the main

:eatures of Aboudi's work ai ef:ective stiffness theor. of Achenbach. the '2me comments ( I
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through 7) are applicable to Aboudi's work too.I
II1) Very recently, Blinowski has recognized the need to formulate a continuum theory for

3composite laminates with curved layers. He has also commented on the lack of clarity about

boundary conditions in the literature. Indeed, except for Blinowski's paper, the authors were not

I able to name any references dealing with curved geometry.

I In his theory, Blinowski considered a nonlinear continuous mathematical model of a

discrete laminated composite composed of a family of initially curved and parallel surfaces.

Making use of a set of curvilinear coordinates he defined the kinematical variables and

developed the various kinematical relations. Next, from the assumption that the elastic energy is

a function of macro-deformation and the curvature variation of a family of initially parallel sur-

faces he obtained a quasi-static equation or equilibrium. These equations which involve resul-

tant forces and resultant moments do not contain any dynamic terms. Blinowski stated that the

set of equations derived describe a particular case of the Cosserat medium.I
We now proceed to compare the Cosserat composite theory with the theory developed by

IBlinowski.

1 a) In the Cosserat composite theory the kinematical measures are clear and concise: in par-

ticuiar the director is clearly defined to be a deformable vector field which represent the effect of

micro-structure. In contrast, the kinematic variables in Blinowski's theory are more complicated

3 and the director is not clearly defined and implicitly assumed to be the normal to the surface.

b) In the Cosserat composite theor, varius field quantities corresponding to the composite

laminate are concisely defined and the relations betwen micro-structure field quantites and those

of macro-structure as well as their physical nature are logical and clear. In contrast, this clarity

does not appear in Blinowski's theory and the correspondence between , icro- and macro-

structural quantities is not explained. In particular, stress vector and coupie stress vector are
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introduced by special assumptions which are motivated by Cauchy's postulate on stress in classi-

3 cal continuum mechanics.

I c) In Blinowski's theory body couple density is not defined and does not appear in the

equations of motion. Also the inertia terms are absent in the equations of motion. In addition,

i the principle of director momentum does not exist, and the role of the director is totally obscure.

3 Although it is stated that the theory is a special case of the Cosserat surface theory of Green and

Naghdi. the correspondence has not been shown. In contrast, these problems in the Cosserat

Scomposite theory do not occur and the correspondence to the Cosserat surface theory is abso-

lutelv clear.

d) It should be emphasized that Blinowski's theory, which is appropriate for bending, is

1 the only theory that considers the effect of the curved geometry.

ShaIV) Recently, a mixture theory for linear elastodynamics and periodically laminated media

has been developed by Murakami et al. in which they introduced the concept of the director. In

this theory the asymptotic method of multiple scales was used to construct a continuum theory

with micro-structure for linear elastodynamics of a periodically laminated medium. The result-

ng theory is in the form of a homogeneous binary mixture tneory of micromorphic materials

I with a common director oriented normai to the interfaces. The construction of the model was

I based upon the observation that. along a direction normal to the laminae. there are two length

scales over which significant variations in displacement and stress profiles occur and that these

5 scales differ by at least one order of magnitude in most problems of practical interest. The very

important assumption of the theory is the periodicity of the medium under consideration. .s

pointed out by the authors. 'the analysis may e valid only at points sufficiently far removed

if from the boundaries of the domain in which the solution to be obtained." This entails the fact

:hat the theory is applicable to the proolems in which th- boundarv conditions are not of orimarv

3 importance. The basic field equations as well as tne constitutive relations were obtained by an

_.vera'ing operation. The model contains nine basic lield euuations, six for the linear momenta
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of both constituents and three for the director momentum. The constitutive relations are

Sobtained asymptotically and with the help of the periodicity assumption.

We now proceed to compare the mixture theory of Murakami with the Cosserat composite

theory.

1) The Cosserat composite theory is a nonlinear theory whereas the mixture theory of

U Murakami is linear.

£ 2) The Cosserat composite theory is a genera! theory applicable to any type of curvature

£ while the mixture theory of Murakami is a special theory which is applicable to a flat composite

laminate only.1
3) The Cosserat composite theory offers a formulation which is analogous to those of the

fclassical continuum mechanics. In particular. the Cosserat composite theory is characterized by

a set of well defined global conservation laws from which the lc_.al basic field equations are

I obtained systematically. In contrast the mixture theory of Murakami does not offer any global

I conservation laws. Hence. no conclusion may be reached regarding the character of various field

uuantities of the theory.I
4) The use of the asymptotic method and the assumption of periodicity places an important

3 restriction on the theory and makes it inadequate in the vicinity of the boundaries of the domain

(at least in the direction of lavering). Therefore the theory cannot be applied to problems in

which the boundary conditions are of primary importance. In addition, when the material is not

£ periodic (i.e., variable thickness plies) the theory becomes invalid. In contrast. the Cosserat

composite theory is not restricted to the periodicity of the medium and can treat problems with

£ variable thickness plies. Moreover. :::-v type of boundarv condition mav be treatcd by the Cus-

serat composite theorv.
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5) The conservation of moment of momentum does not exist in the mixture theory of

1Murakaxi. In addition, equations of motion do not contain terms involving body force and body

couple densities. The term called "interaction (body) force vector" which appears in the linear

3 momentum equations does not exhibit the character of a body force density in the sense of the

three-dimensional continuum mechanics. On the other hand, the Cosserat composite theory

offers the moment of momentum equation and it also accounts for the effect of body force and

3 body couple in the continuum.

1 6) In the Cosserat composite theory the nature of the various field quantities are quite clear.

both physically and mathematically, while in the mixture theory of Murakami the physical

nature of some of the field quantities is obscure. In particular, the term called "interaction

1 (body) force vector" in their theory does not have the character of the bodv force. It may be

shown or justified that this term is related to interlaminar stresses. However, this fact does not

3 seem to have been recognized and emphasized in the development of the theory.

I V) Another continuum theory attempting to describe the behavior of composite laminates

is the multi-continuum (or diffusing continuum) theory of Bedford and Stern which is one of the

Iearliest efforts in this field. Bedford and Stern developed a thermomechanical theory for compo-

3 site materials in which the composite constituents were modeled by individual superimposed

continua which may interact thermally and mechanically. The main ingredient of the theory is

5 that each constituent is admitted to undergo an individual motion. The mechanical interaction

between the individual constituent motions then provide a means of including composite struc-

tural effects in the theory. The mechanical interactions between the continua depend on the con-

i stituents relative displacements. This theory, vhich ,,as developed in the context of nonlinear

theory, considers each constituent individually which interact with other constituents only

I through an interaction term in the forn of a body force entering into equations of motion of each

constituent. However, there is no field equation 6iocal or global) offered for the composite as a

whole. Similarly, field quantities such as resuitant stresses. etc.. are not defined and do not play
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any roles in the theory. In this respect the theory seems to lag behind the effective stiffness

I theory and the mixture theory of Murakami. In addition, the correspondence between the field

quantities of the constituents and the composite as a whole is not defined and explained in this

t theory. In general terms, this theory seems to place the emphasis on the continuum character of

the individual constituents, while the composite Cosserat theory and the theories discussed ear-

lier not only account for the continuum character of the constituents but also attempt to consider

the continuum character of the composite laminate as a whole.
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37. Conclusion

I In the course of this investigation we have successfully developed a coherent continuum

S theory which is represented by a set of well defined conservation laws (global field equations)

predicated on physical observations. The theory is complete, physically sound, and mathemati-

U cally accurate. At the same time the theory enjoys characteristics similar to those of classical

continuum mechanics and most of the techniques available in the classical three dimensional

continuum mechanics may directly or with some modification, be applied to the present theory.

£ Due to the use of Cosserat surface theory in development of the present theory we have

appropriately named it as "Cosserat composzte theor, after E. & F. Cosserat. We have demon-

I ,trated that within the context of purely mechanical theory the Cosserat composte theory exhibits

:he following features.

a) It acconts for the effect of micro-strctures.

I b) It accounts for the effect of geometric nonlinearity.

I c) It accounts for the interlaminar stresses and therefore delamination can be considered.

d) It is capable of incorporating the effect of material nonlinearity.

e) It accounts for the effect of curvature.

- It possesses a continuum character.

g) It is applicable to both static and dynamic problems.

In addition. It is evident that the theory may further be developed to account for the effect of

i temperature. The theory may also be generalized to treat multi-constituent composite laminates.

£ In view of the above discussion it is clear that at the present time no other single theory

offers the collective characteristics and the relative simplicity of the Cosserat composite theory.

I This maKes the theory the ideal tool for treating the various oroblems concerning composite lam-

iinates. A proposal for further development of the theory, as mentioned in section 1. discusses

iture developments in detail in phase II of the present research.

| BASE



REFERENCES

Aboudi. J., "Micromecnanical analysis of composites by the method of cells," Appl. Mech. Rev.,

Vol. 42, No. 7, (1989), 193-221.

3 Aboudi, J., "Constitutive equations for elastoplastic composite with imperfect bonding," Int. J.

PlasL., Vol. 4, (1988), 103-125.I
Aboudi. J., "Transient waves in composite materials," Wave Motion, Vol. 9, (1987), 141-156.I
Aboudi, J., "Closed form constitutive equations for metal matrix composites.* Int. J. Eng. Sci..

Vol. 25, (1987), 1229-1240.

I Aboudi, J., "Constitutive relations for cracked metal matrix composites," Mech. Mat.. Vol. 6,

3 (1987), 1229-1240.

aAboudi. J., "Harmonic waves in composite materials," Wave Motion, Vol.8, (1986), 289-303.

I Aboudi, J., "Elastoplasticity theory for composite materials," Wave Motion, Vol. 9, (1986).

289-303.

Aboudi. J., The effective trermomechanical behavior of inelastic tiber-reinforced materials,"

SInt. J. Eng. SzI.. Vol. 23. (1985), 773-787.

I Aboudi. J.. "Ineiastic behavior of metal matrix composites at elevated temperatures. Int. J.

Plast., Vol. 1. (1985). 359-372.I
Aboudi. J., "Constitutive relations for thermomechanical behavior of fiber reinforced inelastic

I laminates." Comtos. S:-uct.. Vol. 4, (1985), 315-334.

I Aboudi. J.. "Effective behavior of inelastic fiber-renforced composites." Int. J. Eng. S,:I.. Vol.

SBASE



-237-

22, (1984), 439-449.

Aboudi, J., and Benvensite, Y., "Constitutive relations for fiber-reinforced inelastic laminates." J.

3Appl. Mech., Vol. 51, (1984), 107-113.

3 Aboudi, J., and Benvensite, Y., "The mechanical behavior of elastic-plastic fiber-reinforced lam-

inated plates," in Mechanical characterization of load bearing fiber composite laminates, A.

I H. Cardon and G. Verchergy, Eds., Elsevier Appl. Sci. Pub., New York (1984).

I Abouii, J., "The effective moduli of short-fiber composite," Int. J. Eng. Sci., Vol. 19, (1983).

£ 693-707.

Aboudi, J., "A continuum theory for fiber-reinforced elastic-viscoplastic composites," Int. J. Eng.

Sci., Vol. 20, (1982), 605-62 1.

Aboudi, J., "Generalized effective stiffness theory for nonelastic laminated composites," Int. J.

5Eng. Sci., Vol. 19, (1981), 1269-1281.

Aboudi, J., "Generalized effective stiffness theory for the modeling of fiber-reinforced compo-

sites." Int. J. Eng. Sci.. Vol. 17, (1981), 1005-1018.I
Achenbach, J. D., "Generalized continuum theories for directionally reinforced solids." Arch.

I Mech.. Vol. 28, (1976), 257-278.

I Achenbach, J. D., "A theory of elasticity with microstructure for directionally reinforced compo-

a sites." Springer-Verlag. New York. (1975).

.\chenbach, J. D., " " in Micromechanics, a volume in treatise of Composite Materials. L. F.

Broutman and R. 11. KrocK. eds., Academic Press. .974).

B
I BASE



238

Achenbach, 3. D., and Sun, C. T., 'The directionally reinforced composite as a homogeneous

continuum with microstructure," in Dynamics of Composite Materials (E. H. Lee, ed.), The

American Society of Mechanical Engineers, New York (1972).

Achenbach, J. D., and Zerbe, T. R., "Flexural vibrations of laminated plate," ASCF J. Eng.

Mech. Div., Vol. 27, No. EM3. (1971). paper 8181, 619-628.

Achenbach, I. D., "Free vibrations of a layer of" micropolar continuum," int. J. Eng. Sci., Vol. 7,

No. 10, (1969), 1025-40.

Achenbach, J. D., and Herrmann, G., "Dispersion of free harmonic waves in fiber-reinforced

ocmposites," AJAA J., Vol. 6, No. 10, (1968), 1832-1836.

Achenbach, J. D., Sun, C. T., and Herrmann, G., "On vibrations of laminated body," ASME

paper 68-WA/APM- 10 (1968).

Achenbach, 1. D., and Herrmann, G., "Wave motion in solids with lamellar structuring," in

ASME Dynamics of Structured Solids, G. Hemnann, ed., ASME, New York, (1968), 23-46.

Aifantis, E. C., "On the patterning of microsucmture and deformation," in Continuum models of

discrete systems (A. J. Spencer, ed.), Boston, (1987), 21-26.

Axelard, D. R., "The mechanics of discrete media," in Continuum Models of Discrete Systems

(E. Xroner and K. H. Anthony, Eds.), University of Waterloo Press, (1980).

Bache, T. C., Jr., "A continuum theory with microstructure for wave propagation in composite

materials," Ph.D. dissertation, Univ. of Calif., San Diego (1973).

Bedford, A., and Stem, M., "A multi-continuum theory for composite elastic materials," Acta

Mechanica, Vol. 14, (1972), 85.

m A8t Q ,.



- 239-

Bedford, A., and Stem, M., "Toward a diffusing continuum theory of composite materials," ..

App! Mech., Vol. 38, (1971), 8-14.

Bedford, A., and Drumheller, D. S.. "On a generalized effective stiffness theory," I Appl. Mech,

Vol. 41, (1974), 305-307.

Blinowski, A., "Nonlinear microstructural continuous model of a laminated composite: 1.

Quasi-static phenomenological model," Arch. Mech., Vol. 38, No. 5-6, (1986), 553-563.

Blinowski, A., "Nonlinear micropolar continuum model of a composite reinforced by elements

of finite rigidity. Part I. Equations of motion and constitutive relations," Arch. Mech., Vol.

33, (1981), 753-761.

Blinowski, A., "Nonlinear micropolar continuum model of a composite reinforced by elements

of finite rigidity. Part U. Stability at compression," Arch. Mech., Vol. 33, (1981), 763-771.

Bytner, S., and Gambin, B., "Homogenization of Cosserat Continuum," Arch. Mech., Vol. 38,

No. 3, (1986), 289-299.

Capriz, G., Continua with microstructure. Springer-Verlag, New York (1989).

Carroll, M. M.. and Naghdi, P. M., "The influence of the reference geometry on the response of

elastic shells," Arch. Rational Mech. Anal., Vol. 48, (1972), 302-318.

Chao, W. C., and Reddy, J. N., "Large deformation analysis of layered composite shells," in

Mechanics of Composite Materials (G. J. Dvorak, Ed.), AMSE, (1983), 19-3 1.

Charterjee, S. N., and Kibler, J. J., "An analytical model for three-dimensionally reinforced gra-

phite composites," in Modern Developments in Composite Materials and Structures, (J. R.

Vincent, Ed.). ASMI. (1979). 269 287.

RAS



I
-240-

Carroll, M. M., and Naghdi, P. M., "The influence of the reference geometry on the response of

3elastic shells," Arch. Rational Mech. Anal., Vol. 48, (1972), 302-318.

5 Chao, W. C., and Reddy, J. N., "Large deformation analysis of layered composite shells," in

Mechanics of Composite Materials (G. J. Dvorak, Ed.), AMSE. ,>,3), 19-3 1.I
Chatterjee, S. N., and Kibler, J. J., "An analytical model for three-dimensionally reinforced gra-

I phite composites," in Modern Developments in Composite Materials and Structures, (J. R.

g Vincent, Ed.), ASME, (1979), 269-287.

gChimenti. D. E., and Nayfeh, A. H., "Leaky Lamb waves in fibrous composite laminates," J.

Appt. Phys., Vol. 58, (1985), 4531-4538.

Choa, T. W., and Fukunaga, H., "Constitutive behavior of hybrid composites," in Mechanics of

3 Composite Materials, (G. J. Dvorak, Ed.I. ASME, (1983), 43-48.

5 Christensen, R. M., "Mechanics of Composite Materials," Wiley-Interscience. New York (1979).

Datta. S. K., Shah, A. H., and Lebetter, H. M., "Harmonic waves in periodically laminated

medium," in Mechanics of Composite Materials - Recent Advances. (Z. Hashin and C. T.

I Herakovich, eds.), PergamonPress, New York (1982).

I Delph, T. J., Herrmann. G., and Kaul, R. K.. "Harmonic wave propagation in a periodically lay-

ered. infinite elastic body, antiplane strain," J. Appl. Mech., Vol. 45 (1978), 343-349.

Dorninger, K., and Rammerstorfer, F. G., "Nonlinear investigations of composite shell by finite

element method," in Composite Material Technology, (D. Hui and T. J. Kozik. Eds.).

3 ASME, (1989), 118-125.

I Drucker. D. C., "Material response and continuum relations: or from microscales to maroscales,"

J. Eng. Mat. Tech.. Vol. 106 i984). 286-289.

B AS E



-241 -

Fricksen, 1. L, "Continuum theory of liquid crystals of ncmatic type," Molecular Crsial.

Liquid Crystals, Vol. 7 (1969) 153.

Ericksen, J. L., "Conservation laws for liquid crystals," Trans Soc. Rheo., Vol. 5 (1961) 23.

EFricksen, J. I..., and Truesdell, C., "Exact theory of stress and strain in rods and shells," Arch.

Rat. Mech. Anal., Vol. 1 (1958) 295-323.

Eringen, A. C., and Kafader, C. B., "Polar Field Theories," in Continuum Physics, Vol. IV (A. C.

Eringen, Fd., ), Academic Press, New York (1976), 1-71.

Eringen, A. C., "Continuum mechanics of single-substance bodies," in Continuum Physics, Vol.

11 (A. C. Eringen, Ed.), Academic Press, New York (1975), 4-127.

Eringen, A. C., "Nonlocal polar elastic continua," Int. J. Eng. Sci. Vol. 10, 1 (1972).

Eringen, A. C., "Linear theory of nonlocal elasticity and dispersion of plane waves," Int. J. Eng.

Sci., Vol. 10, (1972), 425435.

Eringen, A. C., "On nonlocal elasticity," nt. J. Eng Sci., Vol. 10, (1972), 233-248.

Eringen, A. C., "Balance laws of micromorphic mechanics," Int. J. Eng. Sci.. Vol. 8, (1970),

819.

Eringen, A. C., "Mechanics of rnicropolar continua," in Mechanics of Generalized Continua (E.

Kroner, Ed.), Springer-Verlag, Berlin (1968), 18-35.

Eringen, A. C., '"heory of micropolar elasticity," in Fracture (1I. l.iebowitz, Ed.), Vol. II, pp.

621-729. Academic Press, New York (1969)

Eringen, A. C.. "Linear theory of rrucropolar viscoelasticity," Int. J. Eng. Sci,5, (1967), 191.



-242-

Eringen, A. C., "Mechanics of micropoiar continua," in Mechanics of Generalized Continua (E.

Kroner, Ed.), Springer-Verlag, Berlin (1968), 18-35.

I Eringen, A. C., "Theory of micropolar elasticity," in Fracture (H. Liebowitz, Ed.), Vol. II. pp.

621-729, Academic Press, New York (1968).I
Eringen, A. C., "Linear theory of micropolar viscoelasticity," Int. J. Eng. Sci.. 5, (1967), 191.I
Eringen, A. C., "Mechanics of micromorphic materials," Proc. Int. Cong. Appl. Mech., lth,

I Springer-Verlag, Berlin (1966).

I Eringen, A. C.. "Linear theory of micropolar elasticity," J. Math. Mech. 15, (1966), 909.

I Eringen, A. C., "Theory of micropolar continua," in Developments in Mechanics (T. C. Huang

gand M. W. Johnson, Jr., Eds.), Vol. 3 (1965), Wiley, New York.

a Eringen, A. C.. and Suhubi. E. S., "Nonlinear theory of simple microelastic soiids I," Int. J. Eng.

Sci., Vol. 2. (1964), 189-203.

Gauthier, R. D., and Jahsman. W. E., "A quest for micropolar elastic constants," J. Appl. Mech..

1 Vol. (1975), 369-374.

5 Green. A. E.. and Naghdi, P..M., "A note on invariance under superposed rigid body motions,' J.

Elasticity. Vol. i. (1979), 1-8.I
Green. A. E., and Naghdi, P. M., "A note on thermodynamics of constrained materials.' J. Appl.

I Mech.. Vol. 44, (1977), 787-788.

I Green. A. E., Naghdi, P. M.. and Wenner, M. L., Linear meory of Cosserat surface and elastic

plates of variable thickness,' Proc. Camb. Phil. Soc.. Vol. 69, (1971), 227-254.

B ASE



- 213-

Green, A. E., Naghdi, P. M., and Trapp, J. A., "Thermodynamics of a continuum with internal

3 constraints," Int. J. Eng. Soi., Vol. 1, 8 (1970), 891-908.

I Green, A. E., and Naghdi, P. M., "Rods, plates and shells," Proc. Camb. Phil. Soc., Vol. 64,

(1968), 895-913.U
Green, A. E., and Zerna. W., "Theoretical Elasticity," 2nd ed., Oxford University Press (1968).B
Green. A. E., and Naghdi, P. M., "On the derivation of discontinuity conditions in continuum

I mechanics." Int. J. Eng. Sci., Vol. 2, (1965), 621-624.

IGreen, A. E., Naghdi, P. M.. and Rivlin. R. S., "Directors and multipolar displacements in con-

3tinuum mechanics," Int. J. Eng. Sci., Vol. 2, (1965), 611-620.

5 Green, A. E., and Naghdi, P. M., "On the derivation of discontinuity conditions in continuum

mechanics," Int. J. Eng. Sci., Vol. 2, (1965), 621-624.

Green. A. E, and Rivlin, R. S., "Micropolar continuum mechanics," Arch. Rat. Mech. Anal., Vol.

1 17, (1964), 113-147.

U Green. A. E. and Rivlin, R. S., "Simple force and stress multiples.' Arch. Rat. Mech. Anal.. Vol.

16, (1964), 325-353.I
Grot. R. A., and Achenbach, J. D.. "Linear anisothermal theory for a viscoelastic laminated cor-

I posite," Acta Mech., Vol. 9, (1970), 245-263.

I Grot. R. A., and Achenbach. J. D.. "Large deformations of a laminated composite," Int. J. Solids

Struc.. Vol. 6. (1970), 641-659.

Hearie. J. W., 'Micro- and macro-mechanics of textile fabrics." in Advances in Composite

.,-aterials and Structures fS. S. Wana and Y. D. S. RaJapakse. Eds.). ASME. (1986), 131-

B ASE



S- 244-

5 134.

I Hegemier, G. A., and Murakami, H., "On construction of mixture theories for composite materi-

I als by the method of multi-variable asymptotic expansion," in Continuous models of

discrete systems (E. Kroner and K. H. Anthony, eds.) University of Waterloo Press (1980),

U 423-441.

I Hegemier, G. A., and Nayfeh. A. H., "A continuous theory for wave propagation in laminated

g composites," J. Appl. Mech., Vol. 40 (1973), 503-510.

Hegemier, G. A., Gurtman. G. A., and Navfeh, A. H., "A continuum mixture theory of wave pro-

pagation in laminated and fiber reinforced composites," Int. J. Solids Struc.. Vol. 9 (1973),

3395-414.

5 Herrmann, G., and Achenbach. J. D., "Application of theories of generalized Cosserat continua

to dynamics of composite materials." in Mechanics of generalized continua (E. Kroner.

I ed.), Springer-Verlag, Berlin (1968), 69-79.

I Herrmann. G., and Achenbach. J. D.. "Wave propagation in laminated and fiber-reinforcec com-

posites.' in Mechanics Of composite materiais, (F. %V. Wendt. -. Liebowitz and N. Pen-one.

eds.), (1967), 337-360.

S Herrmann. G.. and Achenbach. J. D.. On dynamic theories of fiber-reinforced composites" in

3 Prc'. AIAA/ASME 8th Structures. Structural Dynamics and Materials Conf.. AIAA, New

York (1967) 112-I
Hoffman. 0.. "A continuum model for the engineerin,, analysis of metal matrix composites." in

I Modern Developments it, Composite Materials and Structures (J. R. Vinson. Ed.), ASME.

(1979), 101-107.

BASE



S- 245-

Horgan, C. 0., Lang, K. W., and Nemat-Nasser, S., "Harmonic waves in layered composites:

3 New bonds on eigenfrequencies," J. Appl. Mech., Vol. 45 (1978), 829-833.

3 Jones, R. M., Mechanics of Composite Materials, McGraw-Hill Book Co., New York (1975).

3Koh, S. L., "Continuum theories for composite materials," in Mechanics of Composite Materials

(F. W. Wendt, H. Liebowitz and N. Perrone, Eds.), Office of Naval Research, (1967), 387-

5 402.

3Kondo, K., "Intrinsic constitutional meaning of continuum models of discrete systems," in Con-

tinuum Models of Discrete System (O. Brulin and R. K. T. Hsieh Eds.), North-Holland Pub-

lishing Co., New York. (1981), 171-179.

Lakes, R., "Micromechanics of cellular composites," in Recent Advances in the Macro- and

5 Micro-Mechanics of Composite Materials Structures (D. Hui and J. R. Vinson, Eds.),

ASME, (1988), 165-167.5
Litewka, A., "Continuum description of mechanical behavior for materials with heterogeneous

S oriented-structure," in Continuum Models of Discrete Systems (A. J. M. Spencer. Ed.), A.

A. Balkema, Boston. (1987), 15-20.

Lakes, R., "Micromechanics of cellular composites," in Recent Advances in the Macro- and

Micro-Mechanics of Composite Materials Structures (D. Hui and J. R. Vinson. eds.),

3 ASME, (1988), 165-167.

5 Litewka, A., "Continuum description of mechanical behavior for materials with heterogeneous

oriented-structure," in Continuum Models of Discrete S'stems (A. J. M. Spencer, ed.), A. A.

3Balkema, Boston. (1987), 15-20.

I Lodge. A. S., Body tensor fields in continuum mechanics. Academic Press, New York. ( 1974).

B BAS E



-246-

Marahal. J. S., and Naghdi, P. M., "A thermodynamical theory of turbulence. I. Basic develop-

ments," Phil. Trans. R. Soc. Lond., Vol. 327, (1989), 415-448.

3 Marinov, P. A., "A continuum interpretation of longitudinal thermoelastic wave propagation in

layered composite," in Continuum Models of Discrete Systems (0. Brulin and R. K. T.

U Hsieh, eds.), North-Holland Publishing Co., New York, (1981), 433-440.

Maugin, G. A.. and Pouget, J., "Solitons in microstructured elastic media: Physical and mechani-

gcal aspects." in Continuum Models of Discrete Systems (A. J. M. Spencer. ed.), A. A.

Balkema. Boston, (1987), 115-137.

Maziiu. P., "Possibilities and limits of Nayfeh's equations for heat conduction in laminated com-

3 posites," in Continuum Mfodeis of Discrete Systems (A. J. M. Spencer ed.i, A. A. Balkema.

Boston, (1987), 193-198.S
McCarthy, M. F., "Nonlinear wave propagation in composites." in (G. A. C. Graham and S. K.

I Malik, eds.), Hemisphere Publishing Corp., (1989), 141-159.

U .",lcCarthy, M. F.. and Tiersten. H1. F.. "A theory of viscoleastic composites modelled as inter-

penetrating solid continua with memory,' Arch. Rational Mech. Anal., Vol. 8i. (1983). 21.

Milton. G. W., "Modelling the properties of composites by laminates." in Homoqenization and

Effecrive Moduli of Matcrials ana Media. (J. L. Ericksen. D. Kinderlehrer. R. Kahn and J.

3 L. Lions, eds.), Springer-Verlag, New York, (1986), 150-174.

S Nlarsnal, J. S., and Naghdi, P..M.. "A thermodvnamical theory of turbulence. I. Basic develop-

ments," Phil. Trans. R. Soc. Lond., Vol. 327. 11989), 415-448.

\linavawa. S., Nemat-Nasser. S., ana Jamada. S., "Finite eiement anaiysis of harmonic .aves in

I layered and fiber-reinforced composites.' Int. J. Num. Meth. Eng., Vol. 17, (1981), 1335-

I BASE



-247 -

I 1353.

1 Mindlin, R. D., and Tiersten. H. F., "Effects of coupie-stresses in linear elasticity," Arch.

Rational Mech. Anal., Vol. 11, (1962), 415-448.

3 Mindlin, R. D., "Micro-structure in linear elasticity," Arch. Rational Mech. Anal., Vol. 16,

(1964), 51-78.I
Murakami. H., and Hegemier, G. A., "Development of a nonlinear continuum model for wave

I propagation in joined media: Theory for single joint set," Mech. Mat., Vol. 8. (1989), 199-

1218.

Murakarr. H.. and Hegemier. G. A.. "A nonlinear constitutive model for metal-matrix compo-

sites, in Design and Analysis of Composite Material Vessels, (D. Hui and T. J. Kozik.

5eds.1, ASME. (1987). 97-104.

5 Murakami, H., and Akiyama. A., "A mixture theory for wave propagation in single-ply lam-

inates. Part 2: Application," J. Appl. Mech., Vol. 52, (1985), 338-344.U
%lurakami. H.. "A mixture theory for Asave propagation in single-ply laminates. Part 1:

I Theory'," J. Appl. Mech.. Vol. 52, (1985), 33 1-337

I Naghdi. P. .. "Finite deformation of elastic rods and shells." in Proc. IUTAM Symposium on

Finite Elasticity. (D. E. Cafrlson, R. T. Shield. eds.), Matrinus Nijhoff Publishers, Boston,

(1982), 47-103.

Naghdi. P. M.. "Shell theory from the standpoint of finite elasticity," in Proc. Symp. on Finite

3 Elasticity. (R. S. Rivlin. ed.). ANID-Vol. 27, ASME, (1977), 77-89.

S Naghdi. P. N., "On the formulation of contact problems of shells and plates,' J. Elasticity, Vol.

5. (1975), 379-398.

U BASE



-248 -

Nayfeh. A. TI., and Chirnenti, D. E ., MAechanical Mcxkling and Measurements of Fibrous Corn-

posite," in Solid Mechanics Research for Quantitative Non-Destructive Evaluation," (J. D.

Achenbach and Y. Rajapakse, eds ). %NizttIns Nijho~ff Publishers, Boston, (1987), 397-409.

Navfeh, A. li.. and Nassar, F. A. A. M.. 'SiT111lar11on of the influence of bending materials on the

ddynarric behavior of larninatcd compo.site., J. App!. Mech., Vol. 45, (1978), 822-828.

Nayfeh, A. II., and Nernat-Nasser, S., "Elastic waves in inhomnogeneous elastic mredia," J. Appi.

Mech., Vol. 9, (1972), 690-702.

Nerniat-Nasser. S., Fu, F. C. L, and Mlinagawa. S., "Harmonic Waves in One-, Two- and Three

Dimensional Composites: Bounds for Figenfrequencies," Int. J. Eng. Sci.. Vol. 11, (1975),

617-642.

Nofl, W., "Materially uniformn simple bcndies with in homogerneities. " Arch. Rational Mech. Anal.,

Vol.- 27, (1967), 3 -32.

Oldroyd. J. G., "On the formulation of reholngical equations of state," Pror. Roy. Soc. Lond.,

Vol. 200, (1950), 5 23 -541.-

Pagano, N. I. (Editor), lraerlwninar Response of Composite Materials. Elsevier. 1989.

Parry, G. P., "Continuum models of nonfinearly elastic perfect crystals," in Continuum Models of

Dsicreze Systems 3 (E. Kroner and K. 1-1. Anthony. Mds.), University of Waterloo Press,

(1980), 81-96.

Pollock, P. B., and Sun, C. T., "Nonlinear behavior in 3-13 carbon-carbon," in The rmostrucrurai

Behavior of Carbon- Carbon Comnpostes (J. Jortner, ed.). ASME, (1986), 15-33.

Quinlan, M. H., "Stress in isorropic compos ites," in Continuum Mechanics and its Applicarin

(G. A. C. Grahamn and S. K. Malik, eds.), H-ernispherc Publishing Corp., New York, (1989),



-249-

'167-304.

Simo, J. C., Fox. D. D., and Rifai, M. S., "On a stress resultant geometrically exact shell model.

3 Part II: The linear theory; computational aspects." Comp. Meth. Appl. Mech. Eng., Vol. 73

(1989), 53-92.3
Simo, J. C., Fox. D. D., and Rifai, M. S., "Computational mechanics of the nonlinear behavior of

I shell structures," Proc. International Conference on Computational Engineering and Sci-

3 ence (ICES 89), 1989.

5 Simo. J. C., Fox, D. D., and Rifai, M. S.. Geometrically exact stress resultant shell models: For-

mulation and computational aspects of the nonlinear theory," ASME Winter Annual Meet-

3 ing, San Francisco, CA. 1989.

5 Simo, J. C., and Hughes. T. J. R.. 'On variational foundations of assumed strain methods," J.

Appl. Mech., Vol. 53 (1), (1986), 51-54.

Simo. J. C., Marsden, J. E., and Krishnaprasad, P. S., "The Hamiltonian structure of elasticity.

I The convective representation of solids, rods and plates," Arch. Rat. Mech. Anal.. Vol. 104.

3 1988), 125-183.

3 Sun. C. T., Achenbach. J. D.. and Hemann. G.. "Cont:nuum theon' for a laminated medium." J.

Appi. Mech., Vol. 35 (1968), 4o7-475.

Ting, T. C. T., 'Recent advances in the theor' of anisotropic elasticity with applications to com-

3 posite materials," in Recent .\dvances in the Macro- and Micro-Mechanics or Composite

Materials Structures. (D. H'ui and J. R. 'inson, eds.. ASME, (1988), 205-2 13.I
Toupin. R. A.. Elastic m'.atenai,, '.\Ith couple- Kresses. \rch. Rational Mech. Anal.. Vol. 11,

3 1962), 385-414.

B ASE



- 250-

3 Toupin, R. A., "Theories of elasticity with couple-stress," Arch. Rational Mech. Anal., Vol. 17,

3 (1965), 85-112.

U Tsai, S. W., Composite Design, 4th ed., Think Composites, Dayton (1988).

3 Valanis, K. C., "Thermomechanical beavhir of anisotropic inelastic composites: A

micromechanical theory," in Recent Advances in the Macro- and Micro-Mechanics of Com-

posite Materials Structures, (D. Hui and J. R. Vinson, eds.), ASME, (1988), 157-164.

3 Wang, A. S. D., "Some new results on edge effect in symmetric composite laminates," J. Comp.

Mlat., Vol. 11, (1977), 92-106.

Wang, C. C., "Universal solutions for incompressible laminated bodies," Arch. Rational Mech.

,Anal., Vol. 29, (1968), 161-192.

UWhitney, J. M., Structural Analysis of laminated anisotropic plates, Technion Publishing Co.,

5 Lancaster, (1987).

3Willis. J. R., "Variational characterization of waves in fiber reinforced materials," in Mechanics

of Composite Materials (Z. Hashin and C. T. Herakovich, eds.), Pergamon Press, New

3 York. (1982), 191-205.

3 Wozniak. G., "Mechanics of the discrete and continuous systems in the light of non-standard

analysis," in Continuum Models uf Discrete Systems 3 (E. Kroner and K. H. Anthony, eds.),

University of Waterloo Press, ( 1980), 35-42.

Yancey. R. N., and Pindera. \I. J.. licrorncchanical analysis of time-dependent response of

5 unidirectional composites." in Recent Advances in the .lacro- and Micro-Mechanics (f

Composite Materials Structures (D. Hui and J. R. Vinson, eds.), ASME. New York (1988).

I
* ___ ASE



5 -251 -

3 University of Waterloo Press, (1980), 35-42.

5 Yancey, R. N., and Pindera, M. J., "Micromechanical analysis of time-dependent response of

unidirectional composites," in Recent Advances in the Macro- and Micro-Mechanics of

Composite Materials Structures (D. Hui and J. R. Vinson, eds.), ASME, New York (1988).

B
I
I
I
U
I
I
U
I
I
I
I
I
I
5 BASE



U
I
U
I
U
I
I
I

FIGURE I

3 A CONTINUUM BODY WITH A SURFACE OF DISCONTINUITY
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II FIGURE 2

A TYPICAL SHELL-LIKE BODY
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3 A COMPOSITE LAMINATE CONSISTING OF ALTERNATING LAYERS OF TWO '
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FIGURE 4

A SHELL-LIKE MICRO-STRUCTURE (REPRESENTATIVE ELEMENT)
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* FIGURE 6

3 A CURVILINEAR TETRAHEDRON OF A COMPOSITE LAMINATE
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