AFOSRTR- Q0 0781

AD-A224 985 GTio FiLc COPY

DEVELOPMENT OF AN ADVANCED CONTINUUM
THEORY FOR COMPOSITE LAMINATES
D T I C Phase I Final Report
ELECTE 3 June 27, 1990

JUL261930 | B
3 Prepared by:

G. R. Ghanimat
M. Panahandeh
Y. Bozorgnia

[ DETRIBUTION STXTEMENT A |
Approves :-: Fuzic relecsey
Distnoizer Unnmited

Berkeley Applied Science and Engineering

BASE

-




Form Approved
g
REPORT DOCUMENTATON PAGE oMb No. 07040168
PLDC TeDI T NG BUrSeN 1O TR (THeCLON f At gl T g R5l mated T 3 RrATA T NI DO TOSDITAe P LTI TRe L Me T07 el Bw NG RSITLTHCNS $RAT. S T3 @ 51~ 03Ta 50Ut
Jather "3 ang marrtar.ng The Jata needeg and (CMDIeTING ANC Te.ea T3 INR T et s St mtTra gt A Sang (Imments fng«)'c P3PS DUrdRA BT ™MATe Tr 3, LTRer gspet of 1niy
coliectizm Tt Atormation, nCud NG sLIFEst 0N LI reguiIng this Durgen 11 A asrongior Heagauariers Ser.ices Lorecrcrate e réemar on Operaticrs ana Sep. rty 1215 Letferson
Da s H 3 aay, Sute 1204 Lringtan, JA J2202-4302 and tl tha D4 2 st Managamert Ang R 3Rt Papera s Regutt o- Prcier1(07C4.0°88; Aash nstan, T 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
27 June 1990 Final, 1 Nov. 89 - 30 June 90

4. TITLE AND SUBTITLE S. FUNDING NUMBERS ooo
Development of an Advanced Continuum Theory for Composite | C: F49620-90-C-00M

Laminates PR: 3005/A1

FQ8671-8901539

6. AUTHOR(S)

G. R. Ghanimati, M. Panahandeh, Y. Bozorgnia

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Berkeley Applied Science & Engineering (BASE)
293 41st Street #3 RG-03-89
Oakland, CA 94611

9. SPONS ; NITORING A E{S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Air Force of Scientific Research -
Building 410 ™ AFOSRTR: {90 0781
Bolling AFB, DC 20332-6448 4

. ———
11. SUPPLEMENTARY NOTES

Phase I SBIR RESEARCH PROJECT REPORT

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
4rpr, selonsq
ved g vile
Qistryp,, . Publy agor PUE yed
DOD ibution e roloagy’ prove n‘m],iﬂ
ualimited 9;’ ngtrib‘ﬁ‘w

.

43. ABSTRACT (Maximum 200 words)

.i continuum theory for laminated composite materials, referred to as "Cosserat
Composite Theory", was developed. The theory was represented by a set of well define
conservation laws that within the context of purely mechanical theory exhibits the
following features: i) it accounts for the effect of microstructures, ii) it accountg
for the effect of geometric nonlinearity, iii) it accounts for the interlaminar
stresses and therefore delamination can be considered, iv) it is capable of incorpor-
ating the effect of material nonlinearity, v) it accounts for the effect of curvature
vi) it possesses a continuum character, and finally vii) it is applicable to both
static and dynamic problems. The composite laminate was modeled as a series of
Cosserat surfaces which were considered as microstructures. Various quantities
associated with the microstructure were defined and the corresponding quantities for
composite laminates were derived. The nonlinear constitutive ecuations for an
elastic composite laminate were presented.~Using a systematic linearization ..
procedure, the linear Cosserat Composite Thgory was derived. ii:ully the appli-

cation of the theory to flat and cylindricgl laminates was considered.

—

14. SUBJECT TERMS f\ R 15. NUMBER OF PAGES

Cosserat Composite Theory for Composite Laninates 250

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standa-d form 298 (Rev 2.89)

Pregcr beg by AANS S1g JIQCR
298 302




DEVELOPMENT OF AN ADVANCED CONTINUUM THEORY
FOR COMPOSITE LAMINATES
Phase I Final Report

Prepared for:

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Contract # F49620-90-C-0001

1
Prepared by: ;f:gaé;ﬂ-lgzl— For \
NTIS  CRA&I e
Cins TAB O
© Janiou iced 18]
G. R. Ghanimati U ncatc
M. Panahandeh S

Y. Bozorgnia By

Dt shon

© Aval and . or
Dist Special

M|

e e e

_—

Berkeley Applied Science and Engineering
(BASE)
P. O. Box 10104

Berkeley, CA 94709-0104
Tel: (415) 653-2323

June 27, 1990




Acknowledgment

This research was sponsored by the Air Force Office of Scientific Research (AFOSR)
under Contract # F49620-90-C-0001. The financial support of AFOSR is greatly ack-
nowledged. The encouragement and support of Lt. Col. George K. Haritos, the acting direc-
tor, and Dr. Spencer T. Wu, the program manager in AFOSR is sincerely appreciated.
Finally, we are thankful to Ms. Sheila Slavin who did an excellent job word processing the

manuscript.

BASE




Table of Contents

..............................................................................................

....................................................................................................................................

2. Coordinate systems
3. General BACKETOUNA ......cuvueuieeeeeeerieecsscaeesstesraessssssssssesssesesesssssssressssasessssssssesessasesssnsssssanens 10
4. Basic equations of classical continuum mechanics in general curvilinear coordinates

............................................................................................................................... 14
B. Introduction to theory of two-dimensional directed continuum, i.e., a Cosserat theory ............. 23
5. Definition of @ Shell-liKe BOAY ......ccccvvreeieivrenreerinnnnneersistreesesssnesraesssessssnssssessnscsssesens 25
6. General kinematical results for ShellS .........cccorcerreininnnrnceeeeniicr et cesenerseesensensnenne 28
7. Superposed rigid bOdY MOLONS .......c.ceovececvcreersrsseneesersssseneseatsssssssssssasinsssesssesssesssasesssssens 33
8. Stress resultants, stress couple and other related definitions .........ccceececeevcrernenerieciininscece 35
9. Basic field equations for @ Shell-liKe BOY ......cc.oceeceereurercereereencneerereesenserenseseseessseseesessesescane 41
C. Modeling of a composite laminate as a series of Cosserat (directed) surfaces ..........cocvevveveeene 47
10. Coordinate systems for a COMPOSIte 1AMINALE ......oceeerveecrrcerensireemnenensssenenenenresensereineasasens 50
11. Definition of a shell-like representative element (MICTO-SUCIUIE) ...ocovverrrerireerererernevesrerens 52
12. Kinematics of Micro- and MACTO-SITUCIUIES ....ccceuerrereeeacereesersassrmsessesessesssssasssessassserscseeses 58
13. Superposed rigid DoAY MOUON ........c.ccciieiirrierereeeresonsrerssrsrrserssesssesssesesetsssssssssssssssserssssens 67
14. Stress-resultants, stress-couples and other defiILIONS ......cccocceuvereeereeerrernireereneeersserercesesceee 69
15. Basic field equations for a shell-like representative element (Micro-structure) .............. 73
16. Conservation laws for a shell-like representative element (MiCro-SUCIUIE) .....c.cocereeeennnes 79
17. Conservation laws for COMPOSItE LAMINALES .....ccoeeurereeneererersererssonsrtsssnesenssssnsersssesssecsesenes 87
18. Summary of basic principles for cOmposite IAMINALES ......ccoeeverreeerrerreriiieirsesneressereeneenes 103
19. Considerations on composite contact force and composite contact couple ..........ooveeuee. 108
20. Further consideration of the composite coOnservation Iaws ..........ccccoveueurerinieerseseecrieeecrens 115
21. Further consideration of COMPOSILe CONLACL COUPIE ...ovuvvvrrerveereerirerrernirersirersssesss e snsseseeens 121
22. Basic field equations of COMPOSILE JAMINALES ......veeerrerireesenssnemssssessssessnsesessesesssssssnasesescens 129
D. Elasiic composite laminates (nONINEAr hEOTY) ........vevereeeeeecmeeerreneaesnnesesesseseseecssesesessssesesenes 140
23. Constitutive equations for nonlinear elastic composite laminates. Direct approach
........................................................................................................................................................ 140
24, The COMPIELL TNCOTY ...oovviriiviviriiececistie s sesssesssessse s sbsbssesesesersssse s s bebessbesesnsanesssesesasas 149
25. A constrained theory of COMPOSILe 1AMINALES «...cvcveveerrereerererereisernereererereseeseeeeeraesesnsenses 152
26. Constitutive equations of an elastic composite laminate: Derivation from three-
dimensional classical CONUNUUM thCOTY ........ooeiverrreriiminreneererreei s esssent s enes s et seeneseans 161
E.  LiNCAMZEA tNEOTY ...oocvivictititterecccetre et srenes et es et esese et sessssass s s ctserene s s s enestabsbens 169
27. Linearized KiNEMAUCS .......ovceveuirnrensnnmetnnseesesessemseesensessesscsrassssenseassn et sasse sesessssssessassones 169
28. Linearized field EQUALIONS .........c..cveveiviisiscvieeierinieserensesesesssessssssssstesssssssssessesssssesassssessensesns 175
29. Linear constitutive relations for elastic composite 1aminates .......ooeiveciniicicciininnnne. 177




f G Ul G wm B -s sm W

F. Application and comparison with the available thEOries ...........occeererccrrvrrnereesrneeeenrenenens 180
30. Preliminanies: PArt I ..o se e ssnss st sssssse s ssesssstssssassssssenssssssessssssnsasenns 181
31, Preliminaries: Part T1 ...ttt aas e s srese st etsestssasss s snssnsssnasenen 187
32. Linear constitutive relations for composite laminates: An altemative procedure .............. 193
33. Some results for the case of 8 NOMMal dIFECLOT ....oueueuiecreeirererre e reeereerenes et sesenanseses 197
34. Theory of initially flat COMPOSILE IAMINALES ..ccovvvvvieieveiiriecrneecreseere e st sessrssranienee 201
35. Theory of initially flat cylindrical composite 1aMiINaLes .......c...coceccvrcrmvvvscmrmnrrerseressernsons 207
36. Comparison with the available thCOMES ......ccccmiviverernnrireeneiersenecesseisesseressessressssesessresssssass 222
REMEIENCES ...vvimeeiteiceceiririecrsririrn et se s st se e seses e s ss st s sas s e et st s s sesa s sesessasa et seatr s ssssrssesbesessssnsnersns 236
FRGUIES oottt ettt st es e bttt st st s se st sas e ns s e s eet st annsass sbsbesersammsatassasossesassssaensntns 252

BASE




Introduction

Composite materials have fully established themselves as workable engineering materials.
Early military application during World War II led to large-scale commercial and aerospace util-
ization. Today, industries such as aircraft, automobiles, sporting goods, electronics, and appli-
ances are quite dependent on composite materials. In particular, advance composite materials
for aerospace, structural, power and propulsion application offer significant advantages in terms
of efficiency and cost. A widespread and efficient application of composite materials requires
detailed and reliable knowledge of their physical properties and, in turn, of their behavior under
applied loads. Because of potentially diverse structural and physical variety of reinforced com-
posites, it is neither practical nor economical to rely solely on experimental determination of
their properties. Therefore, similar to any other branch of physical sciences, it is desirable to
develop a theory (or theories) so that we can analyze, explain, and predict the behavior of com-

posite materials under various in-use loading conditions.

Generally speaking, composite materials are based on the concept of compounding rein-
forcing elements and matrix materials such that they form a reinforced composite. The mechani-
cal behavior of such materials is termed mechanics of composite materials. More specifically, a
composite material is one in which two or more constituents are combined to produce a new
material with mechanical properties different from those of the individual constituents. It is
assumed that the constituents of a composite material retain their individual chemical and
mechanical integrity and characteristics. A typical composite material consists of a bounding, or
matrix material containing a second reinforcing material in the form of continuous or discontinu-
ous filaments or laminations. Major parameters involved in mechanics of composite materials
are: volume fractions of reinforcing elements and matrix, direction of reinforcement, geometry
of reinforcing elements and position of reinforcing elements relative to each other. Additional
variety stems from the physical properties of the constituents. Altogether, the variation of the

geometrical and physical parameters can lead to an enormous number of possibilities. It is,
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therefore, desirable to have theories that can describe the physical behavior of the composite in
terms of the known geometrical layout of the composite and the known physical properties of

the consituents.

An appropriate classification of the mechanics of composite materials may be brought

about by the definition of two areas of composite material behavior as follows:

a) Macromechanics: The study of composite material behavior wherein the material is
presumed homogeneous and the effect of the constituent materials are detected only as averaged

apparent properties of the composite.

b) Micromechanics: The study of composite material behavior wherein the interaction of
the constituent materials is examined in detail as part of the behavior of the heterogeneous com-

posite material.

The properties of a lamina can be experimentally determined in the "as made" state or can
be mathematically derived on the basis of the properties of the constituent materials. That is, we
can predict lamina properties by the procedures of micromechanics and we can measure lamina
properties by physical means and use the properties in a micromechanical analysis of the struc-
ture. Knowledge of how to predict properties is essential in constructing composites that have
certain apparent or macroscopic properties. Thus, micromechanics is a natural compliment to
macromechanics, ana the formulation of an adequate (continuum) theory that could describe the
mechanical behavior considering the micro-structure of of composite materials is highly desir-
able and of major concern in material engineering, especially in relation to aerospace industries,

due to many advantages that composite materials offer in terms of cost, weight and peformance.

In the last three decades several continuum theories have been proposed as models of elas-
tostatics or elastodynamics of composite materials. In general these theories may be divided into

two major categories as follows:
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1) theories that do not account for the effect of microstructure.

2) theories that consider the behavior of microstructure and try to account for its effect in

continuum.

The so-called "effective modulus” theories replace the actual composite by a homogeneous, gen-
erally anisotropic medium whose material constants are a geometrically weighted average of the
properties of the constituents. While yielding satisfactory results for certain geometries under
static loads, such an approach exhibits serious deficiencies for virtually all geometries when
applied to dynamic problems such as impact and wave propagation. Specifically, effective
modules theories are incapable of reproducing the dispersion and attenuation observed in com-
posite materials. Such a behavior is a well known phenomena in composites and is a result of
the microstructure of the particular composite. The dynamic behavior of a composite material
(or a continuum in general) is of great importance when the material is subjected to high-rate
loads such as the ones that are generated by impact or explosive charges. We briefly elaborate

on this point.

The dynamic response of deformable heterogeneous materials may be broadly classified

into two groups as follows.

i)  The wave length of the characteristic response of the material is very long compared
with the scale of the inhomogeneity. Then the material response is governed by the
effective properties of the equivalent homogeneous medium. In this case the struc-

tural response and wave propagation are identical to those of homogeneous materials.

ii) The wave length of the response is not ideally long with respect to the characterstic
dimension of the inhomogeneity. In this situation very complicated dynamic effects
can occur. The interfaces between material phases cause wave reflection and refrac-

tion. This phenomena is due to the existence of microstructure in the composite.
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Considering (i) and (ii) above, it is clear that any continuum theory designed to account for the
dynamic response of a composite must, in some fashion, reflect the effect of microstructure in
the composite. In addition to dynamic response of the composite laminates the issue of inter-
laminar behavior of composite laminates is of great importance. This issue is directly related to
delamination and edge effects in composites. In recent years, delamination has become one of
the most feared failure modes in laminated composite structures. This problem has also initiated
a great deal of research in the field of composite laminates. What began in 1970 as somewhat of
an academic curiosity turned into a beehive of research activity in recent years. This in turn
indicates the desire for having an adequate theory that can account for the effect of interlaminar

Siresses.

A review of the literature on continuum theories developed for composite laminates reveals
that most of the theories that, in some fashion, account for the effect of micro-su'ucn‘xrc are linear
in nature. Consequently, these theories are not capable to model the behavior of composite lam-
inates undergoing large deformation. Moreover, all continuum theories, with the exception of
one, are proposed for composite laminates with initially flat configurations. Hence, these
theories are not appropriate for curved geometries. In addition the available continuum theories
are mainly developed to predict only the dynamic response of the composite laminates. There-
fore, they do not seem to be adequate for problems involving static response of the laminated
composites with specified boundary conditions. Indeed the literature on the proposed continuum
theories of composite laminates may be divided into two groups. One group is concerned with
the formulation of theories that are adequate for dynamic response of composite laminates and
another group that is involved with the formulation of theories that are appropriate for intelam-
inar response of composite materials. In fact, there exists no theory that is adequate for treating

static and dynamic problems at the same time.

Considering the above restrictions of existing theories, the specific objectives of this inves-

tigation were to develop a continuum theory for laminated composite materials that could

BAS@




-5-

account for the effect of i) microstructure, ii) nonlinearity, and iii) curved geometry. As will
become apparent, we have not only met the aforementioned objectives, but we have also
achieved a complete theory which will have a widespread use in related industries. We would
like to mention that we are very encouraged with the results of Phase I of the work; in particular,
we have to state that the theory presented here is a coherent continuum theory represented by a
set of well-defined conservation laws predicated on physical observations which are physically
sound and mathematically accurate. Within the context of purely mechanical theory, the

developed theory exhibits the following features:

a) It accounts for the effect of micro-structure

b) It accounts for the effect of geometric nonlinearity
¢) It accounts for the effect of material nonlinearity
d) It accounts for the effect of curvature

e) It accounts for the effect of interlaminar stresses
f) It has a continuum character

g) Itis applicable to both static and dynamic analysis.

The material presented here is divided into six parts (Part A through Part F) which contain

37 sections numbered consecutively.

Part A is concerned with some preliminary materials needed for subsequent developments.
This part contains section (2) througn section (4). Section (2) discusses the coordinate systems
and other relevant notations. Section (3) provides some general background on spatial and sur-
face base vectors and related matters while section (4) presents the relevant results from classical

continuum mechanics in general curvilinear coordinates.

Part B contains an introductory account of the theory of Cosserat surfaces. This part

includes section (5) through section (9). Section (5) presents a concise definition of a shell-like
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body; section (6) deals with the kinematics of a Cosserat surface while rigid body motions is dis-
cussed in section (7). The definition of various stress resultants are given in section (8) and the

basic field equations of the Cosserat surface are derived in section (9).

Part C deals with the modeling of a composite as a series of Cosserat surfaces and contains
sections (10) through section (22). Section (10) introduces the coordinate systems appropriate for
composite laminate while section (11) gives a precise definition of a shell-like micro-structure.
Sections (12) and (13) are concermned with the kinematics and rigid body motion, respectively.
Section (14) provides definitions of the various quantities associated with micro-structure. Sec-
tion (15) contains the basic field equations for the micro-structure while the associated conserva-
tion laws are given in section (16). Section (17) includes the derivation of the composite conser-
vation laws. A summary of basic principles for composite laminates is given in section (18).
Sections (19), (20) and (21) contain some results concerning composite contact force, composite
contact couple, composite conservation laws, and composite stress and couple stress tensors.

Basic field equations for composite laminates are derived in section (22).

Part D pertains to elastic composite laminates and includes sections (23) through (26). In

section (23) the nonlinear constitutive equations of an elastic composite laminate are derived
using the direct approach. Section (24) presents the complete theory while section (25) consid-
ers the question of constraints in composite laminates. Section (26) contains the three dimen-

sional approach to the derivation of the constitutive relations.

Part E deals with the linearization of the Cosserat composite theory. In section (27) the
linearized kinematics are derived, while the linearization of the basic field equations and consti-

tutive relations are performed in sections (28) and (29).

Part F contains the application of the theory to flat and cylindrical laminates and also com-

parisons with the available theories. Sections (30) and (31) provide some preliminaries. Section

(32) presents a practical approach to the derivation of explicit constitutive relations. Section
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(23) deals with the case of a normal director while theories of initially flat and initially cylindri-
cal composites are discussed in sections (34) and (35). Section (36) presents comparisons
between the Cosserat composite theory and other available theories. Section (37) contains some

relevant conclusions regarding composite Cosserat theory.

As mentioned earlier, the results of this phase of research were very promising. In fact, at
this point, we have at hand a complete theory for mechanics of composite laminates which is
based on sound frame-invariant conservation laws and in a rigorous mathematical framework
without any ad hoc assumptions. We plan to continue this development toward explicit deriva-
tions of field equations and constitutive laws for various composite structures and reinforcement
configurations. Examination of delamination phenomena and edge effects, which is a natural
outcome of the present theory, is another line of activity which will be followed. For this pur-
pose we plan to simulate some recent experiments [Pagano, 1989] by using the Composite Cos-

serat Theory and compare the results with experimental data and those of available theories.

Recent developments in computational mechanics [Simo, J. C., et al., 1989, 1990] have
proved that classical Cosserat shell theory can be cast into an efficient and accurate numerical
framework suitable for nonlinear finite element analysis. The present composite Cosserat theory
was developed based on a systematic extension of classical Cosserat shell theory. We plan to
extend the present theoretical developments to a numerical framework which is based on
mathematical principles that their applicability has been demonstrated in the course of previ-
ously mentioned research of J. C. Simo and co-workers. Following the numerical developments.
various shell elements for a wide range of composite materials with different reinforcing
configuration and multi-constituent structures, will be designed. The details of these activities

were presented in Phase II proposal for the subject project.
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Part A. Preliminaries

In this part we introduce the coordinate systems, and the corresponding notations which
will be used in the subsequent development. We also record some relevant results from classical
three-dimensional continuum mechanics. We will not provide proofs, as they are available else-

where, and only make reference to appropriate literature on the subject.

2. Coordinate Systems

Let the points of a region R in a three dimensional Euclidean space be referred to a fixed
right-handed rectangular Cartesian coordinate system x! (i = 1,2,3) and let ni (i=1,2,3) be a gen-

eral convected curvilinear system defined by the transformation

xi = xi(n!,nZ,n? 2.1

We assume the above transformation is nonsingular in & and has a unique inverse

i =nix!,x2x3) 2.2)
The existence of the unique inverse implies
axi

det(s—n—i) #( (2.3)

We recall that a convected coordinate system is normally defined in relation to a continuous

body and moves continuously with the body throughout the motion of the body from one

configuration to another!,

Throughout this work, all Latin indices (subscripts or superscripts) take the values 1.2,3; all

Greek indices (subscripts or superscripts) take the values 1,2 and the usual summation

! The subject of convected coordinate system has been discussed in references (Oldroyd, 1950]
and [Lodge, 1974].
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convention is employed. We will use a comma for partial differentiation with respect to either
space or surface coordinates such as i or N® and a superposed dot for material time derivative,
i.e., differentiation with respect to time holding the material coordinates, such as n! or n%, fixed.
Also, we use a vertical bar (| ) or a double vertical bar ( Il ) for covariant differentiation in 2 and
3 dimensional spaces, respectively. In the course of derivation of various results for the compo-
site laminate we will encounter covariant differentiation with respect to a coordinate system
which corresponds to composite continuum?. To denote this we will use a single boldfaced vert-

ical bar ( | ). Also, for later convenience, often we set )3 = £ and adopt the notation

ni=M*8) (2.4)

In what follows, when there is a possibility of confusion, quantities which represent the same
physical/geometrical concepts will be denoted by the same symbol but with an added asterisk (*)
for classical three dimensional continuum mechanics or an added hat (*) for the Cosserat surface
and no addition for composite laminate. For example, the mass densities of a body in the con-
texts of the classical continuum mechanics, the Cosserat surface and the composite laminate will

be denoted by p*, p and p, respectively.

2 As it will become clear later, in order to adequately represent the effect of micro-structure in
a continuum composite laminate, we need o introduce an additional dimension (or coordinate) in
the direction of ply lay-up.
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3. General Background

Consider a three-dimensional body B, embedded in a region R of the Euclidean 3-space,
and let the particles (material points) of B be identified by a convected coordinate system (2.2).
Let P denote the position vector, relative to a fixed origin, say C, of a typical particle of Bin a

reference configuration. Then, we have

P=PM°8) (3.1)

This, in view of (2.2) of section (2), may also be expressed as a function of x\. We recall that, in
general, the numerical values of the coordinates associated with each material point of a contin-
uum varies from one configuration to another. However, when the particles of a continuum are
referred to a convected coordinate system, the numerical values of the coordinates of a particle
remain the same for all time. The position vector of a typical particle of B in the deformed

configuration at time t, relative to the same fixed origin will be denoted by

p=pM*E.0) (3.2)

We note that equation (3.1) specifies the place occupied by the material point 1! in a reference
configuration, while the place occupied by the same material point 11 in the present (deformed)
configuration is specified by (3.2). We assume that the vector function p in (3.2), which
describes the motion of the body B is differentiable with respect to n%, £ and t as many times as

may be required. We recall the formulae

ga=—aa-np~. . 8j=8i" 8 » g=det(gy) . g=[g1 8283120,
(3.3)
gi=gig ,g-g=gl, g-g=38j
where g; and g' are the covariant and the contravariant base vectors at time t, gij 1s the metric ten-
sor, gl is its conjugate, &} is the Kronecker symbol in 3-dimensional space, and [ ] denotes

scalar triple product.
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Formulae analogous to (3.3), valid in a reference configuration are given by

G; , Gij=Gi‘Gj s G=det(Gij) , G%®=(G;G,G3]=0 ,

- oP
=57
(3.4)

Gi=GijGj , Gi‘ Gj=Gij s Gi y Gj=8ij
A material surface in B can be defined by the equation & = £(n®). The equations resulting

from (3.1) and (3.2) with & = £(n®) represent the parametric forms of this surface in the refer-

ence and present configuration. In particular, with reference to (3.2)

£ =E&M®) = constant (3.5)

defines a one parameter family of surfaces in space each of which is assumed to be smooth and
non-intersecting. Let the surface § = O in the present (deformed) configuration at time t be
denoted by s. Any point of this surface is specified by the position vector r, relative to the same

fixed origin 0 in the 3-dimensional space, and we have

r=r(m%t) =pm0,) (3.6)

Let a, denote the base vectors along the *-curves on the surface s. Moreover, let a3 = a;(M%,t)

be the unit normal to s. We recall the results

or
one

Ag =

=ga(M%0.) , 3.7)

a%-a3=0,a3-a3=1, az3=2a3, [a;a;a3]20 . (3.8)

We also recall the formulae

agp = aq - ag , a=det(asp) , a%=a%Pag ,
3.9
a%-aP=q0B | a0vag=3% ,

buB =bpg=-2g" a38=2a3° g8 (3.10)
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aa|B=baBa3 N 83‘a=—b7aa-{ N baB|Y=b07|B (3.11)

where agg is the metric tensor of the surface and bgg are the coefficients of the second funda-
mental form of the surface. We recall that the three equations given by (3.11) are the formulae

of Gauss, Weingarten and the Mainardi-Codazzi, respectively.

Considering expression (3.6), we recall that r is the position vector of a typical point of the
surface s, i.e., the material surface £ = 0 in the present configuration of the body Bat time t. Let
the corresponding surface (i.e., £ = 0) in the reference configuration be denoted by S. Any point

of this surface in the reference configuration, is specified by:

R=R(Nn%=PM%0) (3.12)

It should be clear that if the reference configuration of Bis chosen to be the initial configuration

at ime t =0, then we will have

R=RM%*=r(n%0) (3.13)

Let Ay be the base vectors along the coordinate curves on the surface S. Then by (3.4) and

(3.12) we obtain

Ag= g:; = Gy(M",0) (3.14)
and
Ay A3=0, A3-A3=1, A3=A3 | [A] A2 A3] 20 (3.15)

where A1 is the unit normal to S. The duals of the relations (3.9) to (3.11) are given by

Agg=Aq A , A=det(Agp) . A®=A%BAR |
(3.16)

A% - AB=A0B | AMTAg =593
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Boap=Bog=—Aq-A3g=A3" Agp

Agip=BgpA3 , Azg= —BYAy , Bapiy=Boyip

(3.17)

(3.18)
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4. Basic equations of classical continuum mechanics in general curvilinear coordinates

In this section we summarize some preliminary results from the three-dimensional theory

for non-polar media in terms of general curvilinear coordinates.

We define a body, designated by B°, as a set of particles (material points)3. We designate
the particles of the body by P* and assume that the body is smooth and can be put into
correspondence with a domain of the three-dimensional Euclidean space. Thus, by assumption,
a particle P* of the body can be put into a one-to-one correspondence with the triples or real
numbers P;,P,,P; in a region of Euclidean 3-space. We assume the mapping from the body
manifold to the domain of a Euclidean 3-space is one-to-one, invertible, and differentiable as

many times as desired.

Consider a body B* with its particles P* and let the boundary of B* (a closed surface) be
designated by 0B*. We define a configuration of the body B* to be a mapping onto a domain in
the three dimensional Euclidean space, E3 which assigns a position vector p* to each particle
(material point) of the body. Thus, the configuration of the body at time t is the region of
Euclidean 3-space which is occupied by the particles of the body at the instant t of time
(—eo <t <+e0). We define a motion of the body as a time sequence of configurations. Often it
is convenient to select one particular configuration and refer everything concemning the body and
its motion to this configuration. In what follows we shall identify the particle P* of the body

with its position vector in a configuration (e.g., present or initial).

Let i (i = 1,2,3) be a general convected curvilinear coordinates. Consider a body B* and

let its boundary be a closed surface and be denoted by 0B *. Let

P’ =p"(Miy) (4.1)

3 Note that from now on when we refer to a body in the sense of classical continuum mechan-
ics, we wiil denote it by an added asterisk (*). The same will be wrue for the quantities associated
with the body.
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denote the position vector of a material point in the present configuration of the body B " at time

t. Then we may write

*

g = -3%;- . 8 =8 "8 4.2)
and
ds?=dp° - dp* = g; dnidn/ (4.3)

where (4.2); 7 and (4.3) are the covariant base vectors, the metric tensor, and the square of a line
element in the present configuration at time t, respectively. In the same manner we denote the
position vector, the covariant base vectors, the metric tensor and the square of a line element in a

reference configuration as follows

P=P"(n) (4.4)
G = %%:— , Gij=Gi" -G/ (4.5)
dS2=dP" - dP" = G;; dnidn’ (4.6)
We define a strain measure through
ds? - dS? = 2y dnidny (4.7)
Y = (g - Gij) (4.8)

where yi} are the covariant components of the symmetric strain tensor. Moreover, the velocity is

given by

vi=p = %ﬁl (4.9

Under a superposed rigid body motion, the position vector p* will be displaced to the posi-
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tion p°** given by

p** =p (i) = po*(t) + QM)[p*(Lt) — po (V)] (4.10)

where t"=t+a’ and a’ is an arbitrary constant and the second order space tensor Q is a proper

orthogonal tensor function of t which satisfies

Q=Q , QQT=QTQ=1, detQ-1 . 4.11)

We denote the counterpart of yj, after superposed rigid body motion (4.10), by ¥;;* and we recall

that under the moton (4.10) the strain yi} remains unaltered, i.e.,

Yi =¥t (4.12)

It is clear from (4.8) that yi} vanishes for a rigid deformation, i.e.,

'Yi;:O ) (4.13)

Let P*, bounded by a closed surface 9", refer to an arbitrary part of the body B* in the
present configuration. Then within the scope of the classical (nonpolar) continuum mechanics,
the system of forces acting over any part P° of the body ‘B * in motion consists of the sum of the

two types of forces, Fy and F¢, as described below:

Let b* = b"(n\,t) be a vector field, per unit mass p*, defined for material points in the region
of the Euclidean space, occuped by B~ at time t. This vector field is called the fody force. The

resultant body force acting on the part P* in the present configuration at time t is defined by

Fg=| - DAY (4.14)

where d7” denotes the element of volume. In addition. let the outward unit normal vector at a

material point on the boundary 9P of the part P at time t be denoted by n* and be given by

n"=ng"i=n'ig’ (4.15)
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Let t" = t*(}i,;n") be defined for the material points on the boundary 62" at time t. The vector
t* is called the contact force or the stress vector acting on the part P* of B*. The resultant contact

force exerted on the part P* at time t is then defined by

Fl= . t"(mi,;n")da’ (4.16)

where da’ is the element of area whose outward unit normal is n*. Moreover, we assume the

existence of a strain energy density €* = €"(1i,t) per unit mass p°.

In terms of the above definitions of the various field quantities, with reference to the present
configuration and within the context of the classical (nonpolar) continuum mechanics, the con-

servation laws in the purely mechanical theory are given by
. d *qof =
a: g | p-P'dY =0

b: S [pp™VidT = [ "DV + [ da”
4.17)
c: gf IT‘ p'p" x v dv = I'.P‘ p'p" xb'dv" + ja?_ p*xt* da

. d - L J L ] — * » * * *® . * ]
d: at-f?_p (€°+K )dv-fT,p (b* x v dv)+ja?_t v'da
where €” is the specific internal energy per unit mass p* and k™ denotes the kinetic energy per
unit mass p° and has the form

K'=hv' v (4.18)

Equations (4.17), to (4.17)4 represent mathematical statements of conservation of mass, conser-
vation of linear momentum, conservation of moment of momentum, and conservation of energy,

respectively.
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Under suitable continuity assumptions, the principle of linear momentum and that of

moment of momentum imply the existence of a tensor field 7*1 = t*ii(nk,t) such that

(4.19)
T‘i = gtlA T‘ij gjt - g-% Tj.i g.-‘
Moreover, with the help of (4.19), the transport theorem, and the divergence theorem, the bal-

ance laws (4.17), and (4.17), can be reduced to the Cauchy equations of motion, 1.¢.,

Tl‘l + p‘ b‘ gllA - p‘ ct g‘lA
(4.20)
gi X Ti =0
where ¢ is the acceleration vector. In (4.19) and (4.20) t*i and 1" are the contravariant and
mixed components of the stress tensor and a comma denotes partial differentiation with respect

to . It can be shown that the equations of motion (4.20) are equivalent to

T+ b= pict = (4.21)
where the double vertical bar (! 1) stands for covariant differentiation with respect to g;j and ¢t

are the contravariant components of the acceleration

=V (4.22)

and where a superposed dot is the material time derivative with respect to t holding ni fixed.

Moreover, with the use of the divergence theorem, ie.d

[p.divvidd =] v* n'dd

or (4.23)

L2 > _ 1 * E . * _ *® -' L]
I?.V Hidy —j?.Tg_-(v l\/g_)_, dv —fa?v 'n; da

4 Sce [Green and Zema, 1968, page 31.
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and the equations of motion, it can be shown that (4.17)4 reduces to

pe’ = 1'ii y,] (4.24)

For an elastic body we make the constitutive assumption that

e = E‘(‘yi}') (4.25)
together with a similar assumption for the stress tensor 1°4. In (4.25), the dependence of € on
the reference metric tensor is understood, although this is not shown explicitly. Making use of
(4.24) and (4.25), we obtain the results

.. .« o’
W=p" == (4.26)
i

In the last expression, the partial derivative is understood to have the symmetric form

1 ,o0e* | o€
> (= + ===

o o

Before closing this section we discuss basic jump conditions in the context of three-
dimensional classical continuum mechanics. Thus far, all kinematic and kinetical variables
occurring in the conservation laws have been assumed to be continuous throughtout the body
B*. Sometimes we encounter circumstances in which some kinematic/kinetical vanables are
discontinuous across a surface which moves through the body; the surface is called a surface of

discontinuity.

Suppose that at time t an arbitrary material volume of the body occupies a part P~ bounded
by a closed surface dP*. Let P°* be divided into two regions Py, P; (see figure 1) separated by
a moving surface o(t), and let 9P, dP"" denote the portions of the surface 9P~ which form

parts of the boundaries dP | and dP5 such that
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0P* =9P{ NIAP* , 0P aP; NaP’

P'=PUP; , 0P =0P  UIP" (4.27)
0P =0P " ua(t) , B =0P" Lol()

Let the velocity of the surface o(t) along its outward normal, when G is regarded as part of
the boundary 0%}, be denoted by u,. Then, - u, is the normal velocity of ¢ when this surface is
regarded as part of the boundary of ;. Let y be any function which takes different values y,
and y; on either side of G in the regions P} and P, respectively. We adapt the notation [ ] to

indicate the difference of y; and v, and write

vl=v2-vi (4.28)

We also adopt the notations

Win=Vin~=Un » Won=V2n— Uy (4.29)

where vy, and vy, are the velocities of the material points in the regions P; and %5 along the

normal to G, respectively. In accordance with the notation in (4.28), we can write

[wn]l = wo, = wyq (4.30)

Recall that the transport theorem for a part P° can be written as

d > : . » » a » = » = :
S lp-0dv =] ©rodivvidr =] S odU+[ ovi-n'da 4.31)

where in writing the above the divergence theorem has been used. We now proceed to obtain
the counterpart of (4.31) for the region under consideration which includes the surface o(1). To

this end we apply (4.31) to regions P; and P; for a function p*y as follows:
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qlm P Vdv =] S0y + [ (py)v 0" dd

= Lp; ??T (WAL + [, (p"WV n'dd + [ (pTw)v" - n'dd” (4.32)

and
3t I vav = Ig;?; (p"w)d7 + [ (p*y)v" - n*dd

= .[Tz-’gf (P'y)dv + Iay.(p’\v)v‘ -n*da’ + jo(p‘w)v‘ -n"dd" (4.33)

Adding both sides of (4.32) and (4.33) we obtain

d * * . * » - *
(p'y)dv = (p*y)dv" + | [p'wwn]da (4.34)
-dt—mjjzpw ﬁjgpw [, P ww,
where in obtaining (4.34) we have also made use of the " .gence theorem and the equation of

continuity. Making use of (4.34) and wi% rzlerence to the present configuration, we obtain the

conservation laws for the part P{ U P5 in the form:

b : p'v'dy = *b*dv" + t'da” + | [t'1dd"
Hfzmjﬂ’i ?,Jmp aTrJJafP; k

(4.35)
*xt'da"+| [p"xt")]dd"
= [, Ip

J

d * » - * » * - »*
c (p xv)dv = (p" xvHdv +
a‘?l(t?;p ?.Jﬂ*zp P T

0

d L] » - » * - - E ] E 3 - » - - -
d: (e"+k")dv = b"-v'dd + t-vida+ | [t"-v']da
Ht_z’rcf)ﬂp fﬂJ)a’;p aﬂj)aﬁ J"

Application of (4.17), .4 to parts P, and P; and subtraction of the results from corresponding

equations in (4.35) yields
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: [p*wnl=0
D p°Viw, - t°]1=0
: Nno new equation

D IpT(E KWy —t" v ] =0

(4.36)
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B. Introduction to theory of two-dimensional directed continuum, i.e., a Cos-

serat theory

We introduce in this section the main concepts and ingredients of a theory of two-
dimensional continuum, namely, a Cosserat surface. The concept of oriented or directed media
originated in the work of Duhem in 1893. The first systematic study and development of
theories of oriented media in one, two and three dimensions was conducted by the brothers
Eugene and Francois Cosserat in 1909. Further study on the subject was carried out by Ericksen
and Truesdell in 1958 who introduced the terminology of directors. A complete general theory of
a Cosserat surface with a single director in the context of thermomechanics was developed by
Green, Naghdi and Wainwright in 1965. A thorough study of the theory of directed surfaces was
conducted by Naghdi in 1972 which in addition to the basic theory, includes certain general con-
siderations regarding the construction of nonlinear constitutive equations for elastic shells. An
account of recent developments on one and two dimensional Cosserat continuums with special
attention towards elastic rods and shells was also given by Naghdi in 1982. Our exposition of
the two-dimensional Cosserat (directed) surfaces in this part will closely follow the deve.op-

ments given by [Naghdi, 1972].

In general, two different approaches may be adapted for the construction of two-
dimensional mechanical theories such as those for shells or fluid sheets. One approach starts
with the 3-dimensional equations of classical continuum mechanics and by applying approxima-
tion procedures obtains a set of two-dimensional field equations and constitutive equations for
the continuum under consideration. In the other approach the continuum is modelled as a two-
dimensional directed continuum, called a Cosserat surface; and then the field equations and the
appropriate constitutive equations are developed. It should be emphasized that in the latter
approach, namely the introduction of an alternative mode!l and formulation of the theory by the
direct approach, the nature of the field equations in the 3-dimensional theory is not ignored. In

fact, some of the developments of the field equations by the direct approach are motivated and
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aided by available information obtained from the 3-dimensional theory. It can be shown that the
two foregoing approaches may be put into a one-to-one correspondence. As discussed in
[Naghdi 1972, 1982}, most of the difficulties that occur in the derivation from three-dimensional
theory are related to the construction of relevant constitutive equz.ions. These difficulties, how-
ever, do not occur in the direct approach and in this sense the direct approach offers a clear
advantage over the three-dimensional one. The entire development by the direct approach is
exact in the sense that it rests on 2-dimensional postulates valid for nonlinear behavior of materi-
als. However, a theory of this kind cannot be expected to represent all the features that could

only be predicted by the relevant full 3-dimensional equations.

As mentioned previously the ingredients of the two different approaches can be put into a
one-to-one correspondence. For the purpose of this study we make use of the three-dimensional
approach as it is more appropriate to our later development. It is to be emphasized that the
relevant equations to be obtained at the end of this section will be the same whether we use the

direct approach or the three-dimensional approach.
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5.  Definition of a shell-like body

Consider a body B* in the present configuration and let its boundary be a closed surface,

denoted by 0B, and composed of three material surfaces as follows.

a) The matenal surfaces

st §=€,M%)
£, <0<&, (5.1
s: §=6M%
with the material surface
S £=0 (5.2)
lying entirely between them.
b) The material surface
s f(M»=0 (5.3)

such that & = const. are closed smooth curves on the surface (5.3).

The surfaces (5.1); ; are called the major surfaces or the bottem face and the top face, respec-
tively. Since ni = {(n®£) are defined by (2.2) as convected (material) coordinates, the material
surfaces (5.1))2 will have the same parametric representation in all configurations. In general,
&) and &; are functions of the surface coordinates N® but in special cases they may be constants.
We assume the surfaces s,, 5) and s, do not intersect themselves, and each other. This implies
the condition (5.1); and g* # 0. The surface s, is not necessarily midway between the bounding
surfaces s and s,. However, in a reference configuration of the body B*°, a surface correspond-
ing to s, may be chosen midway between the surfaces corresponding to s; and s,. Such a three
dimensional body (i.c., the body B* as characterized above) is called a shell if the dimension of

the body along the normals to the surface s,, called the height, is small in comparison 1o its other
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dimensions. A shell is said to be t4in if its thickness is much smaller than a characteristic length
of the surface s,, for example the local minimum radius of curvature of s,. Figure (2) shows an

element of a shell like body in the present configuration.

Let p*M%.E,t) and po(M®,E) be the mass densities of B* in the deformed and reference
configurations, respectively. Then the conservation of mass (in three dimensions) implies
p* g2 =ps G112 (5.4)

We define the surface mass density (i.e., mass per unit area) p, of s, at time t in the present

configuration by the expression

pall2= fZ p*g'l2dE , p=pM%) (5.5)

where a is det(agp) of the surface &, . Since the quantity p°® g*1? is independent of time, it fol-
lows that p a2 is also independent of time, although both p and a = det(agp) may depend on t.
The mass of an arbitrary part P* of the body B"* bounded by the surfaces (5.1); . and a surface
of the form (5.3) may be expressed

* = 2 » »
Mp=[,.p"dv =Iﬁ : fp g’ dn! dn?dg

1°M2 7%
2 P -
=J; Ji oo ey o e [ [ parean an

= ]{P pdd (5.6)

where P denotes an arbitrary part of the surface s, which corresponds to P* and N and 13
denote the applicable ranges of integration for the coordinates N} and n?2, respectively. Also, in

obtaining (5.6) we have made use of (5.5) and the following expressions

dv = (g xg7) g3 dn' dn?dg =g'12dnl dn2dg (5.7
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dd = (a, x ay) - a3 dn! dn2=al? dn! dn? (5.8)

The relation of the surface s,: & = O to the boundary s;: §=§; and s, =&, can be
fixed by imposing the condition

. 010 = . = )
f:pg EdE J‘:k EE =0 (5.9)

where
k= k‘(n“,@) = p' g‘”2 = pJ G*12 (5.10)

We notice that k* is independent of time. Once the position of the surface s, : & =0 relative to
the positions of the surfaces 5;: =& and 5 : § =& is determined by (5.10) in a configuration
(e.g., a reference configuration) it remains so determined. This completes our description of a
shell-like body, namely a three dimensional body B* bounded by the surfaces (5.1);, (5.1)3 and
(5.3).

We will refer to the duals of the surfaces s, s), 5 in the reference configuration by

So» S1. 52, respectively. We also note that the dual of (5.5) in the reference configuraton 1s

given by
Po Al =fzz po G172 d (5.11)
1
and

Po Al2=pal” (5.12)

in view of (5.10).
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6. General kinematical resuits for shells

We begin our development of the kinematical results by assuming that the position vector

p*(n®.E,1) of a material point in the deformed thin shell has the form

p =r(m%n+ & dMm%y) (6.1)

The above is a special assumption which is regarded to be valid for thin shells>.
The velocity vector v* of the three-dimensional shell-like continuum at time t is given by

V= PRED < prnag (64)

where a superposed dot denotes the material time derivative, holding ' = {n®.£) fixed. From

(6.1) and (6.4) we obtain

vi=zv+ g w (6.5)
where
V=r , w= d (6.6)
From (6.1) and (4.2) we have
g=ac+i2L | gi=d 6.7)

where a, are the base vectors of the surface s,. The base vectors g'(N®.£,t) in (6.7) when

evaluated on the surface s, reduce to:

5 In a more general approach, we may begin the kinematical development by assuming that
p(M®.E,t) is an analytical function of £ in the region €1 <& < &;and can be represented as (sce
[Naghdi, 1975, section 7))

p*=r(mey) + ;‘,1 EN dpy(6%,1)

This generality is not needed for our present purposes and we therefore adhere to the assumption
6.1).
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ga(M1,0,) = ag(,1)
(6.8)
g3(MY,0,0) = d(mY,y)

where g;" satisfy the condition

(el g2 83120 (6.9)

This restriction holds at all times and for all values of i = (n®,£}. In particular, it is valid for

= 0 so that by (6.9) we also have

[aja,d]#0 (6.10)

This condition implies that the director d cannot be tangent to the surface .

Let v be some three-dimensional vector field defined on s, and let v, v; be the covariant

and contravariant components of v referred to the base vectors a; = (24,33} or a. We then have

v = via; = v%ag + v3az = viai = vga® + via3 (6.11)

Recalling the expressions for the gradient of v, we have

Va=Vig = Vigd' = Vigd;

Vig =2, Vg . Vig=al vy
(6.12)
Vag = Vila = baaVi » Vig = Viat b&'V;‘

vAg = vA = brovy , Vg =v3g + bygv?

where a vertical bar ( | ) stands for covariant derivative with respect to aqg. The lowering and
raising of indices of the tensor functions such as viin (6.11) and v,y in (6.12) is accomplished by

using a space metric tensor defined by

2ap(M*00) =agp , g3s(M®0) =0 , g33=1 (6.13)
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Considering (6.1) and (6.7) and making use of the general formulae (6.11) and (6.12), we

write

d=dai=dia; , d*=2a%Bdg , d>=d (6.14)

a) W =d o =dj)gal = Ajeal

b) Apa=dpia—bpads , Azg=d3q+ bPydp (6.15)
c) Ag=a®hg, , A3 =23

We also introduce the notations
a) d-d=dfdg+0, o=(d;)?
b) d-dg=dPhga+04, Og=daq (6.16)
€) da-dpg=Aahg+0us , Oap=2A3GAsp

We may now write

) st s et 2

=aap + EApa + Aap) + EZ AV g + Oup)

(6.17)
b) gaz=ag-d+&d- 9‘1 =dg + §(d g + Og)
¢ gn=d-d=dWd,+o
The duals of (6.14) to (6.17) in the reference configuration are given by
D=DjA!=DiA; , D*=A%Dg , D3 =D; (6.18)
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a) gnl?’ =D oAl = AjgAl
b) Aga=Dpia=BgaDs , Asq=Dsq+BB,Dy (6.19)
) A%=APAg, , Ad=Asg
2) D -D=DPDg+ZI, T=(D;)?
b) D-Dg=DPAge+Zy , So=DEsq (6.20)

¢) Dg- D-B = ALA-ﬂ + ZQB s Zug = A3uA3g

and

)+§2 aD . aD

)  Gap=Aqg e P

+Aq:

ol 8n“ an

= Aap + E(Apa + Agg) + EHA LA + Zop)
(6.21)
b Gaz=Aq D+ED- gnD =D + E(DYAy + Zo)
c) G3‘3=D-D=DYDY+Z
where A; = {A4,A3) are the base vectors and the unit normal of the surface So: £€=01in the

reference configuration.

Recalling the expression for the strain ¥}, i.e.,

Yy =28 - g - Gi- G) = 'A(gj - G (6.22)

with the help of (6.14) to (6.21) we can readily record the components of the strain Y;j as follows:
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2YoB = 2€q8 + E(Kpa + Kap) + (A XAg — A%AR) + Sqgl
2Ya3 = Ya + E[(dAq — (DYAya) + Sol (6.23)

233 = (d¥dy - D'Dy) + S

where in obtaining (6.23) we have introduced the relative kinematic variables €ap, Kiq and ¥; as

follows

Caﬂ = ]/2(3(15 - AQB) s Kiq= }"ia - Aia y i = di - Di (624)
We have also made use of the following expressions and definitions:
d-d-D-D=(d%d,-DDy)+S , S=(d3)2 - (D3)?
d-dg-D-Dg=(d%g-D¥A) + Sy , Sq=d*A3¢4 — DAz (6.25)

do-dg-Dg-Dg= (?\.7(17\,@ —AlgAg) +Sop » Sop= 7\,.:(’17»35 - A3uA3B

Before closing this section we make a remark that the kinematic variables (6.24) represent meas-

ures of surface strains, bending and rotation of normal to the surface, i.e.,
€qp 1s called stretch and is a measure of strain
Kiq 15 @ measure of bending

Y; 1s a measure of rotation of the normal.
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7. Superposed rigid body motion

We recall that when the motion of B* differs from the given motion by a rigid motion, the

position vector p** has the form

P =p ML) = po*(t) + Q)P ML) — po (V)]

(7.1)

where Q(t) is a proper orthogonal tensor function of time. Also, under superposed rigid body

motion, the position vector r of the surface s, of Bis displaced to

rr=rM%t) = ry(t) + QU[r(n%,1) — ry(t))

From (7.1) and (7.2) we obtain

p+ —rt= §d+
or
§ d* = (pg(t") + QIPML) - Po(V]) = {F&() + QMr(N%,1) — (ro(D]}
= (ps(t) = rs (1)} + Q) {pML) — rM%,0} — Q) {po(t) — ro(t))
Hence,

d*(M%,) = Q(Hd(n%,t)

where in obtaining (7.4) we have made use of the fact that

p(Miy) —rMme,n =& dn®t)

and

PS(t) = rg(t") = Q[ po(t) — ro(1)}

Considering (7.4) and the fact that Q(t) is a proper orthogonal tensor function, i.e.,

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)
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we may write

d*-d*=Qd-Qd=QTQd-d=d-d (7.8)

In obtaining (7.8) we have used the relation

U-Qv=QTu- v (7.9)

for any two vectors U and V. It is clear from (7.8) that the magnitude of d(n%,t) under super-

posed rigid body motions remains unchanged. In the contemporary literature, any three dimen-
sional vector field which transforms according to transformation (7.4) and possesses the property

(7.8) under superposed rigid body motions is called a director.
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8.  Stress resultants, stress-couples and other related definitions

Preliminary to our derivation of equations of motion for a shell-like body, we need to
define uppropriate stress-resultants, stress-couples and resultant body forces. This will be

accomplished in this section.

Consider a shell-like body B* bounded by a closed surface 9B *, as specified in section 5.

which consists of the material surfaces

spr &=g,(m®)
él <0< F_'z (81)
5 £=8M®
and a lateral material surface of the form
SI:f(‘nu) =0 (8.2)

We recall that the relation of the material surface s, : £ =0 to the bounding surfaces (8.1) 7 is

fixed by the condition

:2 * L 2] gz »
J;p g/ladg=j§1k EdE=0 (8.3)

where h

k. - k‘('ﬂa.i) — pu gu/z = poa Gn% (84)

Consider an arbitrary region of a material surface s, : & =0 in the present configuration,
denoted by P, and let 9P be the boundary curve of P. Also, let P*, with boundary 0P, refer to

an arbitrary part of the shell-like body B * in the present configuration such that:
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a) ‘P°contains P.

b) 9P* consists of portions of the surfaces (8.1); 7 and a surface of the form (8.2) at ume

t.
¢) 9P* coincides with 9P on the surface 5, : & =0.

Moreover, let dF refer to the part of 9P specified by a lateral surface of the form (8.2) such

that
AP =3P =3P on s5,:E=0 (8.5)
Let the boundary 9P of Pin the present configuration be denoted by a closed curve ¢ and

defined by the position vector r in 8. Let

n*=n%s) (8.6)

be the parametric equations of the curve ¢, with s as the arc parameter. Further, let Aand v
denote the unit tangent vector and the outward unit normal to ¢ lying in the surface 5,:§=0.

Then we have

_ arm%s)) _ _ dn®(s
A= 2D < peq, po= L) (8.7)
v=Axa3=vla,=vya®=e% APa, (8.8)
A =23 xV=a3xvea®=ebvyag (8.9)

where Eqg, £2B are the e-symbols in two-dimensional space;
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EaB = EB3 = a% B » €oB = gaf3 = 3-% €ap

(8.10)
e11=ep=0, ell=ex2=0
ep=—eyn =1, el2=—¢2l=]
We also recall that the elements of area on the surfaces
sy =& =&;(N%) = constant
(8.11)
5 =£=&,(N%) = constant
are given by!
da=(g"g"3)%dn! dn? for&,, £, constants (8.11)
Moreover, the element of area on the lateral surface 97, is
nida=g" dn2dt
= da=(n*!dn?-n*2dnl)g* d§ (8.12)

nyda=-g*4dn'dg

where n; are the components of the outward unit normal to the surface n = n*ig"i = n*ig;",

Let N=NM%1t;v) and M= M(n%,t;v), represent, respectively, the rwu[tantforcez and reswd-
tant couple? vectors, each per unit length of a curve ¢ in the present configuration. We define

these resultants as follows

JyNds=[,.0da [ Mds=[ " Eda (8.13)
The integration on the right-hand sides of (8.13);, is over the surface aJ;" The conditions
{

1 See Appendix 1 for details.

2 To emphasize the dependence of N,M on v we write N(v) and M(v), in place
of N and M whenever it is appropriate.
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(7.13),, stipulate that the action of N and M on a portion of a curve ¢ is equipolant (ie.,
equivalent in effectiveness) to the action of the stress vector t” upon a corresponding portion of

the normal surface fa?,, which coincides with 92 on the surface & : £ =0. We also define addi-

tional resultants

Ne g% = JZZ Tedf , M@%a%= J? T & dg (8.14)
1 1

and

ma% = j: T3 d8 (8.15)

Recall the relations between the stress vector t*, the stress tensor T°J and the vector T™ in

classical continuum mechanics:

. T‘in,

C=t=tinlgl, Theg g =g g (8.16)

where n=n"i g is the outward unit normal to the surface on which t* acts. Considering (8.13),

and making use of (8.16), we obtain
= = - L N LR
JLNds=[ . tda=] g~ Tin’da
= S el 402 L T2 gl
JM.,J'; (T*' dn2-T"2dn)dg

= aNldn2 — N2dnl) = a
‘faq,,a (Nldn2 - N2dn}) J’aéN Vods (8.17)

Since (8.17) is valid for any arbitrary part P with closed boundary P, it follows that

N = Nay, (8.18)

In a similar manner, from (8.13), we can obtain
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M =M%, (8.19)

With the help of (8.18) and (8.19) we can obtain results analogous to those of classical contin-

uum mechanics, namely

N) =-N(=v) , M(v)=-M(-v) (8.20)

According to expressions (8.20) the resultant force and the resultant couple both per unit length
of ¢, acting on the opposite sides of the same curve at a given point are equal in magnitude and

opposite in direction.

Next we define two-dimensional body forces as follows:

r
pfa*= F pTb" g 4 dE + [T g™ (g™ e =g, + [T g74(g™3) ")z 2, (8.21)
T % iz L WL 173 . * #3314 - = %33 4F
pla =fg,9 b" g™ EdE + [T7 (g7g" ) e, + (T (8787 %l =, (8.22)

where T° is the prescribed value of t* on the boundary 9B * of B°. In the above expressions T~
represents the prescribed surface loads on the surfaces s, : £ =&; and s, : § = &5. Making use of
(8.16), we may reduce (8.21) and (8.22) to

2

.. £
p fa% — p- b. g-lﬁdg + [T.3§T =£ pt bt gtl/gdg + [T.3]::§2 _ [T.3]E_=§1 (823)

|3
&1 =l

~ 7 r.z PR R ) - . % =l . -
pian=[ o' b gt + (T = [7 97 b ™40 + (T8l ~ (T8, (824)

It is to be remembered that in obtaining the above formulae we have assumed &, &; in

£ =E;(M®), § =E,(M%) to be constants. Also, in obtaining (8.23) and (8.24) we have used
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n’ = (g"33)-4[0,0,-g"3] on the surface 5; : § =§,(n%)

n® = (g"3%)7%{0,0,+¢"3] on the surface 5 : § = &,(M*)

for the outward unit normals to the surfaces s; and ;.

(8.25)
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9. Basic field equations for a shell-like body

In this section we derive basic field equations of motion for a shell-like body. To this end
we make use of the various resultants defined in section 8 and the three-dimensional equations of

motion in classical continuum mechanics, namely

T.i.i + pt b. gtlA - p' ;'. gllﬁ (9'1)
and
gsxT =0 9.2)
where
t‘ = gt_l/z Tt] nit , T‘l = gtl/2 ‘[.U gJ- (93)

The derivation is effected by
i)  integration of each termin (9.1) and (9.2) with respect to &, and
ii) integration, after multiplication by £, of each term in (9.1) and (9.2) with respect to &.

Consider equation (9.1) and integrate both sides of the equation with respect to § between

%, and &> to obtain

;Z . :2 iz
L . L] * ») - * .'l 01/2
J';T'_ldé+f;p b’ g ’*dé-fglp vigdd (9.4)

1

BASE




i
' We now consider each term in (9.4) separately. Thus, we write
l . 3 fiz Jiz &=L,
T." = 0 + LX) = Tta d 3
i J}: e R
s ) 05
l &%
Also,
fi p*b* g2 dE=pfa% - (T3 = (9.6)
l S =3
l and
5 . 3 . . - .
' Jopviedg =E p* g™V +EW)dE=pa% v (9.7)
' where in obtaining the last result we have made use of
' prgti=k" , pa¥= 'fzz k*dg , JZZ k*EdE=0 (9.8)
i 1
. and
l vVi=v+Ew 9.9)
l with v and w as functions of ! and N2 only. Introducing (9.5) to (9.7) in (9.4), we obtain
I (N®a%)  +pfa%=pva* (9.10)
Recalling the tensor identity
(N®a"”) g =a% N2, 9.11)
' we can reduce (9.10) to
' Ne  +pf=pv (9.12)
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Next, we multiply (9.1) by £ and then integrate with respect to £, i.e.,
Tigd s o gt a=oti gt
& ! & &
Considering each term in (9.13), we write
£
PTigdg =Tt e+ [T, 8

3 & &
- *® u3 - ‘3
= ([ TR g dle+ [ (T 85 - TNk
=(Meat o+ (BT [ - [0 T &

A}

=(Me 2+ [T

Also,
2 - tl/z — t3 §=§2
g PDTEEdS ET) .y

and

p gravt d"'-r k*(Ev + E2w)dE = p y? W a¥

where we have made use of (9.8)3 and defined the coefficient y* as follows!

P y® a’/2=f:k' Eed: (a=12)

We notice that the coefficients y® are independent of time but they may be functions of coordi-

I Although in this section we do not need to define y! and y? (since y! = 0 by
(9.8)3), for later use and convenience it is preferable to adhere to the definition

(9.17).

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)
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nates ' = {N%,£}. Introducing (9.14) to (9.16) into (9.13), we obtain

(M%a%),—ma%+pia%=py?wak (9.18)

Again, by making use of the tensor identity

(M@ a*%) = a% M% g (9.19)

we can reduce (9.18) to
Mo, —m+pl=py’w (9.20)
Next, we consider (9.2) and integrate it with respect to & between &, and &; to obtain
f: (g x TH)dE=0 (9.21)

Recalling that

g&=3a+§d.a , g3=d (9.22)

we can rewrite (9.21) as follows
5, . &2 . .
E(g.- X TYAE= [} [(aq +&dg) x T+ d x T}
1 1
& & .
=I§[(aa+§d.a)xT'“]d§+'f§ dxT3dE
1 1
|3 . ;2 ) .
=aaxJ:T °‘d§+d‘axEXT°‘§dE,+dx'r;T 3dg

=ay x (N*a%) +d o x (M*a%) +dx(ma*) =0 (9.23)

Since a # 0, we obtain

agxNe+dxm+dgxM*=0 (9.24)
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We now proceed to obtain the equation of balance and energy. To this end and within the
scope of the classical continuum mechanics, we recall the principie of balance of energy in

purely mechanical theory, i.e.,

* % 30 LJE VO I _d LI T 2 d . _®
JaT't v da +[?_p b*-v dzf—a-t-'f?.'/&p Vo'V d1f+aTIT_p e dv (9.25)

where £* =€*(n,t) is the specific internal energy. By making use of the transport theorem and

the divergence theorem we can reduce (9.25) to

ja?' g4 Thn - vida + j?, p*b* v dY = j?_ prvt vt dY + jrp_ p e dvt
or (9.26)
J‘T. (g-_% Tci . v.)li dU. +j?' ptbt . dU. =J'T. p- "/- v* dvt +IT. p. é- d'U'

or

J?- gAT™ v, do + f?- p b v dd = J,P- pT (Vv +eNdY
o (9.27)
J?'{ BV (T V)4 p" bV =" (V- v+ €0))dY

where in obtaining (9.27) we have also made use of the tensor identity

(gt%vn)‘i = g‘%vl " (928)

Since (9.27) must hold for any anibtrary part 2* of the body B *. we obtain

g AT V) +p b v —p (Vv V +€7) =0 (9.29)
This equation, with the help of equation of motion (9.1), may be reduced further
g T v+ g AT vi+p' b v =p* v - v =p° €
or

(gu_% T:’ + pu b- . V- _ pt {t) . V. + go_l/_.Toi . V'; - p. é-

or
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p‘ e. - g."’lﬁ T'i . V';
or

prghe =T v} (9.30)

Integrating both sides of (9.30) with respect to & between &, and &, we obtain

5 0 ey e =T vt g = .. .

o ghe =T via= T v+ g wik
LT ST G
=f2T‘°‘ v dE’;+f’2T‘°‘ - (Ew) d§+f2T'3 - (Ew) s dE

& @ S * Si '
L et 2 * 2 *

=v‘a'J'ZT “d;+w.a-JzT a§d§+W'J§1T 3dE

=a% N vy +a%s M2 -wy+a%m-w (9.31)

We now define a two-dimensional (surface) specific internal energy € by the condition

|3
a“pe= j':z prgttet dE (9.32)
1
Hence. (9.31) can be reduced to
PE=NT-vo+M% wo+m:-w=P (9.33)
where
P=N® v ,+M% - wyg+m-w (9.34)

1s the mechanical power.
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C. Modeling of a composite laminate as a series of Cosserat (directed) sur-

faces

To begin with, the continuum itself is a model representing an idealized body in some
sense. We may recall that the continuum model (in classical mechanics) is intended to represent
phenomena in nature which appear at a scale larger than the interatomic distances. From such
intuitive notons the well defined classical field theories of mechanics have been constructed and
the "macroscopic” behavior of the general medium in question has been successfully studied. In
the context of classical continuum mechanics a body is thought of as a set of particles (material
points), say x. Each material point has a distinct identity and occupies at each instant of time t
an exclusive place in a Euclidean three-dimensional space, so that one can identfy each material
point x with its place (i.e., the position vector from a fixed reference point) in the space. It is
implied that no more interesting information would be perceived by a finer observation of

material points. Hence, microscopic details, if any, are discarded.

For a large class of bodies, these preconceptions are justified, but there are also cases when
a closer look at a material point reveals some microscopic order and that at least partial informa-
tion of interest could be extracted by considering the effect of the microscopic order. It is there-
fore desirable to construct continuum theories that in some fashion incorporate the effect of the
microstructure while enjoying, if possible, to some extent the level of generality available in the
classical continuum mechanics. There are different types of materials that exhibit microstruc-
tural behavior. One class of such materials is composites, i.€., bodies in which two or more sub-
stances are combined in a specific geometrical fashion to produce a new material with mechani-
cal properties different from those of the individual constituents. Roughly speaking, a contin-
uum with microstructure is a continuum whose properties and behavior are affected by the local

deformations of the material points in any of its volume elements.

The practical analysis of the mechanical response of composite bodies involves analyucal

studies on two levels of abstraction. These areas of investigation are known as micromechanics
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and macromechanics. In micromechanics, one attempts to recognize the fine details of the
material structure, i.e., a heterogeneous body, consisting of reinforcing element<, such .s fibers,
plies, particles, etc., embedded in a matrix material. In other words, micromechanics establishes
the relation between the properties of the constituents and those of the unit composite ceil. In
macromechanics, on the other hand, one attempts to consider the composite body as an assembly
of interacting cells, and study the overall behavior of the composite. For clarity, we emphasize
that the term micromechanics does not imply studies on the atomic scale. We also note that
within the context of the present discussion, the physical dimensions involved at the microstruc-
tural level are much smaller than the physical dimension involved at the macrostructural level.

In what follows we confine our attention to laminated composite bodies.

We define a composite laminate as a three-dimensional continuum consisting of multiple
layers (two or more) of materials which act together as a single (integral) physical entity. Here
we confine our attention to laminated composites composed of multiple layers of only two
materials, each of which are considered to be homogeneous. The layers are not considered to be
necessarily flat and could have any type of curvature (see figure 3). Thus the laminated medium
under consideration is assumed to consist of alternating layers of two homogeneous materials.
We assume the thickness of each layer (ply) is much smaller than its other two dimensions and
also smaller than the dimensions of the composite laminate. For example if 6% are curvilinear
surface coordinates of a layer (ply) and 63 is the third out of surface coordinate of the layer and
the layers alternate in the direction of 63, the dimension of one set of alternating layers (one of

each material) is much smaller in comparison to the dimension of the composite in the direction

of 63.

In order 1o construct a continuum theory, we should look for a (some) representative
(repetitive) feature(s) within the body. For the laminated medium under consideration the most
distinct representative feature is the alternating feature of the layers. Hence, we choose the com-

bination of one layer of reinforcement and one layer of matrix as a representative element for the
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laminated composite. We then model this representative element as a Cosserat (directed) sur-
face using the theory described in previous section. Next we assume the composite laminate is
composed of infinitely many of such Cosserat surfaces adjacent to each other. We now proceed
to formalize this idea. Consider a finite three-dimensional body ‘B in a Euclidean 3-space and let
a set of convected coordinates 6! (i = 1,2,3) be assigned to each particle (material point) P of B.
Assume at each particle P there exists a Cosserat surface, s (i.e., a material surface together with
a deformable vector field called the director) such that 8% are the coordinates of the surface. If at
each point P the Cosserat surface is now identified by a representative element (i.e., one layer of
matrix together with one layer of reinforcement) of the laminated composite and if the body Bis
identified with the composite laminate itself, the model of a composite laminate with micro-

structure is at hand. It is to be emphasized that in the present discussion each Cosserat surface is

itself a three dimensional shell-like body B * consisting of two layers of different homogeneous
materials. We also notice that the material points within each representative element B" are
regular particles in the sense of classical continuum mechanics while the material points of B are
endowed not only with an assigned mass density but also with a director. For clarity, we will
refer to the body ‘B as composite laminate, macro-continuum or macro-structure and to the body
B* as representative element, micro-continuum or micro-structure. Also, we will refer to parti-
cles of B as macro-particles or composite particles while the particles of the micro-structures
will be referred to as micro-particles or simply particles (material points). Parameters or vari-
ables that represent similar physical quantities in micro-body, Cosserat surface and macro-body
will be designated with the same symbol but with an additional asterisk (*) and an over hat (7)
for the micro-body and Cosserat surface, respectively. For example, the mass density of the
composite laminate will be called composite mass (or macro-mass) density and will be denoted
by p while the mass densities of the Cosserat surface and that of the micro-structure will be
designated by p and p°, respectively. We recall that each Cosserat surface represents a three-
dimensional body in the sense of classical continuum mechanics and its boundary consists of a

lateral (normal) surface and two major (upper and lower) surfaces. We assume that at each com-
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posite particle the Cosserat surface coincides with the lower surface of the micro-structure.
Hence, each geometric point P of the body B is a point P on a Cosserat surface and at the same
time is considered to coincide with a point P* on the lower surface of the shell-like micro-

structure.
10. Coordinate systems for a composite laminate

At each point P of the macro-body B we introduce a set of convected coordinates 6! (i =
1,2.3). Also, at each point P* on the lower surface of the shell-like micro-structure which coin-
cides with P we introduce another set of convected coordinates 1! (i = 1,2,3). We assume the

transformation from 6! to 1y exists, i.e.,

ei = el(nk) — ei(nl,nz'n:i) (10.1)
and
dct(—gg—j) 20 (10.2)

This implies the existence of a unique inverse for the above transformation. At this point we

make the additional assumption that

(10.3)

The first of the above assumptions is for convenience (not necessary) while the second one is
needed since the thickness of a representative element (micro-structure) is considered to be
much smaller than the dimension(s) of the composite laminate (macro-structure). We will return
to this point later. As before, for convenience we set 3 =& and adopt the notation ' = {(N®.§}.

Using this notation (10.1) and (10.3) reduce to
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(10.5)
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11. Definition of a shell-like representative element (micro-structure)

Within the context of three-dimensional classical continuum mechanics, consider a body
B* in the present configuration and let its boundary be a closed surface, denoted by 9B, and be

composed of the following material surfaces:

a) The material surfaces

So: €=0
0<§2 (111)
5: E=EM%

b) The material surface

s: fM®)=0 (11.2)

such that & = const. are closed smooth curves on the surface (11.2). We also consider a

material surface of the form

sp: §=§M9) 0<& <&, (11.3)

lying entirely between s, and s;. From now on we will refer to surfaces defined above as

follows.

a) S, : bottom face (lower major surface) of the micro-structure (representative element).

b) s : interface (middle major surface) of the micro-structure (representative element)

c) s :top face (upper major surface) of the micro-structure (representative element).

d) s : lateral (major) surface or normal surface of the micro-structure (representative ele-

ment).

x
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We recall that since i = {n%,£) are defined by (10.4) and (10.5) as convected coordinates,
the material surfaces (11.1) and (11.3) will have the same parametric representation in all
configurations. In general &; and £, are functions of the surface coordinate % but in special
cases they may be constants. We assume the surfaces s,, s; and s, do not intersect themselves,
or each other. This implies the condition (11.3); and g* # 0. The surface s, is not necessarily
midway between the bounding surfaces s, and s,. Such a three dimensional body B° as charac-
terized above and depicted in figure 4, is called a shell-like representative element or a shell-like
micro-structure if the dimension of the body along the normals to the surface s, called the feight
of the micro-structure. is much smaller in comparison to its other two dimensions or a charac-

teristic length of the surface s,.

Considering our description of the body B°*, we may note that B* consists of two distinct

parts ‘B; and ‘B; as defined below.

a) Part BJ, a shell-like body bounded by the major surfaces s, and s; and by a lateral sur-
face 5, which is the portion of the surface s; bounded by its intersections with s, and

1.

b) Part B;, a shell-like body bounued by the major surfaces s, and s, and by a lateral sur-
face s;, which is the portion of the surface s; bounded by its intersections with s, and

5.
Considering (a) and (b) above, we have

B =B UB;
(11.4)
St=8, VS,
We assume that B; and ‘B; consist of two different materials which are perfectly bonded at their

interface surface, namely the surface 5, : { =&;. We will designate the physical quantities asso-
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ciated with By’ and B; with subscripts 1 and 2, respectively. For example, the mass densities of
B{ and B; will be designated by py and p3, respectively. It is clear that the physical quanuties

associated with the body B* may have a jump across the surface s, : §=§;.

Let p*M2.£,0) and pa(M®.E) be the mass densities of B* in the deformed and reference

configurations, respectively. Then the conservation of mass (in three dimensions) implies

Pag’ 2 =peG’1? (a=1.2) (11.5)

We define the surface mass density or micro-structure inass density, defined per unit area of s, at

time t in the present configuration by the expression

- &
12 = *o*102
pal=|" p'g"dg
(11.6)
p=pMmap
where f) denotes the mass density and a is det(aqp) of the surface 5. In view of our descripton

of the body B*, we have

-~ :tt 5 * * 5"
pynzj:pglndg=j;mg’ﬂd§+iﬁng‘”dé (11.7)

Since the quantities p; g*1%2 and p; g*!/2 are independent of time. it follows that p a!/2 is also
independent of time, although both p and a may depend on t. The total mass of an arbitrary part
P* of the body B* (composed of parts P; and P; of B; and By, respectively) bounded by the

surface (11.1); 7 and a surface of the form (11.2) may be expressed
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M: L p‘d‘l/‘ =Iﬁ] J‘ﬁzjiz p‘ g‘lfz dn] dnz dé

% . *1/2 1dn?

=J; ;. (J e7 g dk) andn

3 ..
= [ (e d§+J:p g"172 &) dnldn?

or

M=M+M2=jﬁl Jﬁzﬁalﬂdnldn2=£f>dd (11.8)

where P denotes an arbitrary part of the surface s, : § =0 which corresponds to P~ and N1, M2
denote the applicable ranges of integration for the coordinates n! and N2, respectively. Also, in

obtaining (11.8) we have made use of (11.7) and the following formula:

dv’ = (gf x g7) - g5 dnldn?d§ = g"2dn'dn2dg (11.9)
dd = (a; x a,) - a3 dnldn?2 = a2 dnldn? (11.10)

For later use we define the following quantities

° 3 é -~n x &
pam=7x=J':?t'd§,A =p'g'2 (11.11)
and
5a‘”y“=f»y“=f:z7»‘§“d‘ . (@=12) (11.12)

In view of (11.7), we may rewrite (11.11) as

palZ=h=R +4, (11.13)
where
£ =f§x k‘d&:[‘;"p‘g'md@ (11.14)
1 o o 1
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E £
= *dE = ) g 12 11.15
Ko=[oA"dk=[7 p7 g"indt (11.15)
Also, expression (11.12) may be rewritten as
palZya =4 ya = ya + A ya (11.16)
where
Xy“=fg'l‘é°d§-f’ 'g"126%dE (11.17)
1 o =), P18 :
and
" 52 . 52 . » v
haye = [o WEedg = [ prgtireods (11.18)

This completes our description of a shell-like micro-structure (representative element), namely a

three dimensional body B * composed of two shell-like bodies B and B; such that

B =8 UB (11.19)

where B” is bounded by the surfaces (11.1); 7 and (11.2), B} is bounded by the surfaces (11.1),
(11.3) and (11.2), B; is bounded by the surfaces (11.3), (11.1); and (11.2) where B; and B; are
perfectly bonded together at the surface (11.3).

We will refer to the duals of the surface s,,5),5, in the reference configuration by 5,.5;,55.
respectively. We also note that the duals of (11.6) and (11.7) in the reference configuration are

as follows:

PoAl2=| = P G2 dE (11.20)
o

and we have

Po Al2=p gl (11.21)
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and we have

in view of (11.5).
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< & . e & . . . T
Po AV2=["ps G"2dE=[ "p3i G "Zd§+f;pozG 2 dg

‘301 Al = bl al? | ‘302 Al = E’Z al’2

(11.22)

(11.23)
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12. Kinematics of micro- and macro-structures

We begin our development of the kinematical results by assuming that the position vector
of a particle P* of a representative element (micro-structure), i.e., p'(n%.£,03,1) in the present

configuration has the form

p*=rme,03t) + £(0%)dme,0%,1) (12.1)

The dual of (12.1) in a reference configuration is given by

P* = R*(n%,6%) + £(6%)D(n%,6°%) (12.2)
If the reference configuration is taken to be the initial configuration at time t = 0, we obtain
p’(n®£,6%,0) =r(n®6%0) + &£d(n*,6°,0)
= R(n%6?) + ED(n%,6°%)
= P(%,£,03) (12.3)

The velocity vector v* of the three-dimensional shell-like micro-structure at time t is given

by

vt = d '( a.t .93.0 =f)*(n(1’§’e3’[) (124)

where a superposed dot denotes the material time derivative, holding ni and 6' fixed. From

(12.1) and (12.4) we obtain

Vi=v+Ew (12.5)
where '

V=f',w=('j (12.6)

From (12.1) and (4.2) we have
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g&=au+§%‘%,g3‘=d (12.7)

where aq are the surface base vector of the surface s,. The base vectors g'(n%.£,83,1) in (12.7)

when evaluated on the surface s, : £ = 0 reduce to

g(;(nyvove3’t) = au(n7,93,t)
(12.8)
g3(n,0,0%,0) = d(M7,6%1)

where g;" satisfy the condition

lgr g2 g31#0 (12.9)

This restriction holds for all time and values of n' = {(n%.£} and 63. In particular, it is valid for

£ =0 so that by (12.9) we also have

(a;a;d] =0 (12.10)

this condition implies that the director d cannot be tangent to the surface 5.

We reall that the director d is a three-dimensional vector and it can be written as

d=dg'=dg; , dj=g-d , di=gid (12.11)

where d; and d' denote the covariant and contravariant components of d referred to g and g;,

respectively. The gradient of the director d may be obtained as follows:
d;=(dg);=dg;+dig;;=dgj+d(* g
=di;g+d*{(;) i)
=(di; + {j}dMg;

=d,’“gj (12.12)
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where { } stands for the Christoffel symbol of the second kind and a vertical bar ( | ) denotes

covariant differentiation with respect to gjj. In obtaining (12.12) we have made use of the tensor

identity

gii=(ikjlex

For convenience we introduce the notations

Aij=gi - d;=dj);
lij = gi . d,j - diIj
From (12.14) it is clear that
Ny = g%y

Making use of (12.14) we may rewrite (12.12) as

d;=A;g = Mg
Consider now the velocity vector v which can be written in the form

v=vigi=vg

Since the coordinates ©' are convected, it follows that

Vi=Vvi=8i

Following the same procedure used in (12.12), we can reduce (12.18) to

(12.13)

(12.14)

(12.15)

(12.16)

(12.17)

(12.18)
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vi=(vVig);=vigj+vig; = vi;gi + (i ¥ }vigy
=vigi + (i1} vkg
=i+ ({1 }vhg

—viig, (12.19)

where in obtaining (12.19) we have made use of (12.13) and (12.17). We now introduce the

notations

Vij=8i " V= Vil

(12.20)
\,ij =g V= vi'j
From (12.20) it is clear that
vi = glkvy | (12.21)
Making use of (12.20), we may rewrite (12.19) as
vi=vigl= Vjigj (12.22)

We observe that both A;; and v;; represent the covariant derivative of vector components and

hence transform as components of second order covariant tensors.

Since v;; is a second order covariant tensor, we may decompose it into its symmetric and its

skew-symmetric parts, i.e.,

Vij = Viij) + Vi) = My + Wy (12.23)

where

i = Vi) = % (Vij + Vi) (12.29)
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and

Wij = Viij) = %‘ (vij = vii) (12.25)

represent the symmetric and the skew-symmetric parts of vj, respectively. From (12.24) and

(12.25), after making use of (12.18) and (12.20), we have

nij = % (vij + Vi) = % (8- gj+g &)= % (8- g = % 8ij = Mji (12.26)

and

;= % (vij = vji) = %‘ (g 8- 8 8)=—w (12.27)

Also, in iew of (12.18) and (12.23), we may express g; in the form

2=V, =M+ Wy)gk (12.28)

Moreover, the time rate of change of the determinant of g;;, i.€., g is obtained as follows

g =det(g;) = 3—2; (det(gy,)gw = 8Yg;) (12.29)

where we have made use of the formula for the derivative of a determinant, namely

3% (det(g;)) = gg¥ (12.30)

Also, by making use of the relation

we obtain an expression for gJ as follows

(ghgk) =6,=0
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or
gijgki == gikgkj

or

éijgkjgﬂ == gﬂg“‘ékj
or

gkdf = - gikghg,,

or

Next, we proceed to obtain an expression for the director velocity w. Thus, we write

w=d = wgh = whg, = (d,g)

=digi+dg =dgl+di(gig)

= digh + dy(2'g; + 2'g)

= dig* + d, (- grg'Eug, + Py, + o)k
= dyg* - dkglgy g, + ding,gk + dwyg*

= dyg* + diwygk — digig® + dmnyg

= dkgk + dioy gk — d'(2n, gk + diny gt

= dg* + diloy, - Mgk (12.33)

where in obtaining (12.33) we have made use of (12.28) and (12.32). The gradient of the direc-
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tor velocity is obtained in a similar manner:

wi=d, = (dkgk).i = (kk;gk) = Mag® + Mag*
= Auigk + lm@‘?ﬂ = hggk + lm(;‘;kjgj + 848y
= kg% + Aig(~ghmg g i) + Mgg(Mimy + Vg™
= Mgk - A™gmugl + Ni(Mmj + Omy)g™
= hiig® — AMn gl + Miny gk + Miay;gk
= Ak + Ayoygk = 2Min;gx + Mgk
= Auigh + M@y, = Nig)gk (12.34)

The dual of expressions (12.7) to (12.16) in the reference configuration follows from (12.2)

in a similar manner and is given by:

Ge=Aq+EDg , G'=D (12.35)

Ga(n",0,6%) = Ag(n1,6%,1)

(12.36)
G3(n",0,6%) = D(,6%.1)
where G;", d satisfy the conditions
(G} G3 G3]#0 (12.37)
and
(G GID}=0 (12.38)
Moreover,
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D=DiGi=DiGi , Di=G;-D , DizG‘iji
D.i = DJ “Gj = AJIG‘J = AjiGJ

where we have

Aij=G;-D;=D;y;

Aij=Gi " D_j=Di|j

and
/\iJ = Gik/\kj
We now introduce relative kinematical measures Y;j» K and ¥; such that
el G2l 0 -GGy
Yu - 'Z (gu 11) = ‘2' (gl g_; 1 j) - X’p
K== A
and
Yi=di-D;

Making use of (12.7), (12.11), (12.16), (12.35), (12.39) and (12.40) we may obtain
%a=w%=“%{@a+éda-mg+anm—wca+goﬂy<cg+gogn
=%—H&m—Chm+éK&ydﬁ—Ga-Dm+(w-¢a—G31Da

+ éz(d.a ’ d.B -Dg- D,B)}

or

(12.39)

(12.40)

(12.41)

(12.42)

(12.43)

(12.44)

(1245
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l ¥o8 =Y = Yup = - E(Kap + Kpa) + 5 EXAighig — AlAp) (12.46)
l Also,
l Y&Jzﬁazll‘{(ga'*"‘d.a)‘d—(Ga'*'éD'a)'D}
=4 ((8'd-Gq D)+EW-do-D D))
1 .
' Yo3 = Y30 = '?1_‘ (Yo + &(d'hiq — DiA) ) (12.47)
l and
. V3= =17 (d-d-D-D)= 71— (did; - D'D)) (12.48)
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13. Superposed rigid body motion

We recall that when the motion of the body B* differs from the given motion by a rigid

motion, the position vector p* has the form

pt =p (i) = po*(t) + Q[P (ML,t) — pa(t)]

(13.1)

where Q(1) is a proper orthogonal tensor function of time. Also, under superposed rigid body

motions, the position vector r of the surface s, of B* changes to

r=r7(0Lt') = rg(t") + Q)[r(M%,1) — ro(1)]

Since

p--r=%& , pt-r-=&d*

with the help of (13.1) and (13.2) we obtain

Ed*=p =1~ = [ps(t) - rgy()] + Q((p* - 1) = (pg — o))

For a ngid motion we have

(po* —13) = Q(t)(ps — 1)

Hence. it follows that the vector function d*(n%,t) must transform according to

d*(m%n = Q(dM*,y)

under superposed rigid body motion. It is easily seen from (13.6) that the magnitude of d(n®,t)

under superposed rigid body motions remains unchanged:

d*-d*=(Qd) (Q - d)=Q"™Qd-d=d-d

since for a proper orthogonal tensor Q we have

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

(13.7)

BASE




- 68 -

QQT=QTQ=1 , deQ)=1

and since for any two vectors U and V we have

U-QV=QMU-V

(13.8)

(13.9)

BASE




- 69 -

14. Stress-resultants, stress-couples and other definitions

Consider a shell-like three-dimensional micro-structure B * bounded by a closed surface

9dB”, as specified in section 11, which consists of the material surfaces

5:8£=0
0<&, (14.1)
5:§=§M%
and a normal (lateral) material surface of the form
s:fM® =0 (14.2)

such that & = const. are closed smooth curves on the surface (14.2). Let s; be a material surface

of the form

s g:él(n(’-) 0<§1 <é2 (143)

lying entirely between s, and 5;. Moreover, let B* be composed of two shell-like bodies B; and

By witr their lateral surfaces dB; and 0'B;, respectively, as specified in section 11.

Consider an arbitrary part of the material surface s, : & =0 in the present configuration and
let it be denoted P. Also, let P*, with boundary 0P~ refer to an arbitrary part of the shell-like

body  ” in the present configuration such that:
a  P’conains P;

b) dP” consists of portions of the surfaces (14.1); ; and a surface of the form (14.2) at

time t;

¢) 9P coincides with 3P on the surface s, : E=0
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Moreover, let 3P refer to the part of 9P specified by a lateral surface of the form (14.2) such

that

P =9P* =3P on s:£E=0 (14.4)

Since B® is composed of two shell-like bodies Bf and B; separated by the surface
5 : E=E,, the part P" is also composed of two parts P} and 75 with their corresponding boun-

daries 0P and dP;, respectively.

Let the boundary 9P of P, in the present configuration be denoted by a closed curve ¢ and

defined by the position vector r on 3P. Let

n%=n%s) (14.5)

be the parametric equations of the curve ¢, with s as the arc parameter. Further. let A and v
denote the unit tangent vector and the outward unit normal to ¢ lying in the surface s,: & =0.

Then we have

1=£%‘;(_Sﬁ=xaaa, pe= L) (14.6)

V=14 x a3 =via, = vea® = e%Bysag 14.7)
A=a3x v=aj3 xvea®=ebvyag (14.8)
where €44, £9B are the e-symbols in two-dimensional space;
€ap = Eqp3 = 21 2eqp gaB = gaB3 = 3-1/20ap
ej1=en=0,ell=e22=0 (14.9)

ep=—eyn=1.el=-¢l=]

BASE




l

271 -

We also recall that the elements of area on the surfaces

5:§=0
(14.10)
5 1 & =&,(N%) = constant
are given by
da=(g'g"3)2dnldn? for &, = const. (14.11)
Moreover, the element of area on the lateral surface 0% is
n"lda= g"12dn2dZ
= da=(n"'dn? —n"2dn!)g"12dg (14.12)

n**da=-g"12dn!dz

where n;” are the components of the outward unit normal to the lateral surface.

Let N=NM%v) and M =MM9,t;v) be, respectively, the resultant force and resultant couple
vectors, each per unit length of a curve ¢ in the present configuration. We define these resultants

as follows:

Nds=[ t'da | Ja?Mds=‘fart'&,da (14.13)

9P R

We also define addidonal resultants

3 £ 1
Neal2= [ T'odi = [ T edE + [ T'odg (14.14)
(o] (] 51
- S - S
Mo = [Tz g=joTad;+j:Tad§ (14.15)
o (P agr e [T g [T gE 4
malR=["T3dz=]"T d._+f;T ds (14.16)

Following the same procedure as in (8.17), we can show
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N=N%yv, , M=M2%y, (14.17)
and

Nv)=-N(=v) , M(yv)=-M(-v) (14.18)

We also need to define two-dimensional body forces, i.e.,
2 a §2 s » . » . .« *
P fam:J' P b* g"12dE + [T* g" (g 33)1/2]§=§1+ [T g 12(g 33)1/2]§=0 (14.19)

- &
pial=["p"b* g2 Ll + [T (gg™) ler, + (') Kl (14.20)

where T* is the value of t on the boundary 0B* of B”*. In the same manner as in section (8), by

making use of (8.16), (14.19) and (14.20), we obtain

a A éz cr s = - éz «.s % - =
plaift=[p"b g V2dE + [T2]5i=[ "p*b" g2 dE + (T g, ~ [TP)g0 (14.2D)

and

- & 2
plain=[7 b g2e ag + (1) ) = [T pbig R e

+[T*3 §]§=§2 - [T‘3§];’=0 (14.22)

where in obtaining the above formulae we have assumed &, in & = £,(n®) to be constant. Also in

obtaining (14.21) and (14.22) we have used

n" = (g"3%)-172[0,0,-g"3] on the surface s,:£=0
(14.23)
n® = (g"33)-1210,0,+g"3] onthe surface s;: & = Ey(n%)

for the outward unit normal to the surfaces s, and s,.
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15. Basic field equations for a shell-like representative element (micro-structure)

We now proceed to derive basic field equations of motion for a shell-like representative
element (micro-structure) as defined in section (11). To this end we make use of the various
resultants defined in section (14) and procedures described in section (9). Recall the three-

dimensional equations of motion in classical continuum mechanics, namely!

Tti“.+ ptbtgc][2=p';,'g‘1/2 (151)
and
where
t. - g._lsz.inio , T‘] = g"nT‘ngj‘ (153)

The de-ivation is effected by
i)  integration of each term in (15.1) and (15.2) with respect to £ between & = 0 and & = &3, and

ii) integration after multiplication by &, of each term in (15.1) and (15.2) with respect to §

between & =0 and § = &,.

Consider equation (15.1) and integrate both sides of the equation with respect to § between

£ =0and & =&, to obtain

& & &2
- * ® tlfz - *’s -1/2 4
joT{,d§+jopbg dg=["p'vg g (15.4)

! In the literature on continuum formulation of composite materials. it is cus-
tomary to write two sets of equations of motion, i.e., one for the matrix and one
for the reinforcing material. Moreover, to keep equations as simple as possible
and since we have admitted to have jumps in various field quantities across the in-
terface surface S, it suffices to write equations of motion as in (15.1).
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Considering each term in (15.4) separately, we obtain

% . & . &, ., vy 55
JoTrude=[ T Tiedt+ [ TR =[] T+ T2 )

3]
= 12 *3
= (N®al”2)  + [T°] £=0 (15.5)
Also,
§ - &=&
[T ptbrgtinde = pial?— [T (15.6)
[} §=O
and
§1 % _* E’z % * . < e 2 >
| L PTVigTAdg = ¥: 12(v+ & w)dE =p alZv+pylal?w (15.7)

where in obtaining the last result we have made use of (11.11), (11.12) and (12.1), i.e.,

palr=i=[ A gt , A =prg R (158
pairye=hyr=[TA"E%E | (@=1.) (159)

and
vVizv+Ew (15.10)

with v and w as functions of i)' and % only. Introducing (15.5) to (15.7) in (15.4), we obtain

(N2a!72) , + pfal? = pal2(v + ylw) (15.11)

Making use of the tensor identity

(Naal/'Z)‘az aII’QNa[a (15.12)

we can reduce (15.10) to
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No, o+ pf = p(v + ylw) (15.13)

Next, we multiply (15.1) by € and then integrate with respect to § between £ =0 and § =&,

to obtain

JoTigde [T prgnde= [ pgn e (1514

Considering each term in (15.14) separately, we write
L . & 3]
. = * E *3
[oTriEdE =] Tog8ds+ [ TH38dE
= [ Te8dElq+ [ (T8)3- TIdE

= -
= M%) g + (6], - [ (T2 dg

= (M®al?2) , + [ET"] :- mal?2 (15.15)
and
E . §_=
J,pbginede=piat?- [T (15.16)
Also

2 . S . . - .- .
[ p"gTIAV BdE = [ T ATV + E2W)AE = paliyly + palZy

where in obtaining the last result we have made use of (15.8), (15.9) and (15.10). Introducing

(15.15) to (15.17) into (15.14), we obtain

(M2!72) . =mal? + plal? = pal2(ylv + y2w) (15.18)

Making use of the tensor identity

i
i
I
]
I
i
i
I
i
i
i
I
i
i
i
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i
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(Maaln)'az alﬂMala (1519)
we reduce (15.18) to
M2, —m+pl = p(ylv + y2w) (15.20)

Next, we consider (15.2) and integrate with respect to  between £ =0and £ =&,
&, .
J @ xTHdE=0 (15.21)
Recalling the expressions for g;°, i.e.,

go=ag+&d, , g3 =d (15.22)

we proceed to reduce (15.21) as follows:
&Z hd *) gz . 3
[ @ xTdE=[ " l(ag+8da) x T+ d x T)dg
§2 . éz .
=[ (ag+Edo) x T'2dE + [ ~ d x T"3dE
& & &
= ta *a *34r
_aaxjoT d§+diaxjoT §d§+dxjoT d§

=ag x (N%12) + d o x (M®a!2) +d x (mal2) =0 (15.23)

Since a # 0, we obtain

agxN¥+dxm+dgxM*=0 (15.24)

We continue to obtain the equation of balance of energy. We recall that the conservation of

energy can be reduced to (9.30), repeated here for convenience

pig et =T v} (15.25)
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We integrate both sides of (15.25) with respect to € between & = 0 and £ = £, to obtain
J’::zptg‘mé'di =ji”r'* -vidE =J::2T*i S(v+Ew); - dE
=] a" T vadi+ i’ T (Gw)odi + | E‘ T3 (Gw)3 s
=v'a~IE:T‘“dé+w_a-IiZT'“§d§+w-J'izT'3dE,

=alZNe v, +al?M% - wy +a2m - w (15.26)

We now define a specific internal energy for the representative element (microstructure) by

531f2§=jj p g1 dE (15.27)

From (15.26) and (15.27) we obtain the equation of balar.ce of energy for the micro-structure

PE)=NE v+ M2 wo+m-w=P (15.28)

where

P=N%-v +M* wo+m-w (15.29)

is the mechanical power of the micro-structure (representative element). This compietes the
derivation of the field equations for the shell-like micro-structure. These field equations are in
their local forms. The giobal form of these equations will be derived and discussed in the next

section.

Before closing this section we proceed to discuss the continuity of stress throughout the
micro-structure, i.e., at the interface of the matrix and reinforcement. To this ena we recall the

jump conditions (4.35), 1.e..
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[p"1=0
[p'v'wi~t"}1=0 (15.30)

[p'(e" +k)ws —t"-v' ]=0

In our case since the surface of discontinuity is a material surface we have v* = u® and we obtain

we=0 (15.31)

Hence, equation (15.30), is identically satisfied and equation (15.30), reduces to

[(t1=0 (15.32)

This shows that at a material surface of two media the stress vector is continuous. Since this
result holds for any material surface of two media, we can conclude that within the shell-like

body B* and at the surface s, : & =&, the stress vector is continuous.

To ensure the continuity of displacement across the interface we must require for the direc-
tor to be continuous (not to have jump) across the interface. However, at this point, to keep the

formulation general, we do not impose such a condition. Moreover, in some cases (such as

delamination) it may be appropriate to admit jump for displacement.
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16. Conservation laws for a shell-like representative element (micro-structure)

This section is concerned with the derivation of the global field equatons (conservation
laws) for our shell-like representative element (micro-structure). The derivation is accomplished
by integrating the basic field equations, derived in section 15, over an appropriate region of two
dimensional space covered by n!, N2 coordinates. To this end we consider an arbitrary part Pof
the materials surface s, : £ =0 (see 14.1) in the present configuration and let 3 be the boundary
(curve) of P, The basic field equations (in local form) for the part P were derived in section 15.
For convenience, we rewrite these equations in the forms appropriate tc our development in this

section as follows:

a : (pal2)=0

b : pal(v +ylw) = (N®a!2) , + pfal?

¢ : pal(ylv + y2w) = (M®al?2) , — ma!” + pial” (16.1)
d:a®xNt+dxm+dyxM2=0

e: §(§)=N“-v.u+M“'w‘u+m~w

At this point we need to consider the kinematics of a surface integral and deduce an integral
formula which will be utilized in the rest of the section. Consider a sufficiently smooth scalar-

valued or vector-valued function of position and time, ¢, and define the integral

I=[.0da (16.2)
?

over P in the present configuration. Since the above integral is a function of time. its derivative

with respect to t may be calculated as follows:
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1= & [.0da=§ [ 10da=] (e)a
=/, (0 + o)d A= j?J(&a +171J6)d2

=[,(0+1io)da (16.3)

where d 4 s the element of area in the reference configuration and where we have made use of

da=1Jd1q ,
(16.4)
= (2
J=( %)
and the region of integration of the last integral in (16.3) is again over . We now recall
_—=— 93 . .
a=det(agg) = Farm [det(agp)lary = aa®Baqg = 2ang (16.5)
where 1% = a*Yv.g and uff is given by (12.24).
By (16.4) and (16.5) we obtain
I= ()26 = § (fvai2a = L L)nain2ang)
Hence, from (16.3) and (16.6) we have
AR dd=|_ (6 +ngo)dd (16.7)

Now consider (16.1), and write
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(pal?) = [p al? + p(al?)] = p al? + %_ 5al”3

=pal?+palZng=alR(p+ngp)=0 (16.8)
If we now integrate both sides of (16.1), with respect to !, N? and make use of (16.7) and

(16.8), we obtain

[. [. Ga®dnidn?=]. [. a(p+ngp)dnidn?=[ (p+ngpida=0  (169)
n *M i “N2 P

or
4 f,ai?pdd=0 (16.10)

where dd is the element of area of the shell-like micro structure. This is the conservation of

mass for an arbitrary part P of our shell-like micro-structure.

Next we consider (16.1), and integrate with respect to ! and 11® to obtain

[. [. pa'(v+ylwidnldn2=|. [. (Nwa!?)4dnldn2+ . [. pfalZdnidn? (16.11)
LI i "M LI

where 1, and 1, denote appropriate ranges of integration for ! and n2. We now utilize Stokes'

theorem and (16.8) to reduce (16.11) as follows:
fﬁ [, (pal(i + yiw) +al2(p + N@H)(v + ylw))dnldn2 =
1" M2

J,;Noveds+ [ pldd

or

~ , - ,1 R u - ) ] T " -~ - .
J'q.p([p(\ +ylw)l+ndp(v+y w)]}da+ji,pfda+jai,f\ ds

or
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-ff; [P+ ytwidd=[ pldd+ [ Nds (16.12)

where 1n obtaining (16.12) we considered the fact that

N = Nov, (16.13)

and dd is the element of area of the shell-like micro-structure. Equation (16.12) is the conserva-

tion of linear momentum for an arbitrary part of the shell-like micro-structure.

Following the same procedure we consider (16.1), and integrate with respect to 1!, n2

[. |- pal(y'v + y2w)dn'dn2 =
mn *Mn2

J'_ J (M®al/2) jdnldn? - I J mal/2dnldn?2 +J. J f)iamdnldnz
m M2 m ‘N2 m N2
Again we make use of (16.7), (16.8) and Stokes’ theorem and write
L‘] fﬁ (pal(y!V + y2w) + al2(p + EP)(y'v + y2w)dnldn? =
1 2
a A_ A ~ e A
Ia‘é May,dd jémda + J'ép 1 dd
or

Tv 1 vZw ara(vl 2w = (0l - 1
jq_,[[p(y v+y W+ nglp(y'v + yrw)])dd = [ m)da+J'aT_,Md5 (16.14)

where we have made use of the expression

M = Moy, (16.15)

Equation (16.14) is the conservation of director momentum for an arbitrary part « [ the shell-like

micro-structure.
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We now consider (16.1);, (16.1), (16.1)4 and write

pal(r x (v + ylw)] =r x (N®al’2) , + pr x fal’2 (16.16)
pal? [d x (y!v + y2w)] = d x (M®a!2) , — d x ma'”2 + pd x {a!”2 (16.17)
0=2al2(ag x N%) +a!2(d x m) + al2(d ; x M®) (16.18)

Adding (16.16), (16.17) and (16.18), we obtain
ﬁ al2[r x (v + y'w)] + p al2[d x (y'v+y2w)] =
rx (N®al2) _ +ag x (N®al2) + p al2r x f +

dx (M%), +d g x (M®al2)+pal2dxi
or

f) alZ[r x (v+y'w)] + f) alZ[d x (ylv + y2w)] =

(alZr x N®) , +p alr x f+ (al2Zd x M) , + p al2d x| (16.19)

Integrating (16.19) with respect to n', n? and making use of (16.7), (16.8), (16.13), (16.15) and

Stokes’ theorem, we obtain

fﬂ jn aln{ﬁlr X (v+yvlw)] + (‘3 + T]gf))[r x (v + yiw)]jdnldn? +
1 2
Ji [ aP(Pld x (v + y2)) + (p + &P x (y1¥ + y2¥)))dnldn? =
' 2
I- I (a'”r x N®) odnldn? +J’- J’ (al2d x M®) odnldn? +
N2 TRA T

J“ f pal(r x f +d x 1)dn!
L [IRuP)

or
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L_) {p x (\".+ yIw)] + n@p(r x (v + ylw)]}dd +

J, (L X (y1V + y2)) + ngpld x (y1¥ + y2w)])dd =
J 2
jaq,’ (r x N®)vqdnldn? + jaq_, (d x M®)vdnldn2 +

J'T_,p(r x f+dxl)dd

or

Hdt_ jé)f){rx (vxylw)+d x (ylv + y2w)}dd =

[ptrxf+dxidd+ |  (rxN+dxMydd (16.20)
P 4

This 1s the conservation of moment of mementum of the shell-like micro-structure.

Finally we consider (16.1)y, (16.1); and form their scalar products with v and w respec-

tively and add the resulting requations to the product of (16.1), with a!/2 to obtain
P a2V + yIW) - v + pal(y!V + y2W) - w + pal/(e) =
(NEal2y v+ pfeval?+ (Mol - w
-a2m-w+pal?i-w
+allZNo. v_u+a”2 M“-w‘a+a’f2m-w (16.21)
Rewnting (16.21), we obtain
pal2(e)+paliy v +ylv o wtylvow+ylw-w)=
pald(f-v+i-w)+
(alANG - v) o + @!ZM® - w) 4 (16.22)

Integrating (16.22) with respect to 1!,n?, making use of Stokes' theorem, and making use of
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(16.7), (16.8), we obtain

'[’:ll Jﬂz ‘Saln(g)dnlan + 'f"h jﬂz ‘Salﬂ(v v+ ylv-w+ y‘\" ‘W + y2w . v'v)dnldnz —
[. f. pa'(F-v+1-wydnldn2 +
T ‘M2
J- [ @Ne-v) gdnldn? +
™ N2

J'_ J’ (al2M9 - v) odnldn?
M M

or
SE)dd LAt va 2vlv -wa viw - widd =
L,,p(e)da+f?ﬂ2-p(\ v+ 2viv - w+yvew - wydd =
j?p(f-v+l~v")da+
a. v 1 . W
Iaé(N v+ M- w)ds
or
Jp€+ Rdi=[ p-v+i-widd+ [ (N v+ M wids
or
[ PE+ R+ (p+ngp)E+ Kldd=[ pF-v+i-widd+[  (N*v+M- wyds
4 P oP
or
[ tipe+ K]+ nglpe+ R))dd=[ pif-v+i-wdd+[ (N v+M - wyds
P P dP
or

A [ At B b v widn Q. v : 16.23
a—{-f@p(e-f-Mda-fép(f-\+I-mda+fé(1\a-»+Ma-mds (16.23)

BASE




- 86 -
where in obtaining (16.23) we have used the fact that

P

?(=-%—(V°v+2y1v-w+y2w-w)

Equation (16.23) is the conservation of energy for the shell-like micro-structure.

(16.24)
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17. Conservation laws for composite laminates

In this section we derive various conservation laws of a composite laminate (i.e. global
forms of equations of motion) from the corresponding conservation laws of a shell-like micro-
structure derived in section (16). We recall that the composite laminate is assumed to consist of
infinitely many Cosserat surfaces. This assumption is justified by physical considerations since

the thickness of each ply is small in comparison with the thickness of the laminate itself.

For convenience, we record below the conservation laws for an arbitrary part 2 bounded by

0P of the micro-structure

. 8 [ hdd
a: HTJ'? da=
b: § [ pv+ylwdd=[ pidd+ [ Nas

Cd oA 5 N i
c: HTL‘,p(y vV+y w)da-jé(pl m)da+'faéMds
(17.1)

d: -gt—j’i’b[rx(v+y1w)+dx(y’v+y2w)}da‘=

[ ptrxT+dxidd+ . (rxN+dxMyds
P ?

¢ de_.l',i,f’(é"' ?i’)dd=j@b(f- v+i'w)da‘+J‘aq_’(Nu.v.,,Mu.w)dS

The first of (17.1) is a mathematical statement of the conservation of mass, the second that of the
linear momentum, the third is the conservation of the director momentum, the fourth that of the
moment of momentum, and the fifth is the conservation of energy. The various quantities
appearing in (17.1) have been defined in the previous sections and in what follows we will maxe

reference to these definitions when the need arises.
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We observe that the basic structures of (17.1),pe and their forms are analogous to the
corresponding conservation laws of the classical 3-dimensional continuum mechanics. Equation
(17.1), does not exist in the classical continuum mechanics whereas equation (17.1)4 although
exist it has a simpler form. It should be noted that the conservation laws (17.1) are consistent
with the invariance requirements under superposed rigid body motions, which have wide accep-

tance in continuum mechanics.

As described in section (10), we consider two sets of convected coordinate systems one of
which is used to describe the behavior of the micro-structure and is designated by ni = {(n},n2,£}.
The second coordinate system is used to describe the behavior of the composite laminate (i.e. a
continuum with micro-structure) and is designated by 6= {61,82,8%}). In general, the two sets

are related by (10.1) subject to condition (10.2). As before, we also adopt (10.3), i.e.,

o — na ,
(17.2)

63=%§ ,Ex ] .

Consider an arbitrary part Pof the composite laminate in the present configuration and let it
be bounded by a closed surface dP. In view of the choice of the convected curvilinear coordi-
nates 6! we note that coordinate 63 is, roughly speaking, in the direction of the lamination stack

up.

Considering the conservation of mass (17.1);, we write

%J‘@F‘,dazo = %jﬁljﬁzﬁamdnldnho

or in view of (17.2):

S I [ patiaeiaer=0 (17.3)
! 2
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where 0 1,0 , are appropriate ranges of integration within the region P of the composite lam-

inate. We now integrate both sides of (17.3) with respect to 63 to obtain

d 5 —
Ié, ¥ Jé, jé, p al2.d6'de2)de3 = const. (17.4)

where 6 3 is the appropriate range of integration within the region P. Since coordinates 6 are

convected, and since the quantity pa!”? is independent of time, we obtain

g?jé 5. 5 pal”dolde%e’ =0 (17.5)
¢ 3 2 1

The element of volume 1n tcrms of coordinates 6! is

dv= g7 46'd62de3 (17.6)

where g is the determinant of the metric of the space covered by the coordinates 6!, 62, 83. We

now define composite assigned mass density, p, such that

- éz * = g' . - *
pg'?=pal?=["p'g" 12t = [ pig ‘”dé+f:ng 12
(17.7)
p=pOLY)

where a = det (agg) and g° =det(gi]). Substituting (17.7) into (17.5) and making use of (17.6),

we obtain

d -
@t 5 I I pe!Pd0'd6%de3 =0

or

adTL:gmpd”=O (17.8)

This is the conservation of mass of the composite laminate. From (17.7) it is clear that since

pal?2 is independent of time, it follows that pg!” is also independent of time, aithough both p
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and g!”2 may depend on t.

Remark

In the rest of this section we will frequently need to perform differentiation with respect to
both coordinate systems 1 and 6! in the same expression. For the sake of clarity in such occa-
sions we will use lower case letters to designate differentiation with respect 0 N' coordiantes
while for the differentiation with respect to 6 coordinates we will make use of capital letters.

For example, T*!; is equal to

P

T - OT°! 3T"2  oT™3 _ aT"!  9T"2 , aT"?
TonmT T onT T on® T onT T o g

while TA 4 is equivalent to

A _9T! . 312 . a1’
Tha=Zr+ 257 + 507

This deviation from our usual notation is temporary and will be adopted when helps to clarify

the denvation.

Next, we consider the conservation of the linear momentum of the micro-structure, 1.¢..

d - 1w 4 _ ol A
ar [P +ylwidd=[ pfdd+[ Nds (17.9)
where
~ p =2 "e ¥ ™ ;—ll
pal2=[""p"bg"dE + (T ”;0 (17.10)

and integrate with respect to 63 to obtain

Js, {g(-j@é(wylw)dd}dm:jé] [ [,pTdd)ae+ [ (] Nds)de® + const
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We require that in the absence of the body and contact forces the total linear momentum of the
composite laminate must remain constant at all times. In view of this and by making use of

(17.10) and the fact that 83 is a convected coordinate we rewrite the above as

4 Js., jﬁz L‘n palf2(v + y'w)dn'dnd6’ = [ jﬁz J;, palPfdnldn?dn’ + [ [ Novodsd@

or
52

d 120y + viw)d0d62de’ = B b -3 55 101462463
&t J5 J5 J5 PPy +y'wide'dexde =J5, I3 J5 (., p0"g e+ (T7] _)d6'd6%de

5 [ ;N*10ddde?

or
d [ o(v+ylwidv= [ w{ﬁ "b'g"2dE Jdv+ [ g2 ( =3 348 ) dv
Tt J.Pv+y'widv=[ g2 [ “p’b%g v+ [ g2 ([ T

+ j'a 3 Iﬁz Iﬁl (al2N®) ,dnldn2de3

or

- éZ )y & % 5,2 L]
gf [Lpv+ylwidv=[ g2 ([ " p'b g 2dg)du+ [ g2 ([ ] T 3dE)d

+ fé,fé ) fé, (] :2 T*,d%)d6'de%de?

or

S e &
'a'dt" J',Pp(V-‘f-y]“')dU:J‘Tg‘]/z{ I . p b g lﬂdéldv.‘,ITg—l/Z( "‘ . T ’.idé)du (17.11)

where in the above derivation, i.e., between (17.10) and (17.11) a comma denotes differentiation

with respect to ni = (N%,E). Also, in obtaining (17.11) we have made use of (17.7), (17.10) and
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the Stokes’ theorem. We now define the composite assigned body for a density, b and the composite
assigned stress vector T' such that
gz ) ¥

and!

TA,=Ti;=| %T‘i‘idé (17.13)

Substituting (17.12) and (17.13) in (17.11) we obtain

—gf LP p(v + ylwydv= pr pbdv+ JTg‘V—’-TAAdy (17.14)

where a comma now denotes differentiation with respect to 6i = {81, 62,63}. Making use of the

divergence theorem from (17.14) we obtain

St [pp0v+ yiwidv= [,pbdv+ [, gATAn,da (17.15)

where n = nig; = n; - g' is the outward unit normal to the boundary surface dP. Definining?

t=g12TAny (17.16)

as the composite assigned traction, we obtain

S ], p(v+ywidv= [ pbdo+ [, tda (17.17)

This is the conservation of the linear momentum for the composite laminate.

We now consider the conservation of the director momentum of the micro-structure, i.e.,

d 1 Qndd= [ (ol —
a-[-fq.,(y V+y w)da-jé(pl m)dd+‘|'a@Mds (17.18)

mk after (17.8).
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where

TP < e 552
pal2i=[p'b"g 2EdE + (T | (17.19)
and integrate with respect to 6° to obtain
d Srol 2 ) 3 _ AR A 3 _ a 3
J5, (& [,PGMv +yiwidd)de = [ ([ piad)de® - [1 ( [, mdd)de

+ .[5 3 Iaq‘: Mds d63 + const.

We require that in the absence of body and contact forces the total director momentum of the
composite laminate must remain constant at all time. Hence, making use of (17.19) and the fact

that 83 is a convected coordinate we reduce the above as follows:
d SRy 2 1 3 123 An 1 dn24a3
I jé, jﬁz L‘n pal2(yly + y2w)dn'dn2des = Ja, L}z Iﬁ, pal”2ldn'dn2de
-J'.. f j al2mdnldn2de3
RN PR

+ .[5 3 J‘a@ M%v,ds d63

or

d 12(yly + y2w)d01d62des = 2 epreti2 381 ) 401d62d6°
ar 5 J5 I3 pg'y'v + y?w)d6'deds -féjfazfél{jopbg &S + [T ,_1d6'd6%do

-G * T34t )d61d6%6?
370270, ©

+J‘§3J'@M“.udd de?

or
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d 1 2 120 [ gohyeot12 12 ([
at-]Tp(y V+y w)dv:f?g’ {I P b’g §d§}dv—I?g' {j . T*3dE)dv
gz ! ]

+ [, &[] (T3)ad8)dv
M jés Iﬁz Jﬁx (alﬂMu)_adT]ldT]sz:’
d 1 2 —_ 12 §2 e %1 -1 §1 3
L[ py'v+yiwydo=[ g2 ([ p'b'g 1 REdE)dw- [ g 2([ T T} dv
3}
+ [P (1) e dy

&
+[ g [ ] (T08) dE)dv

or

2 .. &,
& [P0V +yiwidv= [ g 2( [ 7 pb'g Bk e do— [ g2 ([ (T} d

g
+f,,8'”2 (f , (T79)dE}dv (17.20)

where a comma refers to differentiation with respect to i = (N*,£}. We now define the composite

assigned body couple, ¢, the composite intrinsic director force, K, and the composite assigned couple stress

vector, S, respectively, by3

&
pg'ic=[  p'b"g"IEdE (17.21)
& .
glﬂk:a]ﬂm:j . T 3d§ ) (1722)
B L .
SAa=[ (T"E)d% (17.23)

3 See remark after (17.8).
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Substituting (17.21) to (17.23) into (17.20), we obtain

-3; [PV +y2widv=[ (pc-kidv+ [ g7128A adv (17.24)

Making use of the divergence theorem, we can reduce (17.24) as follows

d - -
3t [P0V +y2widv= [ (pe - kydv+ [, g 12SAnada (17.25)
Defining

s =g 128An, (17.26)

as the composite couple traction. we obtain

& [,p0'v+y2widv=[ (pe-k)dv+ [, sda (17.27)

This is the conservation of the director momentum for the composite laminate.

Next we consider the conservation of moment of momentum for the micro-structure, i.e.,
'c(ij? J?P{r X (v+ylw)+d x (vlv + v2w)}dd =
j,ﬁ(rxi‘+dxi)da‘+j (rxN+dxNMs (17.28)
P oP
and integrate with respect to 63

jé g? J"éﬁ{r X (v+ylw)+dx (ylv +y2w)}dd dO3 =
3
PS ~ - a 3
félj@p(rx f+dx1)ddde’ +

'f. I (rxN+dxM)sd83+ const.
CERE 2
We require that in the absence of body and contact forces the angular momentum of the compo-

site laminate must remain constant at all times. In view of this and since 62 is a convected coor-
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dinate, we may write

dejé jﬁ L.\ pal2{r x (v + ylw) + d x (y'v + y2w) }dn'dn2de3 =
3 2 1
f_ j f {r x (pal”2f) + d x (pal”i)}dn!dn2de>
83m2n
+{_ |. |. N%v.ds de3
o s

+ jé; J‘ﬁz Iﬁl (d x M%)y ds de3

or

gf.fg Jg I‘é PEI2{r x (v + ylw) + d x (ylv + y2w) }d6'd62d63 =
éz ) » §=§2
fg,fnggl (Fx ([ p'bg"12dE + [T oo )1401d0%63
& &=L,
o 1 3 1 3
+ 5,05, J5, (4 x ([ T pmbgTIREdE + [TE) 7)) do'decde

+I5.ks, J, (@ x N ,d61d0%d6° + J5, jgz J5, @' x M®),,d6'de’de’

or
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-gt— j?p{r X(Vv+ylw)+dx(ylv+ y2w)}dv=j?p(r xb+dxc)dv
) & . 2403
+J5 J5 J5 (0 x [ T 3d0)a0ide%de
& * 24Qa3
+j§)j§2j51 (rx [ T*odE) 4d6'd6%de
+f J Jo @x] i’ T*3EdE) 3d6'd62d6>
3 2 1
+ jé jé jé (dx | & T*atdE) ,d61d82de3
370:°0, o
=ij(rx b+dxc¢)dv
g,
+ '['P gV 2(r x | _TUidE)dv
+ jT g 2(d x | iz TEdE) dv (17.29)

where a comma denotes differentiation with respect to i = (n%,§}. Making use of (17.13) and

(17.23) we can rewrite the above as:
d [ plrxv+y'wy+dx(ylv+yw)ldv=[ prxb+dxc)dv
dt Je ‘ ?
j?g“ﬂ(r x TA) adv
L» g712(d x SA) Adv (17.30)

where a comma now refers to differentiation with respect to 6! = {6!,62,8%} coordinates. Taking

advantage of the divergence theorem, we proceed to reduce (17.30) as follows:
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éjf L,P{l' X (v+y'w) +d x (ylv + y2w)}dv= j'Tp(r xb+d xc)dv
+ j?(grmr x TA)| adv
+ J'T(g‘md x §A) adv
=[p(rxb+dxc)dv
+JaTg’1f2r x TAnada

1 A
+jaTg’ 2d x SAnada
Then by (17.16) and (17.26) and the above we obtain

de ij{r X (V+ylw)+d x (ylv+ y2w)}dv=

[,pexb+dxedv+ [ (rxt+dxsda (17.31)

This is the conservation of the moment of momentum for the composite laminate.

Finally, we consider the conservation of energy for the micro-structure, i.e.,

d e+ Fdd=( af-val- 2 v . )
Ht—j'@p(e+ 70da—jép(f v+l w)da+j'a@(N v+ M- w)ds (17.32)

We recall that in the context of purely mechanical theory €=€M%,1) is the specific internal
energy while X represents the kinetic energy of the Cosserat surface (micro-structure) in the

present configuration and is given by

k=_%_(v.v+2ylv.w+y2w-w) (1733)

We also define the momentum corresponding to the velocity v and the director momentum

corresponding to w by
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f) 3% = ﬁ(v +ylw)
(17.34)
5 2K gty + yow)
We now integrate both sides of (17.32) with respect to 6 to obtain
d { Af+ FAdddnd = vt 5103
féja?jép(e+ K)dddo —'[égj@p(f v+i-w)ddde? +
[- . (N-v+M: w)dsde?+ const. (17.35)
83707

We now require that within the context of purely mechanical theory and in the absence of body
and contact forces the total energy of the composite laminate must remain constant at all times.

In view of this and since 63 is a convected coordinate, we may write

Left hand side of (17.03)= L [ [. [. pal”(& + K)dnldn2d6?
dr 63'm; Thp

=& L | o (i + pai2Ryde'ae?de?
3 2 1

or

Left hand side of (17.35) = .gt_ fg, J’§2 'fé, (jiz p'g" 126" dE + pgl2%K)de'de2de’ (17.36)

where in obtaining (17.36) we have made use of (15.27) and (17. 7). We now define the compo-
site assigned strain energy, and the composite assigned Kinetic energy, X both per unit mass of the com-

posite such that

pgme:jizp‘g‘”ze‘di (17.37)

K= K= % (v v+2ylv-w+yw - w) (17.38)

We also record the momentum corresponding to the director velocity w
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p X —pwvryw

p % =p(ylv +y*w)
Substituting (17.37) and (17.38) into (17.36), we obtain

(17.39)

Left hand side of (17.35) = $- [ p(e + Xdv (17.40)

Considering the right-hand side of (17.35), we write

Right hand side of (17.35) = [, jﬁ jﬁ [(palh) - v + (pal”i) - widn'dn’d6?
3 2 3
+J63 '[ﬁz Iﬁ [((N%Vg) - v + (M%) - wldsd63
. 52 §=€2
= LR VP I - . 1462403
Iésjézjé, ([ 0’8" b"dg +(T"] o)+ v40!d0%d0
8 i gy 552
+j§3j52j6 {jo p*g*2b*EdE + [T°E] ) - w d61d62de3

+J'§3J'1,’(N°‘ V) |odad6? +f63j'é(M“ - W) |gdade?

or
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Right hand side of (17.35) = J'? (g—lfzj'iz 0*g"12b%dE) - v du
+J' ( —lﬂjéz ptgtlnbtgdg) wdv
p 8 o
LB
+I§ J¢a_ln{(alﬂN°‘V).a+[T ] 50 -v}dd de
3 —

=3
-112 . * . 74063
Iﬁ,jq"al (@M - w) g +[TE] ,_ - w)dd d6

52 * _* * éz * % »
=[, (@2 [ p gV ") - v+ (g2 [~ p7g"b"EdE) - widv

3! &,
+ g7 T - vig + ([ ] T 5d8) - v])do

&2 &2
[ 2] T TG wha+ [ T (T738)308) - w

or

1}dv

g gz - *
Right hand side of (17.35) =Log_”2{( Ji’ p"g"2b"dE) - v+ ([ " Pt EdE - w)do

=2 .
+ ng'lﬂ( j: T7.dE) - v)dv

& .
+'[Tg—“2((j , (T78);dE) - widv

Making use of (17.12), (17.13), (17.21), (17.23) and the divergence theorem,

(17.41) as follows

(17.41)

we can rewrite

BASE




-102 -
Right hand side of (17.35) = _[?p(b ‘v+c¢-wdy
+ j? gV 2(TA - v) adv+ IT g 12(SA - w) adv
=j?p(b ‘v+c¢-wydy
+ [ @TA V) adv+ [ (g712SA - w) adv
=J'?p(b ‘v+c-wydy
+ J‘? g 12TA. vnada+ J’Tg—mSA -wnada

=J'?p(b-v+c-w)dv+J'?t-\'da+st-w (17.42)

where in obtaining (17.41) we have also made use of (17.16) and (17.26). From (17.40) and
(17.42) we obtain

éi; ,[?P(E + Kdv= dv=J'?p(b ‘v+e- w)dv+'[aT(t ‘v+s-wyda (17.43)

This 1s the composite conservation of energy in purely mechanical theory.
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18. Summary of basic principles for composite laminates

Considering the development in the previous section, we are now in a position 1o state the
conservation laws (principles) for composite laminates. With reference to the present

configuration, these conservation laws are summarized below:

. d -
a: —d‘—prdv—O

b : Hd'{ pr(v+y1w)dv=ij bdv+'[a?tda

.4 1 2widu= | —k
c: 2 J'?p(y v+ywidv=| (pe k)dv+jaTs da (18.1)
d: -gl—fT{rx(v+y1w)+dx(y1v+y2w)}dv=

j?p(r xb+d xc)dv+jay(rx t+dxs)da

o

Hd[—frpp(e+ QOdvszp(b : v+c~w)dv+jaT(t ‘v+s-w)da

The first of (18.1) is the mathematical statement of conservation of mass, the second that of
linear momentum principle, the third that of director momentum. the fourth is the principle of

moment of momentum, and the fifth represents the balance of energy for composite laminates.

In (18.1) r, d denote the position vector and the director associated with a composite particle,
respectively, while the velocity and the director velocity of the composite particle are given by v
and w. The definition of the various field quantities in (18.1) and their relation to their counter-

parts in micro-structure and the similar three dimensional quantities are given below.

1) p=p(0i1) is the composite assigned mass density in the present configuration given by

pgl/zzéal/zzj":p'gmd_: (18.2)
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where in (18.2) p is the mass density of the micro-structure, p° is the classical 3-dimensional
mass density, g is the determinant of the metric tensor gj; associated with the composite coordi-
nate system 61, g* is the determinant of the metric tensor g;} associated with the micro-structure
coordinate system ni = (n%E} = (628}, a is the detcrminant of the two-dimensional (surface)

metric tensor agg associated with the Cosserat surface (micro-structure).

We notice that the dimensions of p” and p are mass per unit volume and mass per unit area,
respectively. However, the dimension of p is the dimension of integrated mass per unit volume

of the composite.

2) b=Db(6't) is the composite assigned body force density per unit of p, given by

P glfzszi2 pTg"12b*dg (18.3)

where b is the classical 3-dimensional body force density. The dimension of b should be clear

from (18.3).

3) c©=c(8i,1) is the composite assigned body couple density per unit of p, given by*

pge=[ p'g" b'eds (18.4)

The dimension of ¢ should be clear from (18.4).

4) t=t(8,tn) is the composite assigned traction (per unit area of the composite) such that®

t=g 2 Tin, (18.5)

4 ¢ may also be called "composite assigned director force”" emphasizing the
“directed” nature of the present continuum theory. In the present context, howev-
er, we prefer the terminology in 3 above as it makes the physical nature of ¢ more
apparent.

5 The nature of the definition (18.5) and (18.6) as well as (18.9) and (18.10)
will be discussed and explained in section (19).
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Ti;= j i‘ T"id§ (18.6)
Q.
Te=| _T'edt =al2Ne (18.7)
T33=T"3 g, - T3 20 = AT (18.8)

where T*1 is the classical stress vector and N@ is the resultant force of the micro-structure (i.e.,
Cosserat surface). We also recall that a comma on the left-hand side of (18.6) to (18.8) denotes
partial differentiation with respect to 6. However, a comma on the right-hand side of (18.6) and

in (18.8) denotes partial differentiation with respect to nji = {nN%,}.

5) s=s(8i,t;n) is the composite assigned couple traction ® per unit area of the composite such that
s=g 28, (18.9)
Si-=j§2 T EdE (18.10)
Bl o JARYS .
= [ Trogde = 2l
S@ = [* T*ogdf = al2M® (18.11)
833 =(T38) g2z, = (T3E) g=0 = A(T™3E) (18.12)

where M@ is the resultant couple of the micro-structure (i.e., Cosserat surface) and the same

remark as in (4) above holds for commas and partial differentiation.

6) k=Kk(Bt) is the composite assigned intrinsic (director) force, per unit volume of the composite,

given by

&
g7k = alrzm=j : T*3dE (18.13)

6 s may also be called "composite assigned contact director force” which
reflects the "directed” nature of the present theory. However, the terminology
given in S reflects the physical nature of s more clearly.
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where m is the intrinsic director force of the micro-structure (i.e., Cosserat surface).

7) y*=y%(@!) are the inertia coefficients which are independent of time and are given by

ya=J'iz p‘g‘méadﬁ (18.14)

8) €=¢(6'y) is the composite assigned specific internal energy per unit of p given by

pyﬂe=awﬂé=j?p@“ﬂ€a§ (18.15)

where € is the classical 3-dimensional specific internal energy and € is the specific internal

energy per unit p for the micro-structure (i.e., Cosserat surface).

9) K= K18\1) is the composite assigned kinetic energy per unit of p and is given by

K= ?t:-%—(v'v+2y1v-w+y2w-w) (18.16)

where X represents the kinetic energy per unit p of the micro-structure (i.e., Cosserat surface).
The momentum corresponding to the velocity v and the director momentum corresponding to w

are given by

p%§=pw+wW) (18.17)
p%§=pww+ﬁw) (18.18)

For simplicity in the rest of this development, when there is no possibility of confusion, we

adopt the following simplified terminology:

p: “composite mass density”
b: "composite body force density"
c: "composite body couple density"
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“"composite traction”
"composite traction”
“composite intrinsic force”

"composite specific internal energy'

"composite kinetic energy"
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19. Considerations on composite contact force and composite contact couple

In this section we discuss the physical nature of some of the field variables defined in sec-

ton (16) and recorded in section (18).

We begin our discussion by considering the composite contact force t, and recall (18.5) and

(18.6),1.e.,
and
TA _Ti._féz'r'i.d;
A== o B
Expression (19.2) may be rewritten as

E
TAA-[ | TWdE=0

or
E=%s

(T~ [ T76g2) o + (T3 - [T

We now identify T® as follows

E
To=[" Tredg

From (19.3) and (19.4) we obtain

T3=T" 1B=E, — T3 (E=0 = AT*3

€=0 ’l =

0

(19.1)

(19.2)

(19.3)

(19.4)

(19.5)

Itis clear from (19.4) that T® = {T!, T2} are the stress resultants in the directions of g, = {g;.82}.

In other words the composite stress vectors T are in fact the stress resultants of the representa-
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tive element (i.e., micro-structure). Differentiating both sides of (19.4) with respect to &, we

obtain
aT“ = BT“ 893 =T'a
9%~ 967 o%
or
Te=Teg= £ Tog=1 To, (19.6)

where (,£) and (,6%) denote partial differentiation with respect to & and 63, respectively, and
where we have made use of (17.2). Expression (19.6) shows that T*® are the derivatives of T¢

with respect to 63 divided by €. We now consider (19.3) and write

3 L ] L 3 : ]
gg =AT®=T 3|;’=§2—T 3|§=0 (19.7)

The right-hand side (RHS) of (19.7) can be written as

AT =

T e, - T e £, = (T*3E)e=z, — (T*38)z-

= = L (19.8)

where &; is associated with A8. The continuity of displacement field at interface, as discussed

in section 25, justifies this substitution. Left-hand side (LHS) of (19.7) can be written as

oT3 _ . AT3 _ T3(63 + AG%) — T3(8?)
003 Al)lﬂo a8 Agln-lpo AB° (19.9)

Comparing RHS of (19.9) with RHS of (19.8) and considering the continuity constraints, we can

associate the composite stress vector T3 with T*3¢,, i.e.,

T3 =§,T"3 (19.10)

This shows that T3 is proportional to the interlaminar stress vector of the composite laminate. In

other words, T3 may be considered, in a mathematical sense, as the resultant of interlaminar
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stresses in a representative element across the planes parallel to the interface.

Next, we consider the last term on the right-hand side of (18.1), which represents the total
contact force on the part P of the composite body. Making use of (19.1) and (19.2) and the

divergence theorem, we may write

Iart da:faf g—lnTi"ida=IT(g_lnTi)|idv
=I?g_1nTi.idv= I?g’m{jiz'l“i,idi)dv
b
=[5, )5, )5 ], Tri.at)dotaeae’

= % *i. 3
=Jy. jﬁz fﬁ. [ . Tide'dexds)de

. *~12T* .4+ 3
éa{fyg T*idv")d6

=Is, {L, (g™ 12T, ;dv"}de?

- ‘_]/2 * .. L ] 3
63{ 1p B T"n,’da" }d6

Hence,

ja?tda=j§3 (ja?, t"da’)de3 (19.11)

The above expression relates the composite stress vector to that of the representative element. In
other words, (19.11) is a relationship between the stress vector of the micro-structure and the
stress vector of the macro-structure showing that the total contact force on an arbitrary part P of
the composite laminate is in fact the integral, in 83 direction of the total contact force on the

corresponding part P* of the micro-structure.
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Next, we consider the composite contact couple s, and recall (18.9) and (18.10), i.e..
s = g~ 128in; (19.12)

and

R
SAA=Si;=] _(TTig)d8 (19.13)

The above expression may be rewritten as follows

. L .
S, (T8 =0

or

- j (T°0E) od&] + (S35 - [T™3E T (19.14)
We now identify S® as follows:
5
s*=| s Terdt (19.15)

From (19.14) and (19.15) we obtain

8§33 = (T*%%) g, — (T3E) 20 = A(T3) (19.16)

It is clear from (19.15) that S® = (S!,S?) are the stress couples in the directions of g4 = {g1.82).
In other words, the composite couple stress vectors S® are in fact the stress couples of the
representative elements (i.e., micro-structure). Differentiating both sides of (19.15) with respect

to &, we obtain

85“ oSe 963 N
i

or
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T'a =52 = 1 §@g = L 5% (19.17)

where (,£) and (,8%) denote partial differentiation with respect to & and 63, respectively, and
where we have made use of (17.2). Expression (19.17) shows that (T*®£) are the derivatives of

S@ with respect to 63 divided by €. We now consider (19.16) and write

& T*3
_g_g.g. = A(T*38) = (T™38) 158, ~ (T"6) 10 = | QCSE_Q dE (19.18)

By differentiating with respect to & we obtain

a283 _ (T3

35963 =T (19.19)
Making use of (16.2) we may write
d (083 o9& \_ o(T"3
3% G =T
or
3 %)= 200 (19.20)
We now integrate the above with respect to & to obtain
e%sg—=T‘3§+D1 (19.21)

Assuming that for the unstressed state both T*! and S' and their space derivatives vanish, we can

put Dy = 0 and write (19.21) as follows:

%Sg = T_;; (19.22)

where €; is now a function of £ and we have €, << 1. We now integrate the above with respect

to € and obtain
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§3 = ji’ % (T*3E)dE + D, (19.23)

This is valid for all times, and in particular must be valid for the stress free state; hence, D; = 0.

Then by the mean value theorem for integrals we may write

3= % (E2— OXT*3E) = —::- E,TE
(19.24)
0<sE<E?

Since the composite laminate is assumed to be composed of infinitely many Cosserat surfaces in

the limit we have € = 0,&; — 0, &£ — 0 and

3= i i *3F) = 2
S F,z-»o.]élTo,E-»o[E GT™8]=0 (19.25)

Expression (19.25) shows that the component S of the contact couple s is identically zero for
the composite laminate. Next, we consider the last term on the right-hand side of (18.1), which
represents the total contact couple on the part P of the composite body. Making ue of (19.22),

(19.13), (19.1) and the divergence theorem, we may write
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Ia'ps da= jay g 2Sinda= ,f? (g71281) i dv
= [, g8idv=[ g7 F’ (T"E) d& )dv
= f;,, f;,— ) fé A | i’: T*i&),d&)d61d6%de?
=J5, Ui bi. S ? (T*€) dn'dn2d§ } 463

= *~1/2(T*E).do" 3
5,1, 8 ATE) do")do

=[5 U, @1PT8)idv"de?

=J5, s TG0 da") a2

= * * 3
faTsda- 5. (J'Mt E da')do (19.26)

This expression relates the composite contact couple to the stress vector of the representative
element. In other words, (19.26) is a relationship between the stress vector of the micro-
structure and the stress couple vector of macro-structure showing that the total contact couple on
an arbitrary part P of the composite laminate is in fact the integral, in 63 direction, of the total

moment of the contact force, in § direction on the corresponding part P of the micro-structure.

Conditions (19.2) and (19.13) or equivalently (19.11) and (19.26) stipulate that the acuon
of T' and S' over a portion of surface 9P, with outward unit normal n, of the composite laminate
is "equipolent” (i.e., equivalent in effectiveness) to the action of the stress vector t* over the
corresponding portion of the surface 07, with outward unit normal n”, of the representative ele-
ment (1.e., micro-structure).

—
' Hence
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20. Further consideration of the composite conservation laws.

In this section we proceed to obtain different froms of the basic principles for the composite
laminate, namely expressions (18.1). The derivation of the alternative forms of these equations
may be carried out using either Eulerian or convected coordinate systems. For our present
development the use of a convected coordinate system simplifies the intermediate manipulations
considerably. For an extensive discussion on convected coordinates, the reader is referred to
{Oldrovd, 1950] and [Lodge, 1974) where formulae for differentiation with respect to time and
various additional results can be found. It is, however, instructive to carry out the derivation by
direct differentiation. with respect to time. of the integrals on the left hand sides of (18.1). Here

we adopt this mode of derivation to derive the transport theorem in terms of convected coordi-

nates.

Let P be an arbitrary part (or subset) of the laminated composite body B with a closed
boundary surface 9P in the present configuration at time t. The counterparts of P and d%in a
fixed reference configuration will be denoted by &, and 0P, respectively. Let ¢ be any scalar or

tensor-valued field with the following representation in the present configuration at time t:

o =0(611) (20.1)

and consider the volume integral

I=,06\0dv (20.2)

Often we encounter an expression of the type (20.2) and we need to calculate its time derivative

%[1. Since @' are convected, we may write
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%{' = & [ 00ndv= 5 5. J5 o®ing” dotdeie?
=[5 [s Js. <& (gd0ia02e3
=[5 ;. J;, (622 + o@D d0tdg?ae?
= J'(;, 152 Jél (og172+ o 71— g!”2¢))d61de2de’
=5 5 [ 220+ fron0iaeae’
=], 0+ £ onw (20.3)

where in (20.3), 6}, 65, 83 denote appropriate ranges of integration for variables 6. Making use

of the divergence theorem we can write (20.3) in the form

%tl = Hd't' IT¢(Gi,t)dv= j? %‘% dv+ jaT¢ v-nda (20.4)

We now consider the conservation of mass (18.1), and write

$ip dvij(b+7‘-ég—p)dv=O (20.5)

This must be valid for any part P hence. assuming that p is continuously differentiable we

obtain

b+-zgg-p=0 (20.6)

where in obtaining (20.5) we have made use of (20.3). Equation (20.6) is the local form of the

continuity equation for composite laminates.

Next we consider the conservation of linear momentur (18.1),, i.e.,
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Hd[—JTp(v+y1w)dv=J?pbdv+ja?tda (20.7)
Considering the left hand side of (20.7) and making use of (20.3) we can write

Left hand side of (20.7) = L» ([p(v +y'w)] + ’zgg‘ [p(v +y!'w)]}dv
=], (p(v+y!w) + p(v +y'W) + -fg— p(v + ylw))dv

=[, G+ £ +yw) +p(7 +y1¥))dv (20.8)

Substituting (20.8) into (20.7), we obtain

ij(\'/-é-ylv'w')dv:JTp bdv+thda (20.9)

where we have also made use of (20.6).

Adapting the same approach we consider the conservation of director momentum (18.1),

and we write

Hd[_ ij(y1v+yz‘v)dz}:j?(pc—k)dv‘f'ja?S da (2010)
or
IT ([py'v + y2w)] + %g (p(y!v + y2w)]}dw= I’P (pc—-kydv+ Ja?S da
or
J (P9 +y2w) +p(y"s + Y2 + £ ply!y + yPw)dv= [ (pe—kidv+ [, s da
or

[ lp+ 7% PIY'V+yIw) + p(ylv + y2W))do= [ (pc-k)dv+ [, sda
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or

[ py'v+yWndv= [ (pe-Kydv+ [, sda (20.11)

where in obtaining (20.11) we have made use of (20.6).

Next, we consider the conservation of linear momentum (20.1)4, i.€.,
‘:iiT J'?p{r x(v+ylw)+dx (ylv+ yzw)]dv=j?p(r xb+dxc)dv
= 20.12
jaT(rxt+dxs)da (20.12)
Following the same procedure, we can reduce the left hand side of (20.12) as follows:

Left hand side of 20.12)= & [ prx v+ ytwidv+ & [ pdx (y'v+y2widv

=], llprx (\;+y’W')]+-2% [prx(v+y'w)]ldv

+J'? {[pdx (y‘iv +y2w)] + -fg— [p dx(ylv+y*w)]}dv

=J:P{;-)rx(v+y1w)+p[rx(v+y1w)]+ -fg— prx(v+ylw)ldy

+J'? {b d x (y'v + y2w) + p[d x (ylv + y?w)] + -2gg- pdx(ylv+ywldr

=jT {(b + -2% P)r x (v + ylw)] + p[r x (v + ylw)]}dv

+J‘,P {(p + -2gg— p)[d x (ylv + y?w)] + p[d x (v!v + yew)] + pld x (ylv = v-wi] ) d:

= LP pIr x (v + ylw)ldv+ J'Tp[d X (ylv. + y2w)|dv

or
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Left hand side of(20.12) = j'?p(l" X(v+ylw)+rx(v+vlw))dy
+J'?p (d x (ylv+ y2w) + d x (y!v + y2w) )dv

=J'?p(r X (V+ylw)+d x (y!v + y2w)}dv

+ij (v (v+ylw)+wx(ylv+yiw)}dv (20.13,

where 1n obtaining (20.13) we have again made use of (20.6) and the fact that

fr=v . d=w (20.14)

Since
vxv=0 , wxw=0 (20.15)

and
VXW=—=W XV (20.16)

The second integral in (20.13) vanishes identically; hence, after substituting the result in (20.12),

we obtain

j?p {rx(vV+ylw)+d x (ylv + v2w)}do= L)p(r xb+dx c)dv+fa?(r xt+dxs)da (20.17)
Finally, we consider the conservation of energy (18.1),, i.e.,

ad? [,PIE+ Kidv=[ pb-v+c: widv+ [ (t-v+s-wida (20.18)

and write
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Left hand side of (20.18) =j? ([P(E+ K] + 7% [P(E+ K)]}dv
=[,(P(E+ R +p(E+ R + f—g p(E+ K))dv

Left hand side of (20.18) =jy ((p+ % PUE+ K) + p(E+ K}dv

= | p(E+ Kidv (20.19)

where in obtaining (20.19) we have again made use of (20.3) and (20.6). Substituting (20.19)

into (20.18), we obtain

J'?p(£+ Kdv= _[? p(b-v+c-wydv+ -[aw (t-v+s-wda (20.20)

For convenience and later use, below we summarize the results of this section:

a: b+ -ﬁg— p=0

b : J',P p(v + y‘v’v)dvz[prdv+ja?t da

c i [Pl +yNd=[ (pe-kidv+ [ sda (20.21)
d: f?p{r X (v+ylw)+d x (ylv+ ylv'v)}dv=l|'?p(r xb+dx c)dv+jaT(r xt+dxs)da

e: L,p(f+ 7Odv=J'Tp(b-v+c-w)dv+J'aT(t-v+s-w)da
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21. Further consideration of composite contact force and composite contact couple

a) Existence of the composite stress tensor and its relationship to composite stress vector

Consider an arbitrary part of the composite laminate which occupies a region P in the
present configuration at time t. Let Pbe divided into two regions P,,P; separated by a surface,
say O (see figure 5). Further, let dP,0P,,0P; refer to the boundaries of P,P;,P;, respectively; and

let

0P, =0P, NIP , 0P, =3P, NIP 21.1)

Thus, a summary of the above description is as follows:

P=P,UP, , 0P=0P, UIP,

(21.2)
3P, =0P UG , AP=0P,UGC
We recall the principle of linear momentum in the form
ol g n
[p0 +yWdv jy pbdv+ _[Mt(n)da (21.3)

The above holds for any arbitrary part of the body including P;,P; and P. Application of (21.3)
to P),P, and Pyields

'[ﬂ p(v +ylwydv= J'?] pbdv+ Ja% t(n)da (21.4)
[Pt +yhindv=[ pbdv+[  tnida (21.5)
ij(nyl»‘v)du: ij bdv+jaTt(n)da (21.6)

We notice that if n is the outward unit normal at a point on ¢ when © is a portion of dP,. the out-
ward unit normal at the same point on ¢ when ¢ is a portion of 9P, is -n. Subtracting (21.6)

from the combination of (21.4) and (21.5), we obtain
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[ (@) + t(-n))da=0 (21.7)

over the arbitrary surface 0. Assuming that the composite stress vector is a continuous function

of position and n, it follows that

tin) +t(—n)=0 (21.8)

or

t(6', t; n) = —t(6i, t; —n) (21.9)

According to the result (21.9), the composite stress vector acting on opposite sides of the
same surface at a given point are equal in magnitude and opposite in direction. This is the

counterpart of Cauchy’s lemma in the classical theory.

Consider an arbitrary part Pof the composite laminate in the present configuration at time t
which occupies the region Kin the space covered by the coordinates 8. Consider some interior
macro-particle P of P having the position vector r and the director d (note that the particles of the
composite laminate are not like ordinary particles in the sense of classical continuum mechan-
ics). We construct at P a curvilinear tetrahedron, lying entirely within &, and in such a way that
the side i (i = 1,2,3) is perpendicular to the coordinate direction 6! and the inclined plane with
outward unit normal n falls in the octant where 6!,62,8% are all positive. This means that the
edges of the tetrahedron are formed by the coordinate curves PP; of length ds; (see figure 6). We

refer to the side i of the tetrahedron by a; and to the inclined plane by a, respectively. Now we

recall that
ds; = (g1d91 . g1d9‘)”2= (g - gl)’fzdel = (g”)lfzdgl
ds; = (g2d92 . gzdez)m =(gy- gz)mdez - (gzz)mdez (21.10)
dsy = (g3d03 - g3d63)172 = (g3 - £3)!2d6° = (g33)!/2d63

where
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PP,=gd6' (no summation on i) (21.11)

Moreover,

dal = 71- |g2d92 X g3de3| = 21_ ] g2 X g3 | d92d93 = 21_ |g1/2g1 'dezdeg,

- _i_ (g12)(g! - g)112d02d83 = _%_ (gg!1)12d92d63 (21.12)

In vector form we may write

da, = 4 (g,d62 x g3d6%) = + g72d0%6%g! = (g!1) ds,g! (21.13)
Similarly we obtain

day = - (gg?)!2d6'de?

(21.14)
da; = (g2)~12dsg2
and

da; = %_ (gg33)md91d92

(21.15)
da = (£) " dseg?

for the inclined surface we have
da= - IPsP; x P3Pyl = 5 (2106 — £306%) x (g2d67 - 2366 |
= -} (g1 % 2)d6'dB° - (g x g3)d6'd63 - (g3 x g3)d62d63 |
= -é- 1(g)!7g>dB1de? + (g)!2g2d6'de3 + (g)!2g!d62de3 |
]

= |(g“)"md$1gl + (g22)—1/2d52g2 + (g33)—1/2d53g3!

= |da, + da; + da.! (21.16)
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In vector form we may write

da = (da)n = (da)n;g' = (da)(n,g!) + (da)(nyg?) + (da)(nag?)

= (g'1)"17da; g! + (g2)"12dasg? + (g7°)"'*dasg’ (21.17)

where n = n;g' is outward unit normal to da. From (21.17) we may write

da; =ni(gi)2da (no summation on i) (21.18)

We also recall that the volume of the tetrahedron is given by

dv=(dh)n - da = dh(n'g;) - ((da)n,g!) = (dh)(da)nin; - &; = (dh)(da)n'n; (21.19)

where dh is the height of the tetrahedron.

We now recall the principle of linear momentum in the form of (20.21), and apply it to the

tetrahedron under consideration; hence, we write

j'?p(i' +ylwydy= j?p bdv+ fawt da

or
Jy [, (v + y'%) —pbldnda= tda-[ tidai-[ tida,-] tuda;
or
[ dnf (p(¥v+y'W)—pblda=] tda- | tini(g")"2da
- L tan2(g?2)12da - L t3n3(g33)12da
or

Jodn ], (p+y) - pblda={ (- tn(ghi?)da (21.20)

where 1n obtaining (21.20) we have made use of (21.18).
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If we let h — 0, we obtain

i {t-ftini(gii)m}duo (21.21)

Since this must hold for any arbitrary surface a, we conclude

t= f: tin;(gi)!72 (21.22)

Since under general transformation of coordinates, t is an invariant and n; is a covariant vector, it

then follows that t;(gi)!/2 wransforms according to a contravariant type of transformation. We

may therefore write

where 19 and T are contravariant and mixed components of the second order tensor which we

call the composite assigned stress tensor or simply the composite stress tensor. Combining (21.22) and

(21.23), we can now write

t=ting =g 2 Tin, (21.2%)

where we have made use of (19.1). We also notice that by (21.22) and (21.24) we have

Ti=(ggi)!?t; (no summation on i) (21.25)

and

b) Existence of the composite couple stress tensor and its relation to composite couple stress

vector.

We now recall the conservation of director momentum in the form

pr——
' ti(gii)lfz - Ilng = ‘[iJgJ (2123)
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[P +y2Wdv= [ (pe - k)dv+ [, _stn)da (21.27)

This holds for any arbitrary part of the body. With reference to figure (5) we apply (21.27) to
P,,P, and Pto obtain

[ PO +ydv=[ (pe-K)dv+ [, s(n)da (21.28)
[, PO +y2W)dv= [ (pe~k)dv+ [, s(nyda (21.29)
f? p(ylv + y2w)dv= jy(pc -k)dv+ IaTs(n)da (21.30)

Recalling the remark made after (21.6), we subtract (21.30) from the combinauon of

(21.28) and (21.29) to obtain

J (sm) +s(-n)}da=0 (21.31)

over the arbitrary surface 6. Assuming that the composite contact couple s is a continuous func-

tion of position and n, it follows that

s(n) = —s(—n) (21.32)

or

(81, t; n)=—s(6i, t; —n) (21.33)

According to the result (21.33), the composite couple stress (contact couple) vector acting on
opposite sides of the same surface at a given point are equal in magnitude and opposite in

direction.

We recall the principle of director momentum in the form (20.21). and apply to the

tetrahedron in figure (6); hence, we write

BASE




-127-

I?p(yli' +yWwdv= | _(pe-kxdv+ ja?sda

or
jh f. {p(v+ylw)— (pc—k))dhda= L sda- J'a! s,da; - Lz spds; — L, s3ds;
or
[ dn L (p(V+ y!w) — (pc - k)}da = L sda - ja s;ny(g!!)!”2da
- L sn5(g22)12da — J’a s3n3(23%)2da
or

[ dn [ (pv+yW) - (pe~K))da= (s~ \2 s;n;(gi)}2)da (21.34)

where in obtaining (21.34) we have made use of (21.18). If we let h — 0, we obtain

I, {S—E:s-,ni(g“)m}da=0 (21.35)

Since this must hold for any arbitrary surface we conclude

s= f s;n;(gih)12 (21.36)

Since under general transformation of coordinates, s is an invariant and n; is a covariant vector, it
then follows that s;(g")!? transforms according to a contravariant type of transformation. We

may therefore write

where si and s', are contravariant and mixed components of the second order tensor which we

call the composite assigned couple stress tensor or simply the composite couple stress tensor. Combining

(21.36) and (21.37), we can now write
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s= sil'n;gj = g'”zsfni (21.38)

where we have made use of (19.12). We also notice that by (21.35) and (21.38), we can now

write
Si=(ggi)Zs; (no summation on i) (21.39)
and
Si= glfzsijgj (21.40)
Recalling (19.25), we have
g2s3ig; = 0

Since g # 0 and since g; are linearly independent vectors, we arrive at

$3i=0 (21.41)
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22. Basic field equations for composite laminates

In this section we derive the basic field equations for a composite lamiante from the conser-
vation laws of section (20). The local form of the conservation mass has already been obtained

and we just rerecord it here for completeness

b+-2%p=0 (22.1)

In the rest of this section we shall be concermned with the remaining four conservation laws
(20.21)p to (20.21).. First we deduce the basic field equations in vector form using an invariant

vector notation, and subsequently we reduce these equations in terms of tensor components.

a) General field equations in vector form:

To start we consider the conservation of linear momentum (20.21), and make use of

(21.24) 1o write

ij(O + y‘\b)dz/:j?p b dv+_[aTt da

or

jq) p(V + y‘w)dv=j?p bdv+_[a?g‘1/2Tinida (22.2)

This with the help of the divergence theorem, i.e.,

J’TTiH dv:J’aTTinida (22.3)

and the identity

g2, = (glszi)'i (22.3)

may be reduced as follows:
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[ p(v+yiWido=[ pbdv+[ (g2T)dv=[ pbdv+ [, Tdv

or

j? (g2 Ti;+pb~p+y'Ww)ldv=0 (22.4)

Since this must hold for all arbitrary parts 2 of the composite laminate, under the usual con-

tinuity assumption, we obtain

g 2T i+pb-p(v+ylw)=0

or

T +p gl?b=pglZ(v+ylw) (22.5)

which is the local form of the conservation of linear momentum.

Next we consider the conservation of director momentum (20.21), and make use of (21.38)

10 write

J'?p(yW +y2w)dv= J'T (pc — k)dv+ fafs da= J'T(pc - k)dv+ JaTg‘W Sinda (22.6)

Recalling the divergence theorem in the form

I?Sin dv=faTSinida (22.7)

and the identity

g2 8t = (g8, (22.8)

we can reduce (22.6) as follows:

J'? p(ylv + yiwydv - j? (pc—k)dv= J’?(g—lrzsi)li dv= j?g-uz Si.dv
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or

j? (g8 + (pe ~ k) — ply'v + y2w) }dv=0 (22.9)

This is valid for all arbitrary parts P of the composite laminate; thus, under the usual continuity

assumption we obtain

g 128 + (pe— k) - p(y'v+ yiw) =0

or

S'i+ g 2(pe - k) = pgl(ylv + y*w) 22.10)

This is the local form of the conservation of director momentum.

Considering the conservation of moment of momentum (20.21)4, making use of the diver-

gence theorem and the tensor identity of the form (22.3), we may write

J‘Tp{r X (V+ y'w) +d x (y!v + y2w) }dv— J'?p(r xb+d xc)dv=J’aT(r xt+dxs)da

— -1 . -12Q
-fa?rxg T‘nlda+faydxg Sinda

= —l/e N: -124 % Sty . d=
= [ @ rxT)dv+ [ (g'2d xSh de

= j? g (rx T dv+ LP g V2(d x§') dv
or
pr (g 2{(rx T ; + (d x S) ;] + p[(r xb) + (d x €)] = p[r x (v + ylw) +
dx (y'v+y?w)]}dv=0 (22.11)

This must hold for all arbitrary parts P of the composite laminate; hence, assuming the usual

continuity assumption we may write
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g 12[(r x TY); + (d x )] + p[(r x b) + (d x €)] = plr X (v + ylw) +

dx (ylv+y2w)]=0 (22.12)
This may be further reduced as follows:

((r;xTi+rxT))+pgl2(rxb)— pgl2r x (v+ylw)} +

((d;xSi+dxSi))+pgldxc)-pgld x (ylv+y?w)} =0
or

(r;x T+ (d; xS +rx {Ti; +pgl?b - pgl2(v +ylw)} +d; xS +
d x (S'; + g!2(pc — k) — pgl2(y2v + y2w)} + g12d x k =0 (22.13)

Making use of (22.5) and (22.10), we obtain

gixTi+d;xSi+gl2dxk=0 (22.14)

where we have also used the fact that r; = g;. Expression (22.14) is the local form of the conser-
vation of moment of momentum and is the counterpart of the equation for symmetry of stress in

the classical continuum mechanics.

Finally, we consider the conservation of energy (20.21), and following the same procedure

we obtain the local form of the principle of balance of energy as follows

[,p(E+ Kdv=[ pb-v+e widv+ [, (t-v+s wyda (22.15)

We consider each term of (22.15) individually
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[;pt ves-wda=[ g!2Ti-vnda+[ g'28" wnda
= j? (g 1R Ti v)do+ j? (g2 St w),dv
= J'? g VAT - v) dv+ J',P g i2(Si - w)dv

= j? g(Tiv+ T vydo+ | . g IS - w+Si-wydv (22.16)

where we have made use of the divergence theorem. Moreover,

ij(‘f+ dev=J'Tp Fdv+ j,,'%' p(v-v+ 2y‘v.- w+ y2w - w)dv
=j?p fdv+J?p(v-\"+y1§'-w+y1v-v'v+y2w'v'v)dv

=],p ‘ﬁdv+JTp[(¢ +ylw) - v+ (yIv + y2w) - wldv (22.17)
Substituting (22.16) and (22.17) into (22.15), we obtain

ij ’Edv+f?p(v +ylw) - vdz/+j'? pylv + y2w) - w dvsszp(b ‘v+c-wydy
+ J"P g—ln(Tl_i v+ Tt V'i)dU

+ ’[P gl AS - w+ S wdy
or

Cdu=1{ o-12(T. 112h - 5ol 2(v + viw)) - v -1 Ty,
pr fdv-hg (T +pg“b ~ pgle(v + ylw)) vdv+J?g T -v;dv
+ J'p g 12(S1; + g1”(pc - k) - pg'iy'v + y2w)} - wdv

We now make use of (22.5) and (22.10) to obtain j
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[ PE-g 2T v;- g 28 - w; -k w)dv=0 (22.19)
From (22.19) by the usual line of reasoning we obtain

PERE=Ti-v,+Si-w;+ g2k -w=gl2p (22.20)

where P represents the mechanical power per element of volume of the composite laminate and

is given by

gl2P=Ti-v;+S - w;+gl”k -w (22.21)

For future convenience, we summarize below the invariant vector form of the basic field

equations:

a: p + 7% p=0

T+ pglb = pgl2(v + y'w)

c:  Sii+gl2(pc-K)=pgl2(ylv + yw) (22.22)
d: gxTi+d;xS+gl2dxk=0

e: pgPE=Ti v;+Si-w;+gl%k- w=gl2p
where P is given by (22.21).

b) Alternative form of the field equations

The basic field equations (22.22) are both simple and elegant in form. In practice, we usu-
ally work with the components of the various fields. Hence, we now proceed to deduce the basic
field equations in tensor components. We introduce the contravariant and covariant components
of acceleration (ai,;), director acceleration (Bi,B;), body force (bi,b;), body couple (cic;), and

those of intrinsic force (ki,k;) as follows:
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where {; i} denotes the Christoffel symbol of the second kind. Then substitute (22.25) and

(22.26) in (22.24) to obtain

g2t g+ g1t (i %)) gy + g1l {,, ™) g; + pg'/big; = pg!2(ai + y! Bi)g;

or

(T + 1k (i) + 10 (™) )g; + pbig; = p(ai + y! Pi)g; (22.27)

Since the base vectors g; are linearly independent and since
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' v=ogi=og , w=pig=pB¢
(22.23)
' b=bigi=bgl , c=cigi=cig' , k=kigi=kg'
' Sustituting (22.23), , 3 into (22.22), and making use of (21.26), i.e.,
' Ti = g2 1ilg;
' we may write
' (g'1ig)), + pg/?big; = pg!(oig; + y'Pig))
or
g2t g+ glf2ilg; + (g1/2) juiig; + pg!Pbig; = pgl(alg; + y'Bigy) (22.24)
' Recall the following relations from tensor analysis
. gii=li%le (22.25)
. and
' (€)= 5 g'7g;i= (™ i)g!" (22.26)
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=1+ (M) T+ () T

we obtain

i), + pbi = p(a + y1B))

(22.28)

(22.29)

This is the local form of the principle of linear momentum in component form. In terms of the

various covariant and mixed components (22.29) takes the form

T+ pby=p(a; +y'B)

where 1} is the mixed component of the composite stress tensor.

Next we consider (22.22). and make use of (22.23) and (21.38) to write

(g2sg),; + pg'i2cig; - g!kig; = pg!(y' g + y*Pg)

or

8251 g + g'72s'g;; + (8'2),'ig; + pg'Poig — kigjg' 2 = pg!y' e + y?P)g;

Making use of (22.25) and (22.26) in (22.31) we obtain after simplification

(1 + 5% (i) + s9m ™) )g; + (pe) — gy = ply'a) + y*Bg

Since the base vectors g; are linearly independent and since

sy = sl + stk ({7} +sU (M)

we obtain

sij; + (pdl = ki) = p(ylad + y2Bi)

(22.30)

(22.31)

(22.32)

(22.33)

(22.34)

This is the local form of the principle of director momentum in component form. In terms of the

various covariant and mixed components (22.34) takes the following form
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sii + (pcj— kj) = p(ylad + y2B) (22.35)

Let us now consider (22.22)4 and make use of (21.26), (21.38), (22.23) and

d=dg;=dg
to write
gi x (g!1iig)) + (d™gym) ;i x (g'2siig)) + gl2(dig;) x (kig) =0
or
EijnTIg" + (A, igm + d"gm,) X (s'g)) + Ejnd’kig =0
or

EijnTg" + di s™ig; x g + dis™ig; o, X g; + €;d'kign = 0 (22.36)

where €;; denote the permutation symbol in 3 dimensions. Taking advantage of (22.25), we

proceed to simplify (22.36) as follows:

EinTIg" + (€ijnd ms™g" + S™d' (1" ;) go X ;) + Eijndk"g" = 0

or

EijnT 8" + (€jjnd! ms™g" + s™dM (11} g X gj) + €;jndikign = 0

or

Ein{ T + di | ps™ + diki)gn=0 (22.37)

Since the base vectors g" are independent, we obtain

This condition is the consequence of the moment of momentum principle. Since &g, is skew-
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symmetric with respect to i and j, it follows that the quantity in the parentheses in (22.37) must
be symmetric with respect toi and j. Hence the quantity
T =1l + di| ,s™ + diki = V' + | 3™ + dik! (22.39)
is symmetric. We call T the composite assigned symmetric tensor or simply the composite symmetric
tensori. We notice that in the absence of the director, i.e.,
d=0 or di=0

the composite symmetric tensor ‘7 reduces to the classical symmetric tensor.

Finally, we consider (22.22), and by making use of (22.26), (22.38) and (22.23) reduce it as

follows:

pg'RE= gl2iig - v, + g12siig; - w; + g1k - w

or

p't: T'Jgj Vit S'JgJ Wi+ k-w=P (22.40)
where P is now given by
P= 1ijgj v+ si.igj “wi+k-w (22.41)
Since
V.i = vm,igm (2242)
and
W= whgn (22.43)

we can further reduce (22.40):
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pE= g (V™)igm) + siig; - (WM igm) + (KIg)) - (WMgm)
or

PE= TV gim + SUIW™ g + kiwMgm

or

pE=tihv),; + siiwj; + kiw; = P (22.44)

This is the local form of the principle of balance of energy in component form. The expression

for mechanical power is now reduced to

P= TUVJ’H + SijWJ' ii + kiWi (22.45)

For later convenience we collect the component form of the field equations as follows:
a: p+ -2% p=0
b: ot +pb=pa+ylf)
c: s+ (pd-k)=plylo + yip) (22.46)
d: Ep(Ti+dins™+dk)=0

e : pE=1ivy;+siw, +kiw, =P

where P is given by (22.45).
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D. Elastic composite laminates (nonlinear theory)

This part is concerned mainly with the development of constitutive relations for elastic
composite laminates, both by direct approach and from three-dimensional equations. Here we
discuss the nonlinear constitutive relation and recapitulate the complete theory. While we
confine our attention here to elastic composite laminates, it should be noted that the previous

developments in part C are not limited to elastic laminated composites.

23. Constitutive equations for nonlinear elastic composite laminates. Direct approach.

Within the scope of the theory developed in part C, we discuss the constitutive relations for
elastic composite laminates in the presence of finite deformation and in the context of purely

mechanical theory.

We recall that a material is defined by & constitutive assumption which characterizes the
mechanical behavior of the medium. The constitutive assumption places a restriction on the

processes which are admissible in a body — here the composite laminate.

We define an elastic composite laminate by a set of response functions which, in the con-
text of purely mechanical theory, depend on appropriate kinematic variables. In our present dis-

cussion the set of response functions consists of the following functions

T , St | k (23.1)

or an equivalent set

ti(ortJ) , sU , ki (23.2)

We introduce constitutive relations which must hold at each composite material point (macro
particle) and for all time (1) in terms of the response functions (23.1). In this connection, we

recall that the displacement function r in (12.1) is the place occupied by the composite particle P
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(with coordinates 6') in the present configuration, and the function d in (12.1) is the director, at
the same composite material point. representing the effect of micro-structure. Thus the local
state of an elastic composite laminate can be defined by functions r and d and their gradients at

each composite material point in the present configuration, namely

r,r; ,d, d;

At this point, for convenience we recall the expression for mechanical power P, i.e.,

g?P=T -v;+S-w;+ g’k w (23.3)

or equivalently

P= TUVj“ + Si-joH + ki\r\'i (23.4)

We continue our discussion by assuming the existence of a strain energy or stored energy

W = y(8',t) per unit mass p of the composite laminate such that p\il is equal to the mechanical

power defined by (23.4), i.e.,

P=py (23.5)

In the development of nonlinear constitutive equations for eiastic composite lamiantes. we
assume that the strain energy density y at each material point of the composite laminate
(macro-particle) and for all t is specified by a response function which depends on r, d and their
partial derivatives with respect to 6. Hence, the constitutive relation for the composite strain

energy density may be stated as

W = W(r!r.ivdvd,i N X) (236)

Since the response function must remain unaltered under superposed rigid body translational dis-
placement, the dependence on r must be excluded. In addition, we have already shown that S*

vanishes identically. Therefore, the constitutive assumption for the strain energy density of the

BASE




composite laminate can now be written as

v=y(riddy; X) 23.7)

We also make similar constitutive assumptions for T!, S' and k. We make a note that in these
constitutive equations, which represent the mechanical response of the medium, the dependence
of the response function on the local geometrical properties of a reference state and material
inhomogeneity is indicated through the argument X !. Here we limit the discussion to an elastic
composite laminate which is homogeneous in its reference configuration and suppose that the
dependence of the response functions on the properties of the reference state occurs through the
values of the kinematical variables in the reference configuration. Therefore, in place of (23.7)

we may write

V=y(riddge; RiDD ) (23.8)
or
- _
v=y(gdd;; G,DD); (23.9)
Since
gi=r; , Gi=R; (23.10)

Following the same argument, we can arrive at similar constitutive assumptions for T3,S' and k.

From (23.9) we obtain 2

I' See [Carroll and Naghdi, 1972).
2 Operators of the form % where f is a scalar function of a vector variable

occurring in (23.11) and elsewhere are defined as partial derivatives with respect
to x satisfying

lim f(x+ev)—f(x) _ of v
€U £ X

for all values of the arbitrary vector v.

BASE




-143-
y=y= a;.l~ﬁ+%‘£’—-&+§;)7’;-&,i=g-g-v,i+%%-w+%-w_i (23.11)
Since
g=(2)= 2 ®)=2=v, (23.12)
and
&=w , él'i=w'; (23.13)

Introducing (23.11) into (22.22),, we obtain

Pgm{%'v'i+%—-WW%‘(—-WJ}=Ti~v'i+Si-w_i+g”2k-w
i B

or

(T' - pgl”2 %) v+ (Si-pgl? gﬁ’-') Wi+ (gl”k - pgl %‘é’-) w=0  (23.14)

This must hold for all arbitrary values of vectors v;,w; and w. Since the quantities in the

parentheses are independent of v ;,,w; and w, we conclude that
Ti=pgli2 gﬁ
&i
Si= pglR 8;1 ' 23.15
Pg B ( )
g2k = pgii2 %ﬁ’_
These are the nonlinear constitutive equations for Ti,Si and k along with the condition

gixT'+d; xS +gl2dxk=0 (23.16)

which is imposed by the principle of the moment of momentum of the composite laminate and

must be satisfied by the response function v.
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As with the equations of motion, it is convenient in applications to specific problems to
obtain alternative forms of the above constitutive equations expressed in component forms. To

obtain the appropriate constitutive equations for 1ij,s and ki we proceed as follows.

Recall the formulas
r=rg=rg , d=d'g=d;g (23.17)
gi=r;= (rmgm).i Sl ST S L N (i"m) &n

=i+ (M Dgm=11i8m = Tmii@™ (23.18)
and
d;=(d"g,);=d™ g +dmg i =d™ g +1 (™) gn=d"; gn=dmi; g™ (23.19)

Substituting (23.17) to (23.19) into (23.9) and keeping in mind that y is a scalar valued functior.

we may rewrite (23.9) as

V= Y(Tmiidmdmia s Rmii:DmDimio) (23.20)

where  is now a different function than y. From (23.20) by differentiation we obtain

. N a* : - ~ . ~ ~ ~
\41=\v=3;’-:’1—i(rm“)+%dm+3%¥'—i(dm“)=a%vm“+aaa\t’;vm+ gm“ woip (23.21)

Substituting (23.21) into (22.46),, we obtain

P{g—?—:‘mLi Vmli + -(;%% Vm+ % Wmii) = vy + s9wjy; + K'w;

or

(ti-p Barjl,, Vi * (si=p -a%-:”—i-)wj‘lﬁ (ki-p gﬁ’i-)wFO (23.22)

This must hold for all arbitrary values of v,i;, wj;; and d;. Since the quantities in the parentheses
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are independent of v;|;, wj|; and d;, we conclude that

d

Tjli

G 0 .
sii=p ‘aa% (23.23)

Tijzp

ki = a\U
P 3d:
These are the component forms of the constitutive equations for 79, si and k' along with the con-
dition
Eip {1+ d!ps™ +d'kl} =0 (23.24)

which is imposed by the principal of the moment of momentum of the composite laminate and

must be satisfied by the response function .

Before proceeding further, we obtain an alternative form of constitutive equations. To this

end we consider the expression for mechanical power (23.3), i.e.,

and by taking advantage of the expressions (12.23), (21.26), we write
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g!72P = (gl/2tig)) - [(My; + wng)g*] +
(8'2sig) - [haigh + M(n — Mi)gH] +
(8"2k™gr) - [dygk + d'(cng = Tia)g"
= g2 (tni(g; - 29 + Troni(g; g +
Sikyi(g; - %) + S (g — Mi)(g; - g5) +

Kidi(g; - g¥) + kidi(e; = ii)(g; - 84))
or

gl2P = g2 [Ty + Ty + silbdy; + sTAL (@ = M) Kid + Kidi(@y; — M)

or

P= (Ti-' - Smj)\.im - kjdi)'ﬂji + Sij}'\.ji + kidi + (‘Eij + Smj)\im + kidi)wji (23.25)

The last term on the right hand side of (23.25) is a produce to a symmetric and a skew-

symmetric tensor component; hence it vanishes identically ard we obtain

P = (1 = s™Al ~ kidi)m; + sUA; + kid, (23.26)

We now define an alternative form for the symmetric commposite stress tensor T4 by the relation

= JT {(T0 = Alps™ — dik)) + (T = Mpys™i = doki) ) (23.27)

To show that T is equivalent to T defined by (22.39) we proceed as follows. Substituting

(23.27) into (23.26), we obtain

P =1in, + sk + kid, (23.28)

In view of the symmetry of T/ we may wnite
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Eijk:t-ij = -%- Eiﬁ({(‘tij = Al s™ — diki) + (P = Mps™ — dikh)} =0

= L el (0 + 1) = (Nis™ + Mis™) — (@ + k) =0 (23.29)
We now rewrite (2..29) as follows:

EiT! = 21- (ji(T + 1) — £ (Ainys™ + Mps™i) — g;5(d’k + dik))

= % {—€i5 (1) + ) ~ €i(Aims™ + Mips™) - £;5(dkd + dk?)
== L (g (1 + M smi + diki) + g5 (T + A 5™ + diki) )
2 %y j

=— -%— Eijk { (T 4+ Aips™i + dikd) + (T + Mpps™i+ dki)} = 0 (23.30)

Since

T+ A s™i + dik) = vl + M s™ + dik
we obtain from (23.30)
Sijk(Tij + Xims“‘i + d‘kj) =0 (2331)
This shows that the relation (23.27) is equivalent to (22.38). Recall the kinematical variables
=1 (g . g Gy=L (g. -G
= x (8i 8- Gi _|) -3 (gu - U)

Yi=di- D
From (23.32) we obtain
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voelo o1 onyan.
Yu“‘z'ng"'f( ﬂu)—ﬂu
K=

Yi=d,
The expression of power (23.26) in terms of the kinematical variables Yij K and vy, is

pE = 'TU'YU + S‘-'f?(:l + k"Yl =P

where

P= T+ i+

RewTiting the vy as a function of the variables Y;» Kjandy, ie.,

v =y K )

we obtain

E=%YU+HB-%J-7\;+%Y1

From (23.34) and (23.36) we obtain

(Ti-p %‘é‘)&'ij +(si-p 387%;)7@] +(ki-p %%)&'i =0

Then by the usual procedure we obtain
Ti=p gy%
si=p 3%
ki=p %—%—

(23.33)

(23.34)

(23.35)

(23.36)

(23.37)

(23.38)

(23.39)

\
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24. The complete theory

We recapitulate in this section the complete theory of elastic composite laminate in the

context of purely mechanical theory.

The initial boundary value problem in the general theory.

The basic field equations of the nonlinear theory consist of the equations of motion and the

energy equation given by (22.46) and repeated below for convenience:

T+ pb=pad + vip) (24.D
sUy; + (pc) = k) = p(y'od + y2p) (24.2)
Eijn(T) + Aps™ + dik) = 0 (24.3)
pE = TijVj 1+ SUWJ‘ i+ kiwi =P (24.4)

where P is given by
P= TijVjH + SijoH + kiWi (245)

or equivalently by

p= rriy',ij + s + ki, (24.6)

The constitutive equations for an elastic composite laminate are specified by

v =y K v (247
and
i aW )
T = _48)
P 5Yij (
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si = (24.9)

ki=p 9 (24.10)

We recall that (24.9) is subjected to the condition

s3=0 (24.11)

We note that instead of (24.7) to (24.10), any other alternative equivalent expressions

derived in section 23 may be used.

The above field equations and constitutive relations characterize the initial boundary-value

problem in the nonlinear theory of an elastic composite laminate.

The problem of establishing boundary conditions is not always clear in the literature on
continuum theory of composites. Even in the case of mathematically coherent continuum
theories with micro-structure the physical interpretations are not given or are ambiguous.
Indeed, most (if not all) of the problems that are treated using various continuum theories for

composites deal with periodic wave propagation or those problems for which the boundary con-

ditions are not of primary importance.

The nature of the boundary conditions in the present theory may be seen from the rate of

work expression for the composite contact force and the composite contact couple, 1.€.,

7€c=Ia?(t'V+s-¥v)da (24.12)

The conditions at the boundary surface of the composite laminate at which the surface forces T

and the surface couples are prescribed require that

t=T7 , §=§ (2413)

If we express the surface forces T and the surface couples § in terms of their components, i.c..
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T= ?gi =Tigi (24.14)
S=5g =S (24.15)

and then using (21.24) and (21.38) the boundary conditions take the following forms:

tiini=? , ‘tijni='t} (2416)

sing =9, sin; =F; (24.17)

To elaborate, we recall that our choice of convected coordinates is such that at a point P with
coordinates ©' (i = 1,2,3) of the composite laminate, the coordinates 81, 62 are in fact the coordi-
nate curves of the ply passing through the point P. Moreover, the coordinate 63 is in the direc-
tion of lay-up. This implies that for an arbitrary part %, the boundary surface 9P consists of two
material surfaces of the form

0P, : 83=03%% =0
and (24.18)

0P, : 63=0306%=G
and a lateral material surface of the form

a7 : f(8*)=0 (24.19)

such that 63 = const. are closed smooth curves on the surface (24.19). With this background. it
should now be clear that T, 1% in (24.16); are the stress resultants in g, g; directions, respec-
tively, while T is the stress in gy direction. Similarly, 31,52 in (24.17); are the stress couple
resultants in g;, g; directions, respectively, but 33 is the stress couple resultant in g3 direction,

which is identically zero.
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25. A constrained theory of composite laminates

So far our development of the continuum theory has been general and without any
restriction/condition placed on the kinematical variables. Therefore the field equations and the
consttutive relations are applicable to any elastic composite laminate. We did not introduce any
kinematical constraints previously to keep the theory general enough so that it could be utilized
for various physical situations. We now turn to the development of a constrained theory of our
continuum model which may appropriately be called Cosserat composite. First we derive a set of
constraint equations for the composite laminate. We then proceed to obtain the relevant
response functions induced by the constraint. Finally we obtain a set of field equations in terms

of the displacement and effected by the presence of the constraints.

We impose the condition that plies of the composite laminate do not separate from or slide
over each other at all time during the motion of the composite laminate. This means the dis-
placement vector of the material points throughout the body including at the interface must be

single valued. Hence we require

r(6%, 6% + A8%) = r(82, 83) + &, d(6%, 6%)

or

r(8%, 63 + A83) ~ r(62,0%) = &, d(62,8%)

or

r(6% 63 + A8% - r(89.98%)

E =d(69,83) (25.1)

In the limit when &; — 0 and r(62,63 + A83) — r(62,063) we obtain

Jxm r(eu,93 + A93) — r(6°.63)

£2—0 A8 =d(6%.6%
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or

g3=r3=d (25.2)

where we have made use of the fact that

AP =¢, (25.2.2)

Expression (25.2) implies the following constraint condition

g*-d=0 (@=12) (25.3)

Differentiating (25.3) with respect to time, we obtain

gr-d+g¢-w=0 (a=12) (25.4)

We recall

g-g =05, (25.5)

Differentiating (25.5) with respect to time, we obtain

g-g+eg-g=g-grg v,=g g+ (Vg

=gl gtV =g gtV 0

=g g +vimg™ g = (g +ving™ - g=0 (25.6)
From this we obtain
g-g=-g- v, (25.7)
and
gl=—viingm (25.8)

Substituting (25.7), (25.8) into (25.4), we arrive at
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go-dg+g* - w=0

or
digt-v,-g® - w=0 (25.9)
and
_V(Iimgm.d+g(1.w=0
or

—ve g - ([dmg™) + g% - (wig)
dmgimgi%v;; - gi%w; =0 (@=12) (25.10)

This is another form of the constraints (25.3) which is more appropriate for our present develop-

ment.

For a composite laminate with constraints we assume that each of the functions T, S' and k'

are determined to within an additive constraint response so that

Ti=Ti+Ti
Si=§i+ S (25.11)
k=k+k
where
T, § , k (25.12)
are specified by constitutive equations and
T™,§ |k (25.13)

which represent the response due to constraints (25.9) are arbitrary functions ot 8'.t, are workless
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and independent of the kinematical variables v ;, w; and w. Thus, recalling the expression (23.3)

for mechanical power, we set

Ti-v;+Si-w;+gl”%k - w=0 (25.14)

This must hold for all values of the variables v;, w; and w subject to the constraint condition
(25.9). Multiplying (25.9) by the Lagrange multipliers 84 (ot = 1,2) and subtracting the results

from (25.14), we obtain

Tiov;+ 8w+ g12k - w— (Bodigh - v;— 8og® W) =0

or

(']"i — 8o dig®) - vi+ Si. Wi+ (glflﬁ +808%) - w=0 (25.15)

From (25.15) and the fact that T', §' and k are independent of v;, w;and w it follows that

Ti = §,dig® (25.16)
Si=0 (25.17)
gl = - §,gv (25.18)

Expressions (25.16) to (25.18) represent the constraint response induced by the constraint equa-
tions (25.3). Substituting (25.16), (25.17) and (25.18) into linear momentum equation (22.22);

and the director momentum equation (22.22)., we obtain

[T+ 8,d'g] + pg!2b = pg!2(V + y'W) (25.19

and

S'i+pglfc - (217K - §ug®] = pg!R(y'V + y2w) (25.20)

Introducing the following temporary variables b and & by

BASE




- 156 -

b=b-(v+ylw)
and (25.21)
E=c—(ylv+yw)

we can rewrite (25.19) and (25.20) as follows

pgl2b + Ti; + (3dig®) ;=0 (25.22)
pgle + Si; — g1k + 5,89 =0 (25.23)

From (25.23) we obtain
(8adig?) ; = - (pg!2die + di§) | - g12dik); (25.24)

Substitute (25.24) into (25.22) to obtain

pg!”b + Ti; - (pg!2di¢ + diSi; - g!2dik); =0 (25.25)

Moreover, from (25.23) and (25.3) we obtain

Recalling that Ti, §i and k are specified as functions of various kinematical variables, it 1s clear
that the system of equations (25.25) and (25.26) represent two equations for the determination of

the primary unknowns v (or r) and d.

We now proceed to obtain the counterparts of (25.25) and (25.26) in component form. To
this end. we assume, for an elastic composite laminate with constraint, the functions 19, s and k'

are determined to within an additive constraint response so that

T =1l + 1
st = §U + §U (25.27)
ki=ki+Kk

where
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o, g, K (25.28)
are specified by constitutive equations and
o, K (25.29)

which represent the response due to constraints (25.10), are arbitrary functions of 0i.t, workless
and independent of kinematical variables vii;, w;i; and w;. Thus, recalling the expression (23.4)

for mechanical power. we set

%UVJ; 1t §ijWJ'|i + EiWi =0 (25.30)
which must hold for all values of the variables v;;, w;i; and w; subject to the constraint condi-

tions (25.10). Multiplying (25.10) by the Lagrange multipliers Ay (& = 1,2) and subtracting the

results from (25.30), we obtain 3

vy + 59w + ki = Aadmg™giov)i; — Aagowi) =0

or

(T = Aadigi®v ;4 Swyi + (K + Aag®w; = 0 (25.31)

From (25.31) and the fact that t9, 3¥ and k are independent of v, ;, w;:; and w; it follows that

T = A digit (25.32)
=0 (25.33)
k'=—Aog® (25.34)

Substituting (25.32), (25.33) and (25.34) into (22.46), and (22.46),, we obtain

[iij+kpigfq”+pbj-_-p(w+ylﬁj) (25.35

3 Note that A, is now different from 6.
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and
39, = [k = Aygi"] + poi = p(yled + y1B)
From (25.21) we have
b= bi- (00 + y!B)
and
d=c- (ylod + y2Bi)
Making use of (25.37) we rewrite (25.35) and (25.36) as follows
b+ T + (hydign ;=0
and
pY+ 3§, -k +1,g0=0
From (25.39) we obtain
(Adigh) ;= = (pdie) + dis™, ;, — dikl),;

and substitute into (25.38) to obtain

pb/ + T}, — (pdi¢i + pdis™ ., — diki);; = 0

Moreover. from (25.39) we obtain

pd&) +d 8 — d k) + Aed,gPi = 0

However. from (25.3) we have

Hence. by (25.42) and (25.43) we have

(25.36)

(25.37)

(25.38)

(25.39)

(25.40)

(25.41)

(25.42)

(25.43)

(25.49
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Again recalling that 19, §J and k' are specified, by constitutive

kinematical variables, it is clear that the system of equations

equations, as functions of relevant

(25.41) and (25.44) represent four

equations for the determination of four primary unknowns v; and d.

Before closing this section, we obtain a relation betwee

Aq. Recalling (17.16), we may write (25.16) as follows
Ti = gl/2tiig = 8.digig
or
gt — g1, digt)g = 0
Since gl2 # 0 and g, are linearly independent base vectors. we
1~ g-1728 digit =0
or

%ij - g—lﬂsadigja

A comparison between (25.46) and (25.32) yields

~

ho = g~1/28a

Similarly, from (25.18) we obtain

g%kl = - 8ugi%g;

or

gll’l(f\»i + g—l/28agiugl) =0

Again, since g; are independent base vectors and since g2 # 0

n the Lagrange multipliers 8y and

(25.45)

obtain

(25.46)

(25.47)

(25.48)

. we obtain
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Ei - g-lfzsagia
Comparing (25.49) and (25.34), we obtain

Ae =g 28

which confirms the results (25.47).

(25.49)

(25.50)
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26. Constitutive equations of an elastic composite laminate: Derivation from three-

dimensional classical continuum theory

The theory developed in the course of this investigation is exact in the context of nonlinear
theory and is based on postulates (conservation laws) that are independent of those in classical
continuum mechanics although their motivation inspired by the classical theory of continuum
mechanics. Due to the material and geometric complexities inherent in composites and due 10
our rather limited (direct) knowledge of composite materials, the study of composite materials

has always been conducted via three-dimensional classical continuum mechanics. In particular,

constitutive relations for composites have always been derived from those of the constituents
which are assumed to be elastic in the sense of classical theory of elasticity. It is therefore desir-
able to relate the various field quantities of the present theory to those of classical three-
dimensional theory. This has already been accomplished, in part, through the relevant
definitions. To complete the correspondence between the present theory and the classical contin-
uum theory we need to establish appropriate relationships between the composite field quantities
Ti, S and k with the classical stress vector T*i of the constituents. This section is concerned

with this task.

We recall that in the three-dimensional theory of classical (non-polar) continuum mechan-
ics and within the context of purely mechanical theory the constitutive relation for the specific

internal energy and the stress tensor of an elastic body can be expressed as follows *

v =y (26.1)
= pt Y (26.2)
P o

4 Whenever there is no danger of confusion we desuznate a function and its
value with the same symbol. Moreover, the function y" in (26.1) depends also on
the reference values G”, but we have not exhibited this here. The partial deriva-
tive of a function with respect to a svmmemc tensor such as that in (26.2) is un-

derstood to have the symmetric form = (5o (a“’ %%{VL)
Ii{
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We now proceed to deduce the counterparts of the above results for an elastic composite

laminate. To this end, we first recall the expression for ¥;, i.e.,

ij Y)x 7 (gl g} Gi. ’ Gj.)
and then observe the following reiations:

o 9w M _ 3w 2

1 G,G
o o dm o \om 15 @ g - M)

=9V (1 skor . Sker
T (o (B%g" +8g)

1oy -, 0y . oy -
= = (=5 g - 8 )= =8
Tl BT B T ®
and
oy _ o OB _ By e ga OV
T:r;y; agl: aac_ aya gi 6k (;1 gi
since

ogs _ ogi _
-(j;(; = 6(1[} , m ~ O
agk = 6(1

Ay

where in obtaining (26.4) we have also used (26.3). In addition we observe that

ov" _ du" 9% _ oy . 9gy _ dy’ .
od " opr 94 oy B T4 T oy B

iK1

It

I3

(26.3)

(26.4)

(26.5)

(26.6)

(26.7)

(26.8)

(26.9)
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where we have made use of (26.4) and the fact that from (26.6) we obtain

ogs _ g3 _

?H"O 5 =1 (26.10)
a .
B =8 (26.11)

Further we observe

* 3 » agk’ B * . agi N - R _ . .
R N

Since from (26.6) we have

agB‘ a ag; 2
54 = = 26.13
Qa é 8 B ’ Ked 0 ( )
98 _ ¢ 50 2

and we have also made use of (26.4).

We now consider the constitutive equations for the components " in (26.2). i.e.,

-~ « ou”
Ty =t OV (26.15)
g
Recalling the formula
Tro=g'lr gt (26.16)
and
To= [~ 7o gz = alANe (26.17)
0
we Write

BAS




- 164 -

& & : & *
res (P [ o= e 2 e

§2 L * § . & *
=J°pg"2%‘g%d§=f:pgm%§’;dé

gz‘. *
=9§;Iopg"2wd§

We recall that in terms of 0! coordinates and in relation to ag and g, we have

20200

Hence, we can write (26.18) as

éz - - -

T“=3?Efopg”2\mi

Next, recall the formula

& .

su=joTu§d§=a1f2Ma

and write

E;Z . gl . - w éz . s a . .
Sazj'oTang,:J’og1ntujgjgd§=jopg1/Zayl&jgj E dE
&

- s s a\y. _ a 52‘. .
= opglﬂ Jd 5 dé—;;d'uj.opgmw dg

where we have made use of (26.16) and (26.12). Now recall the expression

g2k =all2k = E T3 dg

and wrnite

(26.18)

(26.19)

(26.20)

(26.21)

(26.22)

(26.23)
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§2 . *3 s &1 . . * .
glﬂk:joglnv_ 3jgjd§.__jopg 1R gy% g, dg
J

= J' iz p'gTl2 %\'dL. d€ = 3%- jiz p g’y dE (26.24)
We have shown that the composite stress vector T3 corresponds to interlaminar stresses. We
notice that interlaminar stress vector T3 acts as an applied contract force for the micro-structure.
Hence the constitutive relation for T3 should be specified directly. This means T3 unlike T®
may not be obtained from the strain energy of the constituents. However, like any other com-
ponent of stress vector (or stress tensor), T3 may either be obtained by solving equations or
motion or obtained through constitutive relations after determination of dispiacement vector

from equations of motion.

Consider now the expression

— gz - ] .
V= [ e (e d dad (26.25)

where the arguments of y" have been defined before. Clearly, in view of kinematical relations
(12. ). the function  can be regarded as a function of the variables g;, d and d;. Therefore, the

constitutive equations for composite laminate will be given by

y=yig, d da) (26.26)

T'=pg!” 8—;?

S'=pg!” —gd_% (26.27)
oy

where S vanishes identically since y is not a function of d 2. This is. of conrse. in agreement
with (26.39). A comparison between (26.27) and (23.15) reveals that the two sets of constitutive

reiations will be equivalent if W is given by (26.25). This establishes the correspondence
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between the composite laminate’s constitutive relations and those of the constituents.

For completeness, in the rest of this section we obtain the component forms or (26.27)

using a different procedure than that used in section 22. To this end we recall the formulas

r=rg,=rg , d=dig;=d;g! (26.28)

and

ri=rig=ng , di=dg=dg (26.29)

It is clear from (26.28) and (26.29) that the function \—u may be rewritten as

V= \—l}(gi’d'd.a) = ‘I’(r.ivdvd.a) = \If(rml'hdmvdmtu) (26.30)

With the help of the expression for T, (26.28), (26.29) and the gradient of a scalar valued func-

tion of a vector, we write >

Tt = gli2tiig = pgl”? % = pgl” Ba%!: = pgi? 9 g, (26.31)

y

Rewriting the above, we obtain

12— p I yg = 26.32)
gis(t—p rﬂi)gj 0 (
Since the quanuty in the parentheses is independent of g;, we conclude that

= p arﬂi (26.33)

3 Operators of the form of where f is a scalar valued function of a vector

x = xig; = x,g! were defined earlier. The component form of this operator which is
in fact the gradient operator (derivative operator) is given by

df _ of __ of
T T BTG B
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In a similar manner, with the help of expression for Si, (26.28) and (26.29) we obtain

From this we obtain

g ( p H%‘-”Li)gj
Since the quantity in the parentheses is independent of g, we obtain

sl = p ga.._.a:l’“

Next. we consider k and making use of the same procedure we write

g7k = gl2kig, = pg!2 QY. = pgl? N g

and

gi(ki-p ¥ g =0

By the usual argument we obtain

Collecting the results (26.33), (26.36) and (26.39), we have

(26.34)

(26.35)

(26.36)

(26.37)

(26.38)

(26.39)
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tii=pﬁa¥—i

J
sii=p 3%\4% (26.40)
ki=p -g%

which are the same as (23.23). It should be mentioned that the development after (23.23) of sec-

tion (23) as well as the entire development of section (25) remains applicable and unchanged.
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E. Linearized Theory

We now proceed to obtain the linearized version of the theory developed in previous sec-

tions. Linearization will be carried out for the kinematics, the field equations and the constitu-

tive equations. We note that a vertical bar, in the linearized expressions, will denote covanant

differentiation with respect to G;; corresponding to the reference configuration.

27. Linearized kinematics

This section is devoted to the linearized form of the kinematical results of section (12). In

particular, we deduce the linearized kinematc measures of a composite lam
infinitesimal displacements and infinitesimal director displacements as a special case

eral results in section (12).

We recall the expressions

p* =r(n%,031) +&dM%,6%1)

and

P*=R(n*63% +&D(n*6%)
Within the context of linear theory of composite continuum we let !
p'=P +eu’
where € is a non-dimensional parameter and u” is a three-dimensional vector such that
T=utgi=ug
u =u"mez.8%n = um®e3,n +£dme,e'.n

I The use of € in this section is temporary, clear from the context and not to be
confused with the use of the same notation in the previous section.

Inate with

of the gen-

(27.1)

(27.2)

(27.4

(27.5
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From (27.3) we obtain

vi=en" (27.6)
Introducing (27.5) into (27.3) and making use of (27.2), we obtain

P’ =R(N%,6% + ED(M%,8%) + e[uMm®,03,1) + E5(M=,63.1)]

= [RM*6%) +eu(n®,6%,1)] + E[D(N®,6%) + e5(M,1)] (27.7)
By a comparison between (27.1) and (27.7) we conclude that

r(6i,t) = R(8!) + gu(bi,t)
(27.8)
d(8',t) = D(8') + ed(6i,t)

where we have identified n® with 8. The velocity and the director velocity are readily obtained

as

(27.9)

We say that the motion of a laminated composite continuum characterized by (27.8) describes
infinitesimal deformation if the magnitudes of u. 8 and all their derivatives are bounded and are

of the same order as R and D and if

ex1 (27.10)

In what follows we shall be concerned with (scalar, vector or tensor) functions of position and
time, determined by €u and €3 and their space and time derivatives. We denote these functions
by the customary order symbol O(e) if there exists a real number C, independent of €.u,8 and

their derivatives such that

L O(en) | <Cen £E—>0 (27.11H
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We would like to emphasize that the infinitesimal theory which we wish to obtain as a spe-
cial case of the results in section (12) and in the sense of (27.10) is such that all kinematcal
quantities (including the displacement u, the director displacement & and other kinematical

measures, as well as their space and time derivatives are all of O(g).

The base vectors g;” can be obtained from (27.7):

g(; = p,:: = (R,u +Eugy) + é(D.a + 85'0_)

(27.12)
g3 =p;=D+ed
Similarly the base vectors g; are obtained from (27.8);
gi=r,=(R+eu)j=G;+eu; (27.13)

We now proceed to obuin the relative kinematic measures ¥;;, X;; and ;. To this end we first

obtain

gi= 8- g =(Gi+eu) (Gj+eu)=Gj+eG; uj+G; uy+O0? (27.14)
di=g d=(G,+¢cu;) (D+ed)=D;+e(G - 8+u; D)+ O(e?) (27.15)

Aij=gi-d;=(Gj+eu;) (D;+€d5))=Ajj+&G; §;+u; Dy +O0(e? (27.16)

From (27.14) 10 (27.16) we obtain

Y= %— 8- g-Gi-G)= JZ e(Gi - u;+Gj u;)+O(e?) (27.17)
Yi=di—-D,=€(G;-8+u;-D)+0O?) (27.18)
?GJ = )qj - A’J = E(Gi : 61 +Uu;- DJ) + 0(52) (27.19)

At this stage it is desirable to elaborate on the manner in which the process of linearization

may be carried out. To this end we take u” and &’ to be vector functions defined by
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uU=eu=0®) ui=Al-u"=0()
O =ed=0@) d&i=Al-8=0()
Making use of (27.20) and (27.21) we may rewrite (27.17) to (27.19) as
Y= -%— Gi-u'j+Gj-u'p
Y'i=(G; 8 +u ;D)
K'j=(G;i- & j+u’;- D))
where we have introduced ¥ jj, v i K'j; which are of O(¢) we have
Yy =7¥'ij+ O(e?) = O(e)
%i=7"i+0@E?) = 0()

K= Ky + O(e?) = O(e)

We also have

(27.20)

(27.21)

(27.22)

(27.23)

(27.24)

(27.25)

(27.26)

(27.27)
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g=(g1xg) g
=[(Gy +€u,) x (Gy+euy)] (G3+euy)
={G; x Gy +eu; x G+ Gy xuy) +eX(uy xuy))  (G3+euy)
=(G,xGy) - G3+e(Gy xGy) -usz+
e(uy xGy) - G3+&(Gy xuy) Gz +
e2(u, x Ga) - u3z+eX(Gy xuy) uz+
€2(uy xusy) - Gy+€Xugxuy) uj
=G24+ e{(G; x Gy - us+uy (GyxGy)+uy - (GyxG;)+O(e?)

=G+ &(G2G? - u3 + GG} - uy + G12G2? - usy) + O(e?)

or
gl2=G12+eGMIG - u;+ O(€2) = G2+ GVHGU - v + O(e?)
or
(_é_)m =1+7’}+0()
and

a
=

& =1+2g% "+ 0

(27.28)

(27.29)

We now retain only terms of O(g) in expressions such as (27.25) and hence approximate v, Y,

and X, by vy 'U, ', and ?C,J, etc. In order to avoid the introduction of unnecessary additional

notations we proceed with linearization by retaining only terms of O(¢) and after the approxima-

tion without loss of generality, we set € = 1. In this manner the relative kinematic measures Y. v,

and A~ reduce to
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%=+ Giu;+ Gy uy) (27.30)

¥=G;-8+u; D (27.31)

X;j=Gi-8;+u; D, 27.32)

We also obtain
pg'? = p.G'~

or
or

P=Po 137t Poll =) (27.33)
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28. Linearized field equations

Previously, with reference to the linearization of the kinematical results for a composite, it
was assumed that all kinematic measures such as ¥;j, ¥; and X;j as well as their space and time
derivatives are of O(g). These must now be supplemented by additional assumptions in « com-
plete infinitesimal theory. We now assume that the vector fields Ti, St and k are all zero in the
reference configuration. We further assume that T, St and k (or their components) when
expressed in suitable non-dimensional forms, as well as their space and time derivatives are all

of O(¢).

Recalling the linearization procedure of the previous section and avoiding the introduction
of additional notations, we now regard T', S' and k as infinitesimal quantities of O(g). As a
result of linearization, all tensor quantities are now referred to the initial undeformed surface and
covariant differenuation is with respect to Gj; in the reference configuration. It then follows that
in the equations (22.30), (22.34), (22.38) each term is of O(€) and that d', and d! |, = Al or A,
must be replaced to the order of € by D' and A', or Ay, respectively. We omit the details since
it is a straightforward calculation and merely record the linearized version of the equations of

motion as follows:

T+ Poby = oty + v18) (28.1)
S+ (pecy — k) = po(yliiJ + yZE‘SJ) (28.2)
En (T + s™MAlL + Dk} =0 (28.3)

where the vertical bar in (28.1) to (28.3) and the rest of this section denotes covariant differentia-
tion with respect to G;. We also note that all quantities are now referred to the base vectors G;

of the reference configuration.

Moreover, upon linearization we obtain
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T = 1l — Al sM — Diki (28.4)

In the light of the assumptions stated above and expression (28.4), the energy equation takes the

form

Po = Ty + s K + kiy; = P (28.5)
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29. Linear constitutive relations for elastic composite laminates

This section is concerned with the derivation of the constitutive relatons for a composite
laminate in terms of those of its constituents. In what follows we assume that each of the consti-
tuents of the laminated composites is a homogeneous isoopic elastic material. We recall that
within the scope of the linear theory all kinematical variables are referred to the reference

configuration. Previously we showed that the strain energy function, ¥ may be written as

V=W A (29.1)
We assume that in the case of the linear theory vy is given by a quadratic function of the

infinitesimal kinematical vanables v, &, and v,. We also recall that after systematic lineaniza-

tion of the expression for power, we obtained for the linear theory

Poé - ;ij-.yji + Sijj@ + k"'yi =P (29.2)

Since the rates v, X, and v, are all independent and since the coefficients are rate independent,

after substituting (29.2) into (29.3) we obtain

OV ., . OV a- . OV L Ty 4 ke 4 kv 2
po{g—y‘;,’Jx‘*‘mﬂ\y‘*w:ﬁ}-“{p*’ij‘*k% (29.3)
or
Th_a O O A i A OV,
(! po-(yf}l—),v’“+(5l pum)%+(k pO?{T”*‘O (29.4)
Hence
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ow

?U = Po BTY;
sii=p, 3% (29.5)
k'=p, %ﬂ

The relationship between the strain energy function y, per unit mass of the composite, and those

of the constituents is given by

iz - - »
y= __Fpocl;x [ psGT 2y dS (29.6)

or

5 - .« #\ v 1 - » v 2 . -
o = 7 VipayTaz = [ ppsy Iz = [ P + [ oy

where p,). and pg; denote mass densities of the constituents By and B;. We recall that in

three-dimensional linear theory we have

PoW =

1

Eqiyy Y™ (29.8)

o] —
3
o 3

and

= Egl ymn (29.9)

We also recall that for 1sotropic elastic materials we have

Eql = A"G UG, + 1 (818, + 81,8'm) (29.10)
r-u = H.(G'LmG‘Jn + G‘inG‘Jm + 12\2/;. G‘]JG‘mn)-\{r;m (2(_‘ 11)
s M 29.12)

METovH =
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For an explicit set of constitutive relations the integration on the right hand side of (29.7) must
be carried out using (29.8) for poy*. Here we remark that as in the case of two dimensional
theories of continuum mechanics (such as plates and shells), except possibly in very special
cases, it appears to be extremely difficult to calculate the function y in (29.2) from the strain
energy function y* of the classical three dimensional theory. In the case of composite materials

this becomes more complicated due to the existence of two (or more) materials.

Alternatively, in order to provide constitutive relations in which the coefficients are related
to elastic constants of the constituents we can make use of the so-called specific Gibbs energy
functuon. This method proves to be more convenient for the derivation of the linear constitutive

equations for a composite laminate and will be described in the next section.
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F. Application and comparison with the available theories

In this pant we proceed to accomplish two goals. Frist we will apply the theory developed
earlier (specifically in part E) to the case of initially flat composite laminates in which each ply
is modeled as an initally flat Cosserat surface. We will also apply the theory to the case of ini-
tially clindrical composite laminates where each ply is modeled as a cylindrical shell (Cosserat
surface). In addition, we develop an altemative method for the determination of the linear con-
stitutive relations. This method which makes use of the Gibbs free energy function is more suit-
able for the application of the theory to various cases. Secondly, we will compare the present
theory with the available continuum theories and point out the features that are unique in the

present theory.
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30. Preliminaries: Part I

Before proceeding further, we dispose of some results which are independent of lineariza-
tion; however, they will be particular useful in the applications of the linear theory. First, we

recall that the position vector P*, of the micro-body B*, in the reference configuration is given
by
P’ =R(M%,6%) + £ D(n2,0%) (30.1)
In general, D in (30.1) is a three-dimensional vector having components D1.D? D3 in the direc-
tions of G1,G2.G3. However. in the reference configuration without loss of generality we may
specifv D by
D=DA; , Dg=0 . Dy=Dn%8?% (30.2)

where A3 = A3 (N9 is the unit normal to the Cosserat surface, i.e., the shell-like representative
element at composite particle P. From (30.1) and (30.2) it follows that the base vectors G.” and

the metric tensor G,). of the micro-structure, in the reference (initial) configuration are

G(; = R.u + EDU =G+ E(DA* la=Ggr 'E_,(D‘u:\3 + D\:a) =Gy + E_D:\}_a + éD.aAB (30.3)

and

3 =D=DA; (30.4)

We recall the results

Hence,

Ap-Aza=—A3-Agy=—Bga=—Bgp (30.5)

and
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A3o=-B8Ag (30.6)

where Bqg are the components of the second fundamental form of the surface. By (30.3), (30.6)

and the fact that Ay = G4, we obtain

Ga=Ga—EDBBGAR + ED A3 = Gpdb, - EDBB,Gp + ED oA3

= (88, — EDBB,)Gg + ED gA3 (30.7)
Let
vBy =88, — CDBB, (30.8)
Then by (30.4), (30.7) and (30.8) we have

G(;_ = VBaGB + éD'aA:;

(30.9)
G3 =DA,
and hence,
GC;B = VYQVSB(;Ys + §2D‘QD_B
Go3=EDD g = + EDY) 4 (30.10)

Gi3=D?

Let us now introduce a set of curvilinear coordinates {i such that {® =1 and where 3 is
measured to the scale of the rectangular Cartesian coordinates (say x' = x;) along the positive
direction of the uniquely defined normal A3 of the Cosserat surface (i.e., micro-structure). Now
in the reference configuration, which we take to be the initial configuration, the convected gen-
eral curvilinear coordinates ©' can always be related to {i with {3 as a specified function of n®
and §. For the purpose of this investigation and to avoid unnecessary complications, we denote

L3 simply by { and specify it by

where { is a function of n® only. In the special case that In®) = 1 we obtain {=& in the
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reference configuration. The coordinate system (n%.£) where § is measured along the normal to
the Cosserat surface is called normal coordinate system. Thus with { specified by (30.11), the
position vector P* of the micro-body ‘B* in the reference configuration referred to the normal

coordinates is given by

P* = R(M%,8%) + {A3;(n%,6%) (30.12)

Let G and Gi} denote the base vectors and the metric tensor associated with the normal coordi-

nates. From (30.12) we obtain

G(;. =Rg+ CA3.a = GBSBG - CBBQAB = (SBa - CBBa)GB

Hence, we have

Gq = HBaGB
(30.13)
63‘ =A;
where
uby =88, — (BB, (30.14)
From (30.13) we have:
Gap = WanGys
Go3=0 (30.15)
G3=1
A comparison between (30.1) and (30.2) with D specified by (30.2) reveals that
{=D% (30.16)

which is the transformation relation between £ and &. Moreover, under this transformation. we
5

obtain from (30.8), (30.14) and (30.15)
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vBy =88, - EDBE, = 8B, — (BB, = ub, (30.17)

If we let det (vBy) = ]Vj and det (uB,) = 1 we obtain

o= IVS (30.18)
It is worth noting that the metric tensors Gi} and (_35 become identical when evaluated on the sur-
face § = 0 or { = 0 in the reference configuration and are both given by
Gap = Gap = Gap
Ga3=Gg3 =0 (30.19)

G33=Gni3 =1
We now proceed to obtain expressions for G;, G;; and G!72 corresponding to coordinates 6'.

Consistent with the kinematic assumption (30.2) we take the function R(82,083) to be

R(6%,83) = R(9%) + 83A,(8%) (30.20)
From this we have

Go=Rg=Rgy+8%A34=R - 0BT,A,
(30.21
G3=R;=(8%A3)3= A3
and

Gap = (R - 8°BY,Ay) - (R g - 3B33A5)

]
Al

o Rg=~6%BY,Ay Rp—6'B3%As- R o+ (63)2BY,BSA, - As

1}
=

o R~ 03BYA,- Rp-BdA,- R,a) + (6%)2BY,Bo%A, - As

Ro Rp-0%BY,Rp+BYRR,) A+ (6%)2BY,BS%A, - As

Hence we have
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Gop=Rq Rp-03BY,Rp+BBRy) Ay+(87)2BY,B%A
Gos = (R g — 83BYAy) - A3=0 (30.22)

Gi3=A3z-A3=1
Also,

G'2=[G1,G2,G3] =(G1 x G2) - G3=(G1 x G2) - A3
=[(R; - 63B1A) x (R, - 03B%,A5)] - A;
= (R x R2) - Ay— 63[BY(Ayx Ro) + B(R x Ay)] - A

+ (93)2871352(/\7 X Ag) - A; (30.23)

We now combine the assumptions (30.2) and (30.20) to obtain from (30.1)

P'(9%838) =R + EDA3; =R + 03A3 + EDA; (30.24)

From this we obtain

Ga=Rg+E&DA3)g=Rg+EDgAs - gDBYuAy
Hence. we have

Gg =Gy~ EDBYGy+ ED gA3 = VIyGy+ ED gA;
(30.25)
G3=DA;
where

vy = 8% - EDBY, (30.26)

Moreover, from (30.25) we obtain
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Gap = (VaGy + D gA3) - (v33Gs + ED pA3) = VIgv8,Gys + E2D oD g
Gas = (VIaGy + ED gA3) - (DA3) =EDD 4 = 21_ ED2) o (30.27)

G33 = (DA3;) - (DA3) =D?
and

G2 ={G[,G1,G31=(G{ xG{) G
= {(ViGy+ ED1A3) x (V)G + ED 2A3)) - (DA3)
= (VIIV12(Gy x Gg) + ED 3v11(Gy x A3) + ED,1v32(A3 x Gp)) - (DA3)
=Dv1v8(Gyx Gs) - A3
=D{VvI1V3(G x Gy) 4+ v v1a(Gy x G} - As
=D{vH v (G x Gp) + v31vI5(Gy x Gy)) - A3
=D(vlv3 - vigv2 )G x Gy) - G3 = DGH2det(vp) (30.28)

where in obtaining (30.28) we have made use of (30.23). Since

v =D det(vBy)

we obtain from (30.28)

v =D det(vBy) = (-GG'- yin (30.29)
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31. Preliminaries: Part I

In the rest of this development we assume each ply of the composite is sufficiently thin and
confine our attention to the field equations of the linearized theory (28.1) and (28.2). Moreover,
for the position vector R and the director D, in the reference (initial) configuration, we adopt the

assumptions (30.20) and (30.2). Hence, in the reference configuration we have

R(6%,03) = R(6%) + 63A, (31.1)
D=DA; , Dy=0 , D;=DM® =D(6% (31.2)

and
P*=R +EDA; =R+ (83 + ED)As (31.3)

As mentioned before, within the scope of the linear theory g;.g;",a;,g!/2g" /2 and a!’2 may be
replaced by their reference (initial) values in the definitions of the various resuitants. We now
proceed to obtain the resultants which occur in the linearized equations of motion. Consider T

and within the context of the linear theory make use of (18.7), (21.26) to write

. 3
T% = G2 = | 0’ T odg = E‘z G121 0G| dg

or
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G2(198Gg + 19G;3) = | i’ G"1(1*®BGg + 1°3G3)dE
gz . L ] *
= _G'12(1*9B(viGy + ED gA3) + T'%DA;)dE
= = VGIarabyy Gyt
o B

+ j E: VGI2(ED gt*eB + D1*®3)A3dg (31.4)

where in obtaining (31.4) we have made use of (30.25) and (30.29). Since Gg and A, are

linearly independent vectors and since Gp, A3 and G!? are independent of &, it follows from

(29.4) that

b= iz veenbde |, = iz V(ED g1"%B + DT")d (31.5)

We note that the composite stress vector T3 is not related to T*3 (within each constituent of the
composite) and must be specified by a constitutive relation separately. In a similar manner, we

consider S® and within the context of linear theory we use (18.11), (21.38) to write

S(I=Gl/25(lej =Ii¢ Tuag dé - J'goz Gt]/Z;rtajG‘jg dé

or
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G!2(s%8Gg + sBG3) = “ G*12(1*eBGg + 1" BG3)E dE
o B
§2 . * ‘03
=~ G"2{r"5B(Gy+ED gAs) + T93DA3)E dE
= = Gingadyy G dE
o B

+| i’ VGI2(ED 1°oB + DT YA dE (31.6)

where in obtaining (31.6) we have made use of (30.25) and (30.29). Since Gp and A3 are

linearly independent and since Gg, A3 and G!72 are not functions of &, we obtain from (30.6)

s@f = | iz VIOWBEdE | 503 = i’ V(ED g1"0® + DT"I3)E dE (31.7)

We recall that

Ji=( (31.8)

Next, we consider k and in the same manner we write

G2k = G'2(kGq + k3Gy) = | g T*dE = [ G'1ReG de

or
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G2(kaGy + k3A3) = J’ iz G'12(z"32Gg + 1*33G3)dE
= j iz G*12{1"3a(vIyGy + ED gA3) + 1"33DA3 ) dE
= % Gingsayy,G 3
=f" «Gyd

+ I E: VGIZED 4132 + D1*33)A3dE (31.9)
where again in obtaining (31.9) we have made use of (30.25) and (30.29). By the usual argu-
ment it follows from (31.10)

ke= J éz vitwvede | k3= j & v(ED 13 + D1"33)dE (31.10)
0 ’ 0 o
Collecting the results of this section, we have
1B = Ié; vi'owBdE | 8= j . v(ED gt*oB + Dt*oB)dE
o ? o B
31 or T3 must be specified directly by a constitutive equation.
sab = | N VI OWBEdE | 3= > (8D g1°9B + DrOBE d (31.11)
o s Us o ° SUB A} .

$§i=0 or S$3=0

k®= j E: viBwade | k3= j iz V(ED 413 + DT*33)dE

The resultants in (31.11) are defined in terms of the s..ss tensor 1"V referred to the convected

coordinates N' = {6%,€}.

Next, we proceed to obtain the counterparts of (31.11) in terms of normal coordiantes

{i=(0%03) = (ML) = (6%} where we have
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{=DE (31.12)

Let the contravariant stress tensor in the context of classical continuum mechanics, referred to
the normal coordinates {i be denoted by 1°J. The relationship between T"% and 1°ii is obtained by

making use of the transformation law between two second order tensors as follows:

onf vkl (31.13)
Hence,
—‘G‘B=aa_a_§9_'u=aaab'kl
T 5%1‘ onl 1 5%7(31-%1 +—§Tt
_ ol* orP ole L .
=G T S
= 80-78311‘7)' = ‘t‘aB (3114)
and

o e G e B o
=-‘§;—3ﬂ tﬁl+_—§-§-83 ‘3’~+—§——a%- ‘Y3+-B%-—a%—

=3, (ED ;)1 + D8%1"B = § DBr*eB 4 Dr*ed (31.15)
=98 983 rew_ _§__§_~yl o3 983 Lex
3k onl “ G S

=£D, (-g-&;- T 4+ %%3- 3 + D(%;- 3 4 %%3— 1°33)
=E Dy Dat"™* + D1") + D Dt"3* + D1*3)

=§2D oD pt*oB + 26DD 41" + D233 (31.16)

We note that if the thickness of the representative element in the direction of normal is hy, we
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have
[=0 a £=0
(31.17)
C=hy at §=8&
Hence
D&, =h; (31.18)
which relates &, to hy and D. In particular, if D = 1 we obtain D = A3 and
§2=h2 (31.19)
We now define a new set of composite field quantities in terms of 7' as follows
= [ Tenpar | ve=T0 = [ Tedd
o ’ o
1°% = 93D gtPe + Dre
133 = (83)2D ;D 18 + §3DD (193 + 13¢) + D213
(31.20)

w= [P urenegr | T2 uTe

Pi=0

V3= .r: Ll(?33 _ Bug?ayuﬁy&)dé.

where u®, and u are given previously by (30.17) and (30.18). Making use of (31.14) to (31.16)

in (31.20) we obtain

8= qaf | ya=1@ =103 =D+ DBAsB +sPAD g
(31.2DH)
S=Dsl , V3=Dk3 - DBgps®® + D s

which relates the two sets of definitions (31.11) and (31.20).
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32. Linear constitutive relations for composite laminates: An alternative procedure

In this section we introduce an alternative procedure for the derivation of the linear consti-
tutive equations for a composite laminate. The method takes advantage of the specific Gibbs

energy function?,

We recall that the central idea in the derivation of the constitutive relation for an elastic
composite laminate was that the specific internal energy is given by a function of the form (29.1)
where in the case of the linear theory it reduces to a quadratic functon of its arguments. As
mentioned previously, although expression (29.6) is elegant, the explicit integration of (29.6) in
most cases becomes exceedingly difficult. Here we provide and alternative approach for explicit
derivation of the constitutive relations (for the linear theory of a composite laminate) in which

the coerficients are related to the elastic constants of the constituents.

We recall that the constitutive equations of the classical linear theory of elasticity in the
context of purely mechanical theory may be expressed in terms of the three-dimensional specific

Gibbs free energy function, say 6°, in the form3

-«!’1] _po' au‘[oU (321)
where ¥; is the infinitesimal strain and where ¢* and " are related through
0" =0"(TV) = y'(y)) - 51— iy (32.2)
(o]

and ¢° and y* are quadratic functions of their arguments and both also depend on the reference

2 This idea was first introduced by Green, Naghdi and Wenner [1971], in the
context of Cosserat surface theory.

3 The partial derivative aato m is understood to have the symmetric form
(ao d¢" 20
29t gty
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values of Gjj. It may be noted that the function 0" defined by (32.2) is the negative of the
expression for the complimentary energy density. We now recall that the Gibbs function ¢ for

an initially homogeneous and isotropic material can be expressed as

Pod” = (- 1—2+EV_ GimGin + % GiiGmp) Tiig"mn (32.3)

where Gjj is the initial metric tensor, E* is Young’s modulus of elasticity and v is Poisson’s

ratio.

Within the scope of the linear theory and corresponding to (29.6) we define a composite Gibbs

free energy (OT @ “"composite complementary energy”) ¢ as follows:

paG20= | piGT1R0"dE (324)
From (32.2), by integration with respect to § between zero and &2 we obtain

=2 = = * 1 él PPt AN N gz - * 1, *
jo PoG129"dE = | ~poGy dg - | CGMRriyids (32.5)

Considering (23.6), (32.2) and (32.4), we may rewrite (32.5) as

PaGH20 = p,GH2y - | :: VG2t dE

or

_ | ¢ - .
o_\‘;_p_ofo VT lJ‘/-U»dE:7 (32.6)

where in obtaining (3.26) we have made use of (30.29). By making use of the expressions for
" v;;, the expressions for various resultants and the kinematic assumptions for R and D. we can
express the integral in (32.6) in terms of the vurious resultants and their corresponding relative

kinematic measures. However, as before the constitutive relations for the intertununar stress
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vectors Tt should be specified directly. Keeping this and expressions (32.2) and (32.6) in mind.

we assume the existence of a Gibbs free energy function @, such that

Po® = Pod(T stk = poy — (T + S + ki) (32

Differentuating both sides of (32.7) with respect to t, we obtain

PoE= PoW = Po + (T ) + (SUKG) + (ki ;)

= pOQ + m + 1‘% +SUKG + 5‘J?(J +kiy + kiy; (32.8)

Next. we substitute (32.8) in the expression for power (31.3)

Po® + T, + SUK + KiY; + Thyy + sUK + Ky, = THy + UK + K%,

or

0

Po(aaf?J T+ <7 U+ 00

ok!

k') + v ‘J'+ K;;s1 + vki =

or

?O }?j+(-‘k;.+po 80 )5 + (Y .,.r),_d_g.,k‘:() (32.9
o7 J ok!

(Yij + Do

where we have assumed the rates % s¥ and k' are all indepenaent and their coetficients are rate

independent. From (32.9) it foilows

do_
{ p() '\ U
x = 90 5
J(“\j——pom (le())
/= — _a_(.;..
il 8] akl
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site, and those of the constituents is given by
PG'20 = E: PoG"i72¢dE (32.11)
or
pod = | “ V(pg07)d = f " pg)de = J’h H(Pa11)dE + J); ’ K(Pe262)dE (32.12)

where 0" for an isotropic elastic material is given by (32.3). The explicit determination of the
various coefficients in constitutive relations is beyond the scope of this project and is left for a

follow-on project.
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33. Some results for the case of 2 normal director

We recall that in the context of the present Cosserar composite theory, director d is a three
dimensional vector associated with each composite particle and in general the only restriction
placed on d is that it cannot be tangent to any ply. The case in which the director D, at each
composite particle in the reference configuration, is taken to be the unit normal to the ply is of
special interest. In such case, in order to allude to the direction of D in the present configuration.
we may refer to director as "normal director.” This section contains some results for the case of a
normal director. The results of this section will be helpful when we apply the theory to the cases
of initially flat and initially cylindrical composite laminates. Therefore, in this section as well as
in the rest of this development and within the context of the linearized theory we confine our

attention 1o the case for which D is unit vector. Hence. we make the following kinematical

assumptions in the reference (initial) configuration:

R(6%.6%) = R(6%) + 6%A3 (33.1)
D=A; (33.2)

and
P*(6%.63.%) = R(6%,63) + 2D(82.83) = R + (03 + £)Ax (33.3)

where P” is the position vector of an arbitrary point P* of the micro-body. R is the position vec-
tor of the point P, corresponding to . in the macro-body, and D is the director at point P. Itis
worth observing that in (33.1) and (33.3) the term involvin & accounts for the effect of micro-
structure while the term .avolve 03 represents the continuum behavior of the macro-structure.
namely the composite laminate. In this connection it is important to realize that if, at the outset,
in (33.3), we discard £ with respect to 83 we will lose the effect of the micro-structure in the con-

‘inuum tormulation ot comgosite luminates.
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From (32 ?) it follows

Dy=0 . D3=DMM® =1 (33.4)
and
£=23 (33.5)
From (33.1) we obtain
~ - OR _ -R 3 —R__a3 —R_ _83B1.CC
‘a= Jga Ro= Ry +68°A34=Rgq 6 BYaAy— R,-6"B a(ly
(33.6)
~ oR

I3=_E)_8T=R'3=A3

Making use of (33.6) we write
Gop=Rg Rp—603BYR g+ BHR o) - Ay+ (8%)2BY,B%As
Ggz = (R g - 8BYgAy) - A3 =0 (33.7)

Giz=Azr-Az=1
and

G2 = (G1.G2.G1l =Gy < Ga) - Gy = (Gy x Ga) - Az
= (R < R2)- Av- B3BN(A, < R2) - A3 = 03B7a(R 1 < Ay As

+ (63)28718‘3:(:\7 A< As) - As (33.8)

VMoreover. from (33.2) and (33.3) 1t follows

<« _ oP" _ P P <R v (3
G = &dﬁ' = :79—“- =R, +ZA =Ry - IBYGA, =V Gy
Gi=22 -, (33.9)
us ’
where
Vi, = 0%, - IBY, = ufy, (33.10
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and
v =D deuv?y) =det(viy) =det(tiy) = (33.11)
Making use of (33.9), we obtain

Gap = VIgv3%Gys = Wah %G

G =0 (33.12)
Gyy=1
and
G-],’: - Gl/’ldc[(vds) - VG!/: —_ uGl/z
or

v=<%'-)1f3=,u (33.13)

In view of (33.1) 10 (33.3) and (33.10) t0 (33.13) expressions (31.11) are reduced to

S=h, S=h;
1ub = ! viUToORbYdE | @ = !vra"ﬁdg

73 or T are specified by a constitutive equation directiy.

S=hy 3

cuB = lv:‘w{\rﬁ.idi R 1
A 4 -7

L]
(22
—
N

while definitions (31.20) becon.e
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- LI - hy _
B = l ut‘a‘/uﬂp&' L Vo= 8= ! ut.wd»&,

po=gle | B =133
(33.15)

hy _ hy _
E“B=))m'%“yédé , 8= t[ Ut BEdE

h, _ _
V= | REP - Bopt P L)dE

Also. the transformation between ' and 1"i, namely expressions (33.14) to (33.16), are now

given by
Tl = 1 (33.16)
Finally the relations between the two sets of definitions (33.14) and (33.15) are reduced to

@Boqu a3 ogay B%s13

(33.17)
Tzl =kl - Bygsed
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34. Theory of initially flat composite laminates

We are now in a position to apply the theory of Cosserat composite to special initial
geometric configurations. In this section we apply the theory to the case of an initially flat com-

posite laminate. The case of an iniually cylindrical composite laminate will be considered in the

next section.

Consider a composite laminate and let its plies be flat (i.e., having no curvature) in the
reference (initial) configuration. Let e (i = 1,2,3) be the base vectors associated with a system
of Cartesian coordinates x; (i= 1,2,3). The position vector of a plane surface perpendicular to es

and passing through the point (0.0,c) may be specified by

p(x}) = x'e; + x¢e; + ce3 (34.1)

where ¢ is a constant. In view of (34.1) and recalling formulae (33.1) to (33.3) we adopt the fol-

lowing kinematical assumptions for an initially flat composite laminate:

R(x“ x3) = xle| + x%es + x3ea (34.2)
D=Aj=exr (34.3)

and
P*(x*32) =R+ {e, = xle; + x%es + (X3 + L)es (34.4)

We recall that (34.2) specifies the position of an arbitrary macro-particle of the composite lam-

inate while the position vector of the micro-particle corresponding to the macro-particle is given

by (34.4).

First we proceed to obtain various quantities associated with the surface (34.2). The base

vectors of the surface are obtained from (34.2) as tollows:
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JdR
Aa = dx%
(34.5)
dR dR
== , Ay= =
M=ga=a - M=grEe
The components of the surface metric tensor are
Agg=Aq - Ag
(34.6.a)
Apn=errer=1 | Ap=Ay=A,-A=0 Ap=er-er=1
or
r 1 0
(Agp) = “LO 1 (34.6.b)
Moreover, we have
A“BABY =0% = AGB = (Amg)"1 (34.7)
Hence,
[ -1
10 10 ,
AaB = §LO 1 =10 1 (34.8)
The conjugate base vectors of the surface are given by
A% = AU Ay
Theretore
Al=AllA)+ Al = =00 0 A=A - A2, = As = s (349
The unit normal to the surface tollows from (34,9
|
A |
A;:—r”—.\—:':ez 134101
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which confirms (34.3). In view of (34.5.b) and the expressions for Christoffel symbols of the

first and second kind, i.e.,

1, 0A 0Agy OAq
loprl= 3 (GE + 53~ 5

and (34.11)
{a¥p) =a®[af,3]

In view of (34.6.b), it is clear that all Christoffel symbols vanish, i.e.,

[aB.yl = {a¥Yp} =0 (34.12)

Coefficients of the second fundamental form of the surtace are given by

Bag=Agp - A3=-Ag- Azg (34.13)

It then follows from (34.4) and (34.13) that

Bgg = BuB=0 (34.149)

This shows that for an initially flat ply (plate) the components of the second fundamental form of

the surface vanish identically.

Next. we obtain the various kinematical quantities associated with micro and macro contin-

uua ror the case of initially flat composite laminate. From (33.6) it foilows

(34.15)

From (34.15) we obtain
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GQB=R.Q_' RT5=€(X‘€B
Ga=Rg Gy=eq e3=0

G33=G3-G3=e3-€e3=0

or
1 0 O
Gp=1{0 1 0
0 0 1
Also,

G2 = (GyxGr-Ga=(ey xey)rex=1

Moreover, from (33.9), (34.4) and (34.14) we have

Also. from (33.10) and (33.11) we obtain

\,'.fq = “.{(1 = 5‘{(1

and

v=Ddetviy)=u=1
Making use of (34.18), we obtain

G(;u = (;r; : (;.:; =0y QB

G;:z:(;g.'(;g'=(.‘}'e3=1

ar

(34.16.a)

(34.16.b)

(34.17)

(34.18)

(34.19

(34.20)

tsd
=
to
—
>
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1 0 0
Gjp=10 1 0 (34.21.b)
0 0 1
[t then follows that
G'2=(G; xG3) G3=(e;xey) e3=1 (34.22)
By (34.17) and (34.22) we have
(%'_)1/2= l=v=yu (34.23)

which confirms (34.20). In view of (34.2) to (34.4) and (34.23) formulae (33.14) and (33.15)

simplify as follows:

@hopds [Pragr | oo vesikes] 16
o o

31 = 13i be specified by a constitutive relation directly

B = B = [ graBrgr W= [ g0l
SOP = U Jx;ruf;dh_ , s®=g4 JJ;'C £dl (34.24)

where in obtaining formulae (34.24) we have noticed that

=1 (34.25)

where ©"! are now Cartesian components ot the classicul stress tensor.

We recall at this point that because all quantities are now referred to rectancular Cartesian
axes. covariant differentiation with respect to metric tensory Gj; is reduced to parual differentia-

tion with respect to x' (or x,jand no aistinction needs to be made between superscripts and sub-
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scripts. In view of this, expressions (26.30) to (26.32) are reduced to 1

1 = (Ui + u3.) (34.26)
Y =8 +u3 (34.27)
xj = Si,j (34.28)

Finaily, with the help of (34.3) equations of motion for the case of an initially composite lami-

ante are reduced to !

Tiji + Pob; = Poliij + y13) (34.29)
Siji + (PoC; — k)) = Poly'; + y73) (34.30)
EjnTij =0 (34.31)

We observe that in (34.31), €;, is skew-symmetric with respect to 1 and j; hence it follows that

Tij = Tji (3432)

This indicates that in the case of an initially flat composite laminate the components of the com-

posite swess tensor are symmetric. The same conclusion can be reached from expressions

(34.24), 5, 1e.,

Ty = T‘J = l T“di_

in view of the symmetry ot the classical stress tensor.

' In expressions like (34.27) the Greek letters such as o, denote components ot
the director displacement vectors. ¢tc. This should not be contused with the use
of Greek letters as indices 1n various expressions.
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35. Theory of initially cylindrical composite laminates

In this section we continue to apply the theory of Cosserat composite to initially cylindrical

composite laminates.

Consider a composite laminate and let its plies form a set of concentric right circular
cylindrical surfaces. Let x! (i = 1,2,3) and {r.,0,z} denote Cartesian and cylindrical coordinates
with a common origin in a Euclidean three-dimensional space. Let ¢; (i = 1,2,3) and (e,eg.e,}
denote the unit base vectors in the foregoing coordinate systems. respectively. We recall that a

right circular cviinder ot radius r may be defined by a position vector of the form

P=re, + ze, (35.1)

Recailing the relations between the unit base vectors in Cartesian and cylindrical coordinate sys-

tems, L.e.,
e, =cos & e, +sin 0 e,
eg=-sinBe; +cosOer (35.2)
€, =€
we optain
P =(rcos 8)e; + (rsin B)es + zea (35.3)

[t is worth mentioning that sometimes it is more convenient to consider an alternative represen-
taton of the cylindriccal surtace (35.3) as tollows:
P=(rcos %)elursin %‘,e3+ze3 (35.4)

where 5 = 19 is the arclength measured from a tixed point (8 = 0) along the wecuon curve. Letus

now 1niroduce a set of coordinaies 6 (1 = 1.2.3) such that
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Ql=rd ., 02=z , B3=r7 (35.5)
Hence. in terms of 0! coordinates we have
P = (0% cos Dye, + (03 sin & )e, + 62 (35.6)
= '} € 15542 3 .

This representation will facilitate much of the intermediate steps especially in connection to cal-

culation of the various quantities of the surface.

In view of the foregoing expianation, we now adopt the following kinematical assumptons

for an iniually cylindrical composite laminate

R(r,8,z) =re, + ze,
D=As=¢, (35.7)

P*(r.0.2.0) = (r + {)e, + ze,
Making use of (35.5), we can rewrite this

1 ]
R(62.83) = (83 cos %—)el + (63 sin %3-)92 + 02¢4
1 1 Ac o
D=A:=(cos %}—)el +(sin %;—)eg (35.8)
P*(0%.6°.2) = (8% + {ycos S je; + 103 + sin Orjea + 0%
U5 = = L)Cos —8-3-101 + ! ¢)sin ?’- 2 1
The base vectors of the surtace are obtained from (35.8); as follows
Ay = aR

T ypu

Hence we have
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. gl 1
A=Rg = 513' (=63 sin %3-)91 + 513- (83 cos %;)ez

= — (sin %;-)el + (cos %;—)ez = e (35.9)

and

Ay=Rg=e3=¢, (35.10)

From (35.9) and (35.10) we obtain the components of the surface metric tensor Agp

AAaB = Aa * AB
Theretore
A=Ay Ay ={=(sin ey + cos(8Nea] - [~(sin B1)e; + (cos Bea] = !
A12= A2 = Ay Ay ={~(sin B)e; + (cos B)e;] - e3 =0 (35.11.a)
An=Ay - Ar=ey-ex=1
or

1 O] [1 ()] ,
Aag) =10 1| =!LO 1] (35.11.b)
Moreover, we have
AWAL =88, = AW = () (35.12)
Hence.
-1
[1 0 l ()] ac 1a
Auﬁzto 1J ={() 1J (35.13)
The conjugate base vectors ot the suriuce are given by

A= AU,
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Thus,

Al= A”A; + AIZAZ =A|=¢€g
(35.14)
A= A21A1 + A22Az= Aj=ey=e;

The unit normal to the surface follows from (35.14)

_ ApxA, 1 Al 1
Ay= TA AT = TAAT {[~(sinBl)e; + (cosBl)ey] x e3}

or

] . g\ 1
A= A <A {=(sin gy;(el X 1) + (COs %;)(ez x e3)}

! . gl
= ﬁ?r {—(cos -3—3—)61 +(sin %)—)eg}

gl . Y
=(cos @-)ey + (sin gf)e2=e,

We note that A3 could have been obtained from vector product of eg and e,. However, to illus-

trate the general procedure we did not make use of eg und e,. The Christotfel symbols of the first

and second kind follow from (35.11)

[anY] =y {B} =0 (35.16)

and coetficients of the second fundamental form of the surface are given by

BGB = A(IB ’ Al == Aa ' n‘\}_a

hence.
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. @l 1
Byy=Auy - As=[~(sin 2, + (cos Tpdesl, - [(cos Trjey + Gin Se
= l el - (<1 el . el : 91 1 1
) [—(cos @;-)e] (sin 53_)62] [(cos @;—)el + (sin -53-)92] =- o7 ==

, 1 :
Bia=A21 Ay=(e&3); " [(cos %;)e] + (sin %})ezl =0

ov)

. ot 1 1
21 =Ay2 Ay=[—(sin gT)el + (cos -—g-g'e]‘:' (cos (%—)el + (sin %;—)E:] =0

, 1 _al
By =Aaxn- Ax=(e3) 2 [(cos —gj')el + (sin %;)e:] =0

Theretore

( N 3
-1/63 0] l-1r 0
Bap)=| 0 0f=l0 0 (G>17
We also have
Bu[}:AO‘YB-{{s
Hence.
BH:,—\”B”-r-:\lZBn:——l*‘:_'1—
- e) r
B13=‘;\118317A3\13822:()
B:‘. = .»\ZIB“ - ..\33821 =1)
or
l 1 k
—1/83 0] -5 9l 1< ]
(BQB)::Y 0 0l _. ) ()J cAD 10
g J N

Next. we obtain the vanous kinemaucal quantuities associated with micro and macro continua 1or
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the case of initially cylindricai composite laminates. From (33.6) and (35.8) it foliows that

G, = % =- mn—;—)el + (cos 'k )ez =eg
Gz=%§=e3=ez (35.19)
_ JR _, 9! L
Gz = 5—63- = (cos gr)el + (sin e =e

From (35.19) we obtain

. 9! , 1 . B! 1
Gi=G, G, = [—'sm%)el + {cos %3—)62] : [-(sxn—gj-)el + (cos %3-)821 =1

. gl 1
G12=Gy» =G, Gy= [—(sm%)el + (cos %)ezj cex=10)

< ¢ .8l 1 1 . 9!
Gi3=G31=G; Gy = 1—(sm%5-)e1 + (cos %3-)921 * [(cos %—)el + (Sm%}‘)eZ] =0
Gn=G Gy=ey-e3=1

!
G =Gu=Ga Gy=e3-[(cos

. 1
Zyler+ (sin %J-)eglz()

S ! . Al gl 1
Gury=0G1-Ga= tcos 6 ¢ + (SIN —e-] - 0S = ¢ T tsin —T)C’ =1
B =01 Ga=| PRt e 2] - [(cos 5 sin 53 2=

Hence

(G; )= 0 0 (35.20)
[() () |

We aiso have
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G2=(G; xGy) - G

1 l 1 1
= {[—(sin %3-) e + (cos %3—) €] X ez} - [(cos %3-) €] + (sin %3-) e}

= {[(sin %—;—)(—ey + (cos %;-)ell - {(cos %;-)el + (sin %;—)93] =1 (35.21)

Moreover, from (33.9), (35.7) and (35.18) we have

5 = T [—(sin —3-)e1 + (cos -—-3-)8'7] = L+_§. eq

(;:_ ({P) =er1=e, (35.22)
B
;; = 1[:-— = KE,— =[(cos y! ey + Sine‘\)eﬁl =
oo | ot

Also. from (33.10), (33.11) and (35.18) we obtain

Vig= g =0% IR = - CBY
.

ST IO 14

t° r r

\:j_: |
or
(
ST 0 ae A
AR 1 (35.23
N
and
: g 4+ .
v=Dodeuvt) sdenvt ) =u = ‘r_._" (35.24




Making use of (35.22) we obtain

G =Gy -Gy —(ﬁ-c-)z[—(sm 8l)e; + (cos B})e,] - [~(sin B1)e; + (cos Gl)ezj-(e+c )= +C)

G{z=Gz'1=G{-Gz‘—(69+C ){—(sin 61)e; + (cos Bl)ey} - e3=0

Gh=G3 =Gy -Gy = 6 +< —7=)[—(sin B1)e; + (cos B1)es] - [—(cos B1)e; + (sin Bl)ey] =
G2=G3 Gi=e3-es=1
G23=GH=G7 - G3 = ey~ [(cos 81y + (sin B)ey) =

G33=G3 - G7 ={(cos B1e; + (sin B1)es] - ((cos Bl)e; + (sin 61)ey) = |

Hence.

((1+€;/93)’~ 0 0 (1+{r)? 0 0
(Gi;) =10 1 0| =10 1 0 (35.25)
0 0 1 0 0 1
It then 1ollows that
G2 = = {detG: }IP 63+C ) = I+ (35.26)
U) —-9—3-" T -
By (35.21) and (35.26) we have
%_ 1m: C =v=yu (3527)

which confirms (35.24). In view of (33.%) and (33.27) formulae (33.14) and (32.15) reduce 10

— e . 4 * - -~

cudl — pul = e =il = i) 220wy 135.28.)
0 r T Yo r- i

=3 2 M . 5 - e 3 15 ¢

mres] e 2R gl s 2Ty '35.28.b,
0 r T 0 r -
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?°3=10~3=Jm(l+-c~)t'“3d§=v“ (35.28.c)
o r o
Tibe specified by a constitutive relation directly (35.28.d)
2 * 2 C .
! = al =J': (1+ -%-)‘t ayleCdgzrl (1+ ?)21 algdr (35.28.¢)
ha ha 7
02 _ a2 = Lo rar — Loy
22 = ga [O(1+ =)UENALAL = [ (1 + 2)Tdg (35.28.0
hz C
T3 = a3 :_.J'o (1+ _;_)I‘G.N;d); (35.28.g)
$Si=0) or S3=0 (35.28.h)
S - h r
Ki=J 0+ 22g k=] + 2% (35.28.)
(o]
o
=] 1+ Syrag (35.28.))
3 ;12 r * - « C
v :J0(1+-;-)[t 33—(1+-;—)t “-r-JdC_ (35.28.k)

[t is interesting to observe that when tne radius of the cvlindrical laminate becomes large (1.e..

-

when the cylindrical surrace approaches a flat surtace) the value of = hecomes small and may

be nzcglected 1n comparison to unity tideally = approaches zero) and the various expression

obtained in this section will reduce to those obtained for an initially tiat composte laminate.

The relative kinematical measures ¥,, ¥, and Xj; are now given by

—_—

./lJ:_\_(ull;*lJ: 1) (3529)

V=0, + Ui (35.30)
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K= dij

where a vertical bar (1) denotes covariant differentiation with respect to coordinates

B (i = 1,2,3) as specified by (35.5). Moreover, equations of motion are given by

i+ Pobj = Polay + Y1B))

Shi+ (PoCi — k;) = poly'ay + y*B)

where ail components in the above are referred to coordinates 6! (i = 1,2,3).

(35.31)

(35.32)

(35.33)

For convenience and systematic reduction of various results of this section we adopted the

coordinate system (35.5). However, most of the available results in continuum mechanics

regarding cvlindrical bodies are in terms of the cylindrical coordinates r.8,z. [n order 1o write

the relevant results of this section in terms of r,8,z we consider the representation (35.7) and

adopt a system of cylindrical coordinates 1.8,z such that

B'=6 , B82=z , &=r

From (35.7), and (35.34) it follows

Gi=req ., Gar=e, | Gi=e.
and
trd 00 1/rt 0 ())
(Giy=:10 1 0 . GH=10 1 0
0 01 0 0 1
Gl2=r

Moreover. from (25.7); we obtain

Gl=a+ljeg . Ga=¢, . Ga=¢

and

(35.34)

135.35;

'3
wn
(%)

~]

';J
n
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[(H—C)2 00 ) 1/+0)? 0 0
GH=| 0 1 0 (G*iy=| 0 1 0 (35.39)
[ 0 0 1 0 0 1
G112 = (r+) (35.40)
From (33.13), (35.37) and (35.40) it follows
v:g:(%'_)m=_f_r+§.=(1+%) (35.41)

as before. In order to calculate expresisons involving covariant differentiation we need to calcu-

late the Christoffel symbols of the first and second kind. Christoffel symbols of the first kind are
given by

(iK1 = 7 (gji = 2y~ i) (35.42)
The only non-vanishing Chnstotfel svmbols of the first kind are

(311)=r , [131]=r , [l13]=-r (35.43)

Christoffel symbols of the second kind are given by

{,%,) = g"mlijm] (35.44

From (35.43) and (35.44) the only non-vanishing Christorfel svmbols of the second kind are

Wlb=-r . Llsl=T 0 Gl =1 (35.45)

The physical components of the displacement vector u and the director displacement J are given

by
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0y =g~y = (gy)) Pul = ug
Uy = (g22) uy = (g)u? = v,

U3 = (g33)"2u3 = (g33) 203 =y,

8y = (g31)7128; = (g;1)1/28! = 8y
8y = (g20)7128, = (g)'?82 = 3,

O3 = 233)717%83 = (g33)1*8* = &

The physical components of v;; are

., _ 1 dug U
o= T T8 T
du
{zz:'*d%’
_ duy
T Tor
1 aug. 1 au,

_ 1 du,  du, )
T g o
and the physical components ot v, are
. du,  Ug
H= 0y + — - —
0 4 o r
. du,
/I =0, v —
t ‘ Jgz
. du,
N =00t —
Jr

Also. ine pnysical components ot A] are given by

(35.46)

(35.47)

(35.48)
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%2280829 ' 7Q9=—i—%%-’-
7&:=%5r—’ ‘ :{:%i_'

Next, we note that the physical components of the stress tensor and stress couple tensor may be

written as

X 1.
ng:T"TH:?z_ T

(35.5D
~N ' y l
e —_ L - : - - L el — -
iy ™ A = — RN v = = — T,
‘ r - 9 T L2l
| s 1
Ty, =T = - - — 31—
Hr — T = — T3 "= = — Ty
' r Y PR
. .
Tp=1 = T, == Tn
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S22 =8 =522
Sk = 3= $33
(35.52)
—pel2o ! —p2l= 1
Sgz =18 —?312 y S=TS -7521
se,=rsl3=% $13 s,9=rs31=%531
Sy=5B =533, Sp=$F =81
Moreover, the physical components of b, ¢ and k are given by
bp=rbl="Lb, , b=bl=by , b=bl=bs (35.53)
c9=rc1=%c1 , ¢,=c¢t=cy , ¢ =cd=cy (35.54)
k9=rk1=%k1 L k,=kizky , Kk =K} =k; (35.55)
Also. from (25.461 and (35.47) we have
. C .. \ . . ve =
Ug=rat = T Ay, U=0-=u . U= = (32.201
and
- ! - S Q 1 g 2§ 57
Sp=rdl==P0y . 5, =p=p . &=p=p 133.57

T

where a superposed dot denotes partial differentiation with respect to time. With the help ot

3551 to 35.57) we are abie 1o reduce the equations of motion (25.32) and (33.231 10
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‘*‘% 59 + Oi‘ + + Poby = po(ur'*'vlar)

i;& -+ —a—at"" + = Tor + Pobe = Poliie + y'8p)

%, L2 2, 2n o b, = polis + 15y

and

1 a aS' < -3 . e
?r_+7 _0%9_-,'- d; i T = +(Poly — Kp) = Polyl, + y<0,)

d o J ) . i
?Sﬁ+ i ﬁbge_ _Z_f.’.‘-a--—\er'f'(pOCe—l\e) po(y‘uef.v*og)

ﬁ_-___*~_~+_;i'( c,—k,)=p.(yviu +v38)
or T 09 0z T T {PoCy 2) = Poly'u, + v=0,

(35.58)

(35.39)

where in obtaining (35.58) and (35.39) we have also made use of the expression for covariant

differentiation of a second order tensor.
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36. Comparison with the available theories

The use of advanced composite materials in aerospace and other related industries is
rapidly increasing. This is due to significant advantages offered by composite materials in terms
of efficiency and cost. A widespread application of composite materials requires a detailed and
reliable knowledge of their physical properties and their behavior under the applied loads. One
of the important subjects in this field is the development of a theoretically sound generalized
continuum model for composite materials in general and for composite laminates in particular.
There are a number of different theories that attempt to model the behavior of composite lam-
intes. These theories make use of a variety of approaches from analytical to numerical and from
discrete modeling to continuum modeling. It is the purpose of this section to present a com-
parison between the theorv developed in the course of this research project with the available
continuum theories. To this end we first recall the main features of the present theory and then

we proceed with a rather detailed comparison.

We record below the main features of the present continuum theory which will be reterred

to as "Cosserat composite theory.”

1) It accounts for the etfect of micro-structure.

In the present theory the motion of each material point P of the compoesite laminate 1s deter-

mined by two vector functions of position and time

r=r6'yt) , d=d01) , 1=123 (36.1H

where r 15 the position vector of the matenal point P and d. called a director. is a deformable

vector tunction assigned at each material point P of the composite representing the etfect ot

micro-structure in the continuum. In other words. in the present theory a material point (parti-
cle). in addition to its mass. 15 endowed with a director (structuring). The kinematics and field

quantities associated with the micro-structure are determined by d and its space and time
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derivatives and through relevant field quantities associated with the director d.

b) Itaccounts for the effect of geometric nonlinearity.

The vector functions r and d in (36.1) which determine the motion of the composite lam-
inate represent finite quantities and are not restricted by any explicit or implied smallness

assumptions. The complete theory presented in the course of this investigation has been

developed totally in the context of the nonlinear theory.
¢)  Iraccounts for the effect of material nonlinearity.

The development of the constitutive relations in the present theory has been carried out in
the context of nonlinear theo-y. The same is true for the development of the constraint theory of
composite laminates. !* should also be mentioned that although we have confined our attention
10 elastic compnsite laminates, theory is not restricted to only elastic materials and other types of

materials /viscoelastic, plastic, etc.) can be treated as well.
d)  Traccounts for the etfect of curvature.

The present theory has been developed with no restriction placea on the geometry of com-
posite laminates. Hence, any type of initially curved composite laminate may be treated by the
Cosserat composite theory. The specific cases of composite laminates such as laminated compo-
site piates. laminated composite cylindrical shells, ctc.. are obtained as special cases of the

present theory without any prior assumptions.
¢)  Itaccounts tor the etfect of interlaminar stresses.

In the present theory the intelaminar stresses are incorporated into the tormulation of the
:heory in a natural and consistent manner and without any ad hoc assumptions. The three com-

ponents of the interlaminar stress vector (i.e.. one normal component and two tangential or shear
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components) can be extracted from tne theory. This makes the theory applicable to problems
involving delamination and edge effects in composite laminates both of which are considered

extremely important.
f) It has a continuum character

The Cosserat composite theory possesses a character similar to that of the classical three-
dimensional continuum mechanics. In particular the theory is represented by a set of conserva-
tion laws which are expressed in a coordinate-tfree notation. Consequently the form of the con-
servation laws are not changed under a transtormation of the coordinate system. None of the
available theories have been shown to exhibit this characteristic. From the conservation iaws, in
a systematic manner similar to classical continuum mechanics, we can obtain a set of basic field
equations (local forms of equations of motion). The stress vector and stress couple vector in this
theory exhibit similar characteristics to the stress vector in the classical continuum mechanics.
The symmetry of the composite stress tensor does not hold as expected due to the presence of
other field quantities. In the absence of the micro-structure when the composite laminate 1s
reduced to a classical continuum body (i.e., d = 0) the conservation laws and their local forms
are reduced systematically to those of the classical continuum mechanics and the symmetry pro-
perty of the stress tensor is recovered automaticailv. The bounaary conditions in the present

theory are concise mathematically and are also clear from a physical point of view.

) ltis appiicable to both static and dvnamic problems.

as

Practically all continuum theories developed for composite laminates are eventually formu-
lated in terms of displacements and aimed towurds dynamic problems. Hence these theories are
not normally capable of treating static problems or those with stress or mixed boundary condi-
:ions. The Cosserat composite theory does not suffer from such deficiency and without any

further reformuiation is capable ot hanaling both static and dynamic problems.
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h) Itcan be generalized to treat probiems with more than two constituents.

The Cosserat composite theory developed in the course of this study is, like all other con-
tinuum composite theories, applicable to a composite laminate with two constituents (bi-
laminates). However, due to choice of the configuration chosen for the representative element
(micro-structure) and due to the coordinate systems adapted, this theory can be further general-
ized to include composite laminates with any number of constituents. The extension from bi-
laminate constituents to multi-laminate constituents in the available theories is not present in

most available theories and for those that this generalization is possible, the resulting theories

become extremely complicated.

Considering items (a) through (h) above, as a general assessment, it shouid be clear that
there exists no single theory possessing the above characteristics collectively and at the same
time having the relative simplicity of the Cosserat composite theory. Even in the cases where
the available theories share some (but not all) of the above properties the Cosserat composite

theory offers more generality and perhaps less complexity.

We now proceed to compare the Cosserat composite theory with some of the available
theories. The conservation luws for composite laminates were summarized in section (17) and
various field quantities were defined in that section. Also the compicte theory or elastic compo-
site laminates was recapitulated in section (23). In what tollows we will frequently refer to these

sections.

I) One of the eariiest and rather elegant efforts in the field of composite materials is due to
Sun. Achenbach and Herrmann in which they developed a linear continuum theory tor a compo-
site laminate. In their work, instead of introducing a representative homogeneous medium by
means of "effective moduli.” representative elastic modul: were used for the matrix. and the elas-
tic and geometric properties of the reinforcing elements were combined into etfective sutfnesses.

With the aid of certain assumpuons regarding the deformation of the reinforcing elements and
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o

by emploving a smooth operation, approximate kinetic and strain energy densities tor the com-
posite laminate were obtained. By a subsequent application of Hamilton's principle to the
expression for total energy of the composite, the displacement equations of motion were then
obtained. In this effective stffness theory the displacements of the reinforcing layers and the
matrix layers were defined as a two term expansion about the mid-planes of the layers. The
basic premise of effective stiffness theory is that a smoothing operation may be employed to
replace the discrete layers of the laminate by a continuous medium. In other words the smooth-
ing operation is a special assumption introduced so that a sum of discrete points can be replaced

(mathematically) by an integral. This theory later was used to study the harmonic wave propa-

gations in a laminated composite.

We now make a comparison between the effective stiffness theory of Sun. Achenbach and

Herrmann with the Cosserat composite theory (CCT).

1) The Cosserat composite theory is a nonlinear theory whereas the etfectve stiffness

theory is linear.

2) The Cosserat composite theory is a general theory applicable to any tvpe of curvature
while the effecuve stiffness theory is a special theory which is applicable 1o a flat composite

laminate only.

3) The Cosserat composite theory is characterized by a set of well defined and coherent
conservation laws (global-field equations) which are coordinate free and hence invanant under
the transformation of the coordinate system(s). In contrast. the etfective stiffness theory does

not otter any conservation laws at all.

4) The Cosserat composite theory offers a formulation which is analogous to those of the
classical continuum mechanics. In particular the local torm of the basic field equations (equa-

tions of motion) are derived svstematcally from the conservation laws. The resulting equations
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are in terms of various field quantities (i.e., stress, stress couple, etc.) which can easily be
reduced to a system of displacement equations of motion. On the other hand, the effzcave suft-
ness theory offers a formulation which is based on ad hoc assumptions and it entirely in terms of

the displacement variables and hence is only capable of treating a special class of problems.

5) Because of generality of its formulation the Cosserat composite theory is capable of
rreating problems with stress, displacement or mixed boundary conditions. However, the appii-
cability of the eftcctive stiffness theory seems to be limited 1 proticms involving displacement

boundaryv conditicas only.

6) The Cosserat composite theory is capabie of determining stresses. swess coupies and the
interiaminar stresses while in the etfective stiffness theory the interlaminar stresses are not

present.

7) The process of extension trom the representative element to a continuum model in the
two theories may be considered to have some conceptual or physical similarities. but are not the
same. However. from a mathematical point of view in the effective stiffness theory the smooth-
ing process is a special assumption whereas in the Cosserat composite theory the same type ot

resuits 1s obtained through a limiting process.

Il The basic concepts involved in the derivation of the linear etfective stiffness theory
were used by Grot and Achenbuch to derive an approximate nonlinear theory to describe the
mechanical behavior of a laminated composite consisting ot alternaung layvers ol homogeneous
materials. The theory is hased on two-term expansions of the motion across the thicknesses ot
the undeformed layers. The system of governing equations for the homogeneous conunuum
model of the laminated medium are derived in two stages. The first stage of the derivation
involved certain assumptions and operations within the discrete system of lavers. In particular. it
was assumed that the motions of the individual lavers can be described by two-term expansions

n the local coordinate normai to the luvering of the undeformed body. The kinemauc vanables
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that were introduced in the expansicns were defined at the midplanes of the lavers only. The
local equations of linear momentum and moment of momentum for the individual lavers were
obtained by integration of the classical three-dimensional continuum mechanics across the thick-
ness of the undeformed layers. Next, the definitions of average stress and couple-stress were
introduced which were defined in discrete planes only. The stresses and couple stresses were
then related to the relevant kinematical quantities through stress potentials which were obtained
by integrating the local stress potentials across the undeformed thicknesses. In the second stage
of the derivation a transiton was made from the system of discrete lavers to the homogeneous
continuum model. The transition accomplished by essentially following the same line of argu-

ment used in the linear etrective stitfness theory.

We now make a companison between Grot and Achenbach theory (GA theory) with the

Cosserat composite theory.

1) Both theories are nonlinear and hence are applicable to large deformations.

2) The Cosserat composite theory is a general theory applicable to any type of curvature

while GA theory is applicable to flat composite laminates only.

3) The Cosserat composite theory is based on a set of well derined and coherent global
principles (conservation iaws) which are coordinate 1ree and hence are invariant under coordi-

nate transtormations. In contrast. GA theory does not offer a set of conservation laws at all.

4) The Cosserat composite theory offers a systematic formulation similar to those of the
classical continuum mechanics. The GA theory is also systematic (to some degree): but 1t is

based on ad hoc assumptions.

3y The Cosserat composite theory is formulated in terms of zeneral convected curviiinear
coordinates in the present configurauon resuiting n simpler expressions. The transtormaton

“etween tne present (detormed) and the reference tundeformed) configuranons 1s ciear and well

BASE




2229

defined. On the other hand. the GA theory is formulated in terms of field quantities defined in
the reference (undeformed) configuration. The counterparts of the equations in the present

configuraton are not given. It should be mentioned that in the case of large deformations this

latter formulation becomes important.

6) The Cosserat composite theory is applicable to laminates with variable mass densities
(i.e., the mass densities of the constituents may be variable). On the other hand, in the GA

theory the mass densities of the constituents is assumed to be constant.

7) The Cosserat composite theory rigorously establishes the existence of interlaminar
stresses and accounts for their etfect in the global and local field equations. In the GA theory,
although these stresses appear in the equation for linear momentum but it is the consequence of a
special assumption. The GA theory did not refer to these stresses as interlaminar stresses and
did not elaborate on the nature of these stresses. Nevertheless, the assumptions that led 1o the
existence of these stresses in the linear momentum equation, resulted in two equations, one for
each of the constituents. These equations involve both the average stress couples across the

thickness of the layers and stresses (ordinary three-dimensional) within each layer. This does

not seem to be consistent.
%} A remark simtlar to that in (I-7) above also holds in this case.

The etfective stiffness theory was later generalized. in the context of linear theorv. where
the displacement components were expressed in terms of Legendre polynomials. In this work
Aboudi imposed the condition of continuity of displacement and stress components between the
adjacent layers where all the continuity conditions were satistied pointwise throughout the com-
mon boundary of the adjacent luyers. Aboudi's formulation is more complicated than that of
Achenbach et al. and hence luss manageable. Aboudi has expanded on his theory and has been
able to apply the theory to nonelastic laminated composites. Because of similarities of the main

‘eatures of Aboudi's work ana eitective suffress theory of Achenbach. the same comments (1
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through 7) are applicable to Aboudi’s work too.

III) Very recently, Blinowski has recognized the need to formulate a continuum theory for
composite laminates with curved layers. He has also commented on the lack of clarity about
boundary conditions in the literature. Indeed, except for Blinowski’s paper, the authors were not

able to name any references dealing with curved geometry.

In his theory, Blinowski considered a nonlinear continuous mathematical model of a
discrete laminated composite composed of a family of initially curved and parallel surfaces.
Making use of a set of curvilinear coordinates he defined the kinematical variables and
deveioped the various kinematical relations. Next, from the assumption that the elastic energy 1s
a function of macro-deformation and the curvature variation of a family of initially parallel sur-
faces he obtained a quasi-static equation or equiiibrium. These equations which involve resul-
tant forces and resultant moments do not contain any dynamic terms. Blinowski stated that the

set of equations derived describe a particular case of the Cosserat medium.

We now proceed to compare the Cosserat composite theory with the theory developed by

Blinowski.

a) In the Cosserat composite theory the kinematical measures are clear and concise: in par-
ticular the director is clearly defined to be a deformable vector field which represent the effect ot
micro-structure. [n contrast, the kinematic variables in Blinowski’s theory are more complicated

and the director is not clearly defined and implicitly assumed to be the normal to the surtace.

b) In the Cosserat composite theorv varus tield quantities corresponding to the composite
laminate are concisely defined and the relations betwen micro-structure tield quantites and those
of macro-structure as well as their physical nature are logical and clear. In contrast. this clarity
does not appear in Blinowski's theory and the correspondence between micro- und macro-

structural quantities is not explained. In parucular, stress vector and coupie stress vector are
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introduced by special assumptions which are motivated by Cauchy’s postulate on stress in classi-

cal condnuum mechanics.

c) In Blinowski’s theory body couple density is not defined and does not appear in the
equations of motion. Also the inertia terms are absent in the equations of motion. In addition,
the principle of director momentum does not exist, and the role of the director is totally obscure.
Although it is stated that the theory is a special case of the Cosserat surface theory of Green and
Naghdi. the correspondence has not been shown. In contrast. these problems in the Cosserat

composite theory do not occur and the correspondence to the Cosserat surface theory 1s abso-

lutely clear.

d) It should be emphasized that Blinowski's theory, which is appropriate for bending, 1is

the only theory that considers the effect of the curved geometry.

IV) Recently, a mixture theory for linear elastodynamics and periodically laminated media
has been developed by Murakami et al. in which they introduced the concept of the director. In
this theory the asymptotic method of multiple scales was used to construct a continuum theory
with micro-structure for linear elastodynamics of a periodically laminated medium. The result-
ing theory is in the form of a homogeneous binary mixture theory of micromorphic materials
with a common director oriented normai to the interfaces. The construction of the model was
based upon the observation that. along a direction normal to the laminae. there are two length
scales over which significant variations in displacement and stress profiles occur and that these
scales differ by at least one order of magnitude in most problems of practical interest. The very
important assumption of the theory is the periodicity of the medium under consideration. .33
pointed out by the authors. 'the analysis may be valid only at points sufficiently far removed
from the boundaries of the domain in which the solution to be obtained.” This entails the fact
‘hat the theory is applicable to the problems in which the boundary conditions are not of primary
importance. The basic tield equations as well as the constitutive relations were obtained by an

.verazing operaton. The model contains nine basic tield equatons, six for the linear moment:
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of both constituents and three for the director momentum. The constitutive relatons are

obtained asymprotically and with the help of the periodicity assumpaon.

We now proceed to compare the mixture theory of Murakami with the Cosserat composite

theory.

1) The Cosserat composite theory is a nonlinear theory whereas the mixture theory of

Murakami 1s linear.

2) The Cosserat composite theory is a general theory applicable to any tvpe of curvature
while the mixture theory or Murakami is a special theory which is applicable to a flat composite

laminate only.

3) The Cosserat composite theory offers a formulation which is analogous to those of the
clussical continuum mechanics. In particular. the Cosserat composite theory is characterized by
a set of well defined global conservation laws from which the local basic field equations are
obtained systematically. In contrast the mixture theory of Murakami does not offer any global
conservation laws. Hence. no conclusion may be reached regarding the character of various field

quantities of the theory.

4) The use of the asymptotic method and the assumption of periodicity places an important
restriction on the theory and makes it inadequate in the vicinity of the boundaries of the domain
tat least in the direction of layering). Therefore the theory cannot be applied to problems in
which the boundary conditions are of primary importance. In addition, when the material is not
periodic (i.e., variable thickness plies) the theory becomes invalid. In contrast. the Cosserat
composite theory is not restricted to the periodicity of the medium and can treat problems with
variable thickness plies. Moreover. any type of houndary condition may be treated by the Cus-

serat composite theory.
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5) The conservation of moment of momentum does not exist in the mixture theory of
Murakami. In addition, equations of motion do not contain terms involving body force and body
couple densites. The term called "interaction (body) force vector” which appears in the linear
momentum equations does not exhibit the character of a body force density in the sense of the
three-dimensional continuum mechanics. On the other hand, the Cosserat composite theory
offers the moment of momentum equation and it also accounts for the effect of body force and

body couple in the continuum.

6) In the Cosserat composite theory the nature of the various field quantities are quite clear,
both physically and mathematically, while in the mixture theory of Murakami the physical
nature of some of the tield quantities is obscure. In particular, the term called "interaction
(body) force vector” in their theory does not have the character of the body force. It may be
shown or justified that this term is related to interlaminar stresses. However, this fact does not

seem to have been recognized and emphasized in the development of the theory.

V) Another continuum theory attempting to describe the behavior of composite laminates
is the multi-continuum (or diffusing continuum) theory of Bedford and Stern which is one of the
earliest etforts in this field. Bedford and Stern developed a thermomechanical theory for compo-
site. materials in which the composite constituents were modeled by individual superimposed
continua which may interact thermally and mechanically. The main ingredient of the theory is
that each constituent is admitted to undergo an individual motion. The mechanical interaction
between the individual constituent motions then provide a means of including composite struc-
tural effects in the theory. The mechanical interactions between the continua depend on the con-
stituents relative displacements. This theory, which was developed in the context of nonlinear
theory, considers each consutuent individually which interact with other constituents only
through an interaction term 1n the form of a body force entering into equations of motion of each
constituent. However. there 15 no tield equation tiocal or global) offered for the composite as a

whnole. Similarly, field quantities such as resuitant stresses. etc.. are not defined and do not plav
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any roles in the theory. In this respect the theory seems to lag behind the effective stffness
theory and the mixture theory of Murakami. In addition, the correspondence between the field
quantities of the constituents and the composite as a whole is not defined and explained in this
theory. In general terms, this theory seems to place the emphasis on the continuum character of
the individual constituents, while the composite Cosserat theory and the theories discussed ear-
lier not only account for the continuum character of the constituents but also attempt to consider

the continuum character of the composite laminate as a whole.
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37. Conclusion

In the course of this investigation we have successfully developed a coherent contnuum
theory which is represented by a set of well defined conservation laws (global field equatons)
predicated on physical observations. The theory is complete. physically sound, and mathemati-
cally accurate. At the same time the theory enjoys characteristics similar to those of classical
continuum mechanics and most of the techniques available in the classical three dimensional
continuum mechanics may directly or with some modification, be applied to the present theory.
Due to the use of Cosserat surface theory in development of the present theory we have
appropriatelv named it as "Cosserat composite theory”, after E. & F. Cosserat. We have demon-
strated that within the context of purely mechanical theory the Cosserat composte theory exhibits
the following features.

a) It acconts for the effect of micro-strctures.

b) It accounts for the effect of geometric nonlineanty.

c) Itaccounts for the interlaminar stresses and therefore delamination can be considered.

d) Itis capable of incorporating the effect of material nonlinearity.

e) Itacccunts for the efrect of curvature.

f) It possesses a continuum character.

) It is applicable to both static and dynamic problems.

ra

In addition. it is evident that the theory may further be developed to account for the effect of

temperature. The theory may also be generalized to treat muiti-constituent composite laminates.

In view of the above discussion it is clear that at the present time no other single theory
offers the collective characteristics and the relative simplicity of the Cosserat composite theory.
This maxes the theory the ideal tool for treating the various problems concerning composite lam-
inates. A proposal for further development of the theory, as mentioned in section 1. Jiscusses

“uture developments in detail in phase Il of the present research.
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FIGURE |

A CONTINUUM BODY WITH A SURFACE OF DISCONTINUITY
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FIGURE 2

A TYPICAL SHELL-LIKE BODY
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FIGURE 3

A COMPOSITE LAMINATE CONSISTING OF ALTERNATING LAYERS OF TWO
MATERIALS
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FIGURE 5

AN ARBITRARY PART OF A COMPOSITE LAMINATE
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FIGURE 6

A CURVILINEAR TETRAHEDRON OF A COMPOSITE LAMINATE

BASE




