
219800-1 0-T

Programmer's Manual

MAX VIDEO NEIGHBORHOOD
cv PROCESSOR PIPELINE (MVNPP)

N
N

R.J. HORNER
I JULY 1990

* DTIC
AUG 0 11990

Prepared for:
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-5800

Contract No. 42-3638

P.O. Box 8618R IM Ann Arbor, MI 48107-8618

90 0? .12

TECHNICAL REPORT STANDARD TITLE PAGE
219800-10-T. 2 Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Date

July 1990MAX VIDEO NEIGHBORHOOD PROCESSOR PIPELINE 6. Performng OranzatonCode
Programmer' s Manual ERIM

7. Author(s) 8. Performing Organization Report No.
Robert J. Horner 219800-10-T

9. Performing Organization Name and Address 10. Work Unit No.

Environmental Research Institute of Michigan
P.O. Box 3618 11. Contract or Grant NO.
Ann Arbor, HI 48107-8618 42-3638

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Programmer's Manual

Scandia National Laboratories Sept. 1989 - Dec. 1990
P.O. Box 5800 14. Sponsoring Agency Code

Albuquerque, Nil 37185-5800

15. Supplementary Notes

16. Abstract

This manual describes the functional capabilities and programming of ERIM's Max
Video* Neighborhood Processor Pipeline (MVNPP) board. It is intended for the user who
wishes to understand the MVNPP's purpose and functionality, and the system programmer

who must have detailed information on control registers and operation in order to operate
the MVNPP effectively.

The manual is organized into four chapters and an appendix. In Chapter I, a high-level
description of the MVNPP functions is given. Chapter II is devoted to describing the status
and control registers that constitute the software interface to the MVNPP. In Chapter III,
programming examples of common system functions are presented. Chapter IV details how
to configure the MVNPP for inclusion in different image processing environments. Appendix A
details differences between multiple versions of the MVNPP, which affect the operation or
programming.

This manual describes only MVNPP board operation and programming. For details of
programming the Cyto-IISS stages, see the Cyto-IISS Stage Programmer's Manual (ERIM
document number IPTL-89-294). Programming of a complete system including the MVNPP
board will be broadly discussed, but for detailed information concerning programming of
other boards please see the appropriate board programmer's manual.

Max Video is a trademark of Datacube, Incorporated

17. Key Words 18. Distribution Statement

Computer Programming Approved for public release;
Programming Manual distribution is unlimited.

19. Security Classtf. (of this report) 20. Security Classif. (of this page) 21. No. of Pagtes 22. Price

29
Unclassified Unclassified

CONTENTS

Figures iv

1.0 FUNCTIONAL DESCRIPTION 1
1.1 VMEbus Interface 1
1.2 Maxbus I/O Interface . 3
1.3 Maxbus Programming Interface 4
1.4 Cyto-HSS I/O Interface....... 4
1.5 Cyto-HSS Stage Backplane Interface 4
1.6 Neighborhood Processor Stage Pipeline 5
1.7 Status and Control Registers 5
1.8 Multiple Board Cascading 5
1.9 MVNPP Latency 6

2.0 STATUS AND CONTROL REGISTERS 7
2.1 Status Register 7
2.2 Control Register 9
2.3 Line Length Count Register 10
2.4 Pipeline Programming Data Register 10
2.5 Pipeline Image Data Register 11
2.6 ROI Image Transfer Timing Control Registers 11
2.7 CLbus Timing Control Registers 12

3.0 PROGRAMMING EXAMPLES 13
3.1 Example 1: Sizing the Pipeline 13
3.2 Example 2: Programming the Stages Over the VMEbus 14
3.3 Example 3: Image Circulation Over the VMEbus 14
3.4 Minimizing VMEbus Image Circulation Time 16
3.5 Example 4: Cyto-HSS Image Circulation 16
3.6 Example 5: Maxbus Image Circulation 16
3.7 Example 6: CLbus Programming of the Pipeline 17

4.0 MVNPP CONFIGURATION 19
4.1 Internal Board Configuration 19
4.2 Connector Functions 21

Appendix: Revision Dependent Information 27

,II

FIGURES

1. MVNPP Block Diagram 2
2. MVNPP Control and Status Registers 8
3. MVNPP Board Configuration Locations 20
4. MVNPP Connectors P9 and PLO Pinouts 22
5. MVNPP Connector P2 Pinout 23
6. MVNPP Maxbus Connector Pinouts (P3 Through P6) 24
7. MVNPP Connectors P7 and P8 Pinouts 25

Acc --

f A-
L i" i A> jL

B y

Distr ,t)-ti m I

OiM

iv I

1.0 Functional Description

The CytocomputerMVNPP is a low-cost hardware module that allows cellular logic image
processing to be added to almost any VMEbus system. In particular, the MVNPP is compatible
with the SUNtm family workstations, Datacube Incorporated's Max Video bus family of
boards, and ERIM's Cyto-HSS image processing workstations. The Cytocomputer MVNPP
includes the following capabilities and functions:

* Parallel processing of eight-bit images at over 16,000 MIPS equivalent
performance.

* Ability to process images up to 2048 pixels wide and any length.

* A pipeline of up to 16 Cyto stage processors.

* Maxbus input and output ports for the pipeline.
* Full Region Of Interest (ROI) timing support.

* High-speed Maxbus-based programming of the processors.

* A Cyto-HSS image bus interface to the pipeline.

e A Cyto-HSS stage backplane interface to the pipeline.
* Direct VME bus access to the pipeline.

* A diagnostic port with full VMEbus access to stage control signals.

* Support for high-speed image transfers over the VMEbus.

* Simple cascading of multiple MVNPP modules.

The MVNPP may be used with ERIM's C4PL interactive image processing language to ac-
celerate image processing over a software only implementation. It may be plugged into a
Cyto-HSS workstation to provide long pipelines fr operation with C4PL. The MVNPP can
also be programmed and operated directly from "C" or other conventional languages in a
Max Video environment.

Figure 1 is a block diagram of the MVNPP. The board combines multiple interfaces with
a 16-stage pipeline to provide the high-speed processing advantages of Cyto technology to
the most common VMEbus image processing configurations. For example, the Maxbus in-
terfaces integrate the MVNPP into a widely used high-performance image processing system.
Similarly, the Cyto-HSS interfaces allow the MVNPP to be used in ERIM's Cyto-HSS work-
stations. Finally, the VME data interface allows any computer with a VMEbus interface to
efficiently program the stages and pass images through the pipeline. The following sections
describe the MVNPP functional blocks in detail.

1.1 VMEbus Interface

The VMEbus interface provides direct access to the stage pipeline, as well as control
and status registers that can select and operate the high-speed interfaces to the pipeline.

1

x

__ _a__ to (

Co r

6~ A

E

0

o 0 75C
L Ca

CL

CL 0)

wQa a, (D) (D, U, a c
:::. C C D,~ CCU (n0C

(D CSo 0 0 C.)

0) = m ca = -2

The VME interface conforms to the Rev.C bus specification and contains an A32/A24/A16
and D32/D16/DO8(EO) slave responder. Only the pipeline image data port, however (see
section 2.5), can be usefully accessed in any data width other than D16. Any byte or either
word of the image data port may be accessed, as well as the entire long word. Accesses to
any register except the pipeline image data port must be by word only to ensure correct
operation.

The VME image data interface to the pipeline is designed to minimize the image circu-
lation time through the pipeline. Long-word access is supported to provide the maximum
bandwidth over the VMEbus, but byte and word accesses may also be used for images that
are not long-word aligned. Also, a counter automatically generates the stage control signals
required during an image circulation so that the processor need only write and read the
image data. Finally, a first-in-first-out (FIFO) buffer is placed at Lhe end of the pipeline.

The FIFO is 4096 pixels deep and can, therefore, hold at least two lines of image data
even at the maximum supported line length. This allows a CPU to utilize built-in fast-move
instructions to write an entire line of the image to the pipeline and then read an entire line
from the pipeline, rather than having to write a byte and then read a byte. A two line
FIFO is necessary to ensure that whole lines may be written to the FIFO even if the latency
through the pipeline is not a multiple of the image line length.

The VMEbus interface to the pipeline takes precedence over all other (high-speed) in-
berfaces to the pipeline. If another interface is enabled and a VME access of the pipeline is
al tempted, the other interface is temporarily disabled and the VME access procceds. This
could easily corrupt an image transfer that may be occurring on the other interface when
the VME access begins. For this reason, the user must take care when accessing the pipeline
from the VMEbus. In general, no VME accesses shcuAd occur while another interface is trans-
ferring an image through the stage pipeline. This should not cause a problem because a
single program would generally control all the high-speed processing boards in the system
and the programmer would obtain status from, for instance, the high-speed memory board
if a processing cycle has been initiated.

1.2 Maxbus I/O Interface

The Maxbus image I/O interface allows images to be passed through the Cyto stage
pipeline on the MVNPP at a rate of 10 Mpixel/second. The interface provides all the logic
needed to support Maxbus Region Of Interest (ROI) image transfers on the input and output
data paths. Any of the four Maxbus ROI timing sources may be selected to control the
interface. Four 12-bit counters define the image position relative to the Maxbus HSync" and
VSync" timing signals (see the Datacube ROIStore manual for details of ROI timing).

A FIFO is also connected to the end of the stage pipeline during Maxbus image transfers.
This FIFO provides pipeline latency compensation needed to connect the stage pipeline into
a Maxbus system. The latency effects of the FIFO will be discussed in Section 1.9 on the
MVNPP latency.

3

1.3 Maxbus Programming Interface

This logic connects a high-speed coefficient loading bus (CLbus) to the stage pipeline to
allow high-speed programming of the stages. The CLbus is based on the Max Video ROI
data transfer. Two 8-bit Maxbus data paths are used to supply the 11 bits (8 data and 3
control) needed to program the stage pipeline at one 11-bit word per ROI clock. The stage
programs maybe stored in a ROIstore as 16-bit words and loaded into the pipeline with a
single ROI image transfer cycle. The MVNPP CLbus interface allows selection of any one of
the four ROI timing buses to control the stage program data loading. Four counters in the
CLbus interface (similar to the Maxbus I/0 interface counters) select the valid programming
data on the ROI data bus during a program transfer.

1.4 Cyto-HSS I/O Interface

This interface circuitry allows the MVNPP to be directly connected into a Cyto-HSS
system card cage in one of the VMEbus slots. Pipeline input comes from the Port board via
a front panel cable. Likewise, the pipeline output goes to the Combiner board via a front
panel cable. However, unlike previous generations' processing stages, the MVNPPs does not
need to plug into a separate stage card cage; they can reside in any open VMEbus slot.

There is one minor hardware incompatiblilty when using the MVNPP connected directly
to the Port and Combiner (i.e., not in a stage cardcage). One of the low-level test capabilities
of the Combiner allows back-driving the pipeline output cable to test the Combiners pipeline
receiver logic. Test software that utilizes this feature must be modified to explicitly disable
the MVNPPs output drivers before running the test. This may be done by selecting the
VMEbus interface to drive the pipeline (see Section 2.2.4). The existing Cyto-HSS stages and
Combiner performed this function implicitly but the method used is incompatible with the
cascading logic needed to connect multiple MVNPP boards together in a VMEbus card cage.

The Cyto-HSS I/O circuitry also allows multiple MVNPP boards to be physically cascaded
and logically treated as a single board with a longer pipeline. This cascading is effective
whether the pipeline is driven from the VMEbus, the Cyto-HSS interface, or the Max Video
interfaces. Pipeline data 'and control lines daisy-chain from one board to the next (intcrnaT
to the cascade set) via Cyto-HSS connectors. Section 1.8 provides a more detailed discussion
of the MVNPP board cascading features and restrictions.

1.5 Cyto-HSS Stage Backplane Interface

This interface allows the MVNPP to be operated from a Cyto-HSS stage backplane. The
MVNPP is indistinguishable in software from 16 chip stages on separate boards. If the chip
stage command extensions are not used, the MVNPP is indistinguishable from 16 gate array
based stage boards. This allows the existing Cyto-HSS workstations to be used for high-speed
testing of the stages on the MVNPP via the HSNPSTP test software. This also allows longer
pipelines to be implemented in the Cyto-HSS workstations.

4

1.6 Neighborhood Processor Stage Pipeline

This section implements up to a 16 stage pipeline with the associated stage line-delay
memories. Twelve of the 16 stages are installed on a daughter card attached to the main
MVNPP board. The daughter card may be removed and the connection bypassed to allow
operation with fewer stages. Likewise, either the mother or daughter card maybe partially
populated with the jumpers bypassing the absent stages.

1.7 Status and Control Registers

The control and status registers provide overall control of the pipeline board and mon-
itoring of error and other status information. These registers are described in detail in
Chapter II.

1.8 Multiple Board Cascading

The cascading logic of the MVNPP has a simple goal: to make the system programmer's
job easier. The circuitry works to ensure that there is no way (in software) to distinguish an
N-board cascaded set from a single board with N * 16 stages. To achieve this, several board
configuration requirements must be met:

1. All boards must be configured at the same VMEbus address.

2. All boards of the set must be daisy-chain cabled together using the Cyto-HSS
I/O connectors (see Section 4.2).

3. For Max Video I/O, all boards must be connected to the same ROT timing cable.

4. For either Max Video or Cyto-HSS I/O, the input and output cables must be
connected to the first and last boards of the set respectively,

Detailed descriptions of the MVNPP connectors can be found in Chapter IV. The above rules
follow naturally from the idea that a cascaded board set is equivalent to a single board with
a longer pipeline. The daisy-chain cables and common VMEbus address form a cascaded
board set. The other rules ensure that the cascaded pipeline input and output are correctly
connected.

The cascading logic functions by altering the selection of the data I/O to/from the
pipeline on a given board, depending on whether the board is at the beginning, middle,
or end of the cascaded pipeline. The logic also controls accesses to the VMEbus accessible
registers to ensure that register writes occur on all boards, but reads only return data
from the last board. Additional logic ensures that the last board contains all the valid
status information. Therefore, software will only see one set of MVNPP board registers, and
identical programming for a single board and a cascaded board set will function identically
(software will, of course, have to take account of the longer pipeline present and alter the
stage programming accordingly).

5

1.9 MVNPP Latency

The latency of the MVNPP is a complex function that includes components from both
the stage chip pipeline and the board logic external to the stage chips. The Cyto stage
chip exhibits a latency of one line plus 17 pixels when processing an image and only two
pixels when processing commands or when deactivated. Thus an N-stage pipeline of active
stages will exhibit a latency of N x (one line+ 17)pixels. The Cyto stage latency is discussed
in detail in the Stage Programmer's Manual. Over the VMEbus, the board logic adds two
pixels of latency and over the Cyto-ESS or Stage Backplane buses, the board adds one pixel
of latency to this total. Example number 3 (Section 3.3) discusses the MVNPP latency further
with respect to image transfers over the VMEbus.

On the Maxbus the situation is more complex because both horizontal and vertical
latency must be totaled separately. The FIFO at the end of the pipeline causes the vertical
latency to round up one line and the horizontal latency to be set to one pixel. In addition,
narrow images will cause horizontal latency of the stage chips to wrap around to vertical
latency. To calculate the MVNPP vertical latency:

1. Sum the horizontal and vertical latencies for each stage in the pipeline and add
one to the horizontal latency.

2. If the horizontal latency is greater than the actual image line-length, increment
the vertical latency and subtract the line-length from the horizontal latency.

3. Repeat step 2 until the horizontal latency is less than the line-length.

4. Add one to the vertical latency (for the FIFO).

The result is the vertical latency from the input to output connectors of the MVNPP. The
horizontal latency is always one pixel for Maxbus image transfers. Note that this calculation
is not needed for CLbus transfers because there is no output from the MVNPP in this case.

6

2.0 Status and Control Registers

The MVNPP contains 16 words of VMEbus addressable I/O registers, only 14 of which are
currently used. Figure 2 details the bit-level definitions of these registers. All of the registers
are word accessible and, in addition, the pipeline image data register is byte and long-word
accessible. The additional data widths available on the pipeline image data register allow
increased processing performance with 32-bit CPUs transferring image data over the VMEbus.

2.1 Status Register - Offset 0

The status register contains six bit-fields: three error bits, two status bits and the board
ID field. The following sections describe each bit-field and its behavior.

2.1.1 Board ID - Bits 7:0, Read-Only

This eight-bit field identifies this module as an MVNPP and indicates its revision level.
Bits 7 through 2 are used to identify the board, and bits one and zero indicate a revision
level with software differences. The MVNPP's ID number is 62 in decimal, and the current
revision is zero. Refer to Appendix A for all revision-dependent programming information.

2.1.2 Pipeline Error - Bit 15, Read-Only

The pipeline error bit is set when either of the other board errors are set (see Sec-
tions 2.1.3 and 2.1.4). It is provided as a convenient single bit test for errors having occurred
during processing. This bit is cleared by a VME reset or the Clear Errors bit in the control
register (see section 2.2.3).

2.1.3 FIFO Overrun Error - Bit 14, Read-Only

The FIFO overrun error bit is set if the line buffer FIFO is written to when it is already
full. This would normally be a software error caused by not reading data out of the pipeline;
it only occurs when using the VMEbus for image I/O. This bit is cleared by a VME reset or
the Clear Errors bit in the control register.

2.1.4 FIFO Underrun Error - Bit 13, Read-Only

The FIFO underrun error bit is set if the line buffer FIFO is read from when it is empty.
This would normally be a software error caused by not writing data to the pipeline; it only
occurs when using the VMEbus for image I/O. This bit is cleared by a VME reset or the Clear
Errors bit in the control register.

2.1.5 Pipeline Collision Error - Bit 12, Read-Only

The pipeline collision error bit is set if the image I/O select bits (see Section 2.2.4) are
switched while a high-speed image transfer is in progress. This would normally be a software

7

Pie I O FIF Pie, Stat ~RO Out ROI 0u Image
0 rrOennnderr Ilisic Reg CNSE Xforme BadI

Control Reise CrL Lo R01In ROI iming PiPemn; I/o Sl Cer Aut mg

2 oto eitrAN Sul AftSol AftSol Bus Select 1RI1VUuErrors /Flush Start

Line Length I <Lne Length)
4 Count Register I

Pipeline Programming IS.I s I-PieieDt
6 Register 1LSjI. 1I. ipln

8 Pipeline Image
Data Register

10

12

14

16 Image HStart .<HOitset + 1)
CountRegister __________________________ ______

18 Image HLength 4(Line Length)Count Register

20 Image VStart 4# HSyTs + 1)Count Register

22 Image VLength 4S lines)
CountRegister _________________________________

24 CLbus HStart HMffset +1Count Register

26 CLbus HLength 4Line Length)
CountRegister ________________________________

28 CLbus VStart 4111HSyIcs + 1)
CountRegister __________________________ ______

30 CLbus VLength 4#Lin"a + 1)
CountRegister __________________________ ______

Read/Write Read Only Write Only Unused

Figure 2 - MVN1PP Control and Status Registers

8

error and would result in the garbling of high-speed data that was being processed by the
MVNPP. This bit is cleared by a VME reset or the Clear Errors bit in the control register.

2.1.6 ROI Output Configuration Sense Bits - Bits 10:9, Read-Only

The ROt Output Configuration Sense Enable and Wire (CNSE and CNSW) bits are in-
cluded to support Datacube's defined protocol for determining the data cable connections
between a set of Maxbus processing boards. The CNSE status bit allows direct reading of the
ROI output driver enable signal (which is a function of jumper on the board - see Section 4.1).
This bit reads as a one if the driver is enabled and a zero if disabled. The CNSW bit allows
direct reading of the primary/alternate select line driven from the input port connected to
the MVNPP ROI output. The CNSW bit reads as a one if the output has been selected as a
primary driver or a zero if it has been selected as an alternate driver. The Maxbus Speci-
fication (Datacube document number SPOO-3), Section 1.2.3.3.2, describes an algorithm to
determine the cable configuration of a Max Video system using these status bits and the ROI
input Primary/Alternate Driver select bit (see Section 2.2.6).

2.1.7 Image Transformed - Bit 8, Read-Only

The image transformed bit provides the programmer a means to determine if the image
was transformed by the previous circulation. This bit latches the stage chip XFRMN signal.
See ERIM document IMT-86-461, "Integrated Neighborhood Processing Stage Design Spec-
ifications," for details of the operation of this signal. Briefly, this status bit will identify
whether any of the stages in the pipeline transformed the image during the most recent
image circulation. The image transformed bit is cleared at the start of an image transfer
and by a VME system reset.

2.2 Control Register - Offset 2

This register contains six control bit fields that affect the operation of the MVNPP. The
following sections describe these bits and their behavior in detail.

2.2.1 Image Start - Bit 0, write-only

Setting the image start bit performs several start-up functions necessary at the beginning
of an image transfer via the VMEbus. This bit should be set just prior to the start of an image
transfer over the VMEbus to eliminate extraneous data left over from previous transfers and
to initialize the line-length counter. Specifically, setting this bit empties the line buffer FIFO,
clears the image transformed status signal, and initializes the LIS- generation circuitry.

2.2.2 Automatic Pipeline Flush - Bit 1, write-only

This bit, when set, enables automatic flushing of the stage pipeline during the final
part of a VMEbus image transfer. The controlling software need only read the remainder of
the image from the pipeline, and null data with the proper LIS-timing maintained will be
automatically inserted at the pipeline input. This bit must be set after the last line of the

9

image is written to the pipeline. For proper operation, it must be cleared after the image
read-out is complete. This bit is also cleared by a VMEbus reset.

2.2.3 Clear Errors - Bit 2, write-only

The clear errors bit, when set to a one, resets all the error bits in the MVNPP status
register (see Section 2.1).

2.2.4 Pipeline I/O Select - Bits 4:3, Read-Write

These two bits select data from four different interfaces to the stage pipeline. Both the
data and stage control signal drives are switched and any necessary control signal generation
logic is also enabled. These bits are encoded to select from: Cyto-ESS (00), Datacube ROI
(01), CLbus (10), and VMEbus (11) data transfers. The Cyto stage backplane interface is
enabled by logic that detects when the MVNPP is inserted into a stage backplane. These bits
are cleared (set to 00) by a VMEbus reset, which selects the Cyto-HSS interface by default.

2.2.5 ROI Timing Bus Select - Bits 6:5, Read-Write

These bits select which ROT timing bus (see the Datacube Maxbus Specification) will be
used as a reference for data transferred through the stage pipeline. These bits are operative
for both Datacube RO and CLbus (see Section 2.2.4) data transfers. The two bits together
form a binary number (00-11) that selects one of the HSYNC/VSYNCO-3 . These bits are
cleared (set to zero) by a "IMEbus reset.

2.2.6 Datacube Input Primary/Alternate Driver Select - Bits 10:8, Read-Write

These bits select, for each Datacube input bus, either the primary or alternate output
device connected to the input. The Maxbus allows two different processor outputs to be
connected to a single input connector. The Primary/Alternate Driver Select bit for that
input chooses one and only one of these outputs at a given time. This is intended to simplify
the I/O cabling in a Maxbus system by allowing different logical processor connections to be
selected under software control. Bits 8, 9, and 10 select the primary or alternate drivers for
the ROI input bus, CLbus low byte, and CLbus high byte respectively. These bits are cleared
(set to zero) by a VMEbus reset, which selects the primary driver by default.

2.3 Line Length Count Register - Offset 4, Bits 11:0, Read-Write

This register is used for the automatic generation of LIS- during VMEbus image transfers
through the pipeline. It must be loaded with the twos-complement of the number of pixels
per line of the image to be transferred. The image start bit (see Section 2.2.1) must also be
set immediately prior to the image transfer to initialize the line-length counter.

2.4 Pipeline Programming Data Register - Offset 6, Bits 10:0, Read-Write

This register provides access to the programming control bits of the stage pipeline. The
VMEbus must be selected using the pipeline I/O select bits (see Section 2.2.4) before reading

10

or writing to this register. The programmer has complete control over DIV- , CIS- , and
LIS- in addition to data access. Only one byte at a time may be written or read to or from
the pipeline using this register. During writes, DIV- , CIS- , and LIS- must be supplied in
bit positions 8 through 10. On reads, the current level of these control signals at the end of
the pipeline is available on the same bits. The data read back comes directly from the end
of the pipeline, not the line buffer FIFO as is the case with the pipeline image data register
(see Section 2.5). Note that the output of the pipeline is returned by a read but the pipeline
is only clocked by a write. Thus, two consecutive reads of this register will return identical
data.

2.5 Pipeline Image Data Register - Offset 8,10, Bits 15:0,15:0, Read-Write

This register is the VMEbus image transfer access point to the Cyto stage pipeline. The
VMEbus must be selected using the pipeline I/O select bits (see Section 2.2.4) before reading
or writing to this register. Write accesses put data into the pipeline; read accesses get data
from the line buffer FIFO at the end of the pipeline. The register is 32-bits wide and can be
addressed as a long word, word, even byte or odd byte. Word access can be addressed to
either word offset (8 or 10) interchangeably. Byte accesses may be addressed to any of the
four bytes (offsets 8 through 11) of the register and will be properly routed to or from the
pipeline input or output. LIS- will be generated automatically for the image data written to
this register, provided that the line length counter was correctly programmed and the image
start bit (see section 2.2.1) was set prior to transferring image data.

2.6 ROI Image Transfer Timing Control Registers

Several timing counters are required to accurately identify and process only the valid
image data from within a ROI image transfer. A ROI image transfer consists of a rectangular
region of pixels surrounded (possibly on all four sides) by invalid pixels. The surrounding
area of an ROI is defined by the VSYNC" and HSYNC" timing signals, but the ROI itself may
occupy only a small region inside this larger area. Since the Cyto stage chip requires that
only valid pixels be passed to it for processing, four counters must be defined to extract only
the valid ROI from within the larger image area transferred. The following sections describe
the required counters.

2.6.1 ROI Image Transfer HStart Register - Offset 16, Bits 11:0, Read-Write

These bits define the offset of the left edge of a ROI image relative to the HSYNC_ signal.
This value is loaded into a counter at each HSYNC ~ pulse and counted up to delay processing
until valid data has arrived. The value written into this register must be the twos-complement
of the number of pixels between the HSYNC" pulse and the first valid pixel plus one (i.e.,
-(HOffset + 1)). The range of valid values is from (-1) to (-4096), which corresponds to
horizontal offsets of from 0 to 4095 intervening pixels.

11

2.6.2 ROT Image Transfer HLength Register - Offset 18, Bits 11:0, Read-Write

These bits define the length of a line within the ROT image. The value loaded must be
the twos-complement of the number of pixels contained in each line of the ROT image (i.e.,
-(Line Length)). This value is loaded into a counter when the HStart count value expires,
and it counts off each valid pixel as it arrives. The range of valid values is (-1) to (-4096),
which corresponds to line lengths of from 1 to 4096 pixels. Note, however, that the Cyto
stage chip can currently only process images up to 2048 pixels wide.

2.6.3 ROT Image Transfer VStart Register - Offset 20, Bits 11:0, Read-Write

These bits define the top edge offset (in lines) of a ROT image relative to the VSYNC ~

signal. This value is loaded into a counter at each VSYNC ~ pulse and is counted up to delay
processing until valid data has arrived. The value written into this register must be the
twos-complement of the number of HSYNC- s that will occur in between the VSYNC" pulse
and the first valid pixel, plus one (i.e., -(number of HSYNCs+1)). The range of valid values
is from (-1) to (-4096) which corresponds to vertical offsets of from 0 to 4095 intervening
lines.

2.6.4 ROI Image Transfer VLength Register - Offset 22, Bits 11:0, Read-Write

These bits define the number of lines within the ROT image. The value loaded must be
the twos-complement of the number of lines contained in the ROT image (i.e., -(# Lines)).
This value is loaded into a counter when the VStart count value expires and counts off each
line (HSYNC-) as it arrives. The range of valid values is (-1) to (-4096) which corresponds
to from 1 to 4096 lines in the ROI image.

2.7 CLbus Timing Control Registers - Offsets 24-30

Since the CLbus is based on ROlbus timing, the same requirements exist to extract valid
data from the larger ROT transferred. A set of four counters analogous to the ROI Image
Transfer Timing Control Registers of Section 2.6 are also needed and are illustrated in
Figure 2. These registers operate identically to the counters of Section 2.6, including their
value definitions and programming. These counters are active when the CLbus is selected as
the high-speed I/O source for the MVNPP.

12

3.0 Programming Examples

In this chapter, examples of normal programming sequences for the MVNPP are described.
The examples start with simple stage programming and progress through image circulation
and subimage window circulation. Throughout the examples, hexadecimal numbers will be
indicated with a Ox prefix. Also, the MVNPP board will be assumed to be addressable at
0x801300 in the VMEbus A32 address space.

The general programming sequence for using the MVNPP consists of: programming the
stages, programming the MVNPP board registers, and recirculating an image through the
pipeline. Programming the stages may be via the VMEbus pipeline programming port (see
section 2.4) or one of the high-speed data ports. When using the VMEbus to program the
stages, some large data movements can be performed more quickly using the VMEbus image
data port. Programming the MVNPP board registers prepares the circuits for an image
circulation.

3.1 Example 1: Sizing the Pipeline

This example will demonstrate how to determine how many stages are in the pipeline.
This is an important parameter that is needed for programming the stages and correctly
recirculating an image through the pipeline. The pipeline length may vary because multiple

MVNPP boards can be cascaded transparently to the software. In addition, it is possible
that failed stages could simply be bypassed in hardware on the MVNPP rather than replaced.
This would result in a shorter than normal pipeline.

Pipeline sizing relies on the fact that the stages have a fixed latency of two clock cycles
for propagating commands. Therefore, a command can be written to the pipeline and, by
counting how many clocks are required for the command to appear at the pipeline output,
the number of stages can be determined. To do this, the command and multiple null pixels
are written to the pipeline programming port at address 0x801306. Each write, including
the initial command, counts as one clock. Note that before any writes to the pipeline can
be performed, the pipeline I/O select bits (see Section 2.2.4) must be set to select VMEbus
access of the pipeline via a word write of 0x0018 to address 0x801302. This value should
also be logically (bit-wise) ORed with any value that is later written to the control register
so long as VMEbus access to the pipeline is desired.

The command written should be the word 0x0500, which corresponds to a Global Acti-
vate stage command with the CIS_ control signal active and the LIS_ and DIV- control signals
inactive. The null pixels are OxO7XX, where the XX is a "don't care" bit pattern. After
each word is written, the programming data port should be read. If the value read matches
the initial command word written (with unused bits masked off), then the command has
propagated through the pipeline. The total number of words written to the programming
port, divided by two, yields the number of stages in the pipeline. Note that there is an extra

13

register at the end of the stage pipeline on the MVNPP board. This extra register's latency
will force the number of clocks, before the command comes out of the pipeline, to be one
higher than twice the number of stages.

A maximum length error check should also be included in the stage sizing loop. This will
prevent any hardware problem from causing the program to loop forever. The value should
be set high (perhaps 1000) to ensure that a long pipeline will not be flagged as broken.

3.2 Example 2: Programming the Stages Over the VMEbus

Programming the Cytocomputer stage chips is a complex subject that is covered in
detail in the document "Stage Programmer's Manual," ERIM document number IPTL-89-294.
This example abstracts that process to the following three steps: (1) send stage command
preamble, (2) send stage program, (3) send stage command post-amble. The preamble and
post-amble are written to the MVNPP pipeline programming port to allow setting of the
stage control bits. The stage program may be sent through the image data port for a higher
transfer rate.

Before any stage commands are written, select VMEbus pipeline I/O by writing 0x0018
to the control register. The stage command preamble must be written to the pipeline pro-
gramming port (at address 0x801306) with the DIV- bit active (i.e., cleared) for command
bytes and inactive for the null bytes between commands. The actual stage programs can be
lengthy (several hundred bytes), and a significant speedup in programming can be realized
by using the image data port (at address 0x801308) to write the program data to the stages.
The speedup is due to the longword accesses available through the image data port. Stage
program writes through the programming port proceed at only one byte per access. After
the stage program is written, the stage post-amble must be written to the programming port
with the CIS- bit active for command bytes.

The above sequence will be repeated for each stage to be used during a circulation.
Many times not all stages available in the pipeline will be needed for a given circulation.
The remaining stages must be commanded to ignore the image (i.e., deactivated) as it
passes through them. These commands (one for each remaining stage) are written to the
programming port after all the stages to be used have been programmed. The deactivate
command will trickle through the pipeline to the last stages in front of the image data.

3.3 Example 3: Image Circulation Over the VMEbus

This example continues Example 2 by showing how to circulate an image through the
programmed stages. After the stages have been programmed (via Example 2), the image
line-length counter must be set. The twos-complement of the actual image line length must
be written to address 0x801304. Next, the image start bit must be set with a word write of
0x0019 to address 0x801302 (OxOO01 ORed with 0x0018). This initializes the MVNPP for a
VMEbus image circulation and starts the automatic LIS- generation.

14

The actual image circulation is made up of three steps for most images (or three slightly
different steps for very small images). The normal sequence is:

1. Write initial lines of the image to fill the stage pipeline.

2. Alternately write and read image lines to and from the pipeline until the
whole image is written,

3. Set the image flush bit and read the remaining image lines from the
pipeline.

In Step 1 above, the stage internal pixel latency (one image line plus 17 pixels) is filled until
between one pixel and one line has entered the FIFO at the end of the pipeline. This must
be done so that there will be image data available in the FIFO before it is first read. Step 2
is the main data movement loop of the image circulation. Alternately writing and reading
image lines provides good data movement efficiency and prevents the FIFO from overflowing.
Note that the FIFO is large enough to hold at least two image lines up to the maximum line
length support by the Cyto-HSS stage. In Step 3, the image pixels remaining in the pipeline
after the last line is written are read out.

The sequence above applies if the image has enough lines to fill the pipeline and put at
least one pixel in the FIFO. If this is not the case, then the following sequence must be used:

1. Write the entire image to the pipeline.

2. Set the image flush bit and and continue writing pixels until at least one
pixel is in the FIFO.

3. Read the image from the FIFO.

This sequence ensures that data will have reached the FIFO before it is read.

The complete latency of the pipeline can be determined from the pipeline length and the
number of stages programmed to take part (activated) in a circulation. Example 1 illustrated
how to determine the pipeline length. It is assumed here that the programmer can determine
how many stages he/she programmed and deactivated. The formula below gives the pipeline
latency:

Latency = (Number of Active Stages) x (Line Length + 17)

+ 2(Number of Inactive Stages) + 2

Where the Number of Inactive Stages is the pipeline length minus the Number of Active
Stages (this formula is accurate only for VMEbus data circulations through the pipeline).
The additional two pixels added to the end account for MVNPP hardware latency in addition
to the stage chips. Note that latency for image transfers is longer than the latency when
accessing the VMEbus programming port because the FIFO buffer adds one clock cycle of
latency.

15

3.4 Minimizing VMEbus Image Circulation Time

This section will focus on the performance issue of minimizing the time required to
circulate an image over the VMEbus. The VMEbus performance limit can easily be surpassed
by using one of the high-speed I/O buses supported by the MVNPP, but this may not be
a cost-effective solution. A nonoptimal coding for the VMEbus image circulation routine
could slow the image circulation from 2 times to 20 times or more. Two main areas must
be addressed to improve the image circulation times: (1) low-level data movement, and (2)
image storage boundaries.

For larger sized images, most of the circulation time will be spent alternately writing and
reading lines of the image to and from the pipeline image data port. To minimize this time a
tight loop, perhaps hand coded in assembly language, should be used. This loop should use
long-word moves even if the CPU doesn't have a 32-bit data bus (e.g., the 68010), because
this will minimize instruction fetching per byte moved. In addition, if the image line length
is less than 2048, then two or more lines may be written or read at once to minimize the
overhead of changing from writing to reading and back. The only limit is that the FIFO must
not be overrun or underrun while writing or reading data.

To make long-word accesses effective on a machine with 32-bit data paths, each image
line should be stored on a long-word boundary and be a multiple of four pixels long. Many
times, however, this is not possible due to arbitrary line lengths or windowed processing
within an image. In these cases, up to three bytes at the beginning and/or end of the image
line must be moved before a long-word boundary occurs. A simple method to optimally
accomodate these cases would be to code four different data movement routines and, on a
line-by-line basis, call the appropriate movement routine for each case for writing or reading.
The movement routine would move the preamble bytes (if necessary), move the majority of
the line with long words, and then move the trailing bytes (if necessary).

3.5 Example 4: Cyto-HSS Image Circulation

This example will demonstrate how to use the Cyto-HSS high-speed I/O interface. This
interface may be used to transfer an image through the pipeline or to program the stages.
The Cyt3-HSS I/O must be selected via a write of OxOOO to the Control Register at address
0x801302. This will select the Cyto-HSS connectors as the source and destination of the
stage pipeline. This condition is the power-on default for the MVNPP and therefore, may
not need any selection programming. Now the MVNPP will appear to the Cyto-HSS system
exactly as a pipelne of Cyto chip stages for all normal processing functions (see Section
1.4), and may be programmed or used in processing identically to the existing hardware.
The programmer must ensure that any writes to the control register continue to select the
Cyto-HSS for pipeline I/O if further processing will be performed.

3.6 Example 5: Maxbus Image Circulation

This example will show how to use the Maxbus high-speed I/O interface to transfer data
through the stage pipeline. Assuming that the stages have already been programmed and are

16

ready to process an image, the amount of initialization required is minimal. First, the four
RO image count registers must be initialized. These counters define to the MVNPP exactly
where there are valid pixels inside the rectangular region defined by the Maxbus VSYNC-
and HSYNC" . This is important because the Cyto stage utilizes off-image information in
its processing functions. The image HLength and VLength registers must contain the twos-
complement of the number of pixels per line and the number of lines in the image. These
must be the number of lines in the actual image of interest and not necessarily the values
programmed into a ROlstore. The HStart and VStart registers must contain the number of
pixels or lines that appear between the HSYNC" or VSYNC" and the first valid pixel.

As an example, assume the ROI to be transferred is 300 pixels wide and 500 lines long
and that the valid image data within this is 256 pixels wide and 400 pixels long and will
start on the 8th line and 30th pixel. In this case the following four values would be written
to the ROT Image Timing Control Registers:

Register Value
HStart Register Oxffe3
HLength Register OxffO
VStart Register 0xfff8

Note t'at the HStart and VStart register values are the twos-complement of the pixel and
line offset plus one. Also note that these offset values must be determined based on the
horizontal and vertical latency of the Maxbus boards between the MVNPP and the ROIstore
supplying the image. The Datacube manuals supplied with each board should describe how
to calculate the board's latency.

Once the RO counter registers are programmed, the ROT image I/O connectors, the ROT
timing bus, and the primary or alternate source for the input must all be selected. This is
accomplished by writing to the MVNPP Control register at address x801302. If, for instance,
ROI timing bus 2 was to be used along with the alternate source connected to the ROI image
input connector, then a value of OxOOc8 would be written to the Control register. This
value would select the above two parameters and continue to enable the RO image I/O to
access the stage pipeline. At this point the MVNPP is ready to process an image and the
ROlstore supplying the data could be initialized to transfer an image in either single-shot or
continuous mode.

3.7 Example 6: CLbus Programming of the Pipeline

This example will show how to use the CLbus interface to quickly program a pipeline of
Cyto-HSS stage chips. The CLbus interface uses two Maxbus data buses to supply a data
byte and the three stage-control bits to the pipeline on the MVNPP. The two Maxbus paths
are called the CLbus Lo and CLbus Hi data paths. The CLbus Lo data path connects to
the pipeline data input. The low-order three bits of the CLbus Ili data pash connect to the
pipeline control bits in the same order as in the Pipeline Programming Register (see Sec-
tion 2.3). Therefore, the same sequence of data words written to the Pipeline Programming

17

Register can be placed in a ROlstore memory for transmission over the CLbus to program
the pipeline. These words must be placed in the ROIstore so that the high-order byte of
the word (the byte with the stage control bits) appears on the CLbus Hi data path during
the CLbus data transfer. Note that the stage programming data does not have any inherent
image line structure; the ROI line length for the transfer may be chosen arbitrarily as con-
venient. However, the data must be padded with null pixels to fill out the last valid line of
the ROI data transfer. The Stage Programmer's Manual describes in detail the actual data
and control signal values that must be written to correctly program the stage pipeline.

In addition to defining the pipeline programming data, the MVNPP CLbus Timing Control
registers must be programmed similarly to Example 5. The data transfer that programs the
pipeline appears to be a ROI image transfer to the rest of the system. Because of this, the
CLbus Timing Control registers are used to define exactly which data within the transfer are
valid programming data for the pipeline. The chosen ROI image line length and number of
lines are written to the CLbus HLength and VLength registers (in twos-complement form).
The CLbus HStart and VStart registers are likewise programmed according to the latency of
the system boards prior to the MVNPP in the pipeline.

Finally, the MVNPP Control register must be programmed to select the CLbus input, ROI
timing bus, and primary or alternate drivers for the CLbus inputs. If the primary drivers and
ROI timing bus number I are desired, then a value of 0x0030 would be written to address
0x801302. At this point, the MVNPP is ready to receive pipeline programming data over the
CLbus. The ROIstore(s) that will supply the data may be initialized to start transferring the
data.

18

4.0 MVNPP Configuration

Configuring the MVNPP consists of setting jumper blocks to the desired configuration,
installing the board in a VMEbus chassis, and connecting appropriate cabling to other cards
in the system. There are three jumper blocks and one sixteen-position rotary switch on the
revision zero MVNPP board. Figure 3 illustrates these configuration blocks' locations and
their standard configurations. The figure also shows the location of each of the connectors
on the MVNPP and their names and sizes. The following sections describe each of these items
and their usage.

4.1 Internal Board Configuration

Rotary switch SW1, in conjunction with two address decoding PALs, determine the
MVNPP control registers' base address in the VMEbus address space. The PALs are normally
programmed to set the base address at 0x801300 for A24 and A32 accesses and at 0x1300
for A16 accesses. Switch SWI allows the user to select this address or 0x1320, 0x1340, or
Oxi360 via its 0, 2, 4, or 6 setting. Since only four address selections are available, the other
positions of SW1 wrap around in binary fashion to also select one of the addresses. By
default, SWI is set to 0 by ERIM to select address 0x1300.

Jumper J1 configures the Maxbus output data path as a primary, alternate, or always-

enabled output. This jumper may be configured to match the user's need in a Maxbus-based
system. Positions A, B, and C correspond to the primary, alternate, and always-enabled
states respectively. By default, the jumper is installed in the A position by ERIM to select a
primary output path.

Jumpers J2 and J3 allow bypassing of a delay in the clock path for the Cyto-HSS and
stage backplane I/O interfaces. They have no effect when any other pipeline I/O interfaces
are used. This delay should only be be bypassed when the MVNPP board is used in connection
with an MVICP combiner board. Position A of each jumper bypasses the delay. Position B
of each jumper inserts the delay. By default, these jumpers are set by ERIM to the correct
position for the particular system in which the MVNPP board will reside.

In addition to the jumpers and switches, there are two resistor packs (S2 and S3) that
may need to be installed based on the user's system connection. These are termination
resistors to the Maxbus ECL timing bus control signals. They should be installed only if
the MVNPP is at the physical end of the ECL timing cable. The terminators consist of a
10-pin and an 8-pin package that are placed in two sockets adjacent to connector P3 (see
Section 4.2) on the MVNPP board. The 10-pin package must be installed with pin number 1
(indicated by a colored dot on the package edge opposite the pins) in the socket pin labeled
for it. The 8-pin package may be installed in either orientation. By default the terminators
are installed by ERIM and must be removed if the MVNPP is not at the end of the Maxbus
ECL cable.

19

00)

- .0

L U) 0

ccJ 0

C 0

C')j

CV0

0-
cv J

4.2 Connector Functions

The P1 and P2 connectors are standard VMEbus connectors whose pinouts conform
to the VMEbus Specification Revision C (IEEE P1014/D1.0). The outer two rows of the P2
connector contain many ERIM defined signals that may conflict with other defined buses such
as the VSB extension bus. Pinouts for these signIs and the additional connectors appear in
Figures 4 through 7. The following paragraphs describe these connectors and their functions
in the order the user will most likely have to use them.

Connectors P9 and P10 (see Figure 4) provide the physical connection to a daughter
card that can hold up to 12 Cytocomputer chip stages. These connectors are asymmetrically
placed to ensure that the daughter card will be correctly instlled on the MVNPP main
board. The daughter card should be installed so that its top and bottom edges align with
the main-board's edges. The supplied plastic spacers should be installed through the holes
at each corner of the daughter card to support it. If the daughter card will not be installed
(or was not purchased), then jumpers must be installed across each pair of pins in connector
P9. These jumpers connect signals that would otherwise be connected on the daughter card
itself. These jumpers are installed by ERIM if the MVNPP board is purchased without a
daughter card.

Connector P2 (see Figure 5) contains signals on its outer two rows that allow the MVNPP
to be directly plugged into a Cyto-HSS stage backplane. This can provide up to 320 stages
per card cage in a Cyto-HSS workstation. No jumpers need be set to enable operation; the
MVNPP automatically detects the stage backplane and configures itself for that environment.
Note that because of these signals' presence, the MVNPP must be plugged into a VMEbus slot
that does not contain any other conflicting signal definitions on P2 rows A or C for correct
operation.

Connectors P3 and P4 (see Figure 6) are the standard Maxbus ECL and ROI timing bus
connectors. These timing bus cables may be bused through the MVNPP connectors in the
same way as any other Maxbus-based board. Refer to the Maxbus Specification manual for
additional details.

Connectors P5 and P6 (see Figure 6) form a dual 26-pin connector stack at the board
edge and are labeled P5/P6. Connector P6 contains both a Maxbus input and output data
path on the single 26-pin connector and is the bottom connector. A cable supplied with
the MVNPP separates the input and output paths and provides a Maxbus standard 14-pin
connector to plug into the user's other Maxbus boards. Each connector of the cable is
labeled appropriately as P6, MVNPP In, or MVNPP Out. Note that the MVNPP In connector
should be plugged into an output port of some other Maxbus board and the MVNPP Out
connector should be plugged into an input port of some other Maxbus board. Connector P5
is identical to P6, but it contains the two CLbus input data paths. A second split cable is
supplied with the MVNPP that is labeled for P5 and the CLbus Hi and Lo data paths. Both
14-pin connectors on this cable should be plugged into output ports of other Maxbus boards.

21

Daughter Card Daughter Card
Signal Signal

1 VOC 2 VCC
3 VCC 4 VCC
5 VCC 6 VCC
7 P2-DO 8 P 4-DO
9 P2-Dl 10 P14_Dl

11 P2_D2 12 P14_D2

13 P2-D3 14 P14-D3

15 P2-D4 16 P 4-D4
17 P2_D5 18 P141D5

Connector 19 P2_D6 20 P14_LDo

P9 21 P2_D7 22 P14_D7

23 GND 24 GND
25 P2_DOV- 26 P1 4_DOVW
27 P2_LOS- 28 P1 4_LOS-
29 P2_COS- 30 P1 4_COS-
31 GND 32 GND
33 STGOLKIN 34 STGCLKOUT
35 GND 36 GND
37 GND 38 GND
39, HIGH 40, OCARDTHERE-

Daughter Card Daughter Card
Signal Signal

1 3_PINACT 2 3_PIMAGE
3 34_PINACT 4 S4_PIMAGE
5 S5_PINACT 6 35_PIMAGE
7 S6_PINACT 8 36_PIMAGE
9 37_PINACT 10 S7_PIMAGE

11 38_PINACT 12 38_PIMAGE
13 39_PINACT 14 39_PIMAGE
15 310_-PINACT 16 310_-PIMAGE
17 3l1_PINACT 18 Sil_1PIMAGE

Connector 19 312_PINACT 20 S12_PIMAGE
PlO 21 313_PINACT 22 S13_PIMAGE

23 31 4_PINACT 24 S14_PIMAGE
25 GND 26 GND
27 3_XFORMk- 28 34_XFORM-
29 35_XFORM- 30 36_XFORM-
31 37_XFORM- 32 38_XFORM-
33 39_XFORM- 34 310_-XFORM-

35 311_-XFORM- 36 S12_-XFORM-
37 313_XFORM- 38 314_XFORM-
39, GND 140, GND

Figure 4. MVNPP Connectors P9 and P10 Pinouts

22

Row A Signals Row B Signals Row C Signals
1 GND +5V GND
2 CCK GND GND
3 GND RESERVED GND
4 N.C. A24 GND
5 GND A25 GND
6 SPI- A26 SPO-
7 LSO- A27 LIS-
8 SRDOV- A28 SRLOS-
9 SRCOS- A29 RESERVERD

10 SR_Dl A30 SR_DO
11 SR_D3 A31 SR_D2
12 SR_D5 GND SR_D4
13 SRD7 +5V SRD6
14 +5V D16 +5V
15 SI_DIV- 017 SODOV-
16 SILIS- D18 SOLOS-
17 SI_ClS- 019 SOCOS-
18 SIDO 020 SO-DO
19 SID1 121 SOD1

20 SID2 D22 SOD2
21 SiD3 D23 SOD3
22 SI_D4 GND SOD4
23 SID5 D24 SOD5
24 SI_D6 D25 SOD6
25 SID7 D26 SOD7
26 N.C. D27 N.C.
27 N.C. D28 N.C.
28 N.C. D29 N.C.
29 +5V D30 +5V
30 +5V D31 +5V
31 GND GND GND
32 GND +5V GND

Figure 5. MVNPP Connectors P2 Pinout

23

Maxbus ECL Signal __ Maxbus ECL Signal

1 E2DC 2 E2DC-

Connector 3 GND I4 E4DC
P3 5 E4DC I 6 GND

7 EHR 18 EHR-
191 EVR 110 EVR-

ROI Timing Signal __ ROI Timing Signal

I RESERVED 2 ROIVSYNC3-
3 RO1_HSYNC3- 4 GND
5 ROEVSYNC2- 6 RO1EHSYNC2-

Connector 7 GND 8 ROEVSYNC1 -

P4 9 ROIHSYNC1 - 10 GND
11 ROEVSYNCO- 12 ROEHSYNCO-
.1,GND .1, RESERVED

CL-bus Input Cl-bus Input
Signal Signal

1 CLHIALT_-PRIMARY- 2 CLD15
3 CL D14 4 GND
5 CL-D13 6 CL -D12
7 GND 8 CLDl 1
9 CL_-DIO 10 GND

11 CL-D9 12 CL-D8

Connector 13 GND 14 OLLOALT_-PRIMARY-

P5 15 CL-D7 16 CL-D6

17 GND 18 CLD5

19 CLD4 20 GND

21 CL-D3 22 CL-D2
23 GND 24 CLDl
25 CL DO 26 GND

Maxbus 1/0 Maxbus 1/0
Signal Signal

1 MIALTPRIMARY- 2 MID7
3 MID6 4 GND
5 MI-D5 6 MI-D4
7 GND 8 MlID3
9 MI-D2 10 GND

11 MI-Di 12 MI DO
Connector 13 GND 14 MOALTPRIMARY-

P6 15 M-D7 16 MOD6
17 GND 18 MO -DS
19 MO-D4 20 GND
21 MO-D3 22 MO-D2
23 GND 24 MO-Dl
25, MDO 26, GND

Figure 6. MVNPP Maxbus Connector Plnouts (P3 Through P6)

24

Connectors P7 and P8 (see Figure 7) form a dual 40-pin connector stack at the board edge
and are labeled P7/PS. These two connectors allow the MVNPP to be directly connected to
a Cyto-HSS port and combiner in a Cyto-HSS workstation. They also allow multiple MVNPP
boards to be physically cascaded to create a longer pipeline. Different cables are supplied
with the MVNPP to accomplish these two functions. Connector P7 is the bottom one in the
stack and contains the Cyto-HSS input path signals. A cable is supplied and appropriately
labeled to link P7 with the Cyto-HSS port. Connector P8 contains the Cyto-HSS output path
signals, and a cable is also supplied to link PS with the Cyto-HSS combiner.

A third cable is also supplied to cascade two MVNPP boards. To cascade boards in a
Cyto-HSS system, the port would link to P7 of the first MVNPP; the cascade cable would
link P8 of the first MVNPP board to P7 of the second MVNPP board; and P8 of the second
MVNPP board would be linked to the combiner. If more than two MVNPPs are present, the
additional boards would be daisy-chained, P8 to P7, similar to the two-board method. For
a Maxbus system, the cascade cable placement would be identical, but the supplied Maxbus
cables would be plugged into connectors P5 and P6 on the first board (for input ports) and
the last board (for output ports). Note that this will require a cable plugged into connector
P5 on the first and last boards, with only one of the 14-pin ends connected on each cable.
An extra P5 cable is supplied for multiboard MVNPP purchases.

25

HSS Input HSS Input
Signal Signal

1 GND 2 OND
3GND 4 GND
5GND 6 HI DO

7 OND 8 HI-Dl
9 GND_
9GND 10 HID2

11 GND 12 HID3
13 GND 14 HID4
15 GND 16 HI_-D5
17 GND 18 HID6

Connector 19 GND 20 HID7
P7 21 GND 22 GND

23 GND 24 HSS_-CLK
25 GND 26 GND
27 GND 28 HIDIV-
29 GND 30 HILIS-
31 GND 32HICIS-

33GND 32 GN
GNDGN

35 GND 36 STGCLKEN-
37 LSO- 38 SPI-
39, GND 40f XFORM IN-

HSS Output HSS Output
Signal Signal

1 GND 2 GND
3 GND 4 GND
5 GND 6 HOo0

7GND 6 HOD
GND 8H~

9 GND 10 HO-D2
11 GND 12 HO-D3
13 GND 14 HO-D4
15 GND 16 HO D5
17 GND 18 fO-D6

Connector 19 GND 20_OD7GND 2
P8 21 GND 22 GND

23 GND 24 HSSCLK
25 GND 26 GND
27 GND 28 HODOV-
29 GND 30 HOLOS-
31 GND 32Ho_005-33 GND 3

33GND 34 GND
35 GND 36 STGCLKEN-
37 LSI- 38 SPO-
39, GND 40, STG XFORM-

Figure 7. MVNPP Connectors P7 and PS Pinouts

26

Appendix: Revision Dependent Information

Both wire-wrap prototype and production versions of the MVNPP have been built. Chap-
ters I through IV fully describe the production version of the board; difference in the wire-
wrap version are described below. There are no programming differences between the two
versions, but there are physical and cabling differences. First, the wire-wrap board cannot
accept a daughter card and so is limited to four stage chips in its pipeline. In addition, the
jumper and connector positions on the wire-wrap board are different than on the production
board. Figure A-1 identifies the jumper and connector positions on the wire-wrap board.
Note that there are daughter card connector pins defined even though no daughter card can
be inserted. This was done to facilitate board debugging.

The front panel I/O connectors are the major difference between the wire-wrap and
production board. Two 40-pin connectors (P5 and P6) take the place of connectors P5
through P8 on the production board version. The Maxbus and Cyto-HSS I/O signals are
multiplexed on these two connectors as shown in Figure A-2. This arrangement was required
by the limited connector area of the wire-wrap board itself. This arrangement prevents two
wire-wrap MVNPP boards from being cascaded if they are used in a Maxbus-based system.
The wire-wrap board also requires different cable assemblies than the production board for
connection to other Maxbus boards.

27

N CI (

0 a 0

1000

L9 1o0

~9 100
cc~

o 000

CLu ._o

0

0d

CLu

*. 0

CV)u

28

HSS Input CLbus Input HSS Input CLbus Input
Signal Signal - Signal Signal

1 CLHIALT_-PRIMARY- 2 CL_DlS
3 CL D14 4
5 CLDl3 6 HIDO CLD12
7 8 HI - l CLODl1
9 CLD10 10 HL -D2

11 CL_D9 12 HI103 CL_08

13 14 HI -D4
15 CLLOALT_-PRIMARY- 16 HID5 CL_D7
17 CL -D6 18 HID6

Connector 19 CL_D5 20 HID7 CL_D4
P5 21 22 CLOD3

23 CL_02 24 HSS_CLK
25 CLDl 26 CLOC0

27 28 HI_DIV-
29 30 HL-LIS-
31 32 HI-CIS-
33 34
35 36 STG-CLKEN-
37 LSO- 38 Spi-
39 _____ _______ 40, XFORM-IN-

HSS Output Maxbus 1/O HSS Output Maxbus 1/O
Signal Signal Signal Signal

1 MIALTPRIMARY- 2 MI_07
3 Ml D6 4
5 MI-D5 6 HfODO MID4

7 8 HO -Dl Ml103
9 MI -D2 10 HO0D2

11 MIDl 12 HOD3 MI-DO

13 14 1-1O-D4
15 CLLOALTPR IMARY- 16 HO_05 MO_07
17 MO D6 18 HO0D6

Connector 19 MO_05 20 HO_07 MO_04
P6 21 22 MOD3

23 MOD2 24
25 MODl 26 MODO
27 28 HO DO V-
29 30 HO LOS-
31 32 HO-COS-
33 34
35 36 STQ-CLKEN-
37 LSI- 38 SPO-

a391 40, STGXFORM-

Figure A-2. MVNPP Wire-Wrap Connectors P5 and P6 Pinout

29

