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COINVESTIGATOR: Stephen R. Besch
CONTRACTOR: Research Foundation of State University of New York

CONTRACT TITLE: Cellular and Molecular Mechanisms of High Pressure
Inotropy in Cardiac Muscle

START DATE: August 1, 1989

INTRODUCTION

We have spent the past year designing and building a miniature compression
chamber and a computer based microfluorimeter system for measuring intracellular
calcium in physiologically viable cardiac cells. This report is divided into the
following sections that describe the relevant details of our technical progress.

Integrated system Jesign

High pressure celi chamber

Plumbing system for pressure chamber
Computer hardware interface

Computer software operating system

Integrated system design: Figure 1 is a schematic diagram showing the essential
elements of the microfluorimeter system. A cardiac muscle cell is isolated and
placed in the 75 microliter cell chamber (CC) that is located over the objective lens
(OL) of the Zeiss inverted microscope. Details of the cell chamber are provide
below. Windows on the top and bottom of the chamber permit illumination of the
cell and excitation of the calcium sensitive fluorescent dye (FURA-II) used to
measure intracellular calcium. The ratio method for measuring calcium requires
that two excitation wave lengths (340 & 380 nm) be applied alternately to the cell
containing FURA, while emission photons are gathered at
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510 nm. The ratio of emission intensities for each pair of excitation exposures yields
a measure of intracellular calcium. Broad band light from a mercury xenon arc
lamp (XBO) is passed through an infrared filter (IRF) and then through a system of
dichroic reflectors (DR) and band pass filters (BP) of appropriate characteristics to
isolate the excitation light and sequence its presentation to the epifluorescent input
port of the microscope. Sequencing is accomplished using a spinning 30 sector
aperture wheel and adjustable masking slits. Details of this technique were given in
last years annual report. The excitation light is then guided by dichroic reflectors to
the objective len of the microscope where it is focused on the specimen.

Fluorescent emission photons are collected by the objective lens and guided by
dichroic reflectors to the photomultiplier tube where they are counted and stored in
the computer. Simultaneous with these measurements, differential interference
contrast (DIC) images are gathered to assess the contraction state of the cell. To
prevent contamination of the fluorescent measurements a bandpass filter is used to
select a DIC illumination wavelength of 650 nm. The DIC image is focused on a
1024 element, linear photouiode array (PDA). Images are recorded using a custom
designed PDA-computer interface for throughputs of up to 5 megahertz - for details

Page 2

Por
‘I

a
ton_________|

»a/ I
it

y Egdoa




s2e below. The spatial resoluton of the PDA image is a quarter of a micron.

In addition to the PDA interface, we have incorporated a TECMAR multifunction
laboratory interface to record PMT data and to continuously monitor the
hydrostatic pressure and temperture of the cell chamber. In addition, the
TECMAR interface is used to set parameters for the excitation light subsystem,
synchronize the application of the stimulus and coordinate the acquisition of data.
The entire process is under the control of custom software to be described in a later
section.

High pressure cell chamber: This section is intended to expand upon the
preliminary information provided in last year's report. Since that time, the single
cell pressure chamber has been completed and put into service. A cut-away view of
the chamber is shown in figure 2.
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Figure 2

The central component of the device is the cell chamber. Fabricated from
aluminum and anodized, it is a small (0.950" O.D., 0.075" thick) button with a

Page 3




complex conical well bored through it. The narrow end of the conical well is 1 mm
in diameter and has a 0.17 mm quartz cover slip glued over it to serve as the
pressure window. The cardiac cell under study is attached to the inside surface of
this window. The opposite side of the button provides a surface against which a
neoprene O-ring forms a pressure seal when the sliding chamber cover is in place.

The cell chamber is in turn mounted in a cavity at the center of rotation of the main
drive gear. This is a stainless steel gear whose function is to allow the rotation of a
cell in the chamber into proper alignment with the excitation light slit and
photodiode array while the cell chamber is pressurized. Two stages of gear
reduction are provided to facilitate the precise control of rotation required at high
magnification and at high pressure. The main drive gear rotates in a large diameter
angular contact ball bearing to provide support against the large thrust load when
the chamber is fully pressurized.

The anodized aluminum base of the pressure chamber mounts directly to the X-Y
stage of our Zeiss inverted microscope to provide complete freedom of movement
of the pressure chamber in the optical field of the microscope. The main drive gear
and the secondary reduction gears fit into cavities bored into this base component.
A slot is milled into the center of the base to act as a guide for the sliding chamber
cover, which is held in place by a pair of retainer blocks mounted on either side of
this slot. The left hand member of this pair provides access ports to the sliding
chamber cover.

A considerable portion of the engineering work on this device went into the design
of the sliding bath cover. It allows opening the pressure chamber and changing the
cell chamber button in only a few seconds, while providing a back side pressure
window for the transillumination of the cell chamber for the microscopic
observation of the cells in the chamber. The basic design is a rectangular block with
ears which slide under the retaining blocks mounted to the basc plate. In the center
of the block is a conical hole which matches the numerical aperture of the
microscope condenser lens. The bottom side is closed with a 12 mm diameter
quartz pressure window, while the top side is sealed with a piece of 1 mm thick
microscope slide. During operation, the space between these 2 windows is filled
with the heating/cooling solution which flows through the cover. A neoprene O-
ring is located around the quartz pressure window to seal off the cell chamber when
the lid is in place.

Three 1 mm holes are concentrically located in the space between the O-ring
pressure seal and the quartz pressure window. These communicate with holes
located in a line along the left side face of the cover (see figure 2) and provide
hydraulic access to the cell chamber, allowing pressurization, monitoring and
perfusion of the chamber. These holes in turn mate with the O-ring sealed access
ports correspondingly placed in the left side cover retaining block.
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The last feature of this chamber is the provision made for temperature control.
Both the base and the sliding chamber cover contain ports which communicate in
such a way as to provide a circulation pathway for heating/cooling water. A water
inlet directs flow into the chamber cover via an O-ring seal at the front edge of the
cover guide slot. Water flows directly into the conical well formed in the cover for
trans-illumination light. From here, water flows to the rear of the cover where it
branches and flows back to the front through holes located at either side. These
holes communicate with the base via the remaining 2 O-ring sealed ports at the
front edge of the guide slot. From here, water is routed through holes to the rear of
the base, where it is collected at an outlet port. Thermally tempering the entire
chamber structure eliminates thermal gradients away from the cell chamber itself,
leaving only the objective lens as a potential heat sink. Thermal tempering of the
objective lens is also possible and relatively straightforward.

We have been using this chamber routinely at pressures of 70 ATA with no visible
degradation of the window attachment to the pressure vessel. Experiments in our
laboratory have shown that pressures in excess of 200 ATA are obtainable with this
system, although some degradation of the cover slip attachment occurs. This was
described in last years report.

Plumbing system for pressure chamber: Figure 3 illustrates the plumbing network
for the high pressure cell chamber. The chamber appears as an expanded space in a
perfusion line driven directly by a constant flow HPLC pump through an injection
valve and into an adjustable pressure load to provide continuous flow independent
of pressure. The addition of the ijjection valve ‘o the circuit allows the precise
introduction of materials into the perfusion stream
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at pressure. The absence of any gas volume over the chamber allows rapid
attainment of a target pressure without the adiabatic thermal effects associated with
gas phase compression over liquid. Furthermore, the direct hydraulic compression
of the perfusing solution eliminates the absorption of compression gas into the
perfusate.

There are 2 distinct modes of pressure loading. The first is a simple needle type
metering valve which provides a resistive load whose purpose is to provide a positive
visual confirmation of flow at pressure. With flow rates below 200 ul/min., this type
of load suffers from significant pressure fluctuations even with the best HPLC
pumps. With the needle wide open, this pathway can provide a convenient 1 ATA
exhaust port.

The second type of pressure load is a 2 liter buffer bottle into which the perfusate is
pumped. The bottle can be charged to any pressure within the operating range of
the cell chamber. As long as the bottle is kept relatively empty of fluid, the
perfusate addition will have an insignificant effect on pressure. A drain valve allows
for the periodic emptying of liquid from the bottle. This loading method provides a
constant chamber pressure in spite of small flow fluctuations in the HPLC pump
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and is the preferred method for most experimental conditions.

The perfusion lines to the chamber are routed through a crossover type valve to
provide a means of pressure isolation of the cell chamber. The valve is a "make
before break" type of valve so the pump never pumps against an infinite load during
valve transitions. This valve allows rapid isolation of the chamber at elevated
pressure (and zero flow). During pressure isolation, the buffer bottle can be
precharged to a new pressure while the bath is held at the original pressure.
Switching the chamber out of isolation after the bottle transition provides a nearly
instantaneous step in pressure. The pressure isolation valve also has the obvious use
of isolating the bath during depressurization for the purpose of changing the
chamber button.

Plumbing connections to the cell pressure chamber are made with flexible narrow
bore PEEK tubing to permit unlimited movement of the chamber structure. A
significant, and potentially dangerous, amount of energy is stored in the buffer
bottle when operating at high pressure. To protect the microscope (and the
operator), a check valve is located at the buffer bottle to isolate this energy source
from the PEEK tubing and the cell pressure chamber in the event of a tubing failure
or a window rupture.

Figure 3 also illustrates the pressure/temperature measuring capability of the
system. Pressure is monitored directly at the cell chamber by a solid state strain
gauge which is connected to the third chamber access port. The absence of flow in
this connection guarantees that there will be no pressure error due to flow
resistance in the narrow bore tubing. This can be a significant error in tubing with a
0.005" ID, even at low flows. Temperature is measured using a small diameter
(25 um) thermocouple installed directly in the open aperture of the chamber button.
Both temperature and pressure transducer outputs are sampled by the TECMAR
A/D converter and recorded with the corresponding experimental data.

Computer hardware interface: The computer hardware interface is designed
around a Tecmar Lab Master DMA-100 multifunction board. Figure 4 shows a
schematic representation of the deployment of board functions among the operators
of the system. Digital output ports are used to select/toggle elements of the
excitation light subsystem. These include power status, iris aperture, masking slit
width, and shutter status. Digital-to-analog converters (DAC's) are used to control
aperture motor speed and stimulus intensity. Digital input ports are used to monitor
the status of the right and left apertures of the spinning sector wheel. Timing pulses
indicating the open/close status of these apertures are used to synchronize the
gathering of fluorescent emission photons and their storage
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in the appropriate collection bins. Two 16 bit counter registers are used to
simultaneously time each aperture-open-interval and count the number of photons
emitted during the interval. A third counter is used to determine the frequency and
duration of the stimulus pulse. Finally, two analog-to-digital converter (ADC) are
used to record temperture and pressure in the cell chamber.

In addition to the Tecmar interface we have developed a custom interface to input
differential interference contrast (DIC) images of the contracting cardiac cell
(figure 5). We use a change of sarcomere spacing as a physiological correlate to an
intracellular calcium change. The magnified DIC image is projected onto a 1024
element linear photodiode array (EG&G Reticon) whose video output is digitized
using an 8-bit flash converter (Analog Devices AD9048) and stored in computer
memory for later processing. Although our present level of design limits us to data
rates of 256,000 pixels/sec, with further development, data rates as fast as S million
pixels per second are possible.

Implementation of this methodology required the development of electronics for the
flash converter, and a suitably designed memory array. Both of these items were
designed and built in house. The flash converter interfaces with an EG&G
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development board and includes a 1024 byte FIFO, control logic and transmission
line drivers to transfer the

¥
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data to the remote memory array. Control signals from the memory array board can
reset the PDA subsystem and initiate a video frame conversion. Once initiated, a
video frame is digitized and loaded into the on-board FIFO without intervention of
the host computer. The FIFO can hold an entire video frame in the event that
transfer to the computer memory is delayed. As long as any data is present in the
FIFO, the PDA subsystem will post a service request to the dual port memory array.
Once transfer is complete, the system stands by for another conversion command,
although a second conversion can begin before the FIFO is emptied, as long as data
transfer is proceeding faster than frame conversion.

The memory array is a dual port configuration capable of accepting data ir excess of
the 5 million bytes/sec data rate possible with the photodiode array. Fully
populated, this board has an 8 megabyte capacity. It is presently loaded with 2
megabytes. The board logic includes several I/O commands for control of the PDA
subsystem. During idle time (that is, no video frame conversion/transfers are in
progress) the board appears as a standard 375 ns system memory resource. The
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location of this memory in the computers address space is freely selectable.
Whenever the PDA subsystem posts a service request, 8 bit transfers will be made
from the remote board as fast as possible. Logic on the memory board actively
arbitrates between processor memory requests and the transfer of data from the
PDA subsystem. Priority is given to processor memory requests, although at least
one remote data transfer will occur between each processor memory cycle.
Whenever the procesor is not accessing memory on the dual port board, the PDA
subsystem will have unlimited access to the memory array, with a transfer occuring
every 125 ns, for a net 16-bit transfer every 250 ns. Several companies generously
contributed to this project. The memory was a gift from Micron Technologies,
FIFO's were contributed by Integrated Device Technology, and National
Semiconductor donated several of the logic components in the system.
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Computer software operating system: We have developed a software operating
system (UVSYS) that features a graphical user interface for operator interaction.
UVSYS provides comprehensive control over the microfluorimeter system, the
electronic stimulator and all aspects of data acquisition. At the onset of each
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experiment the operator composes an appropriate protocol from a system of
interactive menus that set system parameters, exercise internal calibration
procedures, select stimulus characteristics, and set data input parameters. Once a
protocol has been defined it may be launched by aim-and-shoot mouse selection.
Execution of the protocol is completely automatic. Error detection and handling is
provided. Protocols may be changed at any time as dictated by the progress of the
experiment. The general characteristics of UVSYS may be gleaned from the
collection of menus shown in figure 6. The program was written in Quick Basic with
the addition of a few assembly code fragments to expedite the highly time critical
data acquisition routines.
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