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Abstract

The generalized eigenvalue problem, Kx = AM, is of signifi-
cant practical importance, especially in structural engineering where it
arises as the vibration and buckling problems. New software, LANZ,
based on Lanczos' method has been developed for solving these prob-
lems and runs on SUN 3, SUN 4, Convex C-220, Cray 2, and Cray -A,, ..... "' r

Y-MP systems. '.'TiS :RA&I

P, liminary results of using the Force to obtain a multiprocessor mD1 IlA9

imp' ntation of LANZ on MIMD parallel/vector systems are re- U U "
ported here. A parallel execution time model of LANZ is defined
and used to predict the performance of LANZ as well as examine
hypothetIcal modifications to LANZ. The results of using dynamic By
shifting to improve parallelism are presented. Finally, the results of Distribut)ion I
assigning a group of processors to separate shifts and finding all the

desired eigenvalues using LANZ in parallel are reported.
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1 Introduction

The generalized eigenvalue problem, Kz = AMx, is of significant practical im-
portance, especially in structural engineering where it arises as the vibration and
buckling problems. New software, LANZ, based on Lanczos' method has been
developed for solving these problems and been reported on in [1] [2]. LANZ
uses a technique cailed dynamic shifting to improve the efficiency and reliability
of the Lanczos algorithm [3]. Improved methods for solving symmetric indefi-
nite linear systems and for finding eigenvalues of the tridiagonal matrices that
arise when using Lanczos' method have been developed for use in LANZ [4].
Loop unrolling techniques were used to obtain improved performance on vector
processing machines [5]. An improved version of Parlett and Scott's selective
orthogonalization algorithm [6] was used to maintain orthogonality of the Lanc-
zos vectors. Implementations of LANZ on a Convex C-220 were used to study
the performance of LANZ and compare it with a subspace iteration code used
by structural engineers. In all cases tested LANZ had superior performance to
the subspace iteration code.

In this work, the Force is used to obtain a multiprocessor implementation
of LANZ on MIMD parallel/vector systems. Strengths and weaknesses of the
Force as a parallel programming language are examined in Section 2. A paral-
lel execution time model of LANZ is defined and used to compare the actual
parallel performance of LANZ against the performance predicted by the model
in Section 3. It is also used to predict the effect of changes to LANZ with-
out the actual implementation of the changes, e.g., it is used to compare the
performance of vectorized versus non-vectorized versions of LANZ on a Cray
Y-MP. Backward triangular matrix solution is shown to be a bottleneck in the
parallel version of LANZ and the tradeoffs involved in designing algorithms
for a parallel/vector machine are discussed in Section 4. The results of using
dynamic shifting to reduce the number of backward solves by increasing the
number of factorizations are reported in Subsection 5.1. Finally, the results of
assigning groups of processors to work in parallel on separate shifts are reported
in Subsection 5.2.

2 Parallel Implementation

LANZ consists of over 15,000 lines of FORTRAN source code with four major
computations: 1) factorization, 2) triangular matrix solution, 3) matrix-vector
multiplication, and 4) computation of the eigenvectors. Observation of the
runtime profile shown in Figure 1 of LANZ on one processor of the Cray Y-
MP reveals that over 97 percent of the execution time is spent on these four
computations.
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Computation Time Percentage
(seconds)

Factorization 13.98 67.9
Matrix Multiplication 3.09 15.0
Triangular Matrix Solution 2.73 13.3
Computation of Eigenvectors 0.27 1.4
Other 0.49 2.4

Figure 1: Execution profile of LANZ on a single processor of the Cray Y-MP

The parallelization of LANZ focuses on these four computations. Two con-
straints directed the selection of a parallel language to be used in carrying out the
parallelization: 1) the language must require little rewriting of the non-parallel
source code, and 2) the resulting implementation should be transportable to
several shared-memory parallel architectures.

The Force is a set of extensions to FORTRAN that provides a shared mem-
ory model of parallel processing on MIMD shared memory architectures [7]. The
Force includes constructs for both fine- and coarse-grain parallelism. The Force
starts a process on each processor. Each Force process communicates through
shared variables and synchronizes using barriers and critical regions. Loop iter-
ations are partitioned among Force members by prescheduling or self-scheduling
constructs. Subroutines must be declared as Forcesubs if Force constructs are to
be used within them. These "Forcesub"s are called using Forcecall statements
and all the processes must encounter this Forcecall statement and execute the
subroutine. The Force is implemented as a preprocessor to FORTRAN on the
following shared-memory computers: Cray Y-MP, Cray/2, Cray X-MP, Flex/32,
Alliant FX/Series, Convex C220, Sequent Balance, and the Encore Multimax.
The Force has been shown to be useful for implementing parallel linear algebra
algorithms [8].

The use of the Force to parallelize such a large program revealed a short-
coming in the language. The Force assumes that all the processors are simul-
taneously executing a segment of code unless a synchronization construct has
specified otherwise. This is a useful model when implementing a short algo-
rithm such as a factorization subroutine [8]. However, in a large, practical code,
such as LANZ, which contains several different algorithms and a fair amount
of i/o, this is not the best model for computation. Most of the source code in
such a large application is executed very few times, if at all, and is inherently
sequential. The major portion of the execution time is spent in a few subrou-
tines that execute factorization or matrix multiplication algorithms. In these
subroutines the Force model of parallel computation is the preferred one. Using
the Force required a large number of unnecessary synchronization constructs in
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the inherently sequential code. Although this did not have a large impact on
performance, it was a time-consuming and error-prone programming task. Also,
the Force does not allow a set of processors to execute one segment of code in
parallel using barriers to synchronize while another set of processors executes a
different segment of code. The barriers in the Force assume that all or none of
the processors will encounter each barrier.

The addition of a few capabilities to the Force language would alleviate these

problems and provide added functionality. If an entire subroutine could be des-
ignated as sequential, and yet retain the ability to declare shared variables, then
the need for synchronization constructs in inherently sequential code would be

alleviated. The ability to call a Force subroutine from a subroutine designated

as sequential would also be necessary. For example, the Force requires that the
main program in LANZ be declared a parallel routine so that it has the capa-

bility to declare shared variables and call subroutines that will be executed in
parallel. However, r.othing in the main program should be executed in parallel,
therefore, several Barrier statements are required to force the code to execute
sequentially. The ability to declare the main program to be sequential would
alleviate the need for unnecessary Barrier statements and still allow the main

program to declare shared variables and call parallel subroutines. The Forcecall

subroutine should be extended to allow the number of processes executing the
subroutine to be specified. This would allow sets of processors to execute dif-
ferent segments of code in parallel. The barrier construct would also have to be
extended to accommodate situations in which all the processors are not execut-

ing the same code. The utility of this addition is illustrated in Subsection 5.2.
The addition of these constructs would be very useful, but may be difficult or
impossible to implement as a preprocessor.

In addition, the Barrier synchronization construct provided by the Force

proved to be too expensive for use in the loops that occur in the factoriza-
tion subroutine. In its place, a user-implemented construct which was much
less expensive was used. The Force barrier can not take advantage of the fact
that it resides in a loop, whereas, the user-implemented construct is specifi-
cally designed to execute in a loop. Concep-,ally, the synchronization desired is

shown in Figure 2. If implemented using the Force, line 2 becomes a "Barrier"
statement and line 4 becomes an "End barrier" statement. These statements

are expanded b the preprocessor and the code is shown in Figure 3, where
"LOCKON" and "LOCKOFF" are provided by the operating system and are

very expensive. The user-implemented construct uses a Force "Barrier" before
execution to initialize variables and then uses the shared array "commun" to
synchronize. The loop as implemented using the user-implemented construct
is shown in Figure 4, where "me" is a processor's number and "nprocs" is the
number of processors. The user-implemented construct has the advantage of
not requiring a call to an operating system routine.2 The construct is not a

2 The initialization step does require such a call.
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1) fori= 1, ndo

2) execute code in parallel

3) wait for all processors to reach this point

4) execute code with one processor

5) tell all processors to resume execution at this point

6) execute code in parallel

7) 10 continue

Figure 2: Loop with desired synchronization

C assume that numhere is 0, the lock lockvar is off

C and the lock lockwait is on

1) do 10i= 1, n

2) execute code in parallel

3a) call lockon(lockvar)

3b) if (numhere.lt.(nprocs - 1)) then

3c) numhere = numhere + 1

3d) call lockoff(lockvar)

3e) call lockon(lockwait)

3f) endif
3 g) if (numhere .eq. (nprocs-1)) then

4) execute code with one processor

5a) endif

5b) if (numhere.eq.0) then

5c) call lockoff(lockvar)

5d) else

5e) numhei- = numhere - 1

5f) call lockoff(lockwait)

5g) endif

6) execute code in parallel

7) 10 continue

Figure 3: Loop with Force synchronization
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Oa) commun(me) = 0

Ob) Barrier

Oc) End barrier
1) do 10i= 1, n
2) execute code in parallel

3a) if (me.eq.1) then

3b) j = 2
3c) 20 continue

3d) do 30 j = j, nprocs
3e) if (communo).ne.i) goto 20
30 30 continue

4) execute code with one processor

5a) commun(l)

5b) else

5c) 40 continue

5d) commun(me)
5e) if (commun(1).ne.i) then

5f) goto 40

5g) endif

5h) endif

6) execute code in parallel

7) 10 continue

Figure 4: Loop with user-implemented synchronization

general substitute for the "Barrier-End barrier" construct of the Force because
one initialization step must take place for every user-implemented construct.
This initialization step requires the equivalent of a Force "Barrier." The user-
implemented construct is superior when used in a loop because the cost of the
initialization step is amortized over the number of iterations in the loop. Exten-
sive experiments have shown that the user-implemented construct is superior
to the Force "Barrier" and to the synchronization constructs available in the
Cray autotasking package on both the Cray Y-MP and Cray-2 when executing
in dedicated mode[9].



3 Parallel Execution Model of LANZ

A parameterized parallel execution model of the computations in LANZ has
been constructed to allow the prediction of performance on parallel comput-
ers of varying characteristics, as well as for problems of varying sizc and type.
This model is based on the parallel version of LANZ outlined in the previous
section. One application of the model is the comparison of the actual parallel
performance of LANZ against the performance predicted by the model. This
ensures that the parallel implementation of LANZ is performing as expected.
Two other applications of the model are: 1) prediction of performance on differ-
ent architectures, and 2) prediction of the effect of changes to LANZ without
the actual implementation of the changes. Given the parameters listed in Fig-
ure 5, the cost of execution on p processors can be estimated using the following
model:

T(p) = nftj(p) + ntf.(p) + ntb,(p) + nstmm(p) + ntsc(p) + t.(p). (1)

Because of its complexity, the model is split into the following submodels:

tj(p) = n[Imp) + ((as - 1)cr + j(J 1)(c C)+ (2)
as 2 E _2 (c  o) 2

j=1

-((as(O - as)c,) + ((0 - as)c.(-(p3 - as), as)))]
p 2

as 2 (mf + ) c)+ ,.( , a s)] (3)as 2p

tba(p) = n[f.(p) + ,s(as -1)(cm + co) + as(p- 1)ca + (4)
as a2
( - as , as)]p

t--P = 2c..(a) + f.,(P) + c..( n,- ) (5)

p p
t. (P) = i,_c.2(n, 1) + (tmm + cp(n, 1) + c,,,(n)) (6)

2 p
t0 (p) = [2cjm(n) + 4c,,.(n, 1) + 5cqp(n, 1)] + (7)

n.rnin(- , n.)(trnm(p) + 2cip(n, 1) + ctm(n) + c, 2 (n, 1)).
2

The operation, extended saxpy of size j, is used in the submodels and is defined
as

x = x - a ,, (8)
i=6

6



where x is a vector, aj is a scalar quantity, and each yj is a separate vector. The
extended saxpy operation takes full advantage of the vector processors on the
Cray Y-MP.

The cost of a single factorization,3 tj(p), is given Equation 2. The extended
saxpy operations in the second line of the equation dominate the computational
costs. To parallelize the computation, at each of the - steps a processor is
given 6 extended saxpys to compute. Because this part of the computation

P
parallelizes well and dominates the execution cost, good parallel speedup is
expected in the factorization algorithm.

The models for triangular matrix solution, tf,(p) and tb.(p), are given in
Equations 3 and 5.4 These computations do not parallelize nearly as well as
factorization. Two reasons for this poor parallelization are: 1) the ratio of
computation to synchronization is much lower than for factorization, and 2) as
the number of processors, p, increases, the efficiency of the vector operations
in this computation deteriorates. The reason for this deterioration in vector
performance is now given.

The dominant cost for forward triangular matrix solution is the extended
saxpy operation. This operation has been parallelized by splitting the vectors
into p pieces, thereby decreasing the vector lengths as p increases. Thus, as the
parallelism increases, the vector efficiency decreases.

The case is somewhat more complicated for backward triangular matrix so-
lution because the dominant operations are j inner products.' This analysis
is based on the assumption that the inner products have been parallelized by
splitting the vectors into p pieces as was done for forward triangular matrix solu-
tion. If this is done, then the same analysis that was used in forward triangular
matrix solution holds.

Another approach is possible, however, if the size of the matrix-matrix oper-
ations, j, can be arbitrarily specified." The alternative approach is to assign L,
where j is evenly divisible by p, inner products to each processor to compute in
parallel. Thus, the vector lengths are unchanged as p increases. However, this
approach has two drawbacks: 1) if j is not evenly divisible by p, then poor load
balancing occurs, and 2) a processor on the Y-MP can compute several inner
products simultaneously more efficiently than it can one or two inner products,
therefore if i is small, the operations will be inefficient.

P
A model, t,,m(p), for the cost of the multiplication of a sparse matrix ' times

'This submodel is constructed under the assumption that a variable banded factorization
algorithm utilizing matrix-matrix operations is being used. The advantages of matrix-matrix
operations are discussed in [2].

4 The assumption is again made that matrix-matrix operations will be used.
6j is the size of the blocks in the matrix-matrix operations.
"The block size can be arbitrarily specified if a symmetric positive definite matrix is being

factored, but not if a symmetric indefinite matrix is being factored. This is discussed in more
detail in [2].7 The assumption is made that M, if the vibration problem is considered, and K 0 , if the
buckling problem is considered, are sparse.
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a vector is given in Equation 5. The computation is parallelized b y assigning
columns of the matrix to each processor. Each processor uses saxpy operations
to compute the contribution of each of its columns to the result vector. Each
processor stores the sum of the contributions of its columns in its own vector.
After all the processors have finished computing their own vectors, each com-
putes a portion of the result vector from the contributions of each processor
using saxpy operations. Because only one synchronization step is required, a
speedup of almost p on p processors can be expected.

This algorithm is superior to the obvious algorithm of assigning rows of the
matrix to each processors and letting each processor compute a single element of
the result vector. Although the obvious algorithm requires no synchronization, it
does require the use of vector inner products which are far slower than the saxpy
operations used in the previous algorithm. For large p the cost of communicating
the partial results would become too expensive and the obvious algorithm would
be superior.

The model for the cost of computing an eigenvector, te,(p), is given in Equa-
tion 6. The major computations used to compute an eigenvector in LANZ are:
1) yi = Qjsi, which is a full matrix multiplication, and 2) the normalization of
yj to ensure that yTMyi = 1. The full matrix multiplication can be partitioned
in a fashion similar to sparse matrix multiplication with similar results to be
expected. The normalization requires a sparse matrix multiplication, a vec-
tor inner product, and a vector division. Because the dominant computations,
matrix multiplications, parallelize well, good speedup can be expected.

The model for the other computations in LANZ, t0 (p), includes the cost
of the n-length vector operations. These operations have not been parallelized
in LANZ. The cost of reorthogonalization is reflected in the second group of
terms in Equation 8. Because the number of reorthogonalizations varies so
widely between problems, this model approximates the cost based on the number
of Lanczos steps and the number of eigenvalues computed. Because sparse
matrix multiplication is the dominant computation in this portion of to(p),
good speedup can be expected from it.

One application for this model is to ensure that the parallel implementation
of LANZ is performing as expected. For a comparison of the model against
the implementation, LANZ was run on a medium size eigenproblem, n=12054,
where the ten lowest eigenvalues were sought on an eight processor Cray Y-MP.
An examination of Figure 6 reveals that the implementation times are very close
to the predicted times from the model.

4 Analysis of the Parallel Implementation

When the performance data from LANZ in Figure 6 is transformed into the
speedup curve in Figure 7, a plateau in the speedup curve can be observed as p
exceeds four; there are several reasons for this early plateau.
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Parameter Description
n order of the eigensystem'
p number of processors
____ average bandwidth of the linear system
a average number of non-zeros per row of the linear system
as average block size during the factorization

I) cost of synchronization given i processors
cip(i, j) cost of j simultaneous i-length vector inner products
coa(a) cost of sparse saxpy operation with a non-zeroes
C cost of single multiplication
c,,m(i) cost of i-length vector multiplication
c, cost of single addition
c,(i, j) cost of i-length j size extended saxpy operation
n, number of Lanczos steps
n, number of eigenvalues
nf number of factorizations
t1 (p) time for 1 factorization on p processors
ta0 (p) time for 1 forward triangular matrix solution on p processors
tba(p) time for 1 backward triangular matrix solution on p processors
tm mn(p) time for 1 sparse matrix multiplication on p processors
tC(p) time for 1 eigenvector calculation on p processors
t0 (p) time for the other calculations in LANZ

Figure 5: Parameters required by parameterized model
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Figure 6: Comparison of the implementation vs. the model on a Cray Y-MP
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Figure 7: Speedup curve of LANZ on a Cray Y-MP
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First, the parallel implementation of LANZ did not sacrifice the vector per-
formance of the code in order to obtain better parallel speedup. If this had been
done, then the speedup of the parallel implementation on p processors over the
parallel version on one processor would be excellent; however, the uniproces-
sor vector implementation would be faster than the parallel implementation on
four processors. The multiple segmented computational units in each processor
of the Cray Y-MP are, in essence, usurping much of the parallelism inherent
in LANZ. The plateau in the speedup curves for LANZ would occur later if
vectorization was not used. To illustrate this point, parameters for the model
were gathered from tne Cray Y-MP with vectorization and without vectoriza-
tion. The performance of the vectorized and unvectorized versions is plotted in
Figure 8. From this figure it is clear that the plateau in speedup can be delayed
significantly. This would be foolish, however, because the vectorized version is
always faster than the unvectorized version. The ultimate goal should be to
minimize execution time, rather than to maximize parallel efficiency.

Second, a comparison of the sequential execution profile in Figure 1 with the
parallel execution profile in Figure 9 of the same computation on four processors
of the Cray Y-MP reveals that the triangular matrix solutions are the bottleneck
in the parallel version of LANZ. The percentage of execution time required
for triangular matrix solve and the sequential computations increased from 16
percent on a single processor to 38 percent on four processors. This is not
unexpected, because it was stated in the analysis of the implementation in
the previous section that triangular matrix solution does not parallelize well.
Two reasons for this poor parallelization can be observed in the submodels for
forward and back triangular matrix solution: 1) the low ratio of computation
to synchronization, and 2) the decreasing vector length as p increases, resulting
in a degradation of vector performance.

Third, the type of problem being run will be a significant factor in deter-
mining the speedup. If the problem requires a large number of Lanczos steps
and only one factorization to converge to the sought after eigenvalues, then the
triangular matrix solutions will dominate the runtime and cause poor speedup.
However, if the eigenvalues in a particular frequency range are being sought,
at least two factorizations will be necessary and, possibly, only a few Lanczos
steps will be required, resulting in excellent speedup. Therefore, the distribu-
tion of the eigenvalues as well as which eigenvalues are being sought will affect
the speedup.

5 Improving Parallel Performance

Two approaches for improving the parallel performance of LANZ will be de-
scribed. These approaches improve performance by either: 1) reducing the
number of Lanczos steps taken and therefore reducing the number of triangular
matrix solutions, or 2) allowing more than one triangular matrix solution to
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Computation Time Percentage Speedup
(seconds)

Factorization 3.69 50.5 3.8
Matrix Multiplication 0.77 10.5 4.0
Triangular Matrix Solution 2.28 31.2 1.2
Computation of Eigenvectors 0.07 1.1 4.0
Other 0.49 6.7 1.0

Figure 9: Execution profile of LANZ on four processors of the Cray Y-MP

occur in parallel.

5.1 Dynamic Shifting

The first approach utilizes the dynamic shifting algorithm in LANZ to reduce
the number of Lanczos steps. As the number of processors increases, the time
for factorization decreases, but the triangular matrix solution time is relatively
unaffected. Therefore, moving the shift closer to desired eigenvalues becomes
increasingly attractive. This approach will be most successful when the eigenval-
ues are distributed in such a way as to require several Lanczos steps to compute
each eigenvalue if only one shift is used. The benefit of dynamic shifting in
terms of execution time can be seen in Figure 10, where the execution time
required to solve an eigenproblem with a difficult eigenvalue distribution using
dynamic shifting is compared with the time required without dynamic shifting.
In addition, as predicted, the speedup curve with dynamic shifting shown in
Figure 11 is significantly better than the curve without dynamic shifting.

5.2 Groups of Processors

Another method for improving parallel performance as p grows is the assignment
of groups of processors, gi, to separate shifts, j.k. Each group, gi, executes
parallel LANZ on shift jtk. The model of computation within a group is a
tightly-coupled shared memory model, as described in the previous sections of
this paper. The model of computation between the groups is an asynchronous
message-passing model. This approach allows a large number of processors to
be used without incurring an unacceptably high level of synchrouization and
communication. A description of the algorithm and a discussion of the issues
that arise follows.

The first issue addressed is the selection of the shifts, #i. Although the num-
ber of shifts is interdependent on the number of processors, p, and the number
of groups, m, this discussion will only cover the selection of shifts independent
of other considerations. For this discussion two types of eigenproblems exist: 1)

14
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Figure 11: Speedup curves for LANZ with and without dynamic shifting
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t of the lowest eigenvalues are required, or 2) all the eigenvalues in a particular
range are required.

If all the eigenvalues in a range are required, then the selection of shifts is
straightforward. A shift on each endpoint of the range is always required to
compute the number of eigenvalues in the range. Additional shifts can then be
selected in the interior of the range, if more than two groups of processors are
available. Because the eigenvalues closest to a shift are found first, the groups
working on the endpoints will calculate some eigenpairs outside the specified
range. Initially, two assumptions will be made: 1) the eigenvalues are linearly
distributed and, 2) each group will compute an equal number of eigenvalues
around its shift. Given these assumptions, the initial shifts, j, will be chosen
such that each group will be assigned an equal amount of work. Given the
endpoints of an interval, a and b, and the number of groups, m, the equations
for computing the m gk's are (if m > 1):

i= (9)
b-a

k = a+(k-i)b-a-_ for l<k<m

jim = b.

If m = 1, then the shifts can be chosen in one of two ways: 1) two shifts will be
chosen, a and b, or 2) three shifts will be chosen, a, b and the midpoint. The
second method will result in fewer Lanczos steps than the first method, but will
require an extra factorization. Because the cost of factorization and the cost of
a Lanczos step depends on the problem, the selection of a shift selection method
is problem dependent.

In this section, the focus is on the range case, however, a brief description
of the algorithm for selecting shifts when the lowest t eigenvalues are sought is
now given. Because only a starting point, 0, for the search is available, a group
of processors will start with a shift of 0. As estimated eigenvalues are generated
by the first group, more shifts can be selected based on the estimated eigen-
values. The shifts would be generated as soon as enough estimated eigenvalues
are available to give a good indication of where shifts will be useful. Other
groups of processors will begin work on these newly generated shifts. A tradeoff
exists between putting the idle groups of processors to work as early as possible
and making sure that the newly generated shifts are in areas of the eigenvalue
spectrum where useful work is done. In addition, it would be desirable to have
as many processors as possible work on the first factorization and then let a
subset of these processors work on the computation of the Lanczos steps at this
first shift. This algorithm is not as efficient as the algorithm for the range case,
because not all the processors can begin working at the same time. For the
group approach to be effective, a fairly large number of eigenvalues must be
sought, otherwise, one group could quickly find the desired eigenvalues. s .

'In this case, the normal parallel LANZ program is efficient because few Lanczos steps
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Each group computes eigenpairs until:

a) it is finished with the sub-interval between its shift and the shift
immediately to its right and it is finished with the sub-interval

between its shift and the shift immediately to its left, or

b) the number of allowable steps is exceeded

c) the storage capacity of the group is exceeded

A group is finished with a sub-interval if:

d) all the eigenpairs in that sub-interval have been found, or
e) the group finds a converged eigenpair that is on the other side

of an eigenpair found by another currently working group.

Figure 12: Algorithm for group approach

The algorithm for a group is given in Figure 12. Condition e allows the
groups to negotiate the portion of the sub-interval that each will compute. This
has a significant advantage over assigning half of the sub-interval to each group
when the eigenvalues in the sub-interval are concentrated near one of the shifts.
If each group is assigned half of the sub-interval, then the groups will take a
very unequal number of steps, resulting in poor load balancing.

The data that need to be communicated between the groups are: 1) the
shifts, 2) the inertia count at each shift, 3) the eigenpairs, and 4) the left and
right endpoints of the range of eigenvalues computed by each group. This data
is conceptually communicated via message-passing, however, shared variables
protected by critical sections are used in the Force implementation.

To make good choices for the size and number of groups, as well as to
predict the performance of the group approach, the model described in Section 3
will now be extended. The model for predicting the performance of the group
approach is

T(p) = max(t.,(1,pi, n,, ne,)), (10)i=lIrn

where the parameters are specified in Figure 13. Of course, the optimal number
of groups, m, and processors per groups, pi, given p cannot be known a priori for
most problems. However, the model can be used to make general statements
regarding the selection of m and pi. From the model in Section 3 and the
analyses in Section 4, it can be concluded that the parallel efficiency of a group,
gi, will deteriorate as pi and no,, increase. However, although the efficiency

are needed.
9 In general, as n., increases, n., increases.
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Parameter Description
tg,(a, b, c, d) for group i, the T from equation 1 where,

a is the number of factorizations,
b is the number of processors,
c is the number of Lanczos steps,
d is the number of eigenvalues found,

m the number of groups
Pi the number of processors in group i
n0, the number of Lanczos steps taken by group i
n,, the number of eigenpairs calculated by group i

Figure 13: Parameters for group model

decreases as pi increases, the execution time does decrease.' ° In general, as the
the number of groups, m, increases, the number of Lanczos steps per group, no,,
decreases. 1 The tradeoff, with fixed p, between the number of groups and the
number of processors per group can be essentially characterized as trading off
decreased factorization time for more steps per group, e.g. as pi increases, and
m decreases, the factorization time per group decreases, however, because the
group is now responsible for computing more eigenvalues, more Lanczos steps are
required. To illustrate this point more effectively, the time for factorization and
the nimber of Lanczos steps have been plotted against the number of processors
in group i. In the graph shown in Figure 1412, p is assumed to be held constant,
and, therefore, m is implicitly decreasing as pi increases.

The group approach as described in this section has been implemented on
the Cray Y-MP using the Force parallel language. Due to constraints imposed
by the Force, however, each group consists of only one processor. Although
this constraint does not allow full use of the group approach, results from this
implementation, combined with the model and results from the parallel imple-
mentation in Section 2, allow very accurate assessments of the performance of
the group approach. To make these estimates, n,, and n8 i for group i ii. the
group implementation were used to calculate the time for group i given different
values of pi.

First, performance results from the implementation on the Cray Y-MP will
be given. The group approach using 1 ... 4 processors was run for three separate
situations on the same problem13: 1) all the eigenpairs in a range that contained

1°The decrease continues until a plateau is reached. After this plateau is attained, the

addition of more processors will only increase execution time.
" However, this is very dependent on the distribution of the eigenvalues. Also, in general

E7' n, is not constant for different m in the same problem.
No units for the y-axis are shown because the interest is only in the direction of the curves.

"3The order of the eigenproblem was 1824 and the average semi-bandwidth was 127. The
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Figure 14: The tradeoff between factorization time and the number of Lanczos
steps
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20 eigenpairs were sought, 2) all the eigenpairs in a range that contained 40

eigenpairs were sought, and 3) all the eigenpairs in a range that contained 60
eigenpairs were sought. In cases 1 and 2, good speedup was achieved. However,
a dropoff in speedup was seen in case 3 when m was increased from three to
four because the majority of the eigenvaiues were concentrated in the far left
end of the range. This concentration of eigenvalues resulted in very poor load
balancing. Speedup curves for all three cases are plotted in Figure 15.14

To give the reader a better understanding of how the group algorithm oper-
ates, a short discussion of the division of work among the groups for a specific
example is now given. First, two aspects of the algorithm that should be noted
are: 1) because eigenvalues closest to a shift are found first, the groups working
on the outermost shifts will likely find eigenvalues outside the desired range,
and 2) two groups may compute the same eigenpair. The division of the eigen-
value spectrum among the processors for case one" is shown in Figure 16. An
examination of the division of work using two groups in the figure reveals that
groups one and two computed several eigenvalues outside the desired range.
Also, group one computed one eigenvalue in the range of group two and group
two computed one eigenvalue in the range of group one, therefore, although
group one found 21 eigenvalues, only 20 eigenvalue are seen in its range.

To assess the performance of the group algorithm with different values of
pi and m, results from the implementation in this section are combined with
results from the implementation in the previous section. The runtime of the
group algorithm is the runtime of the group that takes the most Lanczos steps.
If all the groups are of equal size, then the number of Lanczos steps that each
group takes is independent of pi. Let

n, = max n,,. (11)i=1l... r

The implementation described in this section was run on a problem16 and nn
was observed for m = 1 ... 4. Then, the implementation described in the pre-
vious section was run on the same problem for nn, m = 1 ... 4, steps on pi,

i = 1 .- 4, processors. The execution time observed for each of these runs
would be the execution time of the group algorithm. The speedup curves for
m = 1... 4 groups are shown in Figure 17. From this graph, it can be concluded
that, in general, the group algorithm is superior to the algorithm described in
the previous section. It can also be concluded that, in general, the best perfor-
mance of the group algorithm will not be attained with m = p.

size of the problem was restricted due to the limited stack size of the Cray Y-MP.
"If m=1, then the group approach is equivalent to the parallel implementation described

in Section 2.
"6 The three cases are described in the previous paragraph.
IA vbration problem with n=12054 and an average bandwidth of 328. All the eigenpairs

in a specified range containing twenty eigenpairs were sought.
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Figure 15: The performance of the group implementation
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Run 1 One Group Run 2
46 steps 23 steps

24 X s 13 X's

a 2K b

Two Groups

Group 1 Group 2
39 steps 38 steps

21 X's 16 %'s

\a /b

Three Groups

Group 1 Group 2 Group 3
32 steps 30 steps 22 steps

14 )LIs 11 XIS 10 X's

a b

Four Groups

Group 1 Group 2 Group 3 Group 4
23 steps 22 steps 20 steps 18 steps

8x's 10 X's 7 X's 7 X's

/,' " I k " ", i - ') L ,"  Ar , " '
a i b

a is the left end of the range
b is the right end of the range

X denotes a shift
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Figure 17: The estimated performance of the group approach
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6 Concluding Remarks

The use of the Force parallel programming language on a large, practical code
revealed some shortcomings in the language and several remedies were proposed.
The parallelization of a Lanczos-based solver for the generalized eigenproblem
was discussed. An analytical performance model for this code was used to
er-plain the tradeoffs that were made when implementing the eigensolver on
a parallel-vector computer. The analytical model also was used to show that
a bottleneck in the parallel eigensolver is the forward and back substitution

algorithms. Two algorithms for improving the parallel performance were given.
The parallel eigensolver presented in this report is suitable for parallel com-

puters with a moderate number of processors as well as for parallel-vector com-
puters with a small number of processors. However, due to the bottleneck im-
posed by the forward and back substitution algorithms, this eigensolver is not
suitable for large scale parallelism. To exploit large-scale parallelism, the au-
thors are seeking to eliminate this bottleneck by pursuing research into iterative
methods for solving (K - uM)x = y.
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