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Abstract

/

We show how to solve the linear least-squares smoothing problem for

multipoint boundary value models. The complementary model is derived

and is used to determine - e Hamiltonian equations for the smoothed state

estimate and its error covariance. Stable algorithms are obtained using an

invariant imbedding/multiple shooting procedure.
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1. Introduction

Many physical systems can be modeled by linear partial differential

equations with various types of boundary conditions. When such systems are

subject to random excitations, it is often necessary (for reliability analysis or

control, for example) to find the smoothed estimate of the state vector

based on noisy observations. In certain cases, such multidimensional models

can be Fourier transformed into sets of uncoupled ordinary differential

equation models (see, for example, [RW1], [RW2], [LAW]). For ordinary

differential equations with two-point boundary conditions, the smoothing

problem has been studied in [AWL], [RWl], [RW2], [BWJ, [NAWLI, [W, [LAW],

[LFK].

We intend in this paper to investigate the case of multipoint boundary

conditions. One context in which multipoint boundary conditions arise is

that of flexible structures, like bridges and moorings, which consist of

components coupled end to end (see, for example, [CDKP]). Using the

concept of the complementary model, introduced in [IWD], along with

invariant imbedding and multiple shooting, we will derive efficient, stable

algorithms for the smoothed state estimate and its error covariance. As we

shall see, the multipoint case has certain characteristics which do not

appear in the two-point case. For

The multipoint boundary value model of interest here is given by d
Juz ti1f ica ti1or_ ____

Distrlbut ion/

0 Availability Codes

1 ;Avail and/or

Dit Special



;hx)=Az(x)+Bu(x), xI[xO,xN_1] (1)

N-I
Y.Vz(x,) =r, x O <x I <*..o< x,- I  (2)

tsO

where x is typically a spatial variable and u is a zero-mean, unit intensity

white noise with m components, r is a zero-mean random n-vector with

Err'= Q

z is a continuous n-component state vector, and A, B, Vo , VI.... VNI are

constant matrices of appropriate size. We assume that u and r are

uncorrelated. We have continuous measurements given by

y(x)=Cz(x)+v(x), XE[XXN-11 (3)

where C is a pxn matrix and v is a zero-mean, unit intensity white noise

which is uncorrelated with u and r. Given the measurements y, our

objective is to find the smoothed estimate (in the linear least-squares sense)

of the state z, and its associated error covariance.

As a simple example of a multipoint boundary value model, consider a

static Euler-Bernoulli beam with flexural rigidity f3 and a continuously

distributed load with density L. In state space form, the beam model is

given by eqn. (1) with
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A= 00 0 4 B=[0

where the first component of the state vector is the deflection of the beam

at point x. Now suppose there are boundary conditions consisting of pins at

x. and x 2 and a clamp at x1 . Then these can be represented by eqn. (2) with

and with Q quantifying the looseness, or uncertainty, of the pins and clamp.

2. The Complementary Model

The Hamiltonian equations for the smoothed estimate are most readily

derived using the method of complementary models [W)D], [AWL], [RW21,

[AK]. If Y is the closed linear span of the components of y, then a comple-

mentary model is, in the case at hand, a multipoint boundary value model

which generates complementary variables, denoted y, and 0. whose com-

ponents span the orthogonal complement of Y. In order to derive a comple-

mentary model, we must first solve for z in terms of r and u.
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Integrating eqn. (1) gives

z(x) = O(X, Xo)Z(Xo) + fo e (x )Bu()d4 (4)

where c is the state transition matrix. Substituting into eqn. (2) yields

N-1 N-1

r= XVj(xj.xo)z(Xo)+ jXJ0(xj,)Bu()d(5)
J=O J-O x0

The boundary value problem will be well-posed (that is, u and r will give rise

to a unique z) if and only if the matrix

N-I

J=0

is nonsingular. By multiplying eqn. (2) on the left by the inverse of this

matrix, we can always ensure that

N-I
I.vj4D(X ,Xo) = 1 (6)

In what follows it will be assumed that eqn. (6) holds.

Solving eqn. (5) for z(xo) and substituting into eqn. (4), we get
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x XN.Iz(x) = O(x~xo)r + G(x. lBu(C)d, (7)

where the multipoint Green's function G(x,4) is given by

(X,Xo)XVkc(xk,4), x>

G(x, ) = -< (8)
[-O(X, Xo) Y-Vk <D(Xk,4), X <

for j=0,1,...,N-2. By analogy with previous work [WD], we can deduce from

the form of eqns. (3) and (7) that complementary variables are given by

y. (x) = ufx) - B Nf10 G'( ,x)C'v(f)d (9)

DO = r - QJ." 0 '(4,x 0)C'v(4)d4 (10)

where D is any full-rank matrix satisfying

DD'= Q

Defining a complementary state by

z,(x) = fX" G'(,x)Cv()d4 (11)
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we see that

y,(x) = u(x) - B'z,(x) (12)

Note that in contrast to the two-point case in which it is continuous, the
complementary state here has jumps at the points x=x1 ,x2 .XN 2 .

Just as with eqn. (9), we would like to express eqn. (10) in terms of z,.

Defining

31 = z,(xj-) -z(x,+) j = 1,2...., N - 2 (13)

and using eqns. (8) and (11), we find that

ZI(XN-1) = "V-1 " 0'(4.,x0)C'v(f)d4 (14)

_V -- V XN- ' V~ (4'x,)C'v(4)d4 ( 15)

z 0 (xo) = V"f"- O 'I(4,x0 )C'v()d4 (16)

Using the above along with eqn. (6), we can rewrite eqn. (10) as

N-2

DO = r - Q[z,(xo) - 1 0'(xj,xo)3 J - OU'(XNI,XO)Z(XN_1)] (1 7)
J-1
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Next, we want to express z, as the state vector of a multipoint boundary value

model like eqns. (1)-(2). Differentiating eqn. (11) gives

(x) = -A'z,(x) - C'v(x), XE [Xo,XN_ 11 \ J= (1 8)

The boundary conditions that go with eqn. (18) must yield a unique z, which

matches eqn. (11). Since eqn. (18) is valid in each of N-I subintervals, we

need a total of (N-1)n independent boundary conditions for a unique solu-

tion. Therefore the boundary conditions for the complementary state must

have the form

N-2

KoZ (Xo) + K1j + KNIZC(XN_) =0 (19)
J=1

for some suitable set of matrices {K) of size (N-1)nxn. In fact, if

Ko =[V V2 ...-.

K, =[I 0 -. 0] -KoO'(x 1 ,x o) (20)

KN_1 =[0 -. 0 I] -Kop'(XN_,,Xo)

it can be verified (see the appendix) that the boundary value problem of
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eqns. (18)-(19) is well-posed and that its solution matches eqn. (11). Eqns.

(12), (17)-(20) constitute a complementary model for eqns. (1)-(3).

3. The Hamiltonian Equations

The value of a complementary model now becomes clear because by

cross-substituting between the original model and the complementary

model, we can eliminate u, r, and v, and then project onto the space

spanned by the observations to obtain the Hamiltonian equations

z(x) = A(x)+ BB'2.c(x), Xx [o,N_] (2 1)

zc(x)= -A' ".(x) + C'C2(x) - C'y(x), X [XOXN_ ] \ {X JI=2  (22)

with boundary conditions

N -[ , ] 2 X j + [ _ _ " X O + N - 2 Q 'D '( x ,x ) ] S + K'( N l ) ]o ) ( 2 3 )

where the "hat" denotes linear least-squares estimate. Note that since the

complementary variables y, and e are uncorrelated with y, their estimates

are zero.

By using invariant imbedding, we can transform eqns. (2l)-(23) so

that the resulting differential equations are partially decoupled and asymp-
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totically stable. Let N(x) be the solution to the following Riccati equation

Mx) = -N(x)A - A'N(x) + N(x)BB'N(x) - C'C (24)
N(xNl) = 0

Then the coordinate change

p(x) = N(x)2(x) + ijx)

transforms the above Hamiltonian equations into

z(x) = (A - BB'N(x)).(x) + BB'p(x), x e [Xo,XN_.] (25)

(X) = -(A - BB'N(x))'p(x) - C'y(x), XrE [XO, XNI J\ = (26)

with boundary conditions

FVO+QN(xo) -Q1F(xo)1 +'VI Qc'(xj.xo)1[2(xj)10 (27)
[-KoN(xo) KoIJLp(xo)J j. jo

where we have defined

P(xj-)-p(xj+), j=1,2....N-2
(pi (XN I) , j= N- i

If (A,B) is stabilizable and (AC) is detectable, then eqns. (25) and (26) will
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be asymptotically stable in the directions of increasing and decreasing x,

respectively. Note that the Riccati equation is identical to one that arises in

smoothing for initial value models [WD], [AK]. Other invariant imbedding

transformations are possible, for example using two Riccati equations, but

the one used here is the most efficient in terms of the amount of computa-

tion required to find the smoothed estimate and its error covariance [W].

4. The Smoothed State Estimate

The transformed Hamiltonian equations can now be solved using a

multiple shooting procedure. First solve the following initial value systems:

Po (x) = -(A - BB'N(x))'po (x) - C'y(x), Po (XN-l) =0 (28)

Zo(x) = (A - BB'N(x)) 0 (x) + BB'po(x), -0(xo) =0 (29)

The solution of eqn. (29) can be interpreted as the smoothed estimate of

z(x) when Vo =I, Vj=O for j>0, and Q=0; or in other words, when the original

model is an initial value model with zero initial condition [WD].

Now it can be checked by differentiation that for Xk.<X Xk, l<kN- 1,

k-I N-I

2WX = 2 0 (X) + W(X, Xo)-(Xo)+ Z +(x'Xj)M(xjl8pX + IM(x)'F'(xj,x)8p, (30)
J=l J=k
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and for Xk.l<X<Xk,

N-I

p(x)= po(X) + I T'(xi~x)8pj (31)
J=k

where TF is the state transition matrix of (A-BB'N(x)) and

M(x) = (A - BB'N(x))M(x) + M(x)(A - BB'N(x))' + BB' (32)
M(x o) = 0

We can determine the unknown quantities in eqn. (30) by obtaining z(xk),

k=1,2,...,N-1, and p(xo) from eqns. (30) and (31), respectively, and sub-

stituting into eqn. (27). This results in the following system:

F p0o (oXo) 1
[I+ FIF2J 2 (33)

L 45N- j o. (XNl)j

where

[Q -K 1 JFx) -A1X I'X19  ) - c14x1,XO) 1
- o ' 2 4-2 = (x(xN _,Xo) -Ax AXo

11



[ M(x1 ) M(X l ) '(X 2,Xl) ... M(Xl )'P'(XNI,Xl) 1

'F(X2,X)M(xI) M(X 2) ... M(x2)T'(XNX2)IL= :"'

.Ltp(XN Il,)M(Xl) tp'(XNIX2)M(x 2 ) ... M(XNI)J

The well-posedness of eqns. (1)-(2) together with the uniqueness of linear

least-squares estimates guarantee the nonsingularity of (I+FF2). The com-

ponents of the vector on the right side of eqn. (33) are obtained from eqns.

(28)-(29). The solution of eqn. (33) is used in eqn. (30) to produce the

smoothed estimate.

5. The Error Covarlance

The smoothing error ;(x) is defined by

2(x) = z(x) - i(x)

Eqns. (1)-(3) and (21)-(23) imply that the smoothing error is also charac-

terized by a multipoint boundary value problem as follows:

z(x) = A2(x) + BB'(- (x)) + Bu(x), x E[xoXN- 1

-Z, (x) = -A'(-2,, (x)) + C'C2(x) + C'v(x), x C [XOXN_ 1 1\ {XJ-}N1 2

N-IQ '(XN 1 ,X0 )]0 + _C x) + 2[Q ( xo +3 (-2,:~))[~
;oJ-0 KL oJ Kj KNI
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A change of coordinates with

c(x) = N(x)2(x) - 2,(xW

transforms the above equations into

Z(x) =(A -BB'N(x))2(x) +BB'4(x) +Bu(x), xe [Xo,XM-lI (34)

x)= -(A - BB'N(x))' (x) + N(x)Bu(x) + C'v(x), X re IXO IXN-l] \ {XJt 2 (35)

F+QN(xo) -Q 2(xj1 + -[VJ QP'(xjIxo)1[2(Xj)1=[rl (36)[ K0 N(x0 ) KO j[(x 0 )J +j=1O K~I J

As before, if we let

4)()= -(A - BB'N(x))Y 0 (x) + N(x)Bu(x) + C'v(x), 40o(XN- 1 ) = 0 (37)

zx= (A -BB'N(x))± 0(x) +BB'4%(x) +Bu(x), 20(x0 ) =0 (38)

then for xk. 1X Xk, 15k<N- 1,

~()= 0x +~~xx)~x)+k-I N-I(

2(X)= 2(X)+ y(XO)2Xo) I Y(x.x, )M(xj )45, + Y, M x xh53 (39)
J.1 J=k

13



where [ i~xo)1 [ O(xo)1
r+ io(x1 )

[I- + LF2o Fl 11 ) (40)

From [WI)] we know that

EU 0(x0) O%(x0)I=N(x) E[20(x) O(x)h0- (41)

E~io(x)z-O(S)1 = f -(X, SM~S), x :s (42)

Therefore

P(x) = E[2(x)2'(x)1

= M(x) + R(x)(I + r'[[)- Q 0 + F[N~xO) 021E1(I + F1F2)'' R'(x)

-R(x)(I + FI )- [KOS'(x)] [S(x)K0 0](I + F1F2 )'-'R'(x) (43)

where for xk.l )Xk, 1:5k N- 1,

S(x) =['F(X,X1 )M(XI) "'PV(X,Xk-)M(Xk-1) M(X)'P'(Xk,X) .. M(X)F'I-I'Xl)
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and

R(x) W ~(x~x0) S(x)]

Appendix

From eqn. (18),

But

Z, (XI- 31 + Z.(xI +)

and from eqn. (18)

ZI(Xl+) =O'(X29 XI)Z,(X 2 -)+x 0'U ,x,)C'vG )d

Therefore

Z,,(XO) = 0'(X1 ,X061 + 0'(X2,IXO)Z,(X2 -) + Eo 0'(4.x0 )C'v(t4)d
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Continuing in the same fashion, we get

N- 2 R10 

( , O C v d

z(xo) = 0tI '(xj,xo)3j + O'(XN..,xo)zC(XNI) + X,_ ''(0 ,xo)C'v( )d
J= 1x

Substituting into eqn. (19) gives

N-2

N[Kj + KoO'(xj,xo)]6j +[KNI + KOZ'XN,Xo)lZc(XN)+ Ko N-I c'( ,x)C'v{ )d =

j=l

With the {KJ} given by eqn. (20), zC(xN.l) and the {8j can be obtained uniquely

from the above equation, and in fact are given by eqns. (14)-(15). Integra-

ting eqn. (18) with the values given in eqns. (14)-(15) will produce eqn.

(11). Therefore the boundary value problem of eqns. (18)-(19) is well-posed

and its solution is given by eqn. (11).
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