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FOREWORD

Fracture mechanics is becoming more and more important in structural
analyses. In order to ensure the safety of a structure, the analyst must be able to
predict under what stress state will a crack be initiated. Will it propagate? Will the
structure have a catastrophic failure or can it still take its design load? If it can take
the load, for how long? An attempt to answer these questions has been pursued, but
in most fracture mechanics analyses, the crack initiation criteria is always left out.
Most of these analyses start out with a crack or material flaw of some sort, then
proceed to answer the remaining questions. The author saw this, and while
performing structural analyses for different tasks at the Naval Surface Warfare
Center, he conceived the idea of developing a semi-empirical fracture criterion for the
determination of crack initiation in a multiaxial stress state.

This work was performed in the Metallic Materials Branch (Code R32) and has
been reviewed by Dr. P. W. Hesse (R32 Head) and John P. Matra, Jr. (R32).

Approved by:

DR. C. E. MUELLER, Head
Materials Division
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INTRODUCTION

To determine the initiation of a mechanical fracture in a weapon structure,
fracture criterion in terms of multiaxial stress space is often required. Although
information of the uniaxial ultimate stress is readily plentiful, it is not sufficient for
such prediction in the biaxial and triaxial stress states. From the evidence in the
experimental data, a material fractures complicatedly in multiaxial stress states.
McAdaml found that the ultimate stress in triaxial stress state was approximately
two times the value of that of the uniaxial for the same material. Plastic flow in the
fracture surface was often not observed even in a ductile material, especially under
blast load. Unlike the yielding of material, the fracture depended strongly on the
mean stress at the breaking point. Since the Mises yield criterion is a right cylinder
along the mean stress axis, then the fracture criterion could be a revolutionary
surface such as a cone, paraboloid, or something else with its radius varying along
the same mean stress axis. According to the work by McAdam,' the apex would be on
the axis which represents a triaxial stress state and equals twice the uniaxial value.

Based on the foregoing phenomena, a cone or a paraboloid may be a permissible
fracture surface in a principal stress space. Its apex will be on the mean stress axis
which has equal direction cosines with the coordinate axes, and the intercepts on the
principal axes represent the values of the uniaxial ultimate stress at proper strain
rate.

The simplest form of the surfaces of revolution is a right cone. The next higher
order of the surface is a paraboloid. Both yield simple criteria for isotropic materials.
Without elaborate testing, one may be preferred over the other for better correlation.

These fracture criteria in the form of surfaces of revolution show the following
properties:

1. uniaxial ultimate stress is employed at the intercepts of the principal axes

2. the apex has an ultimate stress equal to twice the uniaxial value, it is in
an equal triaxial stress state

3. ultimate stress in the biaxial stress state represented by the surface of
revolution

4. criterion is dependent on the mean stress

5. proper strain rate data can be used if necessary.
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STRESSES IN THE PRINCIPAL STRESS SPACE

Figure 1 shows the geometrical representation of stresses in principal stress
space. The coordinate system is a right hand triad in terms of principal stresses in
the 1, 2, and 3-directions. Any point P is a stress tensor with principal stresses S1, S 2,
and S3. A mean stress axis, n-axis, can be drawn from the origin outward having an
equal angle with each principal axis. The direction cosine of this angle is 0.58. Any
point on the n-axis has three equal components, Sm, along the three principal stress
axes. Sm is exactly the mean stress of the stress tensor. The deviatorial stress
components Di

Di = Si - Sm where i = 1 to 3

are the components of a vector NP which is normal to the n-axis. Therefore, any
stress vector OP can be decomposed into two vectorial components ON and NP. The
plane in whicthe vector NP lies is called the deviatorial plane. It has an importance
in the determination of frac-ture initiation because it gives the deviatorial stress of
the stress tensor and also the fracture criterion at the same point.

GEOMETRICAL REPRESENTATION OF FRACTURE AND YIELD
CRITERIA

Figure 2 shows a geometrical representation of a fracture cone and the Mises
yield criteria. Mises yield criterion is a prismatic cylinder along the mean stress axis.
Being a cylinder of constant radius, f,

f = (V(2/13)) * Y whire Y is the yield stress of the material,

the yield value is also constant and independent of the mean stress.

The fracture cone criterion having its apex, N, on the mean stress axis is
dependent on the mean stress value. lts equation has the form

f = (V6-* (2U - Sm))/5 where U is the uniaxial ultimate stress.

Notice that the function, f, for either yield or fracture criterion represents a
circle in the deviatorial plane with its origin at the mean stress axis. The intercept of
the cone with any principal axis has the value U, while the apex, N, has three
components equal to 2U. Figure 3 shows a two-dimensional plot in the S3-Sm plane of
the Mises yield, fracture cone, and fracture paraboloid criteria. The paraboloid has
an equation as follows:

f = V/.4U(2U - Sm)

It can be seen that the equation of the paraboloid is still rather tractable for a
higher order geometric surface. The selection of either the cone or the paraboloid
should be determined, if feasible, by a few proper biaxial tests. It is interesting to
note that beyond a certain point on the mean axis the radius of the yield cylinder is

2
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actually greater than that of the fracture surface. It indicates that fracture of the
material can occur before plastic flow starts. This phenomenon has often been
observed in the tests of mild steel cylinders, especially under blast loading.

DERIVATION OF FRACTURE CRITERIA

For an isotropic material, the fracture cone or the paraboloid is a body of
revolution about the mean stress axis.

Let

U1 = uniaxial ultimate stress
U 3 = triaxial ultimate stress
Sm = mean stress of the stress tensor

then the cone criterion, f,, has the following form

fc = ((V6 (U 3 -Sm))/(3U 3 -U 1)

and the paraboloid criterion, fp, has

fp = U1 * (%/2(U3- Sm)/(3U3 -UI)

In these general expressions the value of U 3 is experimentally difficult to
obtain, therefore, the result by McAdaml will be used for the following development
until a better hypothesis can be established.

For U1 = U and U 3 = 2U, then

fc = (V6* (2U- Sm))/5

and

fp = V.4U(2U - Sm)

at the intercept at the principal stress axis. Where Sm= U/3, the radius of either
surface is

fc = fp = (W ) U

which yields the principal stresses

S1 = S 2 = S 3 = U

at the apex of the surface. Where S.. = 2U, therefore, f equals zero for either case.

Since f is the radius of a circle in the deviatorial plane, therefore, the equation of
the circle is

R3fr
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where r is a unit vector in the plane with its origin at the mean stress axis. Now the
stress tensor has a deviatorial component NP in the form of

NP = Dr

To initiate fracture, NP must be equal to or greater than R. Hence

D = or> f

Using the second invariant of the deviatorial stress tensor, J 2 , the criterion
become

J2= or > (2/2

since D2 = 2J 2 .

Therefore, for the cone one has

J2 = or > (3(2U - Sm)2)/25

for the paraboloid one has

J2 = or > (U(2U - Sm))/5

Another popular parameter, the effective stress, Se, has been widely employed
in the theory of plasticity. Therefore, it also becomes feasible to use this parameter in
the fracture criterion.

Since

(Se)2 = 1.5*D2 = 3J2

therefore, for a cone one has

Se = or > .6*(2U - Sin)

and, for a paraboloid one has

Se = or > /.6U(2U- Sn)

STRAIN RATE EFFECTS

It is well known that both the yield stress and the ultimate stress would in
general increase with strain rate. For most materials, the yield stress would grow
faster than the ultimate stress. M. J. Manjoine2 has measured the properties of a
mild steel at a wide range of strain rate; the data are presented in the following chart.

4
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STRAIN RATE .000001 .00001 .0001 .001 .01 .1 1 10 100 1000,
Y/UIN(%) 51 54 57 60 61 66 73 83 92 98

It can be seen that yield/ultimate ratio is increasing steadily. This means that
the possibility of having appreciable plastic flow in the material before fracture is
diminishing. Based on these values, three sets of the yield and the fracture criteria
are calculated and plotted in a biaxial principal stress space as shown in Figure 4.
The phenomenon of decreasing in ductility due to high strain rate is clearly evident.

In a series of tests to determine the vulnerability of stiffened shells under blast
loads, fracture was found in the web of a stiffening ring which exhibited little or no
plastic flow in the cracked surfaces. Figure 5 shows the results of a computer run
that the exact area of the web has exceeded the fracture criteria. In addition, the
strain rate at that point is calculated approximately equal to 1000 in/in/sec. A rate at
which brittle fracture always prevails.

CONCLUSION

A semiempirical fracture criterion has been presented here for the
determination of crack initiation in a multiaxial stress state. The type of fracture
surface may be selected with properly designed biaxial testing programs while the
value of uniaxial ultimate strength can be obtained experimentally in proper strain
rate and temperature environments. However, the next logical step seems to be the
planning of an elaborate testing program aimed to evaluate the validity of this
proposed criterion and to establish its applicability in practical engineering
problems.

5
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