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1 Introduction and Motivation

1.1 Nonegquilibrium Mobility by Projection onto an Equilibrium Basis

The mobility of conduction clectrons in air subjected to an clectric ficld
changing rapidly in a nanosccond or less is difficult to measure or calculate.
The conduction clectrons do not attain an cquilibrium state in such a short
time. Steady-state “swarm” measurements are readily available, but only
approximatc noncquilibrium values. Approaches using cnergy-dependent
momentum cxchange cross-section data with a conduction clectron velocity
distribution function are hampered by incomplete cross-scction data. In this
work, we project the time-dependent encrgy distribution function onto a
basis composcd of cquilibrium cnergy distribution functions and use cqui-
librium mobilitics to construct a noncquilibrium mobility. The method is
cvaluated as a possible means of avoiding error in the encrgy distribution
function arising from incomplete or erroneous cross-section data.

Conduction electron mobility can be expressed in terms of an effective mo-
mentum cxchange cross-section as' [pp 72, 115, 206, 527]

qWw 1073

mud,pQ,, ' (12)
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(16)
where
u = clectron mobility (in m¥/V s),
Q. = cflective momentum cxchange cross-scction (in m?/moleculc),
g = magnitude of the electron charge (1.60 x 10-* C),
W = gas molecular weight (28.8 kg/Mole, 1 Mole = 1000 molc),
m = clectron mass (9.21 x 10-¥ kg),
u = clectron speed (mfs) for electron kinetic energy E (in J),
A, = Avogadro’s number (6.03 x 10%/molc),
p = gas density (in kg/m?), and
N = gas molecular density (in molecules/m?).

The macroscopic conduction clectron mobility, averaged over the ensemble
clectron cnergics (which we denote by a caret), is written as

q
mi [ WEYQ (BB dE

(2)
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'Huxley, L. G. H., and R. W. Crompton, The Diffusion and Drift of Electrons in Gases, John
Wiley and Sons, New York (1974).
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where f{L) is the time-independent (equilibrium) cnergy distribution of
electron kinctic energies. We may, for convenience, parameterize 2 as a

function of the ensemble average electron energy £, which is a monotonic
function of the ambient (time-independent) clectric ficld strength.  Let us
define

K(E) = u(1)Q,(E) (3)

and the ecnsemble average I\(I') as
K(E) = J. u(1)Q, (IME) dE. (4)

The variables K and K, which we shall call “collision volume,” arc in units
of volume per unit time and, when multiplicd by the density of target molc-
cules, vield the momentum exchange collision frequency v.,.

The cnsemble average collision volume K can be written as a function of
time

K() = j K(EWE,1) dE (5)

where the integral is carried over all clectron encrgics, and /I /1) is the time-
dependent encrgy distribution function (in clectrons per unit cnergy). We
asscrt without proof that an infinitc basis cxists complete for any fL)),
consisting of the family of cquilibrium energy distribution functions ¢(£, A)
for all nonnegative values of the parameter A. The paramcter A may be
chosen to be some monotonic characteristic of the distribution, such as
magnitude of the clectric ficld strength or average energy. We discretize the
basis for parameter values A = A, and approximate f{/,¢) by

AED =) aft) (E. A, (6)

1

which defines time-dependent cocfficients a(r). (This definition does not
uniquely define the afr), however, because the basis is not orthogonal.
Orthogonality will be considered in section 3.1.) Substituting this basis into
cquation (5) we abtain

R = f > KBa()(E, A) dE,

)
=) a0 f K(E)S(E, A,) dE.

The cnsemble average collision volume for any cquilibrium distribution
having paramcter value A, is

kr) = [ K(DS(E, A) k. 8)

The cnsemble average collision volume K can be casily obtained from
“swarm” measurements of electron mobility, which are aimed at taking data
for equilibrium encrgy distributions. By substitution of equation (8) into
cquation (7) we obtain




k) =) akA). )
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Thus the time-dependent ensemble average collision volume can be obtained
from cquilibrium cnsembilec average collision volumes and a knowledge of the
a(r) describing the time-dependent cnergy distribution.  Alternatively, the
same data can be derived from the (energy-dependent) momentum exchange
collision cross-scction and the time-dependent encrgy distribution itsclf.
Unfortunately these quantities arc not known accurately for all energics.

The motivation for the current work is the possibility that the cocfTicients
a(r) can be determined more accurately than ecither fIE 1) or ¢(E, A), and
also more accurately than the collision volume data K(E) upon which they
arc based. Under certain conditions, the cocflicients a(f) arc stationary with
respect to variation of K(F) (due to a variational principle). For example,
this occurs when the time-dependent clectron energy distribution function is
closc to an cquilibrium encrgy distribution function. More generally, sta-
tionary behavior can be expected when the time-dependent function can be
approximated by a sct of lincarly independent equilibrium functions. If in-
deed the a(f) can be determined more accurately, then the ensemble average

collision volume K(A)) and the ensemble average mobility 4 can also be de-
termined more accurately than by direct integration of equation (5).

1.2 Relationship to a Variational Principle

Dcfinc a lincar operator L that advances the encrgy distribution function
AE,t) onc time-step:

LAE) = f(E + Ad). (10)
The cquilibrium energy distribution function is defined by
Lg(F) = g(E) (11)

for a fixed clectric ficld strength. Clearly g(E) is an cigenvector of L associ-
atcd with the eigenvalue unity. A well-known result? shows that eigenvalucs
may bc derived from a vanational principle as

[ oo ax
=
[ ae

and that this expression for 4 is stationary (second-order accuracy) with re-
spcct to variations in f{x).

(12)

Identify the g(F) that has the largest projection onto f{E), i. e., with the
largest a(¢) defined by

[ nEose ae

(13)
fg2(1;) dE

a(r) =

2Morse, P. M., and H. Feshbach, Methods of Theoretical Physics, McGraw-1lill Book
Company, Inc., New York (1953), Volume 2, pp 1108f.




Repeated applications of L to AE,t) produce new flE,t + Ar) that grow closer
to the cquilibrium solution g(E)

LAE) = g(£) + Sg(Eyp), (14)
where dg(E,t) is a difTerential variation of function g, such that
nlirg og(E,)=0. (15)

Now define an operator L' that is the inverse of L. We observe that re-
pecated applications of L-! to g(£) + g(F,1) produce

(L—i)n[g(l‘:) + 0g(E,)] = AL (16)
If we now definc operator M for some large »,

we sce that

| Mee() + sxE00) e + e aE

A (18)

[ et + sxen ar
is in thc form of ecquation (12) for opcrator M and its approximate
cigenvector g(F) + dg(E,r). The approximate cigenvalue 4, is accurate to

sccond order by the variational principle cited. Ilowever we can make
og(L,t) arbitrarily small by increasing n. Using

M{g(E) + 0g(E\)] = L) (19)

and allowing n — oo so that dg(E,t) — 0, we rewritc cquation (18) as

[ nEnecraE
Aoy = . (20)
[ ae
Comparing this with equation (13) we sec that
a(f) =24, (21
and that cquation (13) is variational also.
The remainder
(L) = flE,) — a(n)g(E) (22)

is orthogonal to a(r)g(F), as can be shown by multiplying equation (22) by
g(Z) and integrating over cnergy. If r(£,t) is small compared to f{£,f) (that
is, if g(E) is “close” to f{E,r) ) then we cxpect that equation (9) will provide
better cstimates of K(¢) than cquation (5), given some uncertainty in the
calculation of f{£,t) duc to error in electron collision cross-section data. This
expectation is based on the variational property of equation (13). Even if
r(E,1) 1s not small, it may be “close” to another equilibrium encrgy distrib-
ution function g’(E) that is nearly orthonormal to g(E):

[gwrae > [ swpw e 23)




IFor instance, if g(£) is concentrated at low cnergy and g'(£) is concentrated
at high energy, then they will be nearly orthonormal. If equation (23) holds,
the process may be repeated to obtain

f HENg (E) dE
[ e ar

which has similar, though possibly weaker, variational propertics. Clearly
the process may be continued in a manner similar to a Gram-Schmidt
orthogonalization procedure. The successive projection cocflicients will
possess (nearly) variational properties so long as the successive g, g°, ... are
(ncarly) orthonormal.

a'(1) = (24)

2 Solution Method for Energy Distribution Function

2.1 Energy Diffusion Equation

To demonstrate the projection technique described, we nced a method of
calculating cquilibrium and time-dependent energy distribution spectra for
free clectrons in air.  Historically most transport models of free clectrons in
air have bcen based on a distribution function which describes clectron
number density in phase space, that is, as a function of time, position, and
velocity (or momentum) in three dimensions. Usually the Maxwell-
Boltzmann cquation or some variant is used to definc that distribution
function! {chapter 2]. For the present effort we choose a simpler formu-
lation based on a distribution function which depends only on time and
clectron cnergy. Derived from the integro-differential form of the Boltzmann
transport cquation, this formulation will be adequatc to dcvelop a time-
dependent noncquilibrium energy distribution of clectron number density
and to demonstrate the projection of the time-dependent distribution onto
a (morc or less) complcte sct of equilibrium distributions. The projection
will permit the calculation of the noncquilibrium mobility from the equilib-
rium basis.

Because the position and direction of any free clectron in a uniform gas are
randomized (except for drift) after a few collisions, electron cnergy remains
the principal feature of an clectron swarm (together with density, which we
assume is constant). Certain macroscopic paramecters (mobility, diffusion
cocflicient, ctc.) can be calculated from the clectron cnergy distribution
function. When the energy distribution function equilibrates or arrives at a
stcady state, the cquilibrium cnergy distribution can be uscd to calculate
cquilibrium macroscopic parameters.®s*

We will develop an cquation for the clectron cnergy distribution function,
the “cnergy diffusion cquation,” with time and clectron energy as independ-
ent paramecters. Its terms are obtained by balancing energy gains and losses

3Frost, 1.. S., and A. V. Phelps, Rotational excitation and momentum transfer cross-scctions
for clectrons in Hy and N\, from transport coefficients, Phys. Rev. 127 (1962), 1621.

4Phelps, L.. V., and L.. C. Pitchford, Anisotropic scattering of electrons by N, and its effect
on clectron transport, Phys. Rev. A 31 (1985), 2932.
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through various collisions and through interaction with the clectric ficld
(zero magnetic ficld is assumed). Spatial uniforinity is assumed, so spatial
derivatives arc omitted. I‘or ambicnt clectric ficlds varying, say, on a scale
of a tenth of a nanosccond, spatial derivatives can be neglected if clectron
mcan frec paths are much less than a few centimeters. In fact the mean free
paths arc of the order of microns for sea-level air. The integro-differential
form of the Boltzmann transport cquation is the starting point in the deri-
vation. Electron ballistic equations in the clectric field arc derived and in-
corporated into the transport cquation. Reduction of the transport intcgrals
to first- and second-order differential forms will be shown for the case of
“scattering” by the clectric ficld. Finally integral terms will be added for
scattering by collision with molecules. Carron® [p 9] has exhibited the en-
crgy diffusion cquation as obtained from the cquation for the lowest har-
monic of the clectron velocity distribution function. Our derivation is based
on a Taylor serics expansion of the collision integral and suggests how higher
order cifects might be cstimated. However, our emphasis herc is on the
projection mcthod rather than on the cnergy diffusion cquation itsclf.

In the derivation it will be assumed that scattering is isotropic, and thercfore
that the direction cosine of the emergent clectron with respect to the ambient
clectric ficld is uniformly distributed on the interval ( —t, +1). This is a very
good approximation for clastic scattering® but less accurate for inclastic
scatters.  Should it be nccessary, the probability distribution function for
angular distribution can casily be expanded to include an additional
L.egendre polynomial (or more), becoming 1 + bx + -, if sufficient data for
the b, arc available. Obtaining the electron drift velocity from the clectron
density function in phase space depends critically upon using a two-term (or
more) harmonic expansion of the angular distribution of the electron veloc-
ity (because drift velocity is closely allied with the second term). But ob-
taining the number density in time-cnergy spacc, as donc here, does not
depend on the sccond harmonic term for drift velocity to be exhibited. Both
drift and diflusion are present with only one harmonic term, because the
harmonic cxpansion is {or the direction of the clectron as it emerges from a
collision, not for the dircction of motion of the clectron at any later time.

Consider an clectron in air with electric ficld €. The clectron’s velocity is u
and cnergy E = mu?. Resolve the velocity into a component parallel to &

—

and a component normal to ¢

—

where ¢ is the unit vector parallel to €. We define the direction cosine g, for
u rclative to ¢ and obtain

w = lyl = ug, (25a)

up =1y | = w1 —ut. (256)

The clectron will be accelerated in the clectric ficld until it collides with a
molccule. Assume that the clectric field is essentially constant in the time
between collisions. This is certainly true in the equilibrium case in which the

$Carron, N. J., On the Calculation of the Electron Energy Spectrum in a Weakly lonized
Gas, Mission Rescarch Corporation Report MRC-R-1055 (30 January 1987).




clectric ficld must be constant for all time. Generally this assumption re-
quires that the electric field change slowly in a collision time (approximately
the reciprocal of the momentum exchange collision frequency). After a time
t, u. 1s unchanged and u becomes

get
=, ~ (26)

if no collision has occurred. If a collision occurs, the clectron’s direction is
cflcctively randomized, on the assumption of isotropic scattering. The
probability of no collision occurring is e *, where v is the clectron collision
frequency, which may be a function of encrgy.

As discussed above, the direction cosine g, is distributed uniformly on the
interval ( —1, +1). The normalized collision probability (unitless) is

dp = —;—ve_"dl du, (27

where the normalization is fdp = 1.

In the usual cxpression of the transport equation, the differential terms ex-
press continuity based on continuous flow processes, with a time derivative
plus appropriate divergences of the distribution function. Then all noncon-
tinuous scattering processes are modeled using collision integrals. However,
«ontinuous Or quasi-continuous processes can also be modcled with integrals
instcad of divergences, and it is largely a matter of convenicnce which way
to handlc a process. In our case, we use integrals to model all scattering
processes and derive from the integrals any differential terms we desire, as
for scattering by the clectric ficld, for example. Thus the rate of change of
the clectron energy distribution function f{£) arising from acceleration in the
clectric ficld may be written

OflE oo had
DO 7 weneyae.n - wonn |7 we e o9

E'=0 E'=0

where dp(F’, E) 1s the sclf-adjoint differential probability of an clectron ac-
celerating (decclerating) from energy £ to energy £, and vice versa. The first
integral accounts for electrons arriving at energy F (“in-scatters”), and the
sccond integral accounts for eclectrons lcaving from encrgy E
(“out-scatters™).  The sclf-adjoint property of dp(E’, E) docs not depend cx-
plicitly on the clectric ficld but doces require the integral fvdr to be invariant
under an exchange of £ and E'. A sufficient conditicn for fvdr to be invari-
ant in this way is for the collision frequency v to be independent of cnergy
over the range of encrgy gain or loss experienced by the clectron between
collisions. However when the clectric ficld is large, the encrgy gain between
collisions can be considerable compared to the initial, unaccelerated clectron
cnergy.  This may cause significant changes in the collision [requency (or
collision cross-scction), but does not destroy the invariance of fvdt. In the
derivation that follows, we will assume that the self-adjoint property applics.

Equation (28) is exact for scattering by the electric ficld if the integrals are
evaluated without approximation. In general this is not possible to do in
closed form. Onc approximation which allows the most gencral represen-
tation of the intcgrand is to evaluate the integrals by Monte Carlo; this
method yiclds only numerical results and entails statistical error as well, but
1s widely used. Another approximation which permits analytical represen-
tation of results is to expand the integrals as a Taylor scries in the cnergy, a
mcthod we will pursue. We want to expand the integrand in a Taylor series




about £, rctaining terms only to sccond order in £' — £, which requires that
v/ be slowly varying compared to dp. However, the energy dependence of v
and dp (which also contains v ) has not been specified. Assume for the
present that v is independent ot energy. Then 1t suffices to expand f only.
This causes difficulty when encrgy-dependent coeflicients occur with the final
difTerential forms to be derived, but a way out is offered to overcome the
difTiculty. Assuming that f varics slowly compared to dp, we thus expand
SUI7) in a Taylor serics about FE, retaining terms only to second order:

AE)Y~E) + ¢(E = E) + (£ = E). (29)

Then the in-scatter integral in cquation (28) breaks into three terms:
I AE) dp(E'E) = j(l:')f dp(I'F)
I'=0 E'=0
+ ¢ J (E' — Eydp(E' E) + CZJ- (E' — By dp(E F). (30)

E'=" E'=0

Since dp(E', F) =dp(E,E’), the first term cancels the sccond integral in
cquation (28), leaving only the sccond and third terms:

0]([:) o ) . oo . 5 )
— =V (E' = E)dp(F', E) + cyv (K" = E)Y dp(I”,E). (31)
ct £'=0 £'=0
IFor brevity define
J, = vJ (E' — EY dp(E'E). (32)
E'=0

We now develop a quadrature rule to approximate the right hand side of
cquation (31) to sccond order, so that

aflE,) + b)) + cflE) = ¢ J, + ¢, (33)

The coefTicient a is a rate cocflicient for scattering clectrons from cnergy £,
to cnergy I4. The cocfficient ¢ is a rate cocflicient for scattering clectrons
from cnergy [, to cnergy FL,. The coeflicient b is a rate coefficient for
clectrons “scattering” from cnergy [ to the same cnergy. Substituting the
sccond-order cxpansion for f{£') into the latter equation and setting f, = E
vields

aflE) + ac,(E, — E) + acy(E, — E)* +b(L)
+ fE) + cey(B.— B + coy(E,~ )} = ¢}, + ¢y |
Because ¢, and ¢, are arbitrary, this equation requires
(a+ b+ WMREY=90
ala(l, = E) + (., — E)] = ¢, J,
o,la(E, — BV + o(E,— B} 1=cyJ,

or letting /5, — E=— AF and E, — E'= AFE and assuming f{[) # 0,




a=-t— (34a)
2(AL)
b %
= - ) 346
AL (346)
J, + JAE
¢ = ——
2(A1;')2 (34c¢)
Thus the quadrature form of equation (31),
ofr) . :
T aflE — AL) + bAE) + 1L + AE), (35)

becomes upon substituting cquations (34) and rearranging terms,

NE) J . ,
T s RE+AL) - 2f1E) + (- AL)]
2(AL) | (36)
1
+5ap NE+AE) ~ il = AL,
Taking the limit as AE — 0 yiclds the differential cquation
of ., &F ¥

cxhibiting terms for diffusion and heating of the encrgy distribution function.
When solutions are sought through finite-difference methods, cquation (36)
is sufficient as it stands, although differential equation (37) more succinctly
states the physics involved.

If cquation (29) is expanded further to higher powers of I” — I, then more
valucs of energy will be needed in the quadrature rule expressed by cquation
(33). This will causc the time derivative of f{F) to be cxpanded to higher
order differences in (36) and higher order derivatives in (37). In fact, by
continuing the Taylor scrics expansion of the “in-scatter” integral it can
casily be shown that

f o o
ot La ) YA

i=1

(38)

The importance of such higher order terms depends on their coefficients,
which contain J,. The sccond-order expansion is central to the diftusion
approximation to the transport cquation. Carron® [p 12] explains on phys-
ical grounds why the expansion can rcasonably be terminated at second or-
der to obtain the mobility and diffusion cocfficient transport parameters.

Evaluation of J, and J, is tedious and details arc not presented here. Using
cquations (25) and (26) we find that

g%
h==55 (39)
and
4q2£215 2q4£‘1
)= - (40)
3my Smhv’
9




where we have made the substitution E = %muz.

If we assume that the collision frequency v cquals the momentum exchange
collision frequency v,, which is exactly true for isotropic elastic scuttering,
we can usc the well-known relation

b= (a1)

to write
Jy = tqué’ (424q)
J, = Lquek; [I ~2 (/u:/u)z]. (425)

In general, however, the (total) collision frequency is not cqual to the mo-
mentum cxchange collision frequency when (1) clastic scattering is no longer
cntircly 1sotropic or (2) inclastic processes occur. Thus, when dealing with
higher energies we must be careful in our choice of data for collision fre-
quency.  For scattering by the clectric ficld in nitrogen, we have used a
combination of clastic momentum cxchange data and total (or “cffcctive”

momentum cxchange data that yields energy distributions in rcasonable
agreement with published results. IFor oxygen we simply usc total momen-
tum cxchange data because of the paucity of separatce clastic data. The main
issuc here 1s what collision [requency best represents the randomization of
the direction of the colliding clectron, which i1s a complicated topic that we
shall not discuss in detail.

The quantities J, and J; turn out to depend on v, which can depend on en-
crgy. The derivation requires modification to correctly t.cat this energy de-
pendence. A close inspection of the integrals shows that the quantity that
should be cxpanded in a Taylor serics is fJv instcad of /2 When f]v is thus
cxpanded, the integrands are valid for energy-dependent v. The cffect is to
replace cach derivative of £ with a derivative of ffv. I'irst and sccond energy
derivatives of v appear. Because v varics slowly as a function of E, it is
convenient to discard sccond cnergy derivatives of v and keep only first en-
crgy derivatives of v. This result is used by Carron® [p 13]. Thus the heating
term becomes
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and the diffusion term
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The heating term describes the convection (through cnergy space) of
clectrons from lower to higher energies as they drift through the ambient
clectric ficld. Upon cxamining the diffusion term, we observe that the second
term in brackets is smaller than the first term by a factor roughly the square
of the clectron drift velocity divided by the clectron speed. The second term
in brackets approximates the influence of terms that are of higher order than
the first two terms in the usual Legendre expansion of the velocity distrib-
ution function. In derivations of the velocity distribution function, higher
order terms than the second are cast away on the assumption that the drift
velocity is much smaller than the electron average speed' (p 58 1. The as-




sumption that in-flight energy changes are much smaller than the initial
clectron energy, upon which the continuous scattering approximation (cq
(37)) is based, is violated when the drift velocity approaches the initial
clectron speed. This occurs in air at small clectron cncrgics because of the
small collision cross-scction at thosc cnergies. Ior this reason we are forced
to omit the sccond term in brackets when dealing with non-idealized air.
Proper inclusion of the sccond term in brackets would be in the form of an
upscatter probability from cncrgy level i to energy level i 4/ where j > 1.
We omit this refinement as outside the scope of our investigation, although
possibly deserving of further examination clsewhere. We retain the second
term in brackcts in succeeding cquations but omit it in calculations for air.

It is expedicnt to bring the cocfficient / into the inncrmost cnergy derivative
which then operates on the product £f. Doing so crcates an additional first
encrgy derivative of f which can then be combined with the hcating term.
Combining the heating and diffusion terms in this way yields the result
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Using the samc approach that was uscd for scattering by the clectric ficld,
we can also write in-scatter and out-scatter transport terms for collision
scattering of clectrons due to clastic and inclastic cross-sections. We rctain
the collision integral formulation instead of derived diffusion and heating
differential terms.  Inclastic scattering is not reducible to these differential
forms becausc of large cnergy losses that may occur in a single inclastic
scatter, preventing the limit AL — 0 from being taken without approxi-
mation. Although the differential approximation is valid for clastic scatter-
ing because the average energy gain or loss per collision is much smaller than
AF, it is convenient to trcat both clastic and inclastic scattering in the same
way.

The complete cnergy diffusion cquation, including a term for gain of
electrons (from avalanching, ion pair creation, etc.) and loss of electrons (to
attachment), 1s

o 24 3| 1 .0 3 5
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S(LE) + pj u(E) fAENe(E, E) dE — pu(l;)[[ ol ) dIE",
E'=0 YE=0
where
S(¢,F) = sources and sinks for clectrons of encrgy £ at time ¢,

o(l’,I) = cross-scction to scatter clectron with incident cnergy /' into
scattered cnergy E,

o(E,I7) = cross-scction to scatter clectron with incident cnergy F into
scattered cnergy L.
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The sccond term on the left hand side of cquation (45) describes diffusion
due to collisions in a uniform electric field. The third term describes the
convcction of clectrons from a lower cnergy to a higher cnergy due to the
heating cffects of drifting through a uniform clectric ficld. The right hand
side describes clectron sources and sinks, and collision processcs between the
electrons and the ncutral gas molccules. The first integral accounts for
clectrons scattered from other encrgics /' into energy /- (“in-scatters”). The
sccond intcgral accounts for clectrons scattered from incident cnergy F to
other cnergics £’ (“out-scatters”). The term S(1,/) may include processes
proportional to f and processes independent of f.

In this investigation it has been assumed that the ionization density of the
air plasma 1s low cnough that only collisions between clectrons and ncutral
moiccules need be considered. Thus, clectron-electron and clectron-ion col-
lisions arc cxcluded from the simple modcl. We also neglect small-angle
Coulomb scattering.

Collisions that must be included are elastic collisions and several kinds of
inclastic collistons such as excitation of rotational modes, vibrational modes,
and excited states of the target molecule, and ionization of the molecule
(cjection of an orbital clectron). When used, air composition will be taken
to be oxygen and nitrogen in the usual proportions, although other constit-
ucnts (water vapor, argon) may be considered later.

2.2 Finite Mesh Modecl of the Energy Diffusion Equation

We can solve integro-diffcrential equation (45) for encrgy diffusion by de-
fining a finite energy mesh £,i=1, 2, ..., M over a suitable domain from
zcro to somce large encrgy that includes all clectrons of interest. (The shorter
term finite mesh will be uscd for the finite, bounded mesh of energics so de-
fined.) Timec and cnergy derivatives are approximated by finite differcnces,
and intcgrals arc approximated by finite sums. There are several finite-
difference approximations to the differential part of the encrgy diffusion
cquation, with varying stability and accuracy propertics. We sclect the
Dufort-Frankel scheme® because it is inherently stable and simple to imple-
ment in matrix opcrations on a computer. Using this scheme, the differential
terms of the energy diffusion cquation become

¢Carnahan, B., H. A, Luther, and J. O. Wilkes, Applied Numerical Methods, John Wiley and
Sons, New York (1969), p 451.
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The complete finite mesh model of the energy diffusion equation is

U+ ALE) — fie - AcEY]
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3m(AE) v(E+ AE[2) v(E) v(E ~ AE[2)
q's fit,E + AE) 21t,E) ftE— AL)
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=SB +p Y. wfLEW(EE) — pufiLE) ) o(EE).  (47)
j#i ii
j= 1 =1

Onc may carry the sums over the range from j= 1 to M without exccption
at j = i, because the j =i terms from each sum cancel each other. But the
notation used above is clearer.

The last cquation can be written in matrix notation as

M
S+ B =t — M)+ ) Apflo) + SolEx) (48)

j=1
where

(1) =fLE),

A, = sum of homogeneous terms for collision, heating, diffusion, and
sources/sinks, and where j and i are the column and row indiccs, re-
spectively,

So(£,¢) = inhomogencous sources and sinks independent of f (such as ion
pair crcation by radiation).

The matrix clements A, must fulfill certain requirements such as conserva-
tion of mass, boundary conditions, and numerical stability. To conserve




mass, it is necessary that all electrons leaving an cnergy level arrive at other
energy levels, or

M

Y 4i=0 (49)

i=1

for every column i, assuming equally spaced energy levels. The difference
terms in cquation (47) arc not nccessarily mass-conservative as presented,
but calculating A, as the negative sum of other off-diagonal column cntries
assurcs a mass-conscrvative system. Certain minor changes to the off-
diagonal entries are required to maintain the proper solution when this ap-
proach is taken. Also, clectron attachment cross-scctions must be
subtracted from the main diagonal term. For numerical stability (and phys-
ical realizability), it is nccessary that

-1<4,;<0 (50)
or else more electrons are removed from energy level F, than exist there, and
0< A<, j#i (5hH

or else nonphysical “negative” eclectron densities are scattered to other cn-
crgy levels.

Because of an idiosyncrasy of the Dufort-Irankel algorithm, differential cr-
ror bectween the initial conditions f{t — A¢), f{t) tends to be preserved
throughout later time-steps, giving the appearance of two solutions differing
by a constant amount. One solution occurs at odd time-steps, and the other
solution occurs at even time-steps.  Replacing f{r) by

[+ Ar) + flrt — An)]/2

after computation of cach new f{z + Az) conveniently unifies the solution.

2.3 Elastic Scattering

To solve the finite mesh cquation described above, the convection term re-
quires the clectron mobility 4 as a function of clectron energy, or alterna-
tively the collision volume K as a function of clectron cnergy. Elastic
scattering is the most frequent result of collision between conduction
clectrons and gas molecules, under ordinary circumstances. The dominant
effect is to randomize the direction of individual clectrons (not the net drift
velocity due to ambient clectric fields) and, on average, to transfer momen-
tum from the clectrons to the gas molecules. It is also possible for clectrons
to gain or losc small amounts of encrgy from the random thermal motion
of the gas molecules. We assume for our model of clastic scattering that the
gas is monatomic and has an isotropic Maxwellian distribution of vclocitics,
a model adequate for our purposes. The effective elastic collision cross-
scction for clectrons in such a gas is cqual to the clastic collision cross-
section for a gas without molccular motion, to a high degree of
approximation, when the clectrons have an encrgy » 0.01 T where 7T is the
gas temperature’ [p 73].

7Carter, L. L., and E. D. Cashwell, Particle-Transport Simulation with the Monte Carlo
Method, USAERDA Publication TID-26607, USAERDA Technical Information Center,
Oak Ridge, TN (1975), p 73.




We define for each incident clectron energy E: an cffective scattering cross-
section &(E,E) which is nonzero for j=i—1,i,i+ 1 and is zero for all other
J. Following a similar approach to that usced for scattering by the clectric
field, we impose constraints to conscrve the first and second cnergy mo-
ments. (The zeroth cnergy moment docs not need special treatment.) Let
the incident energy I, be I, and the energies £, be F,, I, and F. (for nonzero
o) where F, = I, — AE and E. = E, + AE. Electrons which scatter from E, to
E, do not require any cross-scction, so we sct 6(F,,E) = 0. We require that
the cffective cross-section be sclf-adjoint, which is clearly true for elastic
scattering. The constraints may then be written

(E; — Bp)a(Ly, ) + (B — E)a(ELL) = I (E' = Lo(L7, Ep)u’ dE?,  (52)
0

(Ea— E'o(EE) + (E,— E)'G(EEy) = f (E' — E)o(E, B dE'. (53)
0

Let the first integral be /, and the seccond integral be I, . Suppose the total
elastic scattering cross-section (inversely proportional to elastic collision
frequency) is independent of clectron energy. This is often the case for
clectron energics ncar the gas thermal energy, where clectron mobility is es-
scntially independcent of ambicent clectric ficld. Then

1= [ B w(E ~ E)flE ) dEE (54)
where

Su(E' E) dE' = self-adjoint probability of scattering from energy [ into
cnergy £,

ai( ) = total clastic scattering cross-section for incident clectrons having
cnergy E.

It can be shown from a hard sphere scattering modecl that frece clectrons
colliding with molcculcs in a monatomic gas will have a scattered spced
(magnitude of velocity)

, m M
U =u-—ué M+m+2UC\/—{— Mo (55)
where M and U are the molecular mass and speed, m, u, and «’ arc the
clectron mass, incident spced, and scattered speed, { is the direction cosine
of the molecular motion relative to the biscctor of the incident and scattered
electron velocity, and £ = (1 + u...)/2, and where u,., is the cosine of the
clectron scattering angle.

We usc the unitless cxpression
4
SE B dE =2 /1 = (26 ~1)* d&& & f,,(U) dU (56)
where the probability of the target molecule having speed U is’ [p 72]

S V) dU =2 UtV ay, (57)

Jr

and where

B=M|(2kT),
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k = Boltzmann'’s constant.

Omitting details of the integration, we obtain after discarding small terms

I, ~ ual(E,) kT — E) % , (58)
I, ~ 2ua(s)(E)EkT-1"—n/I- . (59)

These results are based on the assumption of energy-independent elastic
scattering cross-section. If the clastic scattering cross-section is not inde-
pendent of clectron cnergy, then the transport integral must be evaluated
morc carcfully. Nitrogen is subject to the Ramsaucr-Townsend effect and
has an anomalously small elastic scattering cross-section at low energies
which varics substantially, lcadiv{g to inaccurate encrgy distributions through
the use of cquation (54). The cfror for oxygen is less pronounced because
of lesser variation of the clastic scattering cross-section. As the development
of a solution to the energy diffusion equation is of secondary importance in
this work, we do not reduce the transport integral for the case of varying
elastic cross-scction but merely point out the desirability of doing so for the
case of air.

We can now solve
(£q — Ep) 0By, E)) + (E. — Ep) 5(EpF) =1, (60)
(E, = B 6(Ey B + (E, — E)Y a(EpE) = 1, (61)
for G(E,, E,) and 6(E;, E.) using E,= E, — AE and E.= E, + AE.

It can be seen from the results for /, that the elastic cross-section tends to
scatter hot clectrons (relative to the gas temperature) to lower energies and
cold clectrons to higher cnergics, as expected, until the median clectron en-
crgy cquals twice the gas average temperature k7 and the mean electron
energy equals 247, assuming zero ambient electric field. More than two
cflective cross-scctions for elastic scattering are not nceded, because the en-
crgy mesh width AE is much larger than the average energy change per col-
lision.

We have incorporated these effective clastic collision cross-sections into the
finite energy mesh equation described above, approximating the derivative
terms
of 0
I, == and 5pl,—.

ph oE 7P aE;
[For zero ambicnt clectric ficld, the clectron energy distribution relaxes with
time toward a Maxwellian distribution of encrgics, as expected, whose aver-
age temperature closcly matches the gas temperature. Truncation crror due
to using an energy mesh spacing AE = 0.1 kT and only 60 energies in the
energy mesh lcads to small crrors of about | percent in the final electron
temperature and 0.5 percent in the final energy distribution. Reducing the
cnergy mesh spacing to AE = 0.05 kT and using 120 encrgies in the cnergy
mesh reduces thesc crrors by a factor of four in each case, suggesting accu-
racy to sccond order in the finite mesh equation. The smaller choice of AE
requires a smaller At for stability.

For isotropic clastic scattering, it can be shown that the total eclastic scat-
tering cross-section go(E) is equal to the momentum exchange cross-section




Q.. Consideration of anisotropic elastic scatters in nitrogen leads to changes
not greater than 1 percent,* which we shall neglect. We use the recent tab-
ulations of Q§ (total clastic cross-section) for N, by Phelps and Pitchford®
and of Q. (momentum exchange cross-section) for O, by Phelps’ to define
oi(E), in these gases and in air composed of 79-percent N, and 21-percent
O, by volume.

2.4 Unequally Spaced Energy Mesh

Up to this point, the energy mesh E, has been tacitly assumed to be
cquispaced; however this condition can be relaxed. It is helpful to gradually
increasc the energy mesh spacing as energy increases, so that fewer mesh
points arc nccded. A coarscr mesh at higher cnergies also reduces the effec-
tive cross-scction where it is largest, thereby permitting a larger time-step to
be used. The computation of the effective cross-sections for clastic scatter-
ing is only slightly changed with unequally spaced E,, F,, and k.. We also
multiply

AE, - Ey 2AE, - E)
a(E,,E.) by ————— and o(£,,E,) by ————
( (/] c) Yy E[ _ Ea ( b a) y Ec — Ea

to account for uncqual cnergy mesh spacing.

Central difTerences taken at F, for the convection term and the diffusion term
become uncentered when an uncqually spaced encrgy is used. Experience
shows that uncentering these terms by about 1 percent of AE does not in-
troduce important crror to the solution. If necessary the convection term
can be represented with a three-point quadratic expression to properly center
the difference. To account for uncqual energy mesh spacing, we multiply the
convection term effective cross-section by the factors used for elastic scat-
tering. We multiply the diffusion term cffective cross-scction by the squares
of the same factors.

We usc the following recursion to construct an uncqually spaced cnergy
mesh, where we first sclect AL, = 0.054T and « = 1.01, for example:

E=0 (62a)
E= Ei—l + AEI—I (62b)
AE; = kAE,_, (62¢)
so that
AE, = K'AE, (63)
. |
L= Ak ——. (64)

This works quitc well at all cnergies. At low cnergies the spacing is ncarly
AE,, and at high cnergies the spacing is necarly (x —1)E. For zero clectric
ficld, the error in the energy distribution function at the high end of the en-

& Phelps, A. V., and L. C. Pitchford, Anisotropic Scattering of Electrons by Nz and its Effects
on Llectron Transport: Tabulations of Cross Section and Results, JILA Information
Center Report No. 26, University of Colorado, Boulder, CO (1 May 1985), p 14.

9 Phelps, A. V., Tabulations of Collision Cross Sections and Calculated Transport and Re-

action Cocflicients for Electron Collisions with Oy, JILA Information Center Report No.
28, University of Coforado, Boulder, CO (1 September 1985), p 10.
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ergy mesh is less than 1 percent for the mesh constants sclected, until the
distribution is reduced in amplitude by over 10 decades at the high-energy
end of the mesh.

For inclastic scattering, variable cnergy mesh spacing can lead to systematic
crror and therefore must be used with caution. We have tried scveral ways
of corrccting the cffective inelastic cross-sections to account for variable en-
ergy mesh spacing without complete success. As a minimum correction, the
cffective cross-scctions for inclastic scattering are divided by k. FFor example,
results for the encergy distribution arc low by about 15 percent for encrgics
above scveral clectron-volts, using k = 1.01, because of dominance by rap-
idly changing inclastic cross-sections at encrgies of scveral electron-volts.
We must use a variable-spaced mesh when covering thermal cnergics to
ionizing cncergics (above roughly 14 ¢V) becausc approximatcly 10,000
cquispaced energics would be nceded.  Dense matrices of such size arc too
large for available computers.

2.5 Exact Solutions and Equilibrium Finite Mesh Solutions Compared

Exact solutions for the equilibrium electron encrgy distribution are known'
[pp 71-75] when scattering is limited to clastic scattering and (1) clectron
drift velocity is much less than the mean molecular speed (Maxwellian dis-
tribution) or (2) clectron drift velocity is much greater than the mean mo-
leccular spced and the clastic cross-section is indcpendent of cnergy
(Druyvesteyn distribution). In the first case the time between collisions (re-
ciprocal of collision frequency) is independent of electron energy; in the sec-
ond casc the pathlength between collisions (or collision cross-section) is
independent of energy.

For zcro ambicnt clectric ficld, the Maxwellian distribution of clectron en-
crgics is

AIE) = Ae EIFT, (65)

IFor large ambicnt clectric ficld, the Druyvesteyn distribution of clectron en-
crgics is

N 2
RE) = AJE exp —37';—[ q(i"' ] :‘2> (66)

where ¢, is indcpendent of clectron encrgy.

It is casy to show that the cnergy mesh equation (eq (47)) correctly models
these distributions by applying the principle of detailed balance to the cnergy
distribution function. For our casc of a tridiagonal transition matrix where
transitions only occur between adjacent energies, detailed balance states that
in the cquilibrium limit the rate of clectrons going from cnergy E to cnergy
E + AE cquals the rate of clectrons going from encrgy E + AE to cnergy E.
Assume an cquispaced encrgy mesh. Define the rate of upgoing clectrons
as R*'(E)AE) and the rate of downgoing electrons as R (E + AEY(E + AE).
Then dctailed balance gives

AE) R (E+AE)
RE+AE) —  RpYE)

Take the case of the Maxwellian distribution, wherec ¢ =0 and therefore
Ji=J;=0. From previous derivations, we have

(67)




(I, + 1,AE)

+rm 1

R™(E+ AF) = — (I, — I AL) (68b)

where the primed quantities are evaluated at K + AL and the corresponding
unprimed quantities arc cvaluated at . Then

R(E + AE) N (Iy = I AL

R(E) (L + 1AL

Assuming oi([) = ¢/u(F) where ¢ 1s independent of energy, and dropping
sccond and higher powers of AL, we obtain after some manipulation

(69)

| +BE -éL
R(E+AB)R*(E)~ — kI 2L (70)
1-AE  Ab
2kT E
which cquals, to the order of AE rctained, the exact solution
GALIKT
(71

AE
\/1+ /

Similarly, for high electric fields such that kT < I, and also ncglecting the
high-order correction diffusion term, the downscatter and upscatter transi-
tion rates between cnergy levels £+ AE and E are

2¢°c*  [E+ AEIE + AE)

RA(LE+ALDARE+ AL) = - ;
( N ) 3m(A[')2 v(E + ALE(2)

2.2 (72a)
g flE+AF) mpuooAL AB)
and
2¢%*  IAE) & flE) mpucyAE
RUE) = LT N -

where terms involving kT have been neglected. We now apply equation (67).
Using mos = Q, and v = NuQ,, after some manipulation we arrive at

AE—-AE)  AE
G 1 - T 2BEAE (73)
where
, 2
L NOm
M ge

which agrees to first order with the Druyvesteyn distribution
-2
fIE) o« JE 7 BF

In order to cstablish convergence and consistency of our numerical solution
to the energy mesh cquation (cq (47)), we numerically calculate cquilibrium
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solutions for the (65) and (66). All elements A4, of matrix A in cquation (48)
must be smaller than unity in magnitude for the equation to converge nu-
mcrically. Otherwise, numecrical instabilities occur. The clements on the
main diagonal and first upper and lower subdiagonals contain terms pro-
portional to the square of the clectric field . Thesc terms become very large
as the electric field becomes large. The time stepsize, a multiplier of these
terms, must be reduced to very small values to keep the corresponding cle-
ments smaller than unity and maintain numerical stability. Solutions for the
cnergy distribution function may take scveral microscconds to relax toward
cquilibrium. If the time stepsize is reduced to 1 s (1 fs = 0.001 ps) to
maintain stability, for cxample, thousands of hours of computer running
time will be needed to find an cquilibrium solution. Iowever, the number
of iterations of the time-advancement algorithm can be reduced drastically
by increasing the number of time-steps the encrgy distribution function is
advanced at cach iteration. This is donc by constructing a single matrix
which advances the distribution function vector many time-steps at a single
multiplication.

Omit the inhomogencous term S(E,r) from equation (48) and define the
notation f, = f{nAr). Then the equation becomes

Jo=So2 + Al (74)

The averaging process of f, and £, , to reduce differential crror in the initial
conditions f;, fs bccomes

Loy =5+ £, (75)

where f',_; is subscquently used in place of f,_;, Assumec initial conditions
S =/£i=0. Then f; is defined recursively by

Jn =AMy +f s (76)

Sy =70+ n0): (77)

Introduce matrices B, and C, such that f, =B, s and f,., = C, /. Recursions
for these matrices can casily be derived, based on cquations (76) and (77):
We can control the growth of numerical roundoff crror by normalizing the

determinant of matrix B to unity at each recursion. Thus with the above
initial conditions and defining I = identity matrix, we have the recursion

B, =1, C =1,

B',, =AB,+C,, (78)
B, =—2*_ 79
=B (79)
Cpir =3B,y + Cp). (80)

Now that we have B, for any n, where f, = B, f;, we can advance from f, to
J= by using f,, =B, f,. This requires only the additional assumption that
Joor = fo, which is a good approximation. The function f will relax toward the
cquilibrium state for any reasonable choice of initial conditions, and
cquation (80) will guarantec that differential errors diminish (being roughly
halved at cach application). Taking n = 10, for example, reduces differential
crror by about a factor of a thousand. Thus, the function f can be advanced
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Finitc mesh equilibrium resuits for Maxwellian distribution: Solid linc is finite mesh result, dashed
linc is Maxwellian distribution for clectron temperature 7" such that k7" = 0.025 ¢V, and dotted linc
is magnitude of the difference. The two distributions have been matched at the maxima to climinate
normalization error. Arbitrary units are used for the dependent axis. Only clastic scatters are con-
sidered.

in leaps of 2~ x 10 time-steps by (1) calculating By, using the above recursion,
(2) calculating matrix

D, = (Byy)’ (81)

by using the recursion
Dy = By, D, =D, (82)
and (3) multiplying by D, for cach leap. For the appropriate choice of m
in evaluating matrix D,, cquilibrium solutions can be calculated rapidly cven
for large values of the electric field. Additionally, an clementary result of
lincar algebra shows that, as m — oo , the columns of D,, cach approach the

cigenvector [, = g(F2) multiplicd by a difTerent scalar factor for cach column
(hence the infrequent usage “cigencolumn” for “cigenvector™).

To test the finite mesh equation, we have obtained cquilibrium solutions by
iterating the time leap (for n = 10 and m = 25) until the energy distribution
became unchanging, for mesh constant & = 1 for the Maxwellian case and
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Figure 2. Finite mesh equilibrium results for Druyvesteyn distribution:  Solid line is finitc mesh result, dashed
line is Druyvesteyn distribution for electron mean energy cqual to 100 times gas thermal encrgy,
where k7 = 0.025 eV, and dotted linc is magnitude of the difference. The two distributions have been
matched at the maxima to climinate normalization error. Arbitrary units are uscd for the dependent
axis. Only clastic scatters are considered.
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k = 1.01 for thc Druyvesteyn case, using Aly = k7720 = 0.00125 cV. For the
Maxwellian casce, the elastic cross-section of was madc to be constant. For
the Druyvesteyn case, o was madce to vary as 1/u(l) cxcept at the lowest
energics, where 6§ was made nearly constant to avoid the singulanty at
E =0. Also, the high-order correction diffusion term was neglected. Mcan
clectron temperatures cqual to A7 (Maxwcllian distribution) and 100kT
(Druyvesteyn distribution) were used. A lower boundary condition was ap-
plied which requires f{F) = f{I3)//2 . Calculated results for the Maxwellian
distribution and crror compared to the exact solution are shown in
Figure | on page 21. Similar results for the Druyvesteyn distribution are
shown in IYigure 2. As can be scen, the energy mesh cquation gives satis-
factory results even many orders of magnitude down from the distribution
maximum. Noticable error occurs at the lowest encrgics because of the large
spacing of the encrgy mesh compared to the clectron cnergy.




2.6 Inclastic Scattering

Inclastic scatters of incident clectrons by gas molecules can involve large
changes in encrgy, in contrast to small changes caused by clastic scattering
and scattering by the ambicnt clectric ficld. For small changes, the zcroth,
first, and sccond cnergy moments of scattering probability (integrating over
the cntire energy spectrum) can be represented accurately using distribution
function values at only three adjacent erergies in the encrgy mesh. We have
shown how such a three-point scheme approximates the sum of a convective
first derivative and a diffusive sccond derivative with the derivatives evalu-
ated at the scattered clectron energy, which is equivalent to cxpanding the
cnergy distribution function to sccond order in the ncighborhood of the
scattered clectron encrgy to estimate the “in-scatter” collision integral. To
g prescrve accurately the same first three energy moments of scattering prob-
ability when large changes in cnergy occur, it is necessary to expand the en-
ergy distnibution function to second order in the neighborhood of the
incident clectron cnergy. Because the energy change is fixed for cach scpa-
ratc cxcitation/de-excitation process (cxcept for ionization), the integral of
the ecnergy moment of the process cross-section reduces to a product. That
is, the probability of the electron scattering from £’ to £ is a delta function,
o(F -- E). Thus,

_[ u(E o (E)E — E)' dE = (8E)"u(E; + 6 E)o(E; + 6 ) (83)
0

where
o,( L)) = kth process cross-scction,
6, = kth process cnergy loss,
E, = ith energy in the energy mesh.

Although the scattered cnergy will always be a mesh energy £, the incident
cnergy will generally liec between two mesh encrgies £, and F,,,. The cross-
scction given for the incident energy must therefore be approximated by
cquivalent cross-sections at the two mesh energics F, and E,,. The equiv-
alent cross-scctions arc choscen in such a way that, when combined, they
conserve the actual cross-section and its first energy moment. Because only
two mesh points arc used, an error is introduced in sccond and higher cnergy
moments which diminishes in relative importance for larger encrgy losses.

I‘or N, rotational excitation we use the two-term approximation proposed
by Phelps and Pitchford® (upper table therein). As cxplained by Goldstcin,'
this two-term approximation incorporatcs a continuous scattering tcrm to
represent rotational cxcitation at clectron cnergics less than 0.8 ¢V and a
‘ single-level excitation term with 0.02-eV energy loss to represent rotational
. excitation ncar the 2-¢V resonance of the N, molecule. This two-term ap-
. proximation was adjusted by its originators to reproducc the diffusion cocf-
ficicnt and mobility parameters for the clectron distribution function. The
continuous approximation used includes only a first derivative term, instead
of first and sccond derivative terms as recommended by Carron recently,’ but
reproduces the principal transport cocfficients in the encrgy range where ro-
tational cxcitation is important. It should be pointed out that the collision

10 Goldstein, B., A Summary of Rotational and Vibrational Cross Sections in N;, Mission
Research Corporation Report MRC-R-1057 (26 January 1987).
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operator described by Goldstein (his equation (1), drawn from Frost and
Phelps®) and also the two-term approximation (his equation (11)) are valid
for the stcady-state coupled equations that I'rost and Phelps obtained by
cxpanding thc clectron distribution function in a harmonic cxpansion of
Legendre polynomials, and are not the correct collision operators for the
time-dependent Boltzmann equation as a function of velocity or energy. For
cxample, the cocflicients for inclastic collision terms in Goldstein's ex-
pression of the collision operator must be divided by encrgy loss and multi-
plied by clectron spced to be used with the time-dependent Boltzmann
equation described. For O, rotational excitation, we use the single-level ap-
proximation proposcd by Phelps.’

Vibrational cxcitation cross-scctions for N; arc taken from Phelps,® which
includes tabulations for transitions from ground state (v’ = 0) to cach of the
first cight excited states (v" =1 to 8). Ground statec was the only statc as-
sumed to be populated among the neutral molecules. Similarly, O, cross-
scction tabulations for transitions from ground state to the first four cxcited
vibrational states were uscd,’ including both low-cnergy and 9-¢V resonance
data. Electronic excitation and ionization cross-scction tabulations were
drawn from the same sources.

IFor rotational, vibrational, and electronic excitation processes, the energy
lost by the incident clectron is well-defined and fixed for cach transition.
However, for ionization the residual Kinetic energy must be partitioned be-
tween the scattered clectron, the ejected clectron, and a possible excited state
of the target molecule. Cross sections for ionization excitation of N, are
available" but are scarce for O,. Some results are likewise available on the
cnergy distribution of the cjected clectron. For the present study, we will
simply assume a ground state N; product and divide the remaining kinctic
encrgy cqually between the scattered electron and the cjected electron.

Two-body and three-body attachment cross-sections are used for molecular
oxygen.? The term “cquilibrium cnergy distribution” in oxygen or air (or
other attaching gases) requires special interpretation, becausc all free
clectrons ultimately attach. We interpret the equilibrium cnergy distribution
for an attaching gas in the absence of electron sources to be the limit of the
cnergy distribution as the clectron density goes to zero. In genceral, such a
limit will exist. When clectron sources exist, such as ionization sourccs or
avalanching (brcakdown) sources, different interpretations arc required. IFor
a constant source of electrons such as time-independent ionizating radiation,
the clectron density will tend toward a finite limit and the corresponding
cquilibrium cnergy distribution will be defined as for nonattaching gascs.
FFor an incrcasing source of clectrons through avalanching, gas molcculces
would ultimately become stripped of eclectrons and clectron density limited.
IHowever, we would be more interested in a quasi-cquilibrium state where
clectron density growth is exponential and clectron cnergy has attained some
temporarily stationary distribution. This quasi-cquilibrium distribution is
the interpretation we would use in such a case.

11Wadzinski, H. T., and J. R. Jasperse, Low Energy Electron and Photon Cross Scctions for
0O, N, and O;. and Related Data, Air Force Geophysics l.aboratory (PHY), Report
AFGL-TR-82-0008 (4 January 1982).
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Figure 3. Finite mesh results and first two Legendre cocflicients compared:  Solid line is finitc mesh result,
dashed line is first Legendre cocfficient of Phelps and Pitchford, dash-dotted linc is second L.cgendre
cocflicient, and dotted linc is sum of two Legendre cocfficicnts. The Legendre coefficients have been
normalized so that the maximum of the sum is unity. The maximum of the finitc mesh result is also
unity. The finitec mesh result has been divided by the square root of the cnergy to conform to the
l.cgendre coeflicients. Al curves were calculated for £f{N = 100 Td in nitrogen.

2.7 Equilibrium Energy Distribution Compared to Previous Results

Figure 3 comparces cquilibrium cnergy spectrum results of the finite mesh
cquation with our rough digitizations of Phelps and Pitchford’s cquilibrium
energy spectrum'? for pure molecular nitrogen. The spectra were calculated
for ¢/N = 100 Td (1 Townsend or Td =1 x 10 " V-cm?/molecule) where N
is molecular density and ¢ is electric ficld strength. The complete sct of inc-
lastic cross-sections for N, was uscd for the finite mesh equation. The cnergy
mesh was constructed for k = 1.015 and Ak, = k7/20, except that a maxi-
mum mesh spacing of 24T was permitted. The finite mesh result is compared
with the first two Legendre cocfficients of a six-term solution for the clectron
cnergy distribution function. The sum of the first two Legendre cocflicients

12 Pitchford, L.. C., and A. V. Phelps, Comparative calculations of electron-swarm properties
in N; at modcrate £[N valucs, Phys. Rev. A 25 (1982), 540-554.
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compares well with the finite mesh equation result.  The latter correctly re-
produces the “bump” at about 2 ¢V caused by the second Legendre coefhi-
cient. The sharp drop in the finite mesh result at encrgies ncar zcro agrecs
with a Monte Carlo calculation donc by Phelps and Pitchford, although our
drop is stecper. We attribute the small number of clectrons ncar zero energy
to the exceptionally small collision cross-section in this energy regime for
nitrogen (the well-known Ramsauer-Townsend cffect), allowing clectrons to
accclerate to significantly larger cnergics in the clectric ficld between colli-
sions. The high-cnergy tail is smaller for the finite mesh result than for the
Phelps and Pitchford distribution, but rough agrecement is observed. The
average cnergy of the finite mesh result is 2.0 ¢V, compared to 2.2 ¢V for the
Phelps and Pitchford distribution. Noticcable error is scen at various cner-
gics, however, which underscorcs the possible importance of a variational
mcthod which might reduce errors in the encrgy distribution to second order
in thc computation of swarm paramecters.

£/N (Td) Mesh (eV) Average energy factor Drift velocity (m/s)
calculated measured calculated measured

0 kT - 0.77 1.00 0.00 0.00
0.01 kT 1.21 - 3.5x 102 4.0 x 10?
0.1 kT 4.3 1.8 1.1 x 10 25 x 108
03 kT 6.4 4.8 23 x 10 4.0 x 10?
0.3 24T 6.5 4.8 23x 108 4.0 x 10°
1.0 2iT 13. 12. 4.6 x 10® 5.0x10°
10. 2kT 28. 36. 2.7x 10 20 x 10¢
100. 24T 63. 72. 1.5 x 10° 1.0 x 10°

Table 1. Calculated and Mcasured Swarm Parameters in Nitrogen Compared: Approximale swarm param-

cters from measured data and swarm paramelers from finite mesh equation. Swarm paramcters are
averaged over the clectron encrgy di}eribution. Elcctron energy factor is average clectron energy di-
vided by average molecular cnergy Sk7.

2.8 Equilibrium Transport Properties Compared to Measured Data
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We calculated cnsemble (swarm) mobility, drift velocity, and average
clectron cnergy in nitrogen for a small number of ¢/ N values from zero to
100 Td, using equilibrium solutions of the finite mesh equation. Results are
shown in Table 1. Because of significant crrors causcd by variable cnergy
mesh spacing when used with inclastic cross-sections, two constant mesh
spacings were uscd. A finc mesh (AE = £k7T) was used for ¢/N from zcro to
0.3 Td, and a coarse mesh (AE = £kT) was used for ¢/N from 0.3 to 100 Td,
\:'ith an overlap at 0.3 Td. Avcrage clectron cnergy is given in units of
—kT.

Inaccuracy duc to cnergy dependence of the elastic scatter cross-section in
nitrogen can be secn, as indicated carlier in the discussion of clastic scatter-
ing. The average energy should tend toward unity as the electric ficld goes
to zero, but a different limit is observed. This is strictly due to the encrgy
dependence of the clastic scatter cross-section, as established by additional
calculations based on a fixed cross-section. Comparisons with approximate




values taken from published measured data® range from poor to good. Ac-
curacy of the approximate values for the data is not more than 10 or 20
percent, given the scatter of data and the difficulty of digitization by in-
spection of the original graphs. The two finite mesh results at 0.3 Td for the
fine and coarsc encrgy meshes agree well with cach other. Finite mesh re-
sults are in good agreement with data at 1, 10, and 100 Td. Agreement is
relatively poor at 0, 0.01, and 0.1 Td because of the varying clastic cross-
scction.

If our objective were to calculate accurately the swarm paramcters directly
from the clcctron cnergy distribution, we might strive for more accuracy than
these results indicate. However, the objective of this work is to demonstrate
and evaluatec a method which may give good cstimates of swarm paramctcers

. in the presence of various errors introduced by the cross-scction set and by
the computation of the clectron cnergy distribution function. Indeed, as will
be shown, the method trivially reproduces experimentally determined equi-

- librium swarm data. The most important test of the method will be calcu-
lation of noncquilibrium swarm data, however.

3 Analysis of Equilibrium Projection Method

3.1 Developing the Basis of Equilibrium Energy Distributions

We now desire to construct the basis ¢(E, A) usced in cquation (6). For
convenience, the paramcter A, is replaced by the cquivalent mapping
¢(E, £/ N), where A, is identificd with the density-normalized clectric field &,
in gas having molecular density N. For concreteness, we specify the gas to
be air as previously constituted. We restrict the basis to finite values of i,
letting i run from 1 to n. The & are chosen so that the corresponding ¢ arc
nondecgencrate and complete in, for cxample, the finite space £ = E,. That
is, a suitably bounded function F(E)) can be approximated as

RE)~)  pb(E,clN), j=1,... M. (84)
i=1

This description arises frorn fitting the continuous function F([E) at the
points F, with a finite sum of linearly indcpendent basis functions
¢(E, &/N) (each multiplied by a coeflicient p,). If M > n, the resulting lincar
system of cquations is overdcetermined and a solution is obtained typically
by minimizing a measure of the error of the approximation. If M = n the
system can be solved exactly as

' RE) = ) pb(BuedN), j=1,... n (85)
i=)

In our application the functions F and ¢ represent continuous functions of
clectron energy E. Thus, solving the latter equation so that F is fitted exactly
at n energies E; does not guarantee acceptable behavior of the fit at inter-
vening energies (or energies outside the range of E)). In that which follows
we must be aware that a poor fit at these other encrgics may drastically alter
the calculation of collision volume (for example) for the fitting function

13 Dutton, J., A survey of electron swarm data, J. Phys. Chem. Ref. Data, 4 (1975), 577-856.
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shown on the right hand side of equation (85). Conversely, calculating a
nonequilibrium collision volume using a measurement of equilibrium colli-
sion volume implies knowledge of the distribution at all encrgies, an impli-
cation not consistent with the restriction M =n.  This means that the use
of a mcasurcment of cquilibrium collision volume may yicld bad results if
no consideration is given to the goodness of fit at intervening energies.

A tnal basis may be constructed from any set of » distir  values of ¢/N.
However, because computations with finite precision will be used, it will be
helpful to select values that promote lincar independence among equilibrium
cnergy distributions derived therefrom. This can be done, for ecxample, by
scattering the values over the range of interest, say, from zero to a selected
maximum value. The values may be uncqually spaced, if desired.

The cecfficients p, describe the spectral projection of I{E) onto the ¢ basis
and arc not uniqucly defined while the basis vectors are lincarly dependent.
In matrix notation with row-column order of subscripts, so that matrix
(R), = ¢(E, £/N) and vectors (p), = p. and (f), = F(L), we have

f=Rp. (86)

Each column of matrix R is a basis vector ¢ for some choicc of ¢/N. Be-

causc the collision volume K for an cnsemble is lincarly dependent upon the
cnergy distribution f{F) (scc cq (4)), we can write the ensemble total collision
volume in the spectral form

n
Ko=) Kip (87)
i=1

where K, is the collision volume for an ensemble whosc equilibrium encrgy
distribution corresponds to a choice ¢/N for electric field divided by molec-

ular density. In matrix notation where (k), = K, we writc this as

Ko =k'p. (88)

Solving cquation (86) for p and substituting in the last cquation gives

Ko = k"R7'L. (89)

At this stage, scveral methods of obtaining unique projection cocflicicnts p,
must be considered. One mcthod is to take M = n and solve cquation (85)
for the projection coeflicients. lHowever, this method is not truly consistent
with our desire to obtain a smooth, closc fit to the noncquilibrium distrib-
ution at intervening cncergics. Hence we desire to make M > n and take ac-
count of as many cnergics as practical. The cocfficients p, may take on
positive or negative values as needed to manage the fit at all the £, con-
tributing to a numecrically unstable solution. Another mecthod is to imposc
a constraint that p, >0 for cach , and find an approximate solution to
cquation (86) that satisfics this and perhaps other constraints. Clearly there
is no neced to settle for an approximate solution if an exact solution is avail-
able and usable. Ilence we will pursue the exact solution of (86) until it is
shown that an cxact solution has undesirable propertics making it useless.
Then we will return to the second, approximate method.

The matrix R may have a very small determinant (i. e., may be ill-
conditioned) in spite of careful choice of ¢,/N, so that its inverse R-! may be
numerically difficult to compute. To avoid computational difficultics of this




kind and to dcfine the p, uniquely, we transform the trial basis R to an
orthonormal basis O by means of a Gram-Schmidt orthogonalization pro-
cedure. Thus we obtain a set of mutually orthogonal basis vectors @' (F)
where j=1, ..., M using

&' (E) = o(Lj, €1/ N),

GAE) = d(E, 5IN) - ZM(F)Zd)(Fh N (E), »
k=1 =1
N
(L) =———— (90)

M
Z[d>(11)
=]

The vectors can be orthogonalized in any order, but the procedure is de-
scribed for ascending / without loss of gencrality. It is assumed that the

¢(L, &/ N) arc normalized to unity before the production of the ¢’;. An im-
proved basis is obtained at cach step of the orthogonalization, containing
onc additional orthogonalized basis vector at cach step.  The transpose of
cach improved basis can be represented as the transpose of the previous ba-
sis multipliecd by a simple lower triangular matrix which has main diagonal
terms of unity and no nonzero oll-diagonal terms, except for one (ith) row
which orthogonalizes the next (ith) basis vector. Thus the transpose of the
final, (ully orthonormalized basis can be obtained by multiplying the trans-
posc of the trial basis by n lower triangular matrices, or cquivalently by onc
lower triangular matrix which is the product of the » matrices. (The product
of lower triangular matrices is also a lower triangular matrix.) In matrix no-
tation, we write the transformation as

o"=TR” 91)

where the lower triangular matrix T summarizes the Gram-Schmidt proce-
durc. Solving this equation for the inverse of matrix R and substituting into
cquation (89) gives

K,u=kKTOf (92)
By the associative law for matrices, this can be expressed as
Ko = (K'TT)(0O7'D), (93)
or
Ko = (TK)'(O7'1). (94)

Because matrix O is orthogonal its inverse is numcrically accessible. The
multiplication of the energy distribution function f by matrix O ' projccts the
distribution onto the orthonormal basis, which was transformed from the
original trial basis of equilibrium distribution functions. The first parenthe-
tical cxpression likewise transforms the collision volumes belonging to the
trial basis into collision volumes belonging to the orthonormal basis.

Notc, however, that projecting the energy distribution onto an orthonormal
basis does not itsclf constitute the proposed method of calculating swarm
mobility or collision volume. Rather, the essential feature of the proposed

method is the identification of the K, in equation (87) (or in eq (9)) as be-
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Figure 4. Egquilibrium cnergy distributions as trial basis vectors: Examples of trial basis vectors used for
projection onto an cquilibrium basis. Equilibrium encrgy distributions ¢(F,, £/V) shown arc for
i =1 (solid line), 10 (dotted line), 20 (dashed line), 30 (dash-dotted linc), 40 (dash-dashed line), and
50 (sccond dotted line). All curves are normalized to a maximum amplitude of unity.

longing to cquilibrium encrgy distributions ¢(F, £/N) (or ¢(E, A) in ¢q (6)
et seq.). To demonstrate the projection mcthod, we calculated # = 50 trial
basis functions for air for
K-l

g/N =0.01 1
with a choice of k = 1.2, which gives a range of values for ¢,/ N starting with
0 Td, 0.01 Td, ctc., and cnding with 379 Td. The finitc mecsh cquation was
solved with M = 550 mesh points from %47 to about 29 eV, to obtain equi-
librium cnergy distributions for the 50 scparatc values of ¢ /N, using the
cross-scctions previously discussed for air, except that attachment and
avalanching cross-sections were omitted to simplify the calculation. Results
were saved on computer disk for later use with the projection method, be-
causec of extensive computer time required to calculate the sct of 50 distrib-
utions. Equilibrium distnibutions for i = 1, 10, 20, 30, 40, and 50 arc shown
in Figure 4.

i=1,.., 50 (95)
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Figurc 5. Orthonormal basis vectors derived from cquilibrium encrgy distributions: First four orthonormal
basis vectors derived from ¢(F, £/ V), ¢ = 1,2,3.4. Vectors | through 4 are in the order solid, dotted,
dashed. and dash-dotted. All curves are normalized to a maximum amplitude of unity.

After these distributions were calculated as the trial basis, an algorithm was.
applicd to orthonormalize the sct (using the Gram-Schmidt procedure men-
tioned) in ascending order of i As a practical matter, the
orthonormalization was accomplished with a weight function proportional
to the cnergy mesh spacing to account for a noncquispaced cnergy mesh.
The first four orthonormal basis vectors so obtained are shown in Figure S.
Typical of orthogonal functions, the number of sign changes increases with
the ordinal of the basis vector.

Because M was chosen greater than n, the orthogonalization must incorpo-

ratc some quantification of the notion of “goodness of fit” which is not

nceded when M = n. This is achieved by selecting the order in which the trial

basis vectors are orthogonalized. A good though possibly suboptimal or-

dering 1s, at the k& th step, to orthogonalize the remaining trial basis vector

whose orthogonal form has the largest inner product with the residual non-
cquilibrium distribution from the previous step r#-". The residual nonequi-

librium distribution at any step is the residual for the previous step less its

inner product with the orthogonal form of the trial basis vector sclected for

orthogonalization at that step:

3
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Figure 6. Noncquilibrium energy distributions for step-function clectric ficld: Time-dependent finite mesh
equation solutions for a 10-Td step-function clectric ficld, at 0 ps (solid linc), 10 ps (dotted line), 50
ps (dashed linc), 200 ps (dash-dotted line), | ns (dash-dashed line), 4 ns (second dotted line), and 20
ns (second dashcd linc) after onsct of the step function. All curves are normalized to unit amplitude.
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As before, the prime notation denotes the orthogonalized form of the basis
vector. Thus, at the kth step, we orthogonalize the previously
unorthogonalized basis vector ¢(L, £,/ N) for which the magnitude of the in-
ner product

n
Y Vg
=1

is maximized. Sclecting the order of orthogonalization in this way requires
that a trial orthogonal form be calculated for cach vector tested using the
inncr product. Because any orthogonal form depends on the prior order of
orthogonalization, the trial orthogonal form may not be the same as the final
orthogonal form calculated for a given basis vector.
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Figure 7.

Nonecquilibrium encrgy distributions for squarc-wave electric ficld:
equation solutions for a 100-1d square-wave clectric ficld, at 0 ps (solid linc), 10 ps (dotted line), 50
All curves are

ps (dashed line), 200 ps (dash-dot line), 1 ns (dash-dashed line), 6 ns (second dotted line), and 11 ns
(sccond dashed linc) after onsct of the square wave. The square wave lasts | ns.
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normalized to unit amplitude.

We used this ordering of the orthogonalization process and the consequent
order of rows of matrix T in the cnsuing calculations. The orthogonalization
order (row order of matrix T) may change from onc time-stcp to another,
thereby introducing discontinuities in the calculated collision volume.

3.2 Obtaining Time-Dependent Energy Distributions

To illustrate calculation of time-dependent clectron encrgy distributions, we
sclect two prescriptions of the ambient electric ficld: (1) a step increase from
zero field to a constant amplitude of 10 Td, and (2) a square wave of 1-ns
duration and 100-Td amplitude. An air density onc-thousandth that at sca
level is selected to reduce the collision rate and emphasize the noncquilib-
rium aspect of the calculation. Using time leaps of 10 ps, we solved the finite
mesh equation for air for both the prescribed clectric fields.  Initial
(Maxwellian) and subsequent distributions arc shown in I‘igurc 6 on page
32 for the first casc of a step increasc in the field. The figure shows rapid

i3




heating of the clectrons on this short time scale, relaxing toward an cquilib-
rium distribution corresponding to a constant electric ficld-value of 10 Td.

For a short squarc-wave electric ficld (shown in I'igure 7 on page 33) initial
(Maxwecllian) and subscquent distributions show the cxpected maximum
heating at 1 ns after the onset of the ficld, followed by very slow cooling
back to the zcro ficld cquilibrium. As the distribution cools, the high-energy
tail crodes rapidly between 2 and 3 eV, where downscatter cross-sections are
greatest for nitrogen. A small island of clectrons lingers above 3 ¢V, where
downscatter cross-sections arc smaller. A striking fcaturc of the distrib-
utions when the clectric ficld has rcturned to zcro is the growth of sharp
maxima and minima where specific resonances transfer electrons from one
fixed encrgy to a lower fixed cnergy. These sharp peaks and valleys occur
because the clectric ficld no longer diffuses (“smooths out™) the clectron ¢n-
crgy. Although clastic scattering diffuses clectron cenergy, its cffect i1s much
weaker than the effect of the electric field. The presence of a small clectric
ficld after the main pulsc would keep clectron energies well mixed and pre-
vent such an irregular distribution function.

3.2 Projecting Time-Dependent Distributions onto an Equilibrium Basis

The spectral coefficients p, for projecting /(1,F) onto the orthogonalized
cquilibrium basis ¢’ (k) are plotted for casc 1 (step-function clectric field) in
Figurc 8 on page 35 for the same times for which the encrgy distribution
was shown in I'igure 6. The spread in the spectrum gives a mcasure of how
far the noncquilibrium energy spectrum has departed from an equilibrium
statc. The spectral projection is obtained from the cquation

p=TO7'f. (96)

The spectral projection for casc 2 (squarc-wave clectric ficld) is plotted in
Figure 9 on page 36. In both figures the dominance of a single equilibrium
distribution 1s observed for cvery nonequilibrium distribution calculated.
Significant additional spectral content occurs for a few cascs, primarily the
lower cnergy cases where heating has just begun. At higher cnergics the
dominance of a single equilibrium distribution is more pronounced. The in-
itial (Maxwellhian) distribution for zcro clectric ficld has a single component
at vector ordinal 1, as expected, corresponding to the zero-ficld equilibrium
distribution. At 10, 50, and 200 ps, dominant components at vector ordinals
2 and 3 are scen, with 2 to 4 ncarby components of amplitude 10 to 40 per-
cent as great as the dominant component. At later times sccondary com-
poncnts appcar to contribute less and less, suggesting that the
time-dependent distribution is relaxing toward some equilibrium state.

The two distributions occurring 5 and 10 ns after the end of the squarc-wave
electric field arc seen to have cooled significantly [rom the distribution at the
cnd of the clectric ficld pulse, with dominant vector ordinals of 32 and 31
comparcd to 40 for the latter. These ragged distributions (as shown in Fig-
urc 7) arc as casily represented by a dominant equilibrium distribution and
much smaller secondary components as are the smooth distributions. The
convergence of the spectral projection appears rapid regardless of sharp
peaks and valleys in the distribution, in these examples.
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Figurc 8. Spectral projections for step-function clectric field:  Spectral projections of time-dependent finite mesh
cquation solutions for a 10-Td step-function clectric field, at 0 ps (solid line), 10 ps (dotied line), 50
ps (dashed linc), 200 ps (dash-dotted line), | ns (dash-dashed line), 4 ns (dotted linc), and 20 ns
(dashed line) after onsct of the step function. Abscissa values are ordinal numbers of the
orthonormalized cquilibrium basis vectors upon which the solutions are projected. A basis is con-
structed for cach solution according to the order of orthogonalization described in the text, so that
cach basis is different for the solutions shown. [lowever, temperature is a monotonically increasing
function of the dominant basis vector. All curves arc normalized to unit amplitude.

3.3 Defining a Test of the Equilibrium Projection Method

It is important to dcfine carcfully what test can be applied to the method of
projcction onto an cquilibrium basis (eq (9)), so that a meaningful compar-
ison can be made with the method of equation (5). If an exact cnergy dis-
tribution is calculable for any cquilibrium or noncquilibrium case, depending
on the clectric [icld, then the use of equation (5) to evaluate the collision
volume is limited only by the accuracy of the momentum cxchange cross-
section data used. Likewise, the use of equation (9) is limited by the accu-
racy of the ensemble collision volume data used. (We ncglect crror arising
from discretization of the encergy mesh, which in principle can be forced to
zcro if a sufficiently fine cnergy mesh is used.) Unfortunately, some exper-
imental error is present in undetermined amounts in both momentum ex-
change data and cnsemble (swarm) collision volume data. We perceive no
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Figure 9. Spectral projections for square-wave electric ficld:  Spectral projections of time-dependent finite mesh
cquation solutions for a 100-Td squarc-wave clectric field of I-ns duration. at 0 ps (solid linc), 10 ps
(dotted line), 50 ps (dashed line), 200 ps (dash-dotted ligg), 1 ns (dash-dashed line), 6 ns (dotted linc),
and 11 ns (dashed line) afier onsct of the square wave. ubscissa values are ordinal numbers of the
orthonormalized equilibrium basis vectors upon which the solutions are projected.  All curves are
normalized to unit amplitude.
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basis here to say which method is more accurate. The proposed method is
not nccessarily more convenient because it uses cnscmble collision volume
data, since computation of the encrgy distribution function requires use of
the momentum exchange cross-section anyway.

On the other hand, equation (9) offers the possibility of variational accuracy
in estimates of cnsemble collision volume when there are crrors in caleu-
lation of the cnergy distribution function and in momentum cxchange
cross-section data. What is needed to make a comparison, then, is to (1)
assume that a baseline set of cross-section data and its derived energy dis-
tribution functions arc exactly correct, (2) calculate collision volume using
cither or both methods (results must be the same) from the bascline cross-
scction data and derived energy distribution functions, to serve as a standard
for comparison, (3) introduce “error” to the bascline cross-section data and
derive perturbed energy distribution functions, to serve as approximate data,
and (4) calculate collision volume using both methods from the approximate
data (results will be different) and compare results with the standard ob-
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tained 1in step (2). In this way we can estimate the ability of the proposed
method to reduce effects of cross-section error.

The cross-section data used for calculations up to this point will describe the
bascline cross-scction stundard, and cquilibrium cnergy distribution func-
tions obtained using the finite mesh equation will be assumed to be correct
for the purposes of the comparison.  Ensemble collision volume obtained
using equation (4) from these cross-sections and encrgy distribution func-
tions will describe standard cquilibrium collision volumces, assumed to be
exactly correct cquilibrium values [or cach clectric ficld strength ¢,/.V in the
basis.

We define two erroncous cross-section scts incorporating different types of
error to test the ability of the proposed method to reduce mobility error due
to crror in the energy distribution function. In sct A every cross-section 1s
twice as large as in the bascline set. This causcs an encrgy scale factor crror
of a factor of two in the calculated energy distribution function. In sct B all
rotational cross-sections are twice as large as in the baschne set. This causes
a morc complex type of error in the calculated encrgy distribution function.

3.4 Orthogonal Projection Results for a Time-Dependent Distribution

Using the test defined in the previous scction, we calculated collision volume
for time-dependent encergy distributions using cross-scection set A. Collision
volume was then obtained using the orthonormal projection method de-
scribed. The orthonormal projection method proved to be gencrally unsat-
isfactory, leading to large positive and negative calculated collision volumes
for the successive time-dependent energy distributions.  Scrutiny of the cle-
ments of the orthogonalizing matnx T showed that the maximum size of cl-
ements in a row incrcascd sharply as the ordinal of the corresponding basis
vector increased. Thus the dominant row maximum was about 102 times
larger than the least dominant row maximum. This means that the clements
of the least dominant row are very large and of varying sign, lcading to very
large inner products with collision volume vector k. This is a recognizable
conscquence of the ill-conditioning of the lincar system in cquation (86).
Although the orthogonalizing matrix T controls error growth in the calcu-
lation of matrix O, it exacerbates crror growth in the product Tk in equation
(9. This is duc to the occurrence of both positive and ncgative row cle-
mentsin R, T, and O .

[t was observed that the spectral form (eq (87)) for an orthonormal
projection resembles an asymptotic scries at later times when the cnergy
distribution is close to cquilibrium. An asymptotic limit is approached for
the value of K., after a few terms in the expansion (in order from most
dominant basis vector to least donminant). Unfortunately this is not the case
at intermediate times when the distribution is far from cquilibrium.

3.5 Nonncgative Projection Mcthod

A stabler system results from requiring row clements in R to be nonnegative,
so that cach p, is nonncgative also. The projection is then approximate, be-
cause the exact solution requires no restriction on the sign of clements of
R. Such a system may be solved by defining the solution as the minimum
of a penalty function which measures the weighted crror raised to some
power. The penalty function is minimized using a suitable nonlincar opti-
mization procedure, vielding the desired solution for p.
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We define an approximation to a gencral encrgy distribution function /(L))
as
n

HE) ~ Z R ef V), j= 1., 3, 97)

i=1

where the coeflicients 7, may be positive or negative, but their squares arc
obviously nonnegative. Ience the projection (97) is nonnegative. The pen-
alty function is defined as

n

Play = w2 | HE) = D 2Ll N | . (98)

i=1

I'or anv time-dependent cnergy distribution function /{[), minimization of
P over the allowable space of x, vields a solution for the #,. The solution
may be unique, depending on whether the minimum is global or merely local.
We multiply the bracketed term by a weight function w, to emphasize sig-
nificant scgments of the distribution. [‘or calculation of ensemble collision
volume, an appropriate choice of weight function is the collision volume
K(E, &/N) raised to the same power as the bracketed quantity. Minimizing
such a penalty function yiclds a weighted lcast-squarcs approximation to
K L) and a least-squares approximation to the ensemble collision volume.

We have obtained such a nonnegative projection approximation to the en-
crgy distribution function, using a conjugate gradicnt minimization proce-
dure. The projection coeflicients obtained were sharply defined in cach case,
consisting of a few adjacent nonzero components and occasionally a smaller
component some distance away. When collision volume was calculated us-
ing the spectral form for the baseline cross-section set and erroncous cross-
section sets A and B, and compared with results using the conventional
mcthod of cquation (), the spectral form gave poor results. We infer that
the.approximation crror was too large to give acceptable results.

The calculation of collision volume is improved by using the approximation
crror to calculate a residual collision volume using the conventional method,
which 1s then added to the spectral calculation of collision volume. Thus,

n M n
K= Kpi + D | HE)= Y. pb(EyedN) |[KE)  (99)
i=1 j=1 =1

describes an approximate projection with “cleanup” of the residual using the
mcthod of cquation (5). Although improvement was noted, the calculated
ensemble collision volume still compared poorly to a conventional calcu-
lation. After some study, this was attributed to poor lincar independence
of adjacent nonzero components in the nonnegative projection. That is, in
cquation (22) the term r(F,7) is not small compared to f{[,r) for the casc
under consideration.

As a last resort the nonncgative projection was restricted to a single nonzcro
component and the residual was “cleaned up.” This single-vector projection
with “cleanup” is equivalent to (1) finding the equilibrium distribution clos-
cst to the noncquilibrium distribution F(£,1) (closest in the sense of mini-
mizing the lcast-square error previous discussed), (2) applying a conventional
collision volume calculation to the residual (“cleanup”), and (3) adding to
the latter result the ensemble collision volume of the sclected equilibrium
distribution. The results obtained are shown in Figure 10 on page 39 for the
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Figure 10. Error in calculated ensemble collision volume for step-function F-field: Plotted crror for projection
mcthod and conventional method bascd on various cross-section sets, compared to cxact calculation
of ensemble collision volume for the casc of a squarc-wave electric ficld. [otted line is error for
conventional mcthod using Sct A. Dashed line is error for projection method using Set A. Dash-dot
linc is error for conventional mcthod using Sct B. Dash-dash linc is error for projection method
using Sct B. Solid linc is crror for projection method using Basceline Set (exactly zero).

step-function clectric ficld and in IYigure 11 on page 40 for the squarc-wave
clectric ficld. These results are the most successful obtained by the cquilib-
rium projcction method.  [For the 10-Td step-function clectric ficld, the
projection mecthod sharply reduces crror {duc to cross-section scts A and B)
for the first 100 ps, whilc the electron cnergy distribution is closc to its initial
cquilibrium state. As the crror in the conventionally calculated collision
volume fortuitously passes through zcro, the projection mcthod displays
more crror, and then both methods give nearly equal error at late times. I'or
the 100-Td squarc-wave electric ficld, the projection method gives zero error
at the initial cquilibrium but promptly develops larger crror at the next
time-step 10 ps later, before converging to nearly the same crror as the con-
ventional method at late times.
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Figure 11. FError in calculated ensemble collision volume for squarc-wave E-ficld:  Plotted error for projcction
mcthod and conventional mcthod based on various cross-section scts, compared to exact calculation
of ensemble collision volume for the case of a step-function clectric ficld. Dotted line is crror for
conventional method using Sct A. Dashed line is error for projection mcthod using Sct A. Dash-dot
line is error for conventional method using Sct B. Dash-dash line is error for projection method
using Sct B. Solid line is error for projcction mcthod using Bascline Sct (cxactly zcro).
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The usc of an orthogonal basis for the projection method was found to cre-

atc unusablc results for the spectral form of K. because of the occurrence
of very large positive and negative clements of matrix T. This 1s because of
the inherent hncar dependence of the basis ¢(/, £,/ N), and is a fundamental
shortcoming of the projection method. If the basis could be restricted to a
small number of basis vectors posscssing a high degree of lincar independ-
ence, the projection method might make a better showing in cascs not dis-
cussed. [Figure 4 shows that the equilibrium distributions for i=1 and
i = 50 arc the most ncarly lincarly independent of those shown, as would be
expected. However, it is difficult to find a rcalistic casc which consists of a
sum of thesc two distributions alonc. Comparison of the cquilibrium dis-
tributions of IFigure 4 and the nonequilibrium distributions of Iigure 6 shows
that their shapes compare well up to the maximum but (all off differcntly at




higher cnergics. The cquilibrium distributions have a smaller high-encrgy
“tail” duc to more extensive downscatter from rotational and vibrational
cxcitations. This explains, to some extent, why single-vector projection with
“clcanup” performs well on noncquilibrium distributions whosec maxima arc
concentrated at or below about 0.1 ¢V. The poor similarity obscrved be-
tween equilibrium and nonequilibrium distributions approaching 1 eV at
maximum tends to prohibit stationary bchavior of projection cocfTicients at
these energies. In fact, collision volume crror at these energics is nearly the
same for thc projection method (with “cleanup”) and the conventional
mecthod.

The method of sclection of a dominant basis vector was the same for an
orthogonal basis and for a nonnegative projection basis. The same compo-
ncnt is identificd in cither casc. No assumption was made about the form
of crror induced in the energy distribution function by the crroncous cross-
section sct used. Several other approaches were tested, including best fit to
first and sccond encrgy moments {average encrgy and cnergy sprcad), as
ways of sclecting the dominant basis vector. No significant improvement
was found, cxcept that it became clear that knowledge of the type of crror
could be explotited to produce a superior error reduction. Deliberately using
a “hotter” basis vector than indicated caused a better reduction in collision
volume crror, because of cancellations in error contributed by different parts
of the cnergy distribution. This method was not our objective, yet may be
uscful in certain circumstances. Thus if models of cross-scction error are
defined, the method of dominant basis vector sclection can be biased to re-
ducc crror further than a “blind” method, such as we have uscd.

Both orthogonal and nonnegative projcction mcthods work about cqually
well for encrgy distributions ncar equilibrium, so that significant crror re-
duction is possible when “cleanup” is added (eq (99)) to the spectral form for
cnscmble collision volume. Unfortunately both methods scrve poorly when
the cnergy distribution is far from cquilibrium. For the strong 100-Td clec-
tric ficld, this state is attained within 10 ps, and within 100 ps for a 10-Td
clectric ficld. This may be due to the large rotational and vibrational re-
sponscs above 0.1 ¢V for air which, in equilibrium, depopulate that portion
of the cnergy spectrum filled by strong clectric ficlds. This hypothesis is
strcngthened by the fact that ensemble collision volume cstimates by the
projection method arec too low in this regime, presumably because higher
cnergics arc underpopulated in cquiltbrium compared to noncquilibrium.
(Higher cnergies carry a larger collision volume per clectron.) Gases that
lack such a strong depopulating process may yicld better projection method
results, although such a case lacks interest. Likewise, distributions substan-
tially above 2 ¢V in air might avoid this underpopulation cffect and yicld
better noncquilibrium results for the projection method.

The single-vector projection with “cleanup” could have been derived inde-
pendently of the projection-related theory of this effort, as it is conceptually
very simple. It simply trades most of the collision volume calculation using
cquation (S5) for an cxperimentally mcasurced collision volume represented
by cquation (9). In the context of its derivation here, the variational prop-
crtics of the single-vector projection with “cleanup” become apparent. If the
crror associated with the measurement is as great or greater than the error
assoctated with the cnergy distribution function, then nothing is gained in
accuracy. Generally we expect more accuracy from an cquilibrium meas-
urcment than from a noncquilibrium calculation.

41




5 Conclusions
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Although this cffort is directed at cstimates of cnsemble collision volume, the
same computational machinery can be applied to other clectron swarm
properties as well, such as the cocflicient of attachment or avalanching. In
such a case a weight function cqual to that cnergy-dependent cocflicient
would be substituted for K(£). The previous conjecturce regarding under-
population at several electron volts applies as well in this case, where poor
projection method results would be expected until farge spectrum content
develops at higher cnergies.  Avalanching, however, docs not become im-
portant until the spectrum content develops at higher energics.

Nothing has been specified about the source of clectrons described by the
energy distribution function, up to this point. In nonattaching gas, clectrons
will linger until absorbed by walls, for cxample. For attaching gascs such
as air, a continual source of clectrons is required to sustain a significant
clectron density for times much longer than the attachment time. While an
experimental apparatus might gencrate clouds of near-thermal clectrons,
there is also the case of clectrons produced by ionizing radiation. Such
clectrons arc produced throughout an cxposed volume at relatively high en-
crgics from 10 to 100 ¢V. The projection method highlights the possible
value of equilibrium measurements of swarm parameters in a volume ex-
poscd to constant ionizing radiation. In such a mcasurcment the clectric
ficld would be imposed on an ensemble of clectrons whose cnergy distrib-
ution incorporatcs the peculiar spread of clectrons throughout higher cener-
gies derived from their birth through ionizing radiation. Such cquilibrium
mcasurcments could shed considerable light on swarm propertics of ncar-
cquilibrium and noncquilibrium distributions in ionizing radiation.

A diiTerential equation has been derived describing the time cevolution of the
cnergy distribution function for free clectrons in a gas in a transicent clectric
ficld. A fintte-difference approximation and a time-stepping algorithm using
matrix-vector techniques were devised to solve the differential equation. An
cxtensive published cross-scction set was added to the time-stepping algo-
rithm to cnable calculation of realistic energy distribution functions in air.
A projection mcthod was described which allows computation of clectron
swarm propertics such as collision volume (related to mobility) using mcas-
ured data for cquilibrium distributions, and the projection method was
shown to have desirable variational propertics in calculating the swarm
propertics.

Scvceral projective methods were compared with conventional techniques for
their ability to reduce crror in cstimates of collision volume arising from
cross-section-induced crror in the cnergy distribution function, including
orthogonal and nonnecgative projections. A single-vector projection with
“clecanup” of approximation crror was found to perform best, leading to a
significant reduction of collision volume crror when the distribution function
maximum was not greater than about 0.1 ¢V. Other projections performed
poorly compared to conventional methods of calculating swarm collision
volume, because of the inherent lincar dependence of the projcction basis of
cquilibrium distributions and the resulting ill-conditioning of the projection
matrix. If a model of the encrgy dependence of the cross-section error is
known, it may be possiblc to exploit that knowledge to bias the single-vector
projcction to give better results.




6 Recommendations

Electron mobility estimates for near-thermal (with a peak not greater than
0.1 ¢V) noncquilibrium energy distributions can be made with greater accu-
racv using a single-vector projection (onto an cquilibrium basis) with
“clecanup.”  Estimates based on the mobility of an cquilibrium distribution
having the samc average encrgy as the noncquilibrium distribution are a
spectal case of the above without “clcanup.”

IFor clectron swarms populated by ionizing radiation, nicusurements of
cquilibrium swarm propertics in a time-constant clectric ficld and radiation
source would likely be very uscful and shed new light on swarm propertics
of nonequilibrium clectron distributions arising in this way.
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