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I Introduction and Motivation

1.1 Nonequilibrium Mobility by Projection onto an Equilibrium Basis

The mobility of conduction electrons in air subjected to an electric field
changing rapidly in a nanosecond or less is difficult to measure or calculate.
The conduction electrons do not attain an equilibrium state in such a short
time. Steady-state "swarm" measurements are readily available, but only
approximate nonequilibrium values. Approaches using energy-dependent
momentum exchange cross-section data with a conduction electron velocity
distribution function are hampered by incomplete cross-section data. In this
work, we project the time-dependent energy distribution function onto a
basis composed of equilibrium energy distribution functions and use equi-
librium mobilities to construct a nonequilibrium mobility. The method is
evaluated as a possible means of avoiding error in the energy distribution
function arising from incomplete or erroneous cross-section data.

Conduction electron mobility can be expressed in terms of an effective mo-

mentum exchange cross-section as' [pp 72, 115, 206, 527]

qW 10
-3

I muAnpQM (!a)

or

muN~m 
(I b)

where

A= electron mobility (in m2f V s),

Q, effective momentum exchange cross-section (in m2/molecule),

q = magnitude of the electron charge (1.60 x 10- 11 C),

W gas molecular weight (28.8 kg/Mole, I Mole = 1000 mole),

m = eectron mass (9. I x 10-31 kg),

u = electron speed (m/s) for electron kinetic energy E (in J),

A, Avogadro's number (6.03 x 1023/mole),

p gas density (in kg/m 3), and

N gas molecular density (in molecules/m 3).

The macroscopic conduction electron mobility, averaged over the ensemble
electron energies (which we denote by a caret), is written as

A q (2)

mN f u(E)Qm(EIyE ) dE

I Iluxley, L. G. II., and R. W. Crompton, The Diffusion and Drift of Electrons in Gases, John
Wiley and Sons, New York (1974).
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where AE) is the timc-independent (equilibrium) energy distribution of
electron kinetic energies. We may, for convenience, parameterize 5 as a
function of the ensemble average electron energy F, which is a monotonic
function of the ambient (time-independent) electric field strength. Let us
define

K(LI) = u(l)Qm( L) (3)

and the ensemble average K(i) as

K(1E3 f u(I-)Q(EY E)3 dE. (4)

The variables K and k, which we shall call "collision volume," arc in units
of volume per unit time and, when multiplied by the density of target mole-
cules, yield the momentum exchange collision frequency v,,.

The ensemble average collision volume k can be written as a function of
time

K(t) f K(LV(E,t) dE (5)

where the integral is carried over all electron energies, andfl h.t) is the time-
dependent energy distribution function (in electrons per unit energy). We
assert without proof that an infinite basis exists complete for any fllt),
consisting of the family of equilibrium energy distribution functions O(E, A)
for all nonnegative values of the parameter A. The parameter A may be
chosen to be some monoconic characteristic of the distribution, such as
magnitude of the electric field strength or average energy. We discretize the
basis for parameter values A = A, and approximate flEt) by

=E,t) ai (t ) O(E, AI), (6)

which defines time-dependent coefficients a,(t). (This definition does not
uniquely define the a,(t), however, because the basis is not orthogonal.
Orthogonality will be considered in section 3.1.) Substituting this basis into
equation (5) we obtain

K(t) f K( lh)a(t),O(El, A) dE,

~(7)

Z ai(i) f K(lOk(E, A,)dl.

The ensemble average collision volume for any equilibrium distribution
having parameter value A, is

A C
K(A,) = K(E)O(E, Ai) dE. (8)

The ensemble average collision volume k can be easily obtained from
"swarm" measurements of electron mobility, which are aimed at taking data
for equilibrium energy distributions. By substitution of equation (8) into
equation (7) we obtain

2



K(t) = ai(t)K(Ai). (9)

Thus the time-depcndent ensemble average collision volume can be obtained
from equilibrium ensemble average collision volumes and a knowledge of the
a,(t) describing the time-dependent energy distribution. Alternatively, the
same data can be derived from the (energy-dependent) momentum exchange
collision cross-section and the time-dependent energy distribution itself.
Unfortunately these quantities are not known accurately for all energies.

The motivation for the current work is the possibility that the coefficients
a,(t) can be determined more accurately than either J(E,t) or O(E, A,), and
also more accurately than the collision volume data K(E) upon which they
are based. Under certain conditions, the coefficients a,(t) are stationary with
respect to variation of K(I) (due to a variational principle). For example,
this occurs when the time-dependcnt electron energy distribution function is
close to an equilibrium energy distribution function. More generally, sta-
tionary behavior can be expected when the time-dependent function can be
approximated by a set of linearly independent equilibrium functions. If in-
deed the a,(t) can be determined more accurately, then the ensemble average
collision volume k(A,) and the ensemble average mobility j can also be de-
termined more accurately than by direct integration of equation (5).

1.2 Relationship to a Variational Principle

Define a linear operator L that advances the energy distribution function
fiE,t) one time-step:

LfiEt) =J(E,t + At). (10)

The equilibrium energy distribution function is defined by

Lg(E) = g(E) (11)

for a fixed electric field strength. Clearly g(E) is an eigenvector of L associ-
ated with the eigenvalue unity. A well-known result2 shows that eigenvalues
may be derived from a variational principle as

[Lfx)tx) dx
f (12)

f f 2(x) dx

and that this expression for is stationary (second-order accuracy) with re-
spect to variations infix).

Identify the g(E) that has the largest projection onto J(E,t), i. e., with the
largest a(t) defined by

J fiE,i)g(E) dE
(13)

fg2( E) dE

2 Morse, P. M., and II. Feshbach, Methods of Theoretical Physics, McGraw-Ilill Book
Company, Inc., New York (1953), Volume 2, pp 1108f.
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Repeated applications of L to flE,) produce newjfE,t + At) that grow closer

to the equilibrium solution g(E)

LnjfE,t) = g(E) + 5g(E,t), (14)

where bg(E,t) is a differential variation of function g, such that

lim bg(E,t) = 0. (15)

Now define an operator L-' that is the inverse of L. We observe that re-

peated applications of L-' to g(E) + bg(E,i) produce

(L-')n[g(E) + bg(E,t)] =ftE,t). (16)

If we now define operator M for some large n,

M = (L-) ,  (17)

we see that

f {M[g(E) + 6g(E,t)]} Eg(E) + 6g(E,t)] dE?
A(18)

f[g(E) + 6g(Et)] dE-

is in the form of equation (12) for operator M and its approximate
eigenvector g(E) + bg(E,t). The approximate cigenvalue ;,, is accurate to
second order by the variational principle cited. I lowever we can make
6g(E,i) arbitrarily small by increasing n. Using

M[g(E) + 6g(Et)] =flE,t) (19)

and allowing n -- oo so that bg(Ei) -+ 0, we rewrite equation (18) as

( f E, t)g(E)dE

* g2(nI dE (20)

Comparing this with equation (13) we see that

= (21)

and that equation (13) is variational also.

The remainder

r(E,t) =flE, t) - o(t)g(E) (22)

is orthogonal to o(i)g(l), as can be shown by multiplying equation (22) by
g(l:) and integrating over energy. If r(E,t) is small compared to flEt) (that
is, if g(F) is "close" to JE,t) ) then we expect that equation (9) will provide

better estimates ofk(t) than equation (5), given some uncertainty in the
calculation ofA(E,t) due to error in electron collision cross-section data. This
expectation is based on the variational property of equation (13). Even if
r(LI) is not small, it may be "close" to another equilibrium energy distrib-
ution function g'(E) that is nearly orthonormal to g(E):

f g2(EJdE> f g(E)g'(E)dE. (23)
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For instance, if g(E) is concentrated at low energy and g'(/E) is concentrated
at high energy, then they will be nearly orthonormal. If equation (23) holds,
the process may be repeated to obtain

f r(E,)g'(E) dE(4
'(l) '(24)

f [g'(E)]2 dEt'

which has similar, though possibly weaker, variational properties. Clearly
the process may be continued in a manner similar to a Gram-Schmidt
orthogonalization procedure. The successive projection coefficients will
possess (nearly) variational properties so long as the successive g, g', ... are
(nearly) orthonormal.

2 Solution Method for Energy Distribution Function

2.1 Energy Diffusion Equation

To demonstrate the projection technique described, we need a method of
calculating equilibrium and time-dependent energy distribution spectra for
free electrons in air. I listorically most transport models of free electrons in
air have been based on a distribution function which describes electron
number density in phase space, that is, as a function of time, position, and
velocity (or momentum) in three dimensions. Usually the Maxwell-
Boltzmann equation or some variant is used to define that distribution
function' [chapter 2]. For the present effort we choose a simpler formu-
lation based on a distribution function which depends only on time and
electron energy. Derived from the integro-differential form of the Boltzmann
transport equation, this formulation will be adequate to develop a time-
dependent nonequilibrium energy distribution of electron number density
and to demonstrate the projection of the time-dependent distribution onto
a (more or less) complete set of equilibrium distributions. The projection
will permit the calculation of the nonequilibrium mobility from the equilib-
rium basis.

Because the position and direction of any free electron in a uniform gas are
randomized (except for drift) after a few collisions, electron energy remains
the principal feature of an electron swarm (together with density, which we
assume is constant). Certain macroscopic parameters (mobility, diffusion
coefficient, etc.) can be calculated from the electron energy distribution
function. When the energy distribution function equilibrates or arrives at a
steady state, the equilibrium energy distribution can be used to calculate
equilibrium macroscopic parameters.','

We will develop an equation for the electron energy distribution function,
the "energy diffusion equation," with time and electron energy as independ-
ent parameters. Its terms are obtained by balancing energy gains and losses

3 Frost, I.. S., and A. V. Phelps, Rotational excitation and momentum transfer cross-sections
for electrons in 112 and N2 from transport coefficients, Phys. Rev. 127 (1962), 1621.

4 Phelps, I.. V., and I. C. Pitchford, Anisotropic scattering of electrons by N2 and its effect
on electron transport, Phys. Rev. A 31 (1985), 2932.

5



through various collisions and through interaction with the electric field
(zero magnetic field is assumed). Spatial uniformity is assumed, so spatial
derivatives are omitted. ['or ambient electric fields varying, say, on a scale
of a tenth of a nanosecond, spatial derivatives can be neglected if electron
mean free paths are much less than a few centimeters. In fact the mean free
paths are of the order of microns for sea-level air. The integro-differential
form of the Boltzmann transport equation is the starting point in the deri-
vation. [Electron ballistic equations in the electric field are derived and in-
corporated into the transport equation. Reduction of the transport integrals
to first- and second-order differential forms will be shown for the case of
"scattering" by the electric field. ['inally integral terms will be added for
scattering by collision with molecules. Carron' [p 9] has exhibited the en-
ergy diffusion equation as obtained from the equation for the lowest har-
monic of the electron velocity distribution function. Our derivation is based
on a Taylor series expansion of the collision integral and suggests how higher
order effects might be estimated. However, our emphasis here is on the
projection method rather than on the energy diffusion equation itself.

In the derivation it will be assumed that scattering is isotropic, and therefore
that the direction cosine of the emergent electron with respect to the ambient
electric field is uniformly distributed on the interval ( -I, +1). This is a very
good approximation for elastic scattering' but less accurate for inelastic
scatters. Should it be necessary, the probability distribution function for
angular distribution can easily be expanded to include an additional
Legendre polynomial (or more), becoming I + b~x + - , if sufficient data for
the b, are available. Obtaining the electron drift velocity from the electron
density function in phase space depends critically upon using a two-term (or
more) harmonic expansion of the angular distribution of the electron veloc-
ity (because drift velocity is closely allied with the second term). But ob-
taining the number density in time-energy space, as done here, does not
depend on the second harmonic term for drift velocity to be exhibited. Both
drift and diffusion are present with only one harmonic term, because the
harmonic expansion is for the direction of the electron as it emerges from a
collision, not for the direction of motion of the electron at any later time.

Consider an electron in air with electric field &-. The electron's velocity is u
and energy E = mu2. Resolve the velocity into a component parallel to t

and a component normal to t

where - is the unit vector parallel to Z. We define the direction cosine pi, for
u relative to 1 and obtain

I'll= l - = (25a)

u 1 = I = u-1 I (25b)

The electron will be accelerated in the electric field until it collides with a
molecule. Assume that the electric field is essentially constant in the time
between collisions. This is certainly true in the equilibrium case in which the

s Carron, N. J., On the Calculation of the Electron Energy Spectrum in a Weakly Ionized
Gas, Mission Research Corporation Report MRC-R-105S (30 January 1987).
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electric field must be constant for all time. Generally this assumption re-
quires that the electric field change slowly in a collision time (approximately
the reciprocal of the momentum exchange collision frequency). After a time
t, u- is unchanged and u becomes

qt
U11l = UP,: m (26)

if no collision has occurred. If a collision occurs, the electron's direction is
effectively randomized, on the assumption of isotropic scattering. The
probability of no collision occurring is e-', where v is the electron collision
frequency, which may be a function of energy.

As discussed above, the direction cosine pu, is distributed uniformly on the
interval ( -I, + 1). The normalized collision probability (unitless) is

dp =ve-'tdi dy (27)2

where the normalization is fdp = 1.

In the usual expression of the transport equation, the differential terms ex-
press continuity based on continuous flow processes, with a time derivative
plus appropriate divergences of the distribution function. Then all noncon-
tinuous scattering processes are modeled using collision integrals. I lowever,
,ontinuous or quasi-continuous processes can also be modeled with integrals
instead of divergences, and it is largely a matter of convenience which way
to handle a process. In our case, we use integrals to model all scattering
processes and derive from the integrals any differential terms we desire, as
for scattering by the electric field, for example. Thus the rate of change of
the electron energy distribution functionfj) arising from acceleration in the
electric field may be written

'-'" =[ f v(E E'1/E') dp(E', n, - v(E E) f dp(E, ') (28)

E'=0 E'

where dp(F', 1) is the self-adjoint differential probability of an electron ac-
celerating (decelerating) from energy E' to energy E, and vice versa. The first
integral accounts for electrons arriving at energy E ("in-scatters"), and the
second integral accounts for electrons leaving from energy E
("out-scatters"). The self-adjoint property of dp(E', E) does not depend ex-
plicitly on the electric field but does require the integral fvdt to be invariant
under an exchange of E and '. A sufficient condition for fvdi to be invari-
ant in this way is for the collision frequency v to be independent of energy
over the range of energy gain or loss experienced by the electron between
collisions. I lowever when the electric field is large, the energy gain between
collisions can be considerable compared to the initial, unaccelerated electron
energy. This may cause significant changes in the collision frequency (or
collision cross-scction), but does not destroy the invariance of fvdt. In the
derivation that follows, we will assume that the self-adjoint property applies.

Equation (28) is exact for scattering by the electric field if the integrals are
evaluated without approximation. In general this is not possible to do in
closed form. One approximation which allows the most general represen-
tation of the integrand is to evaluate the integrals by Monte Carlo; this
method yields only numerical results and entails statistical error as well, but
is widely used. Another approximation which permits analytical represen-
tation of results is to expand the integrals as a Taylor series in the energy, a
method we will pursue. We want to expand the integrand in a Taylor series

7



about E, retaining terms only to sccond order in E' -E, which requires that
vf be slowly varying compared to dp. I lowever, the energy dependence of v
and dp (which also contains v ) has not been specified. Assume for the
present that v is independent of energy. Then it suffices to expand f only.
This causes difficulty when energy-dependent coefficients occur with the final
differential forms to be derived, but a way out is offered to overcome the
difficulty. Assuming that f varies slowly compared to dp, we thus expand
fiE') in a Taylor series about E, retaining terms only to second order:

2
FiE') "..(FL) + cI(E' - L) + c2 (L' -/) . (29)

Then the in-scatter integral in equation (28) breaks into three terms:

_J(') dlp(lE',E) = J(1) 1'p(F,1)
+ c1 f (E' - E) dt,(E',l) + c2 t__ (' - )2 dp(E',E). (30)

E'=') =0

Since dp(E', E) = dp(,E'), the first term cancels the second integral in
equation (28), leaving only the second and third terms:

YE -c.v (E' - P)dp(E',)+ c2vf (E' - )' dp(F,). (31)
E "=0 /L =0

For brevity define

vi = v (E' - I)"~ dp(E',l:). (32)

We now develop a quadrature rule to approximate the right hand side of
equation (31) to second order, so that

aflF,) + bfllb) + cftFc) = cJ1 + c2 2. (33)

The coefficient a is a rate coefficient for scattering electrons from energy E
to energy E,. The coefficient c is a rate coefficient for scattering electrons
from energy E, to energy 1b. The coefficient b is a rate coefficient for
electrons "scattering" from energy I'b to the same energy. Substituting the
second-order expansion for J(E') into the latter equation and setting E = E
yields

aJ(l) + aci(Ea - P) + ac2(lFa - .)2 +h(lE)

+ cJ(f) + cc](F c - !) + cc 2(Ec - CA)2 - c + c2J

Because c, and c2 are arbitrary, this equation requires

(a + b + c = 0

cj[a(Ea - P:) + c(Ec - I)] = cJ,

c2[a(Ka - E)2 + c(y c - A) 2] = c2J2

or letting E, - - AE and E, - E = AE and assumingfill) #/ 0,

nu n Sn nnIll n nnun I - -



J2 - J1A
E

a = (34a)

2(AL)2

b= J2
b 2 (34b)

J2 + J;AE

2 2(AEL)' (34c)

Thus the quadrature form of equation (31),
OWL)

aJ(E - AL) + bJ(l.) + cj(l- + AE), (35)

becomes upon substituting equations (34) and rearranging terms,

- 2 -fE + AL) - 2) +J(- AL)]
2(AE) (36)

+ U [fE + AIP) -J(E - AIE)].

Taking the limit as AE --* 0 yields the differential equation

Of I a2f Of

-J2 OE2 + J, - , (37)

exhibiting terms for diffusion and heating of the energy distribution function.
When solutions are sought through finite-difference methods, equation (36)
is sufficient as it stands, although differential equation (37) more succinctly
states the physics involved.

If equation (29) is expanded further to higher powers of 1' - E, then more
values of energy will be needed in the quadrature rule expressed by equation
(33). This will cause the time derivative of 1I-) to be expanded to higher
order differences in (36) and higher order derivatives in (37). In fact, by
continuing the Taylor series expansion of the "in-scatter" integral it can
easily be shown that

af J, Si 09
i. E(38)

The importance of such higher order terms depends on their coefficients,
which contain J,. The second-order expansion is central to the diffusion
approximation to the transport equation. Carron [p 12] explains on phys-
ical grounds why the expansion can reasonably be terminated at second or-
der to obtain the mobility and diffusion coefficient transport parameters.

Evaluation of.J, and J2 is tedious and details are not presented here. Using
equations (25) and (26) we find that

2 2

J =qv (39)

and
2 2 44

4q 2 E 2q4C42= 3rw - 2(40)

3my 5m 2 v
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where wc havc madc the substitution E = -LmU2.

If we assume that the collision frequency v equals the momentum exchange
collision frequency v,, which is exactly true for isotropic elastic scattering,
we can use the well-known relation

, = q (41)

to write

.= _q2 (42a)
_ 2 . 2 ].( 2,

.I2 3qiu EP: I - (P U) (42)

In general, however, the (total) collision frequency is not equal to the mo-
mentum exchange collision frequency when (1) elastic scattering is no longer
entirely isotropic or (2) inelastic processes occur. Thus, when dealing with
higher energies we must be careful in our choice of data for collision fre-
quency. For scattering by the electric field in nitrogen, we have used a
combination of elastic momentum exchange data and total (or "effective")
momentum exchange data that yields energy distributions in reasonable
agreement with published results. I:or oxygen we simply use total nomen-
tum exchange data because of the paucity of separate elastic data. The main
issue here is what collision frequency best represents the randomization of
the direction of the colliding electron, which is a complicated topic that we
shall not discuss in detail.

The quantities J, and .12 turn out to depend on v, which can depend on en-
ergy. The derivation requires modification to correctly teat this energy de-
pendence. A close inspection of the integrals shows that the quantity that
should be expanded in a Taylor series is]fv instead off Whenflv is thus
expanded, the integrands are valid for energy-dependent v. The effect is to
replace each derivative off with a derivative offv. First and second energy
derivatives of v appear. Because v varies slowly as a function of E, it is
convenient to discard second energy derivatives of v and keep only first en-
ergy derivatives of v. This result is used by Carron5 [p 13]. Thus the heating
term becomes

q a (43a)

and the diffusion term

2 2F 2 L02 12q_ I a (1 0)f 3q ( f (43b)
3m L8 V lOm 'K E(430b)0m E' v al iEt CE _ .( O

The heating term describes the convection (through energy space) of
electrons from lower to higher energies as they drift through the ambient
electric field. Upon examining the diffusion term, we observe that the second
term in brackets is smaller than the first term by a factor roughly the square
of the electron drift velocity divided by the electron speed. The second term
in brackets approximates the influence of terms that are of higher order than
the first two terms in the usual Legendre expansion of the velocity distrib-
ution function. In derivations of the velocity distribution function, higher
order terms than the second are cast away on the assumption that the drift
velocity is much smaller than the electron average speed' [p 58 ]. The as-
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sumption that in-flight energy changes are much smaller than the initial
electron energy, upon which the continuous scattering approximation (eq
(37)) is based, is violated when the drift velocity approaches the initial
electron speed. This occurs in air at small electron energies because of the
small collision cross-section at those energies. For this reason we are forced
to omit the second term in brackets when dealing with non-idealized air.
Proper inclusion of the second term in brackets would be in the form of an
upscattcr probability from energy level i to energy level i +j where j> I.
We omit this refinement as outside the scope of our investigation, although
possibly deserving of further examination elsewhere. We retain the second
term in brackets in succeeding equations but omit it in calculations for air.

It is expedient to bring the coefficient E into the innermost energy derivative
which then operates on the product l-f. Doing so creates an additional first
energy derivative off which can then be combined with the heating term.
Combining the heating and diffusion terms in this way yields the result

2q ~a2 c F I a 3qt 2  aLq12 [Lflf~t)] 3q 22
3m E1" v(l D."E t lOm[v(E)]3 61 l

q r ? [ ELt) (44)i m OE v(F)

Using the same approach that was used for scattering by the electric field,
we can also write in-scatter and out-scatter transport terms for collision
scattering of electrons due to elastic and inelastic cross-sections. We retain
the collision integral formulation instead of derived diffusion and heating
differential terms. Inelastic scattering is not reducible to these differential
forms because of large energy losses that may occur in a single inelastic
scatter, preventing the limit AE -- 0 from being taken without approxi-
mation. Although the diffrential approximation is valid for elastic scatter-
ing because the average energy gain or loss per collision is much smaller than
AE, it is convenient to treat both elastic and inelastic scattering in the same
way.

The complete energy diffusion equation, including a term for gain of
electrons (from avalanching, ion pair creation, etc.) and loss of electrons (to
attachment), is

f 2q22a (E) - 3q2 2 aE~t]
Jt 3m OE v ) [EIEI)] iOrn[v(l] 3 O

+m q E v(f)J (45)

S(tl) + p u(E')J(EL)r(E', E) dE' - pu(Elf 'o(E,E') dE',

ff'=0.=0 =

where

S(t,-) = sources and sinks for electrons of energy E at time t,

a(1?',1IJ cross-section to scatter electron with incident energy E' into
scattered energy E,

a(E,E') = cross-section to scatter electron with incident energy E into
scattered energy '.
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The second term on the left hand side of equation (45) describes diffusion
due to collisions in a uniform electric field. The third term describes the
convection of electrons from a lower energy to a higher energy due to the
heating effects of drifting through a uniform electric field. The right hand
side describes electron sources and sinks, and collision processes between the
electrons and the neutral gas molecules. The first integral accounts for
electrons scattered from other energies E' into energy E ("in-scatters"). The
second integral accounts for electrons scattered from incident energy E to
other energies E' ("out-scatters"). The term S(t,l) may include processes
proportional to f and processes independent off

In this investigation it has been assumed that the ioni/ation density of the
air plasma is low enough that only collisions between electrons and neutral
molecules need be considered. Thus, electron-electron and electron-ion col-
lisions are excluded from the simple model. We also neglect small-angle
Coulomb scattering.

Collisions that must be included are elastic collisions and several kinds of
inelastic collisions such as excitation of rotational modes, vibrational modes,
and excited states of the target molecule, and ionization of the molecule
(ejection of an orbital electron). When used, air composition will be taken
to be oxygen and nitrogen in the usual proportions, although other constit-
uents (water vapor, argon) may be considered later.

2.2 Finite Mesh Model of the Energy Diffusion Equation

We can solve integro-differential equation (45) for energy diffusion by de-
fining a finite energy mesh E, i = I, 2, ... , M over a suitable domain from
zero to some large energy that includes all electrons of interest. (The shorter
term finite mesh will be used for the finite, bounded mesh of energies so de-
fined.) Time and energy derivatives are approximated by finite differences,
and integrals are approximated by finite sums. There are several finite-
difference approximations to the differential part of the energy diffusion
equation, with varying stability and accuracy properties. We select the
D)ufort-Frankel scheme 6 because it is inherently stable and simple to imple-
ment in matrix operations on a computer. Using this scheme, the differential
terms of the energy diffusion equation become

6 (:arnahan, B., II. A. Iuther, and J. 0. Wilkes, Applied Numerical lethods, John Wiley ,[d
Sons, New York (1969), p 451.
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f 2q 2 0 I (E) -L [E Et)] 3q 2 2 -a

(t 3m OF E [V M l0m[v(j)]3 MFA E)
q2 2  [ AE,I)1

+ M E v(E)

- [fit + At,I) -J(t - At,L)]
2At

2q 22 '[E + A'ff(t,E + AE) 2EJ(I,E) [F- AL1J-t,E- AL)

3m(AE)2  v(E + AEI2) v(l) v(.- AE/2)

+ q4 4  J it,E + AE) 2J(t, E) J(t, FE- AE)

5m 2 (A) 2 1 [v(E + AE/2)]3  [v(E)] [v(E- AF/2)]3

q 2 2 Jt,E + AE) fit,E- AE) I
+ 2mAEIv(E + AE) v(E -AE) - * (46)

The complete finite mesh model of the energy diffusion equation is

I Lft + At,E -At- At,E)]
2q 2 [E + AEIft,E + AE) 2EAt,E) [E- AE1Jt,E- AE)

3m(AE)2 v(E + AE/2) v(E) v(E- AE/2)

+___ q &liAE + AL) 2fit,) + tt,L - ALE)

5m 2(A1) 2 1 [v(E + AE/2)]3  [v(] [v(E- AE/2)] 3

q 2e2  (t,E + AE) I,E - AE)
+ 2mAE { v(E + AE) v(E- AL)

'I M

= S(t,L) + p o /(iE)aEjEi) - PuAtE) L a(E). (47)
j*i j~i
j=I j=t

One may carry the sums over the range from j = I to M without exception
at j = i, because the j = i terms from each sum cancel each other. But the
notation used above is clearer.

The last equation can be written in matrix notation as
M

f{t + At) =f~t - At) + L Ay1f,{t) + So(Ei,t) (48)
j=l

where

f(i) =J(I,E,),

A,, = sum of homogeneous terms for collision, heating, diffusion, and
sources/sinks, and where j and i are the column and row indices, re-
spectively,

So(E) = inhomogeneous sources and sinks independent off (such as ion
pair creation by radiation).

The matrix elements A,, must fulfill certain requirements such as conserva-
tion of mass, boundary conditions, and numerical stability. To conserve
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mass, it is necessary that all electrons leaving an energy level arrive at other
energy levels, or

M

Z Aji = 0 (49)

for every column i, assuming equally spaced energy levels. The difference
terms in equation (47) are not necessarily mass-conservative as presented,
but calculating A, as the negative sum of other off-diagonal column entries
assures a mass-conservative system. Certain minor changes to the off-
diagonal entries are required to maintain the proper solution when this ap-
proach is taken. Also, electron attachment cross-sections must be
subtracted from the main diagonal term. For numerical stability (and phys-
ical realizability), it is necessary that

- 1 !5; Ai ! 0 (50)

or else more electrons are removed from energy level , than exist there, and
0 :5: Aji :< 1, j *: i (51)

or else nonphysical "negative" electron densities are scattered to other en-
ergy levels.

Because of an idiosyncrasy of the Dufort-Frankel algorithm, differential er-
ror between the initial conditions ft - At),t) tends to be preserved
throughout later time-steps, giving the appearance of two solutions differing
by a constant amount. One solution occurs at odd time-steps, and the other
solution occurs at even time-steps. Replacingfit) by

[f(t + At) +(t - At)]/2

after computation of each new Afit + At) conveniently unifies the solution.

2.3 Elastic Scattering

To solve the finite mesh equation described above, the convection term re-
quires the electron mobility pi as a function of electron energy, or alterna-
tively the collision volume K as a function of electron energy. Elastic
scattering is the most frequent result of collision between conduction
electrons and gas molecules, under ordinary circumstances. The dominant
effect is to randomize the direction of individual electrons (not the net drift
velocity due to ambient electric fields) and, on average, to transfer momen-
tum from the electrons to the gas molecules. It is also possible for electrons
to gain or lose small amounts of energy from the random thermal motion
of the gas molecules. We assume for our model of elastic scattering that the
gas is monatomic and has an isotropic Maxwellian distribution of velocities,
a model adequate for our purposes. The effective elastic collision cross-
section for electrons in such a gas is equal to the elastic collision cross-
section for a gas without molecular motion, to a high degree of
approximation, when the electrons have an energy > 0.01 T where T is the
gas temperature' [p 73].

7Carter, L. L., and E. D. Cashwell, Particle-Transport Simulation with the Alonte Carlo
Method, LSA[RDA Publication TID-26607, USA-RDA Technical Information Center,
Oak Ridge, TN (1975), p 73.
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We define for each incident electron energy E, an effective scattering cross-
section #(E,,E,) which is nonzero forj = i - 1, i, i + I and is zero for all other
j. Following a similar approach to that used for scattering by the electric
field, we impose constraints to conserve the first and second energy mo-
ments. (The zeroth energy moment does not need special treatment.) Let
the incident energy E, be lb and the energies E, be E., Lb, and E, (for nonzero
i) where E. = E, - AL and E, = EF, + AE. Electrons which scatter from E to
E& do not require any cross-section, so we set i(E,E) = 0. We require that
the effective cross-section be self-adjoint, which is clearly true for elastic
scattering. The constraints may then be written

(La - Eb)-(,F'b) + (E - Eb)-(EEb) = (E' - -b)o(I', E,)u' dE', (52)

Ea - Eb) 2-(E,Eb) + (E -b) 2-(EEb) fo (E' - F~b)a(E, Fb)u' dE'. (53)

Let the first integral be I, and the second integral be 2 . Suppose the total
elastic scattering cross-section (inversely proportional to elastic collision
frequency) is independent of electron energy. This is often the case for
electron energies near the gas thermal energy, where electron mobility is es-
sentially independent of ambient electric field. Then

I = f oo(Eb) u'(E' - Eb)fM(E ,E dE" (54)

where

fM(F,E) dE'= self-adjoint probability of scattering from energy E' into
energy E,

ao'(l) = total elastic scattering cross-section for incident electrons having
energy E.

It can be shown from a hard sphere scattering model that free electrons
colliding with molecules in a monatomic gas will have a scattered speed
(magnitude of velocity)

U' U - U m + 2U - M (55)M+m M+m

where M and U are the molecular mass and speed, m, u, and u' are the
electron mass, incident speed, and scattered speed, C is the direction cosine
of the molecular motion relative to the bisector of the incident and scattered
electron velocity, and (I + p,,,)/2, and where u,,, is the cosine of the
electron scattering angle.

We use the unitless expression

fM(E' ,E) d E= 4 -(2 -I ) d dCfm(U) dU (56)

where the probability of the target molecule having speed U is' [p 72]

fM(U) dU = 2 fl U2e-_,U,2dU, (57)

and where

f = jM/(2k T) ,
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k = Boltzmann's constant.

Omitting details of the integration, we obtain after discarding small terms

I,- uao(Eb) (2kT- E) --- , (58)0 m

12 - 2uoo(E)EkT--4-. (59)

These results are based on the assumption of energy-independent elastic
scattering cross-section. If the elastic scattering cross-section is not inde-
pendent of electron energy, then the transport integral must be evaluated
more carefully. Nitrogen is subject to the Ramsauer-Townsend effect and
has an anomalously small elas ic scattering cross-section at low energies
which varies substantially, leading to inaccurate energy distributions through
the use of equation (54). The eror for oxygen is less pronounced because
of lesser variation of the elastic scattering cross-section. As the development
of a solution to the energy diffusion equation is of secondary importance in
this work, we do not reduce the transport integral for the case of varying
elastic cross-section but merely point out the desirability of doing so for the
case of air.

We can now solve

(E. - Eb) -(Eb,Ea) + (E - Eb) -&(Eb,E) = Ii (60)
(Ea - f%)2 -6(Eb,Ea) + (Ec - Eb) 2 -(Eb,Ec) =/2 (61)

for a(E, E.) and U(Eb, E,) using E. = E - AE and E, = E + AE.

It can be seen from the results for 1, that the elastic cross-section tends to
scatter hot electrons (relative to the gas temperature) to lower energies and
cold electrons to higher energies, as expected, until the median electron en-
ergy equals twice the gas average temperature kT and the mean electron
energy equals -1kT, assuming zero ambient electric field. More than two
effective cross-sections for elastic scattering are not needed, because the en-
ergy mesh width AE is much larger than the average energy change per col-
lision.

We have incorporated these effective elastic collision cross-sections into the
finite energy mesh equation described above, approximating the derivative
terms

Of an0 2f
p' I -  and P2 E2•

For zero ambient electric field, the electron energy distribution relaxes with
time toward a Maxwellian distribution of energies, as expected, whose aver-
age temperature closely matches the gas temperature. Truncation error due
to using an energy mesh spacing AE = 0.1 kT and only 60 energies in the
energy mesh leads to small errors of about I percent in the final electron
temperature and 0.5 percent in the final energy distribution. Reducing the
energy mesh spacing to AE = 0.05 k T and using 120 energies in the energy
mesh reduces these errors by a factor of four in each case, suggesting accu-
racy to second order in the finite mesh equation. The smaller choice of AE
requires a smaller At for stability.

For isotropic elastic scattering, it can be shown that the total elastic scat-
tering cross-section aG(E) is equal to the momentum exchange cross-section
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Q,,. Consideration of anisotropic elastic scatters in nitrogen leads to changes
not greater than 1 percent,4 which we shall neglect. We use the recent tab-
ulations of Q,' (total elastic cross-section) for N2 by Phelps and Pitchford8

and of Q, (momentum exchange cross-section) for 02 by Phelps" to define
o'(E), in these gases and in air composed of 79-percent N2 and 21-percent
02 by volume.

2.4 Unequally Spaced Energy Mesh

Up to this point, the energy mesh E, has been tacitly assumed to be
equispaced; however this condition can be relaxed. It is helpful to gradually
increase the energy mesh spacing as energy increases, so that fewer mesh
points are needed. A coarser mesh at higher energies also reduces the effec-
tive cross-section where it is largest, thereby permitting a larger time-step to
be used. The computation of the effective cross-sections for elastic scatter-
ing is only slightly changed with unequally spaced E,, E,, and E, . We also
multiply Ib 2(EC- Eb) 2(Eb - Eo)

( ,E,) by E( _ - and Et(Eb,E) by E -_.E

to account for unequal energy mesh spacing.

Central differences taken at , for the convection term and the diffusion term
become uncentered when an unequally spaced energy is used. Experience
shows that uncentering these terms by about I percent of AE does not in-
troduce important error to the solution. If necessary the convection term
can be represented with a three-point quadratic expression to properly center
the difference. To account for unequal energy mesh spacing, we multiply the
convection term effective cross-section by the factors used for elastic scat-
tering. We multiply the diffusion term effective cross-section by the squares
of the same factors.

We use the following recursion to construct an unequally spaced energy
mesh, where we first select AE0  0.05kT and K = 1.01, for example:

E_ = 0 (62a)
E= E>- + ALiI (62b)

AEi = KAEi- (62c)

so that

AE, = K'AEo (63)

K-iEl=A4K-1 (64)

This works quite well at all energies. At low energies the spacing is nearly
AE0, and at high energies the spacing is nearly (K-I)E. For zero electric
field, the error in the energy distribution function at the high end of the en-

9 Phelps, A. V., and L. C. Pitchford, Anisotropic Scattering of Electrons by N2 and its Effects
on Electron Transport: Tabulations of Cross Section and Results, JII.A Information
Center Report No. 26, University of Colorado, Boulder, CO (I May 1985), p 14.

9 Phelps, A. V., Tabulations of Collision Cross Sections and Calculated Transport and Re-
action Coefficients for Electron Collisions with 02, JILA Information Center Report No.
28, University of Colorado, Boulder, CO (1 September 1985), p 10.
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ergy mesh is less than 1 percent for the mesh constants selected, until the
distribution is reduced in amplitude by over 10 decades at the high-energy
end of the mesh.

For inelastic scattering, variable energy mesh spacing can lead to systematic
error and therefore must be used with caution. We have tried several ways
of correcting the effective inelastic cross-sections to account for variable en-
ergy mesh spacing without complete success. As a minimum correction, the
effective cross-sections for inelastic scattering are divided by K. For example,
results for the energy distribution are low by about 15 percent for energies
above several electron-volts, using K = 1.01, because of dominance by rap-
idly changing inelastic cross-sections at energies of several electron-volts.
We must use a variable-spaced mesh when covering thermal energies to
ionizing energies (above roughly 14 eV) because approximately 10,000
equispaced energies would be needed. Dense matrices of such size are too
large for available computers.

2.5 Exact Solutions and Equilibrium Finite Mesh Solutions Compared

Exact solutions for the equilibrium electron energy distribution are known'
[pp 71-75] when scattering is limited to elastic scattering and (1) electron
drift velocity is much less than the mean molecular speed (Maxwellian dis-
tribution) or (2) electron drift velocity is much greater than the mean mo-
lecular speed and the elastic cross-section is independent of energy
(Druyvesteyn distribution). In the first case the time between collisions (re-
ciprocal of collision frequency) is independent of electron energy; in the sec-
ond case the pathlength between collisions (or collision cross-section) is
independent of energy.

For zero ambient electric field, the Maxwellian distribution of electron en-
ergies is

JU) = Ae- E kT. (65)

For large ambient electric field, the Druyvesteyn distribution of electron en-
ergies is

M [mFNQ
F) = A71eXP-' xp M qrm  (66)

where q. is independent of electron energy.

It is easy to show that the energy mesh equation (eq (47)) correctly models
these distributions by applying the principle of detailed balance to the energy
distribution function. For our case of a tridiagonal transition matrix where
transitions only occur between adjacent energies, detailed balance states that
in the equilibrium limit the rate of electrons going from energy E to energy
E + AE equals the rate of electrons going from energy E + AE to energy E.
Assume an equispaced energy mesh. Define the rate of upgoing electrons
as R'(I:(E) and the rate of downgoing electrons as R(E+ AEJ(E+ AE).
Then detailed balance gives

J(E) R -(E + AE)
-EAE RN(67)J(E + AE) R+(E)

Take the case of the Maxwellian distribution, where t = 0 and therefore
A = J2 = 0. From previous derivations, we have
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2,+/(-)2 (U2 + IAE) (68a)
2(AE)

R-(E + An (=I2 - 'I AL) (68b)
2(AL)2

where the primed quantities are evaluated at E + AE and the corresponding
unprimed quantities are evaluated at E. Then

R(E + AE) (I2 -I', Af)k' (69)
R() (12 + I, A )

Assuming c'(E)= ¢Iu(l) where q is independent of energy, and dropping
second and higher powers of AE, we obtain after somc manipulation

AE AEI! E + AE
R-(E + AE)/R+(E) + T-E 2E (70)

A E + AL
2kT E

which equals, to the order of AE retained, the exact solution
e AElkT

+ET -_.*(71)

Similarly, for high electric fields such that kT< E, and also neglecting the
high-order correction diffusion term, the downscatter and upscatter transi-
tion rates between energy levels E + AE and E are

R(E + ALjflE + AE) 2q 2t 2  [E + A (E + A)

2 2 E+ [)2)v(E + (72a)
q J(E + A ) mpuaoAE__ 0 2 JE + A E)

2mAE v(E+ AE) 2M(AE)2  A

and
2q 2 2  lEl.) q 2  AL.'i) mpuaoAE

R(lPf(E) 2 + + 2 E) (72b)3m(A) 2 v() 2mAE v(l) 2M(AE)

where terms involving kT have been neglected. We now apply equation (67).
Using mao' = Q and v = NuQ,,,, after some manipulation we arrive at

J(E- A (73- + 2BEAE (73)
1-t) 2 E

where

3m B NQ )2

.11 qr

which agrees to first order with the Druyvesteyn distribution

fiE) oc .,E e

In order to establish convergence and consistency of our numerical solution
to the energy mesh equation (eq (47)), we numerically calculate equilibrium
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solutions for the (65) and (66). All elements Aj, of matrix A in equation (48)
must be smaller than unity in magnitude for the equation to converge nu-
mcrically. Otherwise, numerical instabilities occur. The elements on the
main diagonal and first upper and lower subdiagonals contain terms pro-
portional to the square of the electric field t. These terms become very large
as the electric field becomes large. The time stepsize, a multiplier of these
terms, must be reduced to very small values to keep tile corresponding ele-
ments smaller than unity and maintain numerical stability. Solutions for the
energy distribution function may take several microseconds to relax toward
equilibrium. If the time stepsize is reduced to I fs (I fs = 0.001 ps) to
maintain stability, for example, thousands of hours of computer running
time will be needed to find an equilibrium solution. lowever, the number
of iterations of the time-advancement algorithm can be reduced drastically
by increasing the number of time-steps the energy distribution function is
advanced at each iteration. This is done by constructing a single matrix
which advances the distribution function vector many time-steps at a single
multiplication.
Omit the inhomogeneous term So(E,,t) from equation (48) and define the

notationf, -- flnAt). Then the equation becomes

f, =f- 2 + Afn1-. (74)

The averaging process off, and f,, to reduce differential error in the initial
conditions fi,f becomes

f -1 = _-f,, +f4-2), (75)

where f'_, is subsequently used in place offf,_. Assume initial conditions
f'0 =f = 0. Thenf. is defined recursively by

fA = Afn-1 n-2, (76)

' --I = ( ±f'n-2 ). (77)

Introduce matrices B. and C. such thatf, = B.fo andf',_, = C.f0. Recursions
for these matrices can easily be derived, based on equations (76) and (77):
We can control the growth of numerical roundoff error by normalizing the
determinant of matrix B to unity at each recursion. Thus with the above
initial conditions and defining I = identity matrix, we have the recursion

B, = 1, C, = 1,

B',+, = AB, + Cn, (78)

Bn+1 - Bii,+, (79)

Cn+i= +-(B,+ 1 + C). (80)

Now that we have B. for any n, where f, = Bf 0, we can advance from f, to
f., by using fi, = Bf'. This requires only the additional assumption that
f,+ =f,, which is a good approximation. The functionf will relax toward the
equilibrium state for any reasonable choice of initial conditions, and
equation (80) will guarantee that differential errors diminish (being roughly
halved at each application). Taking n = 10, for example, reduces differential
error by about a factor of a thousand. Thus, the functionfcan be advanced
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Figure I. Finite mesh equilibrium results for Maxwellian distribution: Solid line is finite mesh result, dashed
line is Maxwellian distribution for electron temperature T"such that kT= 0.025 cV, and dotted line
is magnitude of the difference. The two distributions have been matched at the maxima to eliminate
normalization error. Arbitrary units are used for the dependent axis. Only elastic scatters are con-
sidered.

in leaps of 2- x 10 time-steps by (1) calculating B 0 using the above recursion,

(2) calculating matrix

Dm = (B 0 )2  (81)

by using the recursion

Do = B10, D+ I - D 2,  (82)

and (3) multiplying f by D, for each leap. For the appropriate choice of m
in evaluating matrix D.,, equilibrium solutions can be calculated rapidly even
for large values of the electric field. Additionally, an elementary result of
linear algebra shows that, as m -+ zo , the columns of D, each approach the
eigenvectorf- = g(F,) multiplied by a dilTerent scalar factor for each column
(hence the infrequent usage "eigcncolumn" for "cigenvector").

To test the finite mesh equation, we have obtained equilibrium solutions by
iterating the time leap (for n = 10 and m 25) until the energy distribution
became unchanging, for mesh constant k = I for the Maxwellian case and
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Figure 2. Finite mesh equilibrium results for Druyvesteyn distribution: Solid line is finite mesh result, dashed
line is l)ruyvesteyn distribution for electron mean energy equal to 100 times gas thermal energy,
where kT = 0.025 eV, and dotted line is magnitude of the difference. The two distributions have been
matched at the maxima to eliminate normalization error. Arbitrary units are used for the dependent
axis. Only elastic scatters are considered.

k = 1.01 for the l)ruyvesteyn case, using A 0 = k 1]20 = 0.00125 eV. For the
Maxwellian case, the elastic cross-section a' was made to be constant. I-or
the 1)ruyvesteyn case, aO was made to vary as l/u(l:) except at the lowest
energies, where a was made nearly constant to avoid the singularity at
E = 0. Also, the high-order correction diffusion term was neglected. Mean
electron temperatures equal to kT (Maxwellian distribution) and lOOkT
(Druyvesteyn distribution) were used. A lower boundary condition was ap-
plied which requires fl) =J(EI2)/12 . Calculated results for the Maxwellian
distribution and error compared to the exact solution are shown in
Figure I on page 21. Similar results for the Druyvesteyn distribution are
shown in Figure 2. As can be seen, the energy mesh equation gives satis-
factory results even many orders of magnitude down from the distribution
maximum. Noticable error occurs at the lowest energies because of the large
spacing of the energy mesh compared to the electron energy.
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2.6 Inelastic Scattering

Inelastic scatters of incident electrons by gas molecules can involve large
changes in energy, in contrast to small changes caused by elastic scattering
and scattering by the ambient electric field. For small changes, the zeroth,
first, and second energy moments of scattering probability (integrating over
the entire energy spectrum) can be represented accurately using distribution
function values at only three adjacent energies in the energy mesh. We have
shown how such a three-point scheme approximates the sum of a convective
first derivative and a diffusive second derivative with the derivatives evalu-
ated at the scattered electron energy, which is equivalent to expanding the
energy distribution function to second order in the neighborhood of the
scattered electron energy to estimate the "in-scatter" collision integral. To
preserve accurately the same first three energy moments of scattering prob-
ability when large changes in energy occur, it is necessary to expand the en-
ergy distribution function to second order in the neighborhood of the
incident electron energy. Because the energy change is fixed for each sepa-
rate excitation/de-excitation process (except for ionization), the integral of
the energy moment of the process cross-section reduces to a product. That
is, the probability of the electron scattering from E' to E is a delta function,
6(E"-- E). Thus,

J U(E')ak(I')(F" 
- Fj)l d'g = (65k)"u(,," + -F-k)o(l + (83)

where

G(E) = kth procubs cross-section,

6Ek = kth process energy loss,

E' = ith energy in the energy mesh.

Although the scattered energy will always be a mesh energy E,, the incident
energy will generally lie between two mesh energies E and -,u. The cross-
section given for the incident energy must therefore be approximated by
equivalent cross-sections at the two mesh energies E, and E>. The equiv-
alent cross-sections are chosen in such a way that, when combined, they
conserve the actual cross-section and its first energy moment. Because only
two mesh points are used, an error is introduced in second and higher energy
moments which diminishes in relative importance for larger energy losses.

For N2 rotational excitation we use the two-term approximation proposed
by Phelps and Pitchford8 (upper table therein). As explained by Goldstein,"0
this two-term approximation incorporates a continuous scattering term to
represent rotational excitation at electron energies less than 0.8 eV and a
single-level excitation term with 0.02-eV energy loss to represent rotational
excitation near the 2-eV resonance of the N2 molecule. This two-term ap-
proximation was adjusted by its originators to reproduce the diffusion coef-
ficient and mobility parameters for the electron distribution function. The
continuous approximation used includes only a first derivative term, instead
of first and second derivative terms as recommended by Carron recently,s but
reproduces the principal transport coefficients in the energy range where ro-
tational excitation is important. It should be pointed out that the collision

10 Goldstein, B., A Summary of Rotational and Vibrational Cross Sections in N 2, Mission
Research Corporation Report MRC-R-1057 (26 January 1987).
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operator described by Goldstein (his equation (1), drawn from Frost and
Phelps3) and also the two-term approximation (his equation (11)) are valid
for the steady-state coupled equations that Frost and Phelps obtained by
expanding the electron distribution function in a harmonic expansion of
Legendre polynomials, and are not the correct collision operators for the
time-dependent Boltzmann equation as a function of velocity or energy. For
example, the coefficients for inelastic collision terms in Goldstein's ex-
pression of the collision operator must be divided by energy loss and multi-
plied by electron speed to be used with the time-dependent Boltzmann
equation described. For 02 rotational excitation, we use the single-level ap-
proximation proposed by Phelps. 9

Vibrational excitation cross-sections for N2 are taken from Phelps,8 which
includes tabulations for transitions from ground state (v" = 0) to each of the
first eight excited states (v" =1 to 8). Ground state was the only state as-
sumed to be populated among the neutral molecules. Similarly, 02 cross-
section tabulations for transitions from ground state to the first four excited
vibrational states were used,9 including both low-energy and 9-eV resonance
data. Electronic excitation and ionization cross-section tabulations were
drawn from the same sources.

For rotational, vibrational, and electronic excitation processes, the energy
lost by the incident electron is well-defined and fixed for each transition.
I lowever, for ionization the residual kinetic energy must be partitioned be-
tween the scattered electron, the ejected electron, and a possible excited state
of the target molecule. Cross sections for ionization excitation of N2 are
available" but are scarce for 02. Some results are likewise available on the
energy distribution of the ejected electron. For the present study, we will
simply assume a ground state N2 product and divide the remaining kinetic
energy equally between the scattered electron and the ejected electron.

Two-body and three-body attachment cross-sections are used for molecular
oxygen. 9 The term "equilibrium energy distribution" in oxygen or air (or
other attaching gases) requires special interpretation, because all free
electrons ultimately attach. We interpret the equilibrium energy distribution
for an attaching gas in the absence of electron sources to be the limit of the
energy distribution as the electron density goes to zero. In general, such a
limit will exist. When electron sources exist, such as ionization sources or
avalanching (breakdown) sources, different interpretations are required. For
a constant source of electrons such as time-independent ionizating radiation,
the electron density will tend toward a finite limit and the corresponding
equilibrium energy distribution will be defined as for nonattaching gases.
For an increasing source of electrons through avalanching, gas molecules
would ultimately become stripped of electrons and electron density limited.
I lowever, we would be more interested in a quasi-equilibrium state where
electron density growth is exponential and electron energy has attained some
temporarily stationary distribution. This quasi-equilibrium distribution is
the interpretation we would use in such a case.

"Wadzinski, II. T., and J. R. Jasperse, Low Energy Electron and Photon Cross Sections for
0, N2, and 02. and Related Data, Air Force Geophysics Laboratory (PIIY), Report
AFGI.-R-82-0008 (4 January 1982).
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Figure 3. Finite mesh results and first two Lcgcndre coefficients compared: Solid line is finite mesh result,
dashed line is first I.egendrc coefficient of Phelps and Pitchford, dash-dotted line is second Legendre
cocificient, and dotted line is sum of two i.egcndrc coefficients. The [.egendre coefficients have been
normalized so that the maximum of the sum is unity. The maximum of the finite mesh result is also
unity. The finite mesh result has been divided by the square root of the energy to conform to the
I.egendre coefficients. All curves were calculated for rIN = 100 Td in nitrogen.

2.7 Equilibrium Energy Distribution Compared to Previous Results

Figure 3 compares equilibrium energy spectrum results of the finite mesh
equation with our rough digitizations of Phelps and Pitchford's equilibrium
energy spectrum' 2 for pure molecular nitrogen. The spectra were calculated
for rIN = 100 Id (I Townsend or Td = I x 10 "' V-cm 2(moleculc) where N
is molecular density and - is electric field strength. The complete set of ine-
lastic cross-sections for N2 was used for the finite mesh equation. The energy
mesh was constructed for K = 1.015 and AE0 = kT/20, except that a maxi-
mum mesh spacing of 2kTwas permitted. The finite mesh result is compared
with the first two l.egendre coefficients of a six-term solution for the electron
energy distribution function. The sum of the first two Legendre coefficients

12 Pitchford, I.. C., and A. V. Phelps, Comparative calculations of electron-swarm properties
in N2 at moderate E.N values. Phys. Rev. A 25 (1982), 540-554.
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compares well with the finite mesh equation result. The latter correctly re-
produces the "bump" at about 2 eV caused by the second I.egendre coeffi-
cient. The sharp drop in the finite mesh result at energies near zero agrees
with a Monte Carlo calculation done by Phelps and Pitchford, although our
drop is steeper. We attribute the small number of electrons near zero energy
to the exceptionally small collision cross-section in this energy regime for
nitrogen (the well-known Ramsauer-Townsend effect), allowing electrons to
accelerate to significantly larger energies in the electric field between colli-
sions. The high-energy tail is smaller for the finite mesh result than for the
Phelps and Pitchford distribution, but rough agreement is observed. The
average energy of the finite mesh result is 2.0 eV, compared to 2.2 cV for the
Phelps and Pitchford distribution. Noticeable error is seen at various ener-
gies, however, which underscores the possible importance of a variational
method which might reduce errors in the energy distribution to second order
in the computation of swarm parameters.

Average energy factor Drift velocity (m/s)
calculated measured calculated measured

0 k T 0.77 1.00 0.00 0.00

0.01 -6kT 1.21 --- 3.5 x 102 4.0 x 102

0.1 -kT 4.3 1.8 1.1 x 10 2.5 x 10

0.3 -k'l" 6.4 4.8 2.3 x 101 4.0 x 10

0.3 -kT 6.5 4.8 2.3 x 101 4.0 x 103

1.0 3kT 13. 12. 4.6 x 101 5.0 x 103

10. -kT 28. 36. 2.7 x 0Y 2.0 x 104
100. 1 63. 72. 1.5 x 10 1.0 X 105

Table I. Calculated and Measured Swarm Parameters in Nitrogen Compared: Approximate swarm param-
eters from measured data and swarm parameters from finite mesh equation. Swarm parameters are
averagcd over the electron energy distribution. Electron energy factor is average electron energy di-
vided by average moiccular energy -k7

2.8 Equilibrium Transport Properties Compared to Measured Data

We calculated ensemble (swarm) mobility, drift velocity, and average
electron energy in nitrogen for a small number of rcN values from zero to
100 Td, using equilibrium solutions of the finite mesh equation. Results are
shown in Table 1. Because of significant errors caused by variable energy
mesh spacing when used with inelastic cross-sections, two constant mesh
spacings were used. A fine mesh (AE = -Lk) was used for t/N from zero to
0.3 I'd, and a coarse mesh (AE= k) was used for t/N from 0.3 to 100 'd,
with an overlap at 0.3 Td. Average electron energy is given in units of
+kT.

Inaccuracy due to energy dependence of the elastic scatter cross-section in
nitrogen can be seen, as indicated earlier in the discussion of elastic scatter-
ing. The aveiage energy should tend toward unity as the electric field goes
to zero, but a different limit is observed. This is strictly due to the energy
dependence of the elastic scatter cross-section, as established by additional
calculations based on a fixed cross-section. Comparisons with approximate
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values taken from published measured data 3 range from poor to good. Ac-
curacy of the approximate values for the data is not more than 10 or 20
percent, given the scatter of data and the difficulty of digitization by in-
spection of the original graphs. The two finite mesh results at 0.3 Td for the
fine and coarse energy meshes agree well with each other. Finite mesh re-
sults are in good agreement with data at 1, 10, and 100 I'd. Agreement is
relatively poor at 0, 0.01, and 0.1 Td because of the varying elastic cross-
section.

If our objective were to calculate accurately the swarm parameters directly
from the electron energy distribution, we might strive for more accuracy than
these results indicate. I lowever, the objective of this work is to demonstrate
and evaluate a method which may give good estimates of swarm parameters
;,i the presence of various errors introduced by the cross-section set and by
the computation of the electron energy distribution function. Indeed, as will
be shown, the method trivially reproduces experimentally determined equi-
librium swarm data. The most important test of the method will be calcu-
lation of nonequilibrium swarm data, however.

3 Analysis of Equilibrium Projection Method

3.1 Developing the Basis of Equilibrium Energy Distributions

We now desire to construct the basis 4O(E, A,) used in equation (6). For
convenience, the parameter A, is replaced by the equivalent mapping
O(E, E,/N), where A, is identified with the density-normalized electric field t,
in gas having molecular density N. For concreteness, we specify the gas to
be air as previously constituted. We restrict the basis to finite values of i,
letting i run from 1 to n. The t, are chosen so that the corresponding 'k are
nondegencrate and complete in, for example, the finite space E = E. That
is, a suitably bounded function F(E) can be approximated as

n
F(Ej) - pA(E, Ei/N), j = 1., M. (84)

This description arises from fitting the continuous function F(E) at the
points 1. with a finite sum of linearly independent basis functions

(F, r,/N) (each multiplied by a coefficient p,). If M > n, the resulting linear
system of equations is overdetermined and a solution is obtained typically
by minimizing a measure of the error of the approximation. If M = n the
system can be solved exactly as

n

F(Ej) = Z Ep( , ti/N), j= I, ... n . (85)

In our application the functions F and , represent continuous functions of
electron energy E. Thus, solving the latter equation so that F is fitted exactly
at n energies E does not guarantee acceptable behavior of the fit at inter-
vening energies (or energies outside the range of E). In that which follows
we must be aware that a poor fit at these other energies may drastically alter
the calculation of collision volume (for example) for the fitting function

13 Dutton, J., A survey of electron swarm data, J. Phys. Chem. Ref. Data, 4 (1975). 577-856.
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shown on the right hand side of equation (85). Conversely, calculating a
nonequilibrium collision volume using a measurement of equilibrium colli-
sion volume implies knowledge of the distribution at all energies, an impli-
cation not consistent with the restriction M = n. This means that the use
of a measurement of equilibrium collision volume may yield bad results if
no consideration is given to the goodness of fit at intervening energies.

A trial basis may be constructed from any set of n distii, values of 1,/N.
lowever, because computations with finite precision will be used, it will be

helpful to select values that promote linear independence among equilibrium
energy distributions derived therefrom. This can be done, for example, by
scattering the values over the range of interest, say, from zero to a selected
maximum value. The values may be unequally spaced, if desired.

The coefficients p, describe the spectral projection of "(E) onto the 0 basis
and are not uniquely defined while the basis vectors are linearly dependent.
In matrix notation with row-column order of subscripts, so that matrix
(R),, t,/) and vectors (p), = p, and (f), = F(/), we have

f = Rp. (86)

Each column of matrix R is a basis vector 0 for some choice of PN. Be-
cause the collision volume k for an ensemble is linearly dependent upon the
energy distributionfil) (see eq (4)), we can write the ensemble total collision
volume in the spectral form

n

Ktotat Ki pi (87)
i= I

where K, is the collision volume for an ensemble whose equilibrium energy
distribution corresponds to a choice tN for electric field divided by molec-

ular density. In matrix notation where (k), = K, we write this as

Ktoa = k p. (88)

Solving equation (86) for p and substituting in the last equation gives
A T
K1toat = kTR- f. (89)

At this stage, several methods of obtaining unique projection coefficients p,
must be considered. One method is to take M = n and solve equation (85)
for the projection coefficients. lowever, this method is not truly consistent
with our desire to obtain a smooth, close fit to the nonequilibrium distrib-
ution at intervening energies. I lence we desire to make Mt> n and take ac-
count of as many energies as practical. The coefficients p, may take on
positive or negative values as needed to manage the fit at all the L, con-
tributing to a numerically unstable solution. Another method is to impose
a constraint that p, > 0 for each i, and find an approximate solution to
equation (86) that satisfies this and perhaps other constraints. Clearly there
is no need to settle for an approximate solution if an exact solution is avail-
able and usable. I lence we will pursue the exact solution of (86) until it is
shown that an exact solution has undesirable properties making it useless.
Then we will return to the second, approximate method.

The matrix R may have a very small determinant (i. e., may be ill-
conditioned) in spite of careful choice oft,/N, so that its inverse R-1 may be
numerically difficult to compute. To avoid computational difficulties of this
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kind and to dcfine the p, uniquely, we transform the trial basis R to an
orthonormal basis 0 by means of a Gram-Schmidt orthogonalization pro-
cedure. Thus we obtain a set of mutually orthogonal basis vectors 0'(E)
wherej = 1, .11 using

' (1) = 0,(L> i/N),
i- 1 M

k=1 1=1

k )= . (90)

The vectors can be orthogonalized in any order, but the procedure is de-

scribed for ascending i without loss of generality. It is assumed that the
O(E, i,/N) are normalized to unity before the production of the 0,. An im-
proved basis is obtained at each step of the orthogonalization, containing
one additional orthogonalized basis vector at each step. The transpose of
each improved basis can be represented as the transpose of the previous ba-
sis multiplied by a simple lower triangular matrix which has main diagonal
terms of unity and no nonzero off-diagonal terms, except for one (ith) row
which orthogonalizcs the next (ith) basis vector. Thus the transpose of the
final, fully orthonormalized basis can be obtained by multiplying the trans-
pose of the trial basis by n lower triangular matrices, or equivalently by one
lower triangular matrix which is the product of the n matrices. (The product
of lower triangular matrices is also a lower triangular matrix.) In matrix no-
tation, we write the transformation as

OT= TRT (91)

where the lower triangular matrix T summarizes the Gram-Schmidt proce-
dure. Solving this equation for the inverse of matrix R and substituting into
equation (89) gives

A TT -1
Ktotal = k T 0 f. (92)

By the associative law for matrices, this can be expressed as
A TT7
Kotat = (k T )(0-), (93)

or
A T -

Khtota = (Tk) (0'f). (94)

Because matrix 0 is orthogonal its inverse is numerically accessible. The
multiplication of the energy distribution function f by matrix 0 1 projects the
distribution onto the orthonormal basis, which was- transformed from the
original trial basis of equilibrium distribution functions. The first parenthe-
tical expression likewise transforms the collision volumes belonging to the
trial basis into collision volumes belonging to the orthonormal basis.

Note, however, that projecting the energy distribution onto an orthonormal
basis does not itself constitute the proposed method of calculating swarm
mobility or collision volume. Rather, the essential feature of the proposed

method is the identification of the K, in equation (87) (or in eq (9)) as be-
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Figure 4. Equilibrium energy distributions as trial basis vectors: Examples of trial basis vectors used for
projection onto an equilibrium basis. Equilibrium energy distributions /(Ej., ,,V) shown arc for
i =I (solid line), 10 (dotted line), 20 (dashed line), 30 (dash-dotted line), 40 (dash-dashed line), and
50 (second dotted line). All curves are normalized to a maximum amplitude of unity.

longing to equilibrium energy distributions O(l, ,/N) (or 4'(E, A,) in eq (6)
et seq.). To demonstrate the projection method, we calculated n = 50 trial
basis functions for air for

i--

ti/IV= 0.01 K - i= 1, 50 (95)

with a choice Of K = 1.2, which gives a range of values for c,/N starting with
0 Td, 0.01 'd, etc., and ending with 379 Td. The finite mesh equation was
solved with M = 550 mesh points from -kT to about 29 eV, to obtain equi-
librium energy distributions for the 50 separate values of ,,/N, using the
cross-sections previously discussed for air, except that attachment and
avalanching cross-sections were omitted to simplify the calculation. Results
were saved on computer disk for later use with the projection method, be-
cause of extensive computer time required to calculate the set of 50 distrib-
utions. Equilibrium distributions for i = 1, 10, 20, 30, 40, and 50 are shown
in Figure 4.
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Figure 5. Orthonormal basis vectors derived from equilibrium energy distributions: First four orthonormal
basis vectors derived from (-, tji,), i = 1,2,3,4. Vectors I through 4 are in the order solid, dotted,
dashed, and dash-dotted. All curves are normalized to a maximum amplitude of unity.

After these distributions were calculated as the trial basis, an algorithm was,
applied to orthonormalize the set (using the Gram-Schmidt procedure men-
tioned) in ascending order of i. As a practical matter, the
orthonormaliwation was accomplished with a weight function proportional
to the energy mesh spacing to account for a nonequispaced energy mesh.
The first four orthonormal basis vectors so obtained are shown in Figure 5.
Typical of orthogonal functions, the number of sign changes increases with
the ordinal of the basis vector.

Because .I was chosen greater than n, the orthogonalization must incorpo-
rate some quantification of the notion of "goodness of fitl" which is not
needed when 1! = n. This is achieved by selecting the order in which the trial
basis vectors are orthogonalized. A good though possibly suboptimal or-
dering is, at the k th step, to orthogonalize the remaining trial basis vector
whose orthogonal form has the largest inner product with the residual non-
equilibrium distribution from the previous step r('11. The residual nonequi-
librium distribution at any step is the residual for the previous step less its
inner product with the orthogonal form of the trial basis vector selected for
orthogonalization at that step:
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Figure 6. Nonequilibrium energy distributions for step-function electric field: Time-dependent finite mesh
equation solutions for a i-'Id step-function electric field, at 0 ps (solid line), I0 ps (dotted line), 50
ps (dashed line), 200 ps (dash-dotted line), I ns (dash-dashed line), 4 ns (second dotted line), and 20
ns (second dashed line) after onset of the step function. All curves are normalized to unit amplitude.

9)= F(IE.)

n
(k) (k-1) ,I

rj = rj - ,( .. 4
1=1

As before, the prime notation denotes the orthogonalized form of the basis
vector. Thus, at the kth step, we orthogonalize the previously
unorthogonalized basis vector O(/, i,/N) for which the magnitude of the in-
ner product

1=1

is maximized. Selecting the order of orthogonalization in this way requires
that a trial orthogonal form be calculated for each vector tested using the
inner product. Because any orthogonal form depends on the prior order of
orthogonalization, the trial orthogonal form may not be the same as the final
orthogonal form calculated for a given basis vector.
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Figure 7. Nonequilibrium energy distributions for ,quare-wave electric field: Time-dependent finite mesh
equation solutions for a I)0)Ad square-wave electric field, at 0 ps (solid line), 10 ps (dotted line), 50
ps (dashed line), 200 ps (dash-dot line), I ns (dash-dashed line). 6 ns (second dotted line), and I I ns
(second dashed line) after onset of the square wave. The square wave lasts I ns. All curves are
normalied to unit amplitude.

Wc used this ordering of the orthogonalization process and the consequent
order of rows of matrix T in the ensuing calculations. The orthogonalization
order (row ordcr of matrix T) may change from one time-step to another,
thereby introducing discontinuities in the calculated collision volume.

3.2 Obtaining Ti'iw-Depenent Energy Distributions

To illustrate calculation of time-dependent electron energy distributions, we
select two prescriptions of the ambient electric field: (1) a step increase from
icro field to a constant amplitude of 10 Td, and (2) a square wave of l-ns
duration and 100-Td amplitude. An air density one-thousandth that at sea
level is seletted to reduce the collision rate and emphasize the nonequilib-
rium aspect of" the calculation. Using time leaps of 10 ps, we solved the finite
mesh equation for air for both the prescribed electric fields. Initial
(Maxwcllian) and subsequent distributions are shown in Figure 6 on page
32 for the first case of a step increase in the field. The figure shows rapid
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heating of the electrons on this short time scale, relaxing toward an equilib-
rium distribution corresponding to a constant electric field-value of 10 Td.

For a short square-wave electric field (shown in Figure 7 on page 33) initial
(Maxwcllian) and subsequent distributions show the expected maximum
heating at I ns after the onset of the field, followed by very slow cooling
back to the zero field equilibrium. As the distribution cools, the high-energy
tail erodes rapidly between 2 and 3 eV, where downscatter cross-sections are
greatest for nitrogen. A small island of electrons lingers above 3 eV, where
downscattcr cross-sections are smaller. A striking feature of the distrib-
utions when the electric field has returned to zero is the growth of sharp
maxima and minima where specific resonances transfer electrons from one
fixed energy to a lower fixed energy. These sharp peaks and valleys occur
because the electric field no longer diffuses ("smooths out") the electron en-
ergy. Although elastic scattering diffuseg electron energy, its cfl'ect is much
weaker than the effect of the electric field. The presence of a small electric
field after the main pulse would keep electron energies well mixed and pre-
vent such an irregular distribution function.

3.2 Projecting Time-Dependent Distributions onto an Equilibrium Basis

The spectral coefficients p, for projecting F(i,l) onto the orthogonalized
equilibrium basis 4)'(E,) are plotted for case I (step-function electric field) in
:igure 8 on page 35 for the same times for which the energy distribution

was shown in [igure 6. The spread in the spectrum gives a measure of how
far the nonequilibrium energy spectrum has departed from an equilibrium
state. The spectral projection is obtained from the equation

p = T'O- f. (96)

The spectral projection for case 2 (square-wave electric field) is plotted in
Figure 9 on page 36. In both figures the dominance of a single equilibrium
distribution is observed for every nonequilibrium distribution calculated.
Significant additional spectral content occurs for a few cases, primarily the
lower energy cases where heating has just begun. At higher energies the
dominance of a single equilibrium distribution is more pronounced. The in-
itial (Maxwcllian) distribution for zero electric field has a single component
at vector ordinal I, as expected, corresponding to the zero-field equilibrium
distribution. At 10, 50, and 200 ps, dominant components at vector ordinals
2 and 3 are seen, with 2 to 4 nearby components of amplitude 10 to 40 per-
cent as great as the dominant component. At later times secondary com-
ponents appear to contribute less and less, suggesting that the
time-dependent distribution is relaxing toward some equilibrium state.

The two distributions occurring 5 and 10 ns after the end of the square-wave
electric field are seen to have cooled significantly from the distribution at the
end of the electric field pulse, with dominant vector ordinals of 32 and 31
compared to 40 for the latter. These ragged distributions (as shown in Fig-
ure 7) are as easily represented by a dominant equilibrium distribution and
much smaller secondary components as are the smooth distributions. The
convergence of the spectral projection appears rapid regardless of sharp
peaks and valleys in the distribution, in these examples.
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F~igure 8. Spectral projections for step-function electric field: Spectral projections of time-dependent finite mesh
equation solutions for a It0-ld step-function eletric field, at 0 Ps (solid line), 10 ps (dotted linc), 50
ps (dashed line), 200 ps (dash-dotted line). I ns (dash-dashed line), 4 ns (dotted line), and 20) ns
(dashed line) after onset of the step function. Abscissa values are ordinal numbers of the
orthonormalized equilibrium basis vectors upon which the solutions are projected. A basis is con-
structed for each solution according to the order of orthogonalization described in the text, so that
each basis is different for the solutions shown. I Iowever, temperature is a monotonically increasing
function of" the dominant basis vector. All curves are normalized to unit amplitude.

3.3 Defining a Test of the Equilibrium Projection Aletliod

It is important to define carefully what tcst can be applied to the method of
projection onto an equilibrium basis (eq (9)), so that a meaningful compar-
ison can be made with the mnethod of equation (5). If an exact energy dis-
tribution is calctulable for any equilibrium or nonequilibrium case, depending
on the electric field, then the use of equation (5) to evaluate the collision
volume is limited only by the accuracy ofc the momentum exchange cross-
section data used. ikewise, the use of equation (9) is limited by the accu-
racy of the ensemble collision volume data used. (We neglect error arising
from discretiiation of the energy mesh, which in principle can be forced to
zero if a sufficiently fine energy mesh is used.) Unfortunately, some exper-
imental error is present in undetermined amounts in both momentum ex-
change data and ensemble (swarm) collision volume data. Wez perceive no
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Figure 9. Spectral projections for square-wave electric field: Spectral projections of time-dependcent finite mesh
equation solutions for a I001 d square-wave electric lield of I -ns duration, at 0 ps (solid line), 10 ps
(dotted line), 50 ps (dashcd line), 20(0 ps (dash-dotted lir4 I ns (dash-dashed line), 6 ns (dotted line),
and I I ns (dashed line) after onset of the square wave. , bscissa values are ordinal numbers of the
orthonormalized equilibrium basis vectors upon which the solutions are projected. All curves are
normalized to unit amplitude.

basis here to say which method is more accurate. The proposed method is
not necessarily more convenient because it uses enscmble collision volume
data, since computation of the energy distribution function requires use of
the momentum exchange cross-section anyway.

On the other hand, equation (9) offiers the possibility of variational accuracy
in estimates of ensemble collision volume when there are errors in calcu-
lation of the energy distribution function and in momentum exchange
cross-section data. What is needed to make a comparison, then, is to (i)
assume that a baseline set of cross-section data and its derived energy dis-
tribution funtions are exactly correct, (2) calculate collision volume using
either or both methods (results must be the same) from the baseline cross-
section data and derived energy distribution functions, to serve as a standard
for comparison, (3) introduce "error" to the baseline cross-section data and
derive perturbed energy distribution functions, to serve as approximate data,
and (4) calculate collision volume using both methods from the approximate
data (results will be different) and compare results with the standard ob-
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tained in step (2). In this way we can estimate the ability of the proposed
method to reduce effects of cross-section error.

The cross-section data used for calculatinns up to this point will describe the
baseline cross-section standard, and equilibrium energy distribution func-
tions obtained using the finite mesh equation will be assumed to be correct
For the purposes of the comparison. Ensemble collision volume obtained
using equation (4) from these cross-sections and energy distribution func-
tions will describe standard equilibrium collision volumes, assumed to be
exactly correct equilibrium values for each electric field strength E,/ in the
basis.

We define two erroneous cross-section sets incorporating different types of'
error to test the ability of' the proposed method to reduce mobility error due
to error in the energy distribution function. In set A every cross-section is
twice as large as in the baseline set. This causes an energy scale factor error
of a factor of two in the calculated energy distribution function. In set B all
rotational cross-sections are twice as large as in the baseline set. This causes
a more complex type of error in tile calculated energy distribution function.

3.4 Orthogonal Projection Results for a Time-Dependent Distribution

Using the test defined in the previous section, we calculated collision volume
for time-dependent energy distributions using cross-section set A. Collision
volume was then obtained using the orthonorri al projection method de-
scribed. The orthonormal projection method proved to be generally unsat-
isfactory, leading to large positive and negative calculated collision volumes
for tile successive time-dependent energy distributions. Scrutiny of the ele-
ments of the orthogonalizing matrix T showed that the maximum size of el-
ements in a row increased sharply as the ordinal of the corresponding basis
vector increased. Thus the dominant row maximum was about 1012 times
larger than the least dominant row maximum. This means that the elements
of the least dominant row are very large and of varying sign, leading to very
large inner products with collision volume vector k. This is a recognizable
consequence of' the ill-conditioning of the linear system in equation (86).
Although the orthogonaliuing matrix T controls error growth in the calcu-
lation of matrix 0, it exacerbates error growth in the product Tk in equation
(94). This is due to the occurrence of both positive and negative row ele-
ments in R, T, and 0 .

it was observed that the spectral form (eq (87)) for an orthonormal
projection resembles an asymptotic series at later times when the energy
distribution is close to equilibrium. An asymptotic limit is approached for
the value of /,,,, after a few terms in the expansion (in order from most
dominant basis vector to least dominant). Unfortunately this is not the case
at intermediate times when the distribution is far from equilibrium.

3.5 Nonnegative Projection Method

A stabler system results from requiring row elements in R to be nonnegative,
so that each p, is nonncgativc also. The projection is then approximate, be-
cause the exact solution requires no restriction on the sign of elements of
R. Such a system may be solved by defining the solution as the minimum
of a penalty function which measures the weighted error raised to some
power. The penalty function is minimized using a suitable nonlinear opti-
mization procedure, yielding the desired solution for p,.
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We define an approximation to a general energy distribution function I"(:)
as

n2

lI.) x Z nttfkCI§' i[.\ )' j= 1, , .1!, (97)
i=1I

where the coefficients 7r, may be positive or negative, but their squares are
obviously nonnegative. I lence the projection (97) is nonnegative. The pen-
alty function is defined as

n2

2 I'_ 1,Lj 1 2 2

For any time-dependent energy distribution function 1:(,), minimization of'
1) over the allowable space of r, yields a solution For the 7t,. The solution
may be unique, depending on whether the minimum is global or merely local.
We multiply the bracketed term by a wcight function w, to emphasize sig-
nificant segments of the distribution. For calculation of ensemble collision
volume, an appropriate choice of weight function is the collision volume
K(1,, r,/N) raised to the same power as the bracketed quantity. Minimizing
such a penalty function yields a weighted least-squares approximation to
F(E,) and a least-squares approximation to the ensemble collision volume.

We have obtained such a nonnegative projection approximation to the en-
ergy distribution function, using a conjugate gradient minimization proce-
dure. The projection coefficients obtained were sharply defined in each case,
consisting of a few adjacent nonzero components and occasionally a smaller
component some distance away. When collision volume was calculated us-
ing the spectral form for the baseline cross-section set and erroneous cross-
section sets A and B, and compared with results using the conventional
method of equation (5), the spectral form gave poor results. We infer that
the .approximation error was too large to give acceptable results.

The calculation of collision volume is improved by using the approximation
error to calculate a residual collision volume using the conventional method,
which is then added to the spectral calculation of collision volume. Thus,

n A4 nK''tta= KiPi + 1()- piop(lE, i/N) K(Ij) (99)i
Ktoa Z Km+ Z I() Z ' 99

i=1I j=1 i=1 I"

describes an approximate projection with "cleanup" of the residual using the
method of equation (5). Although improvement was noted, the calculated
ensemble collision volume still compared poorly to a conventional calcu-
lation. After some study, this was attributed to poor linear independence
of adjacent nonzero components in the nonnegative projection. That is, in
equation (22) the term r(E,t) is not small compared to fiE,i) for the case
under consideration.

As a last resort the nonnegative projection was restricted to a single nonzero
component and the residual was "cleaned up." This single-vector projection
with "cleanup" is equivalent to (I) finding the equilibrium distribution clos-
est to the noncquilibrium distribution F(i,t) (closest in the sense of mini-
mizing the least-square error previous discussed), (2) applying a conventional
collision volume calculation to the residual ("cleanup"), and (3) adding to
the latter result the ensemble collision volume of the selected equilibrium
distribution. The results obtained are shown in Figure 10 on page 39 for the
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Figure 10. Error in calculated ensemble collision volumc for step-function E-field: Plotted error for projection
method and conventional method based on various cross-section sets, compared to exact calculation
of ensemble collision volume for the case of a square-wave electric field. Dotted line is error for
conventional method using Set A. Dashed line is error for projection method using Set A. Dash-dot
line is error for conventional method using Set B. Dash-dash line is error for projection method
using Set B. Solid line is error for projection method using Baseline Set (exactly zero).

step-function electric field and in Figure I I on page 40 for the square-wave
electric field. These results are the most successful obtained by the equilib-
rium projection method. For the 10-Id step-fiinction electric field, the
projection method sharply reduces error (due to cross-section sets A and B)
for the first 100 ps, while the electron energy distribution is close to its initial
equilibrium state. As the error in the conventionally calculated collision
volume fortuitously passes through zero, the projection method displays
more error, and then both methods give nearly equal error at late times. For
the 100-T'd square-wave electric field, the projection method gives zero error
at the initial equilibrium but promptly develops larger error at the next
time-step 10 ps later, before converging to nearly the same error as the con-
ventional method at late times.
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Figure 11I. Error in calculated ensemble collision volume for sqluarc-wave E-field: Plotted error for projection
method and conventional method based on various cross-section set-s, compared to exact calculation
of ensemble collision volume for the case of a step-function electric field. Dotted line is error for
conventional method using Set A. Dashed line is error for projection method using Set A. IDash-dot
line is error for conventional method using Set R. IDash-dash line is error for projection method
using Set 11. Solid line is error for projection method using Baseline Set (exactly zero).

4 Discussion

The use of an orthogonal basis for the projection method was found to cre-
ate unusable results for the spectral form of K,,o. because of the occurrence
of very large positive and negative elements of matrix T. This is because of
the inherent linear dependence of the basis O(1L', t,/N), and is a fundamental
shortcoming of the projection 'Method. If the basis could be restricted to a
small number of basis vectors possessing a high degree of linear independ-
ence, the projection method might make a better showing in cases not dis-
cussed. Figure 4 shows that the equilibrium distributions for i = I and
i = 50 arc the most nearly linearly independent of those shown, as would be
expected. fHowevr, it is difficult to find a realistic case which consists of a
sum of these two distributions alone. Comparison of the equilibrium dis-
tributions of Figure 4 and the nonequilibrium distributions of Figure 6 shows
that their shapes compare well up to the maximum but fall off differently at
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higher energies. The equilibrium distributions have a smallcr high-energy
"tail" due to more extensive downscatter from rotational and vibrational
excitations. This explains, to some extent, why singlc-vector projection with
"cleanup" performs well on nonequilibrium distributions whose maxima are
concentrated at or below about 0.1 eV. The poor similarity observed be-tween equilibrium and nonequilibrium distributions approaching ! eV at

maximum tends to prohibit stationary behavior of projection cocfficients at
these energies. In fact, collision volume error at these energies is nearly the
same for the projection method (with "cleanup") and the conventional
method.

The method of selection of a dominant basis vector was the same for an
orthogonal basis and for a nonnegative projection basis. The same compo-
nent is identified in either case. No assumption was made about the form
of error induced in the energy distribution function by the erroneous cross-
section set used. Several other approaches were tested, including best fit to
first and second energy moments (average energy and energy spread), as
ways of selecting the dominant basis vector. No significant improvement
was found, except that it became clear that knowledge of the type of error
could be exploited to produce a superior error reduction. Deliberately using
a "hotter" basis vector than indicated caused a better reduction in collision
volume error, because of cancellations in error contributed by different parts
of the energy distribution. [his method was not our objective, yet may be
useful in certain circumstances. Thus if models of cross-section error are
defined, the method of dominant basis vector selection can be biased to re-
duce error further than a "blind" method, such as we have used.

Both orthogonal and nonnegative projection methods work about equally
well for energy distributions near equilibrium, so that significant error re-
duction is possible when "cleanup" is added (eq (99)) to the spectral form for
ensemble collision volume. Unfortunately both methods serve poorly when
the energy distribution is far from equilibrium. For the strong 100-Td elec-
tric field, this state is attained within 10 ps, and within 100 ps for a 10-i'd
electric field. This may be due to the large rotational and vibrational re-
sponses above 0.1 cV for air which, in equilibrium, depopulate that portion
of the energy spectrum filled by strong electric fields. This hypothesis is
strengthened by the fact that ensemble collision volume estimates by the
projection method are too low in this regime, presumably because higher
energies are underpopulated in equilibrium compared to nonequilibrium.
(Iligher energies carry a larger collision volume per elcctron.) Gases that
lack such a strong depopulating process may yield better projection method
results, although such a case lacks interest. Likewise, distributions substan-
tially above 2 eV in air might avoid this underpopulation effect and yield
better nonequilibrium results for the projection method.

The single-vector projection with "cleanup" could have been derived indc-
pendently of the projection-related theory of this effort, as it is conceptually
very simple. It simply trades most of the collision volume calculation using
equation (5) for an experimentally measured collision volume represented
by equation (9). In the context of its derivation here, the variational prop-
erties of the single-vector projection with "cleanup" become apparent. If the
error associated with the measurement is as great or greater than the error
associated with the energy distribution function, then nothing is gained in
accuracy. Generally we expect more accuracy from an equilibrium meas-
urement than from a nonequilibrium calculation.
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Although this effort is directed at estimates of ensemble collision volume, the
same computational machinery can be applied to other electron swarm
properties as well, such as the coefficient of attachment or avalanching. In
such a case a weight function equal to that energy-dependent coefficient
would be substituted for K(L). The previous conjecture regarding under-
population at several electron volts applies as well in this case, where poor
projection method results would be expected until large spectrum content
develops at higher energies. Avalanching, however, does not become im-
portant until the spectrum content develops at higher energies.

Nothing has been specified about the source of electrons described by the
energy distribution function, up to this point. In nonattaching gas, electrons
will linger until absorbed by walls, for example. For attaching gases such
as air, a continual source of electrons is required to sustain a significant
electron density for times much longer than the attachment time. While an
experimental apparatus might generate clouds of near-thermal electrons,
there is also the case of electrons produced by ionizing radiation. Such
electrons arc produced throughout an exposed volume at relatively high en-
ergies from 10 to 100 eV. The projection method highlights the possible
value of equilibrium measurements of swarm parameters in a volume ex-
posed to constant ionizing radiation. In such a measurement the electric
field would be imposed on an ensemble of electrons whose energy distrib-
ution incorporates the peculiar spread of electrons throughout higher ener-
gies derived from their birth through ionizing radiation. Such equilibrium
measurements could shed considerable light on swail properties of near-
equilibrium and nonequilibrium distributions in ionizing radiation.

5 Conclusions

A differential equation has been derived describing the time evolution of the
energy distribution function for free electrons in a gas in a transient electric
field. A finite-diffcrence approximation and a time-stepping algorithm using
matrix-vector techniques were devised to solve the differential equation. An
extensive published cross-section set was added to the time-stcpping algo-
rithm to enable calculation of realistic energy distribution functions in air.
A projection method was described which allows computation of electron
swarm properties such as collision volume (related to mobility) using meas-
ured data for equilibrium distributions, and the projection method was
shown to have desirable variational properties in calculating the swarm
properties.

Several projective methods were compared with conventional techniques for
their ability to reduce error in estimates of collision volume arising from
cross-section-induced error in the energy distribution function, including
orthogonal and nonnegative projections. A single-vector projection with
"cleanup" of approximation error was found to perform best, leading to a
significant reduction of collision volume error when the distribution function
maximum was not greater than about 0.1 eV. Other projections performed
poorly compared to conventional methods of calculating swarm collision
volume, because of the inherent linear dependence of the projection basis of
equilibrium distributions and the resulting ill-conditioning of the projection
matrix. If a model of the energy dependence of the cross-section error is
known, it may be possible to exploit that knowledge to bias the single-vector
projection to give better results.
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6 Recommendations

Electron mobility estimates for near-thermal (with a peak not greater than
0.1 eV) nonequilibrium energy distributions can be made with greater accu-
racy using a single-vector projection (onto an equilibrium basis) with
"cleanup." Estimates based on the mobility of an equilibrium distribution
having the same average energy as the nonequilibrium distribution are a
special case ol the abuvc without "cleanup."

For electron swarms populated by ionizing radiation, n,.surcments of
equilibrium swarm properties in a time-constant electric field and radiation
source would likely be very useful and shed new light on swarm properties
of nonequilibrium electron distributions arising in this way.

43



References

I luxley, L G. I1., and R. W. Crompton, The Diffusion and Drift of
Electrons in Gases, John Wiley and Sons, New York (1974).
2 Morse, P. M., and Ii. Feshbach, Methods of Theoretical Physics,

McGraw-Hill Book Company, Inc., New York (1953), Volume 2, pp 1108f.

3 Frost, L. S., and A. V. Phelps, Rotational excitation and momentum
transfer cross-sections for electrons in 112 and N2 from transport coefficients,
Phys. Rev. 127 (1962), 1621.

4 Phelps, . V., and . C. Pitchford, Anisotropic scattering of electrons by
N2 and its effect on electron transport, Phys. Rev. A 31 (1985), 2932.
5 Carron, N. J., On the Calculation of th Electron Energy Spectrum in a
Weakly Ionized Gas, Mission Research Corporation Report MRC-R-1055
(30 January 1987).
6 Carnahan, B., 11. A. Luther, and J. 0. Wilkes, Applied Numerical

Aethods, John Wiley and Sons, New York (1969), p 451.
7 Carter, L. L., and F. I). Cashwell, Particle- Transport Simulation with the
Monte Carlo Method, USAILRI)A Publication TID-26607, USAERIDA
Technical Information Center, Oak Ridge, TN (1975), p 73.
8 Phelps, A. V., and I.. C. Pitchford, Anisotropic Scattering of Electrons by
N, and its Effects on Electron Transport: Tabulations of Cross Section and
Results, JILA Information Center Report No. 26, University of Colorado,
Boulder, CO (1 May 1985), p 14.

9 Phelps, A. V., Tabulations of Collision Cross Sections and Calculated
Transport and Reaction Coefficients for Electron Collisions with 02, JILA
Information Center Report No. 28, University of Colorado, Boulder, CO (I
September 1985), p 10.

( Goldstein, B., A Summary of Rotational and Vibrational Cross Sections
in N2, Mission Research Corporation Report MRC-R-1057 (26 January
1987).

11 Wadzinski, 1I. T., and J. R. Jasperse, Low Energy Electron and Photon
Cross Sections for 0, N2, and 02, and Related Data, Air Force Geophysics
Laboratory (PI IY), Report AFGL-TR-82-0008 (4 January 1982).
12 Pitchford, . C., and A. V. Phelps, Comparative calculations of electron-
swarm properties in N2 at moderate E/N values, Phys. Rev. A 25 (1982),
540-554.
13 Dutton, J., A survey of electron swarm data, J. Phys. Chem. Ref. Data,

4 (1975), 577-856.

44



DISTRI3UTIaN

ADMINISTRATOR DIRECTOR
DEFENSE TECHNICAL INFORMATION US ARMY MISSILE LABORATORY

CENTER USAMICOM
ATTN DTIC-DDA (2 COPIES) ATTN DRSMI-RPT, TECHNICAL
CAMERON STATION BUILDING 5 INFORMATION DIV

ALEXANDRIA, VA 22304-6145 REDSTONE ARSENAL, AL 35809

UNDER SECRETARY OF DEFENSE COMMANDER
RESEARCH & ENGINEERING US ARMY NUCLEAR & CHEMICAL AGENCY

ATTN TECHNICAL LIBRARY, 3C128 ATTN ATCN-W, WEAPONS EFFECTS DIV
WASHINGTON, DC 20301 BACKLICK ROAD, BUILDING 2073

SPRINGFIELD, VA 22150
COMMANDER
ATMOSPHERIC SCIENCES LABORATORY US CHIEF OF ARMY RESEARCH OFFICE

ATTN TECHNICAL LIBRARY ATTN DRXRO-MA, DIR MATHEMATICS DIV
WHITE SANDS MISSILE RANGE, NM 88002 ATTN DRXRO-PH, DIR PHYSICS DIV

ATTN M. CIFTAN

DIRECTOR RESEARCH TRIANGLE PARK, NC 27709

US ARMY BALLISTIC RESEARCH
LABORATORY CHIEF OF NAVAL RESEARCH

ATTN SLCBR-DD-T (STINFO) DEPT OF THE NAVY

ABERDEEN PROVING GROUND, MD 21005 ATTN ONR-400, ASST CHIEF FOR RESEARCH
ATTN ONR-420, PHYSICAL SCI DIV

US ARMY ELECTRONICS TECHNOLOGY & ARLINGTON, VA 22217
DEVICES LABORATORY

ATTN SLCET-DD DIRECTOR
FT MONMOUTH, NJ 07703 NAVAL RESEARCH LABORATORY

ATTN 2600, TECHNICAL INFO DIV
DIRECTOR ATTN 6000, MATL & RAD SCI & TE

US ARMY MATERIEL SYSTEMS ANALYSIS WASHINGTON, DC 20375
ACTIVITY

7 ATTN AMSY-MP COMMANDER

ABERDEEN PROVING GROUND, MD 21005 NAVAL SURFACE WEAPONS CENTER
ATTN F-30, NUCLEAR EFFECTS DIV

DIRECTOR ATTN R-40, RADIATION DIV
NATIONAL INSTITUTE OF STANDARDS ATTN E-43, TECHNICAL LIB

& TECHNOLOGY WHITE OAK, MD 20910
ATTN LIBRARY
WASHINGTON, DC 20234 AIR FORCE OFFICE OF SCIENTIFIC

RESEARCH

DIRECTOR ATTN DR. R. BARKER

DEFENSE NUCLEAR AGENCY BOLLING AIR FORCE BASE
ATTN TISI-SCIENTIFIC INFORMATION WASHINGTON, DC 20332-6448

DIV
ATTN RAAE, ATMOSPHERIC EFFECTS UNIVERSITY OF COLORADO

DIV NIST & DEPT OF PHYSICS, QUANTUM
ATTN RAEV, ELECTRONICS VULNERABILITY PHYSICS DIV

DIV ATTN DR. A. V. PHELPS

WASHINGTON, DC 20305 BOULDER, CO 80309

COMMANDER OFFICER SANDIA NATIONAL LABORATORIES

US ARMY FOREIGN SCIENCE & ATTN DIVISION 4211, DR. L. C. PITCHFORD
TECHNOLOGY CENTER ALBUQUERQUE, NM 87185

FEDERAL OFFICE BLDG
ATTN AMXST-SC, SCIENCES DIV

220 7TH STREET, NE

CHARLOTTESVILLE, VA 22901

45



DISTRI3ION (cont'd)

SUPERINTENDENT US ARMY LABORATORY COMMAND
HQ, US AIR FORCE ACADEMY ATTN TECHNICAL DIRECTOR, AMSLC-TD
ATTN TECH LIB
USAF ACADEMY, CO 80840 INSTALLATION SUPPORT ACTIVITY

ATTN LEGAL OFFICE, SLCIS-CC
LIVERMORE LABORATORY
PO BOX 969 USAISC
LIVERMORE, CA 94550 ATTN RECORD COPY, AMSLC-IM-TS

ATTN TECHNICAL REPORTS BRANCH
SANDIA NATIONAL LABORATORIES AMSLC-IM-VP (2 COPIES)
PO BOX 5800
ALBUQUERQUE, NM 87185 HARRY DIAMOND LABORATORIES

ATTN D/DIVISION DIRECTORS
GEORGIA STATE UNIVERSITY ATTN CHIEF SCIENTIST, SLCHD-CS
ATTN PHYSICS & ASTRONOMY DEPT, ATTN LIBRARY, SLCHD-TL (3 COPIES)

DR. S. MANSON ATTN LIBRARY, SLCHD-TL (WOODBRIDGE)

UNIVERSITY PLAZA ATTN CHIEF, SLCHD-NW-CS
ATLANTA, GA 30303-3083 ATTN CHIEF, SLCHD-NW-E

ATTN CHIEF, SLCHD-NW-EH
PACIFIC NORTHWEST LABORATORY ATTN CHIEF, SLCHD-NW-EP
ATTN RADIOLOGICAL SCIENCES DEPT, ATTN CHIEF, SLCHD-NW-ES

DR. J. MILLER ATTN CHIEF, SLCHD-NW-P
RICHLAND, WA 99352 ATTN CHIEF, SLCHD-NW-R

ATTN CHIEF, SLCHD-NW-RP
METATECH CORPORATION ATTN CHIEF, SLCHD-NW-RS
ATTN DR. C. JONES ATTN CHIEF, SLCHD-NW-TN
2309 RENARD PLACE, SE, SUITE 401 ATTN CHIEF, SLCHD-NW-TS
ALBUQUERQUE, NM 87106 ATTN CHIEF, SLCHD-HPM (2 COPIES)

ATTN KENYON, C. S., SLCHD-NW-EP
MISSION RESEARCH CORPORATION ATTN MERKEL, G., SLCHD-NW-TN
ATTN DR. N. CARRON ATTN WYATT, W. T., SLCHD-NW-EP (30 COPIES)

735 STATE STREET, PO DRAWER 719
SANTA BARBARA, CA 93102

46


