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EVALUATION OF INTEGRALS AND SUMS

INVOLVING [sin(Mx)/sin(x)]"
INTRODUCTION

The response of an equiweighted equispaced line array to a
distributed field involves the kernel sin(Mx)/sin(x) or its
square, depending on wﬁether the voltage or power response,
respectively, is of interest [1;2]. Numerical evaluation of such
integrals can be very time consuming for two reasons: this kernel
oscillates quickly with x for large M, and it does not decay with
x. This necessitates fine sampling in x and large integration
regions, both of which can lead to a significant computational
burden, especially for two-dimensional or three-dimensional
arrays. The object of this report is to give an alternative
numerical procedure that can be very advantageous in some cases,
and, in fact, leads to closed forms for some examples.

The procedure is also applied to summations involving the
same kernel. 1Its utility depends on the rate of decay of the
complementary part of the original integrand, as compared with
the Fourier transform of this component. 1In any event, an
alternative is presented for the user to consider in any

numerical investigation.

1/2
Reverse Blank
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GENERAL APPROACH
For arbitrary function g(t), define its Fourier transform as
Glw) = I dt exp(-iwt) g(t) . (1)

(Integrals without limits are over the range of nonzero
integrand.) Then Parseval'’s theorem states that the following

two alternative integrals are equal:
* 1 *
v=Idtg(t)h(t)-ﬁjdwc(w)a(w). (2)

Here, H(w) is the Fourier transform of h(t). Now, if H(w) takes
on a noticeably simpler form than h(t), then the second integral
in (2) can offer an attractive alternative to the first integral

in (2). That will indeed be the case here.
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CASE 1

For integer M > 1 and constant y > 0, consider the special
choice of h(t) as
M-1

hy(t) = % - Z explivt(2n+1-M)] =

n=0

M-1
14
= exp(ivytm) , (3) :
m=1-M
where the prime on the latter sum denotes skipping every other

term. Then the Fourier transform, according to (1), is

T
—

Hy(w) = 2n Z 8(w — ym) . (4)
m=1-M

Substitution of (3) and (4) in (2) yields

M-1
v, = J at ge) SR - N Gy (5)
m=1-M

This result indicates that if G(w), the Fourier transform of

g(t), can be evaluated, then the t integral in (5) is given by a

finite sum of equispaced samples of G(w) at increment 2y. The .
(complex) function g(t) in (5) is arbitrary, except that the

integral must converge. When G(w) cannot be analytically

evaluated, then proper application of a fast Fourier transform
procedure to g(t) can be tailored to yield precisely the equi-

spaced samples required for the right-hand side of (5); this

technique is detailed in appendix A.
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If function G(w) is even in w, then (5) simplifies to

( M-1 ~

2 Ez:' G(ym) for M = 2,4,6,...
m=1

1= 9 ¢ - (6)
M-1

G(0) + 2 E::' G(ym) for M = 1,3,5,...

‘m=2 J

A program for (6) is given in appendix B.

CASE 2

For integer M > 1 and constant y > 0, consider the

alternative special choice of h(t) as

M-1
sin(M t) .
h,(t) [SIH(Yt) expliyt(2n-2k)] = (7A)
n,k=0
M-1
(M - |m|) exp(i2ytm) , (78)
m=1-M

where we used (3). There is no prime on the latter summation
because all terms from 1-M to M-1 are to be included. The
Fourier transform of hz(t) is

M-1

Hz(w) = 2n zi: (M - |m|]) 8(w - 2ym) . (8)
mn=1-M

The use of (7A) and (8) in (2) yields
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M-1

sin(Myt)
Vy = I dt g(t) [51n(yt) (M - {mj) G(2ym) . (9)
m=1-M

Again, the integral of interest is given by a finite sum of
samples of the Fourier transform of g(t), also at increment 2y
in w. The fast Fourier transform technique discussed in
appendix A is relevant here also. If G(w) is even in w, then we
can express (9) as

M-1
V2 = M G(0) + 2 }Z: (M - m) G(2vym) for all M > 1 . (10)
m=1

A program for (10) is given in appendix B.
CASE 3

For arbitrary weights {wm} and frequencies {ym}, with
h3(t) = EZ; Y exp(lymt) ' (11a)
m
then we have a generalization of (3), with
H3(w) = 2n }Z: Yo S(w - Ym) . (11B)
m

(Summations without limits are over the range of nonzero

summand.) Use of these expressions in general result (2) yields
. i N 11C
Vi = dt g(t) w, exp(-iy t) = ZLJ wn Glyp) . ( )

m m

Again, the Fourier transform of g{(t) is required, but now at

general arguments {ym}.
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CASE 4

Function hz(t) in (7) is a special case of the weighted array

power response

2
h4(t) - l}:: W exp(-i2vytk) = EZ: ¢(m) exp(-i2ytm) , (12a)
k . m

where ¢(m) is the autocorrelation of the weights:

$(m) = Z w, wy o= 4" (-m) . (128B)
k

The integral in (9) is then generalized to

2
V4 = J dt g(t) h:(t) = J dt g(t) }E: Wy exp(-i2ytk) =
k
= Z $(m) G(2ym) , (13a)
m

upon use of (12A), where g(t) can be complex and nonsymmetrie.
Thus, integral Vqa requires the autocorrelation of weights {wk}
and the Fourier transform of g(t) for its evaluation. The
earlier result in (9) corresponds to weights we =1 for

1 <k <M,

When function g(t) is real (but possibly nonsymmetric) and

the weights are real, (13A) can be simplified to
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Vg = $(0) Gr(O) + 2 }Zj ¢(m) Gr(Zym) ' (13B)
m>1

where Gr(w) is the real part of Fourier transform G(w) in (1).

A program for (13B) is given in appendix B.
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EXAMPLES

EXAMPLE A

The first example of interest is

ga(t) = % 7+ B> 0o . (14)
(t-p)™ + B
Its Fourier transform is
n .
G,(w) = B exp(-ivw-giw|) , (15)
for which the real part is
G, (@) = % cos(uw) exp(-Blw|) . (16)

Since integral (5) is obviously real for example (14), we
obtain
M-1

dt sin(Myt) ’
Via = J 3 7 sin(yt) - Gaplvm) . (17)
(t-m? + 8 wLm

Substitution of (16) in (17) yields the closed form result

v - J dt sin(Myt) _
la (t_”)z + BZ sin(vyt)
C1 El (1 - EZ) for M even
2n
= B0|EM+3 m-1 ~ Ema1 Cmer * ) , (18)
= (1 - E,) for M odd
2 4
where

Em = exp(-Bym) , Cm = cos(uym) , D=1 - 2 Ez C2 + E4 . (19)
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A program for (18) and (19) follows; it is written in BASIC for

the Hewlett Packard 9000 computer.

10
20
30
40
50

INPUT M,Beta,Gamma, Mu ! Beta » 0,

B=Beta*Gamma

C=Mu*Gamma

E=EXP(-B*2)

IF (M MODULO 2)=1 THEN 80
F=COS(C)*SQR(E)*(1-E)

GOTO 90 ‘
F=,5- . S*E*E
A=E*COS(C*(M-1))-COS(C*(M+1))
A=pA*EXP(-B*(M+1) )+F
Via=A*2*PI/(Beta*(1-2*E*COS(C*2)+E*E))
PRINT Via

END

follows

This finite sum can be written in compact form

[3;

Then

Gamma > 0

When we instead substitute (14) and (16) in (9), there

Vo - | g [shamuy?
(t-u)” + B8
M-1
= % (M - |m|) cos(2wym) exp(-2By|m|)
m=]1-M

0.113}. Namely, define here

E = exp(-28v) , C = cos(2uvy) ,

E, = exp(-28vM), Ch

A =1 - Ez ’ B =1+ E2 ’

10

cos{(2uyM), S

by use of

Sin(ZHY) )
sin(2uvyM),

B -2 EC.

(20)

(21)
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v . J dt [s;n<nxt)]2 .
2a (t_”)z + 62 sin(vyt)
2n{M E
-E[EA-B((CB— 2 E)(1 - E, Cy) + S AE, sM]] . (22)

A program for (21) and (22) follows.

10 INPUT M,Beta,Gamma,Mu ! Beta > 0, Gamma > 0
20 Tb=2*Beta*Gamma

30 Tm=2*Mu*Gamma

40 E=EXP(-Tb)

50 A=E*E
60 B=1+A
70 A=1-A

80 C=COS(Tm)

90 D=B-2*E*(C

100 Em=EXP(-Tb*M)

110 T=(C*B-2*E)*(1-Em*COS(Tm*M))
120 T=T+SIN(Tm)*A*Em*SIN(Tm*M)
130 T=.5*M*A-T*E/D

140 V2a=T*2*PI/(Beta*D)

150 PRINT V2a

160 END

EXAMPLE B
The next example to be considered is

1 sin(at)
R g6 > 0, a > 0 . (23)
(t-u) + g2 ot

gb(t) =

Since gb(t) is a product of two functions, its Fourier transform

Gb(w) is given by a convolution of the individual transforms.

The Fourier transform of the first term in (23) has already been

encountered in (15), and the Fourier transform of the second term
in (23) is a rectangle located on interval (-a, «) in w.

Therefore, Gb(w) is given by convolution

11
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w+o
G (w) = =n= J du exp(-ipu-B8|uf) (24)
b 2af P H :
W~

Since gb(t) in (23) is real, we need only evaluate the real part,

Gbr(w)' of Gb(w). With the aid of auxiliary variables

C, = cos(upw), S5, = sin(uw), €, = cosh(Bw), S, = sinh(Bw),

C = cos(pa), Sa sin(ua), C. ™ cosh(Ba), 5, = sinh(Ba),

1 =C,C (8 Ca

£ Cu M8, + 5,8, wcCc,+B5S.),

2 = 8,C, (BC,

« Ca u Sw) + ga S (w Cw + B Sw), (25)

[+ 2

we find that Gor(w) is given by

A
€
A
R

B - exp(-Ba) By for 0 <

G, (w) = —2 (26)
br aB(62+u2)

A
€

exp(-8w) B2 for o <

To complete the description, we observe that Gbr(w) is even in w
because gb(t) is real. A program for Gbr(w) follows, where we

have made the following identifications: W = w, A = o, B = B,

Us=s u.

10 DEF FNGbr{(w,A,B,U) 100 IF Wa<A THEN 150

20 WwWa=ABS(W) 110 Ra=1l./Ea

30 F=PI/(A*B*(B*B+U*U)) 120 T=(Ra-Ea)*Ca*(B*Cw-U*Sw)

40 Ea=EXP(-B*A) 130 B2=_.5*(T+(Ra+Ea)*Sa*(U*Cw+B*Sw))
S0 Ew=EXP(-B*Wa) 140 RETURN F*Ew*B2

60 Ca=COS(U*a) 150 Rw=l./Ew

70 Cw=COS(U*wWa) 160 T=(Rw+Ew)*Cw*(B*Ca-U*Sa)

80 Sa=SIN(U*A) 170 Bl=.5*(T+(Rw-Ew)*Sw*(U*Ca+B*Sa))
90 Sw=SIN(U*Wa) 180 RETURN F*(B-Ea*Bl)

190 FNEND

12
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If we now employ (23) in (5), we obtain

2 at sin(vyt) = Gbr(Ym) ' (27)

-1
v, - J dt sin(at) sin(Myt)
1b 2
(t-u)° + B oEn

where Gbr(w) is given by (25), (26), and its even property.

Since there is a break in the analytic form for Gbr(w) at 0 = +a,
it is not reasonable to perform the summation in (27) in closed
form; those terms in (27) for y|m| < o utilize the upper line of
(26), while those for y|m| > « utilize the lower line of (26).
However, since Gbr(w) is even in w, the simplification in (6) is
applicable.

Instead, when (23) is substituted in (9), there follows

M-1

. . 2
dt sin(at) ([sin(Myt)
Vap J 2 2 at [Sin(yt) ] ~ (M - |m[) G (2vm),
(emm) v 8 m=1~-M

(28)

where Gbr(w) is given by (25) and (26). Again, the break in form
of Gbr(w) at w = +o precludes a closed form result for the
summation in (28); also, the simplification in (10) is

immediately applicable to (28).

13
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EXAMPLE C

The final example is

. 2

g (t) = —— B2 . e>0, w>0. (29
(t-w)” + B

The Fourier transform of the second term in (29) is a triangle

located on interval (~-2«, 2«) in w. Therefore, Gc(w) is given by

[N

convolution
w+2a
Golw) = 5oz I du exp(-igu-Bjul) (1 - lﬂggl] ) (30)
w-2o

Because gc(t) is real, only the real part of (30) is needed.
This tedious calculation has been carried through, with the

following result; define auxiliary variables

R = 62—u2, I = 28y, D = 62+u2, E, = exp(-Bw), E_ = exp(-2fa),

C, - cosh(2Ba), S = sinh(2Be), C_ = cos(2pe), S = sin(2pa) ,
gw = cosh(Bw) , §w = sinh(Bw) , Cw = cos(pw) , sw = sin(pw) ,

C; =€, C ,(RC_-T158)+8 S (RS +1IC),

C, =¢ C, (RC -18)+58 S (RS +1C),

C =R Cw -1 Sw . (31)

Then we find that

DB (2a - w) - E C+E_ C for 0 < w £ 2«
w a

1

Gh‘(m) = —"’—2

(32)
Cu 2a250

for 2 £ ®
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Also, Gcr(w) is even in w. A program for Gcr(w) is listed below,

J where W = w, A = o, B = g8, U= yu.

10 DEF FNGcr(w,A,B,U) ! A> 0, B>O0
20 Wa=ABS(W)

30 Tb=2.*A%*B

40 Tu=2. *A*U

50 Bw=B*Wa

60 Uw=U*Wa

70 B2=B*B

80 U2=U*U

90 R=B2-U2
‘ 100 1I=2.%*B*U

110 D=B2+U2

120 Ew=EXP(-~Bw)

130 Ea=EXP(~-Tb)

140 Ca=COS(Tu)

150 Sa=SIN(Tu)

160 Cw=COS(Uw)

170 Sw=SIN{(Uw)

180 C=R*Cw-I*Sw

190 1IF wa<2.*A THEN 250

200 Ra=1./Ea

210 C2=.5*(Ra+Ea)*Ca*C

220 C2=.5*(Ra-Ea)*Sa*(R*Sw+I*Cw)+C2
230 T=Ew*(C2-C)

240 GOTO 290

250 Rw=l./Ew

260 Cl=.5*(Rw+Ew)*Cw*(R*Ca-I*Sa)
270 Cl=.5*%(Rw-Ew)*Sw*(R*Sa+I*Ca)+Cl
280 T=D*(Tb-Bw)-Ew*C+Ea*Cl

290 RETURN PI*T/(Tb*A*D*D)

300 FNEND

We now substitute (29) into (5) and get

M-1
b Gcr(Ym) r (33)
m=1-M

v - J dt [sin(at) 2 s;n(nyt)
le (t-m)? + g2 at sin(vyt)

where Gcr(w) is given by (31), (32), and its even character. The

break in form in (32) at w = +2a precludes a closed form for the

sum in (33). However, (6) is still applicable.

15
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When (29) is utilized in (9), there follows

. 2 2
Ve - | g [ [snma]”
(t-u)” + B
M-1
- zz: (M - |m|) Gcr(ZYm) . (34) )
m=1-M
Equation (10) may also be employed here. )
SPECIAL CASES
If we set M =1 in (17), there follows
dt n
=G__(0) = %, (35)
J (t-u)? + g2 2T B
where we used (16). The same case in (27) yields
dt sin(at)
= G (0) =
J (t_ﬂ)z + 82 at br

- ——g—z— {8 - exp(-Ba) [B cos(ua) - ¢ sin(pa)]} , (36)
o8 (8%+4°)

upon use of (26) and (25). Finally, from (33),

16
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J dt [sin(at)]z s 6 (0) =
(t_”)Z + 62 at cr
- n > (2as(ez +u?) -R+E_(RC_-1I sa)] . (37)
2a26(62+ﬂ2)
using (32) and (31).
17,18

Reverse Blank
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APPLICATION TO SUMS

In this section, it is more convenient to use Parseval’s

theorem (2) in the form
* *
v = J dt g(t) h*(t) = I af G(£) H (£) , (38)
where Fourier transform

G(f) = j dt exp(-i2nft) g(t) . (39)

Now, we take as our candidate h(t) function,
h(t) = p(t) ASA(t) ' (40)

where SA(t) is the infinite impulse train

8A(t) = E:: §(t - ka) . (41)
k

The Fourier transform of h(t) is then

H(E) = B(£) © &) () = }E: p[f - %] , (42)
K

where P(f) is the Fourier transform of p(t), ® denotes
convolution, and we have utilized the fact that the Fourier
transform of impulse train A&A(t) is another impulse train,

81/A(f).
Substitution of (40) and (42) in (38) yields

19




TR 8689

vV = b Z g(kd) p (ka) = Z de G(f) P*[f - %) . (43)
X

k

For general p(t) and P(f), this will not be a useful relation,
since the right-hand side of (43) is an infinite sum of
integrals. However, we will be interested here only in the

special cases of

n integer . (44)

p(t) [sin(Myt)]n ,

sin(yt)
CASE n = 0
For n = 0, the above relations specialize to

p(t) =1, P(f) = &(f) ,

v =8 Z g(ks) = Z G(%J : (45)

This is a discrete version of Parseval’s theorem. Although one
infinite sum has been traded for another, we can now choose that
alternative that has the most rapidly decaying (and/or easily

computed) summand for numerical evaluation.

20
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CASE n = 1

Now we have, via (3),

M-1

p(t) = SiRUMXL) }: explivtm) . (46)
m=1-M

There follows

M-1
P(f) = ' s[f - 321‘,:] ,
m=1-M

M
H(f)=Z 'G[f—%—%%],

Kk m

il
[y
!
=

_ sin(Myak) _
k

M-

1
Z' G(%+%%] : (48)

m=1-M

o

Again, we have an alternative infinite sum (48) that
hopefully decays faster than the original sum (47). The
sin(Mx)/sin(x) term does not help convergence in (47) because
this term never decays for large x. Although (48) is a double
sum, the summation on m only contains M terms; the utility of

(48) depends heavily on the asymptotic decay of G(f) for large f.
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CASE n = 2

With the aid of (7), we now find

M-1
p(t) = [:iﬁgftf (M - Im() exp(i2vtm) ,
m=1-M
M-1
- _ _ ym
P(E) (M - Imj) 8(f - 1),
m=1-M
M-1
k Yl
H(E) =Z Z (M - [m{) S(f—z——i-] )
k m=1-M
R (ka) S1n(M Ak)]z ~ (49)
9 Sln(yAk) =
K
M-1
k vm
=Z Z(”"“‘”G("*_n) : (50)
k m=1-M
EXAMPLE
Consider, as in (14) and (16),
1
g (t) = '
a (t-m)2 + g%
G, (£) = % cos(2nuf) exp(-2nBl£f]) . (51)

The summations in (47) and (49) are very slowly decaying, leading

to difficulty in attaining accurate results. The alternatives in
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(48) and (50), on the other hand, have exponential decay and can
be evaluated quite accurately. The additional examples given
earlier in (23)-(26) and in (29)-(32), along with the
corresponding programs, lend reasonable alternatives to some

otherwise lengthy numerical calculations.

SOME RELATED SUMS

Here, we collect a few closed form results for sums involving

the sin(Mx)/sin(x) kernel. For ease of notation, define

_ sin(Mkn/N)
SN(M,k) sin(kn/N) (52)
Observe that
M for k = 0, +2N, +4N,...
SN(M,k) = . (53)

M(-1)" 1 for k = &N, 43N,...

Then, we find the sum over one interval to be

N-1 M for M even
Z SN(Mrk) = ' (54)
k=0 N(1 + 2J) for M odd

where

J = mw[”;—é) : (55)
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The sum over a double interval is

2N-1 0 for M = 0,2,4,......
zz: Sy{M. k) = . (56)
-0 2N fO[ M = 1'3'.--'2N-l

The correlation on the second variable of SN is

7
[aey

SN(M,k) SN(M,k+j) = N SN(M,j) for 0 < M { N and all j. (57)

=
0
(o]

Finally, the correlation on the first variable is

N-1
zz: SN(M,k) SN(M+2L,k) = M(M + 2L) +
=0
M(N - M - 2L) for 0 <M + L <N
+ . (58)
N(3M + 2L -2N) - M(M + 2L) for N <M + L
for all M, L, N, where
M =M MOD N , L =1L MOD N . (59)
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SUMMARY

Extensions to integrals involving [sin(Mx)/sin(x)]n for n > 2
are possible, based upon the results presented here. For

example, starting from (12A) for arbitrary weights, we could

consider
hg(t) = h2(t) = Z v(p) exp(-i2vtp) , (60)
P
where
vip) = Z ¢(m) ¢*(m—p) (61)
m

is the autocorrelation of sequence {¢(m)} defined in (12B).

Therefore, Fourier transform

Hg(w) = 2n Z v(p) 8(w + 2vp) , (62)
P
giving rise to
V5 E I dt g(t) hs(t) = }E: v(ip) G(2vp) . (63)
P

The case of equal weights {wk} in (12A) now corresponds to n = 4
in the sine function ratio above, and y(p) is the autocorrelation

of a triangular sequence.
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The evaluation of integrals and sums involving the term
[sin(Mx)/sin(x)]n can often be simplified by the use of
Parseval’s theorem because this term has a Fourier transform
which is a finite sum of delta functions. Major effort can then
be concentrated on getting the Fourier transform of the
complementary part of the integrand. This procedure has been
applied here to several examples which arise in evaluation of the
response of equispaced arrays to distributed spatial fields. For
more complicated fields, a fast Fourier transform procedure
combined with the above result leads to a very efficient method
of integral evaluations. Applications of this procedure have

been made in [5].
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APPENDIX A - USE OF FAST FOURIER TRANSFORM

The summations for vy and v, in (5) and (9), respectively,
require the evaluation of the Fourier transform of g(t), namely
G(w), at equispaced increment 2y. But this latter function can

be approximated by means of the trapezoidal rule according to

Glw) = J dt exp(-iwt) g(t) =
= A EE: exp(-iwdn) g(nd) = G(w) = Ez: G[w - ng%) ’ (A-1)
n n

where A is the sampling increment in t. The latter summation in
(A-1) indicates aliasing lobes separated by 2n/8 on the w axis.

In order to control aliasing, we must choose A small enough, say
b < b, Then samples of approximation G(w) in (A-1) at multiples

of 2y are given by

G(2ym) = & EZ: exp(-i2yAmn) g(na) . (A-2)
n

Now since 8 is arbitrary, except for upper limit 8¢ choose

4 = (A-3)

I
Ny '
where N is an integer and y is the prescribed increment in w. 1In

order that A be less than Ao, we must take integer

Use of (A-3) in (A-2) gives
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G(2ym) = & }Z: exp(-i2nmn/N) g(nd) = (A-5)
n
N-1

= 4 Ez: exp(-i2nmmn/N) gc(nA) ' (A-6)
n=0

where "collapsed" sequence [4; pages 4-5]

gc(nA) = }Z: g(na + kN4) for 0 < n {N-1. (A-7)
k

The manipulation from (A-5) to (A-6) is exact; it avoids
truncation error normally associated with functions g(t) which
decay slowly with t. The sum on k in (A-7) must be carried out
(for each n) until negligible values for g are encountered for
both positive as well as negative values of k.

Equation (A-6) indicates that values of G(2ym) for‘m = 0 to
N - 1 are available by an N-point fast Fourier transform when N
is a power of 2. Values for negative m are available in location
m mod N. In order to get all the desired values of G(2ym)
required for (9), without aliasing, we also require that N/2 > M,

Thus, the final condition on integer N is
N > max (—p—, 2H] (A-8)
¥8,’ )

For the case of (5), where the increment on w is 2y, but

starting at w = y, we return to (A-1) to find that

G(y + 2ym) = A }E: exp(-iydn - i2yl&mn) g(nd) . (A-9)
n
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The same choice of 4 in (A-3) now yields

G(y + 2ym) = A Ez: exp(-i2nmmn/N) exp(;inn/N) g(nd) . (A-10)
n

This result is identical to (A-5) except that g(ns) must be

replaced by
exp(-inn/N) g(na) = (na) . (A-11)

Calculation of the collapsed version of § is eased by the

observation that

§C(nA) E Ez: g(nd + kNA) =
k

= EZ: exp(-in(n + kN)/N) g(na + kNA) =
k

= exp(-inn/N) 2{: (—1)k g(nd + kNA) for 0 < n <N -1, (A-12)
k

thereby leading exactly to

N-1
G(y + 2ym) = 4 }Z: exp(-i2nmn/N) §c(nA) . (A-13)
n=0
The leading phase factor in (A-12) only needs to be evaluated at
N different values, and the sum in (A-12) requires differencing
of "adjacent" samples of g spaced by N4, rather than the straight
summation previously adequate for (A-6) and (A-7). Condition

(A-8) applies here as well.
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APPENDIX B — PROGRAMS FOR (6), (10), AND (13B)

Table B-1. Program for (6)

10 M=7 t >0

20 Gamma=1.31 1 >0

30 DOUBLE M,Ms ! INTEGERS
40 sS=0.

50 IF (M MODULO 2)=1 THEN 110
60 FOR Ms=1 TO M-1 STEP 2
70 S=S+FNG(Gamma#*Ms) "

80 NEXT Ms

90 Vi=2.,*§S
100 GOTO 150

110 FOR Ms=2 TO M-1 STEP 2
120 S=S+FNG(Gamma*Ms)

130 NEXT Ms
140 V1=FNG(0.)+2.*S

150 PRINT M,Gamma,Vl
160 END

170 !

180 DEF FNG(W)

Table B-2. Program for (10)

10 M=6 t > 0
20 Gamma=.71 1 >0
30 DOUBLE M,Ms ! INTEGERS

40 G2=2.*Gamma

50 S=0.

60 FOR Ms=1 TO M-1

70 S=S+(M-Ms)*FNG(G2*Ms)
80 NEXT Ms

90 V2=M*FNG(0.)+2.*S

100 PRINT M,Gamma,V2
110 END

120 !
130 DEF FNG(W)

31




TR 8689

>0
>0
INTEGERS

REAL WEIGHTS

CORRELATION OF WEIGHTS

INTEGER

FLAT WEIGHTS
HANN WEIGHTS
HAMMING WEIGHTS

NORMALIZATION

Table B-3., Program for (13B)
10 M=9 !
20 Gamma=.79 !
30 DOUBLE M,Ms,Ks !
40 DIM wW(100)
50 REDIM W(1l:M)
60 CALL Weights(M,W(*)) !
70 G2=2, *Gamma
80 s=0.
90 FOR Ms=1 TO M-1
100 Phi=Q,
110 FOR Ks=Ms+1 TO M
120 Phi=Phi+W(Ks)*W(Ks-Ms) !
130 NEXT Ks
140 S=S+Phi*FNGr(G2*Ms)
150 NEXT Ms
160 Phi=0,.
170 FOR Ks=1 TO M
180 Phi=Phi+W(Ks)*W(Ks)
190 NEXT Ks
200 V4=Phi*FNGr(0.)+2.*S
210 PRINT M,Gamma,V4
220 END
230 !
240 sus Weights(DOUBLE M,REAL W(*))
250 DOUBLE Ks !
260 T=2.*PI/M
270 FOR Ks=1 TO M
280 D=Ks-.5
290 W(Ks)=1. !
300 W(Ks)=.5-.5*%COS(T*D) !
310 W(Ks)=.54-.46*COS(T*D) !
320 NEXT Ks
330 MAT W=W/SUM(W) !
340 S3UBEND
350 !
360 DEF FNGr(w)
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