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EVALUATION OF INTEGRALS AND SUMS

INVOLVING (sin(Mx)/sin(x)Jn

INTRODUCTION

The response of an equiweighted equispaced line array to a

distributed field involves the kernel sin(Mx)/sin(x) or its

square, depending on whether the voltage or power response,

respectively, is of interest [1;21. Numerical evaluation of such

integrals can be very time consuming for two reasons: this kernel

oscillates quickly with x for large M, and it does not decay with

x. This necessitates fine sampling in x and large integration

regions, both of which can lead to a significant computational

burden, especially for two-dimensional or three-dimensional

arrays. The object of this report is to give an alternative

numerical procedure that can be very advantageous in some cases,

and, in fact, leads to closed forms for some examples.

The procedure is also applied to summations involving the

same kernel. Its utility depends on the rate of decay of the

complementary part of the original integrand, as compared with

the Fourier transform of this component. In any event, an

alternative is presented for the user to consider in any

numerical investigation.

1/2
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GENERAL APPROACH

For arbitrary function g(t), define its Fourier transform as

G(w) - J dt exp(-iwt) g(t) (1)

(Integrals without limits are over the range of nonzero

integrand.) Then Parseval's theorem states that the following

two alternative integrals are equal:

V = j dt g(t) h*(t) - J dc G(o) H () . (2)

Here, H(w) is the Fourier transform of h(t). Now, if H(w) takes

on a noticeably simpler form than h(t), then the second integral

in (2) can offer an attractive alternative to the first integral

in (2). That will indeed be the case here.

3
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CASE 1

For integer M > 1 and constant y > 0, consider the special

choice of h(t) as

M-1

h(t) - S in(Myt) > 7 exp[iyt(2n+l-M)] -1' sin(yt) T
n-0

M-1

T exp(iytm) (3)

m=-1-M

where the prime on the latter sum denotes skipping every other

term. Then the Fourier transform, according to (1), is

M-1

H 1  = 2n 61w- Ym) (4)

m=I-M

Substitution of (3) and (4) in (2) yields

M-1

V dt g(t) sin(Myt) - 'G(ym) (5)1 J sin(yt)
m=1-M

This result indicates that if G(o), the Fourier transform of

g(t), can be evaluated, then the t integral in (5) is given by a

finite sum of equispaced samples of G(w) at increment 2y. The

(complex) function g(t) in (5) is arbitrary, except that the

integral must converge. When G(w) cannot be analytically

evaluated, then proper application of a fast Fourier transform

procedure to g(t) can be tailored to yield precisely the equi-

spaced samples required for the right-hand side of (5); this

technique is detailed in appendix A.

4
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If function G(w) is even in w, then (5) simplifies to

M-1

2 G(ym) for M - 2,4,6,...

m-i

VI - (6)
M-1

G(O) + 2 G(ym) for M - 1,3,5,...

m-2

A program for (6) is given in appendix B.

CASE 2

For integer M > 1 and constant y > 0, consider the

alternative special choice of h(t) as

M-1
h2 lt) - sin(Myt) = exp[iyt(2n-2k)] = (7A)

n,k-0

M-1

. (M - Iml) exp(i2ytm) , (7B)

rn=1-H

where we used (3). There is no prime on the latter summation

because all terms from 1-M to M-i are to be included. The

Fourier transform of h2(t) is

M-1

H2(w) - 2n > (M - Imi) 6(w - 2ym) (8)

The use of (7A) and (8) in (2) yields

S
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M-1

VLsn dt g(t) ["n( ) 12 (M - Iml) G(2ym) . (9)

Again, the integral of interest is given by a finite sum of

samples of the Fourier transform of g(t), also at increment 2y

in w. The fast Fourier transform technique discussed in

appendix A is relevant here also. If G(w) is even in w, then we

can express (9) as

M-1

V2 M M G(0) + 2 . (M - m) G(2ym) for all M > 1 . (10)

m=l

A program for (10) is given in appendix B.

CASE 3

For arbitrary weights {w m} and frequencies {y m, with

h3(t) = E wm exp(iymt) (IIA)

m

then we have a generalization of (3), with

H3(W = 2n . wm &(W - yM ) (lIB)
m

(Summations without limits are over the range of nonzero

summand.) Use of these expressions in general result (2) yields

V [ dt g(t) w * exp(-iYmt) = w G(ym ) (1IC)V3  j Tt gtw m  M m

m m

Again, the Fourier transform of g(t) is required, but now at

general arguments {yM).

6
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CASE 4

Function h2 (t) in (7) is a special case of the weighted array

power response

h4(t) wk exp(-i2ytk) = 4(m) exp(-i2ytm) , (12A)

k I m

where (m) is the autocorrelation of the weights:

(m) = wk Wk m  (-iM) . (12B)

k

The integral in (9) is then generalized to

V4 z dt g(t) h4(t) = dt g(t) wk exp(-i2ytk) =

k

= .+(m) G(2ym) , (13A)

m

upon use of (12A), where g(t) can be complex and nonsymmetric.

Thus, integral V4 requires the autocorrelation of weights (Wk}

and the Fourier transform of g(t) for its evaluation. The

earlier result in (9) corresponds to weights wk - 1 for

I< k <M.

When function g(t) is real (but possibly nonsymmetric) and

the weights are real, (13A) can be simplified to

7
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V 4 - +(O) G r(0) + 2 * (m) G r (y)(13B)
m 1

where G r (w) is the real part of Fourier transform G(w) in (1).

A program for (13B) is given in appendix B.

8
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EXAMPLES

EXAMPLE A

The first example of interest is

1
ga(t) - 2 + 02 ' > 0 . (14)

a (t-pO)2+

Its Fourier transform is

Ga (w) - exp(-ipw-O w ) ( (15)

for which the real part is

Gar () = cos(pw) exp(-Olwt) (16)

Since integral (5) is obviously real for example (14), we

obtain

M-1
V dt sin(Myt) G (-m )  (17)

la (t_)2 + 82 sin(yt) ar
m 1-M

Substitution of (16) in (17) yields the closed form result

V i dt sin(Myt)
la = (t-P )2 + 2 sin(yt)

C 1 E 1 (1 - E 2  for M even]
-2n EM+ CM_ EM CM+ + 1 (18)- M 3 M - M+l +1 (1 - E4 ) for M odd (1

where

Em - exp(-Oym) , Cm - cos(uym) , D - 1 - 2 E2 C2 + E4  (19)

9
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A program for (18) and (19) follows; it is written in BASIC for

the Hewlett Packard 9000 computer.

10 INPUT M,Beta,Gamma,Mu I Beta > 0, Gamma > 0
20 B-Beta*Gamma
30 C-Mu*Gamma
40 E-EXP(-B*2)
50 IF (M MODULO 2)-1 THEN 80
60 F-COS(C)*SQR(E)*(I-E)
70 GOTO 90
80 F-.5-.5*E*E
90 A-E*COS(C*(M-I))-COS(C*(M+1))

100 A-A*EXP(-B*(M+1))+F
110 Vla=A*2*PI/(Beta*(1-2*E*COS(C*2)+E*E))
120 PRINT Vla
130 END

When we instead substitute (14) and (16) in (9), there

follows

v dt rsin(Myt) 12V2a i(t_)2 +2 sin(yt) =

M-1

= T (M - Iml) cos(2pym) exp(-20ylml) (20)
m-l-M

This finite sum can be written in compact form by use of

(3; 0.113). Namely, define here

E - exp(-20y) , C = cos(2#y) , S - sin(2"y)

EM = exp(-20YM), CM = cos(2#yM), S = sin(2pyM),

A - E2 , B = 1 + , D B - 2 E C. (21)

Then

10
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r dt --2 [sin(Myt) 12

V2 a 2 (t_#) + 2 Lsin(yt)

2 A - M(C B - 2 E)(1 - EM CM) + S A EM SM)] . (22)

A program for (21) and (22) follows.

10 INPUT M,Beta,Gamma,Mu I Beta > 0, Gamma > 0
20 Tb-2*Beta*Gamma
30 Tm-2*Mu*Gamma
40 E-EXP(-Tb)
50 A-E*E
60 B-I+A
70 A-l-A
80 C-COS(Tm)
90 D-B-2*E*C

100 Em-EXP(-Tb*M)
110 T-(C*B-2*E)*(-Em*COS(Tm*M))
120 T-T+SIN(Tm)*A*Em*SIN(Tm*M)
130 T=.5*M*A-T*E/D
140 V2a=T*2*PI/(Beta*D)
150 PRINT V2a
160 END

EXAMPLE B

The next example to be considered is

g(t) 1 sin(at)

b 2 2 t>0 , >0. (23)

Since gb(t) is a product of two functions, its Fourier transform

Gb(w) is given by a convolution of the individual transforms.

The Fourier transform of the first term in (23) has already been

encountered in (15), and the Fourier transform of the second term

in (23) is a rectangle located on interval (-a, c) in w.

Therefore, Gb(w) is given by convolution

11
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Gb(W) - du exp(-iyu-0jul) (24)

Since gb(t) in (23) is real, we need only evaluate the real part,

Gbr(w), of Gb( ). With the aid of auxiliary variables

C - cos(pu), Sw - sin(pw), C = cosh(Ow), S - sinh(Ow),

-W -W

Ca - cos(p), S~ M sin(u), C O- cosh(oa), S - sinh(Oa),
B1 - -W CW CM - p Sa) + S S (p C + a S ),

B2 = Sa C (0 C - p S ) + C Sc (p C + 0 S ), (25)

we find that Gor(co) is given by

[0 - exp(-_c) B1  for 0 < w <

Gb(W) = no (26)br t (O +'2Y exp(-O) B 2  for a < w

To complete the description, we observe that Gbr(w) is even in w

because gb(t) is real. A program for Gbr() follows, where we

have made the following identifications: W a w, A a a, B z 0,

U a p.

10 DEF FNGbr(W,A,B,U) 100 IF Wa<A THEN 150
20 Wa-ABS(W) 110 Ra-1./Ea
30 F-PI/(A*B*(B*B+U*U)) 120 T-(Ra-Ea)*Ca*(B*Cw-U*Sw)
40 Ea-EXP(-B*A) 130 B2-.5*(T+(Ra+Ea)*Sa*(U*Cw+B*Sw))
50 Ew-EXP(-B*Wa) 140 RETURN F*Ew*B2
60 Ca-COS(U*A) 150 Rw-l./Ew
70 Cw-COS(U*Wa) 160 T=(Rw+Ew)*Cw*(B*Ca-U*Sa)
80 Sa-SIN(U*A) 170 B1=.5*(T+(Rw-Ew)*Sw*(U*Ca+B*Sa))
90 Sw-SIN(U*Wa) 180 RETURN F*(B-Ea*B1)

190 FNEND

12
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If we now employ (23) in (5), we obtain

I dt sin(at) sin(Mt)FG'2Vlb (t 2 2 t sin(yt) E Gbr(Ym) (27)
(tU ism-l-M

where Gbr (w) is given by (25), (26), and its even property.

Since there is a break in the analytic form for Gbr(W) at w -

it is not reasonable to perform the summation in (27) in closed

form; those terms in (27) for y1mf < a utilize the upper line of

(26), while those for y1ml > a utilize the lower line of (26).

However, since Gbr(w) is even in w, the simplification in (6) is

applicable.

Instead, when (23) is substituted in (9), there follows

M-1

dt sin(at) rsin(Myt) 12 N-V2b 2 + 2 tt Lsin(t) 3 (N - Imi) Gbr(2ym),
m-l-M

(28)

where G br(w) is given by (25) and (26). Again, the break in form

of Gbr (W) at w - ±a precludes a closed form result for the

summation in (28); also, the simplification in (10) is

immediately applicable to (28).

13
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EXAMPLE C

The final example is

g(t) - 1 rsin( t)] 2
(t_)2 + 2 at > 0 , a > 0 (29)

The Fourier transform of the second term in (29) is a triangle

located on interval (-2w, 2e) in w. Therefore, Gc (wc) is given by

convolution

w+2 a

Gc(Wc) - j c du exp(-ipu-0tul) 1 - iW52I (30)
c 2 c- 2 2oo-2oe

Because go(t) is real, only the real part of (30) is needed.

This tedious calculation has been carried through, with the

following result; define auxiliary variables

R 2_ /2 2+ = 2 D 02 +P,2 EU - exp(-Oc), E - exp(-20m),

C - cosh(20a), S - sinh(20a), C W cos(2pa), S - sin(2pa)

Co- cosh(0ow) , S - sinh(0o) , Cw - cos(iucc) , SU) - sin(pcc)

C1  C (R Ca - I S ) + S W S&) (R Sa + I C

C2 - a Ca (R Cu) - I Sw) + Sm Sa (R SO + I C(O)

C -R C W- I S W (31)

Then we find that

DC+E C for 0

G. (3) 2)
2a 2OD 21 - E C + E C2  for 2a <

14
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Also, G cr(w) is even in w. A program for G c(w) is listed below,

where W n w, A a a, B a ~ U m /p.

10 DEF FNGcr(W,A,B,U) I A > 0 ,B > 0
20 Wa-ABS(W)
30 Tb-2.*A*B
40 Tu-2.*A*U
50 Bw-B*Wa
60 Uw-mU*Wa
70 B2-B*B
80 U2-U*U
90 R-B2-U2

100 I-2.*B*U
110 D-B2+U2
120 Ew-EXP(-Bw)
130 Ea-EXP(-Tb)
140 Ca-COS(Tu)
150 Sa-SIN(Tu)
160 Cw-COS(Uw)
170 Sw-SIN(Uw)
180 CiR*Cw-I*Sw
190 IF Wa<2.*A THEN 250
200 Ra-1./Ea
210 C2-.5*(Ra+Ea)*Ca*C
220 C2-.5*(Ra-Ea)*Sa*(R*Sw+I*Cw)+C2
230 T-Ew*(C2-C)
240 GOTO 290
250 Rw-1./Ew
260 C1-.5*(Rw+Ew)*Cw*(R*Ca-I*Sa)
270 Clm,5*(Rw-Ew)*Sw*(R*Sa+I*Ca)+C1
280 T-D*(Tb-Bw)-Ew*C+Ea*C1
290 RETURN PI*T/(Tb*A*D*D)
300 FMEND

We now substitute (29) into (5) and get

Vdt [sin( at)]2 sin(Myt) -1 G (Ymt) ,(33)

lc j(tP) 2 + 0 2 Ott sin(yt) E ci-

where G cr (w) is given by (31), (32), and its even character. The

break in form in (32) at w - ±2at precludes a closed form for the

sum in (33). However, (6) is still applicable.

15
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When (29) is utilized in (9), there follows

v dt [sin(t)
2  sin(Myt) 

2

2c (tP) 2 + 02 sat I Lsin(yt) I

M-1

- (M - Im) Gcr (2ym) (34)

m-l-M

Equation (10) may also be employed here.

SPECIAL CASES

If we set M = 1 in (17), there follows

dt - G (0) (3

t (t_) 2 2 ar - (35)

where we used (16). The same case in (27) yields

J dt sin(at) G() -

(t-P) + 02 at br

- 2n 0 exp(-Oa) [0 cos(uc) - p sin(p)]) , (36)
Ots(0 2 + 2)

upon use of (26) and (25). Finally, from (33),

16
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J dt Fsiln ( t) 12 G(0
(tp)2 +-2 a t " Gcr(O) -

"2 (2 1) + 13 j

2 n 2 2 ( 2 + 2 - R + E (R C - I S a (37)

22  ( 2 + 2 )

using (32) and (31).

17/18
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APPLICATION TO SUMS

In this section, it is more convenient to use Parseval's

theorem (2) in the form

V - dt g(t) h*(t) - f df G(f) H(f) , (38)

where Fourier transform

G(f) - f dt exp(-i2nft) g(t) .(39)

Now, we take as our candidate h(t) function,

h(t) = p(t) AS (t) , (40)

where 8a(t) is the infinite impulse train

66(t) T 6(t - kA) (41)
k

The Fourier transform of h(t) is then

H(f) = P(f) * 6 1 (f) = P(f -(42)

k

where P(f) is the Fourier transform of p(t), G denotes

convolution, and we have utilized the fact that the Fourier

transform of impulse train 66 (t) is another impulse train,

61/6(f).

Substitution of (40) and (42) in (38) yields

19
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V = g g(kA) p*(kA) = df G(f) P*f (43)

k k

For general p(t) and P(f), this will not be a useful relation,

since the right-hand side of (43) is an infinite sum of

integrals. However, we will be interested here only in the

special cases of

=[ sin(Myt) i]n
p(t) sin(yt) n n integer (44)

CASE n = 0

For n = 0, the above relations specialize to

p(t) = 1 , P(f) 6(f)

H(f) 6(f-~K
k

V0 - A i g(kA) G(t) (5
k k

This is a discrete version of Parseval's theorem. Although one

infinite sum has been traded for another, we can now choose that

alternative that has the most rapidly decaying (and/or easily

computed) summand for numerical evaluation.

20
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CASE n - 1

Now we have, via (3),

M-1

p(t) sin(Myt) exp(iytm) (46)sin( t) m
m-i-M

There follows

M-I
Plf) 6 (f - 2ymn '

m=l1-N
M-I-

H(f) = YMf

k m=1-M

V = A g(kA) sin(Myrk) (47)
sin( yAk)

k

M-1

=ZG (I+ 2-) .(48)
k m=1-M

Again, we have an alternative infinite sum (48) that

hopefully decays faster than the original sum (47). The

sin(Mx)/sin(x) term does not help convergence in (47) because

this term never decays for large x. Although (48) is a double

sum, the summation on m only contains M terms; the utility of

(48) depends heavily on the asymptotic decay of G(f) for large f.

21
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CASE n = 2

With the aid of (7), we now find

[sin(Myt) 2 M-

p(t)- [sinyt I E (M - l) exp(i2ytm)

m-l-M

M-1

=~f (Mi - lint) (f - Ynm=1-M

M-1

H(f) E (Mi - Iln) 6(f - Ic- fl

k m=l-M

V2 = A) g(kA) sin(mybk) 2 (49)

k

). (M - ,m[) G k + -Lm- (50)

k m=l-M

EXAMPLE

Consider, as in (14) and (16),

1

a(t) =(t-p) 2 +

G (f) = ! cos(2npf) exp(-2nOlfl) (51)
ar is

The summations in (47) and (49) are very slowly decaying, leading

to difficulty in attaining accurate results. The alternatives in
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(48) and (50), on the other hand, have exponential decay and can

be evaluated quite accurately. The additional examples given

earlier in (23)-(26) and in (29)-(32), along with the

corresponding programs, lend reasonable alternatives to some

otherwise lengthy numerical calculations.

SOME RELATED SUMS

Here, we collect a few closed form results for sums involving

the sin(Mx)/sin(x) kernel. For ease of notation, define

SN(M,k )  sin(Mkn/N)

N sin(kn/N) (52)

Observe that

M for k = 0, ±2N, ±4N,...

{M(-I)M -1 for k - ±N, ±3N,... (

Then, we find the sum over one interval to be

N- 1 S I M for M even)

k-0 S(i + 2J) for M odd )
where

J INT( (55)
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The sum over a double interval is

2 N - 1 S ( M(k ) 0 f o r M = 0 , 2 , 4 ......
2N- SN(M,k) = . (56)

k-0 12N for M - 1,3,...,2N-1

The correlation on the second variable of SN is

N-IZ SN(M,k) SN(M,k+j) = N SN(M, j ) for 0 - M N and all j. (57)

k=0

Finally, the correlation on the first variable is

N-I

. SN(M,k) SN( M+2 L,k) 4M(M + 2L) +

k=0

MN M-2L) for 0 < M + L <N{~:;"~ I NJ (58)
(3M + 2L -2N) - M(M + 2L) for N < M +

for all M, L, N, where

= M MOD N , L=L MOD N . (59)
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SUMMARY

Extensions to integrals involving [sin(Mx)/sin(x)]n for n > 2

are possible, based upon the results presented here. For

example, starting from (12A) for arbitrary weights, we could

consider

h5 (t) - 2) Z lP) exp(-i2ytp) , (60)

p

where

(p) #(m) #*(m-p) (61)

m

is the autocorrelation of sequence {J(m)J defined in (12B).

Therefore, Fourier transform

H5(W) - 2n , (p) 6(w + 2yp) , (62)

p

giving rise to

V5 .j dt g(t) h5 (t) *(p) G(2yp) (63)

p

The case of equal weights {wk} in (12A) now corresponds to n - 4

in the sine function ratio above, and *(p) is the autocorrelation

of a triangular sequence.
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The evaluation of integrals and sums involving the term

[sin(Mx)/sin(x)]n can often be simplified by the use of

Parseval's theorem because this term has a Fourier transform

which is a finite sum of delta functions. Major effort can then

be concentrated on getting the Fourier transform of the

complementary part of the integrand. This procedure has been

applied here to several examples which arise in evaluation of the

response of equispaced arrays to distributed spatial fields. For

more complicated fields, a fast Fourier transform procedure

combined with the above result leads to a very efficient method

of integral evaluations. Applications of this procedure have

been made in [5].
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APPENDIX A - USE OF FAST FOURIER TRANSFORM

The summations for V and V2 in (5) and (9), respectively,

require the evaluation of the Fourier transform of g(t), namely

G(w), at equispaced increment 2y. But this latter function can

be approximated by means of the trapezoidal rule according to

G(w) - J dt exp(-iot) g(t) -

Ai exp(-ioabn) g(nb) n G(w) - G(w - n-) , (A-l)

n n

where A is the sampling increment in t. The latter summation in

(A-i) indicates aliasing lobes separated by 2n/A on the w axis.

In order to control aliasing, we must choose 6 small enough, say

a < a Then samples of approximation G(w) in (A-i) at multiples

of 2y are given by

G(2ym) - A T. exp(-i2y~mn) g(nA) .(A-2)

n

Now since A is arbitrary, except for upper limit 0,0 choose

- , (A-3)NyP

where N is an integer and y is the prescribed increment in w. In

order that A be less than a0, we must take integer

n (A-4)
y 0

Use of (A-3) in (A-2) gives
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G(2ym) - . exp(-i2nmn/N) g(na) - (A-5)

n

N-1

- A exp(-i2nmn/N) gc(n&) , (A-6)

n-O

where "collapsed" sequence [4; pages 4-5]

c (nA) Z g(na + kNA) for 0 < n < N - 1 (A-7)

k

The manipulation from (A-5) to (A-6) is exact; it avoids

truncation error normally associated with functions g(t) which

decay slowly with t. The sum on k in (A-7) must be carried out

(for each n) until negligible values for g are encountered for

both positive as well as negative values of k.

Equation (A-6) indicates that values of G(2ym) for m - 0 to

N - 1 are available by an N-point fast Fourier transform when N

is a power of 2. Values for negative m are available in location

m mod N. In order to get all the desired values of G(2ym)

required for (9), without aliasing, we also require that N/2 > M.

Thus, the final condition on integer N is

N > max(-, 2M) (A-8)

For the case of (5), where the increment on w is 2 y, but

starting at w - y, we return to (A-I) to find that

G(y + 2ym) - A T exp(-iy~n - i2y7mn) g(n6) . (A-9)

n
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The same choice of A in (A-3) now yields

G(y + 2ym) - A T. exp(-i2nmn/N) exp(-inn/N) g(nA) . (A-10)

n

This result is identical to (A-5) except that g(nA) must be

replaced by

exp(-inn/N) g(nA) n §(nA) . (A-l1)

Calculation of the collapsed version of is eased by the

observation that

c (na) §. (nA + kNA)

k

exp(-in(n + kN)/N) g(nA + kNA) =

k

- exp(-inn/N) T (-l)k g(nA + kNA) for 0 < n < N - 1 , (A-12)

k

thereby leading exactly to

N-1

G(y + 2ym) - A T exp(-i2nmn/N) c (nA) (A-13)

n-0

The leading phase factor in (A-12) only needs to be evaluated at

N different values, and the sum in (A-12) requires differencing

of "adjacent" samples of g spaced by NA, rather than the straight

summation previously adequate for (A-6) and (A-7). Condition

(A-8) applies here as well.
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APPENDIX B - PROGRAMS FOR (6), (10), AND (13B)

Table B-1. Program for (6)

10 M-7 I > 0
20 Gamma-i.31 ! > 0
30 DOUBLE M,Ms ! INTEGERS
40 S-0.
50 IF (M MODULO 2)-i THEN 110
60 FOR MS-1 TO M-1 STEP 2
70 S-S+FNG(Gamma*Ms)
80 NEXT Ms
90 VI-2.*S

100 GOTO 150
110 FOR Ms-2 TO M-1 STEP 2
120 S-S+FNG(Gamma*Ms)
130 NEXT Ms
140 Vl-FNG(0.)+2.*S
150 PRINT M,Gamma,Vl
160 END
170 !
180 DEF FNG(W)

Table B-2. Program for (10)

10 M-6 ! > 0
20 Gamma-.71 I > 0
30 DOUBLE M,Ms ! INTEGERS
40 G2-2.*Gamma
50 S-0.
60 FOR Ms-i TO M-1
70 S-S+(M-Ms)*FNG(G2*Ms)
80 NEXT Ms
90 V2-M*FNG(0.)+2.*S

100 PRINT M,Gamma,V2
110 END
120 1
130 DEF FNG(W)
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Table B-3. Program for (13B)

10 M-9 ! > 0
20 Gamma-.79 ! > 0
30 DOUBLE M,Ms,Ks ! INTEGERS
40 DIM W(100)
50 REDIM W(I:M)
60 CALL Weights(M,W(*)) I REAL WEIGHTS
70 G2-2.*Gamma
80 S-0.
90 FOR Ms-i TO M-1

100 Phi-O.
110 FOR Ks-MS+1 TO M
120 Phi-Phi+W(KS)*W(Ks-Ms) ! CORRELATION OF WEIGHTS
130 NEXT Ks
140 S-S+Phi*FNGr(G2*Ms)
150 NEXT Ms
160 Phi-0.
170 FOR Ks-i TO M
180 Phi-Phi+W(KS)*W(Ks)
190 NEXT Ks
200 V4-Phi*FNGr(0.)+2.*S
210 PRINT M,Gamma,V4
220 END
230 !
240 SUB Weights(DOUBLE M,REAL W(*))
250 DOUBLE Ks I INTEGER
260 T-2.*PI/M
270 FOR Ks-i TO M
280 D-Ks-.5
290 W(Ks)-1. ! FLAT WEIGHTS
300 W(Ks)-.5-.5*COS(T*D) ! HANN WEIGHTS
310 W(Ks)-.54-.46*COS(T*D) ! HAMMING WEIGHTS
320 NEXT Ks
330 MAT W-W/SUM(W) ! NORMALIZATION
340 SUBEND
350 !
360 DEF FNGr(W)
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