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SUMMARY

We begin this report with an introductory review of some important terms and concepts
in the area of image analysis. Among the topics covered are one- and two-dimensional periodic
functions, frequency representation of simple images, frequency bandwidth, orthogonalit%.
basis properties, and Fourier analysis. We then present a formal method for representing images
in the combined position-spatial frequency space. Specifically, a technique is described for
generating visual images by adding together luminance distributions in the form of sinusoids
confined by Gaussian envelopes. These distributions are known as Gabor elementary functions
(GEFs). The main advantage in using GEFs to generate images is that they are spatially localized
and hence provide an efficient means for representing images in which information is distributed
nonuniformly. Thus, GEFs can be used to generate images wh:ch can be efficiently matched
to the inhomogeneities of the human visual system. In addition, the method described here
for representing images is shown to be compatible with a variable resolution scheme which
distributes image information based on the human visual system's ability to use it. A possible
hardware implementation of the present image generation technique is described and some

potential problems associated with its development are discussed.
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EFFICIENT IMAGE GENERATION USING LOCALIZED
FREQUENCY COMPONENTS MATCHED TO HUMAN VISION

I. GENERAL INTRODUCTION

The major problem confronting designers of high-fidelity visual simulators is the dual
requirement of high resolution and wide field of view. At even moderate light levels the spatill
resolution of the human visual system is better than 0.5 minute of arc, and its effective field
of view subtends more than 104 square degrees. To generate (and update at 60 Hz) an im:me

over this field of view, with sufficient detail to provide full resolution regardless of te
operator's point of gaze, would require that visual data be manipulated at a rate exceeding 1 (J'-

bits per second. Obviously, even the most powerful computers cannot perform such a task i,
a real-time environment; thus, in practice, either resolution or field of view must be compromised
(Schachter, 1983).

Conventional computer image generation techniques are inherently inefficient for at least
two reasons. First, in order to generate a realistic approximation of a natural (i.e., fully textured)
image, conventional techniques require the specification of each of millions of display picture
elements (pixels). Second, they allocate image information uniformly across the visual field
while the human visual system is distinctly nonuniform in its ability to acquire and proce'.'

that information. The purpose of the present report is to describe a technique for \ isual ima ge1
generation which addresses these two limitations. The proposed technique retains many of the
best features of existing image generation techniques and in addition incorporates features
designed to generate and present imagery more efficiently.

The computer image generation technique proposed here draws upon such diverse fields
as communication theory, visual anatomy, neurophysiology, and imaging technology. We x ill.

therefore, begin with an overview of various terms and concepts which will be used throughout
the report. This will be fuilowed by a detailed description of the proposed image generation
technique, as well as associated technologies required for its efficient implementation.
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II. PERIODIC FUNCTIONS AND FOURIER THEORY

Introduction

Traditionally, there have been two general approaches to image representation. The first

involves a point-by-point or pixel-by-pixel (where the term pixel is short for "picture element")

specification in the spatial domain. This type of representation is appropriate for describing

the spatial operation performed by the first layer of the retina, where an array of approximately
120 million photoreceptors (mostly rods) samples the image. Such a spatial pointwise specification

of an image is most suitable for images made up of information confined to small, discrete
areas of the visual field. A good example of this would be the image of Figure Ia, which

depicts the pattern of stars representing a well-known constellation. For this type of image.
the pointwise representation is very efficient in that a small set of numbers, specifying each
star's position and intensity, can fully describe the image for its storage, transmission or any

other application. If, however, the information is widely distributed over the image, then a
large set of numbers is required for specifying its content using the point-by-point

representation. Consider for example the image presented in Figure lb. In this case, the
brightness of practically all pixels has to be specified in order to represent the image using a
pointwise representation. The repetitive (periodic) structure of the image suggests, however.

that there may be a more efficient way of representing the image.

This brings us to the alternative approach for representing an image--namely, the use of

periodic components, each of which extends over the entire image and which when added
together will represent the image as a whole. An image like that of Figure lb, for instance,

can be generated by adding together only 48 relatively simple luminance distributions. The
entire image can therefore be represented by as few as 96 numbers (i.e., the spatial frequency
and phase of each of the 48 components) as compared to specifying thousands of individual
pixel values. It is desirable in this context to choose a set of components whose properties are

such that they can be used to specify (i.e., synthesize or analyze) any image. That such a set

of components exists was first shown by the famous French mathematician and physicist Jean
Baptiste Joseph Fourier. Fourier's technique will be described in some detail below, following

the introduction of several basic terms and concepts which will be required here and in later

sections.

One-Dimensional Periodic Functions: The Sinewave Grating

Some of the simplest images encountered in image analysis and synthesis (Ginsburg, 1978:
Papoulis, 1968) as well as in vision research (Braddick, Campbell, & Atkinson, 1978, Campbell
& Maffei, 1974; Ginsburg, 1978) are those whose intensity varies periodically in one dimension

only. The intensity distribution of such a periodic image is shown in Figure 2. An example
of an image, whose intensity variation is given in Figure 2, is shown in Figure 3a. where it is
assumed that the image, being viewed through a circular window, extends to infinity in all

directions. The image of Figure 3a contains no structure in the vertical dimension--that is, a

2
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constant value would be obtained if image intensity were measured along any vertical path.
Thus, although the image is spatially two-dimensional, it can be adequately represented by the
one-dimensional function shown in Figure 2. This one-dimensional function is known as a
cosine wave (abbreviated "cos") and is completely specified by three parameters: its amplitude
(A), which is a measure of half the vertical distance between adjacent peaks and troughs; its
mean luminance (Lmn), which is the level about which the sine wave varies; and its spatial
frequency (w = 27r/d), which is a measure of the number of cycles or peak-to-trough pairs that
occur within a given horizontal distance, d. Thus, luminance distributions like those shown
in Figure 2 can be fully described by the equation:

Lunminance(x) = Lmn + A cos(Wxx).

In the fields of optics and image science, the amplitude of a cosine luminance distribution
is often specified by the quantity m*Lmn where m [= (Lmax - Lmin)/(Lmax + Lmin), see Figure
2] is known as the modulation or contrast of the luminance distribution. By this definition.
m varies from 0 (i.e., a homogeneous field) to I (i.e., a grating with peak-to-trough amplitude
equal to 2 "Lmn). Unless otherwise noted, the following discussion will assume, for simplicity,
that Lmn for each cosine wave image is equal to its amplitude (m'Lmn), which is equivalent to
the assumption that m is maximal (i.e., equal to 1). The consequence of this assumption is that
the minimal luminance, which occurs at each trough of the cosine wave, will be zero rather
than some positive number.

The cosine wave described above is defined relative to a reference point about which it
is symmetric. This means that the ordinate values of the function are the same for abscissa
values equidistant from the origin in each direction. If the cosine wave is translated a distance
equal to one-quarter of the distance between peaks, the result is an antisymmetrical function
which is called a sine wave (abbreviated "sin"). For an antisymmetrical function, the ordinate
values corresponding to points equidistant from the origin to the left and right are equally
different in magnitude (luminance) from the mean level but are in opposite directions relative
to it. [Sine and cosine waves are often collectively referred to as sinusoids.] We may conclude
from this example that in addition to amplitude, spatial frequency, and mean luminance, the
shift along the spatial coordinate relative to the reference point must also be specified in order
to fully define a sinusoidal function. The shift is called phase, and it is measured in degrees
(0-360 degrees) or radians (0-27r). Clearly, any addition of multiples of 2r (or 360 degrees)
will not affect the relative position of the function. When phase, 4, is taken into account and
remembering that A = m-Lmn, the equation describing the sinusoidal grating becomes:

Luminance(x) = Lmn + m-Lmn cos(wxX+S)]

= Lmn [1 + mlcos(WxX+4')].

It should be noted that a sinusoid of any phase can be obtained simply by adding together
one sine and one cosine function of the same spatial frequency, providing that their amplitudes
can be varied appropriately. This is a consequence of the trigonometric identity sin(a+b) =
sin(b)cos(a) + cos(b)sin(a). If the quantity b on the left side of the equation is interpreted as
a phase shift, then the terms sin(b) and cos(b) on the right side are constants representing the
amplitudes of the sinusoids [namely, cos(a) and sin(a)] with which they are associated. Clearly.
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then, the sinusoid of arbitrary phase represented by sin(a+b) can be obtained by adding together

two sinusoids of the same spatial frequency if the amplitudes of the latter can be varied as

required. Although this is a simple and well-known relation, its practical consequences are
not often noted. We will return to this point in our discussion of the frequency representation

of sine wave gratings.

Two-Dimensional Periodic Functions

Spatial structure in two dimensions can be introduced by changing the orientation of the
sinusoid of Figure 3a, this producing the image shown in Figure 3b. The image of Figure 3b

is similar to that of Figure 3a except that it has been rotated 45 degrees in the clockwise

direction. The effect of a change in orientation can be seen in the intensity representation of

this image. The amplitude (or contrast) of the function has not changed but its horizontal
frequency has. In addition, the rotated image now exhibits spatial structure in the vertical

dimension. Thus, the functional form of the image now contains both horizontal (wUx) and
vertical (wyy) spatial frequency terms and may be expressed as:

Luminance (xvy) = L. [1 + mcos(wxX + wy,).

As is obvious from this expression, a vertical grating (Figure 3a) is the special case of an

oriented grating (Figure 3b) whose spatial frequency in the vertical direction (w,) is zero.

Similarly, a horizontal grating (Figure 3c) has a non-zero vertical spatial frequency but a

horizontal spatial frequency (w,) of zero.

Consider next the image shown in Figure 3d which shows two sinusoids added at right
angles to each other, resulting in a multicomponent two-dimensional grating. If the intensity

of this image were measured along any horizontal (or vertical) path, a function of the same
general form as that shown in Figure 2 would result. However, the mean luminance of these

functions is now dependent also on the intensity variations in the complementary orientation.
This dependence of image intensity, on both the vertical (Figure 3a) and horizontal (Figure

3c) components making up the image, pertains irrespective of the path along which it is

measured. The equation representing the grating shown in Figure 3d is:

Luninance(x,y) = Lmn [1 + m-cos( wxX) + nicos(Uwy-v]

Finally, rotating the multicomponent image of Figure 3d by 45 degrees results in the image

shown in Figure 3e and the following functional representation:

Luminance(xy) = Lmn [1 + McoS(W~x + wy) + nzcos(wxX + wy)]

Note that when two luminance distributions with the same mean luminance are added

together, the mean luminance is doubled. In order to maintain the same mean luminance in
the multicomponent image as in its components, it is necessary to halve the mean luminances

of the components before adding them. in the resulting scaled image, the majority of the

horizontal and vertical luminance crosscuts have a mean luminance different from that of the

entire image and hence of the individual components of the image. Further, none of the

horizontal or vertical crosscuts of the multicomponent image shown in Figure 3d exhibit the
full peak-to-trough luminance of the components. However, along the major diagonals of

7



the image (at 45 and 135 degrees) and for periodically spaced crosscuts parallel to them, both

the mean luminance and the peak-to-trough luminance are the same as in the original component

images. The spatial frequency of the periodic structure along the major diagonals is lower, by

a factor of the square root of two, than that of either of the component images. Thus it is

evident from the images shown in Figures 3d and 3e that complex luminance variations can

emerge when as few as two simple luminance distributions are combined. As will be demonstrated

later, the complexity of multicomponent images further increases when the spatial frequency

and phase of the individual components are varied.

Frequency Representation of Simple Images

As noted earlier, sinusoidal images can be fully described by their amplitude, mean

luminance, spatial frequency, and phase. Because only three numbers (recall that we are

assuming that amplitude = mean luminance so that m = i) are required to specify an image
like that shown in Figure 3a, the luminance distribution across such an image, technically

composed of infinitely many points, may be considered exccssively complex. An alternate
method for conveying the information contained in Figure 3a is shown in Figure 4a, where
the horizontal axis now represents spatial frequency in units of cycles per millimeter and the
vertical axis represents amplitude. Figure 4a may be descrbed as a representation in
one-dimensional (I-D) spatial frequency space. As is evident from the figure, two functions
(each shown as an arrow representing an amplitude and a spatial frequency) in this space are
sufficient to describe any image of the type represented by Figure 3a.

The functions represented by the arrows in Figure 4 are known as Dirac delta-functions
(6-functions). These functions are assumed to have zero width and infinite height so that,
though the function technically exists at only one point, the area under the function is equal
to 1. Because it is difficult to draw a function of infinite height, 6-functions are by convention

represented by an arrow whose length corresponds to the area under the function. When
S-functions are used in the context of grating images, the height of the 6-function is related
to the magnitude (contrast) of the grating, and its distance from the origin is related to the
spatial frequency of the grating.

[Note that an infinite homogeneous field would be represented in frequency space by a single

S-function located at the origin (i.e., corresponding to a spatial frequency of zero). Recall also
that all grating images are, in effect, sinusoids added to a homogeneous field. Therefore, all
frequency representations of these images should include a component at the origin. For the
sake of simplicity, however, we have chosen not to include this component in our figures.]

Although one S-function in the I-D space of Figure 4a would suffice to specify spatial
frequency and amplitude, a second point is required to specify the phase of the sinusoid. This

concept is illustrated in Figures 5a-d which depict, respectively, the I-D spatial frequency
representations for the functions Y = Lmn sin(wx), Y = L.n sin(wx) + 30', Y = Lmn sin(wx) +

60', and Y = L,1,, sin(wx) + 90') = cos(wox). The upper and lower diagrams on the right are the
conventional representations for the sine and cosine functions, respectively, wherein each

6-function is of unit length. Differences in phase are represented by different relative lengths

8
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of the two 5-functions representing the grating. The procedure for calculating those relative

lengths is shown to the right of each diagram and consists simply of combining the sine and

cosine representations with different relative weights.

The images of Figures 3b, 3d, and 3e also can be represented in the spatial frequency

domain, as shown by the corresponding plots in Figure 4. Because these images are

two-dimensional, a second spatial frequency axis is required for representation in what rna.

be called two-dimensional (2-D) spatial frequency space. In this space, the image of Figule

3b is represented by two 6-functions located along the same line in the ×-Wy plane (see Figure

4b). This line is not collinear with either of the spatial frequency axes and so the image

represented by the two 6-functions on that line can be projected onto both of the orthogonal

axes--that is to say, it is an oriented grating. The magnitudes of the projections onto the tvo

axes are w1 and w2 , and so the spatial frequency of the grating measured along an axis orthogonal

(i.e., at 90 degrees) to its orientation is equal to \ w'+, w . The orientation of the grating

making up the image of Figure 3b is now represented by the angle labelled 9. which inI this

case is 45 degrees and can in general be obtained by the formula tan 0 = sin 6;cos 0 = ,

The image of Figure 3d, although it is also two-dimensional, is different from that of

Figure 3b in that it is composed of two gratings at right angles to each other. The image of

Figure 3d may be represented in the 2-D spatial frequency space by two pairs of 6-functions,
with one pair located along each of the orthogonal frequency axes (see Figure 4d). The phases

of the two gratings are equal and so the 6-functions in each pair have the same amplitude.

Also, because the two component gratings have the same spatial frequency, the 6-functions are

equidistant from the origin. Finally, the image of Figure 3e may be represented in 2-D spatial

frequency space by the four 5-functions shown in Figure 4e, which are no longer on the .."

and w 0 axes but which are the same distance from the origin as the 5-functions of Figure 4d.

As was the case for the single grating shown in Figure 3b, the spatial frequencies and orientations

of the two gratings of Figure 3e are represented by the projections of each pair of points on

the two axes.

The three-dimensional space shown in Figures 4b, 4d, and 4e is difficult to depict; so in

situations where the spatial frequency of image components is of primary importance (and the

amplitude is either constant or can be specified separately), two-dimensional spatial frequency

information is often represented as shown in Figure 6. Here the horizontal and vertical axes

represent spatial frequencies along the two spatial dimensions of the image. In this representation,

any point which falls on either of the axes corresponds to a one-dimensional grating--a vertical

grating if it falls on the w. axis and a horizontal grating if it falls on the way axis. An\ other

point will have projections along both axes and hence will represent a one-component.

two-dimensional (oriented) grating. Consider, for example, the point P shown in Figure 6.
The grating represented by this point has projections whose magnitudes are w, and X2 as as

discussed earlier in reference to Figure 4b.

11
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Spatial Frequency Bandwidth

The spatial frequency representations shown in Figure 4 apply only to sinusoidal images
of infinite extent. Only in the case of an infinite grating is it appropriate to represent the
luminance distribution by a single spectral function of infinitesimal width (i.e., a 6-function).
Obviously, real images are limited in their spatial extent and as such may be considered to be
a product of an infinite image and a finite window. An example of the window function alone
is shown in Figure 7a. This function is simply a homogeneous field of limited extent whose

luminance is equal to the mean luminance of the gratings shown in Figure 7b (and other figures
presented in this report). As was discussed earlier, an infinite homogeneous field can be
represented by a single spectral component (6-function) which is positioned at zero frequency
and whose amplitude is related to the field luminance. However, if a homogeneous field is
restricted in its spatial extent, the resulting associated spectral distribution becomes continuous
and theoretically infinite in its spectral extent. The spectral distribution associated with the
window function of Figure 7a is known as a sinc-function and is shown in Figure 7b. This
distribution, which peaks at zero spatial frequency, displays multiple lobes whose peak magnitude
progressively decreases with distance from the origin.

The grating shown in Figure 7c, like those shown in previous figures, represents the product
of an infinite sinusoidal grating and the window function of Figure 7a. The frequency
representation of Figure 7c will therefore reflect the contribution of both the infinite grating
and the window. Because the grating shown in Figure 7c is generated by the product of two
spatial functions, its frequency representation can be obtained by combining the spectral
distributions of the two spatial functions by an operation known as convolution. We will not
discuss convolution here (see, e.g., Bracewell, 1986, for details) except to note that in the case
where one of the two spectral distributions is a 6-function, the resulting combined distribution
is obtained by shifting the other spectral distribution to the position of the 6-function. So,
for instance, given a fixed window function (representing, say, a visual display), changing the
frequency of a grating presented within this window will result in identical spectral distributions
(determined by the window) but located at different points along the frequency axis.

To gain some insight into the effects of the window itself on the resulting frequency

representation, consider the I-D, windowed sinuscids shown in Figure 8. Each sinusoid has
the same spatial frequency but a different spatial extent. A graphical representation of the
luminance distribution corresponding to each sinusoid is shown as the uppermost of the two
graphs located to the right of each image. The lowermost member of each pair of graphs shows
the sinc-function corresponding to the associated grating image. Changing the width of the
window does not affect the position of the sinc-functions along the frequency axis. However,

as the window decreases in width, there is a concomitant increase in the width of the lobes of
the sinc-function. The result is that component energy is redistributed such that relatively
more of that energy is associated with frequency components farther from the single frequenc\
component contributed by the infinite grating.

13



L~gire' 7. A (I Iat inl~ Iinagr' IS tile SumII Of an 11 111 Inni I fit, and a \ ldo\
I-ntin ()A ho ii gencoll' t'ildl vIC)ICnnnI1I tile 11nd0\\

oh' (al) w Ith anI intit ni orat-i -ihe litredomllinant spat 'ilI CkltlclonC\
of, thle i nlaos I (a ld lb 1) are d Iffe rent.I bUt thIe \k ildok unctilon

hsnot clia nge',d and so nithier has thle ham, rId~idth of' the imo



I igure- S. I) j I Ii . i~ijv~ ~ith n lw II ii c \'l I I iK

HO Iiil 'ci {\Pl I the £v ltie ipcre tll I , II te l~



The range of spatial frequencies associated with spectra like those shown in Figures 7 and

8 is often quantified by defining an effective width of the central lobe. This effective width,

which is usually determined for an amplitude which corresponds to one-half of the peak

amplitude, is called the spatial frequency bandwidth. With the exception of those associated

with images of infinite spatial extent (which are obviously unrealizable in practice), all frequency

spectra contain all spatial frequencies. However, in practice only those components whose

magnitude (or energy) is above a certain value are of interest, and so the spectrum is considered

to have a finite extent. Thus, the spatial frequency bandwidth is not a measure of the number

of frequency components making up a sinusoidal image but rather, of the relative magnitude

of the frequency components which are close to the frequency of the sinusoid itself. In the

context of visual information processing, for instance, the advantage of a narrow bandwidth

image is that there will be fewer frequency components present which might interfere with

detection of the signal of interest (the sinusoid in this case).

Basis Properties, Orthogonality, and Other Characteristics of Sinusoids Which Make Them

Useful for Representing Images

We will discuss in the next section the advantages inherent in producing images by adding

together simple components. To be sufficiently general, a set of such components must .span

the space of all required images, which means that it can be used to generate any image which

belongs to the defined space. A set which meets this requirement is ca)led a hasis. In the

most general case, it is required that the set of functions which constitutes a basis can generate

any possible image. It is usually convenient that the set of coefficients, which determines how

much of each component must be used to produce the required image, be unique and easily

determined. For this to be the case, all of the components that constitute the basis must be

orthogonal. The concept of orthogonality is best discussed in the mathematical context of inner

products (Strang, 1986), which would be inappropriate here. In the present context, orthogonality

is roughly synonymous with independence in that it implies that no component can be obtained

by adding together any of the other components. The sine and cosine functions mentioned

earlier provide an example of an orthogonal basis. The simple trigonometric identity noted

earlier demonstrated that, for a given spatial frequency, any sinusoid could be produced by

adding together appropriately weighted sine and cosine functions. Thus, we may sa' that the

set of sine and cosine functions (the basis set) spans the space of the given sinusoid over all

possible translations (i.e., phases).

As mentioned above, the advantage in using an orthogonal basis is that the resulting

coefficients, wnich are the weights associated with the functions constituting the basis, are

unique and are relatively easily determined. However, a given function (or image in the present

context) can also be represented by nonorthogonal bases. Considering again the example of

the translated sinusoid, the components in that case were sine and cosine functions which are

orthogonal in the sense that one is phase-shifted by 90 degrees relative to the other i.e., sin(wx)

= cos(wx - 900). However, a basis could be formed in this case by using pairs of sinusoids

with other phase relationships. For instance, the component cos(wx) could be replaced by sin(wx

- "), where 6 is any desired phase. The lack of orthogonality of the components in the latter
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case means that both a sine and a cosine term arc now required to express the function which
replaced the original cosine term. Thus, the difficulty in working with nonorthogonal bases
is that the coefficients cannot be determined independently. We will return to this point in a
later section.

We have noted that sine and cosine functions are suited to image analysis and synthesis
because they form a basis set which is orthogonal. However, many other functions also form
orthogonal bases (Higgins, 1977); so, this fact alone does not explain the popularity of sinusoids
for this purpose. We have also noted that the sine and cosine functions are particularly efficient
and easy to deal with computationally. However, it may be argued that this is not so great an
advantage given that powerful computers are now so readily available. There are also other
reasons for the popularity of sinusoids in image analysis. First, sinusoids are an intcgral part
of linear systems theory, which is the most powerful theory in the field of signal analysis.
Specifically, this theory uses the concept of transfer functions whereby the response of a system.
to each frequency component of interest, is specified. Once the transfer function is obtained,
the response of the system to any signal (an image in the present context) can be predicted by
simply multiplying the frequency representation (i.e., spectrum) of the signal by the transfer
function and then computing the inverse transform. Second, many natural phenomena have
resonant properties and, when they are finely tuned and do not dissipate energy, they often
exhibit sinusoidal behavior. Further, because more complex natural phenomena result from
the combined activity of a number of simpler resonating subsystems, they can quite often be
characterized by combining a number of sinusoids which is small relative to the number of'
functions required using any other universal basis. Various studies with natural (textured)
images indicate that important attributes of images are periodic and can be well defined b\
sinusoids.

Frequency Analysis and Synthesis of Complex Images (Fourier Theory)

We will now briefly describe a well-known approach to image representation using
orthogonal components. A fundamental theorem, credited to the mathematician Jean Baptiste
Fourier (and extended to two-dimensional functions), states that the set of two-dimensional
sine and cosine functions spans the space of real-valued two-dimensional functions. In other
words, any image, considered to represent one cycle of a two-dimensional periodic image, can
be generated from a weighted linear sum of the set of sine and cosine functions:

s(.v.y) = [ ,n'sin(n, w,.v + njK.y) + b,,, .cos(n ,w .x x+nck), 1

In this equation, the function s(x,y) represents any two-dimensional image and the pairs of
sinusoids, sin(.) + cos(.), are the components forming the basis. Each component pair corresponds
to a particular spatial frequency (w), and the sets a.. and b.. are the coefficients, or weights.
of the sine and cosine elements associated with the given frequency component. It is these
sets of coefficients which must be determined to uniquely represent an image in terms of its
frequency components. That is, once the coefficient sets are determined, the image can be

17



reconstructed by adding together the appropriately weighted pairs of sinusoids, as indicated

by the summation symbol, E. The only difference between the components referred to in the

equation shown above and the components in the simple trigonometric example presented earlier

is that the former are composed of sine-cosine pairs, are two-dimensional, and are more

numerous. Although we will not describe here the mathematical details of the transform which

determines the coefficients, we reiterate that those transform techniques (see e.g., Bracewell,

1986) are relatively simple and efficient because the chosen basis is orthogonal.

Relevance of Fourier Analysis to Vision

The idea of using visual stimuli composed of frequency components was first presented

by the physicist Ernst Mach, who, in 1866, designed a mechanical device for adding frequency

components of arbitrary amplitude and phase, and whose general contributions to the field of
vision are very well known (see Ratliff, 1972). Schade (1956), who was concerned with neural

processing in the early stages of the visual "luminance channel," applied the spatial frequency

approach in his construction of a photoelectric analog of the visual system. Although it was

clear that images could be fully represented by spatial frequency components, and that linear

(and spatially uniform) systems could be characterized by their response to those frequency

components, the question remained as to whether the frequency decomposition approach was
relevant to visual (i.e., neurophysiological) processing. As it turns out, responses to simple

visual stimuli in the form of sine wave gratings and to complex stimuli composed of the sum

of as few as two sine wave gratings of different frequencies can elucidate fundamental properties
of the visual system (Campbell & Maffei, 1974). Campbell and Robson (1968) showed further
that the human visual system has the highest sensitivity to contrast for spatial frequencies near

three cycles per degree, with sensitivity dropping off at higher and lower spatial frequencies.
This contrast sensitivity function is taken to represent the so-called modulation transfer function

(MTF) of the visual system.

Campbell and Robson (1968) also investigated whether the visual system breaks down an

image projected onto the retina into spatial frequency bands in a manner analogous to the

decomposition of auditory signals by the ear. Given a sine wave grating of frequency wO (the

fundamental), we can define an harmonic to be any grating whose spatial frequency is an
integer multiple of wo . If we decompose a square-wave grating in accordance with Fourier's

theory, we find that it is composed of the sum of the odd harmonics, each having a contrast
inversely proportional to the harmonic number. Because the fifth and higher harmonics have

very low contrast (compared to the fundamental), and because visual sensitivity to these high

frequencies is relatively low, if the fundamental grating is added to a third harmonic (i.e., a

grating whose spatial frequency is 3wa) and if the contrast of the third harmonic is one-third

that of the fundamental, then the combination may be expected to resemble a square wave if
indeed the visual system performs a Fourier-like analysis. This is exactly what Campbell and

Robson found, thus supporting this conclusion at least for certain simple visual stimuli.
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The rationale of the Campbell and Robson experiment described above was as follows: It

there exists a visual mechanism which is selectively tuned to a relatively narrow band around
the spatial frequency of the third harmonic, then it should be possible to reduce the mechanism's
sensitivity by adapting the visual system to a high-contrast version of that harmonic. And,

further, if the visual system processes and transmits the first and third harmonic by different
mechanisms, and if the mechanism responsible for processing the third harmonic can be "turned

off" or alternatively if its sensitivity (or gain) can be reduced, then a square wave should appear
to an observer to look like a sine wave grating (whose frequency is that of the fundamental or
first harmonic). This is exactly what Campbell and Robson found; thus, they concluded that

different frequency components (which may differ also in orientation) are transmitted by
different channels. This conclusion is consistent with the discovery of HUbel and Wiesel (1lubel.
1982) that there are cells in the visual cortex which respond to bars of a particular width and

orientation, and with the findings of DeValois, Albrecht, and Thorell (1982) that such cells
respond preferentially to a band of spatial frequencies which is 1-2 octaves in width.

When discussing Fourier analysis in the context of vision, it is important to consider the
unique role of component phase. It is well known that the visual system is very sensitive to
relative position information (Westheimer, 1978), and when analyzing an image by transform

techniques, position information is described by the phase relationship of the frequenc\
components. Indeed, Fourier phase (i.e., the distribution of phase across the entire frequency
spectrum which constitutes an image) captures all of the edge information in an image; thus,
the amplitudes of the various Fourier components (and hence the image itself) can be
reconstructed from the phase information only (Oppenheim & Lim, 1981). To illustrate the
importance of phase, and to show the dependence of coherent image structure on the degree
of phase specificity, we have generated a sequence of images whose components have the same
spatial frequency, orientation, and magnitude, but different phases. The symmetrical and
perceptually coherent image in Figure 9a was obtained by phase-locking the components such
that one luminance peak of each component coincided with the center of the image (i.e.. all
components were cosine functions with zero phase). The other images in the series were
obtained by progressively increasing the range over which the component phases were randoml\

distributed. As is apparent, the perceived coherence of the image breaks down when the phase
is randomized.

Image Representation Using Nonorthogonal Bases

We noted earlier the advantages in using an orthogonal basis. The practical disadvantage
in using a nonorthogonal basis is that optimization procedures, which involve iterative adjustment

and updating of previously estimated components as new ones are comnuted, are then required
to determine the coefficients. These procedures are computationally more intensive than those
required to determine the coefficients associated with an orthogonal basis, and the problem is
exacerbated as the number of components constituting the basis increases. Nevertheless, it is

often advantageous, for other than computational reasons, to use a basis that is not orthogonal-
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In fact, the formalism to be presented in the next section uses a nonorthogonal basis and so
we will provide here a qualitative description of the rationale and techniques which will be

presented later in greater detail.

Recall that image representation, as we have discussed it, involves first analyzing an image
by finding an appropriate coefficient set, and then resynthesizing the image by first multiplying

the functions making up the basis set by the associated coefficients and then adding up the
resulting products. The set of so-called Gabor elementary functions (GEFs) was chosen as the

basis set for the analysis to be presented below because it consists of functions which efficientl.
match the human visual system. When there are compelling reasons for using a nonorthogonal

basis, specialized mathematical techniques can often be used to overcome the concomitant

difficulties. For instance, and as is the case for the formalism to be described in the next
section, it is possible to find a set of functions, complementary to that originally used in the
decomposition (analysis) of the image, and use it in the reconstruction (synthesis). The second

set of functions are called auxiliary functions and they must have a one-to-one correspondence
with the functions of the nonorthogonal basis which was used in the analysis. The auxiliar\
functions must be biorthogonal to the original functions in the sense that each of the auxiliar\
functions must be orthogonal to all of the functions of the original set except for the one which

corresponds to it (see, e.g., Higgins, 1977, for more details). Once the second set is determined.

the roles of the two sets can be interchanged if desired--that is, either set can be used for the
analysis and the other then used for the resynthesis (see Figure 10).

Another approach to dealing with a nonorthogonal basis set is to orthogonalize it using
the Gram-Schmidt method. This is a well-known and often-used technique. the details of
which may be found elsewhere (Strang, 1986). It should be noted that the orthogonal basis
that results from this or related techniques may not share certain of the properties which made
the original nonorthogonal basis attractive. For instance, if the set of GEFs were ,rtlhogonali/cd.

they might no longer approximate the form of human receptive field profiles.

III. THE GABOR SCHEME: IMAGE REPRESENTATION IN THE
COMBINED POSITION-SPATIAL FREQUENCY SPACE

Introduction

The spatial and spatial frequency approaches to image representation are not mutuall\

exclusive. In fact, given that natural images are generally composed of both periodic and
discretely localized information, they are most efficiently represented bN a scheme which
incorporates aspects of both approaches. There are several advantages of this combined approach

which may be appreciated by considering local changes in information distribution over the

visual field and their effect on the image representation. First, the frequency approach is
limited in that a local change, such as the movement of a small object within the image, often

requires that the majority or even all of the coefficients (Fouriet. Hadamard. etc.) be recomputed.
In the combined scheme, however, only those limited number of components which represent

the localized object will be affected. Second, object movement is more efficiently coded in
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the combined frequency-position space due to the fact that the structure of the object does
not change when the object moves across the field, and so only the spatial (and not the
spatial frequency) specification of the coefficient distribution needs to be updated. Finally,
although the frequency approach is useful for global image processing, it is not appropriate
when nonuniform sampling is required, and it is not efficient for representing images which
vary in their spectral content from area to area. Thus, a technique is desired wherein local
operators are confined to an effective area, which varies as a function of the position in the
field, and which can extract frequency signatures in a manner similar to the way this is
accomplished by the global operators. In other words, we are looking for a technique of
short-distance (ana!ogous to short-duration) frequency analysis which can incorporate variable
resolution.

As noted earlier and as will be described in greater detail below, the components of the
spatial and spatial-frequency representations are a single point in space and a spectral component.
respectively. A singular point in space provides infinite spatial resolution while its frequency
representation spans the entire spectrum. Likewise, a spatial-frequency (spectral) component,
which is characterized by an infinitely narrow 6-function along the spatial-frequency axis,
extends across the entire spatial axis. Thus, the two components are elements of complementary
representations, and it would obviously be useful to specify a function which is most narrowly
tuned simultaneously in both its spatial extent and its spatial-frequency bandwidth. In the
early 1920's, communication engineers attempted to devise such functions and, before
succeeding, often tried to transmit a given amount of information per unit time using what
was later found to be less than the minimal required frequency bandwidth. As was noted by
Gabor (1946), these attempts were analogous to trying to construct a perpetual motion device,
in that, analogous to the principle of conservation of energy, there exists a principle which
imposes certain constraints on the types of signals that can be physically realized.

Gabor (1946) was concerned with problems related to the efficient transmission of signals,
and therefore with the "linkage between uncertainties in the definitions of time and frequency."
As further noted by Gabor, these problems were at about the same time beginning to interest
researchers in the areas of physics and communication theory. Nyquist (1924), working at Bell
Laboratories, proved that the number of telegraph signals which can be transmitted over a
communication channel is proportional to that channel's frequency bandwidth. This important
observation laid the foundation of modern signal theory. Hartley (1928) generalized this concept
by showing that the total amount of information which may be transmitted over such a channel.
or the number of degrees of freedom available over the channel in a given time, is proportional
to the product of the signal bandwidth and the time available for the transmission. Hartley's
paper appeared at about the time that Heisenberg formulated the principle of uncertainty in
the context of quantum mechanics. The essence of this principle is that canonically conjugate.
observable, physical, quantities like position (along the spatial coordinate) and spatial frequenc.
cannut be simultaneously defined in an exact way (i.e., with infinite resolution). That is. the
product of the effective width of a signal in time and the signal's bandwidth can never be less
than a value which represents an intrinsic uncertainty. In other words, uncei tainties are inherent
in the simultaneous definition of position and spatial frequency such that their joint product
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must equal or exceed a certain minimal value. Using the formalism of operations with complex

exponentials, where each complex exponential represents a pair of sine and cosine waveforms

of identical frequency, Gabor (1946) showed that the shape of the signal for which the product

of uncertainties assumes the smallest possible value is the complex exponential (i.e., sine and

cosine functions) modulated by a Gaussian envelope or window. These functions will be

referred to here as Gabor elementary functions (see Figure I I for examples of spatial Gabor

functions).

There are also other reasons why the Gaussian is particularly attractive and useful as a

window function. For instance, it is a smooth function, which is advantageous when derivative

operations are required. Also, the family of Gabor elementary functions (GEFs) resembles a

useful set of basis functions known as the Hermite polynomials which are generated from a

single Gaussian by a sequence of derivative operations, and which are orthogonal with respect

to the Gaussian weight function (Kaplan, 1952). Further, the Gaussian of two independent

variables is separahle in both the spatial and spatial frequency domains, which means that it

can be expressed as the product of two one-dimensional functions. One-dimensional functions

are obviously easier to work with, especially when determining the set of biorthogonal auxiliary

functions. The Gaussian is also unique in that it is Selfsinfi/ar in the spatial and spatial frequency

domains, which means that it remains a Gaussian when transformed from one domain to the
other. Separability and self similarity are properties of the Gaussian which are shared by no

other effectively localized function.

As was noted earlier, it appears to be desirable to combine the spatial and spatial-frequency
approaches for analyzing and synthesizing visual images. Thus the question arises as to whether

there is an optimal way to represent images in the combined space. This problem has long

been appreciated in the area of audition and speech analysis where spectrograms are used to

perform spectral analysis within a sliding window of limited duration (i.e., short-term spectral
analysis). It is well known that sounds are analyzed by the ear into frequency bands and in

fact the sounds that we hear as speech are generated by a relatively small number of such
elements, called formants, which are modulated in time (Flanagan, 1965). Recent analysis of

the responses of cells in the visual cortex (Daugman, 1985; MacKay, 1981; Marcelja, 1980,

Pollen & Ronner, 1983), as well as psychophysical experiments concerned with specifying the
luminance distributions which the eye sees best (Watson, Barlow, & Robson. 1983), and the
interpretation of such data in the context of image representation in vision (Zeevi & Porat,

1984), suggest that, analogous to the auditory system, the visual system may extract "visual

formants" having the form of Gabor functions. Although the total number of such image-forming

components per characteristic unit area (which increases in size as a function of eccentricity

according to some power law) is much larger than the number of speech-forming components.

it may be as small as 4-7 (Watson & Robson, 1981; Wilson & Bergen, 1979) for a given

orientation. There are about 15 such characteristic orientations in vision. Therefore, the total
number of localized frequency components per unit area is about 100 pairs of cells, with the

members of each pair related in quadrature phase.
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(a)

(b)

Figure Il. Examples of Gabor Functions and of an Auxiliary Function. (a)
Examples of luminance distributions in the form of symmetrical
(i.e.. cosine component) Gabor functions. Note that the resulting
images can %arv in position, spatial frequency, orientation,
effective width, modulation, and phase. (b) An example of a
twvo-dimensional auxiliary function which is biorthogonal to the
Gaussian wkindow of any of the Gabor functions.
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Image Representation Using Gabor Functions

Because the spatial and spatial frequency variables described above are complementary
quantities, the fundamental principle of uncertainty of signal r- :esentation imposes basic
constraints on the structure of elementary functions that can be reaiized, and hence employed.
in any type of image representation. Considering the combined frequency-position space, the
most widely used sets of functions are comprised of singular functions (i.e., 6-functions)
presented either along the spatial axis or along the spatial frequency axis (where they are also
referred to as spectral lines or harmonic functions). A 6-function in either domain implies a
function of infinite extent along the complementary axis (Figure 12a)--a condition which is
not realizable in practice. As discussed earlier, we seek general functions which are confined
in the combined frequency-position space in the sense of being limited in their effective (2nd
moment) spatial spread and spectral bandwidth. It can be shown that the spatial and
spatial-frequency singular functions are the limiting cases of the inherent trade-off that exists
between the effective spatial width and the effective spectral width of all possible elementar\
functions presented in the combined space--in fact, the 6-function is mathematically defined
as the limit of a sequence of Gaussians.

To gain some insight with regard to the properties and intrinsic trade-offs characteristic
of the Gabor scheme, and for the sake of clarity, we first present the formalism in the context
of one-dimensional functions which may be thought of as image crosscuts. Let grx, be a
normalized window function centered at the origin. The localized elementary function of order
,m.n is then defined by:

A
f ,( v) = t(.x- fn)). exp(ifllh.) (v)

where rn.n are integers, representing the position and frequency numbers, respectively, and
I'D<27r. The harmonic function fmn(x) is centered at (w=nlf.x=mD} in the combined
frequency-position space, and the parameters If and D determine how the rectangular
Gabor-sampling grid is tessellated (Figure 12b-e). As noted earlier, the choice of a Gaussian
for ,xl minimizes the effective area of support (represented by the ellipses in Figure 12a) in
the positional-spectral plane compared to the so-called joint entropy achieved by any other
window function. This optimal characteristic is, in fact, the main and important advantage of
the Gabor elementary functions (GEFs) compared to other localized elementary functions (e.g.,
those windowed by a squared pulse, one cycle of raised cosine. etc.).
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Figure 12. Space/Frequency Trade-Off and Examples of Various Tessellation
Schemes. a) Representation of a one-dimensional signal in the
combined frequency-position space. The vertical and horizontal
lines represent 6-functions along the spatial axis [labelled 8(x-xo),
and representing an infinitely narrow gratingL, and along the
frequency axis [labelled 6(w-uwo), and representing an infinitely
wide grating]. The ellipses, which represent the effective
band-area, illustrate that restricting either the spatial or spectral
extent of the image results in a concomitant increase in the other
dimension. This trade-off is a direct consequence of the basic
principle of uncertainty of signal representation. Two of the
many possible optimal tessellation schemes satisfying the
condition WD=21r (i.e., 1l'VD 1=W2 D2 ) are shown in (b) and (c). An
example of Gabor-space oversampling (i.e., WD<27r) is shown in
(d).
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If the condition of optimal information cell size, IVD=2,r, is satisfied, the Gabor space is

properly sampled, and the set of functions (finn) is complete (Higgins, 1977). Thus, a given

one-dimensional crosscut of an image, O(x), can be expressed by these elementary functions

(Figure I la), using a set of the corresponding weighting coefficients (arnn) describing the

relative contribution of each GEF:

b(.\-)= ~ ~ /fl f flir ... 0 * ... (\-(\

However, because GEFs are not orthogonal, the analytic formalism for calculating the

coefficients employs an auxiliary function -y(x) (Bastiaans, 1981; see Figure I Ib). This function.
which is biorthogonal (Higgins, 1977) in a certain sense to g(xj, can be found by sol ing the
kernel of the weighted inner product of the Gaussian and the auxiliary function. In view of
the duality between -I(x) and g(x), their roles in the forward and inverse transformations can
be interchanged. This observation is important for the understanding of the scheme and i1

implementation in image representation and generation. It implies that either the Gabor

elementary functions or the corresponding auxiliary functions can be used in image

decomposition for the sake of obtaining the templates of image components (objects). If the
auxiliary functions are used in the analysis of images, then the Gabor elementary functions

are used in the synthesis (generation) of images, and vice versa (see also previous discussion

and Figure 10).

The finite set of expansion coefficients (arnn) provides a compact representation of an

image crosscut. Graphically two maps of coefficient distributions are needed for a complete

definition of an image crosscut--one for the real part, the other for the imaginary part (Figures
13b and 13c). Because the expansion coefficients fully describe an image crosscut (and in the
two-dimensional case, which cannot be depicted graphically, they represent an image). the%
can be considered as the signature of an image in its Gaborian representation.

The basic trade-off between the effective spatial width and the effective spectral vidth

permits the selection of one out of many (theoretically infinite) possible tessellation schemes
appropriate for the space confined by the global effective spatial extent and effective frequency
band. Thus, the finite scheme requires a fixed number of Gabor components, but permits
preselection of any desired number of spectral (Gabor) components for spanning a global
(effective) frequency bandwidth. However, according to Equation (2), such a finite scheme

affords only an approximate representation or reconstruction of a given signal.
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In the case of a two-dimensional scheme, the coefficient space becomes four-dimensional:

(x.y) for position and (wx,w&y) for .. quency (or, alternatively, r,9,wr,WP, in a polar coordinate
system). It can be shown (Porat & Zeevi, 1988) that the two-dimensional representation of a
signal O(x.v) is given by:

4 -(x y) = Z am .1 n,rnYnYA,X Y) (3)
.n m n / xn y,

where a two-dimensional GEF (Figure 11) of order (mxn,mY,ny) is defined by:

fn (xy) = g(x- r.D., y- mYDY)" exp(inl14.x + inyhWyy) (4)

with the separable Gaussian window function:

g(x, y) = g.,(.A-) -g(y), ()

It is required that both one-dimensional window functions gx(x) and gy(x) be normalized (of
unit energy), and that the conditions of proper information cell size, WXDx<27r and WyDy52r,

be satisfied.

To calculate the coeffici, at set {a,, n,.), a two-dimensional auxiliary function (see Figure
11) is employed. D! I the separability of g(xy), and to the duality of the g(x) and -I(x)
functions, '(x.y) ;' also separable. This observation simplifies the extension of the Gabor
scheme into two -dimensional (or higher dimensional) systems (Porat & Zeevi, 1988). Using
the auxiliary function f(x.y), the coefficients ( are calculated by:

Clmxrn mY ny f f (X,Y) Y*(X-m D,, - YD)

exp(-inl4/ _,.x- inYIt"y)Cd.xdy (6)

For the purpose of image analysis and computer image generation using a system which
implements some type of an area of interest (AOI) with eccentricity-dependent sampling and
processing, we represent the Gabor scheme in polar coordinates (r.O). An image O(x.y, may
be expressed by:

((x Y1) Ct (mrnrrnorl " g ] Y' ni, D, .[-llrL tanl~ -' (Y/'\')--['O)OI

tnrflrnrre eol o

x) in, It/, +y 2 + in. o y/x (7)
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with the coefficients calculated similarly to those expressed in cartesian coordinates:

2T- max

amnmn = f f (rcosO,rsin0) y*(r- n D, 0-in 0 DO)"

9-0 r-O

e.P (-ilnrIvrF - inI oO)trdO (8)

Although the image is given in cartesian coordinates, the processing takes place in a polar
coordinate system where inhomogeneity is readily incorporated along the r-axis. The image
is then encoded by elementary functions representing the parameters of position (mrdr,mfdfi)
and spatial frequency (nrWr,n9We). This type of cartesian-to-polar coordinate transformation
is in accord with the global complex logarithmic mapping (representation) which facilitates
certain types of geometric manipulation (Weiman & Chaikin, 1979), and which has been
discussed, in the context of human vision, by Schwartz (1980).

Variable Resolution Using Nonuniform Gabor Sampling

The design of the human visual system itself suggests a method for implementing sufficiently
high resolution over a wide field of view. The visual system is spatially inhomogeneous in
that only a small area near the center of the retina is sensitive to fine spatial detail, and in that
the rate of both spatial sampling and processing decreases in all directions toward the visual
periphery (Kronauer & Zeevi, 1985; Schwartz, 1980). Recognizing this property. flight
simulators are now being designed to provide variable resolution either by partitioning the
image into high- and low-resolution subfields such that a small, high-resolution portion of the
display is always allocated to that portion of the image being fixated by the operator (Fischetti
& Truxal, 1985), or by optically distorting the display such that relatively more raster lines
appear in the vicinity of the operator's fixation point (Diehl, 1976). We describe here a further
refinement of the variable resolution concept whereby visual images are generated using
elementary functions L.aving the form of luminance distributions to which the human visual
system is most sensitive (Watson et al., 1983), and in combinations that reflect the most recent
data on the changes in visual sensitivity across the retina (JOSA, 1987).

We now proceed to incorporate into the scheme the capability of representing or generating
an image by a set of Gabor elementary functions tessellated along a nonuniform Gabor-sampling
grid (Figure 14). The basic idea is to implement, in computer-generated imagery (CGI) for
flight simulators, a finite Gabor scheme wherein the Gabor sampling rate and the local bandwidth
vary as a function of the distance from a focal point to match the characteristics of human
vision as a function of eccentricity (Geri, Lyon, & Zeevi, 1989; JOSA, 1987). The result will

be an image with high spatial resolution, and also widest spatial-frequency bandwidth, near
the center of the visual field, and decreasing resolution (and spatial-frequency bandwidth) as
a function of eccentricity (Figure 15). Such a system can, with limited channel capacity and
limited computational resources, produce imagery of high perceptual fidelity over a wide field
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F~igure 14. Nonuniform S.-mpling and Tessellation and a Resulting 'Variable
----- -Resolution Image. (a).(b) the characteristics of one possible

nonunItfornm Gabor-samrpling schemne. An example of an Image
(c) and its reconstruction (d) using nonuniform sampling.
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(a)
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gW (rj ) 

W r ,

(b) (c)

Figure 15. Schematic Representation of Position-Dependent Sampling, \\hich
ShowNs the Concomitant Space/Frequency Trade-Ot. (a) ,
schematic representation of position-dependent sampling rate
most appropriate for gaze-slaved, computer-generated imager .
The area, around the fixation point, which has the highest (and
fixed) sampling rate has been left blank for clarity. Each hexagon
represents a "Nycuist cell" of information. Shown in (b) and (c)
are the spatial frequency representations of the components which
are added together at two chosen spatial locations.
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of view. It should be noted, however, that the implementation of such a scheme in a flight

simulator, or any other system of displayed information, requires continuous measurement of

eye position so that the focal point of the displayed information and the observer's point of

gaze may be kept coincident. The technology for gaze position measurement is available and

has been implemented in the first generation of helmet-mounted-display flight simulators

(Fischetti & Truxal, 1985; Robinson, Thomas, & Wetzel, 1989; Williams, Komoda, & Zeevi.

1987).

A system characterized by a position-dependent sampling rate cannot be described by a

transfer function (or modulation transfer function) because the impulse response and its

transform are strictly applicable only to linear, position-invariant (i.e., spatially uniform) systems,

Instead, the concept of local bandwidth (Horiuchi, 1968) must be invoked. In the generalized

Gabor scheme, which is characterized by an infinite number of GEFs per Gabor sampling-point,

,he local bamiwidth is theoretically infinite everywhere. In the finite scheme, however, the

local bandwidth is inversely proportional to the size of the corresponding information cells,

examples of which are depicted by the hexagons in Figure 15.

Given a sampling rate function corresponding to the local density of information in the
inhomogeneous system (Figure 12), a distortion function, S(x), can be defined as a functional

of the sampling rate. Such a distortion function (see Figure 14a) may, for example, correspond

to the cortical magnification factor (cf., Kronauer & Zeevi, 1985; Schwartz, 1980). Having

defined the distortion function S(x), the set of expansion coefficients, (amn}, corresponding

to the inhomogeneous system, are determined by:

C,,",, = f I -S - ( -\- d ) I Y* (A (I - n D o / ( - i It,", )C.,( 9)

and the image crosscut is represented accordingly by:

, v) (f S( V ,--, 'In/ 1,)- , exO p[,l,. -S(.x) . o

(For details, see Porat & Zeevi, 1988.) In this scheme the coefficients are calculated using a

distorted version of the auxiliary function -y(x), and the signal is represented and reconstructed

by distorted Gabor functions. This has to be taken into consideration in the design of the

special-purpose system (see below) to be used for generating visual imagery using the Gabor

approach.

Nonuniform sampling using conventional procedures does not necessarily permit lossless

reconstruction because it may not satisfy basic sampling and informational constraints. Further,

only for limited cases do there exist procedures for reconstructing an image from nonuniforml.

spaced samples. In the Gabor case, however, there exist degrees of freedom which permit

nonuniform sampling along one coordinate, and which deterr. ;,e in turn the nonuniform

sampling along the complementary axis. This is the essence of the :.. f between frequenc\
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bandwidth and effective positional spread, which together with the condition of proper sampling
(i.e., WD=27r) determine the tessellating scheme. For any such nonuniform Gabor-sampling
scheme, the original image can be reconstructed using the entire set (theoretically infinitely
large) of elementary functions. The effects of nonuniform sampling become apparent if a
finite (relatively small) set of components is used in the reconstruction. For example, if only
three frequency components are used per Gabor-sampling position, the "local bandwidth"
decreases progressively as a function of the distance from the center (see Figure 14b). This,
of course, affects the fidelity of the image as a function of the distance from its center, resulting
in the so-called variable resolution image. In the finite scheme of image representation, image
quality is related to the effective local bandwidth which can be selected to match visual system
characteristics as they vary with eccentricity. In the technique described here, we use
two-dimensional GEFs positioned at various locations in the field. Such operators extract (in
the case of image analysis) localized 2-D frequency signatures. Because the Gabor operators,
like the Fourier, come in pairs with 90-degree phase shift (i.e., sine and cosine functions), the
ratio of responses to such a pair extracts the relevant phase information. In the case of image
synthesis, such as required in computer image generation for flight simulators, the combination
of amplitudes of a sufficient number of pairs of such components can generate any local
structure and/or global image. For this reason Gabor operators can be useful in a variety of
applications in the field of image science.

In using such a set of GEFs for either image analysis or synthesis, consideration must be
given to how many of them are required to generate or represent a given typical image. Here,
of coarse, we are confronted with the problem of determining just what constitutes a perceptually
acceptable image. In fact, this point touches upon the definition of image structure, which is
one of the most difficult issues in image understanding. In Figure 14b and 14c, we presented
an original image and its variable resolution reconstruction. The latter is obviously "lossy"
(using the terminology of signal processing) in that some of the information in the original
image does not exist in the reconstructed image. However, to an observer who is positioned
at the proper distance from the images (obviously, the images would have to be magnified
beyond the present page size to match this distance), the images will appear similar, provided
that the display system is slaved to eye position.

Synthesis of Fully Textured Images Using Gabor Functions

Several practical problems must be solved before the Gabor approach can be used routinely
to produce computcr-generated images (CGI). First, the Gabor approach (or, for that matter.
any approach) requires the development of a suitable image database. To efficiently exploit
the advantages inherent in the Gabor approach requires that complex, fully textured image
templates be available for incorporation into the simulated visual scene. Second, provision
must be made for manipulating simulated objects via translation, rotation, slanting, and change
of size. Third, algorithms and techniques must be developed for gradually changing the nature
and amount of texture in the simulated image. And finally, the extensive computation associated
with generating Gabor components requires that special-purpose hardware be designed to
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provide these components which may then be combined to form the simulated image. Although
only partial solutions to these problems exist at present, we are able to offer some general
observations and suggestions.

Considering first the design of image databases and the manipulation of simulated objects,
we face a problem similar to that encountered in implementing any computer graphics technique
which uses a set of image primitives; namely, determining how to combine the primitives to
produce the required imagery. If, for example, one defines a set of GEFs which are required
to adequately represent an object in the visual scene--a task that can be accomplished using
Gabor image analysis--then how can the set of components be manipulated to generate the
transformations requited due to the movement of the object with 6 degrees of freedom? W'e
reiterate in this context that the Gabor approach combines the advantages offered by a purel.
spatial approach, in which translation is easily performed, and by a frequency-domain (i.e..
Fourier-like) approach whereby changes in size are easily obtained. However, the remainder
of the transformations, which are required to simulate change in position and orientation with
6 degrees of freedom, cannot at present be fully implemented by direct manipulation of the
sets of coefficient-templates forming the database. Some changes in object and/or terrain
orientation (slant) can be incorporated by manipulating the orientation of the 2-D sinusoids
and the aspect ratio of the Gaussian windows.

Another practical difficulty in producing conventional CGI involves depicting differences
in texture associated with various (usually extensive) objects in the visual field such as terrain.
forests, lakes, and the like. Previous work has demonstrated the efficiency of frequency analysis
in representing images which appear textured (Kronauer, Zeevi, & Daugman, 1982). More
recently, it has been shown that GEFs are more suitable for such an analysis because they are
localized and thus able to handle nonuniform textures (Porat & Zeevi, 1989). Similarly, it is
possible to synthesize nonuniform, textured images using a relatively small number of Gabor
components (Zeevi & Porat, 1988). There is a great deal of redundancy in the structure of
images, and those images are processed by a human visual system that is highly nonlinear.
Thus, Kronauer et al. (1982) were able to show that a small cluster of frequency components
properly distributed over the 2-D spatial-frequency space gives rise to a percept very similar
to that induced by 2-D bandlimited noise (cf. Mostafavi & Sakrison, 1976). Whereas the
dimensionality of the bandlimited noise is extremely high (i.e., many bits of information are
required to specify the image), the perceptually equivalent Gabor-textured image is fully
specified by only a few numbers. This example illustrates the potential power offered by the
GEF approach to the synthesis of textures for CGI.

The final problem to be considered is the extensive computation which would be required
to reconstruct an image from its GEF components in real time, as would be necessary, for
example, in generating realistic flight simulator imager-. In order to reduce the computational
load to manageable levels, special-purpose hardware and new architectures must be developed
for generating the GEF components and combining them into the two-dimensional functions
which are in turn combined to produce the simulated image. The general layout of a computer
image generating system using an adjustable set of hardware-generated GEFs is presented in
Figure 16. For the sake of simplicity, we consider in this diagram a system for generating a
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one-dimensional signal. (PixY, from a set, {/mn), of GEFs. In Figure 16, the discrete spatial
coordinate (corresponding to x=niD) is indicated by the first subscript (from I to M) associated
with the sts of both the coefficients (amn) and the GEFs (fmn). Similarly, the spatial frequency

coordinate (corresponding to w)=n1") is indicated by the second subscript (from I to N) for both

sets. The architecture of the system is highly parallel in that each image is made up of a set
of perhaps 105 coefficients, each object is made up of a subset of those coefficients, and each

coefficient has a direct line to the very large scale integrated (VLSI) circuit module (indicated
by the rectangular boxes, labeled fin in Figure 16) which generates the corresponding GEF

(Einziger & Hertzberg, 1986). That is, the set of GEFs is activated and weighted in parallel

by a set of lines conveying the coefficients which define the image.

For a given gaze position, which defines the area of interest (Williams et al., 1987), the

values fmn are adjusted to give the optimal tessellation for the finite number of GEFs available.
Thus, even in the one-dimensional case, four parameters (central spatial position, central

frequency, effective spatial spread, and the complementary bandwidth) must be adjusted for
each module at each point of gaze. A given image is viewed as being composed of a set of

objects and a distribution of texture across the image space. Accordingly, once an image is
defined (see first stage at left in Figure 16), an algorithm determines the selection of subsets

of coefficients (amn} according to object and texture information stored in the database. As
stated earlier, the objects and textures are defined in the database in a generic form only, and

so the transformations needed to generate a complete, real-world database must be developed

before the proposed CGI system can be realized.
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IV. GENERAL DISCUSSION

Over the last several decades, communication enginccrs and. more recently, computer
scientists have been working on interrelated problems, trying to understand the structure of
images, and to devise techniques for analyzing, synthesizing, transmitting, and displaying images
efficiently. Simultaneously, neuroscientists have made tremendous progress in elucidating the
neural mechanisms involved in biological image representation and processing. It is interesting
to observe the direct influence of ideas and new findings in one field on new developments
in other fields. Although, traditionally, ideas emerging in physics and commu. ication theory
influenced new directions of research as well as the models proposed by visual neuroscientists.
the trend is reversing and increased mutual interaction is now occurring. This is perhaps not
surprising as, in the final analysis, the human observer is often the receiver of displayed
information, and thus any communication and display technology will be more effective if it
is matched to human capabilities. The interest in biological vision systems--of those inxolved
in the development of advanced visual systems, neurobiological architectures, and
machine-vision algorithms--is also due to the recent advances in microelectronics. It is no"
possible to build miniaturized systems which integrate several hundred thousand, highly
interconnected components on a single piece of silicon wafer and to devise algorithms and
architectures for parallel processing. All of these capabilities appear to be necessary for building
biological-like visual systems.
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SOURCE CODE FOR THE PROGRAMS GABORAN.F AND GANAL.F.

The programs presented here implement the Gabor scheme described in Section 3.0. The
program GANAL.F was specifically written for use on a laboratory computer with an optimizing

compiler (NDP FORTRAN-386).
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