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SUMMARY

We begin this report with an introductory review of some important terms and concepts
in the area of image analysis. Among the topics covered are one- and two-dimensional periodic
functions, frequency representation of simple images, frequency bandwidth, orthogonality.
basis properties, and Fourier analysis. We then present a formal method for representing images
in the combined position-spatial frequency space. Specifically, a technique is described tor
generating visual images by adding together luminance distributions in the form of sinusoids
confined by Gaussian envelopes. These distributions are known as Gabor elementary functions
(GEFs). The main advantage in using GEFs to generate images is that they are spatially localized
and hence provide an efficient means for representing images in which information is distributed
nonuniformly. Thus, GEFs can be used to generate images wh'ch can be efficiently matched
to the inhomogeneities of the human visual system. In addition, the method described here
for representing images is shown to be compatible with a variable resolution scheme which
distributes image information based on the human visual system’s ability to use it. A possible
hardware implementation of the present image generation technique is described and some
potential problems associated with its development are discussed.
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EFFICIENT IMAGE GENERATION USING LOCALIZED
FREQUENCY COMPONENTS MATCHED TO HUMAN VISION

I. GENERAL INTRODUCTION

The major problem confronting designers of high-fidelity visual simulators is the dual
requirement of high resolution and wide field of view. At even moderate light levels the spatial
resolution of the human visual system is better than 0.5 minute of arc, and its effective tield
of view subtends more than 104 square degrees. To generate (and update at 60 Hz) an imagv
over this field of view, with sufficient detail to provide full resolution regardless of the
operator’s point of gaze, would require that visual data be manipulated at a rate exceeding 10~
bits per second. Obviously, even the most powerful computers cannot perform such a task in
areal-time environment; thus, in practice, either resolution or field of view must be compromised
(Schachter, 1983).

Conventional computer image generation techniques are inherently inefficient for at least
two reasons. First, in order to generate a realistic approximation of a natural (i.e., fully textured)
image, conventional techniques require the specification of each of millions of display picture
elements (pixels). Second, they allocate image information uniformly across the visual field
while the human visual system is distinctly nonuniform in its ability to acquire and process
that information. The purpose of the present report is to describe a technique tfor visual image
generation which addresses these two limitations. The proposed technique retains many of the
best features of existing image generation techniques and in addition incorporates features
designed to generate and present imagery more efficiently.

The computer image generation technique proposed here draws upon such diverse fields
as communication theory, visual anatomy, neurophysiology, and imaging technologyv. We will,
therefore, begin with an overview of various terms and concepts which will be used throughout
the report. This will be fuilowed by a detailed description of the proposed image generation
technique. as well as associated technologies required for its efficient implementation.




II. PERIODIC FUNCTIONS AND FOURIER THEORY

Introduction

Traditionally, there have been two general approaches to image representation. The first
involves a point-by-point or pixel-by-pixel (where the term pixel is short for "picture element")
specification in the spatial domain. This type of representation is appropriate for describing
the spatial operation performed by the first layer of the retina, where an array of approximately
120 million photoreceptors (mostly rods) samples the image. Such a spatial pointwise specification
of an image is most suitable for images made up of information confined to small, discrete
areas of the visual field. A good example of this would be the image of Figure la, which
depicts the pattern of stars representing a well-known constellation. For this type of image,
the pointwise representation is very efficient in that a small set of numbers, specifying each
star’s position and intensity, can fully describe the image for its storage, transmission or any
other application. If, however, the information is widely distributed over the image, then a
large set of numbers is required for specifying its content using the point-by-point
representation. Consider for example the image presented in Figure Ib. In this case, the
brightness of practically all pixels has to be specified in order to represent the image using a
pointwise representation. The repetitive (periodic) structure of the image suggests, however,
that there may be a more efficient way of representing the image.

This brings us to the alternative approach for representing an image--namely, the use of
periodic componcents, each of which extends over the entire image and which when added
together will represent the image as a whole. An image like that of Figure Ib, for instance.
can be generated by adding together only 48 relatively simple luminance distributions. The
entire image can therefore be represented by as few as 96 numbers (i.e., the spatial frequency
and phase of each of the 48 components) as compared to specifying thousands of individual
pixel values. It is desirable in this context to choose a set of components whose properties are
such that they can be used to specify (i.e., synthesize or analyze) any image. That such a set
of components exists was first shown by the famous French mathematician and physicist Jean
Baptiste Joseph Fourier. Fourier’s technique will be described in some detail below, following
the introduction of several basic terms and concepts which will be required here and in later
sections.

One-Dimensional Periodic Functions: The Sinewave Grating

Some of the simplest images encountered in image analysis and synthesis (Ginsburg, 1978:
Papoulis, 1968) as well as in vision research (Braddick, Campbell, & Atkinson, 1978; Campbell
& Maffei, 1974; Ginsburg, 1978) are those whose intensity varies periodically in one dimension
only. The intensity distribution of such a periodic image is shown in Figure 2. An example
of an image, whose intensity variation is given in Figure 2, is shown in Figure 3a. where it is
assumed that the image, being viewed through a circular window, extends to infinity in all
directions. The image of Figure 3a contains no structure in the vertical dimension--that is, a
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constant value would be obtained if image intensity were measured along any vertical path.
Thus, although the image is spatially two-dimensional, it can be adequately represented by the
one-dimensional function shown in Figure 2. This one-dimensional function is known as a
cosine wave (abbreviated "cos") and is completely specified by three parameters: its amplitude
(A), which is a measure of half the vertical distance between adjacent peaks and troughs; its
mean luminance (L), which is the level about which the sine wave varies; and its spatial
frequency (w = 27/d), which is a measure of the number of cycles or peak-to-trough pairs that
occur within a given horizontal distance, d. Thus, luminance distributions like those shown
in Figure 2 can be fully described by the equation:
Luminance(x) = Ly + A cos(wyX ).

In the fields of optics and image science, the amplitude of a cosine luminance distribution
is often specified by the quantity m'L,, where m [= (L ax - Limin)/(Lmax + Lmin), See Figure
2] 1s known as the modulation or contrast of the luminance distribution. By this definition.
m varies from O (i.e., a homogeneous field) to 1 (i.e., a grating with peak-to-trough amplitude
equal to 2-L ). Unless otherwise noted, the following discussion will assume, for simplicity,
that L, for each cosine wave image is equal to its amplitude (m-L,), which is equivalent to
the assumption that m is maximal (i.e., equal to 1). The consequence of this assumption is that
the minimal luminance, which occurs at each trough of the cosine wave, will be zero rather
than some positive number.

The cosine wave described above is defined relative to a reference point about which it
is symmetric. This means that the ordinate values of the function are the same for abscissa
values equidistant from the origin in each direction. If the cosine wave is translated a distance
equal to one-quarter of the distance between peaks, the result is an antisymmetrical function
which is called a sine wave (abbreviated "sin"). For an antisymmetrical function, the ordinate
values corresponding to points equidistant from the origin to the left and right are equally
different in magnitude (luminance) from the mean level but are in opposite directions relative
to it. [Sine and cosine waves are often collectively referred to as sinusoids.] We may conclude
from this example that in addition to amplitude, spatial frequency, and mean luminance, the
shift along the spatial coordinate relative to the reference point must also be specified in order
to fully define a sinusoidal function. The shift is called phase, and it is measured in degrees
(0-360 degrees) or radians (0-2x). Clearly, any addition of muiltiples of 27 (or 360 degrees)
will not affect the relative position of the function. When phase, ¢, is taken into account and
remembering that A = m'L_,,, the equation describing the sinusoidal grating becomes:

Luminance(x) = Ly, + MLy, cos{wyx+¢)]
= Lon (1 + mcos(wyx+d)].

It should be noted that a sinusoid of any phase can be obtained simply by adding together
one sine and one cosine function of the same spatial frequency, providing that their amplitudes
can be varied appropriately. This is a consequence of the trigonometric identity sin(a+b) =
sin(b)cos(a) + cos(b)sin(a). If the quantity b on the left side of the equation is interpreted as
a phase shift, then the terms sin(b) and cos(b) on the right side are constants representing the
amplitudes of the sinusoids [namely, cos(a) and sin(a)] with which they are associated. Clearly,




then, the sinusoid of arbitrary phase represented by sin(a+b) can be obtained by adding together
two sinusoids of the same spatial frequency if the amplitudes of the latter can be varied as
required. Although this is a simple and well-known relation, its practical consequences are
not often noted. We will return to this point in our discussion of the frequency representation
of sine wave gratings.

Two-Dimensional Periodic Functions

Spatial structure in two dimensions can be introduced by changing the orientation of the
sinusoid of Figure 3a, thas producing the image shown in Figure 3b. The image of Figure 3b
is similar to that of Figure 3a except that it has been rotated 45 degrees in the clockwise
direction. The etfect of a change in orientation can be seen in the intensity representation of
this image. The amplitude (or contrast) of the function has not changed but its horizontal
frequency has. In addition, the rotated image now exhibits spatial structure in tiie vertical
dimension. Thus, the functional form of the image now contains both horizontal (w,x) and
vertical (wyy) spatial frequency terms and may be expressed as:

Luminance (x.y) = Ly [1 + mecos(wyx + wyy).

As is obvious from this expression, a vertical grating (Figure 3a) is the special case of an
oriented grating (Figure 3b) whose spatial frequency in the vertical direction (w,) is zero.
Similarly, a horizontal grating (Figure 3c) has a non-zero vertical spatial frequency but a
horizontal spatial frequency (w,) of zero.

Consider next the image shown in Figure 3d which shows two sinusoids added at right
angles to each other, resulting in a multicomponent two-dimensional grating. If the intensity
of this image were measured along any horizontal (or vertical) path, a function of the same
general form as that shown in Figure 2 would result. However, the mean luminance of these
functions is now dependent also on the intensity variations in the complementary orientation.
This dependence of image intensity, on both the vertical (Figure 3a) and horizontal (Figure
3c) components making up the image, pertains irrespective of the path along which it is
measured. The equation representing the grating shown in Figure 3d is:

Luminance(x.v) = Ly [1 + mecos(wyx) + m-cos{wyy)]

Finally, rotating the multicomponent image of Figure 3d by 45 degrees results in the image
shown in Figure 3e and the following functional representation:

Luminance(x,y) = L, [1 + m-cos{w,x + Wy) ) + Prcos{ weX + wyy )]

Note that when two luminance distributions with the same mean luminance are added
together, the mean luminance is doubled. In order to maintain the same mean luminance in
the multicomponent image as in its components, it is necessary to halve the mean luminances
of the components before adding them. in the resulting scaled image, the majority of the
horizontal and vertical luminance crosscuts have 2 mean luminance different from that of the
entire image and hence of the individual components of the image. Further, none of the
horizontal or vertical crosscuts of the multicomponent image shown in Figure 3d exhibit the
full peak-to-trough luminance of the components. However, along the major diagonals of




the image (at 45 and 135 degrees) and for periodically spaced crosscuts parallel to them, both
the mean luminance and the peak-to-trough luminance are the same as in the original component
images. The spatial frequency of the periodic structure along the major diagonals is lower, by
a factor of the square root of two, than that of either of the component images. Thus it is
evident from the images shown in Figures 3d and 3e that complex luminance variations can
emerge when as few as two simple luminance distributions are combined. As will be demonstrated
later, the complexity of multicomponent images further increases when the spatial frequency

and phase of the individual components are varied.

Frequency Representation of Simple Images

As noted earlier, sinusoidal images can be fully described by their amplitude, mean
luminance, spatial frequency, and phase. Because only three numbers (recall that we are
assuming that amplitude = mean luminance so that m = 1) are required to specify an image
like that shown in Figure 3a, the luminance distribution across such an image, technically
composed of infinitely many points, may be considered excessively complex. An alternate
method for conveying the information contained in Figure 3a is shown in Figure 4a, where
the horizontal axis now represents spatial frequency in units of cycles per millimeter and the
vertical axis represents amplitude. Figure 4a may be described as a representation in
one-dimensional (1-D) spatial frequency space. As is evident from the figure, two functions
(each shown as an arrow representing an amplitude and a spatial frequency) in this space are
sufficient to describe any image of the type represented by Figure 3a.

The functions represented by the arrows in Figure 4 are known as Dirac delta-functions
(6-functions). These functions are assumed to have zero width and infinite height so that,
though the function technically exists at only one point, the area under the function is equal
to 1. Because it is difficult to draw a function of infinite height, §-functions are by convention
represented by an arrow whose length corresponds to the area under the function. When
§-functions are used in the context of grating images, the height of the §-function is related
to the magnitude (contrast) of the grating, and its distance from the origin is related to the
spatial frequency of the grating.

[Note that an infinite homogeneous field would be represented in frequency space by a single
§-function located at the origin (i.e., corresponding to a spatial frequency of zero). Recall also
that all grating images are, in effect, sinusoids added to a homogeneous field. Therefore. all
frequency representations of these images should include a component at the origin. For the
sake of simplicity, however, we have chosen not to include this component in our figures.]

Although one §-function in the 1-D space of Figure 4a would suffice to specifyv spatial
frequency and amplitude, a second point is required to specify the phase of the sinusoid. This
concept is illustrated in Figures Sa-d which depict, respectively, the 1-D spatial frequency
representations for the functions Y = L, sin(wx), Y = L, sin{wx) + 30°, Y = L, sin(wx) +
60", and Y = L,,, sin{wx) + 90°) = cos(wx). The upper and lower diagrams on the right are the
conventional representations for the sine and cosine functions, respectively, wherein each
§-function is of unit length. Differences in phase are represented by different relative lengths
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sinfax + 0) = (cos 0 ) sin wx

Ampl

+ {sin 0 ) cos wn

= 1 osin oy . (A) .

+ 0 cos

= NITEFAN
A
Ampl
137
sin(wx + 30) = (cos 30 ) sin wx
+ (sin 30 ) cos wx ~
: (A)
= 0.87 sin wx r . \
+ 0.50  cos wx .37
Amp!
137
sin(wy + 607) = (cos 607) sin wx + 37
+ (sin 60 ) cos wx
- . N \
= 0.50 sin wx
+ 0.87 cos wx
Ampl
A 1
sin(wx + 90 ) = (cos 907) sin .\
+ (sin 907) cos W
= 0 sin wx — (A

Figure

+ 1 ¢os wx

= COS WX

S. Phase Representation in Frequency Space. Calculations and
diagrams showing how a sinusoid with various phases can be
represented by appropriately weighted sine and cosine functions.
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of the two §-functions representing the grating. The procedure for calculating those relative
lengths is shown to the right of each diagram and consists simply of combining the sine and
cosine representations with different relative weights.

The images of Figures 3b, 3d, and 3e also can be represented in the spatial frequency
domain, as shown by the corresponding plots in Figure 4. Because these images are
two-dimensional, a second spatial frequency axis is required for representation in what may
be called two-dimensional (2-D) spatial frequency space. In this space, the image of Figuie
3b is represented by two §-functions located along the same line in the w,-w, plane (see Figure
4b). This line is not collinear with either of the spatial frequency axes and so the image
represented by the two §-functions on that line can be projected onto both of the orthogonal
axes--that is to say, it is an oriented grating. The magnitudes of the projections onto the two
axes are w; and w,, and so the spatial frequency of the grating measured along an axis orthogonal
(i.e., at 90 degrees) to its orientation is equal to w2+ w3 . The orientation of the grating
making up the image of Figure 3b is now represented by the angle labelled 4. which in this
case is 45 degrees and can in general be obtained by the formula tan 6 = sin 6./cos § = wy «,.

The image of Figure 3d, although it is also two-dimensional, is different from that of
Figure 3b in that it is composed of two gratings at right angles to each other. The image of
Figure 3d may be represented in the 2-D spatial frequency space by two pairs of §-functions,
with one pair located along each of the orthogonal frequency axes (see Figure 4d). The phases
of the two gratings are equal and so the §-functions in each pair have the same amplitude.
Also, because the two component gratings have the same spatial frequency, the §-functions are
equidistant from the origin. Finally, the image of Figure 3e may be represented in 2-D spatial
frequency space by the four §-functions shown in Figure 4e, which are no longer on the w,
and wy axes but which are the same distance from the origin as the §-functions of Figure 4d.
As was the case for the single grating shown in Figure 3b, the spatial frequencies and orientations
of the two gratings of Figure 3e are represented by the projections of each pair of points on
the two axes.

The three-dimensional space shown in Figures 4b, 4d, and 4e is difficult to depict; so in
situations where the spatial frequency of image components is of primary importance (and the
amplitude is either constant or can be specified separately), two-dimensional spatial frequency
information is often represented as shown in Figure 6. Here the horizontal and vertical axes

represent spatial frequencies along the two spatial dimensions of the image. In this representation,
any point which falls on either of the axes corresponds to a one-dimensional grating--a vertical
grating if it falls on the w, axis and a horizontal grating if it falls on the wy, axis. Any other
point will have projections along both axes and hence will represent a one-component,
two-dimensional (oriented) grating. Consider, for example, the point P shown in Figure 6.
The grating represented by this point has projections whose magnitudes are w; and ws. as wax
discussed earlier in reference to Figure 4b.




IO

Figure 6. Two-Dimensional Spatial-Frequency Space. The simplitied
two-dimensional space includes both of the spatial- irequenu
axes shown in Figures 4b, 4d, and 4e.
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Spatial Frequency Bandwidth

The spatial frequency representations shown in Figure 4 apply only to sinusoidal images
of infinite extent. Only in the case of an infinite grating is it appropriate to represent the
luminance distribution by a single spectral function of infinitesimal width (i.e., a §-function).
Obviously, real images are limited in their spatial extent and as such may be considered to be
a product of an infinite image and a finite window. An example of the window function alone
is shown in Figure 7a. This function is simply a homogeneous field of limited extent whose
luminance is equal to the mean luminance of the gratings shown in Figure 7b (and other figures
presented in this report). As was discussed earlier, an infinite homogeneous field can be
represented by a single spectral component (§-function) which is positioned at zero frequency
and whose amplitude is related to the field luminance. However, if a homogeneous field is
restricied in its spatial extent, the resulting associated spectral distribution becomes continuous
and theoretically infinite in its spectral extent. The spectral distribution associated with the
window function of Figure 7a is known as a sinc-function and is shown in Figure 7b. This
distribution, which peaks at zero spatial frequency, displays multiple lobes whose peak magnitude
progressively decreases with distance from the origin.

The grating shown in Figure 7¢, like those shown in previous figures, represents the product
of an infinite sinusoidal grating and the window function of Figure 7a. The frequency
representation of Figure 7c will therefore reflect the contribution of both the intinite grating
and the window. Because the grating shown in Figure 7c is generated by the product of two
spatial functions, its frequency representation can be obtained by combining the spectral
distributions of the two spatial functions by an operation known as convolution. We will not
discuss convolution here (see, e.g., Bracewell, 1986, for details) except to note that in the case
where one of the two spectral distributions is a §-function, the resulting combined distribution
is obtained by shifting the other spectral distribution to the position of the §-function. So,
for instance, given a fixed window function (representing, say, a visual display), changing the
frequency of a grating presented within this window will result in identical spectral distributions
(determined by the window) but located at different points along the frequency axis.

To gain some insight into the effects of the window itself on the resulting frequency
representation, consider the 1-D, windowed sinuscids shown in Figure 8. Each sinusoid has
the same spatial frequency but a different spatial extent. A graphical representation of the
luminance distribution corresponding to each sinusoid is shown as the uppermost of the two
graphs located to the right of each image. The lowermost member of each pair of graphs shows
the sinc-function corresponding to the associated grating image. Changing the width of the
window does not affect the position of the sinc-functions along the frequency axis. However,
as the window decreases in width, there is a concomitant increase in the width of the lobes of
the sinc-function. The result is that component energy is redistributed such that relatively
more of that energy is associated with frequency components farther from the single frequency
component contributed by the infinite grating.
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Figure 7.
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The range of spatial frequencies associated with spectra like those shown in Figures 7 and
8 is often quantified by defining an effective width of the central lobe. This effective width,
which is usually determined for an amplitude which corresponds to onc-half of the peak
amplitude, is called the spatial frequency bandwidth. With the exception of those associated
with images of infinite spatial extent (which are obviously unrealizable in practice), all frequency
spectra contain all spatial frequencies. However, in practice only those components whose
magnitude (or energy) is above a certain value are of interest, and so the spectrum is considered
to have a finite extent. Thus, the spatial frequency bandwidth is not a measure of the number
of frequency components making up a sinusoidal image but rather, of the relative magnitude
of the frequency components which are close to the frequency of the sinusoid itself. In the
context of visual information processing, for instance, the advantage of a narrow bandwidth
image is that there will be fewer frequency components present which might interfere with
detection of the signal of interest (the sinusoid in this case).

Basis Properties, Orthogonality, and Other Characteristics of Sinusoids Which Make Them
Useful for Representing Images

We will discuss in the next section the advantages inherent in producing images by adding
together simple components. To be sufficiently general, a cet of such components must span
the space of all required images, which means that it can be used to generate any image which
belongs to the defined space. A set which meets this requirement is called a basis. In the
most general case, it is required that the set of functions which constitutes a basis can generate
anv possible image. It is usually convenient that the set of coefficients, which determines how
much of each component must be used to produce the required image, be unique and easily
determined. For this to be the case, all of the components that constitute the basis must be
orthogonal. The concept of orthogonality is best discussed in the mathematical context of inner
products (Strang, 1986), which would be inappropriate here. In the present context, orthogonality
is roughly svynonymous with independence in that it implies that no component can be obtained
by adding together any of the other components. The sine and cosine functions mentioned
earlier provide an example of an orthogonal basis. The simple trigonometric identity noted
earlier demonstrated that, for a given spatial frequency, any sinusoid could be produced by
adding together appropriately weighted sine and cosine functions. Thus, we may sayv that the
set of sine and cosine functions (the basis set) spans the space of the given sinusoid over all
possibie translations (i.e., phases).

As mentioned above, the advantage in using an orthogonal basis is that the resulting
coefficients, wnich are the weights associated with the functions constituting the basis, are
unique and are relatively easily determined. However, a given function (or image in the present
context) can also be represented by nonorthogonal bases. Considering again the example of
the translated sinusoid. the components in that case were sine and cosine functions which are
orthogonal in the sense that one is phase-shifted by 90 degrees relative to the other i1.e., sin(wx)
= cos{wx - 90°). However, a basis could be formed in this case by using pairs of sinusoids
with other phase relationships. For instance, the component cos(wx) could be replaced by sin(wx
- ®). where ¢ i1s any desired phase. The lack of orthogonality of the components in the latter
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case means that both a sine and a cosine term are now required to express the function which
replaced the original cosine term. Thus, the difficulty in working with nonorthogonal bases
is that the coefficients cannot be determined independently. We will return to this point in a
later section.

We have noted that sine and cosine functions are suited to iinage analysis and synthesis
because they form a basis set which is orthogonal. However, many other functions also form
orthogonal bases (Higgins, 1977); so, this fact alone does not explain the popularity of sinusoids
for this purpose. We have also noted that the sine and cosine functions are particularly efficient
and easy to deal with computationally. However, it may be argued that this is not so great an
advantage given that powerful computers are now so readily available. There are also other
reasons for the popularity of sinusoids in image analysis. First, sinusoids are an intcgral part
of linear systems theory, which is the most powerful theory in the field of signal analysis.
Specifically, this theory uses the concept of transfer functions whereby the response of a system.
to each frequency component of interest, is specified. Once the transfer function is obtained.
the response of the system to any signal (an image in the present context) can be predicted by
stmply multiplying the frequency representation (i.e., spectrum) of the signal by the transfer
function and then computing the inverse transform. Second, many natural phenomena have
resonant properties and, when they are finely tuned and do not dissipate energy, they often
exhibit sinusoidal behavior. Further, because more complex natural phenomena result from
the combined activity of a number of simpler resonating subsystems, they can quite often be
characterized by combining a number of sinusoids which is small relative to the number of
functions required using any other universal basis. Various studies with natural (textured)
images indicate that important attributes of images are periodic and can be well defined by
sinusoids.

Frequency Analysis and Synthesis of Complex Images (Fourier Theory)

We will now briefly describe a well-known approach to image representation using
orthogonal components. A fundamental theorem, credited to the mathematician Jean Bapiiste
Fourier (and extended to two-dimensional functions), states that the set of two-dimensional
sine and cosine functions spans the space of real-valued two-dimensional functions. In other
words, any image, considered to represent one cycle of a two-dimensional periodic image, can
be generated from a weighted linear sum of the set of sine and cosine functions:

s(xy.y) = Z_ [(lnxny-sin(n‘_w\.,\‘+nyw7y) + b,“,,y-cos(n\.w\v.\wnymyy)]

Il'ﬂy

In this equation, the function s(x,y) represents any two-dimensional image and the pairs of
sinusoids, sin{.) + cos(_), are the components forming the basis. Each component pair corresponds
to a particular spatial frequency (w), and the sets a.. and b.. are the coefficients, or weights.
of the sine and cosine elements associated with the given frequency component. It is these
sets of coefficients which must be determined to uniquely represent an image in terms of its
frequency components. That is, once the coefficient sets are determined. the image can be
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reconstructed by adding together the appropriately weighted pairs of sinusoids, as indicated
by the summation symbol, £. The only difference between the components referred to in the
equation shown above and the components in the simple trigonometric example presented earlier
is that the former are composed of sine-cosine pairs, are two-dimensional, and are more
numerous. Although we will not describe here the mathematical details of the transform which
determines the coefficients, we reiterate that those transform techniques (see e.g., Bracewell,
1986) are relatively simple and efficient because the chosen basis is orthogonal.

Relevance of Fourier Analysis to Vision

The idea of using visual stimuli composed of frequency components was first presented
by the physicist Ernst Mach, who, in 1866, designed a mechanical device for adding frequency
components of arbitrary amplitude and phase, and whose general contributions to the field of
vision are very well known (see Ratliff, 1972). Schade (1956), who was concerned with neural
processing in the early stages of the visual "luminance channel," applied the spatial frequency
approach in his construction of a photoelectric analog of the visual system. Although it was
clear that images could be fully represented by spatial frequency components, and that linear
(and spatially uniform) systems could be characterized by their response to those frequency
components, the question remained as to whether the frequency decomposition approach was
relevant to visual (i.e., neurophysiological) processing. As it turns out, responses to simple
visual stimuli in the form of sine wave gratings and to complex stimuli composed of the sum
of as few as two sine wave gratings of different frequencies can elucidate fundamental properties
of the visual system (Campbell & Maffei, 1974). Campbell and Robson (1968) showed further
that the human visual system has the highest sensitivity to contrast for spatial frequencies near
three cycles per degree, with sensitivity dropping off at higher and lower spatial frequencies.
This contrast sensitivity function is taken to represent the so-called modulation transfer function
(MTF) of the visual system.

Campbell and Robson (1968) also investigated whether the visual system breaks down an
image projected onto the retina into spatial frequency bands in a manner analogous to the
decomposition of auditory signals by the ear. Given a sine wave grating of frequency wy (the
fundamental), we can define an harmonic to be any grating whose spatial frequency is an
integer multiple of wy. If we decompose a square-wave grating in accordance with Fourier's
theory, we find that it is composed of the sum of the odd harmonics, each having a contrast
inversely proportional to the harmonic number. Because the fifth and higher harmonics have
very low contrast (compared to the fundamental), and because visual sensitivity to these high
frequencies is relatively low, if the fundamental grating is added to a third harmonic (i.e., a
grating whose spatial frequency is 3wg) and if the contrast of the third harmonic is one-third
that of the fundamental, then the combination may be expected to resemble a square wave if
indeed the visual system performs a Fourier-like analysis. This is exactly what Campbell and
Robson found, thus supporting this conclusion at least for certain simple visual stimuli.
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The rationale of the Campbell and Robson experiment described above was as follows: If
there exists a visual mechanism which is selectively tuned to a relatively narrow band around
the spatial frequency of the third harmonic, then it should be possible to reduce the mechanism’s
sensitivity by adapting the visual system to a high-contrast version of that harmonic. And.
further, if the visual system processes and transmits the first and third harmonic by different
mechanisms, and if the mechanism responsible for processing the third harmonic can be "turned
of f" or alternatively if its sensitivity (or gain) can be reduced, then a square wave should appear
to an observer to look like a sine wave grating (whose frequency is that of the fundamental or
first harmonic). This is exactly what Campbell and Robson found; thus, they concluded that
different frequency components (which may differ also in orientation) are transmitted by
different channels. This conclusion is consistent with the discovery of Hubel and Wiesel (Hubel.
1982) that there are cells in the visual cortex which respond to bars of a particular width and
orientation, and with the findings of DeValois, Albrecht, and Thorell (1982) that such cells
respond preferentially to a band of spatial frequencies which is 1-2 octaves in width.

When discussing Fourier analysis in the context of vision, it is important to consider the
unique role of component phase. It is well known that the visual system is very sensitive to
relative position information (Westheimer, 1978), and when analyzing an image by transform
techniques, position information is described by the phase relationship of the frequency
components. Indeed, Fourier phase (i.e., the distribution of phase across the entire frequency
spectrum which constitutes an image) captures all of the edge information in an image; thus.
the amplitudes of the various Fourier components (and hkence the image itself) can be
reconstructed from the phase information only (Oppenheim & Lim, 1981). To illustrate the
importance of phase, and to show the dependence of coherent image structure on the degree
of phase specificity, we have generated a sequence of images whose components have the same
spatial frequency, orientation, and magnitude, but different phases. The symmetrical and
perceptually coherent image in Figure 9a was obtained by phase-locking the components such
that one luminance peak of each component coincided with the center of the image (i.e.. all
components were cosine functions with zero phase). The other images in the series were
obtained by progressively increasing the range over which the component phases were randomly
distributed. As is apparent, the perceived coherence of the image breaks down when the phase
is randomized.

Image Representation Using Nonorthogonal Bases

We noted earlier the advantages in using an orthogonal basis. The practical disadvantage
in using a nonorthogonal basis is that optimization procedures, which involve iterative ad justment
and updating of previously estimated components as new ones are computed. are then required
to determine the coefficients. These procedures are computationally more intensive than those
required to determine the coefficients associated with an orthogonal basis, and the problem is
exacerbated as the number of components constituting the basis increases. Nevertheless. it is
often advantageous, for other than computational reasons, to use a basis that is not orthogonal.
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Figure 9.

Dependence of Perceived Coherence on Component Phase. (a)
An example of a highly structured image which is both periodic
and symmetric. The image was generated by adding together
only 24 cosine components (4 spatial frequencies at each of 6
orientations).  All components were phase-locked and of unit
amplitude, and so the entire image can be specified by only 48
numbers. (b) and (¢) Images generated by adding together the
same 24 components as in (a) except that the component phases
have been unlocked and distributed over progressively larger
ranges.




In fact, the formalism to be presented in the next section uses a nonorthogonal basis and so
we will provide here a qualitative description of the rationale and techniques which will be
presented later in greater detail.

Recall that image representation, as we have discussed it, involves first analyzing an image
by finding an appropriate coefficient set, and then resynthesizing the image by first multiplving
the functions making up the basis set by the associated coefficients and then adding up the
resulting products. The set of so-called Gabor elementary functions (GEFs) was chosen as the
basis set for the analysis to be presented below because it consists of functions which efficiently
match the human visual system. When there are compelling reasons for using a nonorthogonal
basis, specialized mathematical techniques can often be used to overcome the concomitant
difficulties. For instance, and as is the case for the formalism to be described in the next
section, it is possible to find a set of functions, complementary to that originally used in the
decomposition (analysis) of the image, and use it in the reconstruction (svnthesis). The second
set of functions are called auxiliary functions and they must have a one-to-one correspondence
with the functions of the nonorthogonal basis which was used in the analysis. The auxiliary
functions must be biorthogonal to the original functions in the sense that each of the auxiliary
functions must be orthogonal to all of the functions of the original set except for the one which
corresponds to it (see, e.g., Higgins, 1977, for more details). Once the second set is determined.
the roles of the two sets can be interchanged if desired--that is, either set can be used for the
analysis and the other then used for the resynthesis (see Figure 10).

Another approach to dealing with a nonorthogonal basis set is to orthogonalize it using
the Gram-Schmidt method. This is a well-known and often-used technique. the details of
which may be found elsewhere (Strang, 1986). It should be noted that the orthogonal basis
that results from this or related techniques may not share certain of the properties which made
the original nonorthogonal basis attractive. For instance, if the set of GEFs were orthogonalized.
they might no longer approximate the form of human receptive field profiles.

III. THE GABOR SCHEME: IMAGE REPRESENTATION IN THE
COMBINED POSITION-SPATIAL FREQUENCY SPACE

Introduction

The spatial and spatial frequency approaches to image representation are not mutually
exclusive. In fact, given that natural images are generally composed of both periodic and
discretely localized information, they are most efficiently represented by a scheme which
incorporates aspects of both approaches. There are several advantages of this combined approach
which may be appreciated by considering local changes in information distribution over the
visual field and their effect on the image representation. First, the frequency approach is
limited in that a local change, such as the movement of a small object within the image. often
requires that the majority or even all of the coefficients (Fouriei, Hadamard. etc.) be recomputed.
In the combined scheme, however, only those limited number of components which represent
the localized object will be affected. Second, object movement is more efficiently coded in
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the combined frequency-position space due to the fact that the structure of the object does
not change when the object moves across the field, and so only the spatial (and not the
spatial frequency) specification of the coefficient distribution needs to be updated. Finally,
although the frequency approach is useful for global image processing, it is not appropriate
when nonuniform sampling is required, and it is not efficient for representing images which
vary in their spectral content from area to area. Thus, a technique is desired wherein local
operators are confined to an effective area, which varies as a function of the position in the
field, and which can extract frequency signatures in a manner similar to the way this is
accomplished by the global operators. In other words, we are looking for a technique of
short-distance (analogous to short-duration) frequency analysis which can incorporate variable
resolution.,

As noted earlier and as will be described in greater detail below, the components of the
spatial and spatial-frequency representations are a single point in space and a spectral component,
respectively. A singular point in space provides infinite spatial resolution while its frequency
representation spans the entire spectrum. Likewise, a spatial-frequency (spectral) component,
which is characterized by an infinitely narrow §-function along the spatial-frequency axis,
extends across the entire spatial axis. Thus, the two components are elements of complementary
representations, and it would obviously be useful to specify a function which is most narrowly
tuned simultaneously in both its spatial extent and its spatial-frequency bandwidth. In the
early 1920’s, communication engineers attempted to devise such functions and, before
succeeding, often tried to transmit a given amount of information per unit time using what
was later found to be less than the minimal required frequency bandwidth. As was noted by
Gabor (1946), these attempts were analogous to trying to construct a perpetual motion device,
in that, analogous to the principle of conservation of energy, there exists a principle which
imposes certain constraints on the types of signals that can be physically realized.

Gabor (1946) was concerned with problems related to the efficient transmission of signals,
and therefore with the "linkage between uncertainties in the definitions of time and frequency.”
As further noted by Gabor, these problems were at about the same time beginning to interest
researchers in the areas of physics and communication theory. Nyquist (1924), working at Bell
Laboratories, proved that the number of telegraph signals which can be transmitted over a
communication channel is proportional to that channel’s frequency bandwidth. This important
observation laid the foundation of modern signal theory. Hartley (1928) generalized this concept
by showing that the total amount of information which may be transmitted over such a channel.
or the number of degrees of freedom available over the channel in a given time, is proportional
to the product of the signal bandwidth and the time available for the transmission. Hartley's
paper appeared at about the time that Heisenberg formulated the principle of uncertainty in
the context of quantum mechanics. The essence of this principle is that canonically conjugate.
observable, physical, quantities like position (along the spatial coordinate) and spatial frequency
cannu{ be simultaneously defined in an exact way (i.e., with infinite resolution). That is. the
product of the effective width of a signal in time and the signal’s bandwidth can never be less
than a value which represents an intrinsic uncertainty. In other words, uncetiainties are inherent
in the simultaneous definition of position and spatial frequency such that their joint product
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must equal or exceed a certain minimal value. Using the formalism of operations with complex
exponentials, where each complex exponential represents a pair of sine and cosine waveforms
of identical frequency, Gabor (1946) showed that the shape of the signal for which the product
of uncertainties assumes the smallest possible value is the complex exponential (i.e., sine and
cosine functions) modulated by a Gaussian envelope or window. These functions will be
referred to here as Gabor elementary functions (see Figure 11 for examples of spatial Gabor
functions).

There are also other reasons why the Gaussian is particularly attractive and useful as a
window function. For instance, it is a smooth function, which is advantageous when derivative
operations are required. Also, the family of Gabor elementary functions (GEFs) resembles a
useful set of basis functions known as the Hermite polynomials which are generated from a
single Gaussian by a sequence of derivative operations, and which are orthogonal with respect
to the Gaussian weight function (Kaplan, 1952). Further, the Gaussian of two independent
variables is separabie in both the spatial and spatial frequency domains, which means that it
can be expressed as the product of two one-dimensional functions. One-dimensional functions
are obviously easier to work with, especially when determining the set of biorthogonal auxihary
functions. The Gaussian is also unique in that it is se/fsimilar in the spatial and spatial frequency
domains, which means that it remains a Gaussian when transformed from one domain to the
other. Separability and selfsimilarity are properties of the Gaussian which are shared by no
other effectively localized function.

As was noted earlier, it appears to be desirable to combine the spatial and spatial-frequency
approaches for analyzing and synthesizing visual images. Thus the question arises as to whether
there is an optimal way to represent images in the combined space. This problem has long
been appreciated in the area of audition and speech analysis where spectrograms are used to
perform spectral analysis within a sliding window of limited duration (i.e., short-term spectral
analysis). It is well known that sounds are analyzed by the ear into frequency bands and in
fact the sounds that we hear as speech are generated by a relatively small number of such
elements, called formants, which are modulated in time (Flanagan, 1965). Recent anaiysis of
the responses of cells in the visual cortex (Daugman, 1985; MacKay, 1981; Marcelja, 1980;
Pollen & Ronner, 1983), as well as psychophysical experiments concerned with specifying the
luminance distributions which the eve sees best (Watson, Barlow, & Robson. 1983), and the
interpretation of such data in the context of image representation in vision (Zeevi & Porat,
1684), suggest that, analogous to the auditory system, the visual system may extract "visual
formants" having the form of Gabor functions. Although the total number of such image-forming
components per characteristic unit area (which increases in size as a function of eccentricity
according to some power law) is much larger than the number of speech-forming components,
it may be as small as 4-7 (Watson & Robson, 1981; Wilson & Bergen, 1979) for a given
orientation. There are about |5 such characteristic orientations in vision. Therefore, the total
number of localized frequency components per unit area is about 100 pairs of cells. with the
members of each pair related in quadrature phase.




(a)

(b)

Figure 11. Examples of Gabor Functions and of an Auxiliary Function. (a)
Examples of luminance distributions in the form of symmetrical
(i.e.. cosine component) Gabor functions. Note that the resulting
images can varyv in position, spatial trequency, orientation,
effective width, modulation, and phase. (b) An example of a
two-dimensional auxiliary function which 1s biorthogonal to the
Gaussian window of any of the Gabor functions.
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Image Representation Using Gabor Functions

Because the spatial and spatial frequency variables described above are complementary
quantities, the fundamental principle of uncertainty of signal r- :esentation imposes basic
constraints on the structure of elementary functions that can be reaiized, and hence employed.
in any type of image representation. Considering the combined frequency-position space, the
most widely used sets of functions are comprised of singular functions (i.e., §-functions)
presented either along the spatial axis or along the spatial frequency axis (where they are also
referred to as spectral lines or harmonic functions). A §-function in either domain implies a
function of infinite extent along the complementary axis (Figure 12a)--a condition which is
not realizable in practice. As discussed earlier, we seek general functions which are confined
in the combined frequency-position space in the sense of being limited in their effective (2nd
moment) spatial spread and spectral bandwidth. It can be shown that the spatial and
spatial-frequency singular functions are the limiting cases of the inherent trade-off that exists
between the effective spatial width and the effective spectral width of all possible elementary
functions presented in the combined space--in fact, the §-function is mathematically defined
as the limit of a sequence of Gaussians.

To gain some insight with regard to the properties and intrinsic trade-offs characteristic
of the Gabor scheme. and for the sake of clarity, we first present the formalism in the context
of one-dimensional functions which may be thought of as image crosscuts. Let grx, be a
normalized window function centered at the origin. The localized elementary function of order
rm.njis then defined by:

fon (X)) =\ g{x—mD)Y -exp(inh x) (1)

where m.n are integers. representing the position and frequency numbers, respectivelyv. and
WD<Zx. The harmonic function f.(x) is centered at (w=nW.x=mD) in the combined
frequency-position space. and the parameters ¥ and D determine how the rectangular
Gabor-sampling grid is tessellated (Figure 12b-e). As noted earlier. the choice of a Gaussian
for g/ x, minimizes the effective area of support (represented by the ellipses in Figure 12a) in
the positional-spectral plane compared to the so-called joint entropy achieved by anv other
window function. This optimal characteristic is, in fact. the main and important advantage of
the Gabor elementary functions (GEFs) compared to other localized elementary functions (e.g..
those windowed by a squared pulse, one cycle of raised cosine. etc.).
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Figure 12.

(d)

Space/Frequency Trade-Off and Examples of Various Tessellation
Schemes. a) Representation of a one-dimensional signal in the
combined frequency-position space. The vertical and horizontal
lines represent §-functions along the spatial axis [labelled §(x-xo0),
and representing an infinitely narrow grating], and along the
frequency axis [labelled §(w-wo), and representing an infinitely
wide grating]. The ellipses, which represent the effective
band-area, illustrate that restricting either the spatial or spectral
extent of the image results in a concomitant irncrease in the other
dimension. This trade-off is a direct consequence of the basic
principle of uncertainty of signal representation. Two of the
many possible optimal tessellation schemes satisfying the
condition WD=27 (i.e., WD ,=W,D,) are shown in (b) and (c). An
example of Gabor-space oversampling (i.e., WD<27) is shown in

(d).

27




If the condition of optimal information cell size, WD=2n, is satisfied, the Gabor spuce 1
properly sampled, and the set of functions {f,,} is complete (Higgins, 1977). Thus, a given
one-dimensional crosscut of an image, ¢ x), can be expressed by these elementary functions
(Figure lla), using a set of the corresponding weighting coefficients {a,,,} describing the
relative contribution of each GEF:

6= S Yt fan((X) (7)

n=-o m=-

However, because GEFs are not orthogonal, the analytic formalism for calculating the
coefficients employs an auxiliary function 4/ x) (Bastiaans, 1981; see Figure [ Ib). This function.
which is biorthogonal (Higgins, [977) in a certain sense to g/ x/, can be found by solving the
kernel of the weighted inner product of the Gaussian and the auxiliary function. In view of
the duality between 4( x, and g( x/, their roles in the forward and inverse transformations can
be interchanged. This observation is important for the understanding of the scheme and 1.
implementation in image representation and generation. It implies that either the Gabor
elementary functions or the corresponding auxiliary functions can be used in image
decomposition for the sake of obtaining the templates of image components (objects). If the
auxiliary functions are used in the analysis of images, then the Gabor elementary functions
are used in the synthesis (generation) of images, and vice versa (see also previous discussion
and Figure 10).

The finite set of expansion coefficients {a,,} provides a compact representation of an
image crosscut. Graphically two maps of coefficient distributions are needed for a complete
definition of an image crosscut--one for the real part, the other for the imaginary part (Figures
13b and 13c). Because the expansion coefficients fully describe an image crosscut (and in the
two-dimensional case, which cannot be depicted graphically, they represent an image). they
can be considered as the signature of an image in its Gaborian representation.

The basic trade-off between the effective spatial width and the effective spectral width
permits the selection of one out of many (theoretically infinite) possible tessellation schemes
appropriate for the space confined by the global effective spatial extent and effective frequency
band. Thus, the finite scheme requires a fixed number of Gabor components, but permits
preselection of any desired number of spectral (Gabor) components for spanning a global
(effective) frequency bandwidth. However, according to Equation (2), such a finite scheme
affords only an approximate representation or reconstruction of a given signal.
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In the case of a two-dimensional scheme, the coefficient space becomes four-dimensional:
(x.y) for position and (wy,wy) for ...quency (or, alternatively, r,f,w.,wy, in a polar coordinate
system). It can be shown (Porat & Zeevi, 1988) that the two-dimensional representation of a
signal ¢( x.y) is given by:

d;(x.y)= Z amxnxmyny'fmxnxmyny(x’y) (3)

mxnxmyny

where a two-dimensional GEF (Figure 11) of order (my,n,,my,n,) is defined by:

[aY
foama (X y)=g(x-m D, y-m,D ) -exp(in, W, x+in W y) (+)
with the separable Gaussian window function:
gx.y)=g.(x) g, (¥). (9)

It is required that both one-dimensional window functions g,(x) and g,(x) be normalized (of
unit energy), and that the conditions of proper information cell size, W,D, <27 and W,D, <27,
be satisfied.

To calculate the coeffict. ncset {@m a, . a ), @ two-dimensional auxiliary function (see Figure
11) is employed. Du ' the separability of glxy), and to the duality of the g(x) and /x)
functions, y(x.y) i< also separable. This observation simplifies the extension of the Gabor
scheme into two-dimensional (or higher dimensional) systems (Porat & Zeevi, 1988). Using
the auxiliarv tunction y(x.y), the coefficients (am . n «,) are calculated by:

(‘mxnxm,nysz‘i)(st)'Y*(x—mex.y—myDy)-

exp(-in W x~in IV y)dxdy (6)

For the purpose of image analysis and computer image generation using a system which
implements some type of an area of interest (AOl) with eccentricity~dependent sampling and
processing, we represent the Gabor scheme in polar coordinates (r.6). An image ¢/ x.y; may
be expressed by:

d(x,y)= Z amrnr,,,o,,e-g[\/.\‘2+y2—mrl),,. tan” ' (y/x)-myD, |

m,n,mene

o,\'p((nr[v’,\/ NP+ y?e inglg- tan"(y/.\‘)l (7)
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with the coefficients calculated similarly to those expressed in cartesian coordinates:

a,, . me"s:f f¢(rcose,rsin6)-y*(r—m,D,,G—meDey
exp(-itnW r—-in,Ww,0)drdo (8)

Although the image is given in cartesian coordinates, the processing takes place in a polar
coordinate system where inhomogeneity is readily incorporated along the r-axis. The image
is then encoded by elementary functions representing the parameters of position (m.d,.,mgd;)
and spatial frequency (n,W_.nyWg). This type of cartesian-to-polar coordinate transformation
is in accord with the global complex logarithmic mapping (representation) which facilitates
certain types of geometric manipulation (Weiman & Chaikin, 1979), and which has been
discussed, in the context of human vision, by Schwartz (1980).

Variable Resolution Using Nonuniform Gabor Sampling

The design of the human visual system itself suggests a method for implementing sufficiently
high resolution over a wide field of view. The visual system is spatially inhomogeneous in
that only a small area near the center of the retina is sensitive to fine spatial detail, and in that
the rate of both spatial sampling and processing decreases in all directions toward the visual
periphery (Kronauer & Zeevi, 1985; Schwartz, 1980). Recognizing this property. flight
simulators are now being designed to provide variable resolution either by partitioning the
image into high- and low-resolution subfields such that a small, high-resolution portion of the
display is always allocated to that portion of the image being fixated by the operator (Fischetti
& Truxal, 1985), or by optically distorting the display such that relatively more raster lines
appear in the vicinity of the operator’s fixation point (Diehl, 1976). We describe here a further
refinement of the variable resolution concept whereby visual images are generated using
elementary functions l.aving the form of luminance distributions to which the human visual
system is most sensitive (Watson et al., 1983), and in combinations that reflect the most recent
data on the changes in visual sensitivity across the retina (JOSA, 1987).

We now proceed to incorporate into the scheme the capability of representing or generating
an image by a set of Gabor elementary functions tessellated along a nonuniform Gabor-sampling
grid (Figure 14). The basic idea is to implement, in computer-generated imagery (CGI) for
flight simulators, a finite Gabor scheme wherein the Gabor sampling rate and the local bandwidth
vary as a function of the distance from a focal point to match the characteristics of human
vision as a function of eccentricity (Geri, Lyon, & Zeevi, 1989; JOSA, 1987). The result will
be an image with high spatial resolution, and also widest spatial-frequency bandwidth, necar
the center of the visual field, and decreasing resolution (and spatial-frequency bandwidth) as
a function of eccentricity (Figure 15). Such a system can, with limited channel capacity and
limited computational resources, produce imagery of high perceptual fidelity over a wide field
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Figure 14. Nonuniform Sampling and Tessellation and a Resulting Variable

T Resolution Image. (a).(b) the characteristics of one possible
nonuniform Gabor-sampling scheme. An example of an image
(¢) and its reconstruction (d) using nonuniform sampling.
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Figure 15. Schematic Representation of Position-Dependent Sampling. Which
Shows the Concomitant Space/Frequency Trade-Off. (1) A
schematic representation of position-dependent sampling rate
most appropriate for gaze-slaved. computer-generated imagery.
The area, around the fixation point, which has the highest (and
fixed) sampling rate has been lefi blank for clarity. Each hexagon
represents a "Nvquist cell” of information. Shown 1n (b) and (¢)
are the spatial frequency representations of the components which
are added together at two chosen spatial locations.




of view. It should be noted, however, that the implementation of such a scheme in a flight
simulator, or any other system of displayed information, requires continuous measurement of
eye position so that the focal point of the displayed information and the observer’s point of
gaze may be kept coincident. The technology for gaze position measurement is available and
has been implemented in the first generation of helmet-mounted-display flight simulators
(Fischetti & Truxal, 1985; Robinson, Thomas, & Wetzel, 1989; Williams, Komoda, & Zeevi,
1987).

A system characterized by a position-dependent sampling rate cannot be described by a
transfer function (or modulation transfer function) because the impulse response and its
transform are strictly applicable only to linear, position-invariant (i.e., spatially uniform) systems.
Instead, the concept of local bandwidth (Horiuchi, 1968) must be invoked. In the generalized
Gabor scheme, which is characterized by an infinite number of GEFs per Gabor sampling-point,
ine local bandwidth is theoretically infinite everywhere. In the finite scheme, however, the
local bandwidth is inversely proportional to the size of the corresponding information cells,
examples of which are depicted by the hexagons in Figure 15.

Given a sampling rate function corresponding to the local density of information in the
inhomogeneous system (Figure 12), a distortion function, S(x), can be defined as a functional
of the sampling rate. Such a distortion function {(see Figure 14a) may, for example, correspond
to the cortical magnification factor (cf., Kronauer & Zeevi, 1985; Schwartz, 1980). Having
defined the distortion function S(x), the set of expansion coefficients, {a.,,}, corresponding
to the inhomogeneous system, are determined by:

Cp = fd)[ s (v D1y, ,—mD)y-ex p(—inh v Hdy, (9)
and the image crosscut is represented accordingly by:

O(N)= ) ) A gl S(x)=mD]-explink - S(1)]. (10)

(For details, see Porat & Zeevi, 1988.) In this scheme the coefficients are calculated using a
distorted version of the auxiliary function 4/ x), and the signal is represented and reconstructed
by distorted Gabor functions. This has to be taken into consideration in the design of the
special-purpose system (see below) to be used for generating visual imagery using the Gabor
approach.

Nonuniform sampling using conventional procedures does not necessarily permit lossless
reconstruction because it may not satisfy basic sampling and informational constraints. Further,
only for limited cases do there exist procedures for reconstructing an image from nonuniformly
spaced samples. In the Gabor case, however, there exist degrees of freedom which permit
nonuniform sampling along one coordinate, and which deterr. ine in turn the nonuniform
sampling along the complementary axis. This is the essence of the i:. f between frequency
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bandwidth and effective positional spread, which together with the condition of proper sampling
(i.e., WD=27) determine the tessellating scheme. For any such nonuniform Gabor-sampling
scheme, the original image can be reconstructed using the entire set (theoretically infinitely
large) of elementary functions. The effects of nonuniform sampling become apparent if a
finite (relatively small) set of components is used in the reconstruction. For example, if only
three frequency components are used per Gabor-sampling position, the "local bandwidth"
decreases progressively as a function of the distance from the center (see Figure 14b). This,
of course, affects the fidelity of the image as a function of the distance from its center, resulting
in the so-called variable resolution image. In the finite scheme of image representation, image
quality is related to the effective local bandwidth which can be selected to match visual system
characteristics as they vary with eccentricity. In the technique described here, we use
two-dimensional GEFs positioned at various locations in the field. Such operators extract (in
the case of image analysis) localized 2-D frequency signatures. Because the Gabor operators,
like the Fourier, come in pairs with 90-degrce phase shift (i.e., sine and cosine functions), the
ratio of responses to such a pair extracts the relevant phase information. In the case of image
synthesis, such as required in computer image generation for flight simulators, the combination
of amplitudes of a sufficient number of pairs of such components can generate any local
structure and/or global image. For this reason Gabor operators can be useful in a variety of
applications in the field of image science.

In using such a set of GEFs for either image analysis or synthesis, consideration must be
given to how many of them are required to generate or represent a given typical image. Here,
of course, we are confronted with the problem of determining just what constitutes a perceptually
acceptable image. In fact, this point touches upon the definition of image structure, which is
one of the most difficult issues in image understanding. In Figure 14b and l4c, we presented
an original image and its variable resolution reconstruction. The latter is obviously "lossy"
(using the terminology of signal processing) in that some of the information in the original
image does not exist in the reconstructed image. However, to an observer who is positioned
at the proper distance from the images (obviously, the images would have to be magnified
beyond the present page size to match this distance), the images will appear similar, provided
that the display system is slaved to eye position.

Synthesis of Fully Textured Images Using Gabor Functions

Several practical problems must be solved before the Gabor approach can be used routinely
to produce computer-generated images (CGI). First, the Gabor approach (or, for that matter,
any approach) requires the development of a suitable image database. To efficiently exploit
the advantages inherent in the Gabor approach requires that complex, fully textured image
templates be available for incorporation into the simulated visual scene. Second, provision
must be made for manipulating simulated objects via translation, rotation, slanting, and change
of size. Third, algorithms and techniques must be developed for gradually changing the nature
and amount of texture in the simulated image. And finally, the extensive computation associated
with generating Gabor components requires that special-purpose hardware be designed to
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provide these components which may then be combined to form the simulated image. Although
only partial solutions to these problems exist at present, we are able to offer some general
observations and suggestions.

Considering first the design of image databases and the manipulation of simulated objects,
we face a problem similar to that encountered in implementing any computer graphics technique
which uses a set of image primitives; namely, determining how to combine the primitives to
produce the required imagery. If, for example, one defines a set of GEFs which are required
to adequately represent an object in the visual scene--a task that can be accomplished using
Gabor image analysis--then how can the set of components be manipulated to generate the
transformations required due to the movement of the object with 6 degrees of freedom? We
reiterate in this context that the Gabor approach combines the advantages offered by a purely
spatial approach, in which transiation is easily performed, and by a frequency-domain (i.e..
Fourier-like) approach whereby changes in size are easily obtained. However, the remainder
of the transformations, which are required to simulate change in position and orientation with
6 degrees of freedom, cannot at present be fully implemented by direct manipulation of the
sets of coefficient-templates forming the database. Some changes in object and,or terrain
orientation (slant) can be incorporated by manipulating the orientation of the 2-D sinusoids
and the aspect ratio of the Gaussian windows.

Another practical difficulty in producing conventional CGI involves depicting differences
in texture associated with various (usually extensive) objects in the visual field such as terrain,
forests, lakes, and the fike. Previous work has demonstrated the efficiency of frequency analysis
in representing images which appear textured (Kronauer, Zeevi, & Daugman, 1982). More
recently, it has been shown that GEFs are more suitable for such an analysis because they are
localized and thus able to handle nonuniform textures (Porat & Zeevi, 1989). Similarly, it is
possible to synthesize nonuniform, textured images using a relatively small number of Gabor
components (Zeevi & Porat, 1988). There is a great deal of redundancy in the structure of
images, and those images are processed by a human visual system that is highly nonlinear.
Thus, Kronauer e al. (1982) were able to show that a small cluster of frequency components
properly distributed over the 2-D spatial-frequency space gives rise to a percept very similar
to that induced by 2-D bandlimited noise (cf. Mostafavi & Sakrison, 1976). Whereas the
dimensionality of the bandlimited noise is extremely high (i.e., many bits of information are
required to specify the image), the perceptually equivalent Gabor-textured image is fully
specified by only a few numbers. This example illustrates the potential power offered by the
GEF approach to the synthesis of textures for CGI.

The final problem to be considered is the extensive computation which would be required
to reconstruct an image from its GEF components in real time, as would be necessary, for
example, in generating realistic flight simulator imager--. In order to reduce the computational
load to manageable levels, special-purpose hardware and new architectures must be developed
for generating the GEF components and combining them into the two-dimensional functions
which are in turn combined to produce the simulated image. The general layout of a computer
image generating system using an adjustable set of hardware-generated GEFs is presented in
Figure 16. For the sake of simplicity, we consider in this diagram a system for generating a
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GAZE POSITION SIGNAL

Figure 16. A Possible Hardware Implementation of the Gabor Approach,
Which Uses Gaze-Slaved, Computer-Generated Imagery.
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one-dimensional signal. ®/x,, from a set, {f,}, of GEFs. In Figure 16, the discrete spatial
coordinate (corresponding to x=mD) is indicated by the first subscript (from [ to M) associated
with the sets of both the coefficients {ap,,} and the GEFs {f,,}. Similarly, the spatial frequency
coordinate (corresponding to w=nW) is indicated by the second subscript (from | to N) for both
sets. The architecture of the system is highly parallel in that each image is made up of a set
of perhaps 105 coefficients, each object is made up of a subset of those coefficients, and each
coefficient has a direct line to the very large scale integrated (VLSI) circuit module (indicated
by the rectangular boxes, labeled f,,, in Figure 16) which generates the corresponding GEF
(Einziger & Hertzberg, 1986). That is, the set of GEFs is activated and weighted in parallel
by a set of lines conveying the coefficients which define the image.

For a given gaze position, which defines the area of interest (Williams es a/., 1987), the
values f,, are adjusted to give the optimal tessellation for the finite number of GEFs available.
Thus, even in the one-dimensional case, four parameters (central spatial position, central
frequency, effective spatial spread, and the complementary bandwidth) must be adjusted for
each module at each point of gaze. A given image is viewed as being composed of a set of
objects and a distribution of texture across the image space. Accordingly. once an image is
defined (see first stage at left in Figure 16), an algorithm determines the selection of subsets
of coefficients {ap,,) according to object and texture information stored in the database. As
stated earlier, the objects and textures are defined in the database in a generic form only, and
so the transformations needed to generate a complete, real-world database must be developed
before the proposed CGI system can be realized.
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1V. GENERAL DISCUSSION

Over the last several decades, communication e¢ngincers and., more recently, computer
scientists have been working on interrelated problems, trying to understand the structure of
images, and to devise techniques for analyzing, synthesizing, transmitting, and displaying images
efficiently. Simultaneously, neuroscientists have made tremendous progress in elucidating the
neural mechanisms involved in biological image representation and processing. It is interesting
to observe the direct influence of ideas and new findings in one field on new developments
in other fields. Although, traditionally, ideas emerging in physics and commu: ication theory
influenced new directions of research as well as the models proposed by visual neuroscientists,
the trend is reversing and increased mutual interaction is now occurring. This is perhaps not
surprising as, in the final analysis, the human observer is often the receiver of displayved
information, and thus any communication and display technology will be more effective if it
is matched to human capabilities. The interest in biological vision systems--of those involved
in the development of advanced visual systems, neurcbiological architectures, and
machine-vision algorithms--is also due to the recent advances in microelectronics. It is now
possible to build miniaturized systems which integrate several hundred thousand. highly
interconnected components on a single piece of silicon wafer and to devise algorithms and
architectures for parallel processing. All of these capabilities appear to be necessary for building
biological-like visual systems.
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SOURCE CODE FOR THE PROGRAMS GABORAN.F AND GANAL.F.

The programs presented here implement the Gabor scheme described in Section 3.0. The

program GANAL.F was specifically written for use on a laboratory computer with an optimizing
compiler (NDP FORTRAN-386).
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