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SPECIAL CASE

PROOF

We begin with the special case of n-tuples which sum to a given value, &, and build up to the general

case. Let Z* denote the positive integers and let S(n, k) = {a = (@, ,...,an), a; € Z*s.L. Zal =k}
ordered lexicographically. It is well known that |S(n, k)| is simply the binomial coefficient (k& - I} choose
(n-10),1e.,

1S(n. k)| = (ﬁ:}) . 1)

Now given an o € S(n, &), can we calculate its position in the ordering? Certainly (1,1, ... , 2 + 1 - n)is
firstand (¢ + I -n, 1, ..., 1) is last. Let the order function on S(n, k) be fa k: S(n, k)—{1, 2,...,|S(n,k) | }.

LEMMA 1.1

Let S(n, k) be the set of n-tuples gf positive integers which sum to &, ordered lexicographically. Let

a = (ay, ... ,an) and define gj (a) = Zai . Then the position of « is given by
i=j

n-1
fnxla) = (ﬁ:}) - Z (Uju + (@) - 1) . 2)
j=1 n-j

PROOF

Consider a fixed a = (a,, ..,a,)in S(n, k). Let B = by, ..,bn), Tj = {B € S(n, k)| b, = a ...,
bji=aj1.bj>a;}andlet T = UT;, j = 1,..n Then certainly T = {B € S(n, k|8 > a} and

TiNTj=¢ if ij, sowehave [T| = 2 1sjen | T;| (since Ty = ¢ ). But
{(Tj=(a1,....aj-1,8+81. 82, ---8n-js1) |8 = (81, .--8n-ju1) € S(n-j+1,k-a,...-aj)}. Hence,

lTj| - (k - a _n'_‘}-aj - 1) = (ajﬂ +n(_aj) - 1) ) 3)

Therefore, we can conclude that fax(a) = |S(n, k)| - [{b € S(n, k) s.t. B > a}!

n-1 n-t
k-1 k-1 Z k-1 Z i -1
=(n_l)-,rl =(n-1)_ j=1 ,le =(n—1)_ j 1(ojl+"('aj) )
]= J=

ged




N-TUPLES OF POSITIVE INTEGERS

Nowlet Z"=Z* x..xZ* be the set of all n-tuples of positive integers. Note that Z" = Upnx.
Let Z" be ordered by S(»,n) < Sn,n + 1) < S(r,n + 2) < ... where the S(n, &) are ordered lexi-
cographically as before. Let f, : Z"— Z be the order function for this space.

THEOREM 1.1

Let Z" be ths set of all n-tuples of positive integers ordered as above. Let a = (a,, ...,an)€ Z" and

define 0j (a) = Z a;. The the position of « is given by
i=j

n-1
o< (1) (o).
j=1 n-j

PROOF

By ordering on Z" and the lemma we have

oy(a) -1 o1(a) -1 .
fala) = Z 'S k)| + fno@(@) = Z (51:11) + [0 @(a)

i jn

\ n-1 . _
- (ol(an) - 1) + Fnoy(@ = (o,(an)— 1) N (0,’(:1_,1 1) - (01.1 r(‘a_)j 1)
Jj=1

@ no1 @ ) using the basic combinatorial identity .
= |9 - e a'- ) a+l a a .
,(") ,Z:( n-J (b)’(b "(b

.
qged




COROLLARIES

Next I give two corollaries of lemma 1.1,

COROLLARY 3.1

Let S(k) = U, <n s« S, k) ordered by S(1, k) < ... S(k, k) where the S(n, k) are ordered lexi-
cographically as before. Then the Iexicographic order function, f*) of a = (a,, ..., an) € S(k) is given by

” n-1
P =y (ﬁ::) - > (0"‘,,(?)1-_ 1). 5)

izl J=1

PROOF

Using lemma 1.1, we have

n-1 n-1 n-1 . _
9@ = S ISE0] + @ = (i: ) - (l‘.:i) > (“"',f‘i’j )
A=1 A=1

n n-
= 2 i) -
= a-1] .
PED! J=1

COROLLARY 2

—

ojol (a) - 1)
n-j

ged

Let Z* = Uvsnece 27 = {a = (G, ...,an), ai € Z *} ordered by S(1) < 8(2) < ... with the S(k)
defined and ordered as above. Then the order of function, f*, of ® = (a1, ...,82) € Z* is given by

n n-1
fr@) =2 g (alﬁa_)l_l) -2 (ajﬂn(‘i)j_ l) : ®)

a=1 j=1




PROOF

m m
Since |S(m)| = Z |SG, m)| = Z (']'.'_-11) = 2(m-1) we have, by the ordering on Z*,

j=1 j=1

oy(a) -1 o1(a) -1

@ = Y Sl et@ = Y e Y (o'ia-)fl) - Z(ojﬂn((i)j’l)

FED] msal A=l Jj=1

n n-1
= 901(a)- oi(a)-1) _ Ojui (@) - 1
_21(>1+;(11_1) ];(lln_j )

ged

INVERSE FUNCTION

Let us consider the inverse function, f;': Z—Z". There does not appear to be a closed form
solution, but it is readily computable. Using this, one can easily implement an algorithm to calculate

Pk.n:ZX —Z"by ¢r.n =fn'ft . Now suppose p in Z*+. To compute f3!(p) = (ay, ... ,an) first find the
~1
kl . k] - ‘Z kjol
smallest k,s.t. | ,, ] 2p. Then we find successively largest k,,i = 2, ... ,n,8 \ n , n-jJlz=p.
J=1
For the n'? case, this expression will be an equality. Then k; - g, (/3! (p)) fori = 1, ..., n and given all

the os, one easily finds (a,, ..., an).
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