

AD-A224 884

Technical Document 1827 May 1990

Orderings of N-Tuples

R. F. Freund

Approved for public release, distribution is unlimited.

NAVAL OCEAN SYSTEMS CENTER

San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN Commander

R. M. HILLYER Technical Director

ADMINISTRATIVE INFORMATION

This work was performed by the Ashore Command Centers Branch, Code 423, Naval Ocean Systems Center, under an in-house block program.

Released by R. E. Pierson, Head Ashore Command Centers Branch Under authority of J. A. Salzmann, Jr., Head Intelligence Centers Division

CONTENTS

SPECIAL CASE1
Lemma 1.1
Proof
N-TUPLES OF POSITIVE INTEGERS
Theorem 1.1
Proof
COROLLARIES
Corollary 3.1
Proof
Corollary 2
Proof
INVERSE FUNCTION

SPECIAL CASE

PROOF

We begin with the special case of n-tuples which sum to a given value, k, and build up to the general case. Let Z^+ denote the positive integers and let $S(n, k) = \{\alpha = (a_1, ..., a_n), a_i \in Z^+ \text{s.t.} \sum_{i=1}^{n} a_i = k\}$ ordered lexicographically. It is well known that |S(n, k)| is simply the binomial coefficient (k - l) choose (n - l), i.e.,

$$|S(n,k)| = \binom{k-1}{n-1} .$$
⁽¹⁾

Now given an $\alpha \in S(n, k)$, can we calculate its position in the ordering? Certainly (1, 1, ..., k + 1 - n) is first and (k + 1 - n, 1, ..., 1) is last. Let the order function on S(n, k) be $f_{n,k}: S(n, k) \rightarrow \{1, 2, ..., |S(n,k)|\}$.

LEMMA 1.1

Let S(n, k) be the set of n-tuples of positive integers which sum to k, ordered lexicographically. Let $\alpha = (a_1, ..., a_n)$ and define $\sigma_j(\alpha) = \sum_{i=1}^n a_i$. Then the position of α is given by

$$f_{n,k}(a) = \binom{k-1}{n-1} - \sum_{j=1}^{n-1} \left(\sigma_{j+1} + (a) - 1 \right).$$
(2)

PROOF

Consider a fixed $\alpha = (a_1, ..., a_n)$ in S(n, k). Let $\beta = b_1, ..., b_n$, $T_j = \{\beta \in S(n, k) \mid b_1 = a_1, ..., b_{j-1} = a_{j-1}, b_j > a_j\}$ and let $T = UT_j$, j = 1, ..., n. Then certainly $T = \{\beta \in S(n, k) \mid \beta > \alpha\}$ and $T_i \cap T_j = \phi$ if $i \neq j$, so we have $|T| = \sum_{1 \le j \le n} |T_j|$ (since $T_n = \phi$). But $\{(T_j = (a_1, ..., a_{j-1}, a_j + g_1, g_2, ..., g_{n-j+1}) \mid g = (g_1, ..., g_{n-j+1}) \in S(n-j+1, k-a_1-...-a_j)\}$. Hence,

$$|T_j| = \begin{pmatrix} k - a_1 - \dots - a_j - 1 \\ n - j \end{pmatrix} = \begin{pmatrix} \sigma_{j+1} + (a) - 1 \\ n - j \end{pmatrix}.$$
 (3)

Therefore, we can conclude that $f_{n,k}(\alpha) = |\mathbf{S}(n,k)| - |\{b \in \mathbf{S}(n,k) \text{ s.t. } \beta > \alpha\}|$

$$= \binom{k-1}{n-1} - |T| = \binom{k-1}{n-1} - \sum_{j=1}^{n-1} |T_j| = \binom{k-1}{n-1} - \sum_{j=1}^{n-1} \binom{\sigma_{j+1} + (a) - 1}{n-j} - qed$$

N-TUPLES OF POSITIVE INTEGERS

Now let $Z^n = Z^+ \times ... \times Z^+$ be the set of all n-tuples of positive integers. Note that $Z^n = U_{n \le k}$. Let Z^n be ordered by S(n, n) < S(n, n + 1) < S(n, n + 2) < ... where the S(n, k) are ordered lexicographically as before. Let $f_n : Z^n \to Z$ be the order function for this space.

THEOREM 1.1

Let \mathbb{Z}^n be the set of all n-tuples of positive integers ordered as above. Let $\alpha = (a_1, ..., a_n) \in \mathbb{Z}^n$ and define $\sigma_j(\alpha) = \sum_{i=j}^n a_i$. The the position of α is given by

$$f_n(a) = {\binom{\sigma_j(a)}{n}} - \sum_{j=1}^{n-1} {\binom{\sigma_{j+1}(a) - 1}{n-j}}.$$
(4)

PROOF

By ordering on Z^n and the lemma we have

$$f_n(a) = \sum_{j=1}^{\sigma_1(a)-1} |S(n,k)| + f_{n,\sigma_1(a)}(a) = \sum_{j=1}^{\sigma_1(a)-1} {j-1 \choose n-1} + f_{n,\sigma_1(a)}(a)$$

$$= \begin{pmatrix} \sigma_1(a) - 1 \\ n \end{pmatrix} + f_{n,\sigma_1(a)}(a) = \begin{pmatrix} \sigma_1(a) - 1 \\ n \end{pmatrix} + \begin{pmatrix} \sigma_1(a) - 1 \\ n - 1 \end{pmatrix} - \sum_{j=1}^{n-1} \begin{pmatrix} \sigma_{j+1}(a) - 1 \\ n - j \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_1(a) \\ n \end{pmatrix} - \sum_{j=1}^{n-1} \begin{pmatrix} \sigma_{j+1}(a) - 1 \\ n-j \end{pmatrix} \begin{bmatrix} \text{using the basic combinatorial identity} \\ \begin{pmatrix} a+1 \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} \end{bmatrix}$$

$$qed$$

COROLLARIES

Next I give two corollaries of lemma 1.1.

COROLLARY 3.1

Let $S(k) = U_{1 \le n \le k} S(n, k)$ ordered by S(1, k) < ... S(k, k) where the S(n, k) are ordered lexicographically as before. Then the lexicographic order function, $f^{(k)}$, of $\alpha = (a_1, ..., a_n) \in S(k)$ is given by

$$f^{(k)}(a) = \sum_{\lambda=1}^{n} {\binom{k-1}{\lambda-1}} - \sum_{j=1}^{n-1} {\binom{\sigma_{j+1}(a)-1}{n-j}}.$$
 (5)

PROOF

Using lemma 1.1, we have

$$f^{(k)}(a) = \sum_{\lambda=1}^{n-1} |S(n,k)| + f_{n,k}(a) = \sum_{\lambda=1}^{n-1} {\binom{k-1}{\lambda-1}} + {\binom{k-1}{n-1}} - \sum_{j=1}^{n-1} {\binom{\sigma_{j+1}(a)-1}{n-j}}$$
$$= \sum_{\lambda=1}^{n} {\binom{k-1}{\lambda-1}} - \sum_{j=1}^{n-1} {\binom{\sigma_{j+1}(a)-1}{n-j}}$$
$$qed$$

COROLLARY 2

Let $Z^{\bullet} = U_{1 \leq n \leq \infty} Z^{n} = \{ \alpha = (a_{1}, ..., a_{n}), a_{i} \in Z^{+} \}$ ordered by S(1) < S(2) < ... with the S(k) defined and ordered as above. Then the order of function, f^{\bullet} , of $\alpha = (a_{1}, ..., a_{n}) \in Z^{\bullet}$ is given by

$$f^{\bullet}(a) = 2^{\sigma_1(a)-1} + \sum_{\lambda=1}^{n} \left(\frac{\sigma_1(a)-1}{\lambda-1} \right) - \sum_{j=1}^{n-1} \left(\frac{\sigma_{j+1}(a)-1}{n-j} \right).$$
(6)

PROOF

Since
$$|S(m)| = \sum_{j=1}^{m} |S(j, m)| = \sum_{j=1}^{m} {\binom{m-1}{j-1}} = 2^{(m-1)}$$
, we have, by the ordering on Z^* ,
 $f^*(a) = \sum_{\lambda=1}^{\sigma_1(a)-1} |S(m)| + f^{\sigma_1(a)-1}(a) = \sum_{m=1}^{\sigma_1(a)-1} 2^{m-1} + \sum_{\lambda=1}^{n} {\binom{\sigma_1(a)-1}{\lambda-1}} - \sum_{j=1}^{n-1} {\binom{\sigma_{j+1}(a)-1}{n-j}}$
 $= 2^{\sigma_1(a)-1} + \sum_{\lambda=1}^{n} {\binom{\sigma_1(a)-1}{\lambda-1}} - \sum_{j=1}^{n-1} {\binom{\sigma_{j+1}(a)-1}{n-j}} .$
 qed

INVERSE FUNCTION

Let us consider the inverse function, $f_n^{-1}: \mathbb{Z} \to \mathbb{Z}^n$. There does not appear to be a closed form solution, but it is readily computable. Using this, one can easily implement an algorithm to calculate $\phi_{k,n}:\mathbb{Z}^k \to \mathbb{Z}^n$ by $\phi_{k,n} = f_n^{-1}f_k$. Now suppose p in \mathbb{Z}^+ . To compute $f_n^{-1}(p) = (a_1, \dots, a_n)$ first find the smallest $k_1 s.t. \binom{k_1}{n} \ge p$. Then we find successively largest k_1 , $i = 2, \dots, n$, $s.t. \binom{k_1}{n} = \sum_{j=1}^{i-1} \binom{k_{j+1}}{n-j} \ge p$. For the nth case, this expression will be an equality. Then $k_i - \sigma_1(f_n^{-1}(p))$ for $i = 1, \dots, n$ and given all the σ_s , one easily finds (a_1, \dots, a_n) .

REPO	Form Approved OMB No. 0704-0188			
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget Papervork Reduction Protect (0704-0188), Washington Theorematic 20503				
1 AGENCY USE ONLY (Lauve blank)	2. REPORT DATE May 1990	3. REPORT	TYPE AND DATES COVERED	
4 TITLE AND SUBTITLE ORDERINGS OF N-TUPLES		s funding PE: 06 RS34C	5 FUNDING NUMBERS PE: 0602234N RS34C77	
6 AUTHOR(S) R. F. Freund		wu: D	N300 086	
7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORI REPORT	8. PERFORMING ORGANIZATION REPORT NUMBER	
Naval Ocean Systems Center San Diego, CA 92152-5000		NOSC	NOSC TD 1827	
3 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSI AGENC	10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
Naval Ocean Systems Center San Diego, CA 92152-5000				
11 SUPPLEMENTARY NOTES				
12a DISTRIBUTION/AVAILABILITY STATEME		12b. DISTRI	BUTTON CODE	
Approved for public release; distribution is unlimited.				
13 ABSTRACT (Maximum 200 words) The author defines sever n-tuple with respect to these	al orderings on n-tuples of positive orderings. In addition, an algorith	e integers and shows how to com im is shown to compute the inve	npute the position of a given erse function.	
14 SUBJECT TERMS			15. NUMBER OF PAGES 9 18. PRICE CODE	
17 SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19 SECURITY CLASSIFICATION OF ABSTRACT	20 LIMITATION OF ABSTRACT	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAME AS REPORT	

NSN 7540-01-280-5500

Standard form 298