




IEP ABOA BY TON FI BY

Report DTRC/SME-CR-10-89

'AD-A224 868

# AN EVALUATION OF COMMERCIAL ADDITIVES FOR FUEL STABILITY ENHANCEMENT; BOTTLE TESTS AT 65°C

by

Keith W. Flohr **ARTECH Corporation** 14554 Lee Road Chantilly, Virginia 22021

Contract N00167-83-D-0012

**April 1990** 

Approved for public release; distribution unlimited.



Prepared for

Dr. E.W. White David Taylor Research Center Bethesda, Maryland 20084

| ATT TIAL | 31 -17-17 A 17-17 1 | OF THE PAGE |
|----------|---------------------|-------------|

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                                                   |                     |                      |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|----------------------|--------------|
| MEPORT SECURITY CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | TO RESTRICTIVE                                                                    | MARKINGS            |                      |              |
| UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                   |                     |                      |              |
| SECURITY CLASSIFICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 3 DISTRIBUTION: AVAILABILITY OF REPORT  Approved for public release; distribution |                     |                      |              |
| DECLASSIFICATION / DOWNGRADING SCHEDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Approved funlimited.                                   | or public re                                                                      | elease; dist        | ribution             |              |
| PERFORMING ORGANIZATION REPORT NUMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 MONITORING                                           | ORGANIZATION R                                                                    | EPORT NUMBER        | 5)                   |              |
| J8350.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DTRC/SHE-C                                             |                                                                                   |                     |                      |              |
| NAME OF PERFORMING ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60 OFFICE SYMBOL (14 applicable)                       | 78 NAME OF MC                                                                     | MITORING ORGA       | NIZATION             |              |
| RTECH Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                   | or Research         |                      | le 2759)     |
| ADDRESS (City, State, and 21P Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | 76 ADDRESS (CA                                                                    | y. State, and ZIP ( | Code)                |              |
| 14554 Lee Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                      | Betheeds                                                                          | Maryland 20         | MR/5000              |              |
| Chantilly, Virginia 22021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | pechesez, .                                                                       |                     | 004-2000             |              |
| NAME OF FUNDING / SPONSORING ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86 OFFICE SYMBOL<br>(If applicable)                    | 9 PROCUREMENT                                                                     | INSTRUMENT ID       | ENTIFICATION NU      | MBER         |
| Office of Naval Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Code 123                                               |                                                                                   | 00167-83-D-0        |                      |              |
| ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                   | UNDING NUMBER       |                      |              |
| A=14==== V4==4=4= 22217=500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>V</b>                                               | PROGRAM<br>ELEMENT NO                                                             | PROJECT<br>NO       | TASK<br>NO           | WORK UNIT    |
| Arlington, Virginia 22217-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~                                                      | 63724N                                                                            | <u> </u>            | R0838                | DN 578153    |
| TITLE (Include Security Classification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 27.241                                                                            | <u> </u>            | 1 VOOD               | 1 20 2/0133  |
| TYPE OF REPORT  SEARCH & Development FROM  SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LO LO                                                  | 14 DATE OF REPO                                                                   | April               | Day) IS PAGE         | 35           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                   |                     |                      |              |
| COSATI CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 SUBJECT TERMS (                                     |                                                                                   |                     |                      |              |
| FIELD GROUP SUB-GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fuel<br>Diesel Fuel                                    | ASTM D46                                                                          | bility<br>25        | Bottle Te            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Distillate Fuel                                        |                                                                                   | =                   |                      |              |
| ABSTRACT (Continue on reverse if necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                   | , Madicives         | <u> </u>             | <u></u>      |
| In a joint program with the Naval Research Laboratory, the Center has been evaluating the effectiveness of using 10 commercial additives (and two Army additives) to suppress the formation of insolubles in mid-distillate fuels from different fuel sources and processes. The Center contracted ARTECH Corporation to evaluate the 10 additives at two concentration levels in each of four base fuels, using a bottle test similar to ASTM D4625, but run at 55°C rather than 43°C. Four of the additives were found to be effective, and six were slightly effective or innocuous.  ARTECH Corporation also conducted two special studies. One evaluated the effect that |                                                        |                                                                                   |                     |                      |              |
| reaged fuel had on insolubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | formation in 6                                         | SOC bottle to                                                                     | ests; the ot        | her examine          | d the effect |
| f the condition of sampling a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                   | _                   |                      | -            |
| ersus unlined storage cans, and wet versus dry storage. It was found that air blown or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                   |                     |                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                   |                     | on reverse           | side.)       |
| DISTRIBUTION/AVAILABILITY OF ABSTRACT  UNICLASSIFIED/UNLIMITED SAME AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPT DTIC USERS                                         | 21 ABSTRACT SE                                                                    | CURITY CLASSIFIC    | ATION<br>UNCLASSIFIE | <b>3D</b>    |
| a NAME OF RESPONSIBLE INDIVIDUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C DIK OSEKS                                            | 225 TELEPHONE                                                                     | Include Area Code   |                      |              |
| r. E.W. White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | (301) 26                                                                          |                     |                      | 2832         |
| D FORM 1473, 84 MAR 83 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PR edition may be used un<br>All other editions are of |                                                                                   |                     | CLASSIFICATION       | OF THIS PAGE |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                   |                     |                      |              |

## BLOCK 19 (Continued)

air blanketed fuel stored in unlined cans in the presence of moisture produced appreciably more insolubles than the same fuels under an argon blanket in a lined can in the absence of moisture.

| Accession For      |          |
|--------------------|----------|
| NTIS GRA&I         |          |
| DTIC TAB           | 1        |
| Una mounced 🔲      | 1        |
| Justilication      | $\dashv$ |
|                    | 7        |
| P.                 | 4        |
| Dysamitudien/      | $\dashv$ |
| Ampiloh lity Codes |          |
| Averl and/or       |          |
| Pant Special       | İ        |
| ·                  |          |
|                    |          |
| H-1                |          |
|                    |          |



## CONTENTS

|                                     | Page |
|-------------------------------------|------|
| ABBREVIATIONS                       | v    |
| ABSTRACT                            | 1    |
| ADMINISTRATIVE INFORMATION          | 1    |
| ACKNOWLEDGMENTS                     | 2    |
| INTRODUCTION                        | 2    |
| MATERIALS AND EQUIPMENT             | 3    |
| FUEL SAMPLES                        | 3    |
| STABILITY ADDITIVES                 | 5    |
| SOLVENTS                            | 6    |
| Hydrocarbon Solvent                 | 6    |
| Adherent Insoluble Solvent          | 6    |
| Solvent Qualification               | 6    |
| TEST PROCEDURES                     | 7    |
| OVERVIEW                            | 7    |
| PRESTRESS PROCEDURES                | 7    |
| <u>Cleaning</u>                     | 7    |
| Bottle Venting                      | 8    |
| Time and Temperature                | 8    |
| Sample Preparation                  | 8    |
| Oven Loading                        | 8    |
| POSTSTRESS PROCEDURES               | 9    |
| Filterable Insolubles Determination | 9    |
| Adherent Insolubles Determination   | 9    |

## CONTENTS (Continued)

|                                                          | Page |
|----------------------------------------------------------|------|
| DISCUSSION OF RESULTS                                    | . 10 |
| EXPERIMENTS 8541, 8542, AND 8544                         | 10   |
| EXPERIMENTS 8645m AND 8647                               | 14   |
| CONCLUSIONS                                              | . 19 |
| APPENDIX A - RAW DATA                                    | . 21 |
| REFERENCES                                               | . 33 |
| TABLES                                                   |      |
| 1. Physical properties of neat fuels                     | 4    |
| 2. Description of fuel additives                         | . ه  |
| 3. Summary of stress periods used                        | . 7  |
| 4. Insolubles from Experiment 8541, Week 8               | . 11 |
| 5. Insolubles from Experiment 8542, Week 8               | . 12 |
| 6. Insolubles from Experiment 8544, Week 12              | . 13 |
| 7. Average apparent improvement percentages of additives | . 14 |
| 8. Insolubles from Experiment 8645m, Week 8              | . 15 |
| 9. Insolubles from Experiment 8647 Week 8                | 17   |

### ABBREVIATIONS

AI Adherent insolubles

AIP Apparent improvement percentage

ASTM American Society for Testing and Materials

Avg Average

OC Degrees Celsius

cm Centimeters

cSt Centistokes

OF Degrees Fahrenheit

FI Filterable insolubles

HPLC High performance liquid chromatography

LCO Light cycle oil

mg/100 mL Milligrams per 100 milliliters

mL Milliliters

NA Not available

NIPER National Institute for Petroleum and Energy Research

NRL Naval Research Laboratory

ppm Parts per million

Std Dev Standard deviation

SR Straight run stock

TAM An equal volume mixture of toluene, acetone, and methanol

TI Total insolubles

#### ABSTRACT

In a joint program with the Naval Research Laboratory, the Center has been evaluating the effectiveness of using 10 commercial additives (and two Army additives) to suppress the formation of insolubles in mid-distillate fuels from different fuel sources and processes. The Center contracted with ARTECH Corporation to evaluate the 10 additives at two concentration levels in each of four base fuels, using a bottle test similar to ASTM D4625, but run at 65°C rather than 43°C. Four of the additives were found to be effective, and six were slightly effective or innocuous.

ARTECH Corporation also conducted two special studies. One evaluated the effect that preaged fuel had on insolubles formation in 65°C bottle tests; the other examined the effect of the condition of sampling and storage, e.g., air versus argon blanketing, epoxy-lined versus unlined storage cans, and wet versus dry storage. It was found in this study that air blown or air blanketed fuel stored in unlined cans in the presence of moisture produced appreciably more insolubles than the same fuels under an argon blanket in a lined can in the absence of moisture.

#### ADMINISTRATIVE INFORMATION

This task was conducted under Contract N00167-83-D-0012-0048. The original delivery order of 28 December 1984, required completion by 31 October 1985. Delays in the availability of fuel samples necessitated an extension to 31 July 1986.

The work was funded by the Office of Naval Research (Dr. Alan Roberts and Mr. Wayne Vreatt, Code 123) under Program Element 63724N, Task Area R0838, and Center Work Unit 2759-313. The program was block-funded to the David Taylor Research Center where Mr. W.H. Stoffel of the Shipboard Energy R&D Office (Code 2759) was the block program manager and Mr. R. Strucko (Code 2759) was the project engineer. The technical representative at the David Taylor Research Center was Dr. D.R. Ventriglio (Code 2801); Dr. E.W. White (Code 2832) was the technical manager; and Ms. C. White (Code 5323) was the contracting officer. Mr. K.W. Flohr served as the ARTECH project manager.

All opinions expressed and trade names or specific product identifications used are the sole responsibility of ARTECH Corporation and should not be construed as opinions or endorsements by any U.S. government agency or employee.

#### **ACKNOWLEDGMENTS**

The laboratory work at ARTECH was performed by Eric Snyder and Greg Hamm, whose assistance and knowledge are greatly appreciated. The editorial assistance and advice provided by Dr. E.W. White are appreciated.

#### INTRODUCTION

In a joint program with the Naval Research Laboratory (NRL), the Center has been evaluating the effectiveness of using commercial stability additives to suppress the formation of insolubles in mid-distillate fuels. NRL has been conducting bottle storage tests (similar to ASTM D4625) at 43°C and 80°C, while the Center has been conducting accelerated stability tests similar to ASTM D2274. The Center contracted ARTECH Corporation to conduct bottle tests similar to ASTM D4625, but at 65°C rather than 43°C. All of the fuels and fuel/additive blends were specified by NRL, the lead laboratory. Under contract to NRL, the National Institute for Petroleum and Energy Research (NIPER) collected fuel stocks and blended then with the additives.

In response to contract requirements, ARTECH conducted experiments on five lots of fuel. In three of the experiments (8541, 8542, and 8544), various blends of straight-run and light cycle oil (LCO) stocks were used neat (without additive) and dosed with each of the 12 additives at high and low dosage levels. In the fourth experiment (8645m), one lot of fuel was preaged by air sparging and storing for 1 month at ambient laboratory temperatures before subjecting the fuel/additive blends to 65°C storage. In the fifth experiment (8647), various sampling and

storage conditions were used to determine their effects on insolubles formation.

In this experiment, only three additives were used and only at the high dosage level.

The contract required that ARTECH supply data on filterable, adherent, and total insolubles, and on the relative effectiveness of various additives in reducing the amount of insolubles. Data presented in this report have been distributed to participating laboratories at meetings held to compare and discuss results. This is a final report to summarize our test methods and results. Herein, we describe the work performed, present summaries of the data collected, and provide an evaluation of the relative effectiveness of the various additives. While all data are included in this report, our discussion is generally limited to the 10 commercial additives. The two Army additive blends are considered unsuitable for shipboard use because of their water dispersant properties.

#### MATERIALS AND EQUIPMENT

#### FUEL SAMPLES

NIPER obtained the samples used in Experiments 8541 and 8542 from a Gulf Coast refinery in 1985. Experiments 8544 and 8645m used samples obtained from a West Coast refinery during a 1985 visit; the fuels for Experiment 8647 were obtained from the same West Coast refinery in 1986. All fuels were treated at the refinery with stability-enhancing additives as would be the case during production runs.

NIPER assigned a four-digit identifying number to each fuel stock and each blend at the time the fuel was collected and blended. (Those numbers are retained in this report.) The fuels were shipped in 5-gallon cans to the Center or NRL where they were subdivided into 1-gallon, epoxy-lined cans for distribution to the participating laboratories. The source refinery location for each lot of fuel and selected properties of the neat straight-run/LCO blends are shown in Table 1.

Table 1. Physical properties of neat fuels.\*

| ID<br>No. | LCO<br>(1) | Refinery<br>Location | Gravity<br>(°API) | Viscosity<br>40°C (cSt) | Bromine<br>No. | Acid No.<br>mg KOH/g |      | Cetane<br>Index<br>D976 | Flash<br>Point<br>(°C) |
|-----------|------------|----------------------|-------------------|-------------------------|----------------|----------------------|------|-------------------------|------------------------|
| 1773      | 30         | Gulf Coast           | 34.6              | 3.36                    | 0.23           | 0.19                 | 0.25 | 49                      | 81                     |
| 1774      | 40         | Gulf Coast           |                   | 3.05                    | 0.24           | 0.15                 | 0.22 | 48                      | 83                     |
| 1880      | 40         | West Coast           | 25.5              | 3.15                    | 0.51           | 0.04                 | 0.86 | 36                      | 88                     |
| 1879      | 30         | West Coast           | 27.5              | 3.09                    | 0.43           | 0.04                 | 0.67 | 39                      | 87                     |
| 2065**    | 30         | West Coast           | 29.1              | 3.15                    | NA             | 0.07                 | NA   | NA                      | 102                    |

\*Refer to Reference 1.

\*\*Refer to Reference 2.

Samples used in Experiments 8645m and 8647 were specially treated before testing. DTRC treated samples used in 8645m by air sparging at a rate of 4 L/hr of room temperature air for approximately 3 hr. The samples then were sealed and retained by ARTECH for 4 weeks at ambient temperature prior to testing.

The samples for Experiment 8647 were collected at the West Coast refinery under a number of conditions to determine the effects of collection, storage, and transport of the fuels; three additives, rather than 12, were used in this experiment. Previous samples had been collected in 5-gallon, epoxy-lined cans, with argon in the can ullage. The samples for Experiment 8647 were collected in epoxy-lined cans or in unlined metal cans; air contact was allowed in some cans and in others an argon blanket prevented any air contact; some cans were kept as dry as possible and others had water added. These conditions were employed to determine what effect the variations in sample collection and handling may have on the production of insoluble products produced by accelerated storage stability tests.

#### STABILITY ADDITIVES

Of the 12 stability additives, 9 were standard commercial products, one was a blend of two of the commercial additives, and the two remaining were Army additive blends included for testing in this program. (The Navy cannot use the Army blends due to their water dispersant properties.) The additives were supplied on a condition of nondisclosure. Therefore, this report uses the additive codes supplied by NRL. Table 2 indicates the general nature of the 10 Navy additives, 3 as supplied by the manufacturers. The chemical nature of the two Army additives was not supplied.

Table 2. Description of fuel additives.

| Code | Chemical Description                            | Active Ingredient (%) |
|------|-------------------------------------------------|-----------------------|
|      |                                                 |                       |
| 1    | Unknown                                         | 70                    |
| 2    | Tertiary amine                                  | 100                   |
| 3    | Amine (proprietary)                             | 80                    |
| 4    | Amine + dispersant + corrosion inhibitor        | 70                    |
| 5    | Tertiary amine + metal deactivator + dispersant | 15                    |
| 6    | Secondary amine + metal deactivator             | 82                    |
| 7    | Unknown + dispersant + corrosion inhibitor      | 46                    |
| 8    | Unknown                                         | 50                    |
| 9    | Secondary amine                                 | 70                    |
| 10   | Mixture of 2 and 6                              | 90                    |

Each of the first three neat fuels was dosed with two different concentrations of each of the 12 additives, producing a total of 27 separate samples per test condition (straight run stock, LCO stock, the neat blended stock, and 12 each high-and low-dose additives). The low additive dosage level was 12 ppm for the 10 Navy commercial additives; the high dosage level was 24 ppm. For the two Army additives, the higher dosage level was triple the lower level treatment, but the concentrations of active ingredients in the liquid additive package is unknown. Experiment 8645m was run with the higher concentration of additives only. The fuel samples for

Experiment 8647 were treated with only three of the additives (1, 2, and 9) at the higher dosage, because the experiment was designed to evaluate the effects of sampling and storage conditions rather than the additive concentration or the 10 commercial additives.

#### SOLVENTS

#### Hydrocarbon Solvent

The hydrocarbon solvent specified in ASTM D4625 is ASTM knock-grade fuel standard iso-octane which dissolves only the liquid fuel and will not effect the filterable or adherent insolubles. ARTECH used high performance liquid chromatography (HPLC) grade iso-octane in lieu of the specified ASTM grade.

### Adherent Insoluble Solvent

ARTECH used the adherent insoluble solvent specified in ASTM D4625, an equal volume mixture of filtered ACS grade toluene, acetone, and methanol (TAM). TAM dissolves the adherent insolubles, so they can be transferred to a beaker for weight determination after drying.

### Solvent Qualification

The solvents used in these tests were purchased from Fisher Scientific and Aldrich Chemical Companies. The HPLC grade iso-octane has no detectable residue after evaporation; therefore, it does not affect the final mass of filterable insolubles produced. Solvent purities and solid residues were determined for the iso-octane and the mixed TAM by solvent blank runs for each new lot of solvent. We found no appreciable residual mass from any of the solvents used.

#### TEST PROCEDURES

#### OVERVIEW

ASTM D4625 specifies that 400-mL samples of filtered fuel be stored in 500-mL borosilicate bottles at 43°C (110°F) for 0, 4, 8, 12, 18, and 24 weeks. After aging, the fuels are cooled to room temperature and analyzed for filterable and adherent insolubles.

ARTECH tests were conducted in triplicate using a modified version of the ASTM D4625 procedure. We modified the cleaning procedure and the bottle venting method. The fuels were stressed at  $65^{\circ}$ C rather than  $43^{\circ}$ C. Fuels were stressed for periods ranging from 2 to 12 weeks, as indicated in Table 3. The adherent insolubles were dried at  $85^{\circ}$ C rather than at  $99\pm1^{\circ}$ C as specified in the Air-Jet Method of ASTM D381.

Table 3. Summary of stress periods used.

| Experiment | Neat Fuel | Stress Time (weeks) |
|------------|-----------|---------------------|
|            |           |                     |
| 8541       | 1774      | 4 and 8             |
| 8542       | 1773      | 8                   |
| 8544       | 1880      | 6 and 12            |
| 8645m      | 1879      | 2, 4, 6, and 8      |
| 8647       | 2065      | 2, 4, 6, and 8      |

#### PRESTRESS PROCEDURES

### Cleaning

We modified the cleaning procedure slightly for the sample bottles, volumetric glassware, Gooch crucibles, beakers, and separatory funnels used in our tests. An initial TAM rinse was followed by cleaning with a mildly alkaline detergent, a tap water rinse, a rinse with distilled/deionized water, and an overnight soak with deionized water. The cleaned labware was oven-dried. The bottles were rinsed with a small amount of the sample fuel immediately before the final filling.

## Bottle Venting

The 500-mL borosilicate glass bottles were vented by loosening the caps during oven stressing, rather than by using the standard glass gooseneck specified in ASTM D4625. Based on previous 65°C bottle tests, the results obtained with this method are indistinguishable from those obtained with the gooseneck vented bottles

## Time and Temperature

Tests were conducted at 65°C rather than the 43°C specified in ASTM D4625.

Stress times ranged from 2 to a maximum of 12 weeks (see Table 3).

## Sample Preparation

Upon receipt of the fuel samples, we filtered the neat fuel and fuel blends through 2.1-cm-diameter glass microfiber, Whatman 934-AH filters. All initial filtrations were conducted in batches large enough to fill all of the Wheaton borosilicate glass sample bottles with the required 400 mL of a given fuel. This minimized fuel variability between replicate samples. The fuels were customarily filtered in the numeric order of the NIPER-assigned identification numbers.

## Oven Loading

Fuel samples were loaded into the 65°C oven in a double blind manner to minimize the effects of variations in oven temperature. One person randomly removed a labeled sample bottle from the transportation cart and handed it to a second person who then placed it in the oven.

#### POSTSTRESS PROCEDURES

#### Filterable Insolubles Determination

At the end of the temperature stress period, the samples were removed from the oven and allowed to cool in a dark place for a minimum of 6 hr but no more than 17 hr. Filterable insolubles were determined by filtering the fuel through tared Gooch crucibles fitted with the same type of Whatman 934-AH filters used in the initial filtration. The poststress filtration was conducted by series in numerical order of the NIPER identification numbers (i.e., a complete series of fuel numbers was filtered (1770, 1771, 1774, etc), then a second series, and so forth until all replicates had been filtered).

The bottles were rinsed with iso-octane to remove any remaining fuel (three rinses each of approximately 50 mL). The solution from this rinse was filtered through the Gooch crucibles, each of which then was rinsed with an additional 25-mL portion of iso-octane. The crucibles were dried in an 85°C oven overnight, until there was no solvent odor and constant weight was achieved.

### Adherent Insolubles Determination

Adherent insolubles were determined by rinsing the fuel-free bottles with three portions of TAM (approximately 15 mL each) and collecting the resulting solutions in tared beakers. The beakers were allowed to evaporate overnight by standing them on the top of the drying ovens with a dust cover over each beaker. The nearly dried beakers then were placed in the drying oven until the solvent odor was gone and a constant weight was achieved.

#### DISCUSSION OF RESULTS

EXPERIMENTS 8541, 8542, AND 8544

Experiments 8541, 8542, and 8544 were the core of the laboratory work planned in the contract. They used the full complement of 12 stability enhancing additives.

(A compilation of all replicates, averages, and standard deviations appears in Appendix A.)

There was often little difference between the total insolubles obtained with the different additive blends, making discrimination among the additives difficult by direct comparison. To accentuate the differences, we have defined an apparent improvement percentage (AIP), which is derived from the average total insolubles of the neat fuel (additive free) and the average total insolubles of the additive-containing blend:

AIP = 
$$\frac{\text{TI}_{\text{neat}} \cdot \text{TI}_{\text{blend}}}{\text{TI}_{\text{neat}}} \times 100$$

AIP values are shown in Tables 4 through 6, which summarize the data for the longest stress period in each experiment (8, 8, and 12 weeks for Experiments 8541, 8542, and 8544, respectively). The tables are divided into low- and high-additive dosage levels; the last column in each table is the calculated AIP. Table 7 shows the average AIP's in descending order on the basis of the high dosage level values. The Army additives are not included because they are not suitable for Navy use. Table A.6 of Appendix A summarized the apparent improvement percentages and the averages for all 12 additives.

Table 4. Insolubles from Experiment 8541, Week 8.

|      | <del></del> | Additive | Insolubl   | es, mg/100 | mL*   | <del></del> |
|------|-------------|----------|------------|------------|-------|-------------|
| Fuel | Description | Code     | Filterable | Adherent   | Total | AIP**       |
|      |             |          |            |            |       |             |
| 1770 | SR          | None     | 0.4        | 0.7        | 1.1   | -           |
| 1771 | LCO         | None     | 2.6        | 8.6        | 11.2  | -           |
| 1774 | 40% LCO     | None     | 1.6        | 2.6        | 4.3   | -           |
|      |             | Low Dose | ige Levels |            |       |             |
| 1779 | 40% LCO     | ] 1      | 1.0        | 2.6        | 3.6   | 16          |
| 1785 | 40% LCO     | 2        | 1.3        | 1.6        | 2.9   | 33          |
| 1791 | 40% LCO     | 3        | 2.2        | 0.8        | 3.1   | 28          |
| 1797 | 40% LCO     | 4        | 2.0        | 2.0        | 4.0   | 9           |
| 1803 | 40% LCO     | 5        | 2.0        | 1.7        | 3.7   | 14          |
| 1809 | 40% LCO     | 6        | 1.7        | 1.9        | 3.6   | 16          |
| 1815 | 40% LCO     | 7        | 1.9        | 1.5        | 3.4   | 21          |
| 1822 | 40% LCO     | 8        | 1.7        | 2.0        | 3.7   | 14          |
| 1828 | 40% LCO     | 9        | 2.3        | 0.7        | 3.0   | 30          |
| 1834 | 40% LCO     | 11       | 2.6        | 0.8        | 3.3   | 23          |
| 1840 | 40% LCO     | 12       | 1.4        | 1.5        | 2.9   | 33          |
| 1846 | 40% LCO     | 10       | 1.3        | 1.6        | 2.9   | 33          |
|      |             | High Dos | age Levels |            |       |             |
| 1780 | 40% LCO     | 1 1      | 1.3        | 2.3        | 3.6   | 16          |
| 1756 | 40% LCO     | 2        | 1.3        | 1.3        | 2.6   | 40          |
| 1792 | 40% LCO     | 3        | 2.2        | 0.8        | 3.0   | 30          |
| 1798 | 40% LCO     | 4        | 1.2        | 1.9        | 3.1   | 28          |
| 1804 | 40% LCO     | 5        | 2.2        | 2.0        | 4.2   | 2           |
| 1810 | 40% LCO     | 6        | 1.6        | 1.7        | 3.5   | 19          |
| 1816 | 40% LCO     | 7        | 1.8        | 1.5        | 3.3   | 23          |
| 1823 | 40% LCO     | 8        | 1.3        | 2.2        | 3.4   | 21          |
| 1829 | 40% LCO     | 9        | 0.2        | 0.3        | 0.5   | 88          |
| 1835 | 40% LCO     | 11       | 0.4        | 0.5        | 0.9   | 79          |
| 1841 | 40% LCO     | 12       | 2.2        | 1.0        | 3.2   | 26          |
| 1847 | 40% LCO     | 10       | 0.8        | 1.6        | 2.4   | 44          |
|      |             |          |            |            |       |             |

\*Average of triplicate determinations.

<sup>\*\*</sup>Apparent improvement percentage rounded to nearest percent.

Table 5. Insolubles from Experiment 8542, Week 8.

| · <del></del> |                   | Additive | Insolubl    |          | mL*   |          |  |
|---------------|-------------------|----------|-------------|----------|-------|----------|--|
| Fuel          | Description       | Code     | Filterable  | Adherent | Total | AIP**    |  |
|               | ·                 |          |             |          |       |          |  |
| 1773          | 30% LCO           | None     | 2.3         | 2.5      | 4.8   | -        |  |
|               | •                 |          | ·<br>-      | •        | •     |          |  |
|               | Low Dosage Levels |          |             |          |       |          |  |
| 1777          | 30% LCO           | յ 1      | 1.8         | 2.7      | 4.5   | 6        |  |
| 1783          | 30% LCO           | 2        | 1.5         | 2.0      | 3.5   | 27       |  |
| 1789          | 30% LCO           | 3        | 2.4         | 1.3      | 3.7   | 23       |  |
| 1795          | 30% LCO           | 4        | 1.9         | 2.4      | 4.3   | 10       |  |
| 1801          | 30% LCO           | 5        | 1.7         | 2.5      | 4.1   | 15       |  |
| 1807          | 30% LCO           | 6        | 2.3         | 2.4      | 4.7   | 2        |  |
| 1813          | 30% LCO           | 7        | 2.6         | 2.2      | 4.8   | 0        |  |
| 1820          | 30% LCO           | 8        | 1.6         | 2.5      | 4.1   | 15       |  |
| 1020          | 30% 233           |          | }           |          |       |          |  |
| 1826          | 30% LCO           | 9        | 2.5         | 0.8      | 3.3   | 31       |  |
| 1832          | 30% LCO           | 11       | 2.6         | 1.0      | 3.6   | 25       |  |
| 1838          | 30% LCO           | 12       | 3.3         | 1.8      | 5.1   | -6       |  |
| 1844          | 30% LCO           | 10       | 1.6         | 1.8      | 3.4   | 29       |  |
|               | •                 | High Do  | sage Levels |          |       |          |  |
| 1788          | 30% LCO           | ) 1      | 1.6         | 2.7      | 1 4.4 | 8        |  |
| 1784          | 30% LCO           | 2        | 1.0         | 2.2      | 3.2   | 33       |  |
| 1790          | 30% LCO           | 3        | 2.3         | 1.0      | 3.3   | 31       |  |
| 1796          | 30% LCO           | 4        | 1.8         | 2.3      | 4.1   | 15       |  |
| 1000          |                   |          |             |          |       | 10       |  |
| 1802          | 30% LCO           | 5        | 2.0         | 2.2      | 4.2   | 12       |  |
| 1808          | 30% LCO           | 6        | 2.0         | 1.9      | 3.9   | 19       |  |
| 1814          | 30% LCO           | 7        | 2.5         | 2.0      | 4.5   | 6        |  |
| 1821          | 30% LCO           | 8        | 1.8         | 2.5      | 4.2   | 12       |  |
| 1827          | 30% LCO           | 9        | 1.4         | 0.5      | 1.8   | 62       |  |
| 1833          | 30% LCO           | 11       | 3.0         | 1.1      | 4.1   | 15       |  |
| 1839          | 30% LCO           | 12       | 3.0         | 1.6      | 4.6   | 4        |  |
| 1845          | 30% LCO           | 10       | 1.4         | 2.2      | 3.5   | 27       |  |
| di A          | of hud-14 and d   |          | <u> </u>    | <b></b>  | L     | <u> </u> |  |

\*Average of triplicate determinations.

<sup>\*\*</sup>Apparent improvement percentage rounded to nearest percent.

Table 6. Insolubles from Experiment 8544, Week 12.

|      | <u> </u>         | Additive | Insolubl                              | es, mg/100 | mL*   |          |
|------|------------------|----------|---------------------------------------|------------|-------|----------|
| Fuel | Description      | Code     | Filterable                            |            | Total | AIP**    |
|      |                  |          |                                       |            |       |          |
| 1876 | SR               | None     | 0.2                                   | 0.6        | 0.7   |          |
| 1877 | LCO              | None     | 5.6                                   | 20.0       | 25.6  |          |
| 1880 | 40% LCO          | None     | 6.4                                   | 6.9        | 13.3  | 1 - 1    |
|      |                  | •        | •                                     | •          | •     | `        |
|      |                  | Low Dos  | ige Levels                            |            |       | j        |
| 1885 | 1 40% LCO        | 1        | 5.7                                   | 4.3        | 10.0  | 25       |
| 1891 | 40% LCO          | 2        | 0.3                                   | 5.5        | 5.8   | 56       |
| 1897 | 40% LCO          | 3        | 4.8                                   | 4.0        | 8.8   | 34       |
| 1903 | 40% LCO          | 4        | 5.6                                   | 7.8        | 13.3  | 0        |
|      | [                |          |                                       |            |       | 1        |
| 1909 | 40% LCO          | 5        | 6.5                                   | 2.5        | 9.0   | 32       |
| 1915 | 40% LCO          | 6        | 4.3                                   | 8.4        | 12.7  | 5        |
| 1921 | 40% LCO          | 7        | 5.1                                   | 5.6        | 10.7  | 20       |
| 1927 | 40% LCO          | 8        | 4.6                                   | 9.0        | 13.7  | -3       |
| 1933 | 40% LCO          | 9        | 2.5                                   | 1.3        | 3.8   | 71       |
| 1939 | 40% LCO          | 10       | 4.4                                   | 2.6        | 7.0   | 47       |
| 1945 | 40% LCO          | ii       | 5.1                                   | 7.3        | 12.4  | 7        |
| 1951 | 40% LCO          | 12       | 3.8                                   | 6.8        | 10.6  | 20       |
|      |                  |          | · · · · · · · · · · · · · · · · · · · | •          |       | ĺ        |
|      |                  | High Do  | sage Levels                           |            |       |          |
| 1886 | 40% LCO          | 1        | 7.7                                   | 5.0        | 12.7  | 1 5      |
| 1892 | 40% LCO          | 2        | 4.0                                   | 0.5        | 4.6   | 65       |
| 1898 | 40% LCO          | 3        | 4.4                                   | 4.0        | 8.5   | 36       |
| 1904 | 40% LCO          | 4        | 3.1                                   | 7.8        | 10.9  | 18       |
| 1910 | 40% LCO          | 5        | 7.7                                   | 3.5        | 11.3  | 1.5      |
| 1916 | 40% LCO          | 6        | 4.6                                   | 8.8        | 13.4  | 15       |
| 1922 | 40% LCO          | 7        | 4.6                                   | 6.4        | 11.1  | -1<br>17 |
| 1928 | 40% LCO          | 8        | 3.6                                   | 7.1        | 10.7  | 20       |
| 1320 | 40% 100          |          | 3.0                                   | /.1        | 10.7  | 20       |
| 1934 | 40% LCO          | 9        | 3.2                                   | 1.4        | 4.6   | 65       |
| 1940 | 40% LCO          | 10       | 1.6                                   | 6.3        | 7.9   | 41       |
| 1946 | 40% LCO          | 11       | 3.5                                   | 8.8        | 12.2  | 8        |
| 1952 | 40% LCO          | 12       | 0.7                                   | 4.4        | 5.1   | 62       |
| L    | of triplicate de | ******** | <u> </u>                              |            | L     | L        |

\*Average of triplicate determinations.

<sup>\*\*</sup>Apparent improvement percentage rounded to nearest percent.

As can be seen in Tables 4 through 6, the amounts of total insolubles in Experiments 8541, 8542, and 8544 generally were very low. Therefore, the task of discrimination between the various additives by direct inspection of the data is difficult. However, the AIP values in Table 7 show that Additives 2, 3, 9, and 10 averaged greater than 30% apparent improvement in the fuels tested. Additives 1, 4, 5, 6, 7, and 8 exhibited an apparent improvement between 10% and 20%.

Table 7. Average apparent improvement percentages of additives.

|               | Average AIP       |                    |  |  |  |
|---------------|-------------------|--------------------|--|--|--|
| Additive Code | Low Concentration | High Concentration |  |  |  |
| _             | 1                 |                    |  |  |  |
| 9             | ) 23              | 53                 |  |  |  |
| 2             | 39                | 46                 |  |  |  |
| 10            | 27                | 44                 |  |  |  |
| 3             | 28                | 32                 |  |  |  |
| 4             | 6                 | 20                 |  |  |  |
| 8             | 9                 | 18                 |  |  |  |
| 7             | 14                | 15                 |  |  |  |
| 6             | 8 {               | 12                 |  |  |  |
| 1             | 16                | 10                 |  |  |  |
| 5             | 20                | 10                 |  |  |  |
|               |                   |                    |  |  |  |

#### On the basis of these observations:

- Additives 2, 3, 9, and 10 appear to improve storage stability under the conditions tested;
- Additives 1, 5, 6, 7, and 8 appear to offer minor improvements or to be innocuous.

### EXPERIMENTS 8645m AND 8647

Experiments 8645m and 8647 were special study experiments run as a result of concern over obtaining only low levels of total insolubles in Experiments 8541 through 8544. Experiment 8645m was run on fuels preaged by air sparging and

preliminary ambient storage prior to the normal ASTM D4625 type of accelerated aging at 65°C. Only the high concentration of additives was used in a neat fuel containing 30% LCO.

Results of the tests on preaged fuels are shown in Table 8. From the AIP levels, commercial Additives 2, 3, and 8 appear to be beneficial in these air aparged fuels; commercial Additives 4 and 12 appeared to be detrimental to the storage stability; and commercial Additives 1, 5, 6, 7, and 9 appeared innocuous.

From comparison of results from the preaged 30% LCO fuels (Table 8) and from the unaged 40% LCO fuels (Table 6) from the same refinery and fuels stocks, we found that in both cases blends containing Additives 2 and 3 were among those with the most beneficial results, and blends containing Additive 6 were among those with the poorest results.

Table 8. Insolubles from Experiment 8645m, Week 8.

|      | Additive | Insolubl   | es, mg/100 | mL*   |       |
|------|----------|------------|------------|-------|-------|
| Fuel | Code     | Filterable | Adherent   | Total | AIP** |
|      |          |            |            |       |       |
| 1879 | None     | 5.1        | 3.2        | 8.3   | -     |
| 1884 | 2        | 0.7        | 2.7        | 3.4   | 59    |
| 1932 | 11       | 3.2        | 0.9        | 4.1   | 51    |
| 1926 | 8        | 3.2        | 1.9        | 5.0   | 40    |
| 1938 | 12       | 4.1        | 1.9        | 6.0   | 28    |
| 1896 | 3        | 4.7        | 1.5        | 6.1   | 27    |
| 1920 | 7        | 4.8        | 1.6        | 6.4   | 27    |
| 1908 | 5        | 5.0        | 1,8        | 6.9   | 17    |
| 1884 | 1        | 5.0        | 2.3        | 7.3   | 12    |
| 1944 | 9        | 4.8        | 2.8        | 7.5   | 10    |
| 1914 | 6        | 4.0        | 3.8        | 7.8   | 6     |
| 1950 | 10       | 5.2        | 3.7        | 8.9   | -7    |
| 1902 | 4        | 6.4        | 2.8        | 9.2   | -11   |
|      |          | ļ          | }          |       |       |

Note: All blends were 30% LCO; all additives were at the high dosage levels.

<sup>\*</sup>Average of triplicate determinations.

<sup>\*\*</sup>Apparent improvement percentage rounded to nearest percent.

Experiment 8647 was conducted to explore the possible effects of the way in which a sample was taken and stored. Whereas early samples had been kept in epoxylined cans under an inert gas (argon) blanket, the samples for Experiment 8647 were taken and stored under a variety of conditions, as shown in Table 9. Note that some of the cans were unlined, some contained a small amount of water, and some were blanketed or blown with air; these are all conditions found in normal sampling. We focused on the effectiveness of only three fuel additives and did not calculate apparent improvement percentages, because our major thrust was to investigate the sampling conditions.

The data from Experiment 8647 indicate that the collection conditions do affect the production of insolubles. The condition that most directly relates to common fuel transportation and storage conditions (air blown, unlined can with water present) produced appreciably larger amounts of insolubles then the normal fuel study collection conditions (argon blanket, lined can with no water). Total insolubles of 6.9 mg/100 mL were obtained for neat Fuel 2093 (air, unlined, with water) versus 4.7 mg/100 mL for neat Fuel 2065 (argon, lined, with no water). This increase may have resulted from the presence of exposed metal. Total insolubles of 3.3 mg/100 mL were obtained for Fuel 2073 (argon, lined, with water) versus 4.7 mg/100 mL for Fuel 2065 (argon, lined, no water). Water added, in the absence of air, appeared to have only a slight negative effect on the generation of insolubles. A combination of air, water, and exposed metal surfaces appears to have increased the amounts of insoluble products generated in accelerated storage stability testing.

Table 9. Insolubles from Experiment 8647, Week 8.

| [            |                    | Additive            | Insolubl     | es, mg/100 | mL*        |
|--------------|--------------------|---------------------|--------------|------------|------------|
| Fuel         | Description        | Code                | Filterable   | Adherent   | Total      |
|              |                    |                     |              |            |            |
|              | Argon Bla          | nket. Lined         | Can. No Wate | I          |            |
|              |                    |                     |              |            |            |
| 2059 լ       | SR                 | None                | 0.1          | 0.1        | 0.2        |
| 2060         | LCO                | None                | 0.1          | 0.3        | 0.5        |
| 2065         | 30% LCO            | None                | 1.5          | 3.2        | 4.7        |
| 2066         | 30% LCO            | 1                   | 3.0          | 2.5        | 5.5        |
| 2067         | 30% LCO            | 2                   | 0.2          | 1.7        | 1.9        |
| 2068         | 30% LCO            | 9                   | 1.4          | 2.1        | 3.6        |
|              | Air Blo            | wn. Lined Ca        | n. No Water  |            |            |
| <br>  2061   | LCO                | None                | 0.1          | 0.7        | 0.8**      |
| 2069         | 30% LCO            | None                | 1.4          | 3.0        | 4.4        |
| 2070         | 30% LCO            | 1                   | 0.9          | 3.2        | 4.2        |
| 2071         | 30% LCO            | 2                   | 0.2          | 1.9        | 2.1        |
| 2072         | 30% LCO            | 9                   | 2.4          | 3.6        | 6.0        |
|              | Argon Blanket, Li  | ned Can. 10         | mL Water (5  | gallons)   |            |
|              |                    |                     |              |            |            |
| 2062         | LCO                | None                | 0.2          | 0.6        | 0.8        |
| 2073         | 30% LCO            | None                | 0.7          | 2.6        | 3.3        |
| 2074         | 30% LCO            | 1                   | 1.0          | 2.3        | 3.3        |
| 2075<br>2076 | 30% LCO<br>30% LCO | 2 9                 | 0.3<br>1.0   | 1.1<br>2.2 | 1.4<br>3.2 |
| 2070         | 30% LCO            | )                   | 1.0          | 2.2        | 3.2        |
|              | Argon Blan         | <u>ket. Unlined</u> | Can. No Wat  | er         |            |
| 2063         | LCO                | None                | 1.5          | 1.2        | 2.7        |
| 2077         | 30% LCO            | None                | 3.0          | 2.8        | 5.2        |
| 2078         | 30% LCO            | 1                   | 1.4          | 5.6        | 7.0        |
| 2079         | 30% LCO            | 2                   | 1.8          | 1.9        | 3.7        |
| 2080         | 30% LCO            | 9                   | 2.8          | 2.8        | 5.6        |
|              | Air Blown, Lined   | Can. 10 mL          | of Water (5  | gallons)   |            |
| 2081         | 30% LCO            | None                | 1.1          | 4.2        | 1 5.4      |
| 2082         | 30% LCO            | 1                   | 0.3          | 1.4        | 1.7        |
| 2083         | 30% LCO            | 2                   | 1.5          | 2.8        | 4.3        |
| 2084         | 30% LCO            | 9                   | 0.7          | 3.7        | 4.4        |
| <u> </u>     |                    | _                   |              |            | ]          |
|              | rage of triplicate |                     | ons.         | ·          |            |
| **Base       | d on duplicate ana | lysis.              |              |            |            |

Table 9. (Continued)

| [    |                   | Additive                                   | Insolubl     | es, $mg/100$ | mL    |
|------|-------------------|--------------------------------------------|--------------|--------------|-------|
| Fuel | Description       | Code                                       | Filterable   | Adherent     | Total |
|      |                   |                                            |              |              |       |
|      | Alr Blow          | n. Unlined C                               | an. No Water |              |       |
| 2064 | LCO               | ) None                                     | 0.6          | 2.8          | 3.4** |
| 2085 | 30% LCO           | None                                       | 3.6          | 4.3          | 7.9   |
| 2086 | 30% LCO           | 1                                          | 2.4          | 5.5          | 7.9   |
| 2087 | 30% LCO           | 2                                          | 1.9          | 2.9          | 4.8   |
| 2088 | 30% LCO           | 9                                          | 2.9          | 3.0          | 5.9   |
| j    |                   |                                            | ·            | '            |       |
| Ar   | gon Blanket, Unli | ned Can. 10                                | mL of Water  | (5 gallons   | )     |
| 2089 | 30% LCO           | None                                       | 3.1          | 2.8          | 5.9   |
| 2090 | 30% LCO           | 1                                          | 1.6          | 4.2          | 5.8   |
| 2091 | 30% LCO           | 2                                          | 0.5          | 2.0          | 2.5   |
| 2092 | 30% LCO           | 9                                          | 2.3          | 2.2          | 4.5   |
|      |                   | ,<br>, , , , , , , , , , , , , , , , , , , | 6 11 / 5     | 11>          |       |
|      | Air Blown. Unline | a can. 10 ml                               | or water (5  | gallons)     |       |
| 2093 | 30% LCO           | None                                       | 2.8          | 4.1          | 6.9   |
| 2094 | 30% LCO           | 1                                          | 6.5          | 3.5          | 10.0  |
| 2095 | 30% LCO           | 2                                          | 1.5          | 2.2          | 3.8   |
| 2096 | 30% LCO           | 9                                          | 2.7          | 3.6          | 6.3   |
| }    |                   |                                            |              |              |       |
|      | <u>Air Blank</u>  | et. Unlined                                | Can. No Wate | r            |       |
| 2106 | 30% LCO           | None                                       | 6.1          | 3.8 j        | 10.0  |
| 2107 | 30% LCO           | 2                                          | 2.7          | 2.4          | 5.1   |
|      |                   |                                            |              |              |       |

The use of an air blanket during collection should provide a closer representation of standard fuel conditions, because air normally is present in the ullage during collection and shipping of fuels. However, the increase in total insolubles was relatively small, and the apparent effectiveness of the three fuel additives did not change as a function of the collection conditions.

We observed that regardless of sampling and storage conditions, Additive 2 reduced the amount of total insolubles, compared to the fuel without additives.

Under most of the sampling and storage conditions, the presence of Additive 1 in the

fuel blend yielded innocuous results; i.e., the total insolubles produced in the test were within a few tenths of a mg/100 mL of those obtained with the neat fuel blend. However, in the case where the sample had water present, had been air-blown, and had been stored in a lined can, the presence of Additive 1 resulted in more total insolubles than were produced in the neat fuel under identical sampling and storage conditions. Additive 9 produced some lessening of the total insolubles, but not as much as Additive 2.

#### CONCLUSIONS

- 1. Additives 2, 3, 9, and 10 appear to improve storage stability under the conditions tested.
- 2. Additives 1, 4, 5, 6, 7, and 8 appear to offer minor improvements or be innocuous in the fuels and under the conditions of the experiment.
- 3. Variations in the collection condition indicate that the condition most directly related to common fuel transportation and storage conditions (air blown, unlined can, with water present) produces larger amounts of insolubles then the normal fuel study collection conditions (argon blanket, lined can, with no water). Water added, in the absence of air, appeared to have only a slight negative effect on the amount of insolubles generated.

APPENDIX A
RAW DATA

Table A.1. Experiment 8541, 4 weeks.

|                                      |                                  |                             |                              |                          |                              | In                         | solub                      | les, i                      | ng/10                    | 00 mL                |                             |                             |                              |                          |                              |
|--------------------------------------|----------------------------------|-----------------------------|------------------------------|--------------------------|------------------------------|----------------------------|----------------------------|-----------------------------|--------------------------|----------------------|-----------------------------|-----------------------------|------------------------------|--------------------------|------------------------------|
|                                      |                                  |                             | iherei                       | nt                       |                              |                            | Fi:                        | lteral                      |                          |                      |                             |                             | Cotal                        |                          |                              |
|                                      |                                  | Sample                      |                              |                          | Std                          |                            | Sample                     | 2                           | ]                        | Std                  |                             | Sample                      |                              | [                        | Std                          |
| Fuel                                 | 1                                | 2                           | 3                            | Avg                      | Dev                          | 1                          | 2                          | 3                           | Avg                      | Dev                  | 1                           | 2                           | 3                            | Avg                      | Dev                          |
| 1770<br>1771<br>1774                 | 0.3<br>3.25<br>0.95              | 3.25<br>0.85                | 3.23<br>1.13                 | 3.2<br>1.0               | 0.01<br>0.11                 | 4.67<br>1.38               | 3.73<br>1.4                | 3.63<br>0.93                | 4.0                      | 0.47                 | 7.92<br>2.33                | 0.55<br>6.97<br>2.25        | 6.85<br>2.05                 | 7.3                      | 0.48<br>0.12                 |
| 1779<br>1780<br>1785<br>1786<br>1791 | 1.7<br>1.0<br>0.8<br>0.7<br>0.17 | 0.9<br>0.63<br>0.68<br>0.23 | 1.15<br>0.63<br>0.55<br>0.23 | 1.0<br>0.7<br>0.6<br>0.2 | 0.08<br>0.07<br>0.02         | 0.93<br>1.2<br>1.05<br>1.6 | 1.85<br>1.05<br>1.57       | 0.93<br>1.1<br>1.07<br>1.63 | 1.0<br>1.4<br>1.1<br>1.6 | 0.33<br>0.01<br>0.02 | 1.93<br>2.0<br>1.75<br>1.78 |                             | 1.73<br>1.63<br>1.85         | 2.0<br>2.1<br>1.7<br>1.8 | 0.07<br>0.31<br>0.05<br>0.03 |
| 1792<br>1797<br>1798<br>1803         |                                  | 0.25<br>1.02<br>1.2<br>0.85 | 0.78<br>1.05                 | 1.1<br>1.1               | 0.27                         | 1.07<br>0.82               | 1.45<br>1.2<br>0.8<br>1.43 | 1.27<br>1.23                | 1.2                      | 0.08<br>0.19         | 2.5<br>1.95                 | 2.22                        | 3.52<br>2.05<br>2.28<br>2.27 | 2.3<br>2.1               | 0.19<br>0.14                 |
| 1804<br>1809<br>1810<br>1815         | 0.97                             | 0.9<br>1.23                 | 0.82                         | 0.9                      | 0.06                         | 1.25<br>1.4                | 1.3<br>1.27                | 1.32<br>1.23                | 1.3                      | 0.03                 | 2.23<br>2.42                | 2.5                         | 2.77<br>2.15<br>2.03<br>4.63 | 2.2                      | 0.03<br>0.21                 |
| 1816<br>1822<br>1823<br>1828         | 0.9                              | 1.35                        | 1.38                         | 1.2<br>1.5               | 0.19                         | 1.45<br>0.97               |                            | 1.5<br>0.93                 | 1.5                      | 0.03                 | 2.35<br>2.9                 | 2.6<br>2.45                 | 2.7<br>2.88<br>2.15<br>1.92  | 2.6<br>2.5               | 0.31                         |
| 1829<br>1834<br>1835<br>1840         | 0.75<br>0.38                     |                             | 0.57<br>0.55                 | 0.6                      | 0.17<br>0.10<br>0.07<br>0.05 | 1.77<br>0.4                | 1.8                        | 1.8                         | 1.8<br>0.7               | 0.01<br>0.31         | 2.52<br>0.78                | 1.05<br>2.3<br>1.07<br>2.63 | 2.38<br>1.68                 | 2.4                      | 0.09                         |
| 1841<br>1846<br>1847                 | 1.02<br>1.32<br>0.93             | 1.07                        | 0.88<br>2.08<br>1.3          | 1.5                      | 0.08<br>0.42<br>0.16         | 1.05                       | 2.02                       | 0.8                         | 1.3                      | 0.53                 | 2.38                        | 2.83<br>3.1<br>2.45         | 2.88                         | 2.8                      | 0.30                         |

Table A.2. Experiment 8541, 8 weeks.

| ·            |       |           |       |          |      | Ins          | solub  | les,  | mg/10 | 00 mL |              |              |               |      |            |
|--------------|-------|-----------|-------|----------|------|--------------|--------|-------|-------|-------|--------------|--------------|---------------|------|------------|
| ł            |       |           | neren | <u> </u> |      |              |        | terab | le    |       |              | Tota         | 1             |      | , <u>.</u> |
| 1            |       | Sample    |       |          | Std  |              | Sample |       |       | Std   |              | ample        | <del>, </del> |      | Std        |
| Fuel         | 1     | 2         | 3     | Avg      | Dev  | 1            | 2      | 3     | Avg   | Dev   | 1            | 2            | 3             | Avg  | Dev        |
|              |       |           |       |          |      | 0.57         |        |       |       |       | 0.9          | 1.45         | 1.02          |      | 0.24       |
|              |       |           |       |          |      | 3.23         |        |       |       | 0.60  |              | 11.7         | 10.6          | 11.2 |            |
| 1774         |       |           | 2.65  |          |      |              | 1.65   |       |       | 0.06  | 4.13         | 4.5          |               |      | 0.16       |
| 1779         | 2.9   | 2.63      | 2.2/  | 2.6      | 0.26 | 1.25         | 0.75   | 1.1   | 1.0   | 0.21  | 4.15         | 3.38         | 3.38          | 3.6  | 0.37       |
| 1780         |       |           |       |          |      |              |        |       |       | 0.12  |              | 3.65         | 3.3           |      | 0.18       |
| 1785         |       |           | 1.63  |          |      |              |        |       |       | 0.10  | 3.1          | 2.7          | 2.8           |      | 0.17       |
| 1            |       |           |       |          |      | 1.07         |        |       |       |       | 2.45         | 2.73         | 2.6           |      | 0.11       |
| 1791         | 17.1  | 0.95      | 0.5   | 0.9      | 0.25 | 2.15         | 2.1/   | 2.42  | 2.3   | 0.12  | 3.25         | 3.13         | 2.92          | 3.1  | 0.13       |
| 1792<br>1797 |       |           |       |          |      | 2.35<br>2.08 |        |       |       |       | 2.92<br>3.63 | 3.15<br>4.75 | 2.83<br>3.38  |      | 0.14       |
|              |       | 1.77      |       |          |      |              | 1.15   |       |       |       | 3.38         | 2.92         | 3.15          |      | 0.80       |
|              |       |           |       |          |      | 1.98         |        |       |       |       | 3.63         | 3.5          | 3.82          |      | 0.18       |
| 1803         | 11.65 | 1 4 . / / | 1.65  | 1.7      | 0.00 | 1.70         | 1.73   | 2.17  | 2.0   | 0.16  | 3.63         | 3.5          | 3.62          | 3./  | 0.13       |
| 1804<br>1809 |       |           |       |          |      | 2.13<br>1.75 |        |       |       | 0.12  | 4.05<br>3.55 | 4.42<br>3.7  | 4.03<br>3.42  | 1    | 0.18       |
| 1810         |       |           | 1.63  |          |      |              | 1.55   |       |       | 0.10  | 3.8          | 3.38         | 3.35          |      | 0.21       |
|              |       |           |       |          |      | 2.08         |        |       |       | 0.19  | 3.55         | 3.02         | 3.47          |      | 0.21       |
| 1012         | 1.40  | 1.52      | 1.43  | 1.5      | 0.04 | 2.00         | 1.5    | 2.05  | 1.9   | 0.27  | 3.33         | 3.02         | 3.4/          | 3.4  | 0.23       |
|              |       |           |       |          |      | 1.25<br>1.85 |        | 2.1   |       | 0.43  | 2.92         |              | 3.33<br>3.63  |      | 0.30       |
|              |       | 2.02      |       |          |      |              | 1.43   |       |       |       | 3.47         |              |               |      | 0.23       |
|              |       | 0.65      |       |          |      |              |        |       |       | 0.08  | 2.65         |              | 3.3           |      |            |
| 1020         | 0.75  | 0.65      | 0.66  | 0.7      | 0.04 | 1.9          | 2.58   | 2.38  | 2.3   | 0.28  | 2.03         | 3.23         | 3.05          | 3.0  | 0.24       |
| 1829         |       |           |       |          |      | 0.07         |        |       |       |       | 0.42         | 0.75         | 0.35          |      | 0.17       |
| 1834         |       |           |       |          |      | 2.38         |        |       |       |       | 3.27         | 3.5          | 3.2           |      | 0.13       |
| 1            |       | 0.33      |       |          |      |              |        |       |       | 0.07  | 1.25         | 0.7          | 0.88          |      | 0.23       |
| 1840         | 1.7   | 1.6       | 1.2   | 1.5      | 0.22 | 1.25         | 1.48   | 1.55  | 1.4   | 0.13  | 2.95         | 3.08         | 2.75          | 2.9  | 0.13       |
| 1841         | 1.2   | 1.0       | 0.93  | 1.0      | 0.12 | 2.15         | 2.15   | 2.15  | 2.2   | 0     | 3.35         | 3.15         | 3.08          | 3.2  | 0.12       |
| 1846         | 2.05  |           |       |          |      | 0.78         |        |       |       | 0.42  | 2.82         |              | 2.72          |      | 0.11       |
| 1847         | 1.85  | 1.48      |       |          |      | 0.78         |        |       |       |       | 2.63         | 2.2          | 2.53          |      | 0.18       |
|              |       |           |       | L        |      |              |        |       |       |       |              |              |               |      |            |

Table A.3. Experiment 8542, 8 weeks.

|                      |                              | <del></del>          |                      |                   |                              | Ins                  | olub                 | les,                 | ng/10             | 00 mL                        |                              |                              |                              |                   |                              |
|----------------------|------------------------------|----------------------|----------------------|-------------------|------------------------------|----------------------|----------------------|----------------------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------|------------------------------|
|                      |                              | Adl                  | neren                | t                 |                              |                      | Filt                 | terab                | le_               |                              |                              | Tota                         | 1                            |                   |                              |
|                      |                              | ample                |                      |                   | Std                          |                      | ample                |                      |                   | Std                          |                              | ample                        | <del></del>                  | ļ                 | Std                          |
| Fuel                 | 1                            | 2                    | 3                    | Avg               | Dev                          | 1                    | 2                    | 3                    | Avg               | Dev                          | 1                            | 2                            | 3                            | Avg               | Dev                          |
|                      | 1                            | 2.40                 | 2.55<br>2.50         | 2.7<br>2.7        |                              | 1.57<br>1.98         | 1.70<br>1.57         | 2.00<br>1.38         | 1.8<br>1.6        | 0.18<br>0.25                 | 4.57<br>4.85<br>5.03<br>3.50 | 4.72<br>4.10<br>4.25<br>3.45 | 5.17<br>4.55<br>3.88<br>3.67 | 4.5<br>4.4        | 0.25<br>0.31<br>0.48<br>0.10 |
| 1789<br>1790         | 2.85<br>1.27<br>1.02<br>2.38 | 1.15                 | 1.40                 | 1.3<br>1.1        | 0.10<br>0.05                 | 2.45<br>2.38         | 2.20<br>2.13         | 2.50<br>2.25         | 2.4               | 0.13<br>0.10                 | 3.60<br>3.73<br>3.40<br>4.60 | 2.72<br>3.35<br>3.13<br>4.00 | 3.22<br>3.90<br>3.38<br>4.22 | 3.7<br>3.3        | 0.36<br>0.23<br>0.12<br>0.25 |
| 1801                 | 2.90<br>2.75<br>1.90<br>2.75 | 2.00                 | 2.63                 | 2.5               | 0.33                         | 2.15<br>2.05         | 1.20<br>2.00         | 1.63<br>1.80         | 1.7<br>2.0        | 0.39<br>0.11                 | 4.60<br>4.90<br>4.05<br>4.53 | 3.85<br>3.20<br>3.83<br>4.93 | 3.82<br>4.25<br>4.38<br>4.60 | 4.1<br>4.2        | 0.36<br>0.70<br>0.18<br>0.15 |
| 1813<br>1814         | 2.02<br>1.80<br>2.15<br>2.38 | 2.58<br>1.80         | 2.17                 | 2.2<br>2.0        | 0.32<br>0.15                 | 2.73<br>2.73         | 2.35<br>2.25         | 2.83<br>2.63         | 2.6<br>2.5        | 0.20<br>0.20                 | 4.05<br>4.53<br>4.88<br>4.25 | 3.83<br>4.93<br>4.05<br>3.80 | 3.95<br>5.00<br>4.67<br>4.35 | 4.8<br>4.5        | 0.09<br>0.21<br>0.35<br>0.24 |
| 1826                 | 2.73<br>0.85<br>0.53<br>1.27 | 0.80                 | 0.78                 | 0.8<br>0.5        |                              | 2.27<br>2.92         | 2.35<br>0.68         | 2.80<br>0.45         | 2.5<br>1.4        | 0.16<br>0.23<br>1.12<br>0.22 | 4.30<br>3.13<br>3.45<br>3.52 | 4.00<br>3.15<br>1.35<br>3.63 | 4.40<br>3.57<br>0.68<br>3.70 | 3.3<br>1.8        | 0.17<br>0.21<br>1.18<br>0.07 |
| 1838<br>1839<br>1844 |                              | 1.60<br>1.32<br>1.82 | 1.93<br>2.05<br>1.82 | 1.9<br>1.6<br>1.8 | 0.30<br>0.18<br>0.31<br>0.00 | 3.08<br>3.08<br>1.65 | 3.35<br>3.13<br>1.38 | 3.42<br>2.70<br>1.75 | 3.3<br>3.0<br>1.6 | 0.06<br>0.15<br>0.19<br>0.16 | 4.40<br>5.10<br>4.60<br>3.47 | 3.80<br>4.95<br>4.45<br>3.20 | 3.97<br>5.35<br>4.75<br>3.58 | 5.1<br>4.6<br>3.4 | 0.25<br>0.16<br>0.12<br>0.16 |

Table A.4. Experiment 8544, 6 weeks.

|      |      |      |         |     |      | In   | solub | les, 1  | ng/10 | 00 mL |      |          |          |     |      |
|------|------|------|---------|-----|------|------|-------|---------|-------|-------|------|----------|----------|-----|------|
|      |      |      | neren   | t   |      |      |       | terab   | le_   |       |      | Tota     | a1       |     |      |
|      |      | ampl |         |     | Std  | -    | Sampl |         |       | Std   |      | ample    |          | Į . | Std  |
| Fuel | 1    | 2    | 3       | Avg | Dev  | 1    | 2     | 3       | AVE   | Dev   | 1    | 2        | 3        | Avg | Dev  |
|      | 0    |      |         |     |      | 0.05 |       |         |       | 0.07  |      |          | 1.63     |     | 0.70 |
|      |      |      |         |     |      |      |       |         |       |       |      |          | 10.60    |     |      |
|      |      |      |         |     |      |      |       |         |       | 0.41  |      | 4.35     |          |     | 0.09 |
| 1885 | 1.15 | 1.48 | 1.57    | 1.4 | 0.18 | 2.90 | 2.65  | 2.77    | 2.8   | 0.10  | 4.05 | 4.13     | 4.35     | 4.2 | 0.13 |
|      |      |      |         |     |      |      |       |         |       | 0.11  | 4.15 | 3.77     | 4.00     |     | 0.15 |
|      |      |      |         |     |      |      |       |         |       | 0.24  | 2.17 | 2.25     | 2.55     |     | 0.16 |
|      |      |      |         |     |      |      |       | 0.72    |       |       | 2.27 | 2.15     | 2.20     |     | 0.05 |
| 1897 | 0.57 | 0.65 | 0.68    | 0.6 | 0.04 | 2.27 | 2.30  | 2.40    | 2.3   | 0.05  | 2.85 | 2.95     | 3.08     | 3.0 | 0.09 |
|      |      |      |         |     |      |      |       |         |       | 0.06  | 2.57 | 2.65     | 2.70     |     | 0.05 |
|      |      |      |         |     |      |      |       | 2.70    |       |       | 4.20 |          | 11.40    |     | 3.42 |
|      |      |      |         |     |      |      |       | 2.23    |       |       | 4.50 | 4.13     | 4.22     |     | 0.16 |
| 1909 | 1.07 | 1.05 | 5.85    | 2.7 | 2.26 | 2.00 | 2.73  | 2.42    | 2.4   | 0.30  | 3.08 | 3.78     | 8.27     | 5.0 | 2.30 |
|      |      |      |         |     |      |      |       | 3.13    |       |       | 1.28 | 1.75     | 3.95     |     | 1.17 |
|      |      |      |         |     |      |      |       | 1.25    |       |       | 3.70 | 5.78     | 3.85     |     | 0.94 |
|      |      |      |         |     |      |      |       | 1.82    |       |       | 5.22 | 5.18     | 3.52     |     | 0.79 |
| 1921 | 3.13 | 2.77 | 1.90    | 2.6 | 0.52 | 1.15 | 1.//  | 1.20    | 1.4   | 0.28  | 4.28 | 4.55     | 3.10     | 4.0 | 0.63 |
|      |      |      |         |     |      |      |       |         |       | 0.55  | 2.70 | 4.30     | 4.50     |     | 0.81 |
|      |      |      |         |     |      |      |       | 1.18    |       |       | 5.05 | 6.88     | 5.22     |     | 0.82 |
|      |      |      |         |     |      |      |       | 1.48    |       |       | 5.42 | 5.40     | 3.45     |     | 0.93 |
| 1933 | 0.42 | 0.57 | 0.42    | 0.5 | 0.07 | 1.60 | 1.80  | 1.75    | 1./   | 0.08  | 2.02 | 2.38     | 2.17     | 2.2 | 0.14 |
|      |      |      |         |     |      |      |       | 2.33    |       |       | 3.18 | 3.15     | 2.80     | 1 1 | 0.17 |
|      |      |      |         |     |      |      |       |         |       | 0.03  | 2.90 | 3.13     | 3.23     |     | 0.14 |
|      |      |      |         |     |      |      |       | 0.63    |       |       | 3.50 | 3.90     | i        |     | 0.24 |
| 1945 | 3.92 | 2,90 | 4.33    | 3.7 | 0.60 | 0.97 | 1.60  | 1.57    | 1.4   | 0.29  | 4.90 | 4.50     | 5.90     | 5.1 | 0.59 |
|      |      |      |         |     |      |      |       |         |       | 0.08  | 4.92 | 4.00     | 5.10     |     | 0.48 |
|      |      |      |         |     |      |      |       | 0.88    |       |       | 3.80 | 3.47     | 2.60     |     | 0.51 |
| 1952 | 2.58 | 2.40 | 2.35    | 2.4 | 0.10 | 0.30 | 0.40  | 0.40    | 0.4   | 0.05  | 2.88 | 2.80     | 2.75     | 2.8 | 0.05 |
| L    |      |      | نـــــا | Щ.  |      | L    | L     | <u></u> | L     | L     | L    | <u> </u> | <u> </u> |     | L    |

Table A.5. Experiment 8544, 12 weeks.

|         |              |          |              |          |         | Inso | luble    | s, mg | /100 | mL      |          |          |               |          |      |
|---------|--------------|----------|--------------|----------|---------|------|----------|-------|------|---------|----------|----------|---------------|----------|------|
| ]       |              |          | nerent       |          |         |      |          | terab | le   |         |          |          | Total         | ,        |      |
| ]       |              | ample    |              | [        | Std     |      | Sample   |       |      | Std     |          | Sample   | <del></del> - | }        | Std  |
| Fuel    | 1            | 2        | 3            | Avg      | Dev     | 1    | 2        | 3     | Avg  | Dev     | 1        | 2        | 3             | Avg      | Dev  |
| 1876    | 0.35         | 0.45     | 0.90         |          |         |      |          |       |      | 0.03    |          |          |               |          | 0.21 |
|         | 20.20        |          |              |          |         |      |          |       |      |         |          |          | 26.60         |          |      |
| 1880    | 5.63         | 7.53     | 7.50         |          |         |      |          |       |      |         |          |          | 13.20         |          |      |
| 1885    | 2.27         | 5.15     | 5.60         | 4.3      | 1.4/    | 1.90 | 8.15     | 7.10  | 5./  | 2.73    | 4.1/     | 13.30    | 12.70         | 10.1     | 4.1/ |
| 1886    | 5.28         | 4.30     | 5.55         |          |         |      |          |       |      |         |          |          | 13.30         |          |      |
| 1891    | 5.22         |          | 5.67         |          |         |      |          |       |      | 0.07    |          |          |               |          | 0.12 |
| 1892    | 4.20         |          | 4.22         |          |         |      |          |       |      | 0.06    |          |          |               |          | 0.16 |
| 1897    | 4.40         | 3.83     | 3.80         | 4.0      | 0.28    | 4.6/ | 4.9/     | 4.72  | 4.8  | 0.13    | 9.07     | 8.80     | 8.52          | 8.8      | 0.22 |
| 1898    | 5.25         |          | 3.92         |          |         |      |          |       |      |         |          | 7.78     |               |          | 0.79 |
| 1903    | 5.78         |          | 12.50        |          |         |      |          |       |      |         |          |          | 15.50         |          |      |
| 1904    | 7.60         |          | 8.22         |          |         |      |          |       |      |         |          |          | 10.80         |          |      |
| 1909    | 2.17         | 2.67     | 2.65         | 2.5      | 0.23    | 7.13 | 7.40     | 5.10  | 6.5  | 1.03    | 9.30     | 10.10    | 7.75          | 9.0      | 0.97 |
| 1910    | 3.00         | 3.80     | 3.75         |          |         |      |          |       |      |         |          |          | 11.10         |          |      |
| 1915    | 8.72         |          | 7.58         |          |         |      |          |       |      |         |          |          | 13.10         |          |      |
| 1916    | 8.95<br>5.50 |          | 8.95<br>5.90 |          |         |      |          |       |      | 1.25    |          |          | 14.10         |          |      |
| 1921    | 3.30         | 3.40     | 3.90         | 3.6      | 0.22    | 3.42 | 0.47     | 3.28  | 3.1  | 1.23    | 0.93     | 11.90    | 11.20         | 10.7     | 1.20 |
| 1922    | 6.17         |          | 5.28         |          |         |      |          |       |      |         |          |          | 11.00         |          |      |
| 1927    |              | 10.30    | 8.35         |          |         |      |          |       |      |         |          |          | 13.70         |          |      |
| 1928    | 8.70         |          | 5.83         |          |         |      |          |       |      |         |          |          | 9.18          |          |      |
| 1933    | 1.05         | 1.38     | 1.45         | 1.3      | 10.17   | 3.00 | 2.00     | 2.48  | 2.5  | 0.41    | 4.05     | 3.38     | 3.92          | 3.8      | 0.29 |
| 1934    | 1.57         | •        | 1.32         |          |         |      |          |       |      | 0.19    |          |          | 1             |          | 0.09 |
| 1939    | 2.25         |          | 2.80         |          |         |      |          |       |      | 0.18    |          |          | 1             |          | 0.41 |
| 1940    | 5.10         | 1        | 8.53         |          |         |      |          |       |      | 0.11    |          |          | 10.00         |          | 1.48 |
| 1945    | 7.88         | 7.30     | 6.85         | 7.3      | 0.42    | 4.13 | 5.63     | 5.58  | 5.1  | 0.70    | 12.00    | 12.90    | 12.40         | 12.5     | 0.38 |
| 1946    | 8.85         | 8.10     | 9.30         | 8.8      | 0.49    | 3.40 | 3.60     | 3.48  | 3.5  | 0.08    | 12.30    | 11.70    | 12.80         | 12.2     | 0.44 |
| 1951    | 7.65         | 6.33     | 6.58         |          |         |      |          |       |      |         |          |          | 10.20         |          |      |
| 1952    | 6.60         | 0.93     | 5.53         |          |         |      |          |       |      |         | 7.38     | 1.85     |               |          | 2.36 |
| <u></u> | <u></u>      | <u> </u> | <u> </u>     | <u> </u> | <u></u> |      | <u> </u> |       |      | <u></u> | <u> </u> | <u> </u> |               | <u> </u> |      |

Table A.6. Apparent improvement percentages obtained.

|             | Wee             | k 8                | Week 12         |          |
|-------------|-----------------|--------------------|-----------------|----------|
| Additive    | Experiment 8541 | Experiment 8542    | Experiment 8544 | Average  |
|             |                 | Low Concentration  |                 | 1        |
| 1           | 16              | 6                  | 25              | 16       |
| 2           | 33              | 27                 | 56              | 39       |
| 2 3         | 28              | 23                 | 34              | 28       |
| 4           | 9               | 10                 | 0               | 6        |
| 5           | 14              | 15                 | 32              | 20       |
| 5<br>6      | 16              | 2                  | 5               | 8        |
| 7           | 21              | 0                  | 20              | 14       |
| 8<br>9      | 14              | 15                 | -3              | 9        |
| 9           | 30              | 31                 | 7               | 23       |
| 10          | 33              | 29                 | 20              | 27       |
| 11          | 23              | 25                 | 71              | 40       |
| 12          | 33              | -6                 | 47              | 25       |
|             |                 | High Concentration |                 | !        |
| 1           | j 16            | 8                  | 5               | 10       |
| 1<br>2<br>3 | 40              | 33                 | 65              | 46       |
| 3           | 30              | 31                 | 36              | 32       |
| 4           | 28              | 15                 | 18              | 20       |
| 5<br>6<br>7 | 2               | 12                 | 15              | 10       |
| 6           | 19              | 19                 | -1              | 12       |
| 7           | 23              | 6                  | 17              | 15       |
| 8           | 21              | 12                 | 20              | 18       |
| 9           | 88              | 62                 | 8               | 53       |
| 10          | 64              | 27                 | 62              | 44       |
| 11          | 79              | 15                 | 65              | 53       |
| 12          | 26              | 4                  | 41              | 24       |
| :<br>       | <u> </u>        | <u> </u>           |                 | <u> </u> |

Table A.7. Experiment 8645m, 2 wee's.

|      |         |          |          |     |      | Inso     | luble    | s, mg  | /100 | mL   |      |        |       |     |      |
|------|---------|----------|----------|-----|------|----------|----------|--------|------|------|------|--------|-------|-----|------|
|      |         | Ad       | herent   |     |      |          | Fil      | terab: | le   |      |      |        | Total |     | I    |
| ł    |         | Sample   | :        |     | Std  |          | Sampl    | е      |      | Std  |      | Sample |       |     | Std  |
| Fuel | 1       | 2        | 3        | Avg | Dev  | 1        | 2        | 3      | Avg  | Dev  | 1    | 2      | 3     | Avg | Dev  |
|      |         |          |          |     |      |          |          |        |      | }    |      |        |       |     |      |
| 1879 | 1.48    | 1.57     | 0.80     | 1.3 | 0.34 | 2.48     | 2.38     | 1.93   | 2.3  | 0.24 | 3.95 | 3.95   | 2.73  | 3.5 | 0.58 |
| 1884 | 0.42    | 0.80     | 1.20     | 0.8 | 0.32 | 0.38     | 0.88     | 0.50   | 0.6  | 0.21 | 0.80 | 1.68   | 1.70  | 1.4 | 0.42 |
| 1890 | 0.57    | 1.30     | 0.50     | 0.8 | 0.36 | 1.13     | 1.20     | 1.68   | 1.3  | 0.24 | 1.70 | 2.50   | 2.17  | 2.1 | 0.33 |
| 1896 | 0.60    | 1.15     | 0.55     | 0.8 | 0.27 | 2.48     | 1.88     | 2.42   | 2.3  | 0.27 | 3.08 | 3.02   | 2.97  | 3.0 | 0.04 |
| 1902 | 0.72    | 0.68     | 0.47     | 0.6 | 0.11 | 2.80     | 2.63     | 2.33   | 2.6  | 0.20 | 3.52 | 3.30   | 2.80  | 3.2 | 0.30 |
|      |         | <b>i</b> | 1        |     |      | 1        | ŀ        |        |      |      |      |        |       |     | 1    |
| 1908 | 0.38    | 0.10     | 0.40     | 0.3 | 0.14 | 1.43     | 1.50     | 1.52   | 1.5  | 0.04 | 1.80 | 1.60   | 1.92  | 1.8 | 0.13 |
| 1914 | 0.72    | 0.55     | 0.82     | 0.7 | 0.11 | 2.30     | 2.90     | 2.88   | 2.7  | 0.28 | 3.02 | 3.45   | 3.70  | 3.4 | 0.28 |
| 1920 | 0.65    | 1.00     | 0.90     | 0.9 | 0.15 | 3.02     | 3.52     | 3.15   | 3.2  | 0.21 | 3.67 | 4.53   | 4.05  | 4.1 | 0.35 |
| 1926 | 0.38    | 0.40     | 0.45     | 0.4 | 0.03 | 0.90     | 1.00     | 1.40   | 1.1  | 0.22 | 1.27 | 1.40   | 1.85  | 1.5 | 0.25 |
| 1932 | 0.42    | 0.55     | 0.72     | 0.6 | 0.12 | 2.20     | 2.73     | 2.38   | 2.4  | 0.22 | 2.63 | 3.28   | 3.10  | 3.0 | 0.27 |
| 3    | )       | ļ        | }        | ĺ   |      | ļ        | ,        |        |      |      |      |        |       |     | Ì    |
| 1938 | 0.50    | 0.90     | 0.68     | 0.7 | 0.16 | 3.38     | 3.88     | 3.42   | 3.6  | 0.22 | 3.88 | 4.78   | 4.10  | 4.3 | 0.38 |
| 1944 | 1.05    | 0.97     | 0.80     | 0.9 | 0.10 | 2.65     | 2.75     | 2.58   | 2.7  | 0.07 | 3.70 | 3.73   | 3.38  | 3.6 | 0.16 |
| 1950 | 1.32    | 1.50     | 2.08     | 1.6 | 0.32 | 4.28     | 4.45     | 4.20   | 4.3  | 0.10 | 5.60 | 5.95   | 6.28  | 5.9 | 0.28 |
| L    | <u></u> | <u> </u> | <u> </u> | L   |      | <u> </u> | <u> </u> |        |      |      |      |        | L     |     |      |

Table A.8. Experiment 8645m, 4 weeks.

| <u> </u> |      |        |        |     |      | Inso | lubles | s, mg    | /100 | mL   |      |        | <del></del> |     |      |
|----------|------|--------|--------|-----|------|------|--------|----------|------|------|------|--------|-------------|-----|------|
| ļ        |      | Ad     | herent |     |      |      |        | erab.    |      |      |      |        | Total       |     |      |
| ł        |      | Sample |        |     | Std  |      | Sample | <u> </u> |      | Std  |      | Sample |             |     | Std  |
| Fuel     | 1    | 2      | 3      | Avg | Dev  | 1    | 2      | 3        | Avg  | Dev  | 1    | 2      | 3           | Avg | Dev  |
|          | 1    |        |        |     |      |      |        |          |      |      |      |        |             |     |      |
| 1879     | 1.05 | 0.80   | 1.48   | 1.1 | 0.28 | 5.63 | 4.10   | 4.13     | 4.6  | 0.71 | 6.67 | 4.90   | 5.60        | 5.7 | 0.73 |
| 1884     | 0.40 | 0.60   | 0.88   | 0.6 | 0.19 | 3.25 | 2.88   | 2.65     | 2.9  | 0.25 | 3.65 | 3.48   | 3.52        | 3.6 | 0.07 |
| 1890     | 1.45 | 1.32   | 1.13   | 1.3 | 0.13 | 1.60 | 1.55   | 1.52     | 1.6  | 0.03 | 3.05 | 2.88   | 2.65        | 2.9 | 0.16 |
| 1896     | 0.40 | 0.63   | 0.42   | 0.5 | 0.10 | 3.02 | 3.52   | 3.67     | 3.4  | 0.28 | 3.42 | 4.15   | 4.10        | 3.9 | 0.33 |
| 1902     | 1.10 | 1.05   | 1.23   | 1.1 | 0.07 | 5.22 | 4.85   | 5.33     | 5.1  | 0.20 | 6.32 | 5.90   | 6.55        | 6.3 | 0.27 |
| ]        | [ .  | !      |        |     |      | i i  |        |          |      | ì    | i    |        | 1           |     | }    |
| 1908     | 0.65 | 0.65   | 0.35   | 0.6 | 0.14 | 3.13 | 3.48   | 3.48     | 3.4  | 0.16 | 3.77 | 4.13   | 3.83        | 3.9 | 0.15 |
| 1914     | 1.63 | 2.35   | 2.33   | 2.1 | 0.34 | 4.42 | 3.95   | 4.00     | 4.1  | 0.21 | 6.05 | 6.30   | 6.33        | 6.2 | 0.12 |
| 1920     | 1.18 | 0.95   | 0.90   | 1.0 | 0.12 | 4.83 | 4.85   | 4.85     | 4.8  | 0.01 | 6.00 | 5.80   | 5.75        | 5.9 | 0.11 |
| 1926     | 1.10 | 1.20   | 1.02   | 1.1 | 0.07 | 3.02 | 2.52   | 2.38     | 2.6  | 0.28 | 4.13 | 3.72   | 3.40        | 3.8 | 0.30 |
| 1932     | 0.53 | 0.68   | 0.40   | 0.5 | 0.11 | 2.90 | 2.70   | 2.63     | 2.7  | 0.12 | 3.42 | 3.38   | 3.02        | 3.3 | 0.18 |
| }        | }    |        |        |     |      | ļ    |        | ]        | ,    | }    |      |        | ]           |     |      |
| 1938     | 1.00 | 0.97   | 1.10   | 1.0 | 0.05 | 3.63 | 4.08   | 3.65     | 3.8  | 0.21 | 4.63 | 5.05   | 4.75        | 4.8 | 0.18 |
| 1944     | 1.68 | 1.13   | 1.75   | 1.5 | 0.28 |      | 4.05   |          | :    |      |      |        | 5.90        |     | 0.33 |
| 1950     | 1.95 | 2.10   | 2.02   | 2.0 | 0.06 | 4.58 | 1      | I        | i e  | 0.14 |      |        | 6.85        | 6.8 |      |
|          | •    |        | }      |     |      | 1    |        | 1        |      |      |      |        | }           | , - |      |

Table A.9. Experiment 8645m, 6 weeks.

|      |      |        |          |     |            | Insol | ubles | mg/    | 100 r    | nL   |      |       |      |     |      |
|------|------|--------|----------|-----|------------|-------|-------|--------|----------|------|------|-------|------|-----|------|
| ľ    |      | Ad     | herent   |     |            |       | Filte | erable | <u>e</u> |      |      | 1     | otal |     |      |
| ]    |      | Sample |          |     | Std        | S     | ample |        |          | Std  | S    | ample |      | ł   | Std  |
| Fuel | 1    | 2      | 3        | Avg | Dev        | 1     | 2     | 3      | Avg      | Dev  | 1    | 2     | 3    | Avg | Dev  |
|      |      |        |          |     |            |       |       | i      | ł        |      |      | }     | }    | 1   | ) .  |
| 1879 | 1.88 | 2.35   | 2.05     | 2.1 | 0.20       | 5.03  | 4.47  | 4.55   | 4.7      | 0.24 | 6.90 | 6.82  | 6.60 | 6.8 | 0.13 |
| 1884 | 1.25 | 1.25   | 1.38     | 1.3 | 0.06       | 3.48  | 3.52  | 3.33   | 3.4      | 0.08 | 4.72 | 4.78  | 4.70 | 4.7 | 0.03 |
| 1890 | 1.95 | 2.10   | 1.60     | 1.9 | 0.21       | 0.82  | 1.15  | 0.95   | 1.0      | 0.13 | 2.77 | 3.25  | 2.55 | 2.9 | 0.29 |
| 1896 | 0.70 | 0.80   | 0.68     | 0.7 | 0.05       | 3.90  | 3.73  | 4.63   | 4.1      | 0.39 | 4.60 | 4.53  | 5.30 | 4.8 | 0.35 |
| 1902 | 1.40 | 2.35   | 2.15     | 2.0 | 0.41       | 5.38  | 5.30  | 6.33   | 5.7      | 0.47 | 6.78 | 7.65  | 8.47 | 7.6 | 0.69 |
|      | 1    |        |          |     |            |       |       |        |          |      |      |       |      |     |      |
| 1908 | 0.88 | 1.20   | 0.60     | 0.9 | 0.25       | 3.98  | 3.90  | 4.50   | 4.1      | 0.27 | 4.85 | 5.10  | 5.10 | 5.0 | 0.12 |
| 1914 | 2.38 | 2.60   | 3.05     | 2.7 | 0.28       | 4.15  | 3.88  | 4.80   | 4.3      | 0.39 | 6.53 | 6.47  | 7.85 | 7.0 | 0.64 |
| 1920 | 1.25 | 1.57   | 1.48     | 1.4 | 0.14       | 4.83  | 4.90  | 6.20   | 5.3      | 0.63 | 6.08 | 6.48  | 7.68 | 6.7 | 0.68 |
| 1926 | 1.20 | 1.25   | 1.15     | 1.2 | 0.04       | 3.08  | 2.85  | 3.33   | 3.1      | 0.19 | 4.28 | 4.10  | 4.47 | 4.3 | 0.15 |
| 1932 | 0.68 | 0.82   | 0.47     | 0.7 | 0.14       | 3.05  | 3.00  | 3.08   | 3.0      | 0.03 | 3.72 | 3.83  | 3.55 | 3.7 | 0.11 |
| ł    | }    | ŀ      | ł        | 1   | <b>!</b> ! |       |       | ļ      | 1        |      |      | [     |      |     |      |
| 1938 | 2.17 | 1.70   | 1.88     | 1.9 | 0.20       | 2.95  | 3.70  | 3.38   | 3.3      | 0.31 | 5.13 | 5.40  | 5.25 | 5.3 | 0.11 |
| 1944 | 1.93 | 2.38   | 2.45     | 2.3 | 0.23       | 4.22  | 3.83  | 4.28   | 4.1      | 0.20 | 6.15 | 6.20  | 6.73 | 6.4 | 0.26 |
| 1950 | 2.95 | 2.85   | 3.02     | 2.9 | 0.07       | 4.63  | 4.70  | 4.50   | 4.6      | 0.08 | 7.58 | 7.55  | 7.53 | 7.6 | 0.02 |
|      |      |        | <u> </u> |     |            |       |       |        |          |      |      |       |      |     |      |

Table A.10. Experiment 8645m, 8 weeks.

|      | Insolubles, mg/100 mL |        |            |     |      |            |        |       |     |      |        |      |      |     |      |
|------|-----------------------|--------|------------|-----|------|------------|--------|-------|-----|------|--------|------|------|-----|------|
| ł    |                       | Ad     | Filterable |     |      |            |        | Total |     |      |        |      |      |     |      |
|      |                       | Sample | 1          |     | Std  |            | Sample | •     | Std |      | Sample |      |      |     | Std  |
| Fuel | 1                     | 2      | 3          | Avg | Dev  | 1          | 2      | 3     | Avg | Dev  | 1      | 2    | 3    | Avg | Dev  |
| }    |                       |        | 1          |     |      |            |        |       |     |      |        |      |      |     |      |
| 1879 | 3.92                  | 2.38   | 3.15       | 3.2 | 0.63 | 4.30       | 5.53   | 5.50  | 5.1 | 0.57 | 8.22   | 7.90 | 8.65 | 8.3 | 0.31 |
| 1884 | 2.38                  | 2.20   | 2.38       | 2.3 | 0.08 | 5.85       | 4.28   | 4.78  | 5.0 | 0.66 | 8.22   | 6.48 | 7.15 | 7.3 | 0.72 |
| 1890 | 2.95                  | 2.40   | 2.65       | 2.7 | 0.22 | 0.40       | 0.80   | 0.93  | 0.7 | 0.22 | 3.35   | 3.20 | 3.58 | 3.4 | 0.15 |
| 1896 | 1.52                  | 1.50   | 1.35       | 1.5 | 0.08 | 5.53       | 3.98   | 4.53  | 4.7 | 0.64 | 7.05   | 5.47 | 5.88 | 6.1 | 0.67 |
| 1902 | 3.48                  | 2.83   | 2.08       | 2.8 | 0.57 | 7.05       | 5.97   | 6.17  | 6.4 | 0.47 | 10.50  | 8.80 | 8.25 | 9.2 | 0.97 |
| 1    | 1                     |        | )          | }   |      | <b>[</b> ] |        | 1     |     |      |        |      |      |     |      |
| 1908 | 1.98                  | 2.38   | 1.18       | 1.8 | 0.50 | 7.22       | 3.90   | 4.00  | 5.0 | 1.54 | 9.20   | 6.28 | 5.17 | 6.9 | 1.70 |
| 1914 | 3.23                  | 4.30   | 3.85       | 3.8 | 0.44 | 4.80       | 3.95   | 3.20  | 4.0 | 0.65 | 8.03   | 8.25 | 7.05 | 7.8 | 0.52 |
| 1920 | 1.82                  | 1.50   | 1.60       | 1.6 | 0.14 | 5.30       | 5.72   | 3.35  | 4.8 | 1.03 | 7.13   | 7.22 | 4.95 | 6.4 | 1.05 |
| 1926 | 1.23                  | 1.73   | 2.67       | 1.9 | 0.60 | 3.35       | 3.13   | 3.02  | 3.2 | 0.14 | 4.58   | 4.85 | 5.70 | 5.0 | 0.48 |
| 1932 | 1.18                  | 0.68   | 0.88       | 0.9 | 0.21 | 3.23       | 3.00   | 3.27  | 3.2 | 0.12 | 4.40   | 3.67 | 4.15 | 4.1 | 0.30 |
| }    | 1                     |        | ļ          |     | {    | }          |        | j     | 1   | [    |        |      |      |     |      |
| 1938 | 2.08                  | 2.10   | 1.57       | 1.9 | 0.24 | 3.15       | 5.88   | 3.17  | 4.1 | 1.28 | 5.22   | 7.97 | 4.75 | 6.0 | 1.42 |
| 1944 | 3.17                  | 2.73   | 2.35       | 2.8 | 0.34 | 4.55       | 4.75   | 5.05  | 4.8 | 0.21 | 7.72   | 7.47 | 7.40 | 7.5 | 0.14 |
| 1950 | 4.08                  | 3.40   | 3.67       | 3.7 | 0.28 | 5.13       | 5.38   | 5.17  | 5.2 | 0.11 | 9.20   | 8.78 | 8.85 | 8.9 | 0.19 |
|      |                       |        | <b>.</b>   | l   |      | L          |        |       |     | L    |        |      |      |     | İ    |

Table A.11. Experiment 8647, 4 weeks.

| <u> </u>     | Insolubles, mg/100 mL |              |      |       |      |          |       |       |      |       |       |              |              |     |              |
|--------------|-----------------------|--------------|------|-------|------|----------|-------|-------|------|-------|-------|--------------|--------------|-----|--------------|
| ]            | Adherent              |              |      |       |      |          |       | terab | le_  |       | Total |              |              |     |              |
| i i          |                       | ample        |      |       | Std  |          | Sampl |       |      | Std   | ~     | ample        |              |     | Std          |
| Fuel         | 1                     | 2            | 3    | Avg   | Dev  | 1        | 2     | 3     | Avg  | Dev   | Ĺ     | 2            | 3            | Avg | Dev          |
| 2059         | 0                     | o            | 0    | 0     | 0 01 | 0 15     | 0 17  | 0.07  | 0 1  | 0.04  | 0.15  | 0.15         | 0.07         | 0 1 | 0.04         |
| 2060         | Lost                  | •            |      |       | 0.15 |          |       |       |      | 0.06  | Lost  | 0.47         | 0.05         |     | 0.21         |
| 2061         |                       | 0.20         |      |       | 0.04 |          |       |       |      |       | 0.38  | 0.35         | 0.25         |     | 0.05         |
| 2062         |                       | 7.05         |      |       | 3.15 |          |       |       |      |       | 0.50  | 8.80         | 0.93         |     | 3.82         |
| 2063         |                       | 0.40         |      |       | 0.15 |          |       |       |      |       | 0.43  | 0.80         | 1.75         |     | 0.56         |
| 2064         | 0.28                  | 4.30         | 0.25 | 1.6   | 1.90 | 0.20     | 2.63  | 0.25  | 1.0  | 1.13  | 0.48  | 6.92         | 0.50         | 2.6 | 3.03         |
| 2065         |                       | 0.85         | 1.20 | 1.0   | 0.14 | 0.40     | 0.65  | 0.47  | 0.5  | 0.10  | 1.48  | 1.50         | 1.67         | 1.6 | 0.09         |
| 2066         | 1.52                  | 1.23         |      |       | 0.15 |          |       |       |      |       | 3.57  | 3.63         | 3.90         | 3.7 | 0.14         |
| 2067         | l .                   | 0.80         |      |       | 0.14 |          |       |       |      |       | 1.20  | 0.93         | 1.13         |     | 0.12         |
| 2068         | 1.57                  | 1.35         | 1.50 | 1.5   | 0.09 | 0.65     | 0.78  | 0.80  | 0.7  | 0.07  | 2.23  | 2.13         | 2.30         | 2.2 | 0.07         |
| 2069         |                       | 1.23         |      |       | 0.08 |          |       |       |      |       | 1.70  | 2.08         | 1.63         |     | 0.20         |
| 2070         |                       | 0.88         |      |       | 0.29 |          |       |       |      |       | 2.13  | 1.50         | 1.45         |     | 0.31         |
| 2071         |                       | 0.70         |      |       | 0.19 |          |       |       |      |       | 1.38  | 0.82         | 0.85         |     | 0.25         |
| 2072<br>2073 |                       | 1.90<br>2.38 |      |       | 0.47 |          |       |       |      |       | 4.00  | 3.77<br>2.73 | 4.15<br>1.85 |     | 0.15<br>0.48 |
| 20/3         | 1.32                  | 2.36         | 1.43 | 1.7   | 0.47 | 0.28     | 0.33  | 0.40  | 0.3  | 0.03  | 1.60  | 2.73         | 1.65         | 2.1 | 0.48         |
| 2074         |                       | 1.55         |      |       | 0.20 |          |       |       |      |       | 1.55  | 2.13         | 1.70         |     | 0.24         |
| 2075         |                       | 0.72         |      |       | 0.12 |          |       |       |      |       | 0.80  | 0.85         | 0.60         |     | 0.11         |
| 2076         |                       | 1.13         |      |       | 0.19 |          |       |       |      |       | 2.10  | 1.50         | 1.63         |     | 0.26         |
| 2077         |                       | 1.15         |      |       | 0.07 |          |       |       |      |       | 3.22  | 2.92         | 3.17         |     | 0.13         |
| 2078         | 1.60                  | 2.27         | 2.27 | 2.1   | 0.32 | 2.15     | 1.98  | 1.70  | 1.9  | 0.19  | 3.75  | 4.25         | 3.97         | 4.0 | 0.20         |
| 2079         |                       | 1.15         |      |       | 0.05 |          |       |       |      |       | 2.73  | 2.65         | 2.42         |     | 0.13         |
| 2080         |                       | 2.10         |      |       | 0.15 |          |       |       |      |       | 4.13  | 4.50         | 3.95         |     | 0.23         |
| 2081         |                       | 2.23         |      |       | 0.28 |          |       |       |      |       | 2.63  | 3.13         | 3.02         |     | 0.22         |
| 2082         |                       | 0.95         |      |       | 0.67 |          |       |       |      |       | 2.33  | 1.05         | 0.95         |     | 0.63         |
| 2083         | 0.45                  | 0.40         | 0.33 | 0.4   | 0.05 | 1.18     | 1.48  | 1.32  | 1.3  | 0.12  | 1.63  | 1.88         | 1.65         | 1.7 | 0.11         |
| 2084         |                       | 2.10         |      |       | 0.87 |          |       |       |      |       | 2.67  | 2.73         | 4.53         | 3.3 | 0.86         |
| 2085         | 2.02                  | 2.05         |      |       | 0.15 |          |       |       |      |       | 5.13  | 3.95         | 5.15         | 1 1 | 0.56         |
| 2086         |                       | 3.10         |      |       |      |          |       |       |      | 0.51  |       | 5.45         | 4.60         |     | 0.41         |
| 2087         |                       | 1.52         |      |       |      |          |       |       |      | 0.23  | 2.60  | 2.72         | 2.60         |     | 0.06         |
| 2088         | 1.18                  | 4.63         | 3.13 | 3.0   | 1.41 | 2.17     | 2.38  | 2.23  | 2.3  | 0.08  | 3.35  | 7.00         | 5.35         | 5.2 | 1.49         |
| 2089         |                       | 1.45         |      |       | 0.16 |          |       |       |      |       | 3.38  | 3.53         | 3.10         | 3.3 | 0.18         |
| 2090         |                       | 2.02         |      |       | 0.26 |          |       |       |      |       | 3.20  | 3.67         | 3.42         |     | 0.19         |
| 2091         |                       | 1.93         |      |       | 0.23 |          |       |       |      |       | 1.75  | 2.33         | 1.85         |     | 0.25         |
| 2092         |                       | 1.00         |      |       | 0.08 |          |       |       |      |       | 2.55  | 2.90         | 2.67         |     | 0.14         |
| 2093         | 1.70                  | 2.00         | 1.95 | 1.9   | 0.13 | 1.57     | 2.75  | 3.08  | 2.5  | 0.64  | 3.27  | 4.75         | 5.03         | 4.4 | 0.77         |
| 2094         | 1.82                  |              | 1.80 |       |      |          |       |       |      |       | 7.30  | 7.70         | 7.10         | 1   | 0.25         |
| 2095         | 0.88                  |              |      |       | 0.17 |          |       |       |      |       | 2.63  | 2.80         | 2.65         |     | 0.08         |
| 2096         | 1.48                  |              |      |       | 0.37 |          |       |       |      |       | 3.77  | 6.80         | 4.00         |     | 1.38         |
| 2106         |                       | 1.90<br>1.35 |      |       | 0.22 |          |       |       |      |       | 6.60  | 4.45         | 6.78         |     | 1.06         |
| 2107         | 2.40                  | 1.35         | 1.02 | T . 0 | 0.59 | <u> </u> | 2.13  | 2.1/  | 14.9 | 11.05 | 6.78  | 3.48         | 3.20         | 4.5 | 1.62         |

Table A.12. Experiment 8647, 8 weeks.

| [    | Insolubles, mg/100 mL |       |      |            |      |            |        |      |     |       |      |              |                  |      |      |
|------|-----------------------|-------|------|------------|------|------------|--------|------|-----|-------|------|--------------|------------------|------|------|
| Ì    | Adherent              |       |      |            |      | Filterable |        |      |     | Total |      |              |                  |      |      |
|      |                       | ample |      |            | Std  |            | Sample |      |     | Std   |      | Sample       |                  |      | Std  |
| Fuel | 11                    | 2     | 3    | Avg        | Dev  | 1          | 2      | 3    | Avg | Dev   | 1    | 2            | 3                | Avg  | Dev  |
| 2059 | 0.10                  | 0.07  | 0.05 | 0.1        | 0.02 | 0.20       | 0.13   | 0.10 | 0.1 | 0.04  | 0.30 | 0.20         | 0.15             | 0.2  | 0.06 |
|      | 0.82                  |       |      | 0.3        |      |            |        |      |     | 0.01  | 1.07 | 0.55         | 0.40             |      | 0.08 |
| 1    | 1.07                  |       | · ·  | 0.7        |      |            |        |      |     | 0.07  | 1.27 | 0.38         | <del>18.90</del> |      | 0.45 |
| i .  | 1.20                  |       |      | 0.6        |      |            |        |      |     | 0.04  | 1.40 | 0.63         | 0.43             |      | 0.42 |
| 2063 | 1.27                  | 1.10  | 3.48 | 1.2        | 0.09 | 1.45       | 1.60   | 2.40 | 1.5 | 0.08  | 2.72 | 2.70         | 5.88             | 2.7  | 0.01 |
|      | 1.00                  |       |      | 2.8        |      |            |        | 0.95 |     |       | 1.32 | 0.80         | 7.95             |      | 3.25 |
|      |                       |       |      | 3.2        |      |            |        |      |     | 0.47  |      | 5.38         | 4.30             |      | 0.48 |
| 2066 |                       |       |      | 2.5        |      |            |        |      |     | 0.22  |      | 5.38         | 5.30             |      | 0.20 |
|      | 1.95                  |       |      | 1.7        |      |            |        |      |     | 0.11  | 2.30 | 1.60         | 1.68             |      | 0.31 |
| 2068 | 2.70                  | 1.93  | 1.77 | 2.1        | 0.41 | 1.45       | 1.5/   | 1.2/ | 1.4 | 0.12  | 4.15 | 3.50         | 3.05             | 3.6  | 0.45 |
| 2069 | 3.52                  | 3.00  | 2.52 | 3.0        | 0.41 | 2.23       | 0.88   | 1.07 | 1.4 | 0.59  |      | 3.88         | 3.60             |      | 0.96 |
|      | 3.13                  |       |      | 3.2        |      |            |        |      |     | 0.31  | 3.88 |              | 3.80             |      | 0.44 |
|      | 1.70                  |       |      | 1.9        |      |            |        |      |     | 0.13  |      | 1.83         | 2.48             |      | 0.27 |
|      | 4.63                  |       |      | 3.6        |      |            |        |      |     | 0.25  |      | 5.10         | 5.70             |      | 0.87 |
| 20/3 | 2.98                  | 2.02  | 2.73 | 2.6        | 0.40 | 0.53       | 1.20   | 0.50 | 0.7 | 0.32  | 3.50 | 3.22         | 3.23             | 3.3  | 0.13 |
|      | 2.17                  |       |      | 2.3        |      |            |        |      |     | 0.53  | 3.90 |              | 3.05             |      | 0.43 |
|      | 0.90                  |       |      | 1.1        |      |            |        |      |     | 0.04  |      | 1.57         | 1.50             |      | 0.14 |
|      | 2.63                  |       |      | 2.2        |      |            |        |      |     | 0.34  |      | i e          | 2.52             |      | 0.51 |
|      | 2.92                  |       |      | 2.2        |      |            |        |      |     | 0.05  |      | 1            |                  |      | 1.16 |
| 2078 | 6.20                  | 5.85  | 4.80 | 5.6        | 0.59 | 1.40       | 1.07   | 1./3 | 1.4 | 0.27  | 7.60 | 6.92         | 6.53             | 7.0  | 0.44 |
|      | 2.10                  |       |      | 1.9        |      |            |        |      |     | 0.06  |      |              | 3.45             |      | 0.23 |
|      | 3.45                  |       |      | 2.8        |      |            |        |      |     | 0.24  |      |              | i e              |      | 0.33 |
|      | 3.48                  |       |      | 4.2        |      |            |        |      |     | 0.09  | 1    |              | 1                |      | 0.69 |
|      | 1.50<br>3.10          |       |      | 1.4<br>2.8 |      |            |        |      |     | 0.07  |      | 1.65<br>5.08 | 1.70             |      | 0.08 |
| 2005 | 3.10                  | 3.13  | 2.20 | 2.0        | 0.44 | 1.05       | 1.93   | 1.02 | 1.3 | 0.37  | 4.72 | 3.00         | 3.23             | 4.3  | 0.60 |
|      |                       |       | 3.30 | 3.7        |      |            |        |      |     | 0.20  |      |              |                  | 4.4  | 0.57 |
|      | 4.65                  |       |      | 4.3        |      | 3.75       | 3.58   | 3.42 | 3.6 | 0.13  |      |              | 1                |      | 0.34 |
|      |                       |       | 6.40 | 5.5        |      |            |        |      |     | 0.73  | (    | 1            | i                |      | 0.18 |
|      |                       |       | 2.80 |            |      |            |        |      |     | 0.45  |      | 1            | 1                |      | 0.57 |
| 2088 | 3.27                  | 2.95  | 2.65 | 3.0        | U.26 | 2.98       | 3.23   | 2.63 | 2.9 | 0.25  | 6.25 | 6.18         | 5.28             | 15.9 | 0.44 |
|      |                       |       | 3.08 |            | 0.18 |            |        |      |     | 0.18  |      | 5.97         | 5.90             | 5.9  | 0.06 |
|      |                       |       | 4.42 |            | 0.48 |            |        |      |     | 0.25  |      |              | t .              | •    | 0.23 |
|      | 2.33                  |       |      | 1 1        | 0.34 |            |        |      |     | 0.09  |      |              | 1                | 1    | 0.25 |
|      | 2.05                  |       |      |            | 0.37 |            |        |      |     | 0.24  |      |              | 1                |      | 0.61 |
| 2093 | 3.85                  | 4.20  | 4.25 | 4.1        | 0.18 | 2.65       | 2.90   | 2.85 | 2.8 | 0.11  | 6.50 | 7.10         | 7.10             | 6.9  | 0.28 |
| 1    | 3.48                  |       |      |            | 0.52 |            |        |      |     |       |      | 10.40        | 1                | 10.0 | 0.69 |
|      | 2.20                  |       |      |            | 0.08 |            |        |      |     | 0.07  | 1    |              |                  |      | 0.11 |
|      | 2.83                  |       |      |            | 0.59 |            |        |      |     | 0.03  |      |              |                  | 6.3  | 0.61 |
|      | 2.65                  |       |      |            | 0.85 |            |        |      |     | 0.81  |      | 10.60        |                  | 10.0 | L    |
| 210/ | 2.23                  | 2.58  | 2.50 | 2.4        | 0.15 | 2.75       | 2.70   | 2.58 | 2.7 | 0.07  | 4.97 | 5.28         | 5.08             | 5.1  | 0.12 |

### REFERENCES

- Klinkhammer, M.D., and R.E. Morris, "FY 1985 Fuel Stability Additive Evaluation Program: Collateral Studies on Fuel Characteristics," DTNSRDC Report SME-86/15 (Oct 1986).
- 2. White, E.W., DTRC, Written Communication.
- 3. Hardy, D.R., E.J. Beal, and R.N. Hazlett, "Evaluation of Commercial Stability Additives for Naval Distillate Fuels," <u>Proceedings of the 3rd International Conference on Stability and Handling of Liquid Fuels.</u> Institute of Petroleum, London, pp. 399-411 (13-16 Sep 1988).

## INITIAL DISTRIBUTION

| Copies |                                                                                                      | Copies |                                                                                         |
|--------|------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------|
| 1      | OCNR (Code 123)<br>(Dr. A. Roberts)                                                                  | 1      | National Research Council of<br>Canada (P.L. Strigner)<br>Div of Mechanical Engineering |
| 3      | NAVSEA<br>1 SEA 05M32                                                                                |        | Ottawa, Ontario, Canada KIA OR6                                                         |
| 2      | 2 Library NAVPETOFF (L. Long)                                                                        | 1      | ARTECH Corporation<br>14554 Lee Road<br>Chantilly, VA 22021                             |
| 1      | NAVSSES PHILA (Code 053)                                                                             | 1      | NIPER (K.W. Sterling)                                                                   |
| 3      | NAPC (Code PE 33)<br>1 C.J. Nowack                                                                   | 25     | IEP/ABCA/3/UK                                                                           |
|        | 1 G. Speck<br>1 L.M. Turner                                                                          | 15     | IEP/ABCA/3/Canada                                                                       |
| 5      | NRL (Code 6180)  1 Dr. D. Hardy  1 Dr. R. Morris  1 E.J. Beal  1 Dr. R.N. Hazlett  1 Dr. B.H. Black  | 10     | IEP/ABCA/3/Australia                                                                    |
| 2      | DFSC<br>1 Code T (C. Martin)<br>1 Code Q (W. Carley)                                                 |        |                                                                                         |
| 1      | AFWAL Code AFWAL/POSF (S. Anderson)                                                                  |        |                                                                                         |
| 12     | DTIC                                                                                                 |        |                                                                                         |
| 1      | CNA                                                                                                  |        |                                                                                         |
| 3      | Southwest Research Institute  1 L. Stavinoha  1 S. Westbrook  1 Dr. G. Fodor                         |        |                                                                                         |
| 2      | USA BRADC  1 Code STRBE-VF (M. LePera)  1 Code STRBE-VFF (J. Mengenhauser)                           | ,      |                                                                                         |
| 1      | E.I. duPont Company (Dr. C.P. Henry<br>Petroleum Laboratory<br>Chambers Works<br>Deepwater, NJ 08023 | ")     |                                                                                         |

## INITIAL DISTRIBUTION (Continued)

## CENTER DISTRIBUTION

| Copies | Code | Name               |
|--------|------|--------------------|
| 1      | 2759 | W. Stoffel         |
| 3      | 2759 | R. Strucko         |
| 1      | 28   | G. Wacker          |
| 1      | 2801 | J. Crisci          |
| 1      | 2801 | D. Ventriglio      |
| 1      | 2802 | T. Morton          |
| 1      | 2803 | J. Cavallaro       |
| 1      | 2809 | A. Malec           |
| 1      | 281  | J. Gudas           |
| 3      | 283  | H. Singerman       |
| 3      | 2832 | T. Daugherty       |
| 10     | 2832 | Dr. E.W. White     |
| 1      | 2832 | Dr. M. Klinkhammer |
| 1      | 2832 | D. Smith           |
| 1      | 284  | E. Fischer         |
| 1      | 342  | Unclass Lib (A)    |
| 2      | 3431 | Office Services    |
|        |      |                    |