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NOMENCLATURE

A, B, C constants

a combined convection-diffusion coefficient

b source term in the discrctization equation

c specific heat

d coefficient

f mass fraction

g acceleration due to gravity

g9, g volume fraction of the solid phase and liquid phase, respectively

h enthalpy

hi solidus enthalpy

h12  liquidus enthalpy

hif heat of fusion

K permeability

K constant for permeability

k thermal conductivity

p pressure

T temperature

T, liquidus temperature

TS solidus temperature

t time

u, v velocity components

u, v guessed velocity components

u', v' velocity corrections

vii



A A

u, v pseudo-velocity components

V velocity vector

x, y Cartesian coordinates

Greek Symbols

/3 thermal expansion coefficient

dynamic viscosity

p density

partial density

Subscripts

E, W, N, S east, west, north, south neighbors of the control volume center

e, w, n, s east, west, north, and south faces of a control volume

I liquid phase

P pertaining to the grid point, P

p pressure

s solid phase

u, v pertaining to the velocity components, u and v

x, y pertaining to the Cartesian coordinates

viii



1. INTRODUCTION

Processes related to phase change encompass a wide range of engineering

and scientific disciplines and occur in many applications such as welding, cast-

ing and energy storage. Owing to the absorption or release of latent thermal

energy, phase change problems arc nonlinear, and exact solutions are limited to

a small class of problems involving pure substances in one-dimensional infinite

or semi-infinite domains [1,2]. Unfortunately, most pr'.ctical phase change

problems are multi-dimensional; the thermophysical properties such as thermal

conductivity, density, and specific heat for the phase change material (PCM) are

changing with the changing of phase, and free convection occurs in melting liq-

uid PCM. These have focused attention on development of suitable numerical

procedures.

Generally, the numerical techniques can be divided into two groups. The

first group uses the front tracking method, which utilizes two independent con-

servation equations for each phase and couples them with appropriate boundary

conditions at the phase interface. Front tracking methods require the existence

of discrete -interfaces between phases in the domain and are generally limited to

pure substances. The primary difficulty associated with this method centers on

tracking the phase interface, which is generally an unknown function of space

and time. The need for moving numerical grids and/or coordinate mapping

procedures also complicates the application of this technique.

The second group uses the enthalpy method which is sometimes called the

fixed grid method. The enthalpy method does not track the phase interface,

instead, simply calculates the enthalpy of the PCM at each numerical grid.



Only one set of conservation equations are needed for both solid and liquid

PCM domains. This eliminates the complications of tracking phase interface

and moving numerical grids. Moreover, the enthalpy method allows a mushy

region (solid-liquid phases coexist region). This enables the enthalpy method to

be implemcnted for multiconstituent systems, which do not exhibit a sharp in-

terface between the solid and liquid phases. The enthalpy method is generally

easier to be implemented for solidification of alloys, melting of impure sub-

stances.

Based on enthalpy formulation, several models were developed to solve

phase change problems. The first one is the conduction model [3,4]. This is the

easiest model, where free convection effects of the liquid PCM are not consid-

ered. With the exception of microgravity applications, it is frequently this free-

convective motion which is the dominant mode of heat transfer. To include free

convection influences, Schneider [5] proposed a numerical model to solve phase

change problems for pure substances. By assuming the 5ehavior of fluid flows

in the mushy region to be similar to that of fluid flows in porous media, Voller

et al. [6,7] proposed the Enthalpy-Porosity model. This model was developed

by utilizing Darcy's law to modify the pressure gradients in the momentum

equations. A continuum model for analyzing the solid-liquid phase change be-

havior in a binary system was developed by Bennon and Incropera [8 - 10].

Semi-empirical laws, as well as microscopic descriptions of the transport be-

havior, have been integrated with the principles of classical mixture theory in

obtaining this model.
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In the present research, a continuum model is utilized and a finite-differ-

ence numerical method is used to solve the conservation equations.

A. CHANGING OF PHYSICAL PROPERTIES

Physical properties of the PCM such as density, specific heat, thermal

conductivity, etc. change while undergoing solid-liquid phase change. In this

research, a numerical method will be developed to accommodate the changing

of these physical properties.

B. SLUMPING FLOATING PHENOMENON

The variation of solid and liquid densities can cause slumping/floating

phenomenon during the melting processes. Floating of ice in the water is an

example. Slumping or floating of solid PCMs in enclosures can significantly en-

hance the melting rate [11,12]. Simple analyses were developed by presuming

the shapes of solid PCM [13,14], or by considering that conduction is the only

energy transport mechanism [15]. However, no numerical studies for melting

processes including both free convection and slumping have been reported. The

difficulties are due to the fact that moving of the solid domain is unknown and

time dependent. The utilizing of a continuum model enables the prediction of

the velocity for each phase, and provides the possibility of solving the melting

heat transfer problem having a slumping/floating phenomena.
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C. DENSITY VARIATION INDUCED FLOW

During a melting process, the variation of phase densities can cause motion

of the liquid PCM. If the density of the liquid PCM is smaller than that of the

solid PCM, an expansion-induced flow would occur. Variation of phase densi-

ties is common, and for many materials, the variations are large. For example,

the liquid density of P116 wax is 760 kg/ni 3, and the solid density is 818 kg/i 3 .

However, the impertance of density variation induced flow during melting has

not yet been reported. In this research, the effect of density variation induced

flow will be studied.

Experimental results will be used to verify the reliability of the numerical

solutions. P116 wax with a melting temperature of 46.7 C (116 F) and a mushy

temperature range of 10 C [16] has been selected for the experiments. Physical

properties of this wax will be used in the numerical calculations.

4



I!. MATHEMATICAL FORMULATION

A. CONSERVATION OF MASS

The principle of conservation of mass is that the time-rate of change of

mass inside a control volume equals the net integral of the mass flux over the

control volume. The two-dimensional, solid-liquid system, according to the

principle of conservation of mass, yields

[g., p, + g o1 1] + [g, Ps Us + g, Pu] +ags Ps v, + gtPV 1] 0 (1
t ax ay

This can be seen from Fig. 1. Let the mixture density, p, be defined by

P = gsPS +g 1 P1

= Ts +PT (2)

and the mass averaged velocity, V, be defined by

V PS V +v= -avs + --# y
P S PI

=f5 V +fVI (3)

then substituting Eqs.(2) and (3) into Eq.(]), it follows that

ap a(pu) a(pv) 0 (4)
a+x ay
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This is the equation describing the conservation of mass for the two-dimen-

sional, solid-liquid system.

Vs VI

Us Us

U 1 "-U--~ IU

Vs VI

Figure I. A control volume in mushy region.

B. CONSERVATION OF MOMENTUM

The equations describing the conservation of momentum for the two-di-

mensional system are

"(pu) P PI u p (u us P
-- 7- + V. (pVu)=Vu(,-Vu)- - (U - U) - --- (5)

,?( v) T V )) (6)VVs O
--- + V' (p V)= V'( - / KP PI - O-- + pgfl(T- Ts) (6)

• ~~a p i. K P ,nn 
m n n u n n 

v - tnn u n, )IN N N N W I



where K is the permeability. Details of derivation of these equations are shown

in the Appendix. In the prescnt analysis, the permeability is assumed to vary

with liquid volume fraction according to the Kozeny-Carman equation [17]

3g1
K = Ko (-g) (7)

where K, is a constant which depends on the specific multiphase region mor-

phology.

C. CONSERVATION OF ENERGY

The equation describing the conservation of energy is

0(ph) + V(pVh)=V (Vh) + V. V(hs - h)]
at- S ( ()

- v.[p(h,- h)(V- Vs)]

where the mixture enthalpy and thermal conductivity are

h =fshs + f1h, (9)

k = gsks + g1k, (10)

Phase enthalpies are

h,= csT (11)

h, = r + [(cs - c)rTs + hf] (12)



where it is presumed that h, r=o = 0 and that (ht - h) 17'=', = hf. Details of

derivation of tie energy equation are shown in the Appendix.

D. THERMODYNAMIC RELATIONS

By assuming that the phase fractions are linear functions of temperature in

the mushy range and in the saturated condition, we can obtain

T-T, (13)
, - T,y 3

I-f, (14)

From Eq.(2), we can find the phase volume fractions,

P - P1
gS = P _P (15)

g=1 - gs (16)

Let hi and h2 represent the enthalpies of the PCM at the temperatures,

T., and T1, respectively. By definitions,

h, =csTs  (17)

and

h 2 = CsTs + C (TI - ,) + hf (18)

8



For hi < hi, wc can determine the temperature of the PCM by using the follow-

ing:

T= h (19)CS

For hl ! h ! h2, from Eqs.(9), (11-14), we can determine the temperature of the

PCM by using the following:

A T 2+BT+C=0 (20)

where

A CS - C/

C T:: T-T T +

For h > h2, from Eq.(1 2), we can determine the temperature of the PCM by

using the following:

T= h- c5 c,) h (21)



Ill. NUMERICAL METHOD

A. STAGGERED GRID

Figure 2 shows staggered locations for u, v, and p. A staggered control

volume for the x-momentum equation is shown in Fig 3. Figure 4 shows the

control volume for the y-momentum equation.

p U

Figure 2. Staggered locations for computational variables.
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n

SwU e E

S

S

Figure 3. Control volume for x-momentum equation

tN

n

Figure 4. Control volume for y-momentum equation
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B. NUMERICAL FORMULATION

The discretized equations for the continuity, x-momentum, and y-momen-

turn equations are

GIP - PP)AXAy + Ay[peup - Pwuw) + Ax(pnv , - Psvs) = 0 (22)

At

aupUp = au-UE + au W  + au.VUN + asus + b. + Ay(pp - PE)
(23)

= aubUnb + b. + Ay(pP - PE)

a,.pvp = arvy. + avt,'vj' + av...vv + a.sVs + by + AX(pp - PN)

= ZavbVnb + by + A-(pP - PN) 
(24)

Let the pseudo-velocities iu and v be defined by the following:

A launbUnb + bx
lp = aub (25)

aup

A EavnbVnb + by (6vP = a + (26)

and substituting into Eqs.(23) and (24), it follows that

A

Up = Up + dup(pP - PE) (27)

Vp = 9 + dpopP- pN) (28)

12



where

d.1, = Ay/a.,p

dyp = Axlavp.

Substituting Eqs.(27) and (28) into Eq.(22), it follows that

A
app = zapbPb + bp (29)

where

Ap= (pp - p'p)AxAy A, A, A,At + AY(PeUp - Pwiw) + AX(pVp - PsV) (30)

Let u*, v* and p* be the gucssed values and

aupu*p = YaunbU*nb + bx + Ay(p*P -P'E) (31)

avpV*p, = Zavnb*nb + by + Ax(p*p - p*N) (32)

It is proposed that

U'p = dP(P'P - P'E) (33)

Vp = dVP(p'P  P'N) (34)

13



where u', v', and p' are corrections for velocity and pressure, respectively, and

the correct velocities arc obtained from

u = u* + u' (35)

v = V* + v' (36)

Substituting Eqs.(33) and (34) into Eqs.(35) and (36), respectively, it follows

that

Up = U*P + dup(p'p- P'E) (37)

Vp = V*p + dp('p P'N) (38)

Substituting Eqs.(37) and (38) into Eq.(22), it follows that

appp'p = Z'ap,,l'nb + bp (39)

where

(OPP - PO)AxAy
bp P)A + Ay(peu*p - pwu * w) + Ax(pnv*p - Psv*s)] (40)

At

C. NUMERICAL PROCEDURES

The SIMPLER (Semi-Implicit Method for Pressure-Linked Equations -

Revised) [18] scheme is proposed to solve the conservation equations. The nu-

merical procedures are

14



I. Given initial and boundary conditions.

2. Advance a time step.

3. Given initial calculation values for velocities.

4. Calculate pscudo-velocities i and V.

5. Calculate pressure field.

6. Use the newest pressure as guessed pressure to find u* and v*.

7. Calculate pressure corrections p'.

8. Obtain velocities u and v.

9. Find solutions for energy equation.

10. Return to step 4 and repeat until convergence.

I I. Return to step 2 for next time step solutions or stop.

15



IV. RESULTS

Figure 5 is an example of the numerical results showing thc velocity fields

and the liquidus lines. PI116 wvax is the PCM constrained in a 2.5-cm, x 2.5-cm

square enclosure. The initial temperature ;s 35 C, and faces are subjected to

constant temperature (50 C) heating.

-- -- -- -- - -- - -- -

400 seconds 800 seconds

. . . . . . . . . . . . . . . . . . . . . . . .

............. ... .......

- -- -- -- -- -- --

1200 seconds 1570 seconds

Figure 5. Velocity vectors and liquidus lines during melting.
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V. SUMMARY

I he research V, summarized below:

1. This research is aimed at numerical examinations of melting heat transfer

in enclosures.

2. A continuum model is used to describe the conservation equations for

the PCM during melting.

3. SIMPLER, a control-volume-based numerical scheme, is utilized to solve

the coupled conservation equations.

4. Influence of the density variation between solid and liquid phases on the

melting process will be studied.

5. Influence of the slumping/floating phenomena on the melting process

will be investigated.

6. Solid-liquid interfacial motion experiments will be performed.

17
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APPENDIX

DERIVATION OF CONSERVATION EQUATIONS

A. CONSERVATION OF MASS

The principle of conservation of mass states that the time rate of change

of mass for a control volume equals the net mass flux in the control volume.

For a two-dimensional, solid-liquid system, the conservation of mass equation

is

O[g ,'., + g 1 P ] + ;,., u., + g i /' 1  ] [g, p., v., + g , t1 0 ( I+ +X=+ (I)(?t (?x (?

The mass density of the mixture, p, is defined by

P = gsPS +g1 P1

= TS + T (2)

and the mass averaged velocity, V, is defined by

V= -- S-VS + -FV,
PS Pi

fs F% f V, (3)

Substituting Eqs.(2) and (3) into Eq.(1), we obtain

21



0_ d O(1u) ___(__)

at + + -0 (4)
Ot x Oy

Thus, this equation describes the conservation of mass for the two-dimensional,

solid-liquid system. In the liquid region, the form of this equation is the same

as the traditional continuity equation. If phase densities are constants, the term,

Op/,t, would be nonzero only in the mushy zone. However, in the mushy zone,

if the solid density and the liquid density are different and if the solid and liquid

fractions arc time dependent, then the mass density of the mixture is time de-

pcndent. The flow from the density variation in the solid-liquid phase change

is due mainly to the variation of solid and liquid densities. For example, during

the solidification of many metals, shrinkage induced flow can result.

B. CONSERVATION OF MOMENTUM

The momentum equations are derived from Newton's Second Law, which

states that the product of mass and acceleration is equal to the sum of the ex-

ternal forces acting on the body. Thus, the x-momentum equation of the two-

dimensional, solid-liquid system is

DtDt (P Ui + -hs1s) = V. (g, ax + gs as) + (-f B1x + -5s Bsx)

+ (g1 G1 + gsas) (5)
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The flux vector, (Y, represents the component of the general material stress

tensor which influences the x-direction momentum, while B, represents the x-

component body force and G, is the momentum production owing to phase in-

teractions.

The left-hand side of Eq.(5) represents the product of mass and acceler-

ation. It can be decomposed as follows:

D a(pu)
--D 65 U + -P U') = at + v . W, Vu + A, V, U) (6)

Substituting Eq.(6) into Eq.(5), it follows that

+ V.( Vtu, + TFu Su) = V. (g a1 x + g, a,) + p B, + F (7)
0 t

where

-X = P1 = f1 Bx +f, B, (8)

and

F, = g, Gtx + gsGsx (9)

The advective momentum flux can be decomposed as follows:

I tV1 u1 + ;5 Vs us) = p v u + S (VS - V) (us - u)

+ P, ("I - (U1 - u) (10)

Substituting Eq.(10) into Eq.(7), it follows that

23



S +V. () U) V.- (gi a/. + g., a.%-)

-VT.,(V s - 1)(u s .- u) + T,(VI- V)(u-u)] + pB, +F x  (I)

The x-component of the material stress tensor can be separated into isotropic

and deviatoric components,

A

UX = -p1 + Trx  (12)

It is important to recognize that tx includes only stresses resulting from inter-

action of a single phase with itself. The effect of interactions between phases is

accommodated by the quality, Fx. Specification of T., requires a priori assess-

ment of the continuity of each mixture phase. A phase is considered to be con-

tinuous if any two points within the phase can be joined by a continuous curve

which lies solely within the phase. If each phase mixture is considered to be

continuous, the constitutive relationships are available to describe T,. In the

present formulation, each phase is assumed to be continuous and Newtonian.

In compact tensorial form, the average stress vector for each phase is

[(gkuk) i + (gkUk)j 2 a(gkUk),Ak Tk = U2k[ aXj " a x i  ] 3 P
A k 

b
ij  ax n

(i, j, n = 1, 2) (13)

In x-direction, the average stress vector can be expressed as
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0 (gk Uk) 2 '(gkUk OgkVk
Tk xk ?.v 3 ik ( OX + ay

()(gk "A) A

+ [Pk ,yk ]I + V(pUgkUk)

= Tkxo + V(Pk gk Uk) (14)

If Pk is assumed to be constant, it can be shown that

- 0 IkpVu (gk Uk)] (15)V a kxo = 3 Pk a-[ gIM1

Since the solid phase is assumed nondeformable, it is free of internal shear stress

(T, = 0, V(gsus) = 0) and translates at a prescribed velocity, V. With this as-

sumption and substituting Eqs. (12), (14), and (15) into Eq. (1i), it follows that

D?(p u)
r U + V . (p V u) V . [•, V(gj u,)]d t

Op

- v.[T), (V, - V)(u,.- u) + 1W(V - V)(u 1 - u)] - + pB, + Fx

(16)

where

4 1
P= g3 PS + g 1 Pi - "y pV.(g, VI) (17)

From Eq. (3), it can be shown that

P Psgu1  --- u - - s (18)
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If it is assumed that the phase densities are constants and the viscous stresses

resulting from local density gradients are negligible (V(p/pl) = 0), then from

Eq. (19), Eq. (16) becomes

+t ± V . (p V' 1) V . (Up -1- V u)

- .[T, s - V)(u- u) + j 1(V1 - 1)(u,- u)] - + pB, + F,
( X

(19)

Invoking the following identities

V -v l=ffV,

and

V1  V =A Vr1,

it can be shown that

1), - 3 (us - U) + P, (V - V)(u, - U) = Pffvu, (20 )

where

V,= V-VS

represents the relative phase velocity. Substituting Eq. (20) into Eq. (19), it

follows that
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_(pu) p OpO(PU) + V.(p V u) = V.( V Vu) - PfsflVrur -- + pB, + F,

(21)

To dcfine the phase interaction force, Fx, it is necessary to consider the

multiphasc region morphology. For a wide region of multi-constitute solid-li-

quid phase change system, the multiphase region is characterized by a fine per-

meable solid matrix. The solid matrix is stationary or undergoes free body

translation. Thus the liquid phase flow through the mushy region is analogy to

flow through a porous media. Therefore, implementation of Darcy's law to

prescribe the phase interaction force, Fx, is appropriate. Thus

MI

F K (gu) (22)

where K, represents the component of anisotropic permeability which influences

x-direction momentum transport. Since

PI

it can be shown that

F,, (U (- us) (23)P

Thc second term on the right-hand side of Eq. (21) represents inertial forces in-

duced as a result of variations in phase velocities. This inertial force only ap-

pears in the multiphase region, where permeabilities are extremely small and the
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inertial contribution is negligible compared to the Darcian damping force.

[fence the x-momentum reduces to

N(v u) P ___

,1) + Vr•(p V u) V ( -  V u) - ' _ (u ,1,)
t! K, Pt

-p+ pB X  (24)ax

This final form of the equation represents conservation of momentum in the

x-dircction for the solid-liquid phase change system. In the solid region, the

permeability is zero, thus the velocity is the solid phase velocity. In the liquid

region, the permeabilitv ' infinite, thus the Darcian damping force will disap-

pear. The form ot :e equation is the same as the normal momentum equation

for a single phase fluid.

C. CONSERVATION OF ENERGY

Conservation of energy for a two-dimensional, solid-liquid phase change

system can be expressed by the following equation:

-(i., + -plhj)+V-(;5/'1h, + T Vh)= V-(kVT) (25)
d t

where local thermodynamic equilibrium has been assumed (Tk = T) and the

mixture conductivity is defined by

k = gk, + gsks (26)
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The advective term may be decomposed into contributions owing to the mean

mixture motion and the relative phase motion. Thus

I '1 h, + -, V., h, p 1h + p, (V, - V)(h- I) + P., (V - I')(h, - h)

27

Where the mixture enthalpy is

h - hS + 1 1  (28)
p p

It is noted that the flux owing to the relative phase motion only has a contrib-

ution in the mushy region. Substituting Eqs.(27) and (28) into Eq.(25), it follows

that

d(p) + V . (p Vh) = V. (kVT)
ot

- V.[ t(V,- t(h-h) + -s(Vs- V)(hs -h)] (29)

Simplifying the term

pVll 1 - 1)(h, - h) + js(Vs - 1)(h, - h) = pfs (V - Vs)(h, - hs) (30)

it follows that

+ V.(p1h) = V.(kVT) - V [pfU(V- )(h,-h)] (31)Ot

In the present formulation, the enthalpy of phase k is defined as
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hk f cdT + h 0 (32)

where ck represents an effective specific heat of phase k. Substituting the iden-

tity

V Vh + _L v(hk -h) (33)
Ck Ck

into Lq.(31 ), it can bc shown that

+ V. (j) VIi) V. (k Vh) + V- [ k V(h, - h)]

0 t S CS (34)
-V. [p(hI - h)(V - Vs)]

This is the final form of the equation which represents the conservation of en-

ergy in the x-momcntum for the solid-liquid phase change system.
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