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GOODNESS OF FIT TESTS AND ENTROPY

by Emanuel Parzen

Department of Statistics, Texas A&M University'

Dedicated to the memory of Paruchuri R. Krishnaiah

Abstract: This paper discusses the unifying role of entropy statistics and concepts in

developing goodness of fit tests for a parametric model F(x; 0) for a continuous distribu-

tion function F(x), given a random sample from the distribution F. Statistics discussed

are those introduced by Moran (extended by Cheng and Stephens), Vasicek and Dudewicz

& van der Meulen (based on gap estimators of quantile density function), Parzen (au-

toregressive estimators of quantile density functions), and Shapiro and Wilk. They are

given unified formulations as entropy difference statistics. Their 95% significance levels

for sample sizes 20 and 50 are compared and shown to increase as amount of "smoothing"

decreases.

1. Introduction to Entropy. This paper discusses the unifying role of entropy

concepts in testing goodness of fit of a random sample of a continuous random variable X.

The problem is to test the fit of a parametric model F(x,0), 0 a vector of parameters, Lo

the true distribution function F(x) = Prob[X < x] of X with probability density function

f(x) =F'().

The true quantile function of X is Q(u) = F-l(u). Quantile density function is

q(u) = Q'(u) = 1/fQ(u); the density quantile function is fQ(u) = f(Q(u)). The entropy

H of a random variable X is

H(f) = {- log f(-}f(x)dx

log q(u) = H(q).

In general, H(q) can be any real number. But if q(u) integrates to 1, corresponding to

1Research supported by the U.S.Army Research Office
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a random variable on the unit interval, then neg-entropy -H(q) is non-negative. The

-ntropy statistics for goodness of fit are constructed to be non-negative.

The quantile density function q(u) is in general a non-integrable function with a large

dynamic range. We always assume that log q(u) is integrable, which means that X has

finite entropy.

2. Moran's statistic. Assume that the random sample consists of distinct ob-

servations with order statistics denoted X(1; n) < ... < X(n; n). The probability in-

tegral transform Y = F(X; 0), for a specified value of 0, has order statistics denoted

Y(1;n) < ... < Y(n;n). Let Y(O; n) = 0, Y(n+l;n) = 1. Let Di(O) = Y(i;n)-Y(i-1;n),

i = 1,..., n + 1. Cheng and Stephens (1989) define Moran's statistic to be

n+1

M(O) - E{-log Di (0)

They study the asymptotic distribution of M(O) when 0 is the true parameter value, and

when 0 is replaced by an efficient estimator 0^. They illustrate the usefulness of Moran's

statistic by an example of real data where M(0) correctly rejects the hypothesis that X

is normal, in contrast to more traditional empirical distribution function statistics such as

the Kolmogorov-Smirnov and Cramer-von Mises statistics which accept the hypothesis of

normality for the sample tested. Our aim in this paper is to provide a variety of alternatives

to Moran's statistic by expressing it as an entropy statistic and to discuss how to generate

entropy statistics.

Our first step is to normalize Moran's statistic by giving it a new definition; define

n+1

M~(O) = (1/(n + 1)) Z{-log di(0)}

= {-log d-(u; 0)}du

defining for i= 1,...,n + 1

di(0) = (n + 1){Y(i;n) - Y(i - 1;n)} = (n + 1)Di(0),

d-(u; 0) = di(0), (i- 1)/(n + 1) < u < il(n +1).
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The quantile function of Y = F(X;0) is D(u;0) = F(Q(u);0); it can be estimated by

D'(u; 6) = d-'(t; 0)dt,

as well as F(Q'(u); 0), where Q'(u) is the sample quantile function of the X sample. An

estimator of the quantile density function

d(u;O) = D'(u;0)= f(Q(u);0)/fQ(u)

is d-(u; 0). We call d(u; 0) a comparison density function, denoted d(u; F(x), F(x; 6)).

Moran's statistic M'(O) is an estimator of M(O) = -H(d(u;0)), the neg-entropy

-H(Y) of Y = F(X,O). When 0 is the true parameter value Y is uniform and

H(Y) = 0; Cheng and Stephens (1989) show that M/(0) is asymptotically normal with

mean - = .57722, Euler's constant. Therefore one may want to consider an unbiased

entropy statistic M*(6) = M"(0) - .57722, which when 0 is the true parameter value is

asymptotically normal with mean zero and variance

r2

VAR[M*(0)I (1/(n + i))( - - 1)

Cheng and Stephens (1989) use small sample corrections of this asymptotic distribution

theory to compute significance levels of M*(0); for example, for n = 20, Prob[M*(0) <

.48] = .95. We note that M'(O) uses a least smooth estimator of d(u; 0), and one should

consider oher entropy statistics of goodness of fit generated by

M^(0) = {- log d^(u; 0) }du

where d(u; 0) is a smooth estimator of d(u; 0) of the form discussed in the sequel.

3. Kullback information divergence. The non-negative quantity M(8) being

estimated by M'(6) is the neg-entropy of Y = F(X; 0). It also can be identified to equal

I(f; f(.; 0)) = {- log(f(x; 0)/f (x))}f (x)dx

3



the Kullback information divergence btween the true distribution function F(z) and the

parametric model F(z; 0), since

M(O) = log(f(Q(u); 0)/f Q(u))}du.

Define the sample distribution function F'(x) =fraction of random sample < z, with

symbolic probability density r-. Moran's statistic M-(O^), where 0^ is an efficient param-

eter estimator, can be regarded as an estimator of F^ = I(f-; f(.; 0^)), the information

divergence between the data and the optimal parametric model. Other entropy statistics

are obtained by alternative estimators of F^, the sample to model information divergence.

Information divergence I(f; f(.; 0)) can be expressed

I(f; f'(-; 0)) = H(f; f(.; 0)) - H(f)

defining cross-entropy

H(f; f(.,0)) = {-log f(z; 6)}f(x)dz= J {- log f(x; 0)} dF(x).

Cross-entropy is related to maximum likelihood estimation. Define the sample cross-

entropy between the parametric m ,del F(z; 0) ? id the sample distribution function F-(x)

by
n

H(f; f((.; 6)) = -E'flog f(X; 6)] =-(/n) >log f(X(t); 6).
t=l

The maximum likelihood estimatcr 0^ is the minimum sample cross-entropy estimator.

Define for any -,,atistic T(x)

nfo
FjT(x)] = (1/n) E T(X(t)), E0 [T(x)] =] T(x)f(x; 6)dx.

t=1

A model f(x; 6) is said to obey an exponential model if

k

log f(X;o) = T ,'(X) -- q, (o).
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The maximum likelihood estimator of an exponential model can be shown to be method

of moments estimator; 0^ is the value of 0 satisfying

E-[Tj(x)I = EO[Tj(x)].

Further the minimum sample cross-entropy equals the entropy of f(.; 0^):

k
H(f-;f(.; 0) = H(f(.;0-)) = 'I(0-) - Z 0j-EO[Tj(x)J.

j=1

4. Entropy difference goodness of fit statistics for exponential models. An

important conclusion can now be formulated. When the parametric model is an exponential

model, the natural entropy statistic to test goodness of fit given by the sample to model

information divergence I-^ can be expressed as an entropy difference statistic

I ^= H (f(.; 08)) -- H (f-)

and can be estimated by H(f(.; 0^)) - H^(f) where H(f) is an estimator of H(f). Since

H(f(.; 0-)) can be interpreted as the "maximum entropy" we obtain a "non-negative statis-

tic" by the entropy difference statistics to test goodness of fit of a parametric model. Note

H(f(.; 0^)) is an estimator evaluated under the assumption that f obeys the null hypothe-

sis of belonging to the parametric family f(x; 0), and H'(f) is a non-parametric evaluation

based on a smooth non-parametric estimator of the true density f.

5. Gap estimators. A basic approach to estimators H'(f) is to use the entropy

formula

H(f) = jlog q(u)du

in terms of the quantile density function q(u). Many approaches are available to form

estimators q^(u) and thus estimators H(f) of the entropy of the true probability density

f. The earliest approach considered by researchers is equivalent to

n-v

H^(f) = H(qv^) = (1/(n - 2v)) > log qv(j/(n + 1))
j=V
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where for j = v + 1,...,n- v

qvC(jl(n + 1) = ((n + 1)/2v){X(j + v;n) - X(j - v;n)}

is an estimator of the quantile density q(u) of X at u = j/(n + 1). We call these estimators

gap (of order v) estimators; they were introduced and studied for v = 1,2,3,4,5 by Vasicek

(1977) to test normality and Dudewicz and van der Muelen (1981) to test uniformity.

Normality is an example of a location-scale parametric model

Q(U) = i + UQO(u)

where 1z and a are parameters to be estimated and QO(u) is a known standard distribution

(for normality, Qo(u) = D-l(u), the inverse of the standard normal distribution function).

For a location-scale parametric model

H(f(.; 0^)) = logsa + H(fo).

For a normal distribution, H(fo) = .5{1 + log 21r} and ar is the sample standard deviation.

Vasicek (1977) entropy statistic for testing normality can be expressed

AV = log a ^ + H(fo) - H(qv^).

6. Autoregressive estimators. An alternative approach to estimating q(u) when

one desires a goodness of fit test of a location scale parametric model is to estimate the

density d(u), 0 < u < 1, defined by

d(u) = (1/ao)foQo(u)q(u),

where ao = fl' foQo(u)q(u)du. We call d(u) a didi (divided difference) density, or weighted

spacings density, denoted dd(u; F(x), Fo(x)). They provide an alternative to Q - Qo plots.

Notice that the neg-entropy of d satisfies

-H(d) = {- log d(u)Idu

= log ao + H(fo) - H(q).
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Therefore -H(d) is an entropy difference, and an estimator -H(d^) provides in one stroke

an entropy difference statistic for goodness of fit!

We assume that d(u), 1/d(u), log d(u) are integrable functions. Estimating d(u) rather

than q(u) can be regarded as a process of preflattening the function to be estimated.

We currently prefer estimation of d(u) by kernel estimators, using boundary kernels to

compensate for end effects at 0 and 1, or by maximum entropy estimation using exponential

models for d(u).

In Parzen (1979) we introduced the autoregressive method of estimating d(u) which

has other close connections to entropy statistics for goodness of fit. Raw estimators aF(u)

and a0" are formed by replacing q(u) by a least smooth gap estimator q2"(u). Smooth

estimators dm^(u) are formed by the autoregressive method.

From estimators p-(v) of the pseudo-correlations

p() j e2fluvd(u)du, v = 0, ± ±,...m,

one estimates (using suitable Yule-Walker equations) the coefficients of the autoregressive

order m approximator

&m(u) = Km'11 + ^(1)e2 +... + aM^(M)e2flumr 2

to the raw density d-(u). The coefficient Km^ plays an important role in entropy calcula-

tions since

J log dm^(u)du - log Km^

can be regarded as an estimator of fo1 -log dA(u)du, and thus is an entropy difference

statistic for goodness of fit.

7. Entropy difference interpretation of Shapiro Wilk statistic. To test the

hypothesis Ho : X is N(L, a2), a test statistic W of Shapiro-Wilk type is of the form

W =a*/a
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where o^ is the sample standard deviation and

-----I( j----E
j=1 1 1= I

is an asymptotically efficient estimator of a based on linear combinations of the order

statistics X(j; n) of the random sample. The first step in the entropy interpretation of W

is to consider instead the statistic

- log W = log a ^ - log a* = H(f(.; &a)) - H(f(.; a*)).

-log W is an entropy difference statistic, but it compares two parametric estimators of

entropy based on two approaches to estimating parameters which are both efficier_ under

the null hypothesis of normality.

8. Comparison of 95% significance levels for small samples. Significance

levels for the entropy-difference statisic AW = - log W are obtainable from tables of the

W statistic [for example, Filliben (1975)]. An example of 95% significance levels (for

accepting normality) are

A W < 0.05, for sample size n = 20;

AW < 0.023, for sample size n = 50.

The various entropy difference statistics can be compared by their significance levels

(see Table). Significance levels of autoregressive goodness of fit statistics -log Km^ have

been derived by a very approximate Monte Carlo simulation (in the case of testing for

normality). An open research problem is investigation of an Akaike-type criterion for

accepting the null hypothesis that X is Fo((x- !)/a), such as:

(2m/n) + log Km^ > 0 for m = 1,2 ....

Significance levels of Vasicek (1977) statistic AV, defined in section 5, are based on

Monte Carlo simulation of normal; significance levels of similar Dudewicz-van der Muelen

(1981) AV = -H(q,/) to test uniformity statistic are based on Monte Carlo simulation of

uniform.
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One can conjecture a relation between gap order 2v and autoregressive order m for the

corresponding estimators to have similar distributions and therefore similar significance

levels:

(2v)m = n = sample size

To understand what this conjecture is alleging note that for n = 20, m = 4 is similar to

2v = 6; for n = 50, m = 6 is similar to 2v = 8. When one uses gap estimators of q(u),

and thus of entropy, one has the problem of determining the order 2w. One may be able

to more easily develop criteria for determining the order m of autoregressive estimators of

q(u).

Our modified Moran statistic M*(O) can be compared by noting that it has 95%

significance level .48 for n = 20. Significance level appears to increase as amount of

smoothing of "hidden" density d(u) decreases. Investigating this phenomenon is a good

topic for future research.
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Table. 95% SIGNIFICANCE LEVELS FOR ENTROPY DIFFERENCE STATISTIC3. Accept H0  X is
N(s, ua 2) for some p and a if entropy difference is less than threshold given.

- log W - log K,, ^  AV
Autoregressive order m H(gap estimator q,(u))

Sample Shapiro- Monte Carlo 5% level Vasicek test for normality
Size n Wilk (rough approximation 2m/n) (Dudewicz-van der Muclen) test UO, 11

m=1 m=2 m=3 m=4 m=5 v-=5 v=4 v=3 v=2 v=1
20 .05 .141 .235 .299 .378 .398 .40 .40 .43 .61

(.10) (.20) (.30) (.40) (.50) (.43 .43 .47 .66)

50 .023 .045 .081 .126 .153 .176 .21 .21 .23
(.04) (.08) (.12) (.26) (.20) (.22 .22 .24)
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