DTIC FILE COPY	* · · · ·	
AD-A224 833		
NAME OF CONTRACTOR:	Dr. Paul M. Raccah	
CONTRACT NUMBER:	DAAK 70-83-K-0047	
EFFECTIVE DATE OF CONTRACT:	l Feb 83	
EXPIRATION DATE OF CONTRACT:	31 Jan 86	
REPORTING PERIOD:	Eighth Quarter	DTIC
PRINCIPAL INVESTIGATOR:	Paul M. Raccah	
PHONE NUMBER:	(312) 996-3400	AUG 0 6 1990

D

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

90 08 03 009

DETRIBUTION STATEMENT A

1

Approved for public release Distribution Universed

.

DEPARTMENT OF THE ARMY HEADQUARTERS, 1' 3. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND 2800 POWDER MILL RD., ADELPHI, MD 20783

ATTENTION OF

> 4 FER 85

DRDEL-IN

SUBJECT: Clearance of "Observation of Transitions Between Electronic Surface States on the (III) A-FACE of CdTe by Electrolyte Electroreflectance"

NVEOL ATTN: DELNV-IRTD (Mr. Martinka) Fort Belvoir, VA 22060-5166

manuscript and 2 figures The attached 1. has been reviewed with the following results:

 X a. The material has been cleared for Operations Security by the FRADCOM Security Office. This command interposes no objection to presentation and/or publication on the basis of accuracy, propriety, or conformance with policy.

b. The material has been reviewed and approved by DARCOM for open publication or presentation.

c. The material is returned without action because it is classified.

d. The material is returned without action because it is scheduled for presentation at a classified meeting.

e. The material is returned without action because it was received too late. Material to be reviewed by this office days in advance of the scheduled is due here 30 presentation/publication date. Material requiring DARCOM review is due here 45 days in advance.

f. The material is returned without action because it requires DARCOM review. DARCOM only reviews complete packages. If the manuscript has not yet been prepared, please state the following on the clearance form you resubmit: "The author understands that any manuscript based on the attached material and subsequently prepared for presentation or publication must be also be submitted for clearance."

g. Remarks

FOR THE COMMANDER:

Marian K. STNOT

Public Affairs Officer

70 TANXS CLEADANI	SE OF INFORMATION FO	P PELEASE
LYJAN 0, CLEANAIN	For Contractor-Originated Mater	rial)
External Presen	tations/Publication of Manuscript I	In Open Liepaure Infrired Tech Div/NV
TC: Public Alfairs Officer U.S. Army Electronics Research & Development Command Attn: DRDEL-PAO Adelphi, MD. 20783	FROM: NVEOL Infrared Technology D Ft. Belvoir, VA 2206	DATE: 15 Jan 85 50-567
The attached paper is forwarded in 6 Supplement 1 to AR 360-5 "Public Irr	copies for clearance for public relea formation"	se in compliance with ERADCOM
TITLE Observation of Transition A-FACE of CdTe by Electr	ons Between Electronic S colvte Electroreflectanc	Surface States on the (111)
AUTHOR(s) Paul M. Raccah, J. W. Physics Department, University Science Center, 1049 Camino Dos	Garland, Z. Zhang, L. L of Illinois at Chicage; Rios, Thousand Oaks, C	. Abels, S. Ugur and S. Mioc – M. Brown – Rockwell Internatio CA 91360
FOR PUBLICATION IN:		
Physical Review Letters		
FUR PRESENTATION AT (Name, Date and Loci	ation of Conference,	
DATE CLEARANCE REQUIRED:		
"39" Jun 85. (Because of the time!	v nature of both the wo	ork and its intended journal)
CONTRACTOR:	CONTRACT NO.	SECURITY CLASSIFICATION OF CONTRACT
University of Illinois at Chicag		Unclassified
Department of Physics	DAAK/0-83-K-0047	IF CLASSIFIED, DATE OF DD FORM 254
Chicago, II. 60680		
ADDRESS AND TELEPHONE NO. OF CONTRA TO BE INFORMED OF CLEARANCE ACTION:	CTOR OFFICE	
Contracting Ofcr's Technical Rep NVEOL, ATTN: DELNV-IRTD (M. Mar Fort Belvoir, VA 22060	resentative tinka)	SECURITY CLASSIFICAT:ON GUIDE CONSULTED <u>In accordance</u> with proposed security
· .		DATE OF GUIDE <u>The information</u> is unclassified
CONTRACTOR CIS XXIS NOT AUTHORIZED	ACCESS TO CLASSIFIED MATERI	AL UNDER THIS CONTRACT.
IF SO, APPLICABLE DD FORM 254 SHOULD E	E APPLIED DURING REVIEW OF	PAPER).
The attached paper has been reviewed for sec been applied (if applicable). Clearance for pub	urity including OPSEC policy and t lic release is recommended.	technical accuracy, and the DD Form 254 has
Robert A. Payne	DATE	AUTOVON NUMBER
Michael Martanka	<u>1</u> 5 Jan 8.	5354/5780/5043
TECHNICAL REPRESENTATIVE	1/ DATE	AUTOVON NUMBER
MININK 19 INIL		AUTOVON NUMBER
LABIACTIVITY SECURITY OFFICER		
LABIACTIVITY SECURITY OFFICER		
PUBLIC AFFAIRS OFFICER	APPROV	AL DATE
PUBLIC AFFAIRS OFFICER RADCOM Form 5	APPROV	AL DATE

.

.

•

OBSERVATION OF TRANSITIONS BETWEEN ELECTRONIC STATES AT THE (111) A-FACE OF CdTe BY ELECTROLYTE ELECTROREFLECTANCE

BY

Paul M. Raccah, J. W. Garland, Z. Zhang, L. L. Abels,

S. Ugur and S. Mioc Physics Department University of Illinois at Chicago Box 4348, Chicago, Illinois 60680

AND

M. Brown, Rockwell International Science Center 1049 Camino Dos Rios, Thousand Oaks, CA 91360

Accesion For NTIS CRA&I V DTIC TAB \Box Unannounced \Box Justification. 50 Distribution (Availability Codes Avail and/or Dist Special

U I COP SPECTI

ABSTRACT

The observation of a large piezoelectric contribution to the electroreflectance signal from the (111) A-face of CdTe is reported. This contribution, which is absent from the B-face signal, is associated with two-dimensional interfacial strains between the A-face and a thin native oxide film. Lineshape analysis is used to verify the nature of this contribution and to obtain values for the transition energy and other quantities which characterize the electronic band structure at the interface.

We report here the results of a comparative study of the A and B polar (111) faces of CdTe using electrolyte electroreflectance (EER). Even though the use of an ambient technique such as EER to study CdTe makes inescapable the presence of a native oxide layer which inhibits¹ surface reconstruction, a giant local piezoelectric contribution to the A-face signal was observed, whereas the B-face signal contained no such contribution. A large signal of the type which we have observed from the A-face of CdTe can arise only from unusually large electric-field-driven local distortions on or near that surface. i.e., only from a large local piezoelectric effect. Therefore, we must conclude that there exists a region of greatly lowered stability associated with the oxidized A-face but not with the oxidized B-face, which exhibits no such signal. We interpret this lowered stability as arising from bond bending at the A-interface between the CdTe and its native oxidized surface film. As is shown in detail in this communication, a careful analysis of the data imposes that the observed giant piezoelectric signal arises primarily from a two-dimensional interfacial region having a thickness of no more than two or three atomic layers.

We believe these striking results to be related to differences between the reconstruction of the clean A-face of CdTe and that of the clean B-face. It is well known both experimentally² and theoretically³ that the reconstruction of the clean A-face of zincblende materials differs substantially from that of the clean B-face. In particular, the A-face reconstruction involves a much greater lowering of the energy; thus it is more difficult for an oxide film to totally inhibit the reconstruction of the A-face. Also, the A-face reconstruction involves the formation of a large number of cation vacancies¹⁻⁴ which would remain after oxidation, whereas the B-face reconstruction does not.¹⁻³ Recently, we have generalized⁵ the electroreflectance (ER) theory of Aspnes⁶

to account quantitatively for the effects of piezoelectricity, strain, polarizable

defects and alloy disorder (where applicable). Our results show that piezoelectric shifts as small as 10^{-4} eV in either local or bulk interband transition energies give rise to ER signals not previously understood. These signals, which were observed^{7,8} as early as 1966, have a lineshape substantially different from that of the usual ER lineshape⁶ and in the absence of inversion symmetry also have a different dependence on the modulating electric field \vec{E}_{M} . This effect is greatly enhanced by the existence of lowered structural stability, such as that expected at the A-face of CdTe. In the absence of this effect, because the light penetration in the energy range of interest is at least of order 100A one would expect the ER lineshape to contain only a very small contribution from the interface region. However, our theory suggests that a marked lowering of the structural stability large enough to allow one to sample the two-dimensional interface region independently of the bulk, even though it occupies only a small fraction of the total volume probed.

Our experimental results have confirmed this suggestion in a spectacular manner. For the same crystals we found very similar bulk EER signals from the A- and B-faces but found the A-faces to exhibit a large additional linear piezoelectric signal at a somewhat higher critical energy. We have confirmed the nature of this additional signal by lineshape analysis and by a study of its dependence on E_{M} . The EER system, which is described elsewhere,⁹ was used to obtain spectra in the vicinity of the E_1 critical point from (111) oriented CdTe samples.

Typical EER spectra obtained from A- and B-faces of the same sample are shown in Fig. 1; the difference between the two lineshapes is obvious. This difference is independent of the electrolyte used (organic⁹ or 1/10 N KOM or 1/5N lactic

acid) and was observed for all of our single-crystal samples. These samples were of varied origin and were grown by different methods. The quantitative results discussed here were obtained from a sample carefully selected to be of exceptional structural quality which was given a careful chemomechanical bromine/ methanol polish to produce relatively damage-free surfaces. This treatment is standard for CdTe wafers prior to epitaxial HgCdTe growth. Both A-and B-faces are easily polished and epitaxial layers can be grown on both types of surfaces.

EER spectra were obtained at six different modulation voltages from 5V to 30V in order to analyze the dependence on E_M of the amplitudes of the various contributions to the total lineshape. In addition, automatic spectroscopic ellipsometry (ASE) was used to determine the optical properties of both the Cd and the Te faces, and the third-derivative spectra were numerically computed and compared to the EER results.

For any derivative spectroscopy, such as ER, the lineshape arises primarily from interband transitions in the immediate vicinity of critical points in the Brillouin zone. In general, the contribution of a given interband transition and given critical point to the low-field ER lineshape is given by the expression,

$$L_{j}(E) = A\{-\Delta E_{j} D_{j}^{(1)}(E) + [\Delta o^{2} + 1/2(\Delta E_{j})^{2}] D_{j}^{(2)}(E) + 1/3(M\Omega_{j})^{3} D_{j}^{(3)}(E)\}.$$
 (1)

Here, A is a constant independent of the modulating field $\mathbf{\tilde{E}}_{M}$, ΔE_{j} and Δo^{2} are the shifts due to $\mathbf{\tilde{E}}_{M}$ in the critical-point interband transition energy E_{j} and in the mean-squared scattering potential o^{2} from defects and/or alloy disorder, respectively, and $\mathbf{M}\Omega_{j}$ is the energy gained from the field $\mathbf{\tilde{E}}_{M}$ by the optically excited carriers. The term quadratic in ΔE_{j} , which is negligible in most cases, is included because ΔE_{j} is expected to be unusually large for the A-face, whereas Δo^{2} is expected to be relatively small. The functions $D_{j}^{(m)}(E)$ are given by the equations

$$D_{j}^{(m)}(E) = E^{-2} \left[\alpha - \frac{\partial^{m} E^{2} \epsilon_{1j}}{\partial E^{m}} + \beta - \frac{\partial^{m} E^{2} \epsilon_{2j}}{\partial E^{m}}\right],$$

where α and β are the Seraphin coefficients¹⁰ and ε_{1j} and ε_{2j} are the real and imaginary parts of that part of the dielectric function which arises from the given interband transition in the vicinity of the given critical point. Note that ΔE_j and $\Delta \sigma^2$ contain parts linear in \hat{E}_M for any crystal not having inversion symmetry and for surface effects, whereas $(M\Omega_j)^3$ is strictly quadratic in \hat{E}_M .

For the E_1 critical point, which for CdTe has dimensionality d=2, upon making the usual approximations,⁶ Eq. (1) reduces to the closed form

$$L_{1}(E) = C\{-\frac{3}{2}\left[\Delta E_{1} L_{1}^{(1)}(E) + (2\Delta o^{2} + (\Delta E_{1})^{2}) L_{1}^{(2)}(E)\right] + (M\Omega_{1})^{3}L_{1}^{(3)}(E)\}. (2)$$

Here C is another constant independent of $\mathbf{E}_{_{\!\mathbf{M}}}$, and

$$L_1^{(m)}(E) = \cos(\theta_1 - m\phi_1) / [(E - E_1)^2 + \Gamma_1^2]^{m/2}, \qquad (3)$$

where θ_1 is a phase angle which is treated as a parameter, Γ_1 is a phenomenological broadening parameter, and ϕ_1 is given by the expression

 $\Phi_1 = \tan^{-1} [\Gamma_1 / (E - E_1)].$

Both Eqs. (1) and (2) reduce to the corresponding Franz-Keldysh results of Aspnes⁶ for the case in which $\Delta E_1 = \Delta_0^2 = 0$.

The final expression used to fit our EER data was obtained by substituting Eq. (3) into Eq. (2) and allowing an adjustable constant background, which is assumed to arise from any surface film present and/or from the tails of signals from critical points distant in energy. The quantities $C\Delta E_1$, $C\Delta \sigma^2$,

 $C(W\Omega_1)^3$, θ_1 , E_1 and Γ_1 usually are treated as free parameters, although E_1 and Γ_1 could have been determined from ASE and held fixed.

The B-face lineshape contained only a negligible first-derivative term and a small second-derivative term and could be well fit in terms of a single transition between bulk states in the vicinity of a single critical point. On the other hand, the A-face spectra contained a large first-derivative contribution associated with a giant electrostrictive polarizability on that face and a substantial second-derivative term in addition to the usual third-derivative Franz-Keldysh term.

In considering the physical interpretation of these results we must examine the implications of the fact that our measurement was not made in vacuum and therefore that both surfaces of the crystal were covered by a native oxide. Our ASE measurements and others¹¹ show that such oxide layers grow only two or three atomic layers (- 7 A) in the period of time after etching during which we carry out our measurements. Their spectra are featureless in the spectral region of interest and make no observable contribution to the EER signal; moreover, the difference between the A- and B-face signals is unaffected by the thickness of the native oxide (at most 30 A). Therefore, the semiconductor/oxide interface on the A-face must differ markedly from that on the B-face, and the large magnitude of the additional first-derivative A-face signal must arise from a large linear electrostrictive polarizability associated with the Ainterface.

In order to test whether the large first-derivative contribution to the A-face lineshape arises from the interface region or from the bulk, we attempted first to fit the A-face lineshape in terms of a single transition between bulk states. Somewhat to our surprise, we found a reasonable fit, although

the data displayed a small asymmetry not reproduced well by the fit. In this fit we found $\Delta \sigma^2$ to be comparable for the two faces but found ΔE_1 to be large for the A-face. However, we found E_1 to be 25 meV higher and Γ_1 to be 25 meV smaller for the A-face than for the B-face, showing the fit and hence the assumption of a single bulk transition to be incorrect for the A-face. This conclusion was confirmed by comparison with ASE, which showed the E_1 value to be correct for the B-face but not for the A-face. Also, the B-face lineshape could be fit after being numerically differentiated, but the A-face lineshape could not be. Thus, the first-derivative piezoelectric signal must arise from different transitions must be confined to a region near the A-face with depth considerably less than the depth of light penetration.

Having established that the first-derivative signal arises from an interfacial region which includes no more than one layer of oxide and does not reach far into the bulk, we then addressed the question, "Does that region include only one or two atomic layers or does it extend several atomic layers into the bulk?" In order to answer this question we fit the A-face data as the sum of two lineshapes - one from the bulk having no first-derivative (piezoelectric) term and one from the interfacial region having no third-derivative term. Second-derivative terms, which result from polarizable defects, were allowed in both lineshapes. Because the two lineshapes had been shown to arise from different regions of the crystal, we allowed all parameters to vary independently for each of them. Best fits to the data for both faces are shown in Fig. 1, and values of the significant field-independent parameters obtained from those fits are shown in Table I. The bulk values found for E_1 were essentially the same for the A- anu B-faces, but the first-derivative signal from the

interfacial region gave a transition energy larger by -44 meV and a broadening parameter of only -60 meV, smaller than the A-face bulk value by -33%. If the interfacial region extended several atomic layers into the bulk, the transition energy would vary smoothly as a function of depth, leading to an inhomogeneous broadening of the first-derivative signal, contrary to what is seen. <u>Thus, the first-derivative piezoelectric signal must arise from an interfacial region having a thickness of no more than one or two atomic layers.</u> The origin of the observed narrowing of the lineshape in the interfacial region is not clear; it could arise from a different atomic structure at the interface. The best fits also give a value of Δo^2 for the A-face bulk lineshape approximately three times as large as that for the B-face lineshape. We attribute this result at least in part to the effect of vacancies associated with the original A-face reconstruction which remained after oxidation.

In order further to check the validity of our model for the observed A-face lineshape, we determined the dependence of the parameters $(M\Omega_b)^3$, ΔE_s , $(\Delta o^2)_b$ and $2(\Delta o^2)_s + (\Delta E_s)^2$ on the modulation voltage V_M , which according to the Schottky barrier theory is proportional to E_M^2 . (Here, the subscripts s and b denote surface and bulk values, respectively). We found the following results in agreement with theory, which predicts that $(M\Omega_b)^3$ is proportional to V_M and that ΔE and Δo^2 both must be of the form $aV_M^{0.5} + bV_M$:

$$c_b (M \Omega_b)^3 = 0.0574 V_M,$$
 (4)

$$C_{s} \Delta E_{s} = -17.29 V_{M}^{0.5} + 0.38 V_{M},$$
 (5)

$$C_{b} (\Delta o^{2})_{b} = 0.71 V_{M}^{0.5} - 0.043 V_{M},$$
 (6)

$$C_{s} (\Delta \sigma^{2})_{s} = 0$$
, and (7)

$$C_{s} (\Delta E_{s})^{2} = (C_{s} \Delta E_{s})^{2} / C_{s} \approx 0.1724 V_{M}$$
 (8)

Here, MΩ, E_s and σ are measured in units of electron-volts, and V_M is measured in volts. From Eqs. (5) and (8) we find $C_s = 1.7 \times 10^3$ and thus find

$$\Delta E_{s} = -0.01 \ (V_{M}^{0.5} - 0.02 \ V_{M}).$$

The fits of $C_b(M\Omega_b)^3$ and $C_s\Delta E_s$ to Eqs. (4) and (5) are shown in Fig. 2. The relative scatter in the fits to Eqs. (6) and (8) are larger by a factor of about two because the quantities being fit are much smaller. If we assume $(M\Omega_b)^3 = 3 \times 10^{-6} V_M$, which is consistent with estimates of Aspnes,¹² we find $C_b = 2 \times 10^4$ or $|C_s/C_b| = 0.08$. This result is reasonable because the ratio C_s/C_b should be of the same order as the ratio of the thickness of the interfacial region to the depth of light penetration.

Although our results say nothing quantitative about the structure of the A-face CdTe/oxide interface, the following possible model for the interface suggests itself. On the A-face the interface is between a Cd-face and the oxide matrix, whereas on the B-face it is between a Te-face and the oxide There is no reason to expect the oxide to destabilize the Te-face. matrix. the reconstruction of which does not involve vacancy formation. However. it is conceivable that oxygen atoms in the first monolayer bond with the Cd-face, more or less as Te atoms would, giving a sort of epitaxy between the CdTe and the oxide and inhibiting the reconstruction observed on clean Cd faces. This would explain the observed disappearance of the Cd-face reconstruction upon oxidation. However, due to the Cd vacancy formation which accompanies the original reconstruction, it would allow large strains and a high polarizability at the interface. The additional A-face signal would then come from a highly polarizable two dimensional Cd(Te,O) crystal residing at the interface between

the CdTe A-face and the native oxide. We summarize our results as follows.

We have found that the electroreflectance spectrum of the (111) A-face of CdTe contains a large anomalous contribution from the linear piezoelectric effect, which is absent on the B-face. We interpret this contribution as arising from electronic transitions occurring in the two-dimensional A-face CdTe/oxide interfacial region, verifying this interpretation by using our generalized theory⁵ of electroreflectance to perform a detailed analysis of our EER spectra, including their field dependence. We also offer a model for the structure of this interfacial region. The critical energy and other quantities related to the band structure in the interfacial region were found from an analysis of the EER data.

We gratefully acknowledge technical discussions with Dr. Michael Martinka and the support of the Night Vision Laboratory (Contract #DAAK 70-83-K-0047) as well as the support of DARPA (Contract #MDA 903-82-C-0506).

FF ;

• •

FIGURE CAPTIONS

- Figure 1 Best fits of Eq. (2) to the ER signals from the Cd- and Te-faces (or A- and B-faces) of a CdTe crystal. The Te-face signal was obtained with a modulation voltage $V_{\rm M}$ = 4V, whereas the Cd-face signal was obtained with $V_{\rm M}$ = 30V. Thus, the Te-face signal is a factor of 7.5 smaller than the third-derivative component of the Cd-face signal which digs a sharp hole in the positive first-derivative, piezoelectric component.
- Figure 2 Straight-line fits of the parameters $C_b (MR_b)^3$ and $C_s V_M^{-0.5} \Delta E_s$ as functions of V_M and $V_M^{0.5}$, respectively, yielded by Eqs. (4) and (5).

TABLE 1

PARAMETER	A-FACE	B-FACE
E _b (eV)	3.388 ± .006	3.379 ± .005
r _b (eV)	0.092 ± .006	0.075 ± .005
E _s (eV)	3.432 ± .006	
Γ _s (eV)	0.062 ± .006	

Values of the interband transition energy E and broadening parameter Γ for bulk states (b) and surface states (s) as measured by EER on the Aand B-faces of CdTe.

1 1 E.

1

REFERENCES

1.	J. P. Faurie, private communication.
2.	S. Y. Tong, G. Xu and W. N. Mei, Phys. Rev. Lett. <u>52</u> , 1693 (1984).
3.	D. J. Chadi, Phys. Rev. Lett. <u>52</u> , 1911 (1984).
4.	J. P. Faurie, A. Million and J. Piaguet, J. Crystal Growth 59, 10 (1982).
5.	P. M. Raccah, J. W. Garland, Z. Zhang, U. Lee, D. Z. Xue, L. L. Abels,
	S. Ugur and W. Wilinsky, Phys. Rev. Lett. <u>53</u> , 1958 (1984).
6.	D. E. Aspnes, Surf. Sci. <u>37</u> , 418 (1973).
7.	D. S. Kyser and V. Rehn, Solid State Commun. 8, 1437 (1970); V. Rehn
	and D. S. Kyser, Phys. Rev. Lett. <u>18</u> , 848 (1967).
8.	C. Gahwiller, Solid State Commun. <u>5</u> , 65 (1966).
9.	R. L. Brown, L. Schoonveld, L. L. Abels, S. Sundaram and P. M. Raccah, J. Appl. Phys. <u>52</u> , 2950 (1981).
10.	B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).
11.	D. E. Aspnes and H. Arwin, J. Vac. Sci Technol. A2, 1309 (1984).
12.	D. E. Aspnes and A. A. Studna, Phys. Rev. B7, 4605 (1973).

ŀ

I.

Sample	Surface	E1	Ц	Ð	ΔEı	Δσ ²
#	Front	3.373	0.069	3.461	3.202	-1.571
* 2	Front	3.383	0.097	4.545	-2.385	-0.378
	Back	3.396	0.070	1.149	-45.973	-0.726
#: •)	Front	3.398	0.071	0.744	- 26.293	0.573
	Back	3.398	660.0	4.989	-3.793	-0.22
#4	Front	3.416	0.076	0.777	-25.034	0.176
	Back	3.380	0.118	0.665	30.311	0.44
₽	Front	3.448	0.079	0.141	-14.334	1.07
	- Back	3.444	0.092	-0.429	-4.247	0.43
9#	<pre>Front (R=0)</pre>	3.434	0.087	0.851	-13.562	0.16
	<pre>Front (R=5)</pre>	3.428	0.085	0.525	-2.618	-0.34
	Back (R=0)	3.449	0.082	-0.103	-34.545	1.21(

1.

•

.