ETIC FILE CUPY

CONTRACT NO.: 88PP8801

TITLE: EVALUATION OF SODIUM STIBOGLUCONATE (PENTOSTAM) AND

KETOCONAZOLE IN THE TREATMENT OF AMERICAN CUTANEOUS

LEISHMANIASIS

PRINCIPAL INVESTIGATOR: THOMAS R. NAVIN

PI ADDRESS: MERTU/Guatemala

c/o US Embassy APO Miami 34024

REPORT DATE: APRIL 16, 1990

TYPE OF REPORT: ANNUAL REPORT

PREPARED FOR: U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND

FORT DETRICK

FREDERICK, MARYLAND 21702-5012

Approved for public release; distribution unlimited DISTRIBUTION STATEMENT:

SECURITY CLASSIFICATION OF THIS PAGE	OCUMENTATIO	N PAGE		Form Approved				
	OCUMENTATIO							
1a. REPORT SECURITY CLASSIFICATION		15. RESTRICTIVE	MARKINGS					
Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	/AVAILABILITY OF	REPORT				
		Approved	for public	release	;			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE	E		tion unlimit		•			
4. PERFORMING ORGANIZATION REPORT NUMBER	(S)	5. MONITORING	ORGANIZATION RE	PORT NUM	IBER(S)			
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGAN	IZATION				
Division of Parasitic Diseases	(If applicable)	U.S. Army N	Medical Mate	riel De	velopment			
Centers for Disease Control		Activity						
6c. ADDRESS (City, State, and ZIP Code)		1	y, State, and ZIP C	ode)				
1600 Clifton Road		Fort Detric						
Atlanta, GA 30333		Frederick,	MD 21702-50	009				
	8b. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATIO	N NUMBER			
ORGANIZATION U.S. Army Medical	(If applicable)	Army Proje	ect Order No	. 88pps	801			
Research & Development Command	····							
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBERS		Transport contra			
Fort Detrick		PROGRAM ELEMENT NO.	PROJECT NO:	TASK NO.	WORK UNIT ACCESSION NO.			
Frederick, MD 21702-5012								
11. TITLE (Include Security Classification)	· +-							
(U) Evaluation of Sodium Stibog	luconate (Pento	stam) and Ke	toconazole :	in the '	Treatment of			
American Cutaneous Leishman	iasis	,			. reacment of			
12. PERSONAL AUTHOR(S)								
Thomas R. Navin								
13a. TYPE OF REPORT 13b. TIME COV Annual FROM 11/	vered <u>15/8</u> 80 <u>11/14</u> /8	14. DATE OF REPO		Day) 15. F	PAGE COUNT			
16. SUPPLEMENTARY NOTATION	13/800 11/14/0	1990 April	. 10					
TO. SOPPLEINENTARY NOTATION								
2222								
17. COSATI CODES	18. SUBJECT TERMS (Continue on reverse	e if necessary and	identify by	block number)			
FIELD GROUP SUB-GROUP		ania; Leishmaniasis, Pentostam;						
	Ketoconazole;	; Guatemale; Treatment						
19. ABSTRACT (Continue on reverse if necessary a	nd identify by block of	umber)						
_			ahmaniasis t	,awa wa	domler and			
120 Guatemalans with parasitologi equally divided into 3 treatment								
20 mg antimony/kg/day iv for 20								
days; and those receiving placek								
the exception of 2 ratients in t								
medication; 1 developed abdomina								
erythematous papular rash. Thir								
from each group with completely					-			
follows: sodium stibogluconate,								
response rates for those with in								
sodium stibogluconate, 17 (94%);								
rates for those with infections								
		Ta	C. (0.17)	TION				
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT ☐ UNCLASSIFIED/UNLIMITED ☑ SAME AS RP	T DTIC USERS	21 ABSTRACT SEC Unclassi	CURITY CLASSIFICA fied	HON				
22a. NAME OF RESPONSIBLE INDIVIDUAL	· Dilic Oseks		Include Area Code					
Mary Frances Bostian	301-663-7325 SGRD-RMI-S							

19. ABSTRACT (continued)

stibogluconate, 4 (50%); ketoconazole 8 (80%); and placebo, 6 (38%). High dose sodium stibogluconate appears to be well tolerated and effective against infections caused by L. b. braziliensis but less so against infections caused by L. m. mexicana, and ketoconazole appears to be effective against infections caused by L. m. mexicana but less so for infections caused by L. b. braziliensis.

	Accession For						
	NTIS TRAKE DTIC TAB Dustingunged Dustification						
is the second	By						
<u>,</u>	Dist Creetal						
	<u>r</u>						

FOREWORD

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

The investigator(s) have abided by the National Institutes of Health Guidelines for Research Involving Recombinant DNA Molecules (April 1982) and the Administrative Practices Supplements.

TABLE OF CONTENTS

FOR	EWORD	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	1
INT	RODUCT	ION	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
MAT	ERIALS	ANI) M	ETF	HOD	S	•	•	•		•	•			•	•	•	•		•	•			•	•	•	6
	Patie Treati Patie	ment	: g	rou	ıps	•	•	•	•		•	•		•		•	•	•				•	•	•		•	6 6 7
RES	ULTS		•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	8
	Patie Clini Labor	cal	an	dg	par	as:	ito)10	og :	ica	al	re	esp	or	se	•	•	•	•	•	•	•	•	•	•	•	8 9 11
DIS	CUSSIO	NI.	•				•	•	•	•	•	•	•		•	•	•		•			•		•	•	•	14
REF	ERENCE:	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
Anne	ex 1:	Lis	st	of	aď	ver	∶s∈	e 1	cea	act	tic	ons	5 t	рУ	tr	:e <i>a</i>	ı En	ıer	ıt	gr	οι	ıp	•	•	•	•	28
Anne	ex 2:	Lis	st	of	la	bor	at	:01	сy	Vā	alı	ıes	s t	οу	tr	:ea	a tn	ner	nt	gr	οι	ıp	•	•	•	•	33
										ТА	ŊΒΙ	LES	3														
1.	Chara	cter	is	tic	cs (of	рa	at:	ier	nts	s 1	эy	tr	cea	a t m	ier	nt	gr	οι	qı	•	•	•	•	•	•	16
2.	Labor	ator	ſΥ	va]	lue	s k	oe f	Eoi	ce,	, (duı	rir	ng ,	, á	anc	d a	a£t	er	: t	re	at	cm∈	ent	:	•	•	17
3.	Adver	se r	ce a	cti	ion	s r	cer	001	rte	ed	by	/ E	at	:ie	nt	s		•		•			•	•			20

FIGURES

1.	Percent of patients who responded to treatment with sodium stibogluconate, ketoconazole, or placebo by week of follow-up examination
2.	Percent of patients infected with \underline{L} . \underline{b} . \underline{b} braziliensis who responded to treatment
3.	Percent of patients infected with \underline{L} . \underline{m} . \underline{m} exicana who responded to treatment
4.	Change in lesion size from 2 weeks before to 13 weeks after starting therapy for patients infected with L. b. braziliensis
5.	Change in lesion size from 2 weeks before to 23 weeks after starting therapy for patients infected with L. m. mexicana

INTRODUCTION

The recommended treatment for American cutaneous leishmaniasis (ACL) is one of two available pentavalent antimony compounds, sodium stibogluconate (Pentostam, Burroughs Wellcome) and meglumine antimonate (Glucantime, Specia). Despite the wide use of these antimonials, little reliable information is available on their optimum dose or their toxicity at higher doses.

In 1990 we reported that for Guatemalan cutaneous leishmaniasis 850 mg of antimony (equivalent to approximately 15 mg antimony/kg) for 15 days was very well tolerated and produced a clinical and parasitological response in 73% of patients by 13 weeks. \1/Reactivation of infections during 12 months of follow-up in 9% of patients lowered the final response rate to 64%. Others have shown that patients can tolerate up to 20 mg antimony/kg/day for 20 days with only minimal hepatic and cardiac injury. \2--3/

In an attempt to improve on our previously reported response rate of 64% and to better characterize the toxicity of high dose antimony, in this study we treated patients with sodium stibogluconate (20 mg antimony/kg/day iv) for 20 days.

Despite the wide acceptance of antimonials in the treatment of leishmaniasis, there is a pressing need for alternative therapies. Antimonials are expensive and require parenteral injection. In this day of hepatitis and adult immunodeficiency syndrome, oral drugs are increasingly attractive. Studies in Panama have shown that ketoconazole is equally effective as moderate dose antimony for leishmaniasis caused by <u>Leishmania braziliensis panamensis</u>.\4/

Ketoconazole is an imidazole drug that has shown remarkable success in the treatment of superficial and systemic mycoses.\5/
Ketoconazole interferes with the biosynthesis of ergosterol, a major fungal sterol critical to membrane integrity, thus inhibiting the 14-demethylation of lanosterol, a precursor in the ergosterol pathway.

Blockage of this pathway results in ergosterol-poor organisms that are unable to maintain their plasma membranes. The selective effect of ketoconazole on fungi and Leishmania is due to the fact that ergosterol is of little importance to mammalian membranes, and cholesterol, the critical membrane sterol for mammals, is available from the diet.\6/

Ketoconazole has been used in clinical trials for mycotic infections since 1978, and more than 1 million patients have received the drug with few adverse effects. Although it appears to block adrenal steroid synthesis, no cases of hypoadrenalism have been reported. Skin rashes, nausea, vomiting, and anorexia have been the problems most commonly reported. Ketoconazole may interact with alcohol to increase susceptibility to nausea. Mild asymptomatic and reversible serum transaminase elevations have been observed in up to 15% of patients, but the incidence of serious hepatic injury has been estimated to be only 1 in 15,000 patients. \7/ Three deaths, all from hepatic failure, have been attributed to ketoconazole, for a mortality rate of 1 in 333,333 patients. Each person continued to take ketoconazole despite the appearance of jaundice. \8/

MATERIALS AND METHODS

Patient population

Guatemalan males who sought treatment for suspected leishmaniasis at any of our 4 clinics were evaluated. Eligibility for the study included a confirmed diagnosis of leishmaniasis, no previous treatment with antimonials or imidazoles, no serious concomitant medical problems, and no visible evidence of mucosal involvement. In contrast to our 1990 clinical study, which involved only military personnel, this study included 21 civilians and 99 soldiers. Persons who met the study requirements were offered the opportunity to enter the study. Informed consent was obtained from each person.

Treatment groups

treatment groups: those receiving sodium stiboguconate (20 mg pentavalent antimony/kg/day iv for 20 days); those receiving ketoconazole (600 mg po each evening for 28 days); and those receiving placebo treatment. Half of the patients assigned to the placebo group received saline infusions similar to the sodium stibogluconate infusions, and half received tablets similar to ketoconazole.

Patient evaluation

Diagnosis of cutaneous leishmaniasis was made by thin smears of lesion scrapings or culture of lesion aspirates as described before. Only patients with positive cultures or clearly distinguishable amastigotes were entered into the study.

Isolates were characterized by isoenzyme electrophoresis as described before.\10/ The following enzymes were used: glucose phosphate isomerase, mannose phosphate isomerase, phosphogluconate dehydrogenase, phosphoglucomutase, and peptidase D.

Patients were evaluated at 1, 2, 3, 4, 6, 9, 13, 26, and 52
weeks after the start of therapy. Clinical response was defined as a
lesion that completely reepithelialized and had no evidence of
inflammation or induration. Aspirates for culture of all lesions and
scrapings of open lesions were taken at the end of therapy and at the
9-week follow-up examination. A reactivated lesion was defined as
the appearance of a lesion within or at the border of a previous
lesion; new lesions were defined as those that appeared after
treatment began and occurred away from any previous lesions. Since
most of our patients remained in the endemic area during and after
treatment, the appearance of new lesions was not necessarily taken as
evidence of treatment failure.

If a patient's lesion was not completely reepithelialized by the 13-week follow-up examination, the patient was removed from the study and treated with meglumine antimonate (20 mg antimony/kg/day) for 20 days. Patients with clinically healed but parasitologically positive lesions at the 9-week examination were not retreated.

Before beginning treatment, on the last day of treatment, and at the 9-week examination patients had the following tests performed: hemoglobin, hematocrit, platelet count, white blood cell count, aspartate aminotransferase, alanine aminotransferase, direct and indirect bilirubin, creatinine, and electrocardiogram. In addition, patients treated with antimony or placebo injections had the liver function tests repeated on days 7 and 14 and had the electrocardiograms repeated on days 2, 4, 7, 9, 11, 14, 16 and 18. Patients who received ketoconazole or placebo tablets also had liver function tests repeated on day 14.

RESULTS

Patient characteristics

Four patients who were eligible for the study and who were offered the chance to participate declined because they preferred not to receive experimental therapy.

One hundred and twenty study subjects were enrolled. Randomization successfully allocated patients with similar characteristics into the 3 treatment groups (Table 1.)

All but 2 of the 120 patients received their treatments without interruption. Both patients who prematurely interrupted their treatments were receiving ketoconazole (see the section below on adverse effects for details). For the purposes of data analysis, data on these 2 patients is not included.

Clinical and parasitological response

Figure 1 shows the response rates of patients in the 3 treatment groups. A number of patients had complete reepithelialization of their lesions but cultures either on the last day of treatment or at the 9-week examination were still positive. In order to show both clinical response rates as well as clinical plus parasitological response rate, in Figures 1, 2, and 3, each treatment group is represented by 2 lines. The lower, bold, line represents the percentage of patients that had complete reepithelialization of their lesions and negative cultures at the end of treatment and at 9 weeks. The upper, narrow, line represents the percentage of patients that had a complete clinical response, irrespective of the results of cultures.

Figure 2 shows response rates for the 52 patients infected with L. b. braziliensis. Patients who received sodium stibogluconate usually responded rapidly, and by the end of 20 days of treatment all patients were parasitologically negative and 30% had completely closed their lesions. By 13 weeks only 1 patient (7%) had not responded both clinically and parasitologically. This patient had 3 large ulcers; 2 had closed completely by the 13th week, but 1 was only 70% reepithelialized. Cultures of all 3 lesions were negative. He may have continued to improve without further treatment, but in compliance with the study protocol he was dropped from the study and treated successfully with meglumine antimonate.

At the time of this report, only 14 of the 18 patients infected with <u>L. b. braziliensis</u> and treated with sodium stibogluconate have

returned for their follow-up examinations at 26 and 52 weeks. Of this group, none has had reactivations of their lesions.

Patients infected with <u>L. b. braziliensis</u> and treated with ketoconazole did not respond as well as those treated with sodium stibogluconate but responded better than those treated with placebo. At the 13-week examination, the clinical response rate for the ketoconazole group was significantly less than that for the sodium stibogluconate group (p<0.01; Fisher's exact test) but was significantly greater than that for the placebo group (p<0.03). The rates for ketoconazole clinical plus parasitological responses were also significantly less than that for sodium stibogluconate (p<0.01) but not significantly greater than that for placebo (p<0.09).

Patients who received placebo treatment and who were infected with <u>L. b. braziliensis</u> did not do well. At 13 weeks only 3 were clinically cured, but 2 of these had positive cultures. By 26 weeks 2 of the 3 had reactivations of their lesions.

Figure 3 shows the response rates for the 34 patients infected with $\underline{L}.$ $\underline{m}.$ $\underline{m}.$

Of the 99 patients who have returned for their 52-week follow-up examination, the vast majority have returned to a leishmania-endemic area. Despite this only 2 have developed new lesions of

leis maniasis. One had received sodium stibogluconate and had a new lesion due to \underline{L} . \underline{b} . \underline{b} raziliensis, and the other was treated with ketoconazole and was infected with \underline{L} . \underline{m} . \underline{m} mexicana.

Thirteen (11%) of the patients developed small papules at the edge of healed lesions after treatment was completed. In 4 cases the papules grew rapidly, ulcerated within 4 weeks, and provided positive cultures. In the remaining 9 cases the papules remained stable for the duration of our follow-up, and all cultures were negative. Since stable papules did not appear to be a bad prognostic sign, for the purposes of this study we have not considered them to signify reactivation of lesions.

Figures 4 and 5 show the mean change in lesion size from 2 weeks before to 13 weeks after starting treatment. Figure 4 depicts data for patients infected with \underline{L} . \underline{b} . \underline{b} raziliensis and Figure 5 shows data for patients infected with \underline{L} . \underline{m} . \underline{m} rexicana.

Laboratory test and adverse effects

Table 2 lists the laboratory values before, at the end of, and 9 weeks after treatment.

Note that results for alkaline phosphatase are not included in the summary, although they are given in annex 2, which lists all laboratory values. The laboratory that ran our specimens changed analytic procedures for alkaline phosphatase several times, making it impossible to compare results from patient to patient or even for the same patient from 1 time period to another.

Six (15%) of the 40 patients who received sodium stibogluconate developed elevated transaminases. Aspartate aminotransferase and

alanine aminotransferase values were equally elevated, but neither direct nor indirect bilirubin values were ever elevated, no patients developed jaundice, and no patients complained of right upper quadrant pain. The highest aspartate aminotransferase value was 358 IU (upper limit of normal = 55 IU). The course of elevated transaminase values was irregular. Often the highest values were not on the last day of treatment, and in several cases, the values dropped despite continued therapy. We believe that a number of instances of elevated values were due to the concurrent ingestion of alcohol.

One patient in the sodium stibogluconate group and 2 patients in the ketoconazole group developed anemia during treatment. In all 3 cases the patients developed fever and chills and blood smears were positive for <u>Plasmodium vivax</u>. Treatment of the malaria resolved the anemia.

Note that the 600 electrocardiograms taken during this study are still being analyzed. The results will be ready within the next 2 months. Preliminary analysis shows that t-wave suppression was very common in the sodium stibogluconate group, but no cases occurred of t-wave inversion or concave st-segments.

Table 3 shows the adverse reactions reported by patients.

Adverse reactions were reported by 21 patients who received sodium stibogluconate, 7 patients who received ketoconazole, and 4 patients who received placebo. The majority of the adverse reactions were minor and did not require medical attention, and none were severe enough to pose a threat the patient.

For the sodium stibogluconate group, 5 patients had 7 adverse reactions significant enough to warrant medical intervention. For

the ketoconazole group, 3 patients reported 4 moderate adverse reactions, and for the placebo group, 1 patient reported moderately severe epigastric pain. In only 2 patients, both of whom received ketoconazole, were the adverse reactions severe enough to lead to the premature termination of treatment.

The first patient developed a generalized pruritic papular erythematous rash on the 17th day of treatment with ketoconazole. The patient had no urticaria or wheezing, and his blood pressure remained normal. Although in the opinion of the treating physician the rash did not require the termination of ketoconazole, the patient decided to withdraw from the study. The rash spontaneously resolved 3 days after cessation of ketoconazole. The patient was successfully treated with meglumine antimonate.

The second patient developed epigastric pain and nausea 2 hours after the second dose of ketoconazole. Two hours after the onset of these symptoms the patient vomited several times and had diarrhea. Ketoconazole was stopped for 2 days, during which the patient had no gastrointestinal symptoms. Ketoconazole and antacids were restarted and the patient again developed moderately severe epigastric pain, but this time did not vomit or have diarrhea. The patient was able to continue ketoconazole until the 16th dose when the epigastric pain increased substantially and he again vomited once. The patient was withdrawn from the study and treated successfully with meglumine antimonate. One day after ketoconazole was stopped the gastrointestinal symptoms resolved.

DISCUSSION

Treatment with high dose (20 mg/kg/day for 20 days) sodium stibogluconate in this clinical trial proved very effective against infections due to <u>L. b. braziliensis</u> but not more effective than placebo against infections caused by <u>L. m. mexicana</u>. In our clinical trial of 1990, we reported that only 64% of patients infected with <u>L. b. braziliensis</u> had clinical and parasitological responses to 850 mg antimony/day for 15 days (225 mg/kg total dose). \1/

The higher dose of sodium stibogluconate used in this study is apparently more effective than the lower dose used in the 1990 study for infections caused by <u>L. b. braziliensis</u>. Adverse effects such as arthralgias, nausea, headaches, and phlebitis were more common with the higher dose, but these were never more than moderately severe and did not require the premature termination of antimony.

Dosages of antimony of 20 mg/kg, which for an adult is equivalent to 12 to 15 ml/dose, require that the drug be given by intravenous infusion. Dosages of 850 mg, equivalent to 8.5 to 10 ml/dose, can be given by injection into the muscle. Although intravenous infusions can be less painful than intramuscular injections, they require special equipment and training. For clinics that are properly equipped, intravenous infusions pose no special problems. Cutaneous leishmaniasis, however, usually occurs in remote areas far from well equipped clinics. To the extent that it is advantageous to decentralize the treatment of cutaneous leishmaniasis in developing countries, higher dosage regimens of antimony are a drawback.

In contrast to our impressive results with sodium stibogluconate for infections caused by <u>L. b. braziliensis</u>, this drug was not significantly better than placebo for infections caused by the other major species of <u>Leishmania</u> in Guatemala, <u>L. m. mexicana</u>. Although infections by <u>L. m. mexicana</u> are traditionally considered benign, in our experience in Guatemala, they can cause significant morbidity if treatment is not available or is restricted to antimonials. Of 18 patients who we have treated with at least 2 courses of antimonials, 16 were infected with <u>L. m. mexicana</u>, and of 5 patients who have required at least 3 courses of antimonials, all 5 were infected with <u>L. m. mexicana</u>.

The tradition belief that <u>L. m. mexicana</u> infections, once healed, never reactivate also does not apply to Guatemalan infections. In our experience untreated or undertreated <u>L. m.</u> mexicana infections often run a cyclical course. They will ulcerate and stay open for several months, then reepithelialize and stay closed for several months, and then ulcerate again. Such cycles can continue for at least 7 years in our experience. Of the 12 patients in the present study infected with <u>L. m. mexicana</u> who received placebo treatment and did not respond, 5 (42%) at some point in their follow-up healed their lesions before developing reactivations.

Given the cyclical nature of \underline{L} . \underline{m} . \underline{m} mexicana infections and their poor response to antimonials, it is encouraging that ketoconazole appears to be effective.

Table 1. Characteristics of patients by treatment group

	Treatment group						
Characteristic		Ketoconazole (n=38)					
Age (years)	19.1 <u>+</u> 0.6	20.2 <u>+</u> 1.2	21.3 ± 1.4				
Number lesions/patient	1.6 <u>+</u> 0.2	1.5 ± 0.1	1.5 <u>+</u> 0.2				
Mean area of ulceration (cm ²)	1.5 <u>+</u> 0.3	2.2 ± 0.4	2.0 ± 0.4				
Mean age of lesions (days)	73.7 <u>+</u> 34	68.3 <u>+</u> 10	59.1 <u>+</u> 7				
Infecting species 1							
L. m. mexicana	8	10	16				
L. b. braziliensis	18	19	15				
Unknown	12	9	9				

^{1.} Provisional

Table 2. Laboratory values before, during, and after treatment

	Treatment group						
Laboratory test	Pentostam (n=40)	Ketoconazole (n=38)	Placebo (n=40)				
Serum creatinine (mg/100ml)	0.75	0.75	0.05				
Before treatment	0.75	0.75	0.85				
Last day of treatment	0.79	0.81	0.79				
9 weeks	0.76	0.83	0.82				
# with abnormalities on .							
last day of treatment *	0	0	0				
Aspartate aminotransferase (IU)							
Before treatment	20	17	15				
Last day of treatment	35	14	15				
9 weeks	20	15	18				
# with abnormalities on *			_				
last day of treatment *	3	0	0				
Alanine aminotransferase (IU)							
Before treatment	20	16	14				
Last day of treatment	34	14	15				
9 weeks	19	17	17				
# with abnormalities on *							
last day of treatment ^	3	0	0				
Indirect Bilirubin (mg/100ml)							
Before treatment	0.27	0.23	0.29				
Last day of treatment	0.24	0.26	0.30				
9 weeks	0.25	0.28	0.26				
# with abnormalities on .							
last day of treatment *	0	0	0				

Table 2. Continued

	Treatment group						
Laboratory test	Pentostam (n=40)	Ketoconazole (n=38)	Placebo (n=40)				
Direct Bilirubin (mg/100ml)							
Before treatment	0.29	0.28	0.33				
Last day of treatment	0.24	0.36	0.30				
9 weeks	0.31	0.31	0.26				
# with abnormalities on .							
last day of treatment *	0	0	0				
Platelets (#/mm ³ X 1000)							
Before treatment	227	228	228				
Last day of treatment	207	224	222				
9 weeks	216	206	218				
9 weeks	216	200	210				
<pre># with abnormalities on _</pre>							
last day of treatment *	0	0	0				
Hemoglobin (gm/100 ml)							
Before treatment	14.9	14.4	14.4				
Last day of treatment	14.2	13.9	14.7				
9 weeks	14.8	14.1	14.8				
<pre># with abnormalities on .</pre>							
last day of treatment *	0	0	0				
Hematocrit (%)	4 ⊆	4.3	43				
Before treatment	45	= =	43 44				
Last day of treatment	43	42					
9 weeks	4 4	42	45				
# with abnormalities on *	2	2	0				
last day of treatment ^	1	2	0				

Table 2. Continued

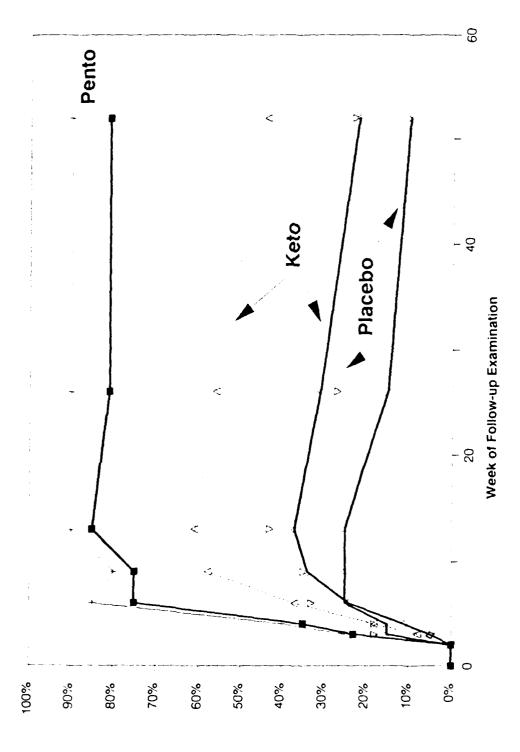
	Т	reatment group	
Laboratory test	Pentostam (n=40)	Ketoconazole (n=38)	Placebo (n=40)
White blood cells (#/mm ³)			
Before treatment	7070	6992	7491
Last day of treatment	6795	7540	7823
9 weeks	6831	7808	7609
<pre># with abnormalities on last day of treatment *</pre>	0	0	0

^{*} Number of patients with values at the last day of treatment outside of the normal range for the testing laboratory.

Table 3. Adverse Reactions Reported by Patients

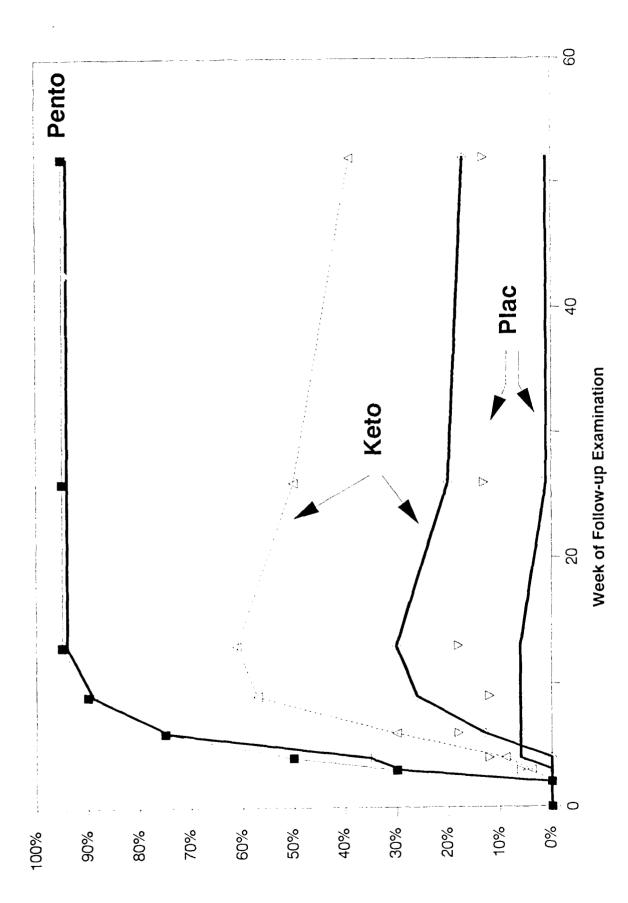
Treatment group/ Adverse reaction	Mild	Moderate	Severe	Total
Pentostam				
Nausea	3	2	0	5
Anorexia	4	0	0	4
Headache	1	2	0	3
Rash	1	0	0	3 1 5
Arthralgias	5	1	0	
Phlebitis	8	2	0	10
Ketoconazole		. * *	_	_
Nausea	1	1	0	2 2 2 1
Abdominal pain	1	1	0 0	2
Headache Dizziness	1 1	7	0	1
Rash	0	1 1 0 1 **	0	1
Placebo				
Abdominal pain	2	1	0	3
Nausea	1	0	0	1
Anorexia	1	0	0	1

Moderate: Required medical attention, but posed no danger to


patient

Severe: Required immediate medical attention to prevent danger

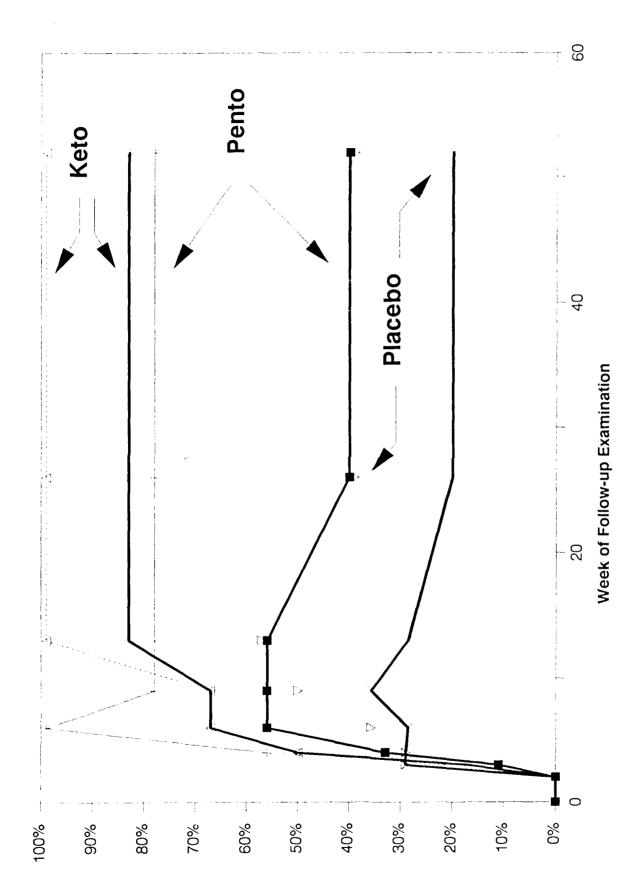
to patient


^{*} Mild: No need for medical attention

^{**} Adverse reaction led to the premature termination of the study drug

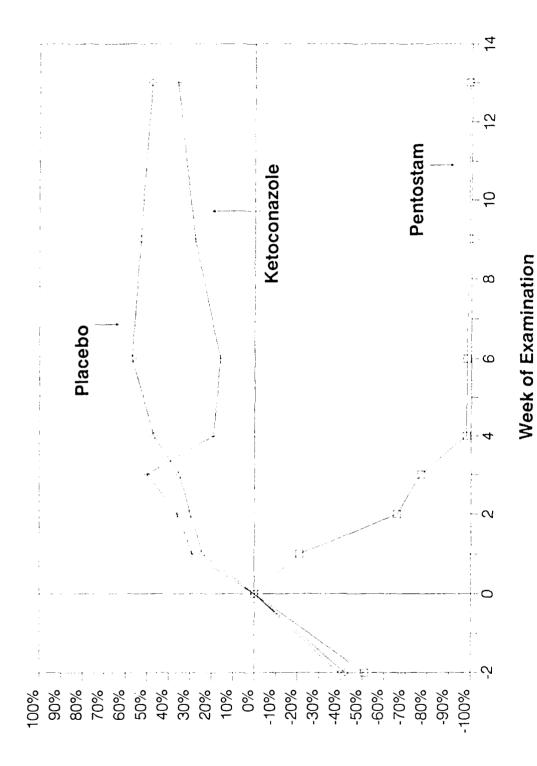
Bold line = clinical and parasitological response
Narrow line = clinical response (cultures may have been positive)

Patients who did not respond by the 13-week examination were removed from the The lower bold line represents the percentage of patients that had complete reepithelialization of their lesions and negative The upper narrow line represents the percentage of patients that had a complete clinical response, irrespective of the results of cultures. Pa stibogluconate, ketoconazole, or placebo by week of follow-up examination. Each of the 3 treatment groups is represented by Percent of patients who responded to treatment with sodium cultures at the end of treatment and at 9 weeks. analysis and treated with meglumine antimonate. 2 lines. Figure 1.

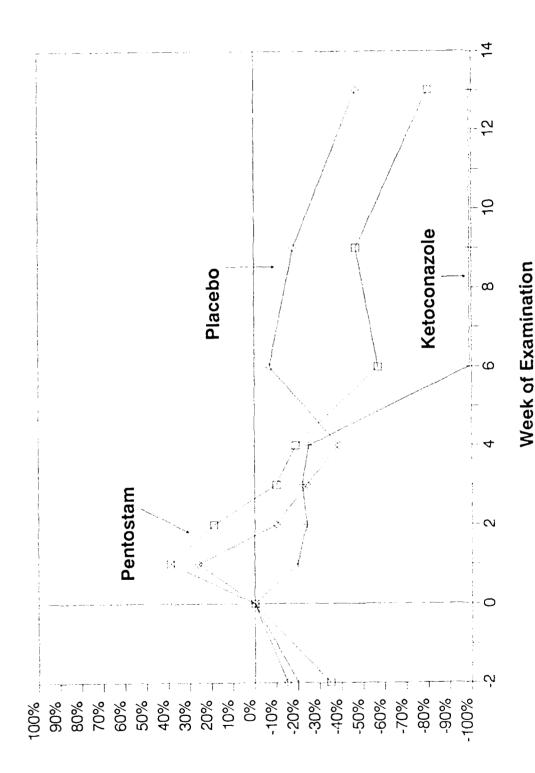


Percent of patients infected with L. b. braziliensis who responded to treatment. See Figure 1 for explanation. Figure 2.

Narrow line = clinical response (cultures may have been positive)


= clinical and parasitological response

Bold line



clinical and parasitological responseclinical response (cultures may have been positive) Narrow line **Bold line**

Percent of patients infected with L. m. mexicana who responded to treatment. See Figure 1 for explanation. Figure 3.

Change in lesion size from 2 weeks before to 13 weeks after starting therapy for patients infected with L. b. braziliensis. Figure 4.

Change in lesion size from 2 weeks before to 23 weeks after starting therapy for patients infected with \overline{L} . \underline{m} . $\underline{mexicana}$. Figure 5.

REFERENCES

- 1. Navin TR, Arana BA, Arana FE, de Mérida AM, Castillo AL, Pozuelos JL, 1990. Placebo-controlled clinical trial of meglumine antimonate (Glucantime) vs. localized controlled heat in the treatment of cutaneous leishmaniasis in Guatemala. Amer J Trop Med Hyg 42: 43-50.
- 2. Ballou WR, McClain JB, Gordon DM, Shanks GD Andujar J, Berman JD, Chulay JD, 1987. Safety and efficacy of high-dose sodium stibogluconate therapy of American cutaneous leishmaniasis. Lancet 2(8549):13-16.
- 3. Chulay JD, Spencer HC, Mugambi M, 1985. Electrocardiographic changes during treatment of leishmaniasis with pentavalent antimony (sodium stibogluconate). Amer J Trop Med Hyg 34: 702-709.
- 4. Saenz RE, Paz H, Berman JD, 1990. Comparison of ketoconazole to pentostam and to placebo in the treatment of Leishmania braziliensis panamensis cutaneous leishmaniasis. in press.
- 5. Graybill JR, Drutz DJ, 1980. Ketoconazole, a major innovation for the treatment of fungal diseases. Ann Intern Med 93: 921.
- 6. Van Den Bossche H, Willemsens G, Cools W, Cornelissen F, Lauweres WF, Van Cutsem JM, 1980. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother 17: 922.

- 7. Jansen PAJ, Symoens J, 1983. Hepatic reactions during ketoconazole treatment. Am J Med 74: 80.
- 8 Lewis HJ, Zimmerman HJ, Benson GD, Ishak KG, 1984. Hepatic injury associated with ketoconazole therapy: analysis of 33 cases.

 Gastroenterology 86: 503.
- 9. Navin TR, Arana FE, de Mérida AM, Arana BA, Castillo AL, Silvers DN, 1990. Diagnosis of cutaneous leishmaniasis in Guatemala. Amer J Trop Med Hyg 42: 36-42.
- 10. Navin TR, Steurer F, de Mérida AM, Arana FE, Torres MF, 1988. Cutaneous leishmaniasis in Guatemala: isoenzyme characterization of isolates from humans. Amer J Trop Med Hyg 38: 50-51.

ANNEX 1: LIST OF ADVERSE REACTIONS BY TREATMENT GROUP

ADVERSE REACTIONS SUMMARY SHEET STUDY OF PENTOSTAM/KETOCONAZOLE/PLACEBO DEC 2, 1989

Pentostam

ID	Severity ¹	Adverse Reaction
GA-225	Moderate	Pain and edema after Pentostam injection extravasated. Resolved in 48 hours with application of cold packs. Treatment not interrupted.
GA-245	Moderate	Headache. Approximately 9 hours after the 7th dose the patient developed a moderately severe headache that lasted 2 to 4 hours. Aspirin alleviated most of the pain, but the headache returned for the next 5 days, always about 9 hours after a dose. Treatment was not interrupted.
GA-246	Mild	Local pain at the site of injection. Treatment was not interrupted
GA-270	Mild	Local pain at the site of injection. Treatment was not interrupted
GA-290	Mild	Arthralgias. Began 18th day of treatment and involved the shoulder and knee joints. Resolved 2 days after stopping treatment.
GC-256	Mild	Nausea, anorexia, and headache. Began on day 15 of treatment and continued for the remaining 5 days of treatment and for 1 day more. No specific medication prescribed, and treatment was not interrupted.
GC-257	Mild	Rash. Began on the 3rd day of treatment and lasted for 12 days. Papular, pruritic rash of the upper arms and trunk. Treatment was not interrupted.
GC-275	Mild	Local pain at the site of injection. Began on day 12 of treatment and lasted for 4 days. Treatment was not interrupted.
GC-323	Mild	Local pain at the site of injection. Began on day 5 of treatment and lasted 20 days. Treatment was not interrupted.
GC-330	· Mild	Local pain at the site of injection. Began on day 20 of treatment and lasted for 10 days. Treatment was not interrupted.
GC-334	Mild	Fever. Began on 9th day of treatment and lasted for 6 days. Blood smear positive for P. vivax and patient improved with chloroquine.
GC-348	Mild	Arthralgias. Began on day 11 of treatment in the shoulders. On day 16 the pain spread to include the knees. Resolved 3 days after stopping treatment
GC-353	Mild	Arthralgias. Began on 12th day of treatment and involved the shoulders. Resolved 2 days after stopping treatment.
GC-355	Moderate	Nausea, anorexia, and fainting spell. Five days after starting medicine, patient lost his appetite and felt nausea. On the 6th day of treatment, he fainted and was unconscious for a few minutes several hours after his injection. He recovered without problems and continued with his treatment.

Pentostam (page 2)

GC-360	Mild	Nausea and anorexia. Ten days into treatment, the patient developed mild nausea and anorexia that lasted for 15 days (10 days of treatment and for 5 days more).
GC-368	Mild	Local pain at the site of injection. The pain was mild and resolved without further problems.
GC-370	Mild	Arthralgias. After 14 days of treatment, the patient developed joint pain of the wrist and elbow of the right arm. The pain lasted for 10 days and resolved 5 days after stopping therapy.
GC-373	Moderate	Headache, nausea, anorexia, and arthralgias. After 5 days of treatment, the patient developed moderately severe headaches that required aspirin. He also complained of mild nausea and anorexia. The three symptoms lasted for a total of 20 days, and resolved 5 days after stopping treatment. This patient also developed athralgias after the 15th day of treatment and lasted for 10 days.
GC-379	Moderate	Extravasation of drug. Six hours after the 7th dose, the patient developed edema, pain, and erythema of the hand where the intravenous injection had been placed. The reaction resolved over 3 days with application of cold packs.
GG-001	Mild	Local pain at site of injection. Began on day 15 of treatment and lasted 5 days. Required treatment with hot packs and aspirin. Treatment was not interrupted. Note: this was described as moderate in severity on the original case report forms, but on review, we now believe that this represented a mild adverse reaction.
GG-007	Mild	Local pain at the site of injection. Began on dat 5 of treatment and lasted for 4 days. Treatment was not interrupted.

^{1.} Mild: No medical attention necessary

Moderate: Medical attention necessary, but condition not dangerous

Severe: Dangerous if no medical attention available

ADVERSE REACTIONS SUMMARY SHEET STUDY OF PENTOSTAM/KETOCONAZOLE/PLACEBO DEC 2, 1989

Ketoconazole

ID	Severity ¹	Adverse Reaction
GA-219	Mild	Nausea/vomiting. Approximately 2 hours after the 16th dose, the patient developed a headache with nausea and vomited 2 times. The nausea continued for 24 hours and the headache lasted for 48 hours. The symptoms resolved without any medications. Treatment was not interrupted.
GA-286	Mild	Abdominal pain. Two hours after the 21st dose the patient developed mild abdominal pain that lasted for 2 days. The symptom resolved with no medical intervention. Treatment was not interrupted.
GE-023	Mild	Headache. One hour after the 2nd dose the patient felt a moderately severe headache that lasted about 3 hours. These headaches came back after the 3rd and 4th dose, but then resolved spontaneously.
GE - 030	Moderate	Rash. On the 17th day of treatment, patient noted a generalized pruritic rash over his whole body that began 1 hour after taking the pills. There was no urticaria or wheezing and the blood pressure remained normal. Although in the opinion of the treating physician the rash could have been managed with antihistiminics, the patient insisted on terminating treatment with ketoconazole. The rash resolved spontaneously 3 days after it began.
GG-010	Mild	Dizzyness. About 3 hours after the 18th dose, the patient felt light-headed. The symptoms lasted for about 1 hour and resolved spontaneously. Treatment was not interrupted.
GG-014	Moderate	Headache. On the second day of treatment the patient began to complain of moderately severe headaches that began just after taking ketoconazole and lasted for 4 to 8 hours. The headaches continued for 26 days and resolved the day after the medication was stopped.
GG-018	Moderate	Nausea and abdominal pain. After the second dose the patient developed epigastric pain, vomited, and had diarrhea. The patient stopped treatment for 2 days during which he had no symptoms. When treatment was restarted, the patient again developed moderately severe epigastric pain, but this time did not vomit or have diarrhea. After the 16th dose the epigastric pain increased and the patient vomited once. Treatment was terminated prematurely because of these adverse reactions, and the symptoms resolved.

Mild = No medical attention necessary
 Moderate = Medical attention necessary, but not dangerous
 Severe = Dangerous if no medical attention available

ADVERSE REACTIONS SUMMARY SHEET STUDY OF PENTOSTAM/KETOCONAZOLE/PLACEBO DEC 2, 1989

Placebo

m	Ά	O	т	177	m	C
\mathbf{T}	А	D	1	ıĿ	1	S

ID	Severity ¹	Adverse Reaction
GA-248	Mild	Abdominal pain. Six hours after the 4th dose of placebo tablets the patient complained of mild stomach pain. No medical treatment was required, and the symptoms resolved in 48 hours.
GE-031	Moderate	Abdominal pain. The patient had chronic abdominal pain, but 11 days after starting treatment the patient developed worsening epigastric pain that lasted 7 days.
GC-290	Mild	Abdominal pain. Began on day 19 of treatment and lasted for 12 days (for the rest of treatment and then 3 days more). Resolved without specific medication and treatment was not interrupted.

INJECTIONS

GC-359	Mild	Nausea and anorexia. One day after stopping his medication, patient complained of
		nausea and loss of appetite. This resolved without treatment in 6 days.

Mild = No medical attention necessary
 Moderate = Medical attention necessary, but not dangerous
 Severe = Dangerous if no medical attention available

ANNEX 2: LIST OF LABORATORY VALUES BY TREATMENT GROUP

98 160		4	22	35	32	;=	٥	36	, ,,	\ ~	י כ	2 6	2 5	7	25	× 60	17	0	. 0	1	· ~	2 2	77	17	22	17	7	57	50	13	19	18	56	54	13	٥	*	, <u>~</u>	1	- 0	<u>, </u>	13		7.7	· ~	20
2% 160																																														
210 160		13	20	87	30	88	20	20	X	2 =	7.2	ì =	22	72.	100		, 5	8	7		, 4	2,2	£	28	17	43	11	76	36	33	22	102	32	39	15	50	20	. 5	2	, r	3 6	60		102		35
140 160		15	20	36	15,	43	20	45	9	, 1		2	: :		75	28	30	α	, 2	17	0	09		1	9	41	19	358	20	15	36	53	36	36	50	51	Ξ	51	6	2 %	3 6	77		35.8	, .	41
8 5 5		_	92	28	80	7	54	32	2	, K	3 5	- 2-	· ×	2 2	25	36	22	2 6	5 5	9	2	52	3	1	36	20	17	53	165	Ξ	12	32	19	.500	57	:102	17	0	7.60	2 2	2 6	77		200	^	37
0		20	52	٥	36	58	56	=	Ξ	71	. 0	:	26	2 0	10	٥	17	. .	-	17	. 2	5 5	15	9	30	35	27	13	45	41	15	15	17	28	13	15	26		-		- 5	<u>^</u>		57	· 0	20
9S CREA		0.70	0.70	0.80	0.83	07.0	06.0	0.70	08.0	6	44	, S	-	٥.۶	0.50	0.68	0.80	05.0	06.0	0.15	0.60	0.68	0.70	1.00		0.84	09.0	0.91	0.71	0.74	1.02	98.0	0.80	0.80	0.00	1.00	1.00	0.79	7	08.0	65.0	0.60		1.02	0.15	0.76
290 CREAT																																														
210 CREA																			-							0.83																				0.79
0 CREAT		0.60	0.00	0.50	0.60	0.80	0.70	1.10	0.30	0.80	6	02.0	0.80	0.70	0.80	0.80	0.68	0.70	08.0	0.09	0.70	0.80	0.82	09.0	0.87	1.06	52.0	1.03	1.15	0.90	07.0	1.00	0.58	0.78	0.79	0.80	0.70	0.73	02 0	000	2.0	2.0		1.15	0.0	0.3 E. 3
EAC ADV																						•	×	: ×	×		×		×			×				×	×				>	<				
RATA R																						×			×		,	×	×	×				×	×	×	,			×	٠ ،					
CONS T																						×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	: >	۷.				
DATOS CONS TRATA REAC PERS ADV																						×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	: >	<				
CUAL		⋖	∢	∢	⋖	⋖	⋖	⋖	<	< <	< ◀	<	< <	< <	⋖	⋖	⋖	⋖	<	< ≺	⋖	< <	⋖	⋖	∢	4	∢	∢	¥	∢	¥	∢	∢	⋖	4	⋖	⋖	⋖	⋖	⋖	٠	τ.				
RAMA		ο.	۵	۵	۵	۵	۵	۵	۵	. a.	. 0	. a	۵	۔	۵	۵	۵	۵	. 0	۵.	۵.	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	٥	۵	۵	۵.	L				
GRUPO	,	2	2	10	2	0	10	10	10	10	£	2	10	5	0	£	Ç	Ç	10	5	5	5	10	10	10	10	10	10	10	10	10	10	9	9	9	9	ç	9	10	5	2	2	Σ			
9	1	GC-368	GA-277	GA-300	GC-355	CC-360	GC-373	GC-383	66-370	GA-290	CA-246	GA-287	GA-298	GA-283	GA-258	GA-263	GA-274	GC-353	GC-379	66-348	GA-270	GC-306	GC-334	66-001	GC-257	66-011	GC-323	CC-285	GC-526	GC-310	900-99	GA-245	6C-329	CC-275	CC-288	GA-225	200-55	GC-321	GC-338	GC-281			PENTOSTAM	max	e i E	mean

9S 1 B1L1 R IND1R	0.20 0.10 0.40 0.20	0.20 0.20 0.20 0.20 0.20 0.20	0.20	0.20 0.20 0.20 0.20 0.20	0.36 0.20 0.20 0.40 0.30 0.20 0.30	0.40 0.20 0.12 0.20 0.40	0.08 0.25
290 B1L1 INDIR							
210 B1L1 IND1R	0.30	0.12 0.30 0.14 0.10 0.10 0.10	0.10 0.12 0.12 0.13 0.10 0.30	0.30	0.30 0.20 0.20 0.20 0.20 0.20 0.20 0.08	0.28 0.40 0.50 0.08 0.08	0.08
14D 81L1 1ND1R	0.20	0.30 0.20 0.20 0.20 0.10 0.10	0.10 0.80 0.17 0.17 0.20 0.28	0.30	0.40 0.30 0.30 0.37 0.30 0.30 0.50 0.50	0.30 0.30 0.20 0.20 0.10	0.04
80 811.1 1ND 1R	0.22	0.20 0.20 0.20 0.20 0.20 0.10	0.10 0.22 0.30 0.30 0.14	0.40	0.28 0.33 0.40 0.40 0.30 0.30	0.20 0.20 0.50 0.40 0.16 0.50	0.02
0 B1L1 INDIR	0.20	0.14 0.30 0.20 0.20 0.20 0.3	0.10 0.10 0.16 0.40 0.12 0.30	0.30 0.30 0.50 0.50	0.20 0.14 0.10 0.10 0.10 0.20 0.60 0.60	0.16 0.20 0.30 0.30 0.60	0.10
9S FA	66 36 37 37 37	50 37 50 53 68 77	50 50 50 73 73 73	325 6 325 6 326 6	25 28 28 28 28 28 28	53 35 50 37 37 30	25 25
53 F							
210 FA	31 20 320 320 320 320	2282888	178 178 30 48 48 53	1334682	35 35 35 35 35 37 37 37 37 37 37 37	33 33 53 54 42 42	75 75 76 78
140 FA	32 24 25	20 20 20 20 20 20 20 20 20 20 20 20 20 2	72 73 73 73 73 73 73 73 73 73 73 73 73 73	37 39 39	42 42 46 46 46 47 47	31 48 48 48 62 62	28 92
80 FA	,				37 33 34 35 37 37 37 37 37		17 17 53
o ₹				•	77 70 70 70 70 70 70 70 70 70 70 70 70 7		10
9S 1GP	19 22 38 138	22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 30 30 30 30 10 10 11 11	11 11 17 17 17 17 17 17 17 17 17 17 17 1	28 23 13 14 45 14 13 13 13 13 13 13 13 13 13 13 13 13 13	20 20 15 15 15 45	200
2% 1GP							
210 1GP	28,58	36 47 13 6 5 2 3 3 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 3 3 5 8 8 5 8 8 5 8 8 8 8 8 8 8 8 8 8 8	. 38 2 2 4 18 . 13 8 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	33 33 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	28 34 28 49 102	34
140 TGP	R 28 8 8	52 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	5 8 5 8 5 8 5 8	35 36 28	26 28 38 38 38 38 38 38 38 38 38 38 38 38 38	28 28 28 28 28 28	10 94
නු දී					250 250 250 350 350 350 350		65
0 1GP	36 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28 2 4 2 4 2 4 2 8 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	51 2 9 6 5 6 5 5	51 01 01 12 52 52 52 52 52 52 52 52 52 52 52 52 52	28 13 13 14 15 15 15 15	32 24 24 13 10 17	20
0	GC-368 GA-277 GA-300 GC-355 GC-360	GC-373 GC-383 GC-370 GA-290 GA-246 GA-287	GA - 283 GA - 258 GA - 263 GA - 274 GC - 353 GC - 379	GA-270 GC-306 GC-334 GG-001 GC-257	GC-282 GC-282 GC-310 GC-056 GC-310 GA-245 GC-329 GC-275	GA-225 GG-007 GC-321 GC-338 GC-281 GC-330 PENTOSTA	min mean

9 TH		•	ç ,	4 v	£	, ec	27	67	97	87	75	77	73	45	45	25	39	95	38	45	77	75	43		97	45	45		75	77	97	75		45	67	36	45	75	43	45		67	22	7,7
210 290 HT HT		Ç 5	00	0 M	£4.		2.5	25	9,	20	75	55	25	<u>٠</u>	75	75	38	95	ಜ	77	75	36	43	0,4	0,5	7.3	35	41	35	45	9,	0,	75		43	75	39		(3	45		20	0.00	43
0 2.					7 27																																							4.5
9S HB		,	ָרָ הְּ		12.7	12.6	16.1	16.6	16.0	16.0	14.0	14.6	14.0	15.0	15.0	18.6	13.0	15.3	12.6	15.0	14.6	14.0	14.0		15.3	15.0	15.0		14.3	14.6	15.3	14.0		15.0	16.3	13.0	15.0	14.0	14.3	15.0		18.6	12.6	14.8
8 ₩																																												
21D HB	ų.	2 :	0.7	7, 7	14.3	13.6	16.0	15.3	15.3	17.0	14.0	15.0	15.6	16.3	14.0	14.0	12.6	15.3	10.0	14.6	14.0	12.0	14.0	13.3	13.3	13.3	11.6	13.6	11.6	15.0	15.3	13.3	14.0		14.3	14.0	13.0		14.3	15.0		17.0	10.0	14.2
0 ₩	7 2	? ;	0.7	7.0	15.6	13.3	16.0	14.6	15.0	16.0	14.6	15.0	16.3	17.0	14.0	14.2	12.6	16.0	12.6	15.0	15.3	13.3	15.8	14.3	15.3	14.0	11.0	15.6	14.3	15.5	16.0	14.0	16.6	15.6	16.3	13.4	12.0	15.0	16.6	14.3		17.0	11.0	14.9
9S PLA0		300	180	225	190	180	190	280	200	200	250	160	180	225	190	225	280	260	200	270		165	210		290	275	200		260	175	225	300		200	200	145	250	180	170	200		300	145	216
290 PLA0											_				_			_		_	_		_	_	_			_			_	_	_		_		_		_	_				
210 PLAQ	215	7 10	2,7	22	280	125	150	230	150	180	250	150	220	220	250	160	175	140	250	500	180		200	500	180	180	325	500		225	20	140	200		2		170		230	500		325	125	207
0 PLAQ	450	2 6	3 .	0.50	230	210	180	290	250	225	276	150	228	200	260	225	200	180	200	230	250	150	275	200	190	225	250	220	140	300	325	220	180	160	380	300	210	250	300	200		380	140	227
98 11 81L1 EC DIREC	000	0.50	07.0	80.0	0.20	0,40	0.20	0.16	0.40	0.28	0.20	0.20	0.80	0.20	0.10	0.30	09.0	0.10	0.20	0.24	0.30	0.36	0.20	0.85	0.20	0.80	0.30	0.32	0.10	0.40	0.30	0.20	0.60	05.0	07.0	0.30	0.30	0.23	0.20	0.20		0.85	0.08	0.31
290 81L1 5 DIREC																																												
21D BILI DIREC	0		2.0	0.40	0.10	0.10	0.10	0.24	0.40	9.0	0.50	0.20	0.30	0.10	0.24	0.60	0.20	0.10	0.14	0.20	0.40	0.30	0.20	97.0	0.30	0.20	0.30	0.10	0.20	0.10	0.30	0.40	0.20	0.42	0.20	0.20	0.30	0.28	0.28	0.50		09.0	0.10	0.27
140 811.1 01REC					0.50				•		•	•	•	•	•	•	•	•	•	•	•	•				•		0.50	•	•			•	•		•	•			•		•	0.10	•
80 811.1 01REC	000	,,,		00	0.20	0.15	0.20	0.30	0.20	0.3	0.20	0.20	0.20	0.30	0.14	0.20	0.14	0.30	0.16	0.60	0.20	0.20		•				0.50				•		•	•	•	•	•	•			1.00	0.14	0.30
0 811.1 DIREC	020	2	2	200	0.10	0.14	0.10	0.20	0.20	0.5	0.30	0.20	0.16	0.10	0.20	0.30	0.12	0.10	0.18	0.50	0.20	0.60	0.20	0.50	0.10	0.10	0.36	0.20	0.20	0.20	0.60	0.60	0.42	0.56	0.40	0.50	0.10	0.50	0.51	0.10		08.0	0.10	0.29
01	872.JJ		04-40 04-40	66-355	00-360	66-373	GC-383		GA-290	GA-246	GA-287	GA-298	GA-283	GA-258	GA-263	GA-274	66-353	CC-379	CC-348	GA-270	CC-30 9	CC-334	66-001	CC-257	66-011	GC-353	CC-282	CC-256	GC-310	500-55	GA-245	GC-329	65-275	282-25	6A - 225	/00-99	GC- 521	GC-338	GC-281	CC-330	PENTOSTA	max	e i e	mean

SONOM	00000-04400000000000000000000000000000	7 0 1
290 98 MONOS MONOS		
210 MONOS P	-0100000N000000000N000000 -00 M0	0 -
O MONOS M	000000000000000000000000000000000000000	40 -
290 9S EOS EOS	00 00 00 00 00 00 00 00 00 00 00 00 00	20 0 2
210 2 EOS E	0 N O O O O O O O O O O O O O O O O O O	0 0 2
0 EOS	0000111400045011105114000010114000000000	16 0 2
290 9S LINF LINF	34 4 3 4 3 4 3 4 3 5 8 3 3 3 4 3 5 8 3 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 8 3 3 8 3 3 8 3 3 8	58 18 35
210 INF L	0.00	48 16 34
0 21D LINF LINF I	00000000000000000000000000000000000000	74 74 34
290 9S PMN PMN	8 5	75 38 61
210 PMN	657 657 657 657 657 657 657 657	81 40 63
O M	2663886488446684888866688866688888888888	77 44 63
98 68	8000 8200 8200 8200 8250 6800 6450 6500 6500 6500 6500 6500 6500 65	10000 4150 6831
23 88		•
210 GB	8500 8400 8500 8500 8500 8700	9400 4400 6795
0 89		12200 4100 7070
2	GC - 368 GA - 277 GA - 277 GA - 277 GC - 355 GC - 373 GC - 373 GC - 373 GA - 283 GA - 283 GA - 283 GA - 274 GA - 274 GC - 379 GC - 275 GC - 275	max min mean

δÖ	12		æ	0	0	٥		Ņ	9	~				7	15		7	_	. ~		ω	~	٥	-	٥	22	7			Ξ.	22	S.	Ö,	=	7	2	80		9	13		30	2	2
98 160	-		_	-	~																																			_				
2% 160	7	10	5	~	0	15		17	0	^	15	=	12	18	28	35	· 5	•	1,	30	57	=	17	Ξ	15	13	5	13	13	19	17	= ;	20	0	\$	17	6	Ξ	13			35	٠.	14
215 160																																												
14b 160	٥	9	\$	12	12	17		0,	2	22	13	9	\$	٥	13	15	12	6 0	12	13	22	^	22	15	45	45	13	17	0	15	25	~ `	∞	Ξ	\$	16	15	Ξ	13	57		45	5	15
80 160																																												
0 160	13	7	13	٥	20	10	51	7	5	12	_	7	19	18	7.7	Ξ	07	10	5	17	7	10	15	30	55	92	13	15	14	13	15	5 ;	6	=	7	=	17	7	13	43		55	2	17
9S CREA	06.0		1.00	09.0	0.80	1.20		1.10	09.0	09.0				0.80	09.0		0.80	0.80	0.80	0.80	0.95	0.00	1.20	1.03	0.83	0.00	0.80			1.00	0.50	0.50	70.	0.80	0.00	0.60	0.77		0.60	1.03		1.20	0.50	0.83
290 CREAT	09.0	0.48	0.50	0.50	1.20	0.80		0.80	0.75	0.80	0.70	1.10	09.0	0.41	1.20	0.00	0.00	0.74	1.20	0.95	0.87	1.00	1.20	0.64	0.86	79.0	0.70	0.81	0.60	1.00	0.72	0.70	0.69	00.	0.70	0.93	0.74	1.20	0.80	0.82		1.20	0.41	ا8.0
210 CREA				_	_	_	_	_	_	_	_	_	_			_	_	_			_			_	_	_	_		_	^	_		_			_							<u> </u>	•
0 CREAT	0.70	0.40	0.70	0.6	0.8	0.80	0.60	0.6	0.50	0.6	0.9	0.6	0.50	0.75	0.74	1.00	0.80	0.90	0.5	0.9	0.8	0.83	1.03	0.6	0.6	1.00	0.8	0.7	0.7	0.6	0.6	Σ Σ	Σ ·	76.0		0.6	0.7	0.8	0	1.05		1.05	7.0	.; n
7 AC																																												
A RE																				•	•	•	•	•	•	•	'	•	×	•	×		•	•	•	×	'	•	'	×				
DATOS CONS TRATA REAC PERS ADV																				×	×	×	×	•	×	•	•	•	•	×	t		• :	×	•	•	×	×	•	×				
NO.																				×	×	×	×	×	×	×	×	×	×	×	×	:	Κ:	× :	×	×	×	×	×	×				
DATOS PERS																				×	×	×	×	×	×	×	×	×	×	×	×	;	≺ :	× :	×	×	×	×	×	×				
CUAL	U	ں	ပ	ں	ں	ပ	U	Ų	U	ں	U	ں	ပ	U	ပ	U	ပ	U	ပ	U	ပ	ပ	ပ	ပ	ပ	ပ	ပ	U	ပ	ں	U (، د	، د	، د	، د	ပ	ပ	ں	ပ	U				
RAMA	¥	-	¥	¥	¥	¥	¥	×	¥	¥	¥	¥	×	¥	×	¥	¥	×	¥	¥	¥	¥	¥	×	¥	¥	¥	⊻ :	¥	×	¥ :	~ }	: ۷	~ 5	* :	¥	¥	¥	¥	¥				
GRUPO	9	0	0	9	2	1 0	2	5	0	10	5	10	10	10	10	10	10	10	10	10	10	10	10	10	5	2	0	유 ;	10	0 ;	0.	2 \$	⊇ ;	⊇ ;	⊇ ;	0 :	9	~	Ō	10	azole			
2	GE-021	CC-343	GA-256	060-050	66-019	20-05	66-018	66-025	66-017	66-023	GE-022	66-014	66-013	GE-036	66-016	020-99	66-024	GC-341	66-015	GE-002	CC-280	6C-269	CC-285	60-319	GC-314	900-99	GC-333	GC-316	GE-030	CC-296	GE - 023	CA-700	500-00	477.70	55.75	66-010	GC- 2 08	CC-292	GA-242	GA-219	Ketoconazole	¥94	110	III

s -	œ	0		2	0	•	0		0	0	0				0	0		0	8	0	0	0	0	0	0	0	0	2			0	7	0	0	<u>~</u>	0	0	0		Ó	7		_	<u>م</u> د	ာ ထ
98		0.40		0.32	0.1	0.1	0.7		0.5	0.40	0.2				0.20	7.0											0.50					0.17									0.14		α -		0.28
2% 81L1	NO IN	0.10	0.18	0.50	0.20	0.30	0.40		0.20	0.30	0.10	0.10	0.20	0.10	0.14	0.30	0.14	0.30	0.2	0.20	0.33	0.15	0.08	0.20	0.40	0.50	0.40	0.20	0.50	0.16	0.50	0.30	0.50	0.35	0.04	0.30	0.50	0.60	0.30	0.30	0.20		040	3 6	0.26
210 81L1	I ND I R																																												
140 81L1	I NO I R	0.04	0.25	0.12	0.20	0.20	0.20		0.20	0.20	0.20	0.02	0.12	0.10	0.09	0.30	0.30	0.20	7.0	0.20	0.39	0.26	0.25	0.36	0.62	0.50	0.70	0.40	0.27	0.18	0.13	0.16	0.30	0.54	0.18	0.20	0.36	0.50	0.31	0.30	0.20		0 20		0.26
80	NO IR																																												
811.1		0.06	0.10	0.10	0.20	0.20	0.50	0.30	0.28	0.50	0.10	0.14	0.21	0.24	0.10	0.70	0.30	0.10	0.05	0.40	0.14	0.20	0.40	0.05	0.12	0.30	0.10	0.30	0.50	0.04	0.24	0.08	0.50	0.50	0.10	0.50	0.25	0.20	0.54	0.36	0.50		0 20	2.0	0.23
9S FA		30		48	28	35	28		75	37	31				28	35		75	31	35	77	97	59	53	56	20	£	25			67	45	37	62	54	54	38	77		20	15		\$	7 2	38
230 F.A		30	0,7	35	37	97	54		33	75	31	33	138	07	20	75	33	97	31	37		20	97	55	75	27	31	20	46		57	28	56	35	37	37	37	37	29	36	33		138	72	45
210 F.																																													
14D FA		28	21	70	30	75	62		56	30	35	28	56	07	4	87	30	77	30	75	39	48	20	22	30	88	35	48	48	56	53	22	48	56	75	33	54	ĸ	55	77	8		88	9 6	36
8 4																																													
OÆ		28	39	52	37	75	31	ž	28	198	75	17	13	19	32	211	37	20	28	.320	75	37	45	75	17	28	33	54	33	92	22	17	39	75	56	53	28	33	77	25	48		320	7 ~	5.12
9S TGP		9		32	15	20	15		Φ.	15	٥.				30	5		13	10	16	٥	30	=	13	67	35	6				18	16	50	20	٥	7	16	20		36	7		07	^	17
2% 169		9	15	15	Φ.	Φ.	œ		13	=	2	13	:	10	15	36	52	_	9	15	30	٥	7	S	13	17	13	- 1	25		17	16	٥.	23	٥	1	15	20	2	13	7		%	5	14
210 1GP																																													
140 16P		7	٥	10	52	16	Ξ		=	80	12	٥	2	^	7	15	9	0	9	17	13	17	=	13	50	32	32	` ;	<u>\$</u>	<u>6</u>	٥	56	6	20	٥.	20	17	_	15	15	22		32	2	5
8 5 5																																								,	,				
169		Ξ	٥	92	25	13	2	25	2	19	14	2	15	17	5	13	15	14	€0	15	17	Ξ	^	17	18	52	28	٠ <u>ن</u>	<u>^</u> '	\	- :	15	0 !	17	13	~	17	\	S	57	2			٣	12
91		GE-021	CC-343	GA-256	66-030	66-019	66-027	66-018	66-025	66-017	66-023	GE-022	66-014	66-013	GE-036	66-016	020-99	66-024	GC-341	66-015	GE-002	GC-280	CC-569	cc-285	60-319	GC-314	900-99	GC-333	GC-316	GE-030	962-29 00-58	GE-023	GA-288	66-003	CC - 274	GC-335	66-010	CC-308	GC-292	•	GA-219	Ketocona	max	min	mean

ő	E H	17	;	27	63	!	67		27	2 5	7	ļ		95	84	63		39	73	34	27	36		25	87	2	75	77			39	73	25	31	75	27	87	0,7	?	57	77		Ç	ָרָ בּ	C C
Š	3 =	07	30	35	43	75	!		45	7	33		45		43	63	77	37	77		43	37	43	20	7	۳	38	0,4	75		07	43	25	87	45	45	37	,	76	7	77		5	2 .	75
] <u> </u>																																												
	±	7	75	45	70	36	45	20	48	36	77	45	70	43	48	17	77	75	45	1,31	27	43	45	45		41	51	< 30	20	77	39	45	45	07	17	97	45	36	45	0,	73		7		73
ő	2 19	14.0		14.3	14.2		16.3		14.6	14.3	14.0			15.2	16.0	14.3		13.0	14.3	11.4	15.6	12.0		15.6	16.0	*8.3	14.0	14.6			13.0	14.2	16.0	10.3	14.0	15.6	16.0	13.3		15.0	14.6		14.3	2 0	14.1
8	<u>9</u>	13.3	13.0	10.6	14.0	14.0			15.0	13.6	13.0		15.0		14.3	14.3	14.6	12.6	9.7.		14.4	12.3	14.3	16.6	13.6	10.6	12.6	13.3	14.0		13.3	14.0	16.0	15.8	15.0	15.0	12.3		15.3	13.3	14.6		7 7	20.0	13.9
210	£			•																						•																			
c	. #	4.0	4.0	7.0	3.3	2.0	15.0	9.9	0.9	3.0	4.5	5.0	5.3	4.3	0.9	9.9	4.6	0.4	5.0	0.3	9.9	4.3	2.0	5.0		3.5	7.0	0.0	9.9	9.5	3.0	5.0	5.0	3.4	5.6	5.3	5.0	2.0	5.0	3.3	14.3		7		14.4
		•	-	-	-	-	_	-	_	_	_	_	-	-	_	-	_	-	_	7,3	-	-	_	-		-	_	٦,	•	-	-	_	-	-	_	-	_	_	-	-	-		•		
Só	PLAG	85		8	09		190		22	8	75			90	80	8		9	50	25	2	20		2	20	50	25	20			00	05	09	06	75	83	25	00		00	250		9	5.0	506
٥	اط اط														-														0														•		•
	PLAG	180	52	2	2	20			5	4	13		290		8	19	20	-	20			2	8	28	5	20	20	22	22			ನ	210	20	92	5	15		25	52	48		87	1.5	224
210	PLA																																												
0	PLAG PLAG	120	140	280	135	160	200	150	250	300	540	150	325	300	300	180	120	200	170	200	300	325		200			225	160		190	300	125	290	765	567	190	250	150	190	280	300		207	120	228
86	BILI	0.02		0.30	0.10	0.16	0.20		0.50	0.20	0.30				0.20	0.60		0.20	0.14	0.20	0.10	0.10	0.50	0.30	0.20	0.70	0.40	0.28			0.30	0.17	0.30	0.00	0.19	0.40	0.30	0.20		0.90	0.36		0.00	0.02	0.31
8	BIL1 DIREC	07.50	0.12	07.50	30	.50	30		0.10	06.0	09.	7.0	0.80	.12	. 14	.90	9.16	.30	7.0	09.0	.25	3.35	0.50	0.30	.50	0.70	.53	09.0	3.30	.34	0.40	.30	0.20	0.10	7.55	0.10	30	.25	.50	07.50	02.0		06.0	0.10	0.36
	BILI DIREC (_	_	_	_			_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		Ū	Ŭ	
	ILI E	.36	.22	.18	.20	9.	0.10		.20	.20	.20	. 28	.26	.10	.16	.50	.20	. 10	0.3	9.	.15	.26	.36	60.	. 58	.30	10	.30	.38	27.	.43	.30	.20	87.	.32	.40	.32	.30	.25	.20	.30		.50	60.	.25
8	BILI B DIREC D	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0 (۰.	0	0	0	0	0	0	0		0	0	0
0	BIL1 DIREC	0.36	0.20	0.40	0.60	0.30	0.20	0.30	0.08	0.30	0.20	0.25	0.18	0.12	0.30	0.20	0.20	0.08	0.02	0.20	0.56	0.38	0.30	0.28	0.36	0.80	0.30	0.40	0.20	0.26	0.36	0.28	0.50	0.10	0.32	0.10	0.28	0.30	0.28	0.21	0.30	_	0.80	0.02	0.28
	0	GE-021	CC-343	CA-256	66-030	66-019	66-027	66-018	CG-025	210-99	66-023	GE-022	66-014	66-015	GE-036	66-016	020-050	66-024	GC-341	56-015	GE-002	CC-280	692-29	CC-285	GC-319	GC-314	900-99	GC-333	GC-316	GE-030	962-25 0C-588	GE-023	64-288 64-288	500-55	60-274	66-555	66-010	GC - 308	262-35		GA-219	Ketocoba	max	e i e	mean

8	SONO	C	,	-	-		0		0	0	0			M	0	0		0	0	2	0	2	ı	~	۰ ر	, C	·		>		۳	n C	^	۸ ر	ı ~	ı C	· c	· c	,	_	· -		,	~	0	-
8	MONOS MONOS MONOS	^	ı	2	0	0	,		0	0	2		0		0	0	-	0	0		0	0	^	۰ د	· C	·	. 7	-	- c	•		۰ ۸		· C	۰ ۸	ı c	, ~	1	-	_	0			4	0	-
210	M SONO!																																													
0	w	0	•	-	7	0	2	0	0	0	4	0	0	0	0	0	2	0	0	0	0	0	0	0		2	· M	0	^	. c	^	· ~	0	-	0	2	0	0	0	0	0		•	.	0	-
	_																																													
86	EOS	2		∞	-		0		0	٥	7			~	∞	0		0	10	7	2	~		m	0	~	~	· ~	•		M	-	0	0	0	-	2			0	7		•	2 '	0	2
230		4	20	0	0	0			18	0	0		7		22	0	0	0	٥		0	0	0	-	0	4	0	7	٥		٥	2	7	7	7	0	0		M	~	7		ć	77	ο.	4
	EOS EOS	0	Ŋ	4	80	0	0	0	~	-	∞	9	œ	12	0	0	m	0	9	-	0	တ	0	0		-	0	~	0	· ~ 1	~	~	4	25	9	~	0	0	0	٥	~		;	77	0 1	m
Só	LINF	38		54	30		87		45	28	82			39	32	30		38	32	32	70	30		35	34	33	28	95			92	30	07	58	28	41	30	35		56	32		0 /	ç	47	33
8		36	75	23	70	77			34	7	25		36		28	38	35	30	53		34	70	54	0,	38	32	30	32	34		38	38	36	52	32	39	36		34	52	30		1	1 (3;	34
	INF L																																													
0	LINF LINF	70	70	13	28	07	32	30	35	35	22	30	07	38	<u>څ</u>	<u>۾</u>	36	25	20	92	32	30	32	34		70	31	0,7	35	57	23	75	05	36	36	30	36	36	32	25	34		23	; ;	2 ;	24
86	¥ ¥	09		8	8		25		22	8	20		;	23	9	8		29	28	75	28	79		9	3	3	29	20			68	89	28	75	2	58	88	9		7,4	65		72	- 4	2 5	65
28		58	38	2	9	26			48	20	23		9		50	95	63	20	63		8	09	2	23	9	63	99	9	22		20	68	9	89	62	61	61		62	2	3		7	72	0 *	ō
0 21b		0	2	Ŋ	۰	0	53	0	Ņ	4	.	4	~ (œ	- ,	.	•	20	7	_	9	0	9	9		7	9	7	ĸ	0	0	4	4	_	4	9	4	4	8	•	4		^	, c) T	_
	Q X	•	S	,	S	ı.	1 0	~	•	•	•	٠	· O	7	•0	` '	Λ,	`	4	_	•	•	•	•		2	•	S	•	7	_	2	2	7	S	•	9	•	•	_	•		α.	`~	<i>7</i>	0
86	89	8300		2500	2200		9800		2800	7100	7800		0	0026	9800	10000		00601	2400	9800	2600	. 3500		8600	7850	2000	5250	9200			8500	6725	9200	13250	6800	8400	2500	10000		11100	9350		13250	3500	0000	000/
88	8 9	6100	9500	2500	5100	4900			8250	2200	7200		7050		7350									5350	9200	2400	9009	7500	2000		7250										8000				754.0	
210	89	·	_			7				-				•		•	•		. •		_	=	~	- '	•	-	7		_					=	. =	=			1		~		7	7		٠
0	89	7250	2000	8950	000	4350	6200	11000	9500	989	5500		(350	07.00	9 5	0007	7,000	000	5150	8250	9300	8000	2200	2800		5100	7550	2000	8000	9009	11350	6050	2800	/800	9800	9100	2600	2000	2600	00511	8900		-	4350	600	,
	2	GE-021	CC-343	GA-256	CG-030	66-019	66-027	56-018	520-99	210-55	66-023	GE-022	66-014	66-015	GE-056	0.0-0.0	020-050	470-99	GC-341	66-015	GE-002	CC - 280	CC - 569	GC-285	66-319	CC-314	900-55	CC-333	60-316	GE-030	gc-596	GE-023	GA-288	66-003	GC-274	66-355	66-010	GC - 308	262-25	547-K9	CA-219	Ketocona	max		Dean	5

9S 160	25 13 14	30	50	35 40 41 41	51	20 20 20 13 13 13	16 17 15 15 17	19 29 13 41 18
2% 160	£1 0 25	21 32 19 9	10 21 51 71 5	24 17 17 30	17			
210 160					28 20 20	20 8 0 1 0 8 1 0	7 7 1 1 2 6	9 18 19 28 5 13
140 160	25 5 5 5 5 5 5	8 12 20	£1 6 8 7 F	13 28 30	12 24 13	2828288	20 20 71 71 81	32 32 35 15
& 6			•		92	30 21 21 21 21 21 21 21 21 21 31 31 31 31 31 31 31 31 31 31 31 31 31	27000007	11 19 11 12 11 12 12 12 12 12 12 12 12 12 12
160	~ 9 5 E	10 85 11 11	11 22 22 15 15	9 6 5 7 1	~ £1 £1	8 0 0 2 % C C C C C C C C C C C C C C C C C C	11 11 26 26 41	11 22 77 51 51
9S CREA	0.90 0.70 1.20	.90 .90 .90	0.90	0.69 1.00 1.20 0.79	0.80	0.70 0.90 0.50 0.80 0.60	0.70 0.90 0.60 0.60	1.16 0.73 0.82 1.20 0.40
				0.92 1.11 0.92 1.30 1.85 0.85			000 0	-00 -00
ຮ	00	0000	-0	0000		**000000	** ** *! * * * * * * * * * * * * * * *	NO. 0.40
210 CREA						0.56 0.80 0.90 0.70 0.26 0.90 0.70		
0 CREAT	0.68 1.30 0.80 0.70	1.30 1.00 0.80 0.60	0.70 1.12 0.90 0.46 1.30	0.87 0.72 0.87 1.00 1.10	0.87 1.00 0.93 0.60	0.80 0.80 0.50 0.60 1.10 0.88 0.90 1.00	0.87 0.60 0.85 0.92 0.89 0.49	1.08 0.71 0.94 1.30 0.46 0.85
REAC ADV			1 1 1	× · · · ·	1 4			1 1 1
TRAT			• ××:	× · × · ×	× 1		×× · × · · ·	×× ·
CONS			×××	×××××	××		××××××	×××
DATOS CONS TRATA PERS			×××:	×××××	××		××××××	×××
CUAL	6 6 6 6 6	ထ ထ ထ ထ	ထ ထ ထ ထ ထ ထ	ထ ထ ထ ထ ထ ထ	× 8 C C C		000000	000
RAMA CUAL	****	***	****	****	< > < < < < < < < < < < < < < < < < <		~ ~ ~ ~ ~ ~ ~	ممم
GRUPO	5555	5555	55555	55555	5555	00000000	01 01 01 01 01 01 01	0 0 0 0 0
01	GC-365 GG-028 GG-029 GA-248	GG-022 GE-031 GE-041 GG-026	66-021 66-012 66-004 66-298 66-005	GG-290 GG-009 GG-221 GG-008 GA-236	GG-002 GG-276 GG-377 GC-377	GC-342 GA-264 GA-293 GA-281 GC-345 GC-345	6C-286 6C-295 6C-326 6C-378 6C-332 6C-337	GC-277 GC-309 GE-017 PLACEBO max min mean

95 B1L1	5	0,40	0.10	0.19	0.10	0.24		0.10	0.80	0.10					0.30	0.20	0.40	0.51			0.10		0.90	0.16	0.30	07.0	0.20	;	0.50	0.10	21.0	10	•	0.20	0.50		0.30	0.40	07.0		0		0.26
290 811.1 1ND1R	0 20	0.50	0.20	0.20	0.20	0.20	0.21	0.30	0.30	0.30	0.23	0.20	0.40	0.30	0.20	0.16	0.30	0.30	0.75	0.17																					75	25.0	0.28
21D 81L1 1ND1R																					0.20	0.45	1.00	0.10	0.20	0.40	0.28	0.23	0.30	00.0	07.0	0.20	0.14	0.30	0.40	0.20	0.26	0.60	0.34		0		0.33
140 811.1 1ND 1R	0.30	0.30	07.0	0.30		0.20	0.25	0.20	09.0	0.40	0.16	0.10	0.20	0.50	0.20	0.40	0.20	0.20	0.08	0.30	0.20	0.60	0.30	0.10	0.12	0.30	0.20	0.22	0.50	0.20	2 6	0.10	0.10	0.30	0.40	0.50	0.16	0.40	0.20		040	200	0.27
80 811.1 IND IR																					0.20	0.20	0.30	0.08	0.18	0.20	0.20	0.50	0.50	2.0	2 2	0.20	0.20	0.20	0.20	0.40	0.08	0.10	0.30		07 0	80	0.52
0 811.1 IND 1R	0.60	0.10	0.20	0.08	0.81	0.16	0.30	0.10	0.20	0.50	07.0	0.08	0.40	0.51	0.36	0.10	0.20	0.10	0.12	0.50	0.20	0.50	0.32	90.0	0.16	0.20	0.20	0.60	0.50	9 6	0.70	0.50	0.15	0.50	0.50	0.30	0.12	0.20	0.30		06	200	0.29
9S FA	75	1	62	56	75	20		33	92	2				77	70	48	38	53			35		8	5	46	Φ,	%	C	2 0	9 >	55	82		54	2		2	33	31		62	ί α	45
% ₹	39	3	62	22	38	22	92	31	31	26		62	28	68	48	75	12	20	31	28																							
210 FA																					28		221	\$	240	25	\$ \$; ;	3 t	ر د	3 6	45		37	70	85	23	25	36		240	7	3.23
140 FA	75	22	53	39		28	Ξ.	75	37	49	2	75	58	48	22	56	56	53	28	34	33	33	234	92	32	26	, ,	3 2	۲ بر د	3 %	4 9	29	37	33	\$	25	89	62	37		234	20	47
පී ද																					57	57	201	92	32	33	7 (27	÷ ×	9 6	45	07	57	77	\$	39	22	97	33		201	22	7,7
o ₹	79	26	77	57	31	17	32	57	56	25	33	28	77	36	36	75	35	33	37	28	56	75	52	30	97	32	24	` C	7 +	3	79	55	56	34	35	20	20	77	33		59	17	37
40.0				•		_												•					~ .								_	_			_		_						
98 76P	35	^	€	23	2	∺		=	_	_			1	-	23	55	Ξ	35			55		<u>ب</u>	₹ <u>.</u>	<u> </u>	Ξ'	•	-	2 5	: 2	•	2		7	54		2	34	₽		55	~	17
28 16 9	15	15	2	8	12	2	2	=	12	5	∞	22	= '	~ ;	2	38	10	28	S	22																							
210 1GP																					10	₹.	<u>\$</u>	12	~ <	۶ ح	₹ 5	20		5	₹	2	7	<u>\$</u>	~	~	=	₽	Ξ		20	M	13
140 TGP	54	22	٥-	25		7	14	15	0	22	2	ر 20	٠ ;	- ;	14	36	0	32	13	15	13	<u>~</u>	17	92	<u>6</u> ;	5 5	<u>.</u>	2 ~	. *	3	13	9	13	7	17	20	0	~	27		36	5	16
8 5																					Š	∞ [34	^ ;	Ξ'	Λ ‡	= 2	10	38	17	28	S	2	<u>+</u>	15	ζ,	0- (Φ.	Ξ		55	Ŋ	16
166	20	^	50	^	~	22	15	٥	13	57	~ ;	ر	> r	٠ (٠ ;	28	Ξ	15	S	Δ	15	= :	5	2 ;	5;	٠, د د	٠ <u>٢</u>			13	Ξ	٥	7	50	34	_ :	Ξ;	= :	15		45	M	14
01																															CC-295									PL ACE BO	max	min	теал

9S H1		43	25	14	25	7		97	87	45				48	77	48	45	45	!		7.7		77	17	35	27	43		75	48	77	38	77		77	0.7		43	73	87		S	7 2	5.4	:
28 ± 28	43	25	S	45	57		43	45	43	43		20		7	77	0,7	73	7.7	50	× ×	,																					Š	2 %	77	
210 HT																					27	:	77	39	7	25	87	38		77		7		77	14	45	43	7	77	46		α,	0 0	77	:
0 <u>=</u>	40	97	35	75	25	39	0,7	45	38	45	48	50	25	97	87	င္က	78	45	27	50	7	30	7	34	36	48	25	7	63	75	75	36	87	43	20	75	75	43	38	48		Ç	7 2	7 7	?
9S HB		M	0	۰	به	۰		m	0	0				0	0	0	0	0			~	!	9	9	ø	9	0		0.	0.	ς.	9.2	9.		9.	13.3		۳.	~.	0.		_	. 4	, ao	
0 1		14.3	7	₹.	₹.	7		5.	16	15.				19	14.0	19	15	15			15.6		14	15	Ξ	15	14		7	16	7.	12	14		7	13		1,	14	16.0				14.8	
28 #	14.3	14.0	16.4	15.0	15.0		14.3	15.0	14.3	14.3		16.6		13.6	14.6	13.3	14.5	16.3	16.6	12.0	1																					16.6	5.0	14.7	:
210 HB																					5.6	•	9.4	8.8	3.6	9.9	9.0	5.6		5.0		15.3		0.4	6.0	15.0	۲.	3.6	9.	5.0		ر د		14.6	
	~	~	•	0	٠,	~	80	0	•	0	0	•	•	~	0	0	0	0	9		-																								
0 🛱	3	7	=	14.	15.	12.	12.1	15.	12.	15.	16.	16.	15.	15	16.	7.	5.	15	5.	19	5	5	5	=	12.	16.	17.	₩.	14	14.	14.	12.0	9	7	2	14.	7.	14.	12.	16.		1,	: :	14.4	
9S AQ		260		30	20	15		9	8	9					112		23	20			280		290	50	8	50	80		22	50	5	200	20		00	275		80	20	303		۲,	5 0	218	
D 9S																				0			7	-	_	~	-		~	~	2	~	_		~	~		-	2	m					
290 PLA9	5	150	22	20	22		25	58	200	22				58	225	2		25	2	300			_		_		_	_		_		_		_	_	_	_	_		_				234	
210 PLA0																					200		160	150	290	150	200	260		150		190		560	225	120	180	300	275	250		×		210	
PLAG P	200	160	250	280	260			190	170	200	509	225		170	200	190			350	301	150	225	275	190	200	150	150	195	200	170	190	215	280	350	250	190		325	150			500	150	228	ı
Δ.																																													
U																																													
98 811.1 DIREC	0.10	0.20	٥.3 ع	0.14	0.70	0.10		0.20	0.60	0.47					0.30	0.20	0.30	0.30			0.14		0.30	0.10	0.30	0.20	0.30		0.10	0.30	0.27	0.30	0.30		0.20	0.20		0.20	0.20	0.20		0.70	10	0.26	
290 811.1 DIREC	0	2	0	0	20	25	15	2	2	2		8.	೭	2	20	\$	10	20	15	1																						0	2	0.31	
	·	0	<u>.</u>	Ö	Ö	Ö	o	0	0	o		o	o	0	0	Ó	0	0	0	0			_	_	_	_		.	_	_	m	_	_	<u>۰</u>	_	_	_	_	_	_					
21D BILI DIREC																					0.50		0.3	0.3	0.3	0.3	0.5	٠ <u>.</u>	0.2	٥.	0.3	0.40	0.2	0.4	7.0	0.2	0.2	0.3	-	0.3		5.0	-	0.28	
140 BIL1 DIREC		0.20				0.50	.30	0.20	0.10	09.0	51.0	0.20	0.50	3.25	0.20	0.30	9.18	0.30	3.52	0.30	0.30	0.10	0.30	0.30	0.36	0.30	0.20	0.20	0.20	0.10	0.35	0.58	0.10	0.32	0.50	0.20	0.10	0.20	0.20	0.10		0.60	01.0	0.27	
80 BIL1 DIREC	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	Ī													.20			- 2	30	30	32	0,	10		20	20	.27	
7 18 0																					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
0 811.1 DIREC	0.20	0.90	07.0	0.28	0.89	0.20	0.50	0.50	0.10	0.30	0.10	0.20	0.30	0.30	0.39	0.20	0.70	0.40	0.24	0.10	0.20	0.20	0.15	0.56	0.14	0.60	0.20	0.30	0.20	0.20	0.61	0.30	0.10	0.56	0.30	0.40	0.50	0.36	0.40	0.20		0.0	0.10	0.33	
01	GC- 365	66-028	620-99	CA-248	CG-022	GE-031	GE-041	920-99	66-021	66-012	90-95	CC-238	GE-C05	062-39	600-55	GA-221	800-99	GA-236	CC-279	200-00	GA-276	CC-377	656-35	275-39	GA-264	GA-293	GA-281	CC-345	cc-366			CC-295								GE-017	DI ACERO	max		mean	

ő	SONO		2	0	7	. 4	~	ı	0	^		,			0	~	٣	-	C	,		0)	C	· c	0	· c	2	ı	0	> <	2	0	0		0	0		0	0	2		7	, (-
۶	MONOS MONOS	c	0	0		0		2	0	-	٠ ~	ı	5		0	2	0	0	0	· c	· c	,																					ď	۰ -	-
210	M SONO!																					0	•	0	· c	0	0	~	0		~		0		0	0	0	0	_	0	~		^	<i>,</i> c	0
o	MONOS MONOS	~	·	0	0	~	2	5	-	~	0	0	0	0	2	7	0	0	0	· C		0	-	0	•	0	0	0	0	0	0	0	0	~	2	-	0	0	2	0	-		Ç	9 0	·-
	•																																												
So	EOS		0	0	M	~	M		0	~	~				~	'n	M	~	0			0		0	56	0	0	0		-	0	2	0	~		0	0		m	0	0		56	, 0	> ~
8	EOS	~	0	~	7	~		•	0	-	2		7		7	~	0	2	0	0	12																						12	. 0	m
210	EOS																					0		-	0	-	0	0	9		7		-		~	0	0	0	0	-	0		16	0	~
0	EOS	0	7	₩	0	-	54	Ξ	7	-	0	12	0	0	0	7	0	~	~	è.	18	7	-	7	ø	M	7	0	0	0	0	0	~	0	0	•	0	0	0	0	0		54	0	7
S6	LINF LINF		74	34	20	36	23		28	32	36				32	25	25	31	38			30		36	07	97	70	32		70	70	25	38	43	;	35	75		35	34	38		55	50	35
230	IN.	07	45	36	23	38		92	30	34	33		70		37	92	79	57	27	30	9																						46	9	33
210	LINF LINF I																					36		0,7	36	34	32	35	40		95		38	;	35	7	70	3	31	5	37		97	21	34
0	INF	75	34	32	۲,	38	30	28	07	33	92	32	30	32	38	87	07	32	35	20	50	32	32	۲.1	34	35	92	75	36	36	34	34	27	30	34	2	٠ ۲	7	28	55	30		48	10	33
	_																																												
	A X		52						72						65							69		2	34	24	8	8		5	58	7.4	62	ζ	ţ	ò	28		9;	8	9				9
82		58	55	8	2	2		8	2	2	63		48		8	6	25	7.	7	2	67	_		_	_		_				_		_		_		_							78	
012 (ž	۰.	_	_	_	^	. •	_	. •	. •	_	۰,	۸.	~	~	_	_	. ^	_		_	2		29							20		8 ~				9 6							77 (
	M N	3	.9	⋈	×	š	75	2	75	3	Γ.	×	3	20	8	7	<u>م</u>	3	જ	3	2	3	3	2,	×	ð	×	5	3	Z	2	3	3	χ;	is	Ξ ;	69 5	ŏ i	ν:	ζ:	∞		Κ.	7.0	9
98	85		5100	5850	9250	9800	10350		13550	9500	2400				11100	8500	7 200	8300	6450			8000		6150	11500	6450	7800	5800		8200	6450	7600	6300	0029		3,00	009/		0517	002/	2600		13550	4500	6092
8	89	6500	6100							7500			5650		8250				8600	8900	14800																						14800	2650	8182
210	89								-						•	_					-	2700		2500	9200	7750	2800	2000	6250		2600		4 700	0350	17.500		8650		0000	2000	007/			4700	
0	89	2400	900	4200	6850	6050	8300	100	0067	006	10900	200	8600	006	4300	400	200	850	800	750		7750			6400			2650					2450		-			•	0047				14100 14		
_	-																																							•	_		1,4	7	~
	2	365	CG-058	620-99	CA-248	CG-055	GE-031	GE-041	920-99	06-021	66-012	20-00	60.298	CE-005	CC - 290	600-55	6A - 221	800-99	GA-236	CC - 279	200-55	GA-276	CC-377	CC-359	CC-345	GA-264	GA-293	GA-281	CC - 345	286	GC-387	987-35	25.5	070 770	017-70 CL-330	700	66-327	1	נני אוס	100000	10-25	PLACEBO	щах	e C	mean