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1. INTRODUCTION

1.1 BACKGROUND: SYSTEM AVAILABILITY MODEL

The System Availability Model (Ref. 1) was developed to provide an overall measure, or
index, of Omega system performance by combining currently used, although disparate, mea-
sures of overall system performance:

* Omega receiver system reliability/availability

* Omega station reliability/availability
* Omega signal coverage (spatial/temporal)

* Omega user regional priority. The model structure consists of a probabilistic definition of the system availability index (PSA)

in terms of probabilistic/deterministic structures, or sub-models, for the above four perform-

ance elements. The initial development of this model (Ref. 1) treated the first two elements
(above) probabilistically, while the third and fourth elements were addressed using determinis-
tic sub-models. The model is flexible, allowing sub-models to be "turned on and off" as desired.
For example, in the first sub-model, the probability that the receiver system is reliable/available

can be set equal to one, thus eliminating any influence of receiver system reliability on PSA. Sim-
ilarly, the contribution of the fourth element above to PSA can be eliminated by setting all re-

gional weightings equal. Computed on a monthly basis, PSA can be monitored as a continuing
measure of system performance or to compare the effects of system options, e.g., reductions in

radiated power at one or more stations.

The system availability index, PSA, is the probability that, at any time and at any point on
the earth's surface, an Omega user's receiver is properly functioning and three or more usable

Omega signals are available to permit successful navigation, position-fixing, or other use of the
system. Since receiver reliability/availability is independent of station signal access, PSA may be
expressed as:

PSA = PR PA
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where PR is the probability that the receiver is reliable/available and PA is the probability that

three or more usable signals (in space) are available.

The phrases "any time" and "any point" in the definition of PSA may be interpreted to
mean that spatial and temporal averages should be taken in the calculation of PSA. In practice,

spatial averaging is done when computing PSA over more than one (two-dimensional) spatial
unit, i.e., cell. Temporal averaging is normally limited by the times at which signal coverage is
available, e.g., two or 24 hours and four months. Since coverage at a fixed UT hour is assumed
constant over the days in a month, PSA may be specified by hour and month. PSA can be aver-
aged over the hours available from the coverage data base, or, alternatively, maximum/mini-
mum values of PSA over these hours may be specified. Because signal coverage changes less
from month to month than from hour to hour, interpolation of signal coverage parameters over
months is permissible, thus allowing specification of PSA for all 12 months. This also permits av-

eraging of PSA over the months in a year.

The access probability, PA, is specified for three or more usable Omega signals. This

specification stems from conventional Omega usage and is not a limitation of the model which
permits an arbitrary minimum usable number of signals. In developing the model (Ref. 1), PA is
written as a sum of two-factor terms -- the first factor being called the coverage element and the

second factor the network reliability factor. Most of PSA'S spatial and temporal dependence is
contained in the coverage elements (spatial dependence may also be found in the user regional
priority weightings). A month and year dependence for PSA arises from the network reliability

factors. Coverage elements define coverage in terms of the following signal properties:

* Signal-to-noise (SNR) ratio in a receiver's "front-end" bandwidth

* Relative strength and phasing of signal modes comprising the total signal
* Ratio of long-path to short-path signal strength
* Path/terminator crossing angle.

Criteria imposed on the above signal properties to determine signal coverage are presented in
Reference 1. Network reliability factors define the probability that each station of the network is
in a specific on-air/off-air condition. The station reliability sub-model includes three types of

off-air conditions:

* Unscheduled off-air
* Scheduled off-air (excluding annual maintenance)
* Scheduled annual maintenance.

1-2



Recent-year station reliability data was used to determine average durations for the above off-

air conditions. From these data, network reliability factors are derived using operational con-

straints governing concurrent off-air conditions.

1.2 OBJECTIVE

The objective of this memorandum is to describe two refinements of the System Avail-

ability Model which extend the model's applicability and serve to enhance its implementation

via the Performance Assessment and Coverage Evaluation (PACE) workstation/tool. These re-

finements include:

(1) Extension of the System Availability (PsA) algorithm to apply at the cell/re-
gion level

(2) Incorporating the random behavior of propagated signals and local atmo-
spheric noise into the PSA algorithm

The analytical basis for these refinements is to be developed using the probabilistic for-

malism of the the PSA model. Specific assumptions and definitions of refined model parameters

required by PACE should also be addressed. Recommendations should be made concerning

how the refinements are to be integrated into PACE, e.g., as a replacement or alternative pro-

cessing mode.

1.3 APPROACH

The System Availability Model is very general and applies at any level of spatial defini-

tion. The original development (Ref. 1), however, stressed global averaging, since only global

coverage elements were available as a database to test hypothetical system options. In develop-

ing a refined algorithm for spatial calculations of PsA, the approach used herein focuses on cal-
culation of PSA at the cell/multi-cell level. This algorithm is designed to minimize processing

time, since it is to be frequently called within the overall PACE operation.

As noted in Section 1.1, the original system availability model treated coverage data as

O deterministic, i.e:, signal and noise parameters (at a given time) are always as predicted. In fact,
it is well-known that signals and, especially, noise vary randomly when observed in a narrow

1-3



0
bandwidth over similar temporal periods. As a result, signal and noise levels as detected by an
Omega receiver are considered in Chapter 3 of this report as random variables in treating SNR
coverage data. This random variation is incorporated into the probabilistic structure of the sys-
tem availability model. Distribution functions with appropriate parameters are selected to rep-
resent the random variations of signal and noise levels. The signal and noise distribution param-
eters are determined as a function of space and time. Although intrinsically more complex than
the deterministic case, the modified algorithm provides much more accurate and realistic fig-
ures for system availability.

1.4 REPORT OVERVIEW

Refinement of the system availability algorithm to calculate PSA at the cell/multi-cell lev-

el is described in Chapter 2. Specific assumptions concerning the model/algorithm necessary
for PACE implementation are also provided in this chapter. A procedure for efficiently comput-
ing PSA at the cell level is presented along with an interpolation method for computing PSA at
any given month.

Chapter 3 describes the PSA model refinements required to incorporate random levels of
signal and noise into the probabilistic model structure. From a very simple model of Omega
receiver signal processing in the presence of noise, a theoretical description of the local

coverage elements is obtained in terms of SNR probability distributions. Probability density
functions describing signal and noise levels are presented together with the time- and path-de-
pendent distribution parameters. Recommended methods of implementing the enhanced algo-
rithm are discussed.

Appendix A presents the detailed mathematical structure of the original system avail-
ability model. Appendix B briefly explains the method for computing VLF .signal amplitude
standard deviation. Approximations to the enhanced PSA algorithm (incorporating random sig-
nal and noise level variations) are contained in Appendix C.

0
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2. CALCULATION OF PSA AT THE CELL/MULTI-CELL LEVEL

This chapter explains how the original system availability algorithm is modified to com-

pute PSA at the cell and multi-cell level. Section 2.1 discusses specific assumptions regarding

the receiver and station reliability/availability sub-models. In Section 2.2, types of time averag-

ing are described which will be used when the algorithm is integrated into the Performance

Assessment and Coverage Evaluation (PACE) software. Section 2.3 describes an efficient

method for computing PSA at the cell level and Section 2.4 develops a technique to compute PSA

for any month using interpolated coverage data. Finally, the chapter is summarized in

Section 2.5.

2.1 RECEIVER AND STATION RELIABILITY/AVAILABILITY SUB-MODELS

2.1.1 Receiver Reliability/Availability Sub-model

In its most general form, the system availability index, PSA, is given by

1SA = N ni PR, PA, (2.1-1)

where: ni = number of receivers of class i (i=1,2,...,n)

n= number of receiver classes

N = total number of receivers = ni
i--1

PR, = reliability/availability for a class i receiver

PA, = probability that three or more usable signals are
accessible by a class receiver.

The probability that a receiver is functioning properly, PR,, can be expressed in terms of the

MTBF (mean time between failure) and the MTR (mean time to repair) as explained in Ref. 1.. It is clear that the reliability/availability probability depends on the receiver class but the depen-

dence of PA, on receiver class is not so obvious. The relationship is linked through the coverage
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elements (on which PA, depends) which depend on the specific signal access criteria employed

for assigning/defining coverage. One of the signal access criteria specifies a threshold for SNR

which is based on the receiver sensitivity and other parameters. Since these receiver parameters

are roughly the same for a given receiver class, the SNR threshold criterion may be keyed to re-

ceiver class.

Because PACE applications will not be concerned with multiple receiver classes, PR, is

constant, and therefore independent of receiver class i. Thus, PA, is also independent of i and

Eq. (2.1-1) becomes

PSA = PRPA

Moreover, since there is no meaningful "average" reliability/availability figure which is valid

for all receiver classes, PR will be set to 1. Hence

PSA = PA

2.1.2 Station Reliability/Availability Sub-model

In the original system availability model (Ref. 1), station off-air events are treated as ran-

dom variables, both in terms of event onset time and duration. The station reliability/availability

sub-model defined two types of off-airs: unscheduled and scheduled. Unscheduled off-airs oc-

cur as a result of unforeseen circumstances - usually equipment failures. At the beginning of a

month, the occurrence probability of an unscheduled off-air is essentially uniform over the

month although it differs for each station. Consequently, compilations of monthly total off-air

statistics are available as a function of station. Scheduled off-airs are planned conditions under

which signal generation temporarily ceases. An important class of these events is the annual

maintenance off-air for each station. A station's annual maintenance occurs in a specific month,

unique to that .station, and generally includes maintenance/repair work which is not urgent.

Since users are usually notified of these annual maintenance periods well in advance, the occur-

rence time and duration of these events may be considered deterministic. Advance notice of

other types of scheduled off-airs (a few days to two weeks) is such that these events may be con-

sidered random to a user at the beginning of a month (basic time interval over which off-air

probabilities are defined). Although these types of scheduled off-airs and unscheduled off-airs

are both random, they differ in an important way, as noted below.

The station reliability sub-model defines certain relationships between unscheduled and

scheduled off-air events at the same or different stations based on intrinsic definitions and
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operational practice. The occurrence of an unscheduled off-air at a station is independent of the
occurrence of an unscheduled or scheduled event at any other station. However, unscheduled
and scheduled off-air events at the same station are exclusive, i.e., they cannot occur at the
same time. Because of Omega system operational/management policy, scheduled off-air events
at the same or different stations are not independent, i.e., they are excluded from simultaneous

occurrence.

For PACE, it is assumed that the unscheduled off-air probability is 0.001 for all stations

and months. Using the notation introduced in developing the system availability model (Ref. 1),
this requirement is expressed

P(T) = 0.001 ; i= 1,2,...,8

The scheduled off-air (excluding annual maintenance) event probabilities are assumed to be

station-specific but are the same for each month of the year (all off-air probabilities are as-

sumed independent of year). These values are obtained by averaging observed scheduled off-air. times (excluding annual maintenance) over three recent years (data obtained from Ref. 2) for

each station. Scheduled off-air probabilities for annual maintenance are computed by averaging

the off-air times for each station's maintenance month over three recent years (Ref. 2). The re-
sulting data is shown in Table 2.1-1. In this table, the first entry is the fixed unscheduled off-air

event probability, the second is the scheduled off-air (excluding annual maintenance) event
probability, and the third is the scheduled annual maintenance off-air event probability. Note

that the default scheduled off-air (excluding annual maintenance) event probability is specified

even for the months corresponding to a station's annual maintenance. This is because a sched-

uled off-air event (with a few days advance notice) may occur during the month, before or after

the annual maintenance period with approximately the same relative probability as during the

other months. Unscheduled off-air events at one or more stations may also occur, but scheduled

events differ probabilistically in that they are never concurrent.
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Table 2.1-1 Station Reliability/Availability Parameters for PACE

A B C D E F G H

JAN .00100 .00100 .00100 .00100 .C0100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

FEB .00100 .00100 .00100 .00100 .00100 .00100 .00100 ..00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .34569 .00000 .00000 .00000 .00000 .00000 .00000

MAR .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .00000 .20511 .00000 .00000

APR .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

MAY .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

JUN .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .28628 .00000 .00000 .00000 .00000 .00000

JUL .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .07895 .00000 .00000 .00000 .00000

AUG .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.11057 .00000 .00000 .00000 .00000 .00000 .00000 .00000

SEP .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .61490 .00000 .00000 .00000

OCT .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .00000 .00000 .00000 .32515

NOV .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .00000 .00000 .01726 .00000

DEC .00100 .00100 .00100 .00100 .00100 .00100 .00100 .00100
.00269 .00037 .03604 .00024 .00163 .00030 .00061 .00005
.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
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2.2 TIME AVERAGING IN PSA CALCULATIONS

The assumption that PR = 1 for PACE and thus PSA = PA is addressed in Section 2.1. By

definition, PA = P(X 3) where X 3 is the event that three or more station signals are accessible at

any given location (cell)/time. It is shown in Appendix A that

P(X3) = P(X3IBo)P(Bo) + P(X31Bi)P(Bi) + P(XA1 )P(Bj)

+ P(XAIBijk)P(Bijk) + P(X3/Bijd)P(Bijk)

+ P(X3/Bijklm)P(Bijklrn) (2.2-1)

where Bjk... is the event that stations i,j,k,... are off-air and the summation convention* is used

to simplify the notation. Each term in Eq. 2.2-1 contains two factors: the first, which may be

written Qij.., is called the coverage element, and the second, written as Rij..., is known as the

network reliability factor. Symbolically, Eq. 2.2-1 may be written

P(X 3) = Q, Ro + Q, Ri + Qij Rij + ...OThus, each term, in the expression for PA is separated into a factor (Q) which depends only on

signal coverage and a factor (R) which depends only on station reliability.

Since the signal coverage database specifies coverage in terms of hour and month

(Ref. 1, Appendix C), Q depends on time through these two parameters. In passing, it should be

noted that signal coverage databases do not specify coverage at all hours/months. PACE, how-

ever, will employ a database which provides coverage at 24 hours and four months (February,

May, August, and November). Extension of the coverage information to twelve months is ad-

dressed in Section 2.4. Since station reliability is provided on a monthly basis, R depends on

time through the numerical equivalent of the month. In general, R also depends on year, but

PACE assumes year-independent station reliability statistics, so that R is also year-independent.

Hence, in terms of PACE implementation, PSA depends on time through:
* Month (01 - 12, independent of year)

* Hour (01 - 24, for any given day of the specified month)

As noted in Chapter 1, PSA is a probabilistic measure, and thus cannot be specified on

time scales smaller than a month (for one or more hours). For example, Q0(FEB,0100) is the

*This convention states that a repeated index in any of the factors making up a given term.indicates summation over understood limits. In Eq. 2.2-1, the B's are invariant under all
interchanges of indices, all indices are. distinct, and only the unique index combinations
are included in the sum i.e. if B123 is included in the sum, B1 32 is excluded. All indices
are summed from one to eight, subject to the stated conditions.
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probability that three or more stations cover a specified cell on any given day in February at

0100 UT, given that no stations are off-air. For a fixed month, Q0 or PSA could be averaged over

all (or a sub-group of) 24 hours, or other statistics could be computed, e.g.,

24
PSA(FEB) = (1/24) 1 PsA(FEB,h) (2.2-2a)

h=1

PSA (FEB) = MAXb2 [PsA(FEB,h)] (2.2-2b)

PSA" (FEB) = MINh [PSA(FEB,h)1 (2.2-2c)

Assuming that PSA can be computed for any month (see Section 2.4),a year-averaged PsA may

be specified in several ways. For example, the hour could be fixed and averages could be taken
over twelve months. If this procedure is followed for each hour, 24 numbers result which can be
treated as indicated above (average, maximum, minimum). The average is clearly the same as if

an expression like Eq. 2.2-2a were averaged over twelve months, since averaging is a linear op-

eration. However, maximum and minimum operations do not commute with the averaging op-
eration, so that, for example, the maximum of the 24 month-averaged hourly values is not the

same as the average value of an expression like Eq. 2.2-2b over all months. However, the maxi-
mum of an expression like Eq. 2.2-2b over all months gives the "best" case (maximum PsA) and
the corresponding minimum of an expression like Eq. 2.2-2c over all months gives the "worst"

case. In any case, the year-averaged value of PSA, averaged over both hour and month is
12 _

(PSA)year (1/12) PA(m)
m=1

where, in general, P-A (m) is given by
N,

PSA(m) = (1/Nh) PA(hi)

and Nh is the number of hours to be included in the average (default Nh = 24).

0
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2.3 EFFICIENT COMPUTATIONAL PROCEDURE FOR PA

2.3.1 Direct Calculation of PA

As discussed above, for the specific receiver reliability/availability sub-model considered

by PACE,

PSA = PA = P(X 3) = QoRo + QjR + QijRij + QijkRujk + Qijk]Rijdk + QjkjmRijkdm (2.3-1)

where, again, the repeated index summation convention is used, the indices are distinct and only
unique combinations of indices are used in the sums. The factor Rijk... is the network reliability
factor for the specific case in which stations i, j, k, ...are off-air and all other stations are on-air
(the subscript 0 means that no stations are off-air).

For a single cell, the Q's are known as local coverage elements, which depend only on the
signal coverage for the given cell. For deterministic coverage elements, the Q's are binary-
valued, i.e., 0 or 1, depending on the station signals accessible to the cell and the stations on-air.

This can be written
O -* -"

Qijk... = 1 if Vc.Vo k 3

= 0 otherwise

where the eight elements of the coverage vector V, are 0 or 1 depending on whether or not a sta-

tion signal covers the cell and the dot indicates inner product; on-air vector Vo has elements

(Vo)a (1 - 6ai) (1 - da) (1 - 6ak)...

where 6 is the Kronecker delta function.

As an example, suppose a cell is covered at a given time by signals from stations A (Nor-
way), C (Hawaii), F (Argentina), G (Australia), and H (Japan). Thus, the coverage vector may

be written, (10100111). From the definition of Qijk... as the probability that three or more sta-
tion signals are accessible given that stations i, j, k... are off-air, several local coverage elements
are evaluated below to illustrate this example:

QO(10100111) = 1 ; 03(10100111) = 1; Q67(10100111)-1

Q245(10100111) = 1 ; Q138(10100111) - 0 ; Q12345(10100111) = 1

The total number of possible coverage elements/network reliability factors is simply the number
of terms in Eq. 2.3-1. Clearly, there is one Q, R term and eight Q Ri terms (i = 1,2,3,...8). The
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number of Qij Rij terms is just the number of ways that 8 station signals can be chosen two at a

time (28). In this way, the total number of terms in Eq. 2.3-1 is the sum of the combinatorials,

(8) + [8) + (8) + [3J + (J + (=219
Note that, for local coverage elements at the cell level, the cell weight does not enter the calcula-

tion for PA, since the weighting is normalized.

For multi-celled regions (which may include the entire globe), the calculation of PA for

each cell comprising the region is the same as above, except that a weighted average is taken.

Thus,

PSA = PA = P(X 3) =< WPA, >

where wi is the relative (normalized) weight assigned to cell i, PA, is the quantity P(X3) for cell i,

and the angle brackets, <>, indicate averaging over the cells (indexed by i) in the multi-cell re-
gion. These weights (which are conveniently specified between 0 and 10) indicate the relative

importance of a cell to Omega usage. This could be measured by the number of users transiting,

or located within, the cell region in a given time period, or by the strategic importance of the

geographic region. For the purposes of PACE, the cell is a region of approximately 10 deg. (lati-
tude) X 10 deg. (longitude, near the equator) in size. Since longitude intervals shrink in size as

one progresses poleward, the cell definition correspondingly changes to maintain constant cell
size (see Table 2.3-1). A sample weighting structure for U.S. civil users in a portion of the North
Atlantic region is shown in Fig. 2.3-1.

As noted above, calculation of PSA for a single cell involves an evaluation of 219 terms,

each term a product of Q and R factors. Given a coverage vector, as defined above, calculation

of the Q-factor is almost trivial. Calculation of the corresponding R-factor, however, is much
more complex (see Appendix A of Ref. 1). Thus, computations of PSA for regions containing
more than a few cells may require an inconveniently long processing time on the machines tar-

geted for PACE utilization. As a result, a method has been developed which considerably short-
ens the processing time for computing PSA during PACE operation.

2.3.2 Pre-computation of PA

In the direct procedure for a single cell described above, the Q-factors are computed as a

function of the input coverage vector/set. In a pre-computational procedure, the Q's are
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Figure 2.3-1 Example of Regional Weighting: Omega Civil Use

Table 2.3-1 Latitude/Longitude Dimensions of Cells in Grid Structure
for Signal Coverage Database (Matrix Format)

LATITUDE LATITUDE LONGITUDE NUMBER OF
RANGE* DIMENSION DIMENSION CELLS IN BOTHOF CELL OF CELL HEMISPHERES

00 to 400 100 100 288

400 to 600 100 150 96

600 to 750 150 150 48

750 to 900 150 600 12

TOTAL NUMBER OF CELLS = 444

Same for northern and southern hemisphere

computed for allpossible coverage sets. Since they do not depend on coverage, the corresponding
R-factors are the same for each coverage set. As shown above, calculation of PA for a given cover-. age set requires the evaluation of 219 terms.The total number of possible coverage sets/vectors
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with three or more station signals is just the number of combinations of 8 station signals taken

three at a time, four at a time, etc. Thus, the total number of possible coverage sets is

(] + () + (] + () + (] + ( 1

This is the same as the number of coverage elements because of the symmetry of the
combinatorials,

Since there are 219 possible coverage sets (with a minimum 3-station coverage), pre-computa-
tion of 219 X 219 terms is required. The result is a vector of 219 PA values corresponding to the
219 coverage sets. Since all possible coverage sets are included, no time input is required for the
coverage part of the PA calculation. However, since the network reliability factors, R, depend on
month, the PA vector is also a function of month. Hence, pre-computation and storage of 12 PA

vectors of length 219 is required for the PSA computation in PACE. In the operational mode for

a given cell, the month input determines the appropriate PA vector and the hour/month input to-
gether determines the coverage set which indexes the corresponding element of the vector.
Thus, determination of PA is reduced from a lengthy calculation to a short search.

Because the coverage database specifies coverage for only four specific months (FEB,
MAY, AUG, NOV), whereas R is defined for all 12 months, a problem arises in computing PSA

for any of the eight months for which coverage is not specified. This problem is addressed in

Section 2.4.

2.4 CALCULATION OF PA OVER 12 MONTHS

Omega signal propagation is well-known to be a sensitive function of time - especially
over a diurnal period. Consequently, the new coverage database specifies signal coverage
parameters at eacl-! of the 24 hours. Although the day-to-day time dependence of signal propa-
gation is small enough to be ignored, month-to-month variations must be included in coverage
calculations. However, these monthly variations are still smaller than hour-to-hour changes, so
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that coverage calculations are made over the full 24-hour diurnal scale but only over four

months on the monthly scale. As a result, the coverage database includes coverage parameters

for only four months of the year. The coverage months are chosen so as not to include equi-

noxes or solstices and are spaced so that each lies between two "non-coverage" months.

Because rapid variations in coverage are not expected between coverage months, linear

interpolation of coverage parameters between these months should introdue negligible error.

As an example, consider the interpolation of SNR at hour 0100 UT in March:

SNR(01,MAR) = (2-SNR(01,FEB) + SNR(01,MAY))/3

This linear interpolation should be carried out with SNR in logarithmic (dB) units since SNR is

approximately lognormally distributed (see Chapter 3). Two signal coverage parameters are

needed to determine whether or not a signal is modal (not dominated by Mode 1): signal phase

deviation (from the dominant mode) and dominant mode number. Signal phase deviation is lin-

early interpolated in a similar fashion to SNR (except that logarithmic quantities are not used).

Dominant mode number (not susceptible to linear interpolation) is properly interpolated using. the following (conservative) voting scheme:

Dncm = MAX(Dpcm,Dcm)

where Dncm is the dominant mode number for the non-coverage month, and Dpcm, Dfcm are the

dominant mode numbers for the preceding and following coverage months, respectively. With

this information, the signal for the non-coverage month (at a given hour) is specified as modal if:

Interpolated phase deviation > threshold (e.g., 20 cecs)
OR

Dncm > 1

Long-path coverage parameters are determined as ratios of long-path and short-path SNR val-

ues which are-interpolated as discussed above. Interpolation of other coverage parameters is not

required.

2.5 SUMMARY

Calculation of PSA at the cell and multi-cell level is reviewed in this chapter. Specific as-

sumptions required for PACE implementation are outlined, including Omega receiver/station

reliability/availability sub-model parameters and time averaging procedures. A method for
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computing PSA is developed which uses pre-computed data to minimize the processing time re-

quired for PACE operation. Finally, a procedure is outlined for computing PSA over 12 months

by properly interpolating signal coverage parameters.
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3. REVISION OF THE SYSTEM AVAILABILITY MODEL
TO INCLUDE RANDOM SIGNAL/NOISE BEHAVIOR

This chapter traces the modification of the system availability model required for the
treatment of signal and noise levels as random variables. Section 3.1 presents a simple model of

Omega receiver signal processing in the presence of noise to provide a basis for determining the

probability of coverage based on SNR. The SNR coverage data is reinterpreted on a statistical

basis in Section 3.2. Section 3.3 develops the theoretical dependence of the local coverage ele-

ments on the probability distributions of signal and noise deviations. Section 3.4 describes the

form and parameters of the distributions selected to describe the signal and noise level varia-

tions. The final expression for PSA in terms of the selected distribution parameters is given in

Section 3.5. Finally, the chapter is summarized in Section 3.6.

. 3.1 OMEGA RECEIVER SIGNAL PROCESSING IN THE PRESENCE OF NOISE

Once synchronized, a typical Omega receiver tracks (or attempts to track) all eight Omega
station signals at one or more frequencies. At any given time, many of these signals are not us-

able, due to dominance by higher-order modes, dominance by long-path signals, low SNR, etc.

In conventional usage, the SNR is defined as either the ratio of the signal power to the

noise power or the square root of this ratio. In the latter case, both signal and noise have the di-
mensions of electric field strength. For a harmonically varying signal with no dispersion, the

electric field strength (at a given time) is expressed in terms of its amplitude (and phase). Nar-

rowband noise, however, consists of a group of electric fields (wave packet) with slightly differ-

ent frequencies, amplitudes, and phases. A single '"amplitude" is not an appropriate character-
ization of the noise. Consequently, an "envelope" amplitude is defined (Ref. 3) for a narrow-

band VLF noise process which, in the limit of "zero" bandwidth, reverts to the customary defi-
nition of signal amplitude. In the following development, the terms "noise level" or "noise am-

plitude" will be used as shorthand notation for the noise envelope amplitude.

Ideally, the receiver's navigation filter will only process those signals which are domi-

nated by the short-path Mode I component and which exceed a certain minimum phase

3-I



stability/SNR. In most receivers, the SNR is derived from the stochastic fluctuations of the re-

ceived signal phase (perturbed by noise), whereas the modal and long-path/short-path informa-

tion are obtained from external sources (e.g., coverage diagrams). The signals from different

stations are generally received on widely separated paths, and their random variations are as-

sumed independent. The "natural" time unit over which received signal and noise level varia-

tions are defined is the receiver time constant (approximately 1 - 5 minutes). This signal inde-

pendence assumption is supported by the following points:

" The signal propagation environments on widely separated paths are suffi-
ciently different to produce independent signal level variations

" Paths with small azimuthal separation are generally rejected by the naviga-
tion filter because they can produce large position errors

* Paths with small azimuthal separation which are accepted by the navigation
filter (e.g., because no other signals are available) have common propaga-
tion environments only between the receiver and the closer transmitting sta-
tion; the remaining portion of the path (to the farther transmitting station)
increases the independence of the two paths.

Although the propagated signal level variations are independent, the noise level accom-

panying each station signal processed is approximately the same because:

" All signals are processed over approximately the same time period (time
constant)

" VLF electromagnetic noise is primarily the result of propagated VLF electro-
magnetic energy from lightning discharges. Although individually impulsive,
when the noise levels from these events are aggregated and time-averaged
over 1-5 minutes (typical receiver time constants), the "observed" noise level
is found to vary little over an hour (Ref. 3).

Thus, for the purposes of characterizing random signal and noise variations for the probabilistic

system availability model, an Omega receiver processes independent station signals corrupted

by a common noise level/variation.

3.2 RANDOM SIGNAL/NOISE VARIATIONS AND SIGNAL COVERAGE DATA

In Section 3.1, a simple model is described for reception and processing of Omega signals

subject to random variations in the presence of randomly varying noise. In terms of coverage pa-

rameters, it is clear that this model applies directly to the SNR of a given station signal at a
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specified location (cell)/time. One of the coverage parameters governing modal interference, sig-

nal phase deviation, deals strictly with the propagated signal (exclusive of noise), and although it

probably has some random variation, its variation is neglected in this application because:

* From its definition, phase deviation must have a random variation which
is the difference between the random variation of the Mode I phase and
the random variation in the phasor sum of all modes; this difference in ran-
dom variations is probably a second-order quantity which can be neglected

0 No known reliable data exists for the distribution parameters of phase devi-
ation due to the difficulty in isolating the uncertainties of Mode 1 phase
prediction (usually due to uncertainties in the path ground/ionosphere envi-
ronment) from the random variations in the higher-mode phase.

Also describing modal interference is the dominant mode number, a noise-independent param-

eter whose statistical distribution is unknown. The long-path coverage parameter is a ratio of

long-path to short-path SNR, or, equivalently, a ratio of the corresponding amplitudes (since the

noise is common). Thus, the statistics governing this parameter arise from the difference in the. signal variations over the short- and long-paths which is generally expected to be no larger than

the variation over a single (short) path.

As a result of the above discussion, only the SNR coverage parameter has statistical vari-

ations which are sufficiently large and well-defined to be incorporated into the PSA algorithm.

Thus, only the random variations of signal and noise levels as characterized by the SNR are con-

sidered herein.

When treated as a deterministic quantity, SNR is computed simply as the difference (in

dB) between the signal amplitude and noise level provided by the coverage database (for a given

hour/month). When signal and noise levels are modeled as random quantities, the "determinis-

tic" SNR referred to above is interpreted as a difference between the mean value of the signal

amplitude (9) and the median value of the noise level (if). Here, the statistics are taken over the

ensemble of days at a fixed hour/month. If the lower-bound SNR threshold is -20 dB, then a de-

terministic treatment would define a signal with SNR (9- if) of -19 dB (and all other coverage

parameters acceptable) as "accessible to" or "covering" a cell, whereas a signal with a SNR of

-21 dB would not cover the cell. When the signal and noise levels, are statistically defined (over a. sufficiently wide range of values), there is always a finite probability that the SNR will exceed

the threshold value of -20 dB.
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These concepts are best illustrated by an example. Suppose the coverage information

given in Table 3.2-1 is provided for a given hour/month/cell. The table lists the three principal

coverage parameters (others, e.g., path-terminator crossing angle, are assumed acceptable) and

the corresponding criteria/thresholds. The table shows that the signal from: station B is modal

(due to both large phase deviation and higher-mode dominance), station D is modal (due to both

large phase deviation and higher-mode dominance in the near-field), station E is long-path, and

station F is modal (due to large phase deviation only). This leaves station signals A, C, G, and H

as "potentially" covering signals since they contain no intrinsic "self-interference" effect which

would exclude them from coverage. For these reasons, signals A, C, G,.H (corresponding to Vc

(10100011)) make up what is known as the maximal coverage set.

Table 3.2-1 Cell Coverage Example

COVERAGE PARAMETERS
CRITERIA/THRESHOLD

SNR MODAL CONDITION LONG-PATH/SHORT-PATH
STATION S-nf (Phs. Dev./Dom.. Mode) (SNR RATIO IN dB)
SIGNALS > -20 dB < 20 cecs/Mode 1 < -3 dB

A -25 dB 15 cecs/Mode 1 -85 dB

B -11 dB 24 cecs/Mode 2 -09 dB

C +10 dB 03 cecs/Mode 1 -122 dB

D +45 dB 61 cecs/Mode 3 -156 dB

E -16 dB 13 cecs/Mode 1 +22 dB

F -22 dB 35 cecs/Mode 1 -93 dB

G -10 dB 08 cecs/Mode 1 -88 dB

H -15 dB 11 cecs/Mode 1 -52 dB

3.3 DEPENDENCE OF LOCAL COVERAGE ELEMENTS ON SIGNAL/NOISE
DISTRIBUTIONS

As noted above, the local coverage elements (Q's) for the deterministic coverage case

are just 0 or 1, depending on the coverage data/criteria. For the case of random signal ard noise

levels, the Q's, which are conditional probabilities lie between 0 and 1 depending on the param-

eters of the signal and noise distributions.
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To illustrate how this calculation proceeds, it is convenient to use the example given in

Table 3.2-1. In that case, the maximal coverage set is {1,3,7,8}. The coverage element Q0 always
includes the maximal coverage set, so calculation of this quantity will be considered first. De-
fine the events Ai and A as follows:

A4 _= event that Si/N > - 20dB ; event that Si/N < - 20dB

where Si is the signal level from station i and N is the noise level in a 100 Hz BW about the signal

frequency. With these definitions, Q0 is written

Qo = P[A 1A3 A7  + AIA 3A-A 8 + A1A3A7A8 + X 1A3A7A8 + A1A3A7A8]

(3.3-1)

In this expression (and all succeeding development), a product of events implies set intersection

and a sum means set union. Thus, Q0 is the probability of the union of five events (terms), each
of which is the intersection of four individual events. It is important to note that each of the
event terms in brackets above are mutually exclusive. Because of this property, Eq. 3.3-1 can beO written

w0 = P(A 1A3A7 ,7k8) + P(A1 A3A7A8) + P(A1X 3A7A8)

+ P(A1A3A7A8) + P(AIA 3A7A8) (3.3-2)

The five probability terms in this expression cannot be further simplified because the A-events
are not independent. The mutual dependence is due to the common noise processed with each
measurement of signal (plus noise).

Calculation of the probability terms in Eq. 3.3-2 is best understood by first considering
the probability of the single event Ai. From the definition of the event Ai, P(Ai) is a distribution
function which is defined over a probability density function PR, (x), which is the probability that
the station i SNR (denoted by R) lies between x and x+dx, i.e.

P(Ai) f dx PR(X) (3.3-3)

-20dB

As explained in Section 3.4, it is convenient to define Si and N in logarithmic units so that the

SNR (R) for station signal i is Si-N. The probability density function for R is expressed in terms
of the joint probability density function of Si and N subject to the constraint that R, = Si-N.
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Moreover, the two-dimensional density function of si and n must be integrated over the space in
which si-n = xi, i.e., all possible si and n which yield a particular SNR value xi. Finally, since Si
and N are independent random variables, the SNR density function may be written

PR,(Xi) f J dn ps(n + xi) pN¢(n) (3.3-4)

In this relation, ps, is the probability density function for the signal from station i and PN is the

probability density function for the common noise level. It must be emphasized that the random
variable N here is a sample of the envelope amplitude of the noise in a narrow post-processing
bandwidth (where Si > N) and not a sample of the noise process in a pre-detection bandwidth of
typically 100 Hz (see Section 3.4). Thus, although SNR thresholds are quoted in terms of a
100 Hz bandwidth for reference, the model actually applies to much narrower bandwidths.

Substituting Eq. 3.3-4b into Eq. 3.3-3 yields the expression for P(Ai) in terms of the indi-
vidual signal and noise level probability density functions, i.e.,

W0 -+00

P(A4) f dxi f dn ps,(n + xi) pN(n) (3.3-5)

-20 - a

The probability of the complementary event, P(Aj), is the same as the expression above, except
that the integration over xi is from minus infinity to -20 (dB). The joint distribution function for
two received signals is expressed in a similar way, i.e.

P(AiA.) = dxi f dx f dn p,(n + xi) p(n + xj) pN(n)

-20 -20 -W

As mentioned above, substitution of the complementary event (e.g., N) for the primary event

(e.g., Ai) requires that the limits of integration are changed from -20 to plus infinity to minus in-
finity to -20. From the above, one easily extrapolates to the general case for the probability that
the SNR is above threshold (-20dB) for each of m signals is

OD 00 W0 + CI

P(AiAj...Am) f dxj f dxj ... f dxm f dn p,(n + xi) p,(n + x).. (3.3-6)
-20 -20 -20 -0

... ps,.(n + Xm) pN(n)
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Note that this form shows explicitly the mutual independence of the random variations in the

amplitudes of signals i, j,..., m as well as the independence of the variations in the signal and

noise levels.

The general form (Eq.3.3-6) is used for computing the individual terms for Qo in

Eq. 3.3-2. The higher-order coverage elements (which appear in the expression for P(X 3)) are
more numerous but generally involve fewer station signals. For illustration, some higher-order

Q's for the example in Table 3.2-1 are given as:

Q, = P(A3A7Ag) =Q12 = Q12456

Q3 = P(A1A7As) ; Q7 = P(AIA 3A8 )

Q2 = Q4 = Qs = Q6 = Q24 = Q56 = Q2456 = Qo

Q13 = Q37 = Q78 = Q137 = Q37 = 0

3.4 SELECTED SIGNAL AND NOISE LEVEL DISTRIBUTIONS

3.4.1 Probability Density Functions for Signal and Noise Level Variations

In Section 3.1, atmospheric VLF noise level measurements integrated over a typical

Omega receiver time constant (1-5 minutes) are characterized by small changes over the period

of an hour (Ref. 3). Because the noise at a given location is primarily due to propagated VLF

energy from lightning discharges, its level depends mostly on hour of the day (characteristic of
VLF propagation) and season (governs location and source of thunderstorms). Atmospheric

noise data compiled by CCIR (Ref. 3) specifies noise levels as median values of hourly data tak-

en over the approximately 90 four-hour time blocks in each 3-month (seasonal) period of the

year. In this work, deviations of the measurements about the median values are expressed as up-
per and lower deciles. An alternative approach to computing noise levels (Ref. 4) results in

noise data which is averaged over the days in a month for a fixed hour. Corresponding upper

and lower deciles are also derived in this approach to furnish a measure of the variation in the

day-to-day noise levels. Year-to-year variations in the month-averaged (or 3-month-averaged)

noise levels are provided in both types of approaches.

Narrowband electromagnetic noise from thermal sources can be characterized by an en-. velope amplitude which is Rayleigh distributed over an ensemble of short time-scale measure-

ments (Ref. 5). Atmospheric noise at VLF, however, is only partly due to thermal sources; the
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largest contributor is the lightning discharge which radiates a substantial fraction of its spectral

energy in the VLF band. This means that over short time scales, VLF noise is highly impulsive.

Over longer time scales (- several minutes), the impulsive component is smoothed considerably
and the envelope amplitudes are generally found to be lognormally distributed (Refs. 3-6).
Some models (Ref. 6) use two lognormal distributions - one below the median noise envelope
amplitude and one above the median. For the purposes of the system availability model, howev-

er, only a single lognormal distribution for VLF noise envelope amplitude will be used. The
mean value of this distribution will be assumed to coincide with the median day-to-day variation

(over a month) of the noise level at a given hour and the standard deviation includes both the
day-to-day variation (for a fixed hour) over a month and the year-to-year variation for the given
month. The lognormal probability density function for the envelope amplitude of the noise is
written

PN( /) 1 2 (3.4-1)

where aN and ff are the standard deviation and mean value, respectively, of the noise envelope
amplitude. The term "envelope" in this context means the narrowband VLF (centered on an*
Omega frequency) component of the relatively wideband noise sensed by the Omega receiver

antenna. For example, the composite signal

A(t) = A0 cos(wolt + 01) cos(W2t + 02)

(where o2>>W1) has an envelope given by Acos(wo t + 0 1) which defines, in a sense, the upper

and lower limits of the actual signal A(t). Eq. 3.4-1 differs from a normal probability density

function in that the noise argument, n, is expressed logarithmically (in dB). This means that the

distribution parameters (moments), aN and If, are also expressed logarithmically.

The VLF signal amplitude also varies randomly due to random variations in the signal

propagation environment, e.g., effective ionospheric reflection height. Measured over intervals

of time comparable to a receiver time constant (1-5 minutes), these variations are, like noise,
very small over a given hour but have a definite variation from day-to-day (over a month) at a

fixed hour. Measurements over a range of VLF frequencies indicate a lognormal distribution
for signal amplitude (Ref. 5), similar in form to the distribution of noise envelope amplitude
discussed above, i.e.

ps, , 2f l 9 / (3.4-2)
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where as, and 9 are the standard deviation and mean value, respectively, of the amplitude of

the signal from station i.

3.4.2 Signal and Noise Distribution Parameters

The mean values of the noise envelope amplitude are available as a function of frequen-

cy, geographic location, and time using either of the two approaches to VLF noise field predic-
tion mentioned in Section 3.4. 1. In the second approach (Ref. 4) which is based on propagation

of VLF energy from lightning discharges associated with thunderstorms, the mean noise is com-
puted in terms of frequency, location (latitude/longitude), and time (hour/month) for a fixed
noise bandwidth. Typical values range from 25-30 dB (relative to one microvolt/meter) under

polar winter conditions (far from thunderstorm activity) to 55-60 dB in certain equatorial re-
gions (within centers of thunderstorm activity). The standard deviation of noise level also de-
pends on the above quantities. Typical values of the standard deviation range from 2-4 dB (polar

regions) to 8-10 dB (equatorial regions).

The mean values of signal amplitude are assumed to be those signal amplitude predic-
tions supplied by the 24-hour/4-month/2-frequency database (Appendix C of Ref. 1). This as-
sumption is based on the premise that the signal coverage database contains no prediction bias
error (for signal amplitude); the validity of this assumption is not known. Some research
(Ref. 5) suggests that the standard deviation of the signal amplitude varies as the fourth root of

path length. Other studies (Refs. 7 and 8) indicate primary dependence of the standard devi-
ation on path illumination, season, and latitude. The algorithm associated with this latter work
(see Appendix B) will be used to determine the signal amplitude standard deviations needed to
compute the local coverage elements for the random signal/noise model.

3.5 Calculation of PSA for Selected Signal and Noise Distributions

Using the selected signal and noise distributions described in Section 3.4 (Eqs. 3.4-1,
3.4-2), the local coverage elements may be computed with repeated use of Eq. 3.3-6. This equa-
tion represents an (m+1)-fold integral which cannot, in general, be expressed in closed form (fi-. nite series of elementary functions). Numerical integration is possible but not practical for an

operational algorithm to compute PSA. By changing the order of integration 'in Eq. 3.3-6 and
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integrating over each of the SNR random variables, xi, the calculation is reduced to a single inte-

gral over noise. The result is
+m

P(AjA. ...Am) f Jdn (erfc(bin - ,)/2Xerfc(bjn - c)/2)... (3.5-1)

... (erfc(bmn - cm)/ 2 )pN(n)
where

bi 1 2 = 1,2,3 .... 8

ci= bj(§ -a) ; i = 1,2,3 .... 8

and PN(n) is given by Eq. 3.4-1. In Eq. 3.5-1, the constant "a" is the SNR threshold (e.g., -20
dB) and the function "erfc" is the complementary error function. Note that the mean amplitude
for signal i enters Eq. 3.5-1 through the variable c, and the standard deviation enters through
both bi and ci. The noise parameters enter through the expression for pN(n) (see Eq. 3.4-1).

Except for certain special cases, the integration indicated in Eq. 3.5-1 must be numeri-@
cally performed. Thus, in the example above, Q0, as expressed by Eq. 3.3-2, is the sum of five
terms, each of which is evaluated using Eq. 3.5-1 with m = 4. The higher-order Q's generally in-
volve fewer terms since fewer station signals are available. If the execution time required for
this algorithm (converted to code) is excessive, an approximate model may be used. In this
model (described further in Appendix C), the standard deviation of the signal amplitude (which
is nearly always smaller than the noise level standard deviation) shrinks to zero so that the sig-
nal level becomes deterministic while the noise level remains random. The deterministic signal
approximation results in a closed form expression for the distribution function, P(AjAj...Am),
thus greatly decreasing the expected execution time for the implemented algorithm.

3.6 SUMMARY

The system availability model/algorithm is extended to include random signal and noise

level variations which more realistically characterize the physical process of signal acquisition/

utilization. A simple model of Omega receiver signal processing in the presence of noise is used
as a basis for relating the coverage parameters to PSA. The model considers a process in which
multiple independent signals are processed together with common noise variations. The SNR is
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found to be the coverage parameter which best represents (in a statistical fashion) the random

variations in the signal and noise levels. A maximal coverage set is defined as those signals
which are (for a given time/location) short-path/Mode 1-dominated and whose path/terminator

angle is greater than a selected threshold. In other words, a maximal coverage set is the largest

set of signals whose accessibility is determined only by their SNR. With the basic receiver pro-

cessing model and the maximal coverage set, the local coverage elements are expressed as a lin-

ear combination of joint probability distribution functions of SNR. These joint distribution func-

tions are then written in terms of the independent signal and noise probability density functions.

Measurements and studies by various researchers indicate that random variations of both signal

and noise levels are lognormally distributed. The mean values of the signal amplitude distribu-

tion are assumed to be given by the signal coverage database (no bias error). The signal ampli-
tude standard deviations depend on the temporal and spatial characteristics of the path and are
provided by an algorithm based on historical measurements of VLF signal variations. Mean val-

ues and standard deviations of the noise envelope amplitude distributions are available from an

algorithm which computes the noise level (at a given location/time) as propagated VLF energy. from lightning discharges in thunderstorm centers throughout the world to the given location.

With the particular form of the signal and noise distributions selected, the joint SNR probability

distributions are computed as a single integral over noise, which must be evaluated numerically.
The local coverage elements (Q's) are calculated from the joint SNR probability distributions

and the Q's, together with the network reliability factors, determine PSA.

If the calculations specified by this algorithm require an execution time considered ex-
cessive for operational software (PACE) on the target machine, an approximate modellalgo-

rithm, in which the signal is deterministic and the noise is random (see Appendix C), may be

considered.
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4. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

4.1 Summary

This memorandum presents modifications. to the System Availability Model/Algorithm
(Ref. 1) which are intended to:

* Adapt the model to a matrix coverage display representation

* Streamline the algorithm for real-time operation on a suitable workstation
* Extend the model's range of application through appropriate assumptions

* Increase the model realism by introducing uncertainty in the expected signal
and noise levels.

The modified Psa algorithm will be the nucleus of a software package/workstation known as
Performance Assessment and Coverage Evaluation (PACE). PACE will access a matrix/cell-

based 24-hour/4-month/2-frequency signal coverage database in addition to a database contain-
ing median noise levels and uncertainties in both noise and signal levels. A much smaller data-
base of station reliability figures (unscheduled and scheduled) based on averages of recent-year
statistics will also be available to PACE.

Since PACE will access coverage data in a matrix/cell format, the Psa algorithm is tai-
lored for application at the cell/multi-cell level. Model assumptions and data defaults are speci-
fied for PACE implementation. An algorithm is developed for pre-computation of Psa at the cell
level, which will substantially improve the speed and efficiency of PACE operation. To expand
the coverage database to 12 months, an interpolation method is developed for each of the cover-

age parameters.

The system availability model is modified to incorporate the observed random behavior
of signal and noise levels into the signal coverage portion of the model. A simple model of sig-
nal processing by a "standard" Omega receiver in the presence of noise is formulated to relate
the known signal and noise variations external to the receiver to the parameters of coverage con-
tained in the database. The SNR is found to be the most appropriate coverage parameter to cap-

ture the random variation of signal amplitude and noise envelope amplitude. A theoretical treat-

nent -is developed to relate the local coverage elements to arbitrary signal and noise
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distributions. A search of the available VLF data/literature indicates that signal and noise varia-
tions are reasonably well described by a log normal distribution. A basic assumption is made

that the predicted signal amplitude (given by the database) is equal to the mean of the randomly
varying (true) amplitude. The veracity of this assumption (of negligible prediction bias error) is

unknown. The noise level median values and standard deviations are obtained from a compre-
hensive model of VLF electromagnetic energy propagated from lightning discharges occurring
in thunderstorm centers. Values of the standard deviation of signal amplitude are computed

from an approximate semi-empirical model/algorithm based on limited data samples. The ana-
lytical form for Psa is reduced to a single integral over the random noise variable, thus requiring

numerical integration for evaluation of the local coverage elements and Psa.

4.2 Conclusions

The methods developed here extend the range of application of the original system avail-
ability algorithm (e.g., interpolating coverage data over 12 months) and suggest new ways to in-
terpret/compute system performance (e.g., through judicious choice of Psa time-averaging

method). The result is a highly efficient procedure for real-time computation of Psa at the cell/
multi-cell level.

The modifications of the system availability model required for inclusion of random sig-
nal and noise level variations maintain the probabilistic structure of the model and are rigorous
within the context of a simple receiver processing model. The modified system availability mod-

el is structured to calculate Psa in terms of parameters of the assumed signal and noise level dis-
tributions and indirectly in terms of other coverage data. The assumed log normal form of the

distributions is reasonable, based on reported data from several sources. However, the accuracy
of the distribution parameters, in particular, the signal amplitude mean and standard deviation.
is not known. In any case, the structural integrity of the model is independent of the uncertainty
in the distribution parameters. Thus, predictions of Psa based on additional high-quality data
will require only a modification of the database, i.e., no model changes will be necessary.

4.3 Recommendations

Since the results of this work indicate that a rapid, efficient algorithm for computing Psa
can be readily implemented, it is recommended that the Psa algorithm for deterministic signal
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coverage parameters outlined in this memorandum be implemented as the basis for the PACE

software package/workstation. Specifically, the original system availability algorithm (Ref. 1)

should be modified to include the Psa pre-computation technique, as well as the 12-month cov-

erage interpolation scheme and time-averaging options given in Chapter 1. Certain assumed

data required for PACE, e.g., station reliability tables, should also be included in the algorithm.

It is also recommended that the algorithm for calculating Psa with random signal and
noise level variations, as described in this memorandum, be implemented so that numerical re-

sults can be obtained and compared. As part of the current effort, the algorithm should then be

tested for sensitivity of Psa to the magnitude of the signal and noise level standard deviations

over the range indicated by available standard deviation data. If the test indicates a significant
dependence of Psa on the magnitude of the signal/noise standard deviations, then the full ran-

dom signal/noise model/algorithm described in Chapter 3 should be retained.

If the sensitivity test described above shows no significant Psa dependence on the size of
the standard deviations, then three additional tests are suggested for future consideration:

(1) Execute the full random signal/noise algorithm for a fixed signal level stan-
dard deviation and a fixed noise level standard deviation using a set of
baseline scenarios

(2) Implement and execute the deterministic signal/random noise approxima-
tion of the full random signal/noise model described in Chapter 3 for the
same scenarios used in test (1)

(3) Execute the deterministic signal/noise algorithm described in Chapter 2 for
the same scenarios used in tests (1) and (2).

If all three tests yield similar results for Psa, then only the deterministic signal/noise model

should be implemented in the final version of PACE. If only tests (1) and (2) yield similar re-

sults, then the deterministic signal/random noise approximation introduced in Chapter 3 and in

Appendix C should be implemented in place of the full random signal/noise computation option

in PACE. Otherwise, fixed standard deviations for signal/noise should be used in the full ran-

dom signal/noise option in PACE.

If the three tests listed above do indicate that the full random signal and noise model al-

gorithm (with or without fixed standard deviations) must be used, then it is suggested that the
implemented algorithm be tested for execution speed. If execution times (for a range of scenar-. ios) prove excessive for operational use of PACE, then additional approximation techniques

(e.g., selective elimination of higher-order coverage elements) should be explored.
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APPENDIX A

ANALYTICAL DEVELOPMENT OF THE
SYSTEM AVAILABILITY MODEL

A.1 DEVELOPMENT OF THE SYSTEM AVAILABILITY INDEX

A.1.1 Derivation of Expression for PSA

The system availability index, PSA, is the probability that, for any location on the earth at

any time/time interval, an Omega user's receiver will be properly functioning and three or more

Omega signals can be effectively used for navigation. Expressed analytically, PSA is given very

generally as
[ nc

PSA I Z nPRPA, (A. 1-1)
N i=1

. where PR, probability that a receiver of class i is functioning normally and
being operated correctly; also termed "receiver reliability"

PA, probability that three or more usable signals are accessible by a
receiver of class i at any point on the earth's surface at any time/
time interval

ni -S number of receivers of class i currently in operation
nk,

N ni = total number of receivers in the classes assumed
'= 1

nc -number of receiver classes assumed.

Using a uniform failure interval and repair time model, it can be shown that the reliability for a
receiver of class i is

PR, = MTrRi

MTBF

where MTTRi = mean time to repair figure for receivers of class i

MTBF = mean time between failure figure for receivers of class i
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Since only very rough approximations to ni are known, PSA for a single receiver class (i.e., nc =

1) will generally be considered.

Let X3 be the event that three or more usable singles are available at a given point in tIme
and space, i.e.,

X3(9, 0, t) event that three or more usable signals are accessible to a point
(0, 0) on the earth's surface at time t

Event X3 depends on

* Signal coverage

* Transmitting station reliability.

A signal's coverage is not only a function of space and time but also depends on the signal ac-

cess criteria which define the usability of a signal. Thus, P(X3 ), the probability measure on event
X 3, depends on receiver class i through the signal coverage/access criteria which, in general,

change with different i.

PA is just the weighted average of P(X 3(0, 0, t)) over time and space, i.e.,

PA = 1N f t2f ' ' P(X 3(0, t))w(0, )R2 sin 0 dO do dt
NwT Jt, o JoE

where N, = J w(, 0,)R 2 sin 0 dO do

T = t2-tl

w(0, 0) = weight assigned to location(0, 0) based on user's geographic priority

RE = radius of earth

(0, 0) = conventional angular spherical coordinates.

If time is partitioned into two dimensions (e.g., hour and day), then the integration will usually

be carried out over day with hour fixed. In this case, T - 30 days, since longer time intervals
would involve signal coverage changes.
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X3 (0, 0. t) depends on which stations are on-air, in addition to the signal coverage depen-

dence on space and time. The following notation i.s introduced:

T --- event that station i is on-air (i=1,2,..8)

Ti - event that station i is off-air (i=1,2, ...8)

Bijk... event that only stations ij,k.,,, are concurrently off-air;
i,j,k,... = 1,2,...8 and all indices distinct.

The universe (all possible events) can then be formed as

8 8 8 8 8 8 8 8

U = B. + I B, + I L B, + +... Z I I I Bijklm + ... + B2345678
i=l i=1 j=i+l i=1 j=i+l k=j+l I=k+l m=l+1

Notice that the sums are over the possible combinations of indices, not permutations, since the

Bjk .. are symmetric under all possible interchanges of indices (i.e., it only matters which sta-
tions are off-air, not the order). This particular decomposition of the universe is used because. the events Bijk... are mutually exclusive. Now, by definition of the universe* (in the following, the

9, ,t dependence of X3 is suppressed)

X3U = X3

and

X3B3j, j2 ...ij.= 0

for m>5 since three or more signals cannot be available if more than five stations are concur-

rently off-air. Thus,

P(X3) = P (X3 U)

8 8 8 8 8 8= P(X 3 B0 + X3 B+ ... + X3 Bijklm)

i=1 i=1 j-i+1 k=j+l I=k*l m=+1

8 8 8 8 8 8

= P(X3 Bo) + ZP(X3 B)+... + I I I P(X3 Bijkm)
=1 i=1 j=i+l k=j+l I=k-I m=-1

*In operations with events, product implies set intersection and sum implies set union.
Thus, in set theor%, the universe is equivalent to the identity operator.
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where the last step follows because the Bi2 k... are all mutually exclusive." Writingeach of the

above terms in terms of conditional probabilities, i.e.,

P(X3 Bijk ...) - P(X3/Bijk...) P(Bjik...)•

yields

8 8 8
P(X 3) = P(X 3/B0 ) P(Bo) + ' P(X 3/Bi) P(B) + L L P(X 3/Bij) P(Bij)

i--I i=1 j=i+1

8 8 8 8 8
+ ... + I I Z 2 1 P(X3/Bijklm) P(Bijklm) (A.1-2)

i=1 j=i+l k=j+l I=k+l M=l+1

Since X3 = X3(0, 0, t), Eq. A. 1-2 expresses a local definition (in space and tinie) of PA. Thus,

the factor
P(X(O, 0, t)/Bijic..).

is a local coverage element (LCE). The second factor in each term in Eq. A.1-2, i.e.,

P(Bijk...)

is assumed approximately independent of time (up to a period of one month; see Section A.2)

and is called the network reliability factor (NRF). Space and time integration of iq.. A.1-1 gives

a relation of the same form but written as

88 8 8 8 8

PA = Q 0 o + XQ 1 R, +...+ 8 Qijcrn jklm
i~l i=1 j=i~l k-j~l l-k+l m-1+1

where
(t2 (2m MfQ1jL.. P(X3(O, 0, t)/Bjk...) w(O, 0) R2 sin e dO do dt

NWT K~ Jo Jo

*Events produced by intersections of one or more events with a set of mutually
exclusive events are also mutually exclusive.
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are called the global coverage elements (GCEs) and

Rijk... = P(Buk...)

are the NRFs.

PSA is then given by Eq. A. 1-1 in which the dependence on receiver class i is reflected

through the GCEs.

A.1.2 Derivation of Expressions for the NRFs

The scheduled and unscheduled off-air probabilities are defined by

T,- T', + r, i=1,2,....8

where

TEi - unscheduled off-air event for the i th station

ri M -scheduled off-air event for the ith station

and, by definition,

T,' r, = 0 i = 1,2,... . (A.1-3a)

Omega Navigation System operational doctrine bars the occurrence of concurrent scheduled
off-airs at two or more stations. Thus

r, r = 0 i,j = 1,2,....8 i j (A.1-3b)

Finally, the independence of an unscheduled off-air event at a given station from unscheduled/

scheduled off-air events at other stations is expressed as

P('Tl r. P(M ) P(Mj) i, j = 1,2,..8 , i * j (A. 1-4a)

P(T,' r) P(Tu,) P(T) i,j = 1,2,...8 , i * j (A. 1-4b)

Before proceeding, it is necessary to establish the independence of unscheduled off-air events at

*a given station from on-air events at other stations, a property which can be derived from
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0
Eqs. A. 1-4a and A. 1-4b. An indirect approach is employed which is used several times in this

Appendix. The procedure begins by expanding P(Tr) and recalling U a universe is equivalent

to the identity operator. Thus

P(T ) = P(TiU) = P(Tji(T j + T)) = P(Tj'Tj + T1UTj)

= P(T'Tj) + P(TiiTJ)

where the last step follows because events T',T j and T'Tj are mutually exclusive.' Rearranging

the above relation gives

P(TiT) = P(1i) - PTiTj)

= P(T, ) - P(~T+7)

= P(T ) - P(ITr + ,P

= PM ) - P(TfT) - P(T r,)

where the last step follows because events ,and are mutually exclusive." Now apply-

ing Eqs. A. 1-4a and A. 1-4b to the second and third terms on the RHS of the above relation yields

PM~T~) = P(T ) - P(TUI)P(IjU) - P(Tu')P(1j)

= PMM I - P(T ) - P('I)] = P(Ti)[1 - P(Tj + T)1
= P(T)[ 1 - P(T)]

where the mutually exclusive property of T and Tr, (Eq. A. 1-3a) and the definition of T are

used. Thus, by definition, the above relation gives

P(TiTj) = P(1",)P(T) (A. 1-4c)

Based on the above assumptions, the NDFs may now be computed in terms of the indi-

vidual station off-air probabilities. Before considering the general case, a sample NRF

calculation will be performed to illustrate the required component calculations. Consider R 12 ,

i.e.,

*If events A and B are mutually exclusive and C and D are two other unrestricted events,
then AC and BD are also mutually exclusive.
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P(B 12) = P [(T'I + rj)(T2 + r2) T3 T4 T5 T6 T7 T8 ]

= P [TU'V + T uI 2V + rl T 2V + 1, 2V  (A.1-5)

where V =T 3T4T5T6T7T8 .

The last term/event inside the bracket in Eq. A. 1-5 vanishes because of the concurrent

scheduled off-air exclusion (Eq. A. 1-3b). The remaining terms/events are mutually exclusive as

expressed by Eq. A. 1-3a. With these results and the repeated use of Eqs. A. 1-4a, A. 1-4b, and

A.1-4c, then Eq. A.1-5 becomes

P(B12) = P(T'I) P(T2) P(V) + P(TI) P(r2V) + P(T2) P(TV) (A. 1-6)

Thus, the NRF has been reduced to an expression involving single station off-air probabilities,

except for P(V), P(2V), and P(rV) (similar resuits hold for reduction of other NRFs). Since

V = T3T4T5T6T7T8 , it is clear that P(rV) and P(T2V) represent identical calculations, with
1--2.

To compute P(V), first calculate P(TIT2) and extend the result to higher-order products.

As before, an indirect approach is used, in which P(Tj) is expanded as

P(TI) = P(T1U) = P(TI(T2 + T2)) = P(T I T2 + T, T2)

= P(TIT 2) + P(TlT2)

where the last step follows since TIT2 and TIT2 are mutually exclusive events. Rearranging the

above relation and using the definitions yield

P(T1 T2) = P(T1) - P(TI T2) = P(T1) - P(T1 (T 2 + T2))

= P(T 1)- P(TIT2 + TI,2)

= P(TI) (1 - P(Tu2)) - P(Tj r) (A.1-7)

where the last step followed from Eq. A. 1-4c and the fact that events TTr2 and TI2 are mutu-

ally exclusive. Now, the quantity P(TlT2) is calculated using an approach similar to that used for

P(TIT2), but now expanding P(TrD), i.e.,

P(r = P(r2U) = P(2 (T, + T')) = P(2 T + 2 T,)

= P(r2 T1) + P(r2 T,)
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because 2T1 and 2T1 are mutually exclusive. Thus

P(T1T) = P(l,)- P(r2 T,)

- P(Tr) - P(M, (TY + r))

= P() - P(r'T')

where the definition of T1 and the concurrent scheduled off-air exclusion (Eq. A. 1-3a) was

used. With the use of Eq. A.1-4b, the above expression yields

P(TTr2) = P('2) (I- P(rT)) (A.1-8)

Substituting this result into Eq. A. 1-7 gives

P(TT 2) = P(TI) (I - P(TI2)) - P(T'2) (I - P(Tr)) (A.I-9)

Now, by definition,

P(TI) = 1 -P(T') = I -P(TtI + r) = I -P(j)- P(rj)

Thus

I - P(T u) = P(Tj) + P(T',)

and, similarly, for P(T 2),

I -P(2) = P(T2) + P(T)

Substituting these last two equations into Eq. A. 1-9 yields

P(TIT2) = P(T1)P(T 2) - P(M)P(T (A. 1-10)

This result, which is properly symmetric in stations I and 2 shows explicitly the error in assum-
ing on-air probabilities T1 and T2 independent.

To compute P(IV), it is again convenient to start with P(r'IT2) and extrapolate the re-
sult for additional factors. Equation A.1-8 gives, with indices 1 and 2 interchanged,
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P(rIT2) - P(Ti)(1 P(-2))

Using a procedure identical to that used to derive Eq. A. 1-8, it can be shown that

P(rIT2T3) = P(T)(1 - P(Tr2))(1 - P(T 3))

and, in general,
n

P(, TTi,....T) j P() H1 (1-P(T'i)) (A.1-11)
j=2

This general result can be used to decompose both P(TrV) and P(r2V).

To calculate the general form P(TTj,..Tio), a procedure similar to that used above is em-

ployed. Thus,

P(TiTi2 .. .Ti_) = P(Tj,Ti,...Ti._,U)

= P(Ti,T 2.. .T._(Ti° + Ti))

= P(TT 2. ..Tio) + P(Ti1T ... Ti.)

because complementary sets are mutually exclusive. Thus,

P(TiTi2... T) = P(TITj,...T._) - P(T1Ti2... Ti.(Ti. + Ti))

= P(TiT 2 ... T,) - P(Ti,Ti2... Ti..T3)

- P(TIT,12 . . .Ti,_o)

Now, Eq. A.1-4c is applied to the second term and Eq. A.1-11 is used to reduce the third term.

Hence,

P(TiT 2... T) = P(TTj,...Ti..,) (1 - P(i) )

n-i
- P(Tr) H1-pT) (A.-12)

j=1

Equation A. 1-12 is in the form of a recursion relation for P(Tji 1 ..Tj). Although the symmetry

on interchange of indices is not evident in this form, it is immediately adaptable to program-

ming on a computer. For n = 3, Eq. A.1-12 can be manipulated to yield the expression
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P(T 1T2T3) = P(TI)P(T2)P(T 3) - P( )P(2P(r3)- [P(Tt)Pr2)P(r3)

+ P(r)P(T2)P(r) + P(r)P(I'2)P(T3) + P(M)P(r 2)P(T3)]

This relation is expressly written to exhibit the complete symmetry on interchange of indices 1,

2, and 3.

Thus, all terms and factors in the expression for P(Bt2) (Eq. A. 1-6) can be computed

with the aid of Eqs. A.I-11 and A.1-12. For example, P(V) is computed from Eq. A.1-12 with

il = 3, i2 = 4, i3 = 5, i4 - 6, is = 7, i6 - 8, and n = 6. Similarly, P(TsV) is computed

from Eq. A.1-l1 with i= 1. i2  3, i3  4, i4 =5, i5 = 6, i6 = 7,i 7 = 8, and n = 7.

P(T2V) is computed the same way except that il = 2.

The general NRF, R t*..',may begt-itten as

P(B 2 .. j) P[(Tl, + Ti) (r,, + r,,) ... (Tiu + r~T 3 1 T 0 2 .. T8

Although the above expression may appear formidable, the exclusion rule, Eq. A. 1-3b, reduces

the number of terms inside the brackets to just n + 1. Expanding the indicated product in

brackets and using Eqs. A. 1-2,3,4 yields the following general expression for the NRF:
nl n nl

...= P(W)" P() + I H- [P(Tli)(1 - 6jk) + P(r,,W)6jk]
j= I j=l k=1

where W = Ti., TI. 2...Ti,

6 jk = 1 j = k (Kronecker 6)

=0 j k

In this expression, P(W) is determined by means of Eq. A. 1-12 and P(i W) is computed with

the use of Eq. A.1-ll. Note that n :5 5 since

P(X3/Bi,i2.) = 0 for n > 5

i.e., no more than 5 stations can be concurrently off-air.
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It should be mentioned that the independence assumption regarding unscheduled off-air

events is only approximate and is most accurate when the scheduled and unscheduled off-air
probabilities are small. This is consistent with the definition of the off-air probabilities as ratios

of total off-air duration to total time in a month as shown in Section A.2.

A.2 OFF-AIR PROBABILITY FUNCTIONS

A.2.1 Off-air Occurrence Probability Functions

A reasonable description of unscheduled (random) off-air occurrence is given by the

probability density function shown in Fig. A.2-1(a). The probability density describes the

situation in which an off-air occurs at time t = 0 and the probability per unit time of the next

off-air occurrence is indicated by the plot. The probability density following the off-air is zero

and gradually increases to a peak at time 1/). which represents the average interval between

off-air occurrences (based on empirical data). The probability density then gradually decreases.to permit normalization. The normalized probability density function may be expressed as

POAO(t) - te- (A.2-1)

For scheduled off-airs the process is entirely deterministic so that the probability densi-
ty function is given by the Dirac-delta function 6 (t - T) where T is the known time of off-air
occurrence referenced to a convenient initial point (such as the beginning of a month). This dis-
tribution is illustrated in Fig. A.2-1(b).

A.2.2 Off-air Duration Probability Functions

In the case of unscheduled off-airs, the off-air duration may be described by a simple ex-

ponential probability density function, which, in its normalized form is given by

POADW(t) = e" t  (A.2-2)

where 1/ is the average off-air duration, obtained from empirical data. Figure A.2-2(a) shows
a plot of this function and Fig. A.2-2(b) illustrates the corresponding distribution function (inte-
gral of the density function) which describes the probability that the off-air duration is less than

*some value, T.
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a) Unscheduled (random) Off-air Occurrence Probability Density Function
for Two Values of the Average Time between Off-airs (1/K)

pO (t) = 6 (t- T)
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b) Scheduled (Deterministic) Off-air Occurrence Probability Density Function

Figure A.2-1 Off-air Occurrence Probability Density Functions for
Unscheduled (random) and Scheduled (deterministic)
Off-air Conditions
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b) Off-air Duration Probability Distribution Function for Two Values

of the Average Off-air Duration (l/;)

Figure A.2-2 Off-air Duration Probability Density and Distribution
Functions for Unscheduled (random) Off-air Conditions
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This density function differs from the off-air occurrence density function (aside from

normalization constants) by a factor of t. This factor occurs in the expression for POAO(t) to ex-

plicitly exclude very short intervals between off-air occurrences (e.g., before the station

achieves an on-air condition). An unscheduled off-air condition may be indefinitely short, how-

ever, since immediate action is always taken to restore the on-air condition. Thus, the exponen-

tial factor appears alone (leading to a monotonically decreasing density function) in the

expression for pOAD(t).

Since the duration of scheduled off-airs is a deterministic quantity, the probability den-

sity function has the same form as for off-air occurrences, i.e., 6 (t-AT) where AT is the known

off-air duration. This density function is similar to the one shown in Fig. A.2-1(b).

A.2.3 Probability that a Station is Off-air at an Arbitrary Time

Assuming that the time of off-air occurrence is independent of the duration of the corre-

sponding off-air period, the probability that a station is off-air at some arbitrai-y time t is

POA(t) = Jdt'PoAo(t') f dt" pOAD(t")
t' < t t-t < t"

In words this says that in order that a station be off-air at time t, the off-air (beginning at

t') must begin before t and the off-air duration (") must be longer than the current elapsed

time since the off-air occurrence (t -t'). This reasoning is illustrated in Fig. A.2-3. With an arbi-

trary zero-time reference, the above may be written
t M

PoA(t) = Jdt' PoAo(t') jdt" pOAD(t") (A.2-3)

0 t-tl

For the case of unscheduled off-airs, Eqs. A.2-1 and A.2-2 are used for the off-air occur-

rence and off-air duration probability density functions, respectively. When inserted in

Eq. A.2-3, the off-air probability becomes

PoA(t) = l2 f dt' et' dt"e*""

This integral is easily evaluated to give
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PoA(t) (+ tekt -A.2-4)

To evaluate this quantity, the assumption is made that the average time interval between

successive off-airs is much larger than the average off-air duration, i.e.,
1 1

> > or 2<</i

Thus, for t - 0, e-It > > e -"I and the first term in brackets in Eq. A.2-4 can be neglected in

comparison to the second and third terms. Since p > > A, the exponential in the third term in

brackets in Eq. A.2-4 is essentially multiplied by I/g . Thus, for t > > 1/p (i.e., for times large

compared to an off-air duration), the third term in brackets in Eq. A.2-4 may be neglected in ,

comparison to the second term. Thus, with t large compared to the average off-air duration, the

off-air probability at time t may be written

PoA(t) = te A - 22A2 -At A2 e-At

G-13714
2/16t89

Observation Time

Off-air Begins Off-air Ends

t' t T' Time

Off-air Occurrence Time = t'
Off-air Duration, t" - T'- t'

Condition that Station Is Off-air at Time t : t'< t < T' - t' + t
Or Equivalently : t'< t and t - t' < t"

Figure A.2-3 Conditions Under Which a Station is Off-air at Time, t
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0
since u > > A . Defining the month to begin at t = 0 and end at t - T, the average value of

PoA(t) over the month may be computed as follows:

T

<PoA(t) > - PoA(t) dt

0

. , e4T (A.2-5)

Now, assuming an average of about 3 off-air occurrences per month (i.e., 3/ - T )*, the expo-
nential terms occurring inside the brackets in Eq. A.2-5 may be dropped in comparison to the
non-exponential term. Thus,

<POA(t) > P u _-- 2 T -T (A.2-6)

where TOA is the average off-air duration and T is the total time in the month.

"Scheduled" off-airs which are not planned until after the beginning of the month can be
modeled using the a priori probability functions (occurrence/duration) treated above with A, p
given by historical reliability fi.urest for each station. Once the scheduled off-air is planned/an-
nounced, the randomness vanishes (for that particular kind of off-air) and the problem becomes
deterministic. Equation A.2-6 may still be used as an approximation to the off-air probability,
however, since it is valid except for those intervals during which advance information is known.
For the completely deterministic cases/intervals, Eq. A.2-6 simply becomes a fractional off-air
figure subject to the exclusion of concurrent scheduled off-airs from different stations (see
Eq. A.1-3).

*This assumption is based on a sampling of off-airs (>1 min) in four separate months
during 1988.

"Excluding scheduled off-airs for annual maintenance which are known.well before the
month begins and are thus completely deterministic.
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APPENDIX B

ALGORITHM FOR COMPUTING
VLF SIGNAL AMPLITUDE STANDARD DEVIATION

Based on VLF signal measurements and compilations by several research organizations,
a semi-empirical algorithm has been developed to compute the standard deviation of VLF signal
amplitude (Ref. 7). The algorithm is essentially a quantitative summary of the observations in
terms of the following variables:

* Frequency

* Path illumination
• Fraction of path in equatorial band

• Local season (receiver and transmitter)

. Geomagnetic hemisphere (north/south) of transmitter.

The algorithm has been revised (Ref. 8) since the original development, presumably to reflect
new/additional data.

The algorithm specifies the standard deviation of VLF signal amplitude, based on the
following semi-empirical relationship:

as = c1 + c2 (c3 + c4)

where the parameters cl, C2, C3, and c4 are defined as follows (all units in dB):

ci = 2.0

C2 = 0.25 + 0.15 (fkHz - 10) ; where fkHz is the frequency in
kHz, 10 kHz < fkHz S 30 kHz

C3 = 0 if the path is fully illuminated (all-day path)
= 0.6 otherwise (night/transition paths)

c4 = 0.5 if any portion of the path lies within the tropical belt (± 22.5* of the geo-
graphic equator)

= 0.5 if the local season at all points on the path is spring or autumn
= 1.0 if the path lies entirely in the non-tropical northern hemisphere (>22.5*)

and the season is winter
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= 1.0 if the path lies entirely in the non-tropical southern hemisphere (<22.50)
and the season is summer

= 0 if the path lies entirely in the non-tropical northern hemisphere (>22.50)
and the season is summer

= 0 if the path lies entirely in the non-tropical southern hemisphere (<22.5*)
and the season is winter

The above algorithm for os is specified (Ref. 7) for paths greater than 2 megameters
(Mm) in length. A separate algorithm is presented for paths less than 2 Mm in length, but that
algorithm is not used in the Omega System Availability Model for the following reasons:

" Since the daytime near-field (modal) region extends to a range of 2 Mm from
the transmitter and the nighttime near-field range is even greater, very few
station signals in the maximal coverage set will have a range less than 2 Mm

" The algorithm description (Ref. 7) states that the predicted signal amplitude
standard deviations for paths less than 2 Mm are "largely speculative."

Because of the infrequent need and prediction uncertainty associated with signal amplitude

standard deviations on paths less than 2 Mm in length, a default value of 3 dB (upper bound of
the algorithm) for us will be used if such paths are ever encountered.
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APPENDIX C

APPROXIMATIONS TO THE
SYSTEM AVAILABILITY MODEL

FOR RANDOM SIGNAL AND NOISE LEVELS

Regarding the treatment of signal and noise levels, two types of system availability mod-

els are currently defined:

1) The "original" model which considers signal and noise levels (and therefore
the coverage elements) as deterministic quantities.

2) The enhanced model which treats signal and noise levels as random variables.

In this Appendix, an approximation to Model (2) above (which may also be considered as a

third, or alternative model) is described. This model treats noise envelope amplitude (averaged

over several minutes) as a random quantity (same as Model (2)) but the signal amplitude from

any given station/frequency is considered deterministic. This is consistent with the general ob-

servation that the signal amplitude standard deviation is smaller than the standard deviation of

the noise envelope amplitude.

Using this model, signal-to-noise ratio (SNR) distribution functions are derived for a giv-

en threshold criterion. These distribution functions are used to compute the coverage elements

needed in the calculation of PSA. To facilitate understanding of the development, the SNR distri-

bution functions are derived for one, two, and three station signals in sequence before present-

ing the general case.

A deterministic signal model means that the probability density function for amplitude

of the ith signal assumes the following form:
psi (si) = 6(si - 9) (C-1)

where 6( ) is the Dirac delta-function. In other words, the signal amplitude from station i is fixed

at the predicted value,!;, for a given location/time. The noise envelope amplitude is assumed to

be a random variable having a lognormal probability density function given by

pN(n) e e
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C.1 SNR DISTRIBUTION FUNCTIONS FOR ONE STATION SIGNAL

For a single station signal, the SNR probability density function (for logarithmically de-

fined variables) is

pR(X) = PN(9- x) - I e -(C-2)

This equation states that the probability (per unit SNR interval) that the SNR is x is the probabil-

ity (per unit noise interval) that the noise is 9-x. If event A is defined as x >..a, where a is a mini-

mum threshold of SNR (e.g. -20 dB in a 100 Hz bandwidth), then P(A) is a distribution function

for SNR which is the integral of Eq. C-2 over the appropriate interval. Thus,

P(A) = P(x>a) = f dx pN(9-x) (C-3)

By inserting the expression for the noise density function and performing suitable manipulation,

it is seen that

P(A) = e-wdw = 7effc a-( ))(C-4)

a - (9- ff)
ONVr

where the complementary error function is defined by

erfc(u) = -L eYdy (C-5)

To considerably simplify further development, a specific ranking is chosen for the deter-

ministic signal amplitudes, i.e. for m signals,

12 922 93 ...> 9m (C-6)

It is important to differentiate this convention from the usual Omega convention in which sub-

scripts indicate station number.

C.2 SNR DISTRIBUTION FUNCTIONS FOR TWO STATION SIGNALS

For two station signals of amplitudes 91 and 92, the joint SNR probability density func-

tion is

PRR 2(X1,X2) = PN(91 - Xl)6(X1 - X2 - (91 - 92)) (C-7)
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The Dirac delta-function appearing in the expression for the density function limits the differ-

ence in SNR for station signals 1 and 2 to §1 - 92 due to the cancellation of the common noise.

The joint SNR distribution functions are defined in terms of the following events:

Ai - event that - n _> a, where is the deterministic signal amplitude from
station i and n is the random noise level; both 9, and n have units of dB
(relative to lV/m)

Ai- event that9-n <a

Thus, using Eq. C-7,

P(AIA 2) = J dx2 J dx1 PN(§' - x1) 6(xl - x2 - (§' - 9'2)) (C-8)

Although this integral appears to be two-dimensional, the Dirac delta function in the inte-

O grand limits the integration to the line xl- x2 = s1-s2 shown in Fig. C.1-1. The figure shows

that integration over the quarter-space x, k a, x2 >. a is equivalent to integrating xI from

a + 91 - s2 to infinity and x2 from a to infinity. Thus, eq. (C-8) becomes

P(A1A2) = fa, dx2 PN(92 - x2) (C-9)

This expression has the same form as Eq. C-3 and thus, using Eq. C-4, Eq. C-9 becomes

P(A1A2) = 1 erfc a(H-) (C- )2 k~ 42 )

Again, from Eq. (C-7), the joint distribution P(A1A2) is

P(A 1 A 2 ) = fM dx2 fa dxI pN('l - XI) 6(X1 - X2 - (91 - 92))

Figure C. 1-1 shows that integration over the quarter space x1 I> a, x2 5 a is equivalent to integrat-
ing x, from a toa + i-92 and x2 from a-(KI-92)to a. Thus,

P(A1A2) = dx2 PN(92 - x2) = f dx2 PN(2 - X2) - dx2pN;2 - x2)
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X2 G-189812-21-90

X1 2 il i2 x

a a- + -i2

S-(iil i2)

Figure C.1-1 Integration Regions for Joint Two-Signal SNR
Distribution Function (91 > 92)

Thus, P(A1A2) is expressed as the difference of two integrals, each of which may be compared
with Eqs. C-3, C-4 to yield

P(A1I 2) = 1 erfc a - 1 erfc o2

(C-11)

- erfc ak 9 f erfc a (9 f)

In a similar way, the joint distribution P(AIA2 ) is computed by integrating over the quar-

ter space x, _< a, x2 a a. However, from Fig. C.1-1, it is seen that the line xi - x2 = 91 - 92 does
not intersect that quarter space so that

P( 1A2) = 0 (C- 12)
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The joint distribution for the fourth and final event combination is P(XAi 2). This quanti-

ty is obtained by normalization, i.e.,

P(A 1A2) + P(A 1A2) + P(A1 A2) + P(AlK 2) = 1

Thus, using Eqs. C-10, C-11, and C-12 for P(AlA 2), P(A1A2), and P(AIA2), respectively, Eq.

C-12 yields
-- -- 1 a (l-cf

P(A 1A2) 1-- eric ( -- )

C.3 SNR DISTRIBUTION FUNCTIONS FOR THREE STATION SIGNALS

For three station signals, the convention (Eq. C-6) is again invoked:

91 ! 92 93. The SNR probability density function for three station signals is analogous to that for two-sta-

tion signals (Eq. C-7), i.e.,

PR1R2R3(X1, X2, X3) = PN(S1 - Xi)6(Xi - X2 - (91 - K2))6(X2 - X3 - (92 - 93))

The Dirac delta functions are again present to limit the SNR differences between the three sig-
nals to the differences in the respective deterministic signal amplitudes (only two independent

differences/delta functions for three station signals).

For three station signals, eight SN..vent combinations are defined: A 1A2A3 , A1A2A3 ,

A1A2A3 , A 1A2A3 , A 1A2A3 , A1A2A3 , AiA2A3 , and AXA 2A3 . Joint distribution functions, which

give the probability of these event intersections are calculated using methods similar to those
described in Section C.2 for the two station signal case. The integration limits are obtained from
two plots similar to Fig. C.1-1: one for the pair of SNR variables x1 ,x2 and another for the pair
x2,x3. Omitting the details of the calculations, it can be shown that

P(A1A2A 3) = erf c

2 ( 1 (( a a- ('2 - ff) 1a-(93-ff

P(A1A2A3) = 2- erfc (a,/) - - erfc o 3 f2

C-5



P(AlX 2A3) = 0 = P(AIA2A3)

P(A 1A2 3) - 2 erfc a- - erfc ON( 2

P(X1A2A3) = 0 -P(A12A3)

1 (a-__-)
P(A 1A2A3)= 1- erfc a( 1 /H-)

C.4 SNR DISTRIBUTION FUNCTIONS FOR THE GENERAL CASE

From the results given in Section C.3, the general case for m station signals may be in-

ferred. With the basic ordering convention i 2 92 ? s3 > - 2 i, the general joint distribu-

tion function for the intersection of the m A-events is

2 ( a n-)

2 aF2
1 a - (1 - 1 - f

P(A1A2... Am) = erfc o'-1- 2 (a-( mNF

1___1 1aHa o )
P(A 1A2... AT)-,, k - erfc -1 erfc

P(A 1A2 .. . m) = 1 f (a-(9-f) - (a - (2 - f)

P(A A2 ... m) = 1 - fc 2- UN f ))

P (event combinations other than those listed above) =0
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The above expressions are used to calculate the local coverage elements in the expression for

the system availability index, PSA. The inputs required for calculation are the signal amplitudes

(for a given time/location) for the signals in the maximal coverage set, the median noise level/

standard deviation (for the given location/time), and the minimum SNR threshold level.
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