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EXECUTIVE SUMMARY

The Microwave Landing System (MLS) may be used for landing guidance,
for area navigation, and for computed-centerline approach. In the latter
functions, the MLS concept uses ground unit siting data, angle data from an
azimuth antenna and an elevation antenna, and range data from a distance
measuring equipment (DME). With these data, the avionics unit calculates
the aircraft's position in rectangular (Cartesian) coordinates relative to
the centerline of the selected runway. This process, called "position
reconstruction", is the subject of [11, which presents twelve algorithms
for various ground unit geometries and avionics computation options.

Of these twelve algorithms, seven are restricted by the assumption
that Lhe ground units are collocated in various combinations while five
assume general siting. The seven restricted algorithms are recognized in
[1) as not compliant with the minimum operational performance standards
(MOPS) and are not discussed further in this report, which examines the
five general (MOPS compliant) algorithms.

Three of the five MOPS-compliant algorithms in [11 (Cases 7, 10, and
11) assume a planar-pattern azimuth antenna. It now appears that there may
not be any planar azimuth antennas, due to their significantly greater
complexity and cost. Two of these three (Cases 7 and 11) cannot be
generalized to handle the conical-pattern azimuth antenna case, and the
discussion of these two is accordingly abbreviated. The third, Case 10,
can be generalized to include the conical case; it then becomes essentially
identical to Case 9. This report therefore very briefly discusses these
three planar algorithms, 7, 10 and 11, but concentrates more on Cases 9 and
12, which are appropriate for conical-pattern azimuth antennas.

Careful inspection and exercise [2] of the planar algorithms of Cases
7, 10, and 11 show that they have a vaiiety of problems, including errors
in the mathematical analysis and/or the computer code. This report iden-
tifies the errors of text and code, and offers corrections.

A similar inspection and exercise [21 of the conical cases 9 and 12,
show that they too have significant problems. Case 9, based on a Gauss-
Seidel approach, has minor errors in the computer code; a list of the
errata is provided. However, this case has more significant problems,
since its algorithm diverges at azimuth angles as small as 380 in some
geometries; this is within the minimum coverage of the system. Further,
the algorithm is very slow in many situations, some with azimuth angles
less than 300. Correction of these problems of divergence and slow
convergence is difficult, and a satisfactory revision of the algorithm has
not been found.

iii



Case 12 uses Newton-Raphson approach. It, too, has problems of
convergence. But whereas Case 9 exhibited difficulties at large azimuth
angles, Case 12 has a region on and near the azimuth antenna boresight
where false solutions and/or inappropriate error messages may occur; this
is due to proximity to a singularity on the azimuth antenna boresight, and,
therefore, on or near the runway centerline. The singularity has another
effect; the dynamic range of a determinant which must be evaluated is of
the order of 1011. This dynamic range limits the choice of coiponents that
may be used in the avionics. In addition, this algorithm has the maximum
number of possible false solutions. Finally, the algorithm is coded in a
very general form, and requires 109 lines of FORTRAN and 13 internal DO-
loops. A corrected computer code for Case 12 is offered; it corrects the
major problems to the extent possible without changing the entire thrust of
the approach. Several other Newton-Raphson algorithms are formed, all of
which evade the difficulties noted above by using a different formulation
of the underlying method. One of these is recommended as an alternate, and
computer code for this algorithm is presented.

Appendixes present lists of errata, and computer code, for the several
algorithms, the database with which the algorithms were tested, and exam-
ples of various initial conlition algorithms for starting the iterative
computation required in position reconstruction.
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SECTION 1

INTRODUCTION

The Microwave Landing System (MLS) may be used both for landing
guidance and for area navigation. In these functions, the MLS concept uses
ground unit siting data, angle data from azimuth and elevation antennas,
and range data from a distance measuring equipment (DME) to enable an
avionics unit to provide the appropriate guidance information to the pilot
or flight director. In area navigation, or in computed centerline
operation, when the azimuth antenna is not on the runway centerline, the
avionics must determine the aircraft's position in rectangular (Cartesian)
coordinates relative to the centerline of the selected runway. This
process, called position reconstruction, requires iteration when the three
MLS ground units are not collocated. It is the subject of [il, which
presents 12 position reconstruction algorithms.

These algorithms may be segregated into two classes, seven restricted,
and five completely general. The seven restricted algorithms assume that
the three ground units are collocated in various combinations; they are
recognized in [1] as not compliant with the minimum operational performance
standards (MOPS) for RNAV. They have not been studied and are not
discussed further in this report. The five general algorithms assume that
all three ground units may have separate and distinct sites and thus are
MOPS-compliant. This report presents the findings of an examination of
these five completely general algorithms in [1].

Three of the MOPS-compliant algorithms in [1] (Cases 7, 10, and 11)
are specialized to the assumption of a planar azimuth antenna pattern. It
now appears that there will probably be no planar azimuth antennas, due to
their significantly greater complexity and cost. Two of the three (Cases 7
and 11) cannot be generalized to handle the conical azimuth antenna case,
and the discussion of these two is accordingly abbreviated. The third,
Case 10, can be generalized to include conical, but it then becomes
essentially identical to Case 9. This report, therefore, very briefly
discusses the three planar algorithms, 7, 10, and 11, but primarily
concentrates on the two cases, 9 and 12, which are appropriate for conical
pattern azimuth antenaas.

Careful inspection and exercise of the three completely general planar
algorithms, Cases 7, 10, and 11 in [1], show a variety of defects. Some of
these defects appear to be typographical errors, while others are errors in
the mathematical analysis and/or the computer code. This report identifies
the errors of text and code, and offers corrections.

A similar examination and exercise of the two, more important,
conical-pattern azimuth antenna algorithms, Cases 9 and 12, show that
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too, have significant defects. Case 9, based on Gauss-Seidel techniques,
has regions within the MLS coverage where it diverges, or converges slowly.
It also has minor errors in the code. Corrections for the errors in the
code are presented; however, the problems of slow convergence and
divergence remain. Case 12, using a Newton-Raphson method, has a region on
or near the azimuth antenna boresight where false solutions or unnecessary
error messages may occur. This report notes where and why these algorithms
have difficulties. Two new computer codes for Case 12 are offered: one
corrects the major problems to the extent possible without changing the
entire thrust of the approach, while an alternate avoids them by using a
fundamentally different Newton-Raphson fcrmulation.

Common elements, such as terminology and notation, are gathered in
section 2. Section 3 presents a very brief discussion of the planar cases,
(7), (10), and (11). Section 4 presents the examination of Case 9 of [11,
while section 5 presents the examination of Case 12. Appendix A presents
errata pages for all five algorithms, corrections for the code for Case 9,
and both a simplified code and an alternate code for Case 12. Appendix B
presents the details of the database which was used for exercising the
algorithms. Appendix C presents several alternates for setting initial
conditions.

2



SECTION 2

COMMON ELEMENTS

Common elements, such as notation and geometry, the mathematics, and

an overview of the test database, are gathered in this section.

2.1 NOTATION, GEOMETRY, AND MATHEMATICS

The coordinate system for the problem is defined in figure 2.1. The
x-axis is selected to be the runway centerline and its extension, with
positive values towards the approach-end and negative values toward the
stop-end of the runway. The origin of the coordinate system is arbitrarily
selected, for the purposes of discussion, to be at the runway threshold, so
that normal locations for the ground equipments have negative x-values.
Thus, if the azimuth antenna is located near the stop-end of a 5000-foot
runway, its x-value is approximately xA = -5000, where the subscript A
implies azimuth antenna. The positive direction of y lies to the left of
an observer standing at the origin, with the stop-end of the runway behind
him. The positive direction of z is up, completing the right-hand
coordinate system.

The elevation angle is defined as positive counterclockwise, looking
along the positive y-axis, so that positive angles correspond to positive
altitude when the aircraft is within the coverage of the elevation antenna.

Azimuth is defined as positive clockwise from the x-axis, looking down
towards the ground, contrary to the usual definition of a right-hand
coordinate, but consistent with [1] and [3]. It is assumed that the
azimuth antenna electronic boresight is parallel to the runway centeriine.
This does not imply any loss of generality, for a simple rotation about the
z-axis enables a general orientation of the boresight.

The notation is defined as follows:

x, y, z Components of estimated position of aircraft

xA, YA, zA Components of location of azimuth antenna

XD, YD, zD Components of position of DME

XE, YE, zE Components of position of elevation antenna

XT, YT, zT Components of true position of the aircraft

x0 , Y0 , z0  Components of the initial position estimate used in
the iterative procedures



Azimuth angle relative to the runway centerline,
measured at the aircraft in radians (unless
otherwise stated)

*Elevation angle relative to the horizon, measured
at the aircraft in radians (unless otherwise
stated)

p Slant range from the DME transmitter, measured at
the aircraft in feet.

Figure 2-1 shows the geometry of a completely general arrangement.

AIRCRAFT
DME XT YT ZT

X D YD ZD P -

AZIMUTH - -- - - - -----

ANTENNA iL---
XAY ELEVATION -

ANTENNA
X E YE ZE ry

Figure 2-1. Geometry

The mathematics of the problem are now presented. The distance from

the DME is

p = [(xT-XD)2 + (YT-YD)2 + (ZT-ZD)2 ]l/ 2 . (2-1)

The azimuth angle is

tane = -(yT-YA)/[(xT-xA) 2 + (1-156)(ZT-zA)2 11 / 2 . (2-2)

where 156 = 0 for conical antennas, and 1 for planar antennas, see [3].

The elevation angle is

tanf = (zT-ZE)/I[(xT-xE)2 + (YT-YE)2 11/ 2. (2-3)

4



In (2-1) through (2-3), replace xT, YT and zT by x, y, and z,
respectively. The mathematical problem of position reconstruction is to
solve for the unknowns, x, y, and z, given the data and the observations.

2.2 TEST DATABASE

This subsection discusses briefly the sample set of ground station
siting arrangements and the sample set of true aircraft positions selected
for exercising the algorithms.

A set of five ground station siting arrangements was considered.
These include conventional and unconventional arrangements. All three
ground units are collocated at the usual elevation antenna placement in
site 1, as in a conventional heliport. Site 2 is a conventional split-
site, with the DME at the azimuth antenna, while site 3 is also split, but
the DME is collocated with the elevation antenna, using a suggestion of
[2]. Sites 4 and 5 are fully dispersed, to provide a general basis for
testing the algorithms. While sites 1 and 2 are conventional, the other
three cover a wider range of possibilities.

A set of 75 aircraft true locations was used in the study. These
locations were selected to test the extremes of range and angles, and to
cover both normal and unusual situations so as to test all realistic normal
and special cases. The behavior of each algorithm was tested at each
aircraft true location for all five ground unit positions.

The details of the database are provided in appendix B.

Figure 2.2 presents the five ground unit site configurations; figures
2.3 and 2.4 show the plan views of the 75 aircraft true locations used for
exercising Cases 9 and 12, respectively. The numerals enable identifying
the locations exactly, by referring to appendix B. Aircraft locations 1
through 50 are common to the examination of cases 9 and 12. For Case 9,
the regions of degraded performance are at large angles, while for Case 12,
the region of degraded performance is at very small azimuth angles.
Therefore aircraft locations 51 through 75 are concentrated at larger
azimuth angles for Case 9, and at and near an azimuth of zero for Case 12.

5
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SECTION 3

PLANAR AZIMUTH ANTENNA ALGORITHMS

There are three planar algorithms in [1]. This section shows why two
of them (Cases 7 and 11) cannot be generalized to conical, and how the
third (Case 10) can be generalized.

3.1 CASES 7 AND 11

These two cases in [1] cannot be generalized to handle the conical
azimuth antenna situation. From (2-2), the planar azimuth antenna is
characterized by the linear relationship

y = YA - ( x - xA )tanep (3-1)

obtained from (2-2) by setting 156 = 1 and e = Op, where Op is the planar
angle observation. However, the conical azimuth antenna is characterized
by the nonlinear relationship

y = YA - I (x - xA )2 + (z - zA )2 ]1/2 tanOC. (3-2)

obtained from (2-2) by setting 156 = 0 and e = eC. As (3-1) is linear, it
may be inverted to yield the linear relationship

x = xA - ( y - YA )cotep. (3-3)

Case 7 uses (3-3) in the range expression (2-1), which then yields a
quadratic equation in y as a function of z. This quadratic is solved tor
y, and then (3-3) is solved for x with this value of y, and (2-3) is solved
for z using these new values of x and y. Case 11 takes the opposite
choice, using (3-1) in (2-1) to eliminate y, etc. But comparison of (3-1)
or (3-3) with (3-2) shows thatthe simplification offered by the former two
is not available with (3-2), thus preventing generalization.

Errata lists developed from the analyses of Cases 7 and 11 are
presented in appendix A.

3.2 CASE 10

This case can be generalized to include the conical azimuth antenna.
The planar azimuth antenna equation (3-1) may be formed from the conical
equation (3-2) simply by omitting the term (z-zA)2 from (3-2). This
process may be reversed, and the planar case can therefore be generalized.
Combine (3-1), the planar equation for lateral position, and (3-2), the
conical equation, using the data bit 156, from [i] or [3], as

Y = YA - [(x - XA) 2 + (1 - 156)(z - zA)2 11/2 tane (3-4)

9



where 156 is 0 for conical, and 1 for planar antennas. This change
generalizes case 10, which then becomes almost identical to Case 9, below,
and thus requires no further discussion.

An errata list for Case 10 is presented in appendix A.

10



SECTION 4

CASE 9: A GAUSS-SEIDEL CONICAL-AZIMUTH ALGORITHM

Case 9 of [1I is a conventional Gauss-Seidel algorithm for conical
azimuth antennas. A clear exposition of the theory of Gauss-Seidel
iteration is presented in [51, including discussion of the conditions for
divergence and for slow convergence. The principles of Gauss-Seidel
iteration for nonlinear equations are outlined heuristically in the MLS
context. Initial values are assumed for two of the three variables (for
example, x0 and yo). With these values, the equation for the third
variable, z, is evaluated. This new value, zj, and one of the initial
conditions (say, x0 ), are used to evaluate the equation for the second
variable, y. And with these two new values, zI and yl, the last equation
is evaluated for the third variable, x, yielding xl. The process is then
iterated until the solution is of acceptable accuracy. In some situations,
Gauss-Seidel iteration can be unstable or divergent.

The mathematical structure for Case 9 is defined as

Initial conditions for x0 and y0 (zo is not needed) are

X0 = pcosE, yo = -psine. (4-1)

Iterative solution for altitude; solve (2-3) to find

zi+ 1 = zE+[(xi-xE)2+(yi-YE )2]i2tan . (4-2)

Iterative solution for lateral position; solve (2-2) to find

Yi+1 = YA-[(xi-xA)2+(l-I56)(zi+l-zA) 2]I/2tan. (4-3)

Iterative solution for along-runway position; solve (2-1) for x as

xi+ 1 = XD+[P2-(Yi+l-YD )2-(Zi+l-ZD)2I/2 (4-4)

Following [1], the positive value of the radical in (4-4) is required in
the present context, where x > xD. Further, it is essential that the
radicand in (4-4) be calculated separately before taking the square root,
since the radicand is negative for values of y and z which can be reached
during iteration.

The sequence of equations follows the usual Gauss-Seidel procedure,
using the equations in the order of increasing magnitudes of the usual
values of the slopes, and using each newly-estimated value as soon as it is
available; this normally leads to rapid convergence.

11



When the azimuth angle is relatively small, this algorithm converges
well; however, it requires more than five iterations to converge close
enough to the correct solution in many cases with azimuth angles between
220 and 300. Further, the initial condition used above and in [1]
sometimes causes unnecessary entry into the negative-radicand situation
mentioned above. Moreover, the algorithm diverges in many geometries, one
with azimuth angle as low as 380. This case, 3-9 (ground unit arrangement
3, aircraft location 9), has the elevation antenna and DME collocated at
the normal site for the elevation antenna, a possibility suggested in [2].
In addition, this case exhibits an immediate negative-radicand problem both
with the given initial condition and with an alternate (x0 = yo = z0 ).
Table 4-1 shows the behavior of this algorithm in the case 3-9, cited
above. Because of the immediate negative-radicand problem mentioned above,
the initial condition, in the second column, has been selected very close
to the true location in the first column to display clearly the divergent
behavior in the next six columns.

Table 4-1. Divergence in Case 3-9

GROUND STATION SITE GEOMETRY # 3
AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y Z X Y Z X Y Z

-6000. -1000. 10. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION # 9. OBSERVED DATA: RHO = 12588.3 THETA - 37.95 PHI - 16.12

TRUE POS. INIT. POS.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 5500.00 4061.68 6092.74 3264.82 6824.62 1337.77 8210.56

Y -10000.00 -10500.00 -10418.31 -9301.11 -10815.98 -8720.97 -11365.27 -7336.81

Z 3500.00 .00 3697.55 3482.99 3501.42 3499.88 3500.01 3500.00

Slow convergence is discussed further. An allowance of 0.0170 for
Path Following Noise (PFN) is given in [3] for the avionics' receiver. The
receiver performance is limited by physical considerations such as noise
and power, whereas the algorithm is, in principle, capable of almost-
perfect performance. An allowance of 0.0170/3 for error of the algorithm,
approximately one part in 10,000, is negligible by comparison, when
combined RSS. It was therefore assumed that convergence is slow if the
magnitude of the error in any variable exceeds (xT/lO,O00) after five
iterations. Alternate criteria, such as Control Motion Noise (CMN), lead
to even smaller allowable error allowances. The regions of convergence,
slow convergence, and divergence are shown in figures 4-1 through 4-5, for
ground site configurations 1 through 5, respectively. In each figure, the
ground site configuration is presented as an inset to ease interpretation.
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Figure 4-1. Performance Regions for Case 9, Ground Unit Siting 1
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Figure 4-2. Performance'Regions for Case 9, Ground Unit Siting 2
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Figure 4-3. Performance Regions for Case 9, Ground Unit Siting 3
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Figure 4-5. Performance Regions for Case 9, Ground Unit Siting 5
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In figures 4-1 through 4-5, the boundary lines between the good, slow,
and divergent regions should not be viewed as exact, but as somewhat fuzzy,
since stability and speed of convergence are influenced by altitude, which
does not show on these figures. They are also influenced by ground unit
site geometry, although that becomes less influential at longer distances
from the threshold. Thus, for example, in figure 4-3, location 9
(mentioned above), is divergent with an azimuth angle of 37.95*, while
location 59, with azimuth angle of 33.280, is slow. The observed azimuth
angles between the several regions are marked approximately on these
figures. These are very rough boundaries; for example, Case 3-9, cited
above, is unstable and is thus outside the marked boundary for divergence,
but its azimuth angle is less than 380, due to the altitude-effect on the
azimuth angle observation, while the diagram indicates that the azimuth
angle of its horizontal-plane projection exceeds 44*.

These figures show the characteristic behavior of this algorithm. The
existence of regions of slow convergence or of divergence are not the
consequence of errors of analysis or code, but show the inherent nature of
this algorithm and of this form of Gauss-Seidel iteration. If these
properties are unacceptable, an entirely different type of algorithm is
required. Diagrams similar to figures 4-1 through 4-5 appear in section 5
where the Newton-Raphson method, Case 12, is discussed. Comparison of
figures 4-1 through 4-5 with 5-1 through 5-5 shows the characteristic
difference between these two algorithms. At large azimuth angles, where
Case 9 is slow or divergent, Case 12 converges successfully. On the other
hand, at very small azimuth angles, where Case 9 is convergent, Case 12 has
problems; the nature of these problems and their cause are discussed in
section 5.

A list of errata is presented in appendix A, that, to the extent
possible, corrects the defects of the algorithm as presented in [1 and
enabled developing the results shown in this report. However, as remarked
above, these corrections only enable the algorithm to run correctly, and do
not correct the basic reasons for its slow convergence and divergence at
large azimuth angles.
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SECTION 5

CASE 12: A NEWTON-RAPHSON CONICAL-AZIMUTH ALGORITHM

Case 12 uses the well-known and usually reliable Newton-Raphson (NR)
method of iterative solution. This method is briefly described in the MLS
context. Assume three functions, f, g, and h, in the three variables of x,
y, and z. The solution requires finding one or more sets of values of x,
y, and z, such that f = g = h = 0 at the solution. Given three initial
conditions, the increments added at each iteration to x, y, and z are found
by a matrix procedure as

6y = _j I (5-1)

& i+1 fi

where J is the (Jacobian) matrix of the partial derivatives of f, g, and h
with respect to the variables x, y, and z. The right-hand side of (5-1) is
evaluated at iteration i. The process fails if the matrix J is singular
with determinant equal to zero, or when the matrix is nearly singular and
the determinant is so small that round-off errors become important. And,
it may fail to converge, or converge to a wrong solution if the desired
solution is separated by a maximum or a minimum from the (xT, YT, zT)
triple at any point in the iteration. This concept is applied to the MLS
problem.

5.1 PROPERTIES OF CASE 12

Return to (2-1)-(2-3); the approach of [11 squares these equations to
eliminate the radicals, and then multiplies (2-2) and (2-3) by cos2 0 and
cos 2$, respectively, to form f, g, and h as

f = (x-XD))+(y-yD)2 + (z-zD)2 - p2  (5-2)
g = -(X-xA)2sinLe + (y-yA)2cosLe (z-zA)2sin 2e (5-3)

h = -(x-XE) 2sin 2  - (y-yE)2sin 24 + (z-zE)2cos 26. (5-4)

The Jacobian matrix of partial derivatives, J, is

J = _2 (x-XD) 2 2 (y-YD) 2(z-zD) 29

= 2(x-xA)sin 2(y-yA)cos2e - 2(Z-ZA)sin2e (5-5)
-2(X-xE)sin 2  -2(y-yE)sin 2  2(z-zE)COS2 .

This algorithm may be generalized to include the case of a planar
azimuth antenna by multiplying by (1-156) the [(z-zA)2sin 2 eJ term of g in
(5-3) and the (2,3) term f-2(z-zA)sin2 e] in (5-5).

The problems of this impiementation are now discussed.
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5.2 PROBLEMS WITH CASE 12

It was remarked above that the problem cannot be solved when the
matrix J is singular; this is recognized in [1], which uses an error
message whenever the matrix is singular. But in the important special case
when the aircraft is within the avionics' quantizing region for azimuth of
zero, the matrix (5-5) is singular, for all elements on the second row
vanish at the solution, when y = YA" It is not desirable that the avionics
produce an error message when the aircraft is on the azimuth antenna
boresight, especially since an exact solution is available.

Another aspect of this problem of singularity is that when the azimuth
angle is not zero, but is merely very small, it is possible for round-off
errors or similar, normally negligible, computational anomalies to cause
the solution to converge to a false location. If the ground units are
collocated, the singularity condition will occur if the estimated position
of the aircraft is on the azimuth antenna boresight at any stage of the
iteration process. A complete fix for this singularity problem, within the
context of the approach of [11, is not evident.

Further, the matrix can be singular if the initial conditions are not
carefully selected. For example, assume the three units are so oriented
that YD = YA = YE; then the initial condition set may not use yo = YD, for
that would cause the second column of J to be zero, resulting in an
unnecessary error message. This problem may be viewed as contained within
the problem of the preceding paragraphs, concerning the singularity case.
Further, if zD = zA = ZE, then z = zE may not be used as an initial
condition, for that would cause the third column of (5-5) to equal zero,
resulting again in a singularity problem.

In (5-2)-(5-4), the sines and cosines of both angles appear as
squares. Therefore, since sin 2 (-e) = sin 2e, cos 2 (O+180) = cos 2 0, etc.,
the number of possible solutions becomes greater (eight solutions have been
shown), so that convergence to the correct solution depends on having a
good initial condition, and on the solution history at each iteration
remaining sufficiently distant from all singularities. Satisfactory
initial conditions to avoid this situation are offered in [1], and are also
giver. in appendix C.

The determinant of the square matrix in (5-5) has a very large dynamic
range. Assume collocation of the three ground units at the origin; then
the determinant has the value A = 8xyz. The singularities at x = xD and
at z = zE are out of coverage for Category II operations, and are thus not
of immediate interest to the USAF at present. However, the singularity on
the antenna boresight, at y = YA, is within coverage, as mentioned. Assume
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the following limits, consistent with Category II, on the variables:

a. XMAX = 105 feet

b. xMIN = 103 feet

c. YMAX = 105*tan8MAX where EMAX = 600

d. YMIN = 103*tanGMIN where eMIN = 0.0050, half the avionics'

resolution requirement of 14], and treating any case where jly
subtends any angle of less than 0.0050 as within the singularity
special case mentioned above

e. ZMAX = 2*104, and MAX = 30', from [3]

f. zMiN = 10
3*tan(l°), as the minimum coverage in elevation is 0.9O.

Then the dynamic range of the determinant (6MAX/AMIN) is approximately
2.3*1011. This dynamic range will have an impact on the avionics because

of the limited variety of computer chips at present available to carry out
the required matrix inversion operation.

Finally, the code is given in a very general format which uses 109
lines of code and 13 DO-loops.

Two approaches to improving this algorithm are presented:

a. The code is rewritten to treat directly the problem of singularity
in a more compact and simple form, to the extent possible without

fundamentally changing the approach. This is called the simpli-
fied form.

b. The Newton-Raphson method is implemented, below, in a way that
avoids completely the problems cited above, in what is called the
alternate form.

5.3 SIMPLIFIED NEWTON-RAPHSON APPROACH

This approach simplifies the code and eliminates the singularity
problem when the observed quantized azimuth angle is exactly zero. This is
accomplished by using a logic expression to recognize when the observed
azimuth angle is zero; then set y = YA and g = 0, omit the second row and
second column of (5-5), omit g, and solve the reduced problem as a function
of x and z. Code for this revised form of the algorithm is shown in
appendix A. However, this does not eliminate the problems when the
solution is near the singularity. Table 5.1 shows a case where the
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algorithm converges to a wrong solution due to proximity to the
singularity. The simulation was single-precision; it is not desirable to
require that the avionics be double-precision unless it is truly essential.
A list of the errata appears in appendix A, together with code to correct,
or ameliorate, some of the defects noted above.

Table 5-1. Failure to Converge with Case 12
Simplified, Due to Proximity to the Singularity

GROUND STATION SITE GEOMETRY 0 3

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

x Y z x Y Z x Y z

-6000. -1000. 10. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION # 70. OBSERVED DATA: RHO - 76061.1 THETA - .18 PHI - 1.88

TRUE POS. INIT. POS.

ITERATION NUMBER I 1 2 3 4 5 6

X 75000.00 76060.72 75020.41 75010.57 75009.91 75009.87 75009.87 75009.87

Y -1250.00 -234.64 -576.48 -714.43 -747.76 -749.96 -749.97 -749.97

Z 2500.00 2495.00 2500.01 2500.00 2500.00 2500.00 2500.00 2500.00

Figures 5-1 through 5-5 show the behavior of the simplified form of
Case 12. Problems, such as in case 3-70 noted above, occur with this
Newton-Raphson approach only on or very near the boresight of the azimuth
antenna. The problem cases appear in the figures as open squares, and the
pertinent specific case-number is underlined, to enable identification of
the specific case by use of the database in appendix B. These figures may
be compared with those for the Gauss-Seidel approach of Case 9 in figures
4.1 through 4.5, as discussed previously.

5.4 ALTERNATE NEWTON-RAPHSON APPROACH

The problems observed, above, in the original and simplified versions
of this algorithm are the singularity on the azimuth antenna centerline,
the presence of multiple solutions, and perhaps the dynamic range of the
determinant. The common source of these problems is the presence of the
squared terms in (5-3) and (5-4). Any useful alternate must eliminate the
two major problems, and therefore must not use the squared forms used as in
(5-3) and (5-4). Some alternate possibilities are outlined below; all
these alternates have two solutions of which only one is normally within
coverage, and none is known to have any singularity within coverage.

22



GROUND SITE CONFIGURATION #1 Z
25'

1500'
A,D E 1000,Soo

-12K' -10K' -8K* -6K' -4K' -2K' 500'

-1000'
-1500'

lOOK

90K @ 37 @.4' 4243.44

80K
031.32.36 39

70K

60K

50K 045.46

40K - o21.22

30K
033

20K - .11.12 023,24 040

10K 1.2. .13.14 o25,26.30 034 .38 e47

y 3.4.7 15.16

E 0 5.55JO 13} ,,.OZZ 135 }61.62..64.. .
(FEET) 54.556.57.58. 66,67.68.69.70

-10K 9.10 59.60.71.72.73, 050
74,75

-20K .19.20 @28.29

-30K

-40K

-50K *49

-60K

-70K

-80K • GOOD
a1 BAD

-90K B 48

-lOOK

0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

X (FEET)
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One attractive alternate may be taken from (4-2)-(4-4). Gather all
terms on one side of the equation, and equate these to f, g, and h,
respectively, consistent with the approach of [11; this yields

f = x - xD - [P2 - (y - YD)2 - (z-zD)21i/ 2  (5-6)
g = Y- YA + [(x - XA)2 + (z - ZA) 2 ]i/2tane (5-7)
h = z - ZE - f(x - xE) 2 + (y - yE)2 11/2 tanO. (5-8)

This set has the Jacobian matrix

1 (y - YD)/RD (z-ZD)/RD
= (x - XA)tane/RA 1 (z - zA)tane/RA (5-9)

-(x - XE)tano/RE -(y - YE)tanf/RE
where

RD = [p 2  -( _yD) 2 - (z 2]1 / 2  (5-10)
RA [(x-XA) + (z - ZA) 1  (5-11)
RE [(x - XE) 2 + (y-yE)21]/2  (5-12)

This matrix is not known to have any singularities within coverage. For
instance, if e = 0 = 0, the determinant reduces to 1. The determinant's
dynamic range is very small, for the range of variables used above. But
precautions must be taken lest the radicand in (5-10) be negative.

Instead of (5-6), it is possible to use (5-2), preferably multiplied
by (1/2) to normalize. This produces a Jacobian matrix with the first row
of [(x - xD) (y - YD) (z - zD)]; if the ground units are collocated at
the DME location there is a singularity at x = xD, which is out of
coverage. Otherwise, its properties are similar to those of the set (5-6)-
(5-9). This will be used in the suggested alternate.

Another alternate uses

f = [(x - XD)2 + (y - yD)2 + (z-ZD)211/2 - p (5-13)

instead of (5-6). The first row of its Jacobian is, similar to that
described in the preceding paragraph, [(x - XD)/p (y - yD)/P (z -
ZD)/pJ. The properties are similar to those described above.

In the same spirit, multiply (5-7) and (5-8) by cose and cosO,
respectively, and equate the results to new variables g and h. This
approach has great similarity to the approach of [11, except that the
trigonometric terms are not squared, there are thus only two solutions, of
which only one is within coverage, and, as another consequence, no known
singularities exist within coverage. This approach will be used to form
the suggested alternate.
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Several alternates for f have been described, and two have been
suggested for g and h. Various systems may be formed by taking various
combinations of the several f, g, and h forms. All share the common
properties of a minimum number of possible solutions of which only one is
normally within coverage, and no known singularities exist within coverage.

A specific choice for an alternate is now stated. As suggested above,
it uses

f = (i/2)[(X-xD)2 + (y-yD)2 + (z-zD) 2 - p2] (5-14)

g = (y-yA)cose + [(X-xA) + (z-zA) ]1/2sine (5-15)
h = (z-zE)cOSO - [(X-xE) 2 + (Y-YE) 2 ] /2sinO. (5-16)

Then the Jacobian partial derivatives matrix is

[ (X-XD) (Y-YD) (Z-ZD)i (x-xA)sine/RA cose (z-zA)sine/RA (5-17)

-(x-xE)sino/RE -(y-yE)sinO/RE cosI

This algorithm can be generalized to include planar azimuth antenna
patterns by multiplying (z-zA) by (1-156) in (5-15), in the radicand RA in
(5-11), and in the (2,3) location in J in (5-17).

This algorithm is compact, using 48 lines of code. It is believed to
have the minimum number of solutions, so that the choice of initial
conditions is relatively open. Any initialization with x0 > xD and xT > xD
appears to converge to the correct solution. All known singularities are
outside the coverage of the system.

It was shown above that the original and simplified forms of Case 12
have a problem near the azimuth antenna boresight; table 5-1 with case 3-70
was taken as the prototypical situation. In this same case, the
performance of the alternate form, shown in table 5-2, is satisfactory, and
exhibits no difficulties.

The dynamic range of the determinant of (5-17) is evaluated. Again
assume the three ground units to be collocated at the origin. The
determinant in this case is L = xsecesecO. With the same numerical
assumptions, the dynamic range is 230. The dynamic range of the approach
of [1] is greater by a factor of approximately 109. Code for this
alternate algorithm is presented in appendix A.

5.5 COMPARISONS

Some of the properties of the three algorithms, Original Case 12,
Simplified Case 12 and Alternate Case 12, are compared in table 5-3.
The simplified and alternate versions are more compact and involve a lesser
computation burden. The alternate is recommended, based on this table.
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Table 5-2. Alternate Newton-Raphson Algorithm in Table 5-1 Case

GROUND STATION SITE GEOMETRY # 3

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

x Y Z x Y Z X Y Z

-6000. -1000. 10. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION # 70. OBSERVED DATA: RHO = 76061.1 THETA = .18 PHI = 1.88

TRUE POS. INIT. POS.

ITERATION NUMBER I 1 2 3 4 5 6

X 75000.00 76060.72 75013.98 75000.00 75000.00 75000.00 75000.00 75000.00

Y -1250.00 -234.64 -1250.04 -1250.00 -1250.00 -1250.00 -1250.00 -1250.00

Z 2500.00 2495.00 2500.23 2500.00 2500.00 2500.00 2500.00 2500.00

Table 5-3. Various Newton-Raphson Algorithms

Original* Simplified* Alternate

Mean/Stand. Deviations
of Iterations to 2.19/0.98 2.19/0.98 2.00/0.56
Convergence

Lines of Code 10/99 40/9 37/11
Out/In Iteration

No. of DO-loops 13 1 1

Operations (*,/) 94 87 65
in Iterative Loop

Operations 18 0 2
(sin, cos, /- )
in Iterative Loop

Dynamic Range 2.3*1011 2.3*1011 230

Singularities in On Azimuth On Azimuth Between

Cat II Coverage Centerline Centerline Azimuth &
DME Sites

* Cases involving the singularity are disregarded.
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SECTION 6

CONCLUSIONS

Of the various algorithms presented in [11 for position reconstruction
in MLS area navigation operation, only two (Cases 9 and 12) cover general
sitings of the ground units as well as conical-pattern azimuth antennas.
These two can be generalized to handle planar antennas if that should be
desired.

One of these algorithms, Case 9, using Gauss-Seidel iteration,
exhibits slow convergence in some geometries at moderate azimuth angles,
less than the minimum coverage of ±400, and diverges at larger azimuth
angles in most geometries. These problems may preclude its use in MLS RNAV
operation. It should be noted that other Gauss-Seidel algorithms exist
that are of similar size and complexity, but that do not diverge within the
MLS coverage.

The other algorithm, Case 12, using Newton-Raphson iteration,
converges rapidly everywhere except on or very near the centerline of the
azimuth antenna. As formulated in [1] it consists of 109 lines of code and
13 DO-loops, and has the maximum number of possible false solutions; it
thus requires careful choice of the essential initial conditions for the
iterative procedure. Further, it has a singularity when the aircraft is on
the azimuth antenna centerline (within the resolution due to quantization
in the digital avionics), although an exact solution is possible; in this
case, an unnecessary error signal is generated. Finally, for very small
azimuth angles, near the azimuth antenna boresight, it is very near that
singularity, and thus can yield a false solution. This formulation can be
compacted, simplified and partially corrected. However, an alternate
formulation is recommended as it uses 48 lines of code, has the minimum
number of solutions and a much smaller dynamical range of numerical
computation values, and imposes a smaller computational burden on the
avionics. Further, it is believed to be without singularities within
Category II coverage.
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APPENDIX A

ERRATA AND CODE

This appendix presents errata lists for the five general algorithms
and the computer code where appropriate.

PLANAR ALGORITHMS

The planar algorithms are Cases 7, 10, and 11. A list of errata for
these cases follows.

Case 7

On page 26 of [I, make the following changes:

Replace (7) by

"y 2 (I+cot 2 e)+2y~xDcOte-XAcOte-yAcot 2e-yD) (7)
+XA +XD 2+YD +ZD +z 2 -p 2 +2(xAyAcOte-xDyAcOte-ZZD-xAxD)+YA 

2 cot 2e-O0

This change corrects two errors in the ?nalysis, repeated in the
code, that cause the algorithm to converge to a wrong solution.

Replace (8) by

"y = [-B±(B 2-4AC)1 /2]/2A (8)"

The division by (2A) applies to the entire right-hand side of (8).

On page 29 of [11, make the following changes:

Replace (8) by

"y = [-B+(B 2-4AC)1 /2]/2A if e < 0, and
y = [-B-(B 2-4AC)1 / 2]/2A if e > 0. (8)"

The distinction between the positive and negative radical
solutions is essential, otherwise the algorithm yields false
results for e > 0. This error is repeated in the code in [I].
Also, the division by (2A) applies to the entire right-hand side
of (8).

Corrected code is not provided, since the planar-azimuth case is now
of reduced interest.
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Case 10

Note that this case can be generalized to conical by changing (2), and
the subsequent analysis, as shown in section 3.

On page 38 of 11], replace (5) by

"z = zE +[(x-xE) 2+(y-yE) 2 ]i1/2 tanO (5)"

and replace (9) by

"z = zE +[(x-xE)2+(y-yE) 2 ]1/2 tan (9)"

to define correctly the range of application of the square-root
operation and the coefficient of tanO.

On page 39, replace (12) by

"zi+ 1 = ZE +[(xi+l-xE)
2+(yi+l-YE) 2 ]1 /2 tanO (12)"

This change ensures that the correct sign of tano is selected and
that the coefficient of tanO is correctly defined.

Corrected code is not presented.

Case 11

On page 43 of [1], as (2A) divides the entire right of (8), make the
following change:

"x = I-B+(B 2-4AC)/2]/2A if x > XD, since x > xD is the desired
solution. (8)"

On page 44 of f1], make the following change:

From the paragraph below (13), "Please note that to avoid
singularities, the angle ... axis.", delete the underlined words,
as this method has no singularities; the definition of the
positive direction of the angle e repeats the definition
established elsewhere in [11 and [5].

Corrected code is not provided.

CONICAL ALGORITHMS

Two conical azimuth antenna algorithms (Cases 9 and 12) are presented
in [1]. Errata and alternate code are given below where appropriate.
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Case 9

On page 34, correct the signs in (5) to read

"y = yA-[(X-A)2+(z-zA)2]I/2tane (5)"

On page 34, provide subscripts for (9), as

"zi+l = zE+[(xi-xE) 2+(yi-yE)
2 ]I1 /2tan (9)"

Correct the signs in (10), and provide subscripts, to read

"Yi+1 = YA-[(xi-xA)2+(zi+l-zA) 2]11/2tane (10)"

If desired, multiply (z-zA) in (5) and (10) by (1-156) to
generalize to include planar azimuth.

On page 35, near the bottom, correct the computer code as follows:

Identify the three lines below "IFLAG=O..." as comments. The code
cannot compile as given.

To the "NOTE", add to the comment, "For some geometries, this
algorithm diverges for azimuth angles less than 40*. ''

On page 36, near the bottom of the code, after

"IF(ABS(Zl-Z).GT.LIMZ)GO TO 20"

insert the following lines

"Z=Z1
Y=Y1
X=X1
GOTO 99"

Otherwise, the algorithm always iterates 10 times and generates
the flag for excessive iterations.

These changes are so few and simple that it is not necessary to
present the entire corrected code.
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Case 12

The errors in the analysis are noted; they do not appeaz on the code.

On page 49, in the first line of the square matrix in (22) and (23):

Replace "fg" by "fz".

On page 50, replace the initial conditions in (29) by

"1x0 = pcose
Y0 = -psine (29)
z0 = psin"

as the initial conditions for yo and z0 are incorrect.

The import of the last paragraph is clarified by inserting the
underlined words in the first sentence, so that it reads,

S...azimuth centerline (e=0), assumed parallel to the runway

centerline, which...".

The code can be compressed and the special case of singularity of the
Jacobian matrix when e = 0 can be correctly handled in the code presented
below, from [2], as figure A-i. However, this does not necessarily fully
treat the situation when the iteration (or aircraft) is near, but not
exactly on, the singularity condition.

The code for the alternate formulation of this approach, discussed in
section 5, above, is presented in figure A-2. It was noted above that this
approach has a singularity at x = xD if the ground units are collocated.
However, there is no singularity at or near y = YA nor z = ZE in the
collocated case. It is possible that there is no singularity within
coverage; however, this has not been proved.
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SUBROUTINE CASE12S(XD,YD,ZD,XA,YA,ZA,XE,YE, ZE,RHO
1 THETA,PHI,XT,YT,ZT,ARAOUT,IFLAG,ITER)
DIMENSION ARAOUT(3, 10)

C DEFINE TRIG FUNCTIONS OF OBSERVED ANGLES.
CTHETA=COS (THETA)
STHETA= SIN (THETA)
SPHI=SIN(PHI)
CPHI=COS(PHI)
ARAOUT(1,1)=XT
ARAOUT(2, 1)=YT
ARAOUT(3, 1)=ZT

C INITIALIZATION.
XHAT=RHO*CTHETA
YHAT=-RHO*STHETA
ZHAT=RHO* SPHIl

C STORE INITIALIZATIONS IN OUTPUT ARRAY, ARAOUT.
ARAOUT( 1. 2)-XHAT
ARAOUT(2 ,2)=YHAT
ARAOUT(3, 2)=ZHAT

C END OF INITIALIZATIONS.
C THE SIMPLIFIED ITERATIVE RECONSTRUCTION ALGORITHM BEGINS HERE.

DO 10 I=1,ITER
C FORM VECTOR OF FUNCTIONS.

Fl=(XHAT-XD)**2+(YHAT-YD)**2+(ZHAT-ZD)**2-RHO**2
F2=-(CTHETA*(YHAT-YA) )**2

1+(STHETA*(XHAT-XA) )**2+(STHETA*(ZHAT-ZA) )**2
F3=(SPHI*(XHAT-XE))**2q(SPHI*(YHAT-.YE))**2

1 (CPHI*(ZHAT-~ZE))**2
C FORM JACOBIAN MATRIX ELEMENTS

C11=2 .O*(XHAT-XD)
C12=2 .O*(YHAT-YD)
C13=2 .O*(ZHAT-~ZD)
C21=2 . *(STHETA*STHETA)*(XHAT-XA)
C22=-2 . *(CTHETA*CTHETA)*(YHAT-YA)
C23=2 .O*(STHETA*STHETA)*(ZHAT-ZA)
C31=2 .O*(SPHI*SPHI)*(XHAT-.XE)
C32=2 . *(SPHI*SPHI)*(YHAT-.YE)
C33=-2 . *(CPHI*CPHI)*(ZHAT-ZE)

C TREATMENT OF SINGULARITY AT Y=YA OR AT THETA=O.
IF((THETA.NE.O.O).OR.((YHAT-YA).NE.O.O))GOTO 11
DET2=C1 1*C33-C13*C31

C NOTE THAT DET2 > 0.
C21N11=C33/DET2
C21N12--C13/DET2
C21N21=-C31/DET2
C21N22-C11/DET2

Figure A-i. Code for Case 12 Simplified
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DELTX=- (C21N11*Fl+C2IN12*F3)
DELTY=O.O
DELTZ=-(C21N21*Fl-C2IN22*F3)
XHAT=XHAT+DELTX
YIIAT=YA
ZHAT=ZHAT+DELTZ
IFLAG=2
GOTO 12

C MATRIX INVERSION, SIMPLIFIED, BUT UNIQUE TO A 3X3.
11 CONTINUE

DET3=C11*C22*C33+C21*C32*C13+C31*Cl2*C23
1 Cl3*C22*C31-C23*C32*C11-C33*C21*Cl2

C TEST 3X3 MATRIX FOR SINGULARITY.
IF(DET3.EQ.O.O)GOTO 13
CINV11=(C22*C33-C23*C32)
CINV12=(Cl3*C32-Cl2*C33)
CINV13=(C12*C23-C13*C22)
CINV21=(C23*C31-C21*C33)
CINV22=(C11*C33-C13*C31)
CINV23=(C13*C21-C11*C23)
CINV31=(C21*C32-C22*C31)
CINV32=(C12*C31-C11*C32)
CINV33=(C11*C22-C12*C21)
I FLAG= 1

C END OF INVERSION.
C PRODUCT OF MATRIX-INVERSE AND VECTOR.

DELTX=-(CINV11*Fl+CINV12*F2+CINV13*F3) /DET3
DELTY=-(CINV21*F1+CINV22*F2+CINV23*F3) /DET3
DELTZ.-~(CINV31*Fl+CINV32*F2+CINV33*F3 )/DET3

C NOW CREATE NEW XHAT, YHAT, & ZHAT.
XHAT=XHAT+DELTX
YHAT=YHAT+DELTY
ZHAT=ZHAT+DELTZ
GOTO 12

C TRAP AND MARKER FOR SINGULAR MATRIX.
13 IFLAG=3

XHAT=O.O
YHAT=O.O
ZHAT=1000. 0

12 CONTINUE
ARAOUT(1, (2+I))=XHAT
ARAOUT(2, (2+I))=YHAT
ARAOUT(3, (2+I))=ZHAT

10 CONTINUE
RETURN
END

C END OF SIMULATION SUBROUTINE.

Figure A-i. Code for Case 12 Simplified (concludpd)
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SUBROUTINE CASE12A(XD,YD,ZD,XA,YA,ZA,XL,YE,ZE,RHO,THETA,PHI
1,XT,YT,ZT,ARAOUT,IFLAG,ITER,I56)
DIMENSION ARAOUT(3,10)

C ALTERNATE NEWTON-.RAPHSON ALGORITHM
C INITIALIZE ANGLE DATA

STHETA= SIN (THETA)
CTHETA=COS (THETA)
SPHI=SIN( PHI)
CPHI=COS( PHI)

*c STORE TRUE VALUES IN OUTPUT ARRAY

ARAOUT(2, 1)=YT
ARAOUT(3, 1)=ZT

C INITIALIZATION OF POSITION ESTIMATE
XHAT=RHO*CTHETA
YHAT=-RHO*STHETA
ZHAT=RHO*SPHI

C STORE INITIALIZATIONS IN OUTPUT ARRAY
ARAOUT(1,2)=XHAT
ARAOUT(2,2)=YHAT
ARAOUT(3,2)=ZHAT

C END OF INITIALIZATIONS
C THE ITERATIVE RECONSTRUCTION ALGORITHM BEGINS HERE

DO 10 I=1,ITER
C SEE (5-14)-(5-16)

F1=( (XHAT-XD)**2+(YHAT-YD)**2+(ZHAT-ZD)**2-RHO**2)/2 .0
RA=SQRT( (XHAT-XA)**2+(1-I56)*(ZHAT-ZA)**2)
F2= (YHAT-~YA)*CTHETA+RA*STHETA
RE=SQRT( (XHAT-XE)**2+(YHAT-YE)**2)
F3= (ZHAT-ZE )*CPHI-RE*SPHI

C MATRIX ELEMENTS; SEE (5-17)
C11=(XHAT-XD)
C12=(YHAT-YD)
C13 ( ZHAT-ZD)
021= (XHAT-XA) *STHETA/RA
C22=CTHETA
C23=( 1-I56)*(ZHAT-ZA)*STHETA/RA
C31=-(XHAT-XE)*SPHI/RE
032=- (YHAT-YE)*SPHI/RE
C33=CPHI

Figure A-2. Code for Case 12 Alternate
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C MATRIX INVERT, UNIQUE TO A 3X3
11 CONTINUE

DET3=C11*C22*C33+C21*C32*C13+C31*Cl2*C23
1 -C13*C22*C31-C23*C32*C11-C33*C21*Cl2

C TREATMENT OF THE SINGULARITY, IF ANY
IF(DET3 .LE. 1.O)GOTO 13
CINV11=(C22*C33-C23*C32)
CINV12=(C13*C32-C12*C33)
CINv13=(C12*C23-C13*C22)
CINV21=(C23*C31-C21*C33)
CINV22=(C11*C33-C13*C31)
CINV23=(C13*C21-~C11*C23)
CINV31=(C21*C32-C22*C31)
CINV32=(C12*C31-C11*C32)
CINV33=(C11*C22-C12*C21)
IFLAG=1

C END OF INVERSION
C PRODUCT OF MATRIX-INVERSE AND VECTOR

DELTX=-(CINV11*F1+CINV12*F2+CINV13*F3) /DET3
DELTY=-(CINV21*F1+CINV22*F2+CINV23*F3 )/DET3
DELTZ=-(CINV31*F1+CINV32*F2+CINV33*F3) /DET3

C NOW CREATE NEW XHAT, ETC.
XHAT=XHAT+DELTX
YHAT=YHAT+DELTY
ZHAT=ZHAT+DELTZ
GOTO 12

13 IFLAG=3
XHAT=O.O
YHAT=O.O
ZHAT= 1000.0

12 CONTINUE
C END OF SIMULATION
C OUTPUT ARRAY FOLLOWS

ARAOUT(1, (2+1) )=XHAT
ARA0UT(4', (2+I))=YHAT
ARAOUT(3, (2+1) )=ZHAT

C THIS COMPLETES THE ITERATION
10 CONTINUE

Figure A-2. Codefor Case 12 Alternate (concluded)
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APPENDIX B

DATABASE

The databases used to exercise the several algorithms are presented in
this appendix. Table B-I presents the locations of the five arrangements
of the ground units, and table B-2 presents the 50 aircraft locations
common to both the Case 9 and Case 12 exercises. Table B-3 presents the
set of 25 additional aircraft locations used to delineate the areas in
which Case 9 has problems, and table B-4 presents the set of 25 additional
locations used to explore the region where Case 12 has problems. Plan
views of these data appeared in the several figures in section 2.

Table B-I. Ground Unit Locations

Set DME Azimuth Antenna Elevation Antenna
_ X D zD XA XA ZA 5E Y-E _E

1 -1000 500 5 -1000 500 5 -1000 500 5
2 -6000 0 5 -6000 0 5 -1000 500 5
3 -1000 500 5 -6000 -1000 10 -1000 500 5
4 -5000 -1000 25 -10000 -500 5 -1000 500 5
5 -5000 -1500 5 -12000 1000 0 -1000 -1000 10
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Table B-2. Aircraft Locations for Common Database

Location Aircraft Location Location Aircraft Location
Number XT YT ZT Number XT YT ZT

1 5000 10000 3000 26 25000 10000 2500
2 5000 10000 1000 27 25000 1000 2500
3 5000 5000 3000 28 25000 -20000 750u
4 5000 5000 1000 29 25000 -20000 2500
5 5000 1000 3000 30 25000 10000 5000
6 5000 1000 1000 31 50000 75000 10000
7 5000 5000 500 32 50000 75000 2500
8 5000 1000 500 33 50000 25000 10000
9 5000 -10000 3500 34 50000 10000 5000
10 5000 -10000 1000 35 50000 0 2500
11 10000 20000 4000 36 50000 75000 25000
12 10000 20000 1000 37 75000 90000 10000
13 10000 10000 4000 38 75000 10000 5000
14 10000 10000 1000 39 75000 75000 10000
15 10000 5000 4000 40 75000 20000 1000
16 10000 5000 1000 41 90000 90000 20000
17 10000 1000 4000 42 90000 90000 25000
18 10000 1000 1000 43 90000 90000 10000
19 10000 -20000 4000 44 90000 90000 5000
20 10000 -20000 1000 45 90000 50000 20000
21 25000 40000 5000 46 90000 50000 2000
22 25000 40000 1000 47 90000 10000 10000
23 25000 20000 5000 48 90000 -90000 15000
24 25000 20000 1000 49 90000 -50000 10000
25 25000 10000 7500 50 90000 -10000 20000
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Table B-3. Added Aircraft Locations for Examination of Case 9

Location Aircraft Location Location Aircraft Location
Number XT YT ZT Number XT YT ZT

51 10000 18000 5000 64 25000 -35000 5000
52 10000 16000 5000 65 25000 -30000 5000
53 10000 14000 5000 66 25000 -25000 5000
54 10000 12000 5000 67 50000 70000 5000
55 10000 8000 5000 68 50000 60000 5000
56 10000 -18000 5000 69 50000 50000 5000
57 10000 -16000 5000 70 50000 40000 5000
58 10000 -14000 5000 71 50000 -70000 5000
59 10000 -12000 5000 72 90000 40000 5000
60 10000 -8000 5000 73 90000 30000 5000
61 25000 35000 5000 74 90000 20000 5000
62 25000 30000 5000 75 90000 40000 20000
63 25000 25000 5000

Table B-4. Added Aircraft Locations for Examination of Case 12

Location Aircraft Location Location Aircraft Location
Number XT YT ZT Number XT YT ZT

51 10000 1500 1000 64 75000 750 2500
52 10000 1250 1000 65 7500 500 2500
53 10000 1000 1000 66 75000 250 2500
54 10000 750 1000 67 75000 0 2500
55 10000 500 1000 68 75000 -250 2500
56 10000 250 1000 69 75000 -750 2500
57 10000 0 1000 70 75000 -1250 2500
58 10000 -250 1000 71 10000 25 1000
59 10000 -750 1000 72 10000 50 1000
60 10000 -1250 1000 73 10000 100 1000
61 75000 1500 2500 74 10000 150 1000
62 75000 1250 2500 75 10000 200 1000
63 75000 1000 2500
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APPENDIX C

INITIALIZATION

Gauss-Seidel and Newton-Raphson iterative algorithms must be
initialized to establish the start for the search procedure. If the
mathematics permit multiple solutions, the selection of the initial
condition determines which of the solutions is reached. A variety of
satisfactory initial conditions are presented in [1], under the assumption
that the aircraft true position has xT > xD . If this assumption is false,
then multiple solutions may be within coverage; the problem of selecting
the correct initial condition in this case has not been solved.
The initial condition procedures are presented below in the order of
increasing complexity. Note that the algorithm of Case 9 does not use z0;
however, this is not a universal property of Gauss-Seidel algorithms, but
only of the specific algorithm offered in 11].

Simplest initialization

x 0 = pcosE
yo = psine
z 0 = psin

Intermediate complexity initialization

x 0 = x D + pcose
YO = XA - psine
z 0 = zE + psin

Higher complexity initialization

x 0 = xD + pcosecos0

YO = xA - psinecosO
z 0 = zE + psinO

Other initializations, using more information about the geometry, may
also be devised. However, those above span the usual range of variety.

In geometries where an algorithm converges slowly, a very good initial
condition may save one, or perhaps even two iterations. However, a very
good initial condition also involves more complexity, and the time used in
evaluating the more complex expression may become significant.
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