
RIC FILE Copy

RADC-TR-90-59
Final Technical Report
May-1990

AD-A224 797
4TH ANNUAL KNOWLEDGE BASED
SOFTWARE ASSISTANT CONFERENCE
PROCEEDINGS

lIT Research Institute

Nancy L. Sunderhaft

DTIC '-.

CE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

90 07 31 026

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS).. At
NTIS it will be releasable to the general public, including foreign nations.

Permission has been granted to publish papers in this report (suitable
for public release).

RADC-TR-90-59 has been reviewed and is approved for publication .

APPROVED: < l '-

DOUGLAS A. WHITE

Project Engineer

APPROVED: ~ 4
RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE Fom 07o-18

Ptak two of ftwa On "aS o ofie OabM e Uv a~w = tg af On remowa V.4q o In ;=e rwVMgm. iN*VWQ .inwQ 60% 6"C" 00uO ud

" s~S am.U WWVL W ierew Deeqm .Ba Vas w W9=2 6U iZS eftmf O0M)" Sun 1204. A~qWJI. VA 2=2O.'. RW 0
01 of et em'wn we%,*U= Aimrs. of at Me~wsw "W"0N Nam 04-1011 o

1. AGENCY USE ONLY (LaM 8i1*) R DATE 3. REPOATTYPE AND DATES COVERED

May 1990 Final 12 to 14 Sep 89

4. TrMEAND SU"TBME T . FUNDING NUMBERS

4TH ANNUAL KNOWLEDGE BASED SOFTWARE ASSISTANT C - F30602-87-D-0094
CONFERENCE PROCEEDINGS PE - 63728F

PR - 2532
6AUTHO(S) TA - QC

WU - 08
Nancy L. Sunderhaft

7. PERFORMING ORGANIZATION NAME(S) ANOADORESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER

lIT Research Institute
Beeches Technical Campus
RT 26 North
Rome NY 13440-2069
9. SPONSORI NGntONRINGAGENCY NAME(S)ANOAODRESS(ES) 10 SPONSORINGAONITOPING AGENCY

Rome Air Development Center (COES)
REPORT NMBER

Griffiss AFB NY 13441-5700 RADC-TR-90-59

11. SUPPUMENTAkY NOTES

RADC Project Engineer: Douglas A. White/COES/C315) 330-3564

12L OSmUnoWAVALAJUTV STATEMENT 120. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSfTRACT (MWIMM 2W -om

Rome Air Development Center (RADC), Command and Control Directorate (CO), sponsored the
4th Annual RADC Knowledge Based Software Assistant (KBSA) Conference held September 12-
14, 1989 in Syracuse, New York. The annual conference provides a forum for :exchanging
technical and managerial views on the progress of the RADC program for developing a
knowledge-based life cycle paradigm for large software projects, the Knowledge Based
Software Assistant. The mature KBSA will provide intelligent assistance to system
builders in producing quality mission-critical computer resources (MCCR). Software
developed using the KBSA is expected to be more responsive to changing requirements,
to be more reliable, and to be more revisable than software pinduced using current
practices.)

',The KBSA will improve software practices by providing machine-mediated support to
>.% decision makers, formalizing the processes associated with (Continued on Reverse)

14 S X.C T",RMS ('."- -,c- " 'J.. (4.NUMBEROFPAGES
rArtificial Intelligence, Sof- -- Ass4stane-1 "edveB'-t- 390
-Syatxa4, Automatic Programming, KIOWL 8e Basi..O Programming- , -r f is PRJCE COOE

17 SECUPJItCLASS I ICArION " SECU YCLASSIFICTfON 19 SECURJTY CLASFICATION j 20. UMTATION OF A STRACT
OF REPORT OF THIS PAGE OF ABSTRACT I

UNCLASSIFIED UNCLASSIFIED 1UNCLASSIFIED UL

NSN 7540,.280.55M .umI MPO M --a 40ofJ 2

90 0

Block 13 Cont.nued:

software development and project management, and providing a corporate memory
for projects. The KBSA will utilize artificial intelligence, automatic program-
ming, knowledge-based software engineering, and software environment technolbgy
to achieve the goal of providing an integrated environment for developing MCCR
systems.

l / '1

NOTES

Although this report references the following limited documents, no
limited information has been extracted.

KBSA Performance Estimation Assistant, Aug 89; USGO agencies and their

contractors.

KBSA Framework (Phase I), Oct 88; USGO agencies and their contractors.

Knowledge Based Requirements Assistant (Vols 1 & 2), Oct 88; USGO agencies
and their contractors.

The Knowledge-Based Specification Assistant (Vols 1 & 2), Feb 89; USGO
agencies & private individuals or enterprises eligible to obtain
export-controlled technical data lAW regulations implementing 10
U.S.C. 140C.

3RD Annual Knowledge-Based Software Assistant Conference, Mar 89; USGO
agencies & private individuals or enterprises eligible to obtain
export-controlled technical data IAW regulations implementing 10
U.S.C. 140C.

Aooession For

NTIS GRA&I
DTIC TAB
Unannounced El
Justificatio

By

Distribution/

Availability Codes

IAvail and/or
Dist I Special

AlJ

4th Annual RADC KBSA Conference
Monday. 11 Seotember 1989

5:00 p.m. to 9:00 p.m. Reglstratlon & Receplon
Ramada Inn: Executive Room
1305 Buckley Road
Syracuse. New York
(315) 457-8670

Tuesday. 12 Se2ermber 1989

7:45 a.m. to 8:45 a.m. Breakfast Tutorial (Reservation Required)
Ramada Inn: Syramada Room
Mr. Douglas A. White
Rome Air Development Center

7:30 a.m. to 9:00 a.m. Registration & Continental Breakfast
Ramada Inn; Victorian Room

9:00 a.m. to 9:30 a.m. Welcome & Opening Remrics
Dr. Fred.. Diamond. Chief Scientist
Mr. Douglas A. White
Rome Air Development Center

9:30 a.m. to 10:00 a.m. KBSA Uwu Intedace Environment
Mr. Joshua Glasser
Honeywell. Inc.

10:00 a.m. to 10:30 a.m. Re.ousng Software Deve"Xpmet
Dr. Allen Goldberg
Kestrel Institute

10:30 a.m. to 10:45 a.m. Refteshments Break

10:45 a.m. to 11:15 a.m. Buldling Evoluton Transormaufon Ubrads
Dr. W. Lewis Johnson
USC/Informaton Sciences Instithte

11:15 a.m. to 12:00 p.m. Coordinatuor w4d Coordinator Gnerators
Dr. Walter G. Morris
Software Options, inc.

12:00 p.m. to 1:30 p.m. Luncheon Buffet
Syramada Room

1:30 p.m. to 2:15 p.m. The *F brarl: A Reusab~ly LibrOlan Ba d on
Coope"tn Knowledge-Based System
Mr. Raymond C. McDowell
Unisys Defense Systems

2:15 p.m. to 2:45 p.m. , Software Assisant for Automatic Test Equlpment Engineering
Mr. David R. Harris
Sanders Associates. Inc.

2:45 p.m, to 3:00 p.m. Refteshme t Break

Spin-Off Technologies

4th Annual RADC KBSA Conference

3:00 p.m. to 3:30 p.m. KMS for Automated ofWore Analysis, Tedt Genrmation
and Manogenwnt
Mr. Gor'don B. Kotik & Mr. Lawrence Z. Markosion
Reasning Systems. Inc.

3:30 P.M. to 5:00 P.M. Software Demnstrations
Board Room & Executive Room

;Z8SA Daveko~nwt Asitt Dr. Allen Goldberg, Kestrel Institue
A demonstration of the knowledge-basedsuppottof code development. This demonstration will
show the interactive development of a simple, easg'y understood problem, that of computing
eiementary statistics from a sample of data (mean,. frequenc , variance. etc.). The demonstra-
tion also shows the recording and replay of the deviatin. That is offer derivng an implemen-
tation, the specification will be modified and the derivation replaced on the modified specifica-
tion.

Romulus; Dr. David Rosenthal, Odyssey Research Associates
A demonstration of the construction of specifications and verifcation of a system.

6:00 p.m. to 9:30 p.m. Cocktails & Confwomne Dinne Theat*
The Glen Loch Mill (cIrca 1827)
4626 North Street
Jamesville, New York
(315) 469-6969

6:00 p.m. to 6:45 p.m. Cocktalls; Cah Bar

6:45 p.m. to 7: 15 p.m. System Integration Technology Mr. Lasfo A. Bokady
Microelectronics and Computer Technology Corporation

7:15 p.m. Dinner Theater, It Mod to bo You

9:00 a.m. to 9:30 a.m. Progross on the Know'PP/jo CNt Softwro Assistant
Dr. Richard Jullg
Kestrel Institute

9:30 a.m. to 10: 15 a.m. Goice An 0b*oct..rlened Framnework for an Ado Environment
Mr. Donald Vines
Honeywell, Inc.

10: 15 a.m. to 10:30 a.m. Refeshments reock

10:30 a.m. to 11:00 a.m. K&SWs RequiramntsAsslstant chidAerospace
Inustry Needs
Dr. Douglas A. Abbot
McDonnell Douglas Corpotion

11:00 a.m. to 11:30 amm, Knodgw",-kmWe Spocleakm, Analysis and Synffwsi
of Comnunicetion Protoccft
Mr. Lawrence Z Martcoslan
Reasoning Systems. Inc.

Spin-Off Technologie
2j

4th Annual RADC KBSA Conference

Wadnesdayv. 13 Saptember 1989 (Continuedl

11:30 a.m. to 12:00 p.m. KnowWdge 5=*d Reverse Englneeng for Re-englneedng
and Roe
Mr. Philip Newcomb
Boeing Computer Services

12:00 p.m. to 1:30 p.m. Lunchon &At
Syramada Room

1:30 p.m. to 3:00 p.m. Ponell Dlscuw; Stiodard: Enoablng or Crippling?
The panelists will discuss emerging standards and how they
may influence the Mfure research and development
activties of the PAOC KBSA Program.

XWlnidows IRDS
Mr. Joshua Glasser Dr. Henry C. Leflovits
Honeywell. Inc. AOG Systems Corporation

CLOS MACH
Mr. Aaron Larson Mr. James Spoeii
Honeywell, Inc. Encore Computer Corporation

Commnorihp
Ms. Ellen Waldrum
Texcs Instruments Incorporated

3:00 p.m. to 3:15 p.m. Refteshriionit k

3:15 p.m. to 4:45 p.m. Sdtoflwcx*mnsrolins
Board Room & Executive Room

Gcau An Ob~oi Oriened Frarnowark: Mr. Donald Vines. Honeywell. Inc.
A demonsrcxlon of an object-odented support environment for the Ado language.

KSSA Protec ManageMn Assbtont; Ms. Mod"I Daum & Dr. Richard Julllg, Kestrel Institute
A demonstration of the Akowedganbased suppof code development. The current version
ot the PRqc-;ct Mangement,, Assistant, which now rums on Sun w.iodvdsatlons. will be demon-
strated. The pd*may new feizkve Is a poicy etor. wh~ich alows a manager to easily
(grophdca~y) state a poky for the system to moniltor. Vlolaftmn of policies automatically send
messages to the opprop~ote manager. Other, feat ures to be demonstrated include project
task and component planng, project schedulng, mo~nitoring of progress through budget
charts, assgnment of petsonnell to task, poisonol 'thkVg to do' ist, task access control, and
semliiautomnated communication olf probleins.

Knowiedge km euaof A=,sWVr; Mr. David Hart. Sanders Associates. Inc.
A demonstration of knowledge-based support for the evolut;cnry development of software
system requirements uskig mitV/9 text or graphtl viewpoints.

Rewacb~t Liry Frarwftor; Mr. Raymond C. McDowell, Un~sys Defense Systems
A demonstration at a prototype software lbrfaon based on cooperating knowledge-based
system.

Spin-Off Technologies
3

4th Annual RADC KBSA Conference

Thursday. 14 Sepember 1989

9:00 a.m. to 9:15 a.m. Adrcninfrative Rernwks

9:15 a.m. to 9:45 a.m. Roiatg For* and Informal Dscrptlon of Systems
Dr. W. Lewis Johnson
USC/Information Sciences Institute

9:45 a.m. to 10:15 a.m. KBSA TechnologyTracWer An Indusftia Pespectve
Mr. Chunka Mui
Andersen Consulting

10:15 a.m. to 10:30 a.m. Refresne sBrock

10:30 a.m. to 11:00 a.m. KSSA for Software Maintenonc. and Reoengnerng
Mr. Gordon B. Kotik & Mr. Lawrence . Markosian
Reasoning Systems, Inc.

11:00 a.m. to 11:30 a.m. An Approach to the Support of Dynarnic Exteasbility
in Nonstop, Distibuted Trget Environments
Dr. Charles W. McKay
University of Houston-Clear Lake

11:30 a.m. to 11:4 a.m. Clog Ramirks
Mr. Douglas A. White
Rome Air Development Center

11:45 a.m. to 1:00 p.m. Uncheon ffe
Syramada Room

Conference Commiffee

W Douga W~t

Spin-Off Technologies

4

AN OVERVIEW OF

RADC'S KNOWLEDGE BASED SOFTWARE ASSISTANT PROGRAM

Donald M. Elefante

Rome Air Development Center (COES)

Griffiss AFB, NY 13441.5700

Abstract

In 1983, Rome Air Development Center (RADC) published "Report on a
Knowledge-Based Software Assistant." 14 That report integrated key ideas on how
artificial intelligen:ce (AI) might be used to design, develop and maintain software over the
complete life-cycle. Since then, RADC initiated the first of three multiple-contract iterations
intended to develop both a Knowledge-Based Software Assistant (KBSA) and its
supporting technologies. This paper provides a KBSA overview and describes the most
interesting results to date.

What is KBSA?

The Knowledge-Based Software Assistant is a formally based, computer-mediated
paradigm for the specification, development, evolution, and Ir ig term maintenance of
computer software. The paradigm captures system evolution history, providing a corporate
memory of how parts interact, what assumptions were made and why, the rationale behind
choices, and how requirements were satisfied. It also features an explanation facility that
supports developers in grasping the project's state at any time and tying it to the specific
application at hand. The current, evolving version of KBSA achieves these functions with a
set of software modules or "facets" that can be thought of as sub-assistants. In the future,
the facet functionality will be integrated through a common, underlying "framework" that
coordinates life-cycle activities. Facets (and their progeny) currently under development
support project management, requirements definition, system specification, program
development and performance maximization. Facets under consideration for future
development will support documentation, testing, and other areas yet to be defimed.

The KBSA concept formalizes all activities and products of the software life-cycle,
and all life-cycle activities are machine mediated and supported. In this connection, it
exhibits four main features which depart from the most corr .,on software engineering
paradigm, the "waterfall" paradigm (and its close derivatives).

Distiaguishing KBSA Features

The first distinguishing feature is the use of incremental, executable and formal
specifications. "Incremental" means that the specifier may gradually add detail to the
specification as pertinent knowledge becomes available. This detail can be added by

5

interacting with appropriate specification presentations that help manage process
complexity. One need not start out with a complete, or even an accurate, specification.
"Executable" means that the specification "runs" as a high-level prototype and portrays the
states and activities that will occur in the modeled system as it is exercised. This portrayal
helps the specifier validate the specification against user intent. "Formal" means that the
specification is expressed in a language exhibiting precise semantics. This avoids nantral
language ambiguity and renders a specification accessible to machine reasoning.

The second distinguishing KBSA feature is formal implementation. This means that
all decisions made during system implementation are captured in formal descriptions and
justified by analyzing those descriptions. This formality supports the use of meaning-
preserving transformations for creating lower and lower implementation levels. The result
is a verified implementation, where implementation validity arises from the very process by
which the implementation is developed.

The third distinguishing KBSA feature is a project management policy that is formally
stated and enforced. That is, project policy defines relationships between various software
development objects (e.g., requirements, specifications, code, test cases, bug reports,
etc.), and KBSA ensures that the relationships are held throughout development.

The last main, distinguishing feature of KBSA is that maintenance is done at the
requirements and specification levels. This is important since maintenance activities are
normally a result of new or better-defined user requirements. Requirements and
specification maintenance then drives changes in the lower-level code through meaning-
preserving transformations of the specifications. This high-level maintenance approach
permits integrating old and new design decisions and validating the package before new
code is generated. In addition, the formal capture of requirements, specifications and high-
level maintenance activities permits simply "replaying" the development after modifying
specifications or refinement decisions. Retention of the original design history helps to
identify which parts of a fielded system must be modified. This makes the maintenance and
upgrade of fielded systems simpler and more reliable.

These four features indeed capture the larger vision of the KBSA concept. However,
system integration is also a major component of the larger vision. Additionally, supporting
technologies and their evolution have played a critical role in KBSA development success.

System Integration

System integration in KBSA will involve defining and building a support
environment that supplies full life-cycle-support services to KBSA users. The
environment's role will be to embody the framework, facet, user-interface and other
support functionality deemed necessary for a KBSA. However, this should be
accomplished with a seamless, well integrated package that eliminates arbitrary facet
distinctions. Therefore, an ideal support environment interface will have five
characteristics. First, it will be implementation independent. Second, it will exhibit a well-
conceived interface and communication protocol suite. Third, its services will be present at
many granularity levels to support both commonality in usage and specialization. Fourth, it
will exhibit quality explanation and help facilities. Finally, it will support extendibility to
provide the integration of new functionality in a uniform way. These service characteristics
are largely analogous to those provided by a kemelized, "portable" operating system.

Supoorting Technologies

6

Evolving technologies that have been instrumental in supporting KBSA development
fall into three main categories: the wide-spectrum language, general inferential systems and
domain-specific inferential systems.

An ideal wide-spectrum language (WSL) is a single language that lets the user capture
the formal semantics--at any level of detail or at any step in the development cycle--of the
system under development. It permits uniform expressibility regardless of what is being
described (e.g., requirements, specifications, code, test cases, project management policy,
etc.), and it does so in a way that is syntactically and semantically consistent at and between
all abstraction levels. The WSL is intended to cover the spectrum from requirements to
implementation, from management to maintenance. A mature WSL for KBSA should also
cover graphic and schematic system representations as well as conventional, written
representations. A great deal of headway has been made on all these fronts.

A general inferential system is one that supports reasoning and is applicable to all
problem domains. We must be concerned in KBSA with this reasoning efficiency and the
data representations used. We need modular expansion facilities to accept domain-specific
inference modules or more efficient decision procedures. And the user interface must make
the system useful for practical applications. Mechanisms that support inheritance, constraint
propagation and planning must be present, and theorem provers may be integrated with the
inference engines used to perform meaning-preserving t-.sfcr.mt ons of specifications.
All of these qualities will be seen in the KBSA facets desciibed later.

Domain-specific inferential systems extend general inferential systems to address the
unique software development features within a given domain. Three dimensions comprise
the character of a domain-specific inferential system: the application domain, the life-cycle
phase being addressed, and the functional area (e.g., presentation domain, structured text
domain, evolving system description). For each problem domain, special reasoning and
solution-finding rules apply. We know that inferential systems inherently based on special
domain rules are more efficient than general inferential systems applied to encodings of the
special domain. In KBSA, this technology area has focused on achieving good knowledge
representation of software development objects and inference rules; also, how they can be
formally represented and used for further reasoning. Therefore, three sub-areas of
investigation are also pertinent here: formal semantic models of the software development
environment, the knowledge representation and management of software development
objects in the domain, and specialized inferential systems that incorporate rules tuned to a
specific problem or task.

When the KBSA report 14 first came out in 1983, supporting technologies were not
adequately developed. Neither was the software development process well understood. To
address these shortfalls, an evolutionary, three-iteration contractual approach was
dndertaken. The next section describes the basic approach and key accomplishments of
each contract, and shows that KBSA supporting technologies have matured along with the
facet developments.

KBSA Facet Developments and Related Work

The first of the three iterations was initiated in 1985 and is now largely complete.
Some overlap with the second is also taking place. Iteration 1 ihas focused on designing
individual KBSA facets and pulling the supporting technologies as needed. Universal
solutions haven't been sought. Rather, solutions unique to each facet have been pursued to
help facet developers understand and formalize their chosen life-cycle phases. Because of

7

the need to bettor understand the software-development process with respect to KBSA,
initial facet partitionings were intentionally chosen to parallel phase designations of the
waterfall paradigm. However, over the long haul, KBSA will unveil its own identity and
adopt the broader vision of an AI-inspired computer assistant shorn of unnecessarily
restrictive notions about life-cycle partitionings or phased development.

Although the formalizations derived under iteration 1 have centered on the products of
individual phases (e.g., requirements, specification, and code), they have more
significantly focused on the process of how these products came about. The sections that
follow elaborate on this.

The first-iteration KBSA efforts are: Project Management Assistant (PMA) 1 and 2,
Requirements Assistant (RA), Specification Assistant (SA), Performance Assistant (PA),
Development Assistant (DA) and KBSA Framework (KF). Efforts marking the start of
iteration 2 are the Requirements/-Specification Assistant (Req/Spec), and the KBSA
Concept Demo.

Project Management Assistant

Work on a formalism definition for PMA and the construction of a prototype began in
1985 8,9,23 by Kestrel Institute. The goal of PMA within the software development life-
cycle was to provide knowledge-based help to users and managers in project
communication, coordination, and task management.

PMA capabilities fall into three categories: project definition, project monitoring and
user interface. Project definition consists of decomposing the project into individual,
manageable tasks and then scheduling and assigning them. Once manageable tasks have
been defined for the project, the project must be monitored. In PMA, this monitoring
primarily takes the form of cost and schedule constraints, but the enforcement of specific
management policies (e.g., DOD-STD-2167, rapid prototyping, KBSA, etc.) is also
included. Finally, the PMA user interface supports interactions involving project
monitoring and definition, and uses direct queries and updates, Pert charts, and Gantt
charts.

Although the above capabilities are important, we would expect them of any project
management tool. What sets PMA apart from its predecessors is its expressibility and
flexibility. Not only does PMA handle user defined tasks, but it also understands their
products and the implicit relationships between them (e.g., components, tasks,
requirements, specification, source code, test cases, test results, and milestones). Also
captured in PMA are software development objects unique to programining-in-the-large.
versions, configurations, derivations, releases, and people.

From a technical perspective, the advances made in PMA include: the formalization of
the software development objects enumerated above, the development of a powerful time
calculus for representing temporal relationships between software development objects, and
a mechanism for directly expressing and enforcing project policy.

PMA formalizes software development products (e.g., components, tasks,
milestones, requirements, specifications, test cases etc.) from a project management
perspective, and provides a language to describe the process by which these products came
about. Current software engineering literature calls this concept "process programming,"
29 but it has been a part of PMA since its inception. Thus, PM.A demonstrates that a
software project can be described formally and reasoned about.

8

PMA also demonstrates WSL applicability within the project management domain.
The WSL used for the PMA prototype is Reasoning Systems' REFINE. REFINE is best
described as a programming language that provides constructs for doing specification in a
variety of styles (e.g., functional, logical, procedural, and object oriented). These
constructs include the following list: user-defined object classes, set-theoretic data types,
constructs from first order logic, relations defined by assertions, transforms, a pattern
language, and conventional programming constructs. 20

In addition to the above, REFINE supports the definition of new constructs in PMA,
i.e., assertion types used to maintain knowledge base integrity. One example is
CHECKING, a trigger that looks for particular conditions and then flags the system when
they arise. A second is COMPLAINING, which is often used with CHECKING. It
interacts with the project manager to explain what has gone wrong. MAINTAINING is a
third assertion type that automatically insures that a given condition remains true. In
general, PMA has shown that a single WSL can uniformly handle both software
programming constructs and process programming constructs. This is a consequence of
REFINE's expressibility and extensibility.

The PMA effort spent considerable resources developing a highly expressive,
generalized time calculus. The calculus, an extension of James Allen's interval calculus for
reasoning about time, 1 was developed by Peter Ladkin. Allen's relational algebra has 13
atoms and is therefore of finite size. PMA's time calculus, on the other hand, uses an
infinite algebra 25 whose temporal logic primitives are implemented directly in REFINE. It
is the infinite algebra that gives the calculus its unique expressive power in terms of time
representation.

Some of the advantages cited by Ladkin include capturing the metaphysics of time
and presenting a natural way for representing time. This includes allowing for the joining
of seconds into minutes and days into weeks or months such that there is a linear hierarchy
of standard u,,its.

The initial PMA effort was completed in 1986. 23 A follow-on PMA contract was
initiated in November 1987. Its goals are two-fold: First, the evolution of PMA with the
purpose of expanding the formalized knowledge of project management and providing
enhanced capabilities. Second, implementation of PMA as an integral part of a full-scale
software engineering environment called SLCSE (Software Life-Cycle Support
Environment).

Requirements Assistant

The work on the Requirements Assistant (RA) 6,7,31 began in 1985 by Sanders
Associates. The greatest RA challenge was to adapt to the informal nature of the
requirements process. It also had to allow users to enter requirements in any desired order
or level of detail. Therefore, RA's responsibility is to do the necessary bookkeeping to
support user requirements manipulation, and to maintain consistency among requirements
as they become known. RA's key features are (1) complexity management through the use
of multiple presentations, including formal and informal expression modes, (2) reusability
at the requirements level, and (3) the use of constraint propagation technology for
supporting requirements traceability and trade-off analysis.

RA features a convenient user interface that spotlights multiple presentation modes,
any of which can be used at any time. The user chooses the mode or modes that seem the

9

most natural for the task. Internally, only a single representation exists to maintain
consistency, for multiple presentations are typically used to capture and validate user
requirements.

The presentation modes available within RA are:

a. Intelligent note pad -- Diary notes on requirements collection. Support is
provided through limited natural language, structure editing, and feedback on word
recognition in a lexicon.

b. Graphical presentations -- These include context diagrams, system
function diagrams, internal interface diagrams, functional decomposition diagrams, data
flow diagrams, state transition diagrams, and activation tables (which provide an active-
function list for each system mode).

c. Calculator-spreadsheet - The tabular display of non-functional properties
for each system function (tied to an underlying constraint propagation system for bi-
directional propagation, retraction and explanation).

d. Requirements document -- Natural language requirements document.

Support for reusable domain knowledge components are of particular note in RA. As
the user enters requirements, the knowledge base is updated. However, requirements
needn't be described entirely from scratch. RA provides mechanisms for merging "reusable
requirements components" into the evolving system description. Requirements components
are analogous to Rich's and Water's cliches in KBEmacs. 32 Like cliches, reusable
requirements components are manually encoded with descriptions of standard system
requirements derived from specific application domains (in the case of Sanders' effort, the
air-traffic-control domain). When merged into the evolving system requirement, they
become a source of system expectations. Expectations support the critiquing of the
evolving specification. Capabilities associated with critiquing include: detecting
inconsistencies and duplicate objects, checking for reasonable values, and detecting
missing information.

RA provides two mechanisms for merging specific reusable requirements
components into the evolving system requirements. The first mechanism employs
inheritance along user defined relations. Here, when the user defines an object as an
instance of some supertype, supertype expectations are inherited (supertypes are examples
of reusable components).

The second mechanism employs automatic classification. Here, the system tries to
establish supertype relations of the most specific type possible, thus inferring the greatest
amount of information possible and providing the most specific expectations on the
evolving system. RA does automatic classification by consulting built-in tables within each
supertype to determine appropriateness of that supertype. These tables are generally driven
by requirements analysis tradeoffs, i.e., time, space, and other resource considerations.

Unique requirements constructs were necessak., for RA to have the capabilities
described thus far. Sanders used SOCLE, 15 their wide-spectrum-language based on frame
and constraint inference, and derived from Roberts' and Goldstein's FRL, and Steele's
constraint based language. Expressed in SOCLE, three classes (realms) of requirements
constructs were necessary: Presentations, Structured Text, and Evolving System
Description.

10

A presentation architecture 3 handles objects that contain information about (1) how
to display requirements in any of the presentation modes, (2) the presentation mode
semantics, and (3) the impact of editing these presentations. The requirements/presentation
boundary is crossed by presenters and recognizers. Presenters are concerned with the
object's physical properties (i.e., the object being presented, screen coordinates, sizes,
alignments, labels, and relevant graphical editing options), while recognizers are concerned
with updating the evolving system description when the user edits the current presentation.

Structured Text is an object class that allows informally and formally related textual.
information to be managed as such. Groupings of related text are not necessarily dependent
on the presentation mode, though presentation modes rely on structured text to represent
text strings and their relationship to the current presentation. Initially, structured text objects
are created interactively as the user enters more information. The groupings between these
text objects evolve as the system is better defined. Finally, additional text objects are
automatically created to paraphrase requirements statements first expressed in other non-
textual presentations.

The Evolving System Description is the requirements repository in RA. Presentations
and Structured Text merely reflect the Evolving System Description and, as a result, are
tightly tied to it. Within this requirements construct class is an object-types hierarchy. The
most general is the requirements object. A requirements object may have no more
information than an associated Structured Text Unit that contains an uninterpreted text
string and recognized key words.

At the next level down are activity, event, data, transition, and constraint object types.
Each of these object types have more expectations on the requirements being expressed.
Farther down the hierarchy, and thus more specialized, are specific reusable requirements
components. Evolving-system-description components are type instances in this taxonomy.

The RA work was completed in October 1988. 16 A prototype was delivered which
is now serving a technology transfer function as well as feeding in to the new
Requirements/Specification Assistant effort (to be briefly described below).

Specification Assistant

The main goal of the K3SA Specification Assistant 2,21,22,24 is to yield a formal
specification of the system under development and then validate it against user intent.
Formal specification development must be supported in an incremental fashion, modeling
the way developers typically coastruct specifications. Validation must be done by exposing
the specification to the user at the earliest opportunity and continuing the exposure
throughout the construction process. The effort to develop a KBSA Specification Assistant
began in 1985.

In SA, a user begins specifi,ation development by describing a high-level GIST 21
specification of the intended system. This specification is highly idealized, is usually
incomplete, and does not include exceptional-case behavior. SA then provides the user with
high level transformation commands (HLTC's) to refine the high-level specification to a
low-level specification where: (1) exceptional behavior is described, (2) all agents within
the application are enumerated, (3) data boundaries are clearly defined (i.e., removal of the
perfect knowledge assumption by each agent), and (4) all necessary functionality is
enumerated and described in a semantically complete fashion.

11

HLTC's are similar to transforms in transformational systems, but are not necessarily
meaning-preserving. In fact, most high-level transformation commands intentionally
modify the semantics of the specification under development to achieve desired revisions.
These semantics-modifying commands are referred to as evolutionary transformations.
They explicitly formalize and carry out the evolution process which is an essential KBSA
feature. Evolutionary transformations would typically be used to define new specifications,
modify existing specifications, or merge existing specifications into larger ones.

When an evolutionary transformation is executed, it determines the impact of the
change elsewhere in a specification and propagates further changes accordingly. HLTC's
can thus assist in the process of integrating new specification components, such as those
that might be retrieved from a library of cliches, into an existing specification. At present,
over 100 high-level transformation commands exist.

An important effect of the user's applying HLTC's is that they formally capture
specification evolution. Furthermore, typographical errors are less common because
specification modification is automated. The real payoff for using HLTC's will come in the
form of more mature application strategies surfacing earlier in the development cycle.
Examples of new questions that can now be sensibly asked are: What does the developer
want to do? Does a selected operation make sense within the current context? This work is
just beginning.

In addition to incrementally refining and elaborating the specification under
development, a user often wishes to incorporate previously developed specifications or
portions of specifications. SA provides the user a package facility, called "views," that
encapsulates specification components. Views are used both for reusing previously
developed specifications and for focusing SA analysis tools.

View extraction is essential for removing unnecessary detail lingering from original
definitions. It is accomplished when the user identifies critical specification definitions to be
reused (with SA adding additional definitions discovered while tracing along dependency
links). SA can also extract the transitive closure of any dependencies (e.g., retrieving all
invoked procedures along with procedures that they, in turn, invoke).

Once a view has been extracted, it may be reused by merging it into a specification
under development. Current merge capabilities are fairly simple. They can handle views
containing no conflicting object definitions. However, new analysis tools are needed to
deal with views containing conflicting definitions. In particuiar: When an object is
unconstrained in one view and deterministically constrained in the other, under what
condition can these constraints be reconciled when merged?

To simplify specifications, a focusing capability takes advantage of SA's view
extraction facilities plus some HLTC's. Once a view has been defined it may be passed to
any analysis tool. Such a tool will analyze the extracted view only. This allows the user to
focus on small parts of the overall specification without being overwhelmed by the details
of the full specification.

So far, only the sequential development and elaboration of specifications has been
described. This deals effectively with a series of events, one occurring after another. But
many times the sequential ordering is arbitrary--a function of when the developer happened
to handle particular problems. In contrast, SA's parallel elaboration supports non-
sequential specification development. In those cases where no interaction between parallel

12

activities exists, the solutions to supporting parallel elaboration are trivial. However, when
minor interactions are called for, SA can integrate parallel development activities.

SA achieves parallel elaboration by customarily saving the development histories of
the HLTC's used to arrive at a specification elaboration associated with any sequential
elaboration path. If a user wants to integrate multiple elaboration paths, SA retreats to the
common starting point and tries to interleave each development history. User guidance is
needed and, in some cases, certain HLTC's may have to be reapplied in light of
development histories interaction.

During specification development, SA permits the user to add more information about
the specification--information that can't be adequately expressed in GIST. Rather than
revising GIST, SA supports an annotation language. One example of its use: annotating
specification statements according to whether they are requirements or goals. The
distinction is that requirements are inviolable constraints, whereas goals describe general
behavior that need not always be accurate and, in some cases, may involve exceptional
cases not currently covered by the goal. Therefore, HLTC's first look at specification
statement annotations to see whether they denote requirements or goals. Requirements will
only be edited by HLTC's that are meaning preserving so that requirements satisfaction is
insured. Goals, on the other hand, might be "compromised" by HLTC's to handle
excet~tional cases. This of course implies that non-meaning-preserving transformations are
allowed to operate on statements annotated as goals.

SA is built on top of an integrated support environment called the Specification
Service. The Specification Service was, in turn, built on top of three tools previously
developed at ISI: AP5, 5 ISI's wide-spectrum language; CLF, 4 an object base built on top
of AP5; and POPART, 33 a tool for building and manipulating language parse trees given
the language's BNF grammar definition (in this case, GIST). Within the SA effort,
incompatibilities between these three tools were overcome so that all three could
simultaneously work together on the same specification. SA also provides several
integrated analysis tools for validating and debugging the specification. These include a
symbolic evaluator, a behavior explainer, an influence graph generator, a GIST
paraphraser, a static type analyzer and a resource analyzer.

Performane Assistant

The Performance Assistant 10,11,12,13 work began at Kestrel Institute in 1985.
Technical issues addressed so far in the effort are (1) data structure selection (DSS) using
symbolic and heuristic techniques, and (2) the development of PERFORMO, a functional
specification language with set-theoretic data types. PERFORMO is similar to VAL, 27
developed at MIT, and SISAL, 28 developed at Lawrence Livermore Laboratory.
PERFORMO is intended for DSS work, but is expressive enough to be a good initial
specification language for further research on performance and implementation strategies.

Long term goals for a performance assistance are to guide software performance
decisions at many levels in the software development cycle--from requirements
specifications in very high-level programs to low-level code. The strategy is to combine
heuristic, symbolic, and statistical approaches to provide capabilities for symbolic
evaluation, data structure analysis and advice, and algorithm design analysis and advice.
This effort is focusing on data structure selection and optimizations which include finite
differencing, iterator inversion, flattening, operator elaboration, membership-test removal,
loop fusion, and dead variable and copy elimination.

13

Briefly, finite differencing calculates a new expression-value within a loop by using
the old expression-value in conjunction with a delta function (rather than recomputing the
new expression-value from scratch). Iterator inversion is a special case of finite
differencing that focuses on duplicate iterator expressions that can often be reforniated
into a single iterator expression. Flattening, which is necessary for both finite differencing
and iteration inversion, removes all nested function calls and provides names for all
possible subexpressions. Operator elaboration transforms high-level operations into lower-
level operations. Membership-test removal eliminates explicit menibership tests when they
can be inferred a priori. Loop fusion transforms multiple loops into a single loop to reduce
overhead code and (sometimes) iteration requirements. De!d variable and copy elimination
is done following automatic transformations, which often leave behind useless or
redundant code.

PA's data-structure-selection strategy involves supplying refinement decisions to the
implementation generator while reducing PERFORMO specifications to efficient Ada-class
implementations. When PA needs a refinement decision, it determines which program
properties are necessary to make a satisfactory selection. Properties include how a specific
variable will be used and some its characteristics (like size and containment). Properties of
a variable could include whether it is random access, ordered, enumerated, dynamic, or
possibly empty. Based on such properties, specific implementation decisions can be made.

DSS's approach is to use basing as the representation methodology, when possible--
particularly for complex data structures. Basing is a representation method used within the
SETL data structure optimizer. Basing introduces a dual representation consisting of the
object (data structure) and an accessor to the object. Multiple objects may share the same
base. The base may also be some intermediate object upon which data access can be
efficiently carried out. To determine the applicability of basing and what the appropriate
base should be, the following analysis techniques are employed: Containment, 1-1, Bound,
Sparseness, and Operation Analyses.

Framework

The KBSA Framework (KF) effort 17,18,26 brings a global perspective to KBSA.
Initial work on KF began at Honeywell Systems and Research Center in early 1986. This
effort seeks two goals: (1) to develop an integrated KBSA demonstration and (2) to
propose the specification of a framework through which all facets must interact,
communicate and eventually be built upon. The purpose of (1) is to provide a concept
demonstration that would be intuitively obvious to the most casual observer. The purpose
of (2) is to promote a tightly coupled interaction between facets. KF will provide a common
reference for each facet developer and allow information sharing. KF interaction will be a
requirement for all iteration-2 contracts. The future result will be a more tightly integrated
KBSA.

The main technical challenges in this effort are to (1) def".ne the minimum
functionality that the framework must provide to all facets, (2) define a common interface
for the facets to interact with each other, (3) extend the framework functionality to include a
distributed environment, (4) support programming-in-the-large concepts like configuration
control, traceability, and access control, and (5) provide consistent user interface services.

The first KF iteration will yield a demonstration of two independent facets tightly
coupled to the KF. The facets may exist on a separate machine but will communicate via the
KF. KF will be responsible for maintaining traceability between software development

14

objects and keeping facets updated about the status of those objects. The two facets, on the
other hand, will be responsible for establishing the initial traceability (e.g., the relationship
between requirements objects and specification objects) via the use of services supported
by K.

The difficult issue within the KF has been to characterize what indeed constitutes a
framework defin-.tion. At the conceptual level, where agreement exists between all
developers, KF should have or support the following characteristics:

a. An object base.

b. Logical relations and inference mechanisms that map to the object base.

c. A distributed knowledge base.

d. Access control.

e. Configuration control.

f. Transactions (i.e., collecting related operations into a single transaction to
prevent the recognition of tem.porary know!edge base inconsistencies resulting from
intermediate operations)

g. Object permanence.

h. A flexible user interface.

No deeper-level descriptions for the KF have been agreed upon to date. However,
such a description must become available under the second iteration phase.

Early in the facet-development efforts, the importance of a common example was
recognized. For the KBSA Framework demonstration, the domain will be substantial in
that the air traffic control (ATC) problem (also aralyzed by Sanders Associates and covered
in the RA and SA) will be addressed. Although the demonstration will not solve the ATC
problem or focus on its full scope, the rich set of requirements inherent in ATC will serve
as an excellent driver for KBSA. ATC involves a variety of real world issues such as real
time requirements, data base management, user interaction, interaction with the outside
world, and changing or not-too-well-defined requirements.

Planning and Plan Recog~nifoa

As part of the Northeast Artificial Intelligence Consortium, which is sponsored by
RADC, the University of Massachusetts has conducted research in planning and plan
recognition as it relates to the software development process. The primary role that this
research will play in future KBSA will be in the areas of activities coordination and the
"replaying" of developments.

A "plan" is a collection of partially ordered actions or operations that achieve one or
more goals, given an initial state of the world. Each operator is tied to (a) one or more pre-
conditions that define the state which must hold for the action to be legal, and (b) one or
more post-conditions that define the state changes which result from performing the action.

"Planning" offers a mechanism for formalizing the software development process. It
can be used to assist the programmer in achieving some end goal, to explain the current

15

project status in terms of completed or partially completed plans, or to automatically trigger
an action for which all of the pre-conditions are satisfied.

"Plan Recognition" uses plans to infer user end goals from the actions that are being
performed. The plan recognizer is able to act as an automated apprentice that "looks over
the user's shoulder," correcting simple programmer errors and suggesting alternative
actions. This mechanism will enable the construcion of user interfaces that reduce the
complexity of determining what operations to apply in a given situation. It can also
minimize errors that result from performing inappropriate operations.

Development Assistant

The Development Assistant (DA) effort began in November 88 by Kestrel Institute.
This effort will define a formalism that captures the knowledge and decision making
processes used by software programmers and designers. The effort's goal is a knowledge-
based system that derives efficient, executable code from a completed specification,
automating wherever possible (via automatic transformation), and capturing user supplied
design decisions otherwise. DA's assistance will include providing search trees of possible
implementations, and permitting the user-in-the-loop to fine-tune his implementation on the
basis of various performance factors, maintenance considerations, code reusability, etc.

Reguirements/S pecification Assistant

This iteration-2 contractual effort was awarded in May 1989 to the Information
Sciences Institute of the University of Southern California (who also subcontracted with
Sanders Associates). The effort's mission is to join the activities of requirements analysis
and program specification by using a common knowledge base. This will provide a smooth
transition from informal user requirements to formal, low-level specifications, thus
enabling greater tracing and requirements validation. This has grown out of the recognition
that both early requirements validation and the need for informal methods to support
specification evolution are important.

Activitie5 Coordination Formalism Design

In large software projects (and similar cooperative-work programs), a major share of
the effort is spent either on coordinating the activities of participants or on repairing the
damage caused by poor communication and coordination. Either way, costs grow
explosively as projects grow larger. This contract, awarded to Software Options, Inc. of
Cambridge, MA in October 88, will design a view formalism for project cormmunication
(which, here, means any exchange of information between project participants or agencies
that could reasonably be computer mediated, even if it is not handled electronically in
present practice). Views in this formalism will allow project participants to see the project's
established communication and coordination protocols without having to study the detailed
process model.

Because of its specific focus on project communication and the enactable model
derivation, work under this effort wil! complement the activity coordination and project
management work already under way in KBSA. One of the main objectives is to show that
activity coordination by communication management is a useful technique throughout the
military systems acquisition process, from the pre-award stage in which an RFP is
generated to fielded systems maintenance. Therefore, protocol sketch notation will be made
accessible to a broad spectrum of project personnel. Another central objective is to enable
managers and other non-programmers to play a direct role in the creation and customization
of enactable process models, and in their evolution over a project's life. To that end,

16

techniques will be dev eloped to elaborate and refine protocol sketches into detailed process
models. The design will show how tools could be provided to partially mechanize this
derivation. However, human participation will still be needed as well, both to fill in details
that are not represented in the sketch abstractions and to establish links with process model
aspects that do not bear directly on communication.

KBSA Concept Demonstrationl

Targeted for contract award in the third quarter of 1989, the KBSA Concept
Demonstration will first design then implement a "broad" and "shallow" software life-cycle
processing system based on the KBSA paradigm. This system will be broad in the sense
that it will demonstrate support for the entire system life-cycle, including both development
and evolution. It will be shallow in the sense that it will provide less powerful assistance
and functional completeness than will be required of eventual productized versions of a
KBSA.

This effort will differ from the Framework effort in that the loose coupling and facet
integration is not a goal. Rather, Concept Demo will provide essential experience with the
KBSA paradigm as a whole, particularly the gathering of insights into requirements for an
integrated high-to-medium-level interface suite, and high-to-medium-level process
mediation and coordination. Furthermore, it will provide an additional vehicle for
technology transfer to members of RADC's KBSA Technology Transfer Consortium,
which was instituted in 1988 to promote KBSA technology transfer to industry. Therefore,
the KBSA Concept Demonstration might be thought of as a vanguard for iteration 2 in the
sense that it will attempt to give us insight into the software development process that takes
us farther, still, from tie waterfall paradigm and closer to the goals expressed in the KBSA
vision. In particular, it should provide critical insight for formulation of the iteration-2
framework definition.

Standards and Technology Transfe

Throughout the KBSA program, efforts have been made to encourage the use of
common conventions that will increase components reuse during KBSA development, and
ensure a smooth technology transfer. Three communities have emerged that play a role in
defining these conventions and serve as vehicles for transferring the technology:

1. KBSA developers -- Meetings of all the players that directly contribute
technology to the program (government, industry, university) are held on a regular basis.
This ensures coordination and participant awareness of new technologies and prototype
components that might be shared.

2. KBSA Consortium -- RADC established the KBSA Technology Transfer
Consortium to ensure a fertile base to transfer KBSA technology. The consortium,
coordinated by RADC, is ccmprised of KBSA developers and a competition-derived set of
"alpha" sites from industry, small business and academia. Each consortium member is
committed to active technology transfer through reports and KBSA prototype evaluations,
and the feedback of technical results from trial applications and studies. The actual
technology transfer process as it relates to this consortium is as of much interest to RADC
as the results because the operational agreement that participants signed up to is based upon
synergy and perceived benefit rather than a legal arrangement or the exchange of funds for
service.

17

3. External Community -- External KBSA program awareness is maintained
through yearly KBSA Conferences that focus on KBSA and related knowledge-based
technologies. Four such conferences have been held to date.

Within each of these technology transfer communities, the use and development of
standard components has been emphasized. Each community has been a source, of
influcnce in developing "common" components that are referred to as "KBSA
conventions."

To minimize effort duplication, the KBSA developers have been identifying and
discussing common components that might be shared among two or more KBSA
component developers. To date, standardization efforts have focused on user interface
components, with the following three areas being discussed:

1. EJitor standard -- Text manipulation is performed by the SA, KBRA,
and the KF. A common editor convention is being defined based on GNU Emacs.

2. Natural Language Generation -- Explanation of the knowledge-based
state is a necessary capability of several KBSA components. An initial natural language
generation faciliy developed by one of the facet developers vill be used as a basis for this
convention.

3. Graphics toolkit -- The user interface to the KBSA will be highly
graphical. Each of the -xisting facets and framework make extensive use of graphics and
were developed using advanced workstations. A graphics toolkit based on the X-Windows
package from MIT is now being proposed. The toolkit will provide a higldy object oriented
interface using many concepts originally defined in the Common Libp User Environment
(CLUE).

To facilitate technology transfer to consortium members, a limited set of hardware
platforms have been identified for use as initial demonstration platforms. This set consists
cf: Sun 3, Symbolics 3600, TI Explorer II, VAX 11/780, and Macintosh II. These
platforms have emerged from the initial platforms available to RADC and the current KBSA
developers. The limited list is intended to reduce platform diversity and the number of
hardware configurations needed to demonstrate the KBSA.

Currently, all KBSA developers have constructed systems using Common Lisp. With
the inclusion of the Common Lisp Object System (CLOS) into the ANSII Common Lisp
Standard, the KBSA developers are evaluating the CLOS adoption as a oasis for future
development. Currently, only the KF has been constructed using CLOS. Tentative plans
call for CLOS to be used as well in future releases of the SA and the PMA.

Though significant progress is being and has been made in providing machine-hi-the-
loop assistance for specific life-cycle activities, we are still short of the technology needed
for a true KBSA. In iteration 2, we will be focusing on more closely coupled assistants that
do not fall neatly within the arbitrary life-cycle boundaries one sees in the waterfall model
or between iteration-1 assistants. Instead, the second iteration will focus on continued
development of a framework specification and assistant, that are targeted at specific users--
assistants that span the entire software life-cycle.

Acknowledgements

18

I extend my appreciation to Mr. David Harris of Sanders Associates, Mr. Steve
Huseth of Honeywell, and Dr. Lewis Johnson of the University of Southern California
Information Sciences Institute--all participating KBSA developers--who provided edifying
comments and text to help insure that this paper is as accurate and up-to-date as possible.
Special thanks go to Mr. Kevin Benner, a defacto collaborator in this paper. Kevin was an
enthusiastic and tireless purveyor of the KBSA philosophy during his commission as a
junior officer at RADC, and is responsible for gathering and organizing the bulk of the
technical information found herein. He is now pursuing his Ph D at the University of
Southern California and is employed part time by the Information Sciences Institute of
USC.

1 Allen, J.F., "Maintaining Knowledge about Temporal Intervals," Comm.
A.C.M.26(11), November 1983, 832-843.

2 Balzer, R. et al., "Knowledge-Based Specification Assistant," Interim Technical
Report, RADC, Griffiss AFB, NY, Dec., 1986.

3 Cicarelli, E., "Presentation Based User Interfaces," TR 794, MIT Artificial
Intelligence Lab, 1984.

4 CLF Project, "CLF Overview," USC/Information Sciences Institute, Mar, 1986.

5 Cohen, D., "AP5 Manual,' User Manual, USC/Information Sciences Institute, Oct
19, 1987.

6 Czuchry, A. J. Jr., "Where's the Intelligence in the Intelligent Assistant for
Requirements Analysis?," RADC, 2nd Annual KBSA Conference, Utica, NY, Aug
18-20, 1987.

7 Czuchry, A., Harris, D., "The Knowledge-Based Requirements Assistant: A New
Paradigm for Requirements Engineering," IEEE Expert, Nov. 1988.

8 Gilham, L., "KBSA-PMA Program Specification," Documentation, RADC Contract
F30602-84-C-0109.

9 Gilham, L., "KBSA-PMA User Manual," Documentation, RADC Contract F30602-
84-C-0109.

10 Goldberg, A. and Smith, D., "Towards a Performance Assistant," Interim Technical
Report, RADC, Griffiss AFI-, NY, Nov., 1986.

11 Goldberg, A. and Smith, D., "Performance Estimation for a Knowledge-Based
Software Assistant," RADC, 2nd Annual KBSA Conference, Utica, NY, Aug 18-
20, 1987.

12 Goldberg, A., "Technical Issues for Performance Estimation," RADC, 2nd Annual
KBSA Conference, Utica, NY, Aug 18-20, 1987.

13 Goldberg, A., et al, "KBSA Performance Estimation Assistant Program
Specification," Documentation, RADC Contract F30602-86-C-0026.

19

14 Green, C. et al., "Report on a Knowledge-Based Software Assistant," RADC Tech.
Report TR-83-195, RADC, Griffiss AFB, NY, Aug, 1983.

15 Harris, D., "A Hybrid Structured Object and Constraint Representation Language,"
Proceedings of National Conference on Artificial Intelligence, Aug. 1984.

16 Harris, D., Czuchry, A., "Knowledge Based Requirements Assistant," RADC Final
Technical Report TR-88-205 (two volumes), October 1988.

17 Huseth, S., "Analysis of Knowledge-Based Frameworks, Interim Technical Report,
RADC/COES, Griffiss AFB, NY, Nov, 1987.

18 Huseth, S. and King, T., "A Common Framework for Knowledge-Based
Programming," RADC, 2nd Annual KBSA Conference, Utica, NY, Aug 18-20,
1987.

19 Huff, K., Lesser, V., "Plans and Meta-plans in an Intelligent Assistant for the
Process of Programming", 2nd KBSA Conference, August 1987.

20 Huseth, Steve et al. (Honeywell, Inc.), "KBSA Framework (Phase I)," RADC Final
Tech. Report, TR-88-204, October 1988.

21 Johnson, W. J., "Overview of the Knowledge-Based Specification Assistant,"
RADC, 2nd Annual KBSA Conference, Utica, NY, Aug 18-20, 1987.

22 Johnson, W. J., "Turning Ideas into Specifications," RADC, 2nd Annual KBSA
Conference, Utica, NY, Aug 18-20, 1987.

23 Jullig, R., et al., "KBSA Project Management Assistant," Final Technical Report,
RADC, Griffiss AFB, NY, July 1987, TR-87-78 (two volumes).

24 "Knowledge-Based Specification Assistant User Manual," Documentation, RADC
Contract F30602-85-C-0221, June, 1988.

25 Ladkin, P., "Primitives and Units for Time Specification," AAAI-86, Philadelphia,
PA, Aug. 11- 15, 1986.

26 Larson, A. and Huseth, S., "KBSA Common Framework Implementation," RADC,
2nd Annual KBSA Conference, Utica, NY, Aug 18-20, 1987.

27 McGraw, J. R., "The VAL Language: Description and Analysis," ACM Transactions
on Programming Languages and Systems, Jan., 1982.

28 McGraw, J. R., et. a, "SISAL: Streams and Iteration in a Single Assignment
Language," Technical Report M-146, Lawrence Livermore Laboratory, Mar., 1985o

29 Osterweil, L., "Software Rocesses Are Software Too," Proceedings, 9th Annual
ICSE, Monterey, CA, 30 March - 2 April 1987.

30 Reasoning Systems, "REFINE User's Guide," June 15, 1986.

20

31 Sanders Associates, "Knowledge-Based Requirements Assistant," Final Technical
Report, RADC Tech. Report, TR-88-205 (two volumes), Griffiss AFB, NY, Oct.,
1988.

32 Waters, R., "KBEmacs: Where's the A?," The AI Magazine, Spring, 1986.

33 Wile, D., "POPART: Producer of Parsers and Related Tools Systems Builders'
Manual," USC/Information Sciences Institute, July 1987.

21

Lu
0z
LU

0 LUJ
wL L.

N z
0
00

Z L,':- c

a))

Ul) (1)

D0)1

CL

a)U MRW

C13 UW03

LLu
ccr

L

0-1
LLR

23)

p
C)

r)

A= 0 0 CL

0 N)o T-
o 0 0.

00

0 0 0

E LL -q

cu Cu
0 C N

.

U)EU)

a) C,

0uO 0

0l 0 0

c~ .S 24

z
u-i w

z2 E

0) 4) ~

0 a la 0 O

_ a 0 C) 1-

C/- ca ca :3c
"D - 0 U))

0) V Cu

0. 0u Cl U)c
V~~ m~CL. U

1- 0 C

W~~~~ 0) 1 , Cuo~3 V. ~U
CL

S S C 91Cu

U) U

z
wU 0

00

25

0

- Cfs

4))

CC

0 c

I=
Cu C

(D.
C>

w(E

0 (1zm

w2

Cl) W

0

0Q

0 m E)
CO))

C0 0

moC 0 m.
Om 0

z 0 0
w >

MM 0
0 4.4u

T) 0

I- E 0 cc
)m m &- c

EuC 0 0 E

o L o a
r0 0 0a cc

m l)cca a

0 (DCu Cu

27

0.0

CC,

0 E~

00

0 L-

00
0l > (

o 0. 00
0 Sn

~'0

0 U)0

w 0

0
-a

C) 0 0 M

w ~ 0- 0 28

_jj QOj
2 a(,cr- cc

00 z

0< 0 I-

z -

w < 2

a -

zwU
z0.., 0

0iI

00
zz

w U, 0

0<

cc <

#U-
-z

< L

LL5

w

29

cc0 :) C

W CL

0

CWZ -j

w<

< C

z
zz 0

w<
z C

CD,

z
C/) C/

w-

0 <

wz

w

0 cc

0

00

c C

(0

U) 0
CL C L CC .

IL 0 0 O 0)
C" .2"-.~ C
- a- 0 0

C L 0 (0 > 0 C
w ~ 0 0 0 00 0

.2 ~ E C.2
C~~ CW CL M E

0 M u 0

>u C 0 . 0 a .

0 2
-L 0 Q u

00 L 0

E c5 0 0E cc 0. 0 0 .

0 0 0 0 0 0 0 0 0

0 31

0)

0- c

4."' 0
0 0 C

LL.

o) 0

M 0 W
0 0

-L < 0 -C
oL CL

0 0n EC
00

Wi 0 w)

> 2 0.0
*0. o3 CL "

LI.c l) C L .

2 U

-.- .- .0 0
oU.. 0 0. +

C O.+ _ S . 0+
0 , .~

W . 0 0 -

-a:
0 .

mC
C 0

,.2 0 .

0) - 03*

+i -t .,L m m m IT - m " m l rlr l l.lCll .,2 ll,,l0i l, ,0 i p F r WA + +'n + I- -+ 1, ' " + =

00
(0

Co UL

0o . 0DZ
0 0

CL 0
0. 0 a 04

LL 0 0
0 m

0.0
00

0"
0

zL Z. 0oo 0

-0
Z%>

< m. 0 >0 .0.4

4) cc w)

04- E a

0 CL -4

0 .. E 0 >
UO) UO) .- 0 U

33

CL -
cn 0

0

00

0/ C
00

0CL

0 C 0

C

0

wo4-42 C 0 r
w2 0 0 a)

.; . a~ 0)C
.00

*" C CCo

0 ~

E o

344

w 0

0.

CL) C
C 0 EE

*0 0
(D .- 4.)
m wu E.

> u~

0L 7 i N
CO >

0CL 0 0~

Cu C 0 C

m CL
*.0 CLZr 0. 0

m0 02 0 C
Z 0 0 ='a0 -

>u E cu c CD

0) C0 40 .c
00u Cu

0a 0) .

> M=
.4- >20

35 0

0

0.100

4; 0

CL 0 -c

N I-I
o .2

0 0 "
0 01-0C

o 0. _

w> 0

00

> o %- ..
CCL

.000~.0-
cc Cu W' C.

Cu.00
C)In~ 0

1- Cu

*-~ *~36

z

w
cCu

L-
0

Q 0.1

*. L- (

C.)

u) 0C)

-f-

>10 00

F- UCC
MW zVu

U)) U)

w c

cr, Cu

W Cfl 0 U

ul 0C CL

~C

37

0

0

0.

00

C,, 0-0 0

0.0

0 0

wo Ecc M
U) (UD)z0 E

E 0
0 >U

0 0

U.-)

38 ~.0 01

-oo.

CE

<:~ ~ CL oJ

0c)
0

0 0
0

E000Z o

a-9

0 > t

0) 0 > = 0 0 C

0 0)

(D 00 03)
CLU

0

39

E

0

ICCu

0 i,

o - -

ou 04
0 0D

0. 0 .0 CL

CIC,

o 0

40)

(I, 1a

C .

00 0)
0 0

0 0

c) CO co 0

r0. 00m*0E Z co -

nc

3- 2

0 6.(I 0

U) 000.
_ I

41~

z
0 0

c
0

0J 0

w_
02 CL

Z I-

000

o 0-
W0. a) 0 0

OCU 0)

W x)) 02cj *-

00 C U0 CU *" r-

0 W

co z0~. co a

CU0 0 z w 5
SQ ui c

42'5

0

z -

Cl) C

0 0

ClC

o 0
- CL

IL-

CL
.- Co 0u 00c

w mCa
C.) 0 t

0l Cu) >

C) 0- c0.2 0 0

W~& E" m..o
C/) U) al a

of 2 0 Z1J

1x CCXO
z L.E 0 u u) LL Cu
w0 0

w 5.0 wc
UC) . 0 0 w
T.) -CLCCuU.

OC.-Cu Ii ~'C.~C~43c

0
I-

0. 4-.
CL

(I) 1.C
CC

0 ~ *
C) =

z 0,

0.00 E u

OO .w LL

0 cn .

E cu 0 0 0.
0~ E00~ 0 OC

0.cmc
02EE E 2.2 0

WL 0 0U Lf)
0 0 LOL.

CC0 0 C CO it

0 1-m- .0 COC
E c 0 CO) co

A.%W U -6O

~0 ~ .CO .% CO C

W~~~ CuC0 0 ,.

~~~ Cu0

C.) 0
O z C

iii 00 z

44



0)

ca
V

C/) 0

0

w *a

0 -
5/ 0 )c

C.2 0 m c
m cu a 0  CD

>0 c -5. C

0 0C

o 4) cn CL
.2 0

w m ~ a

0l 0 a OC 0 0U0. uj cu* 0

a, -. .-. a,45



cc0

00

(0 0

0z00
W N

LL CL
z C2 0

inu im 0

ZU )&. . 0 L C
E C - *aI-D S 0

a. a

0 - - a, 4)

z 2 0 Cu L

0 Z'C 8 2 3: Uo 0 n muz L

0

CD z > a.U) 0 0 z w
-) 0 0

46



z

0.

0
0

o. C
LI. 00

z I
00 0.

.0 cc

E 0
0 t - 0 0

0 0u
x 20C 02

U)cc -a xr 0 0

00h. E .
0 CO .00&

0~~ CE uoLn
E 2- C

o 0 Lz>~.c( (0w. z Ca) w

2
w 0z m

0) 0 z Cw00 w

47



0)0

C0

00

0 .20
0)0

E C.O2(
P0 C

E co f

0 wa 0I=&
_ C.)

0 4) - )4 -c

o > 0

L. 0 .0.
3mm 0 )

'4- ( C F- 0
.2 Ca C

C - 0

-L t-m
C/) 0 0E

C 0 G) uCO>~

Cu Eo~- 48



z

I- a
(/)

0 0L
Im4 0m

I-- 2z 0 C4
W c2

CCu
00

W) cl

0 h.0
0 ~CL

_0 0.~ *a CL

0 = Z 0)

so4"0 CE)
0- z 1

0 LU 0

00 0a:

C) 0. W c

49



*0

.0
z-

00
ff1)UU

L))
- 0

Cu CC

0 cc
00

0) -w(D0

0. 0
w 0

cc 0
C C

0 = h 4
E 0 >u
Lw U ) CC ECco 0

wL

zz >e C-= L
0l 0 0  w
T)C

- 50



00

U) E 0

0- 0 E

LU E1C
a_ 00De

0 0 c

CL E

0 0

o1 100)

0 C) Xe 42)

w0 0Z%
o 4) .

o:c
zo

0 M 2 z

Cl) z )C

.0

.2c 0 0 z
2U a:

~.2'~51



Im

c-

zz

Ewo 0

0Oz (E

1= 0
C)

/)0 E)

CC 0 L ~

LU0
I-.

0

0 m

0 0.

CL 4)

52



KBSA User Interface Environment

This section describes a proposed design for the KBSA User Interface Environment (KUIE),
a portable system for constructing user interfaces. The environment is highly object-oriented
and is based on the Common Lisp Object System (CLOS). This specification is not complete
and is expected to evolve as a result of prototyping and review by KBSA developers.

The toolkit consists of a set of object classes and methods that may be used to construct
application user interfaces. Instances of objects created are active. They are aware of how
to display themselves on the user's screen and their relationship to other objects being
displayed. The power of expression and versatility of CLOS makes this approach a powerful
design and development tool for the construction of complex user interfaces.

Several of the rharacteristics of the KUIE design have been principally drawn from Common
Lisp User Environment (CL JE)[3. The design has also been influenced by the Knowledge
Base Requirements Assistant (KBRA) presentation mechanism[51 and other object-oriented
user interface systems. KUIE expands these systems by making extensive leverage on the
advanced object-oriented concepts provided in CLOS. This has simplified the interface and
increased its flexibility.

In addition to our interest to maintaining a strong object-oriented flavor and compatibility
with CLOS, we have also attempted to avoid dependence on any single window system such
as X or Common Windows to increase portability. Several window systems have emerged
with no obvious champion. Although a user interface subcommittee was formed within the
ANSI X3J13 Common Lisp Standards Committee, little activity has occurred to date. We
view this to be indicative of the quandary that the industry is currently in.

2.1 Window Systems

In the selection of an implementation platform, several key factors were considered important:

53

' PmP M | I ,, . MII logi I. . -,4MEM.El - j ° p I ~w '



KBSA Framework Honeywell Systems and
Research Center

Portability Applications which use KUIE should be easily portable to any hardware/software
environment which hosts KBSA. Thus the implementation platform must be highly
portable.

Flexibility KUIE is intended to support the development of a wide variety of user interface
styles. In particular, it should be possible to use KUIE to implement any of the
user interfaces found in current Lisp development environments. Both graphical and
textual interfaces should be easy to create. In order to achieve this, the implementation
platform must be highly flexible.

Extensibility KUIE should provide the ability to define and deploy new types of user
interface objects which refine and extend the behavior of more basic object types. KUIE
provides this ability through the methodology of CLOS. Thus, the implementation
platform should be readily extensible.

Compatibility The implementation platform for KUIE must be compatible with related
software systems which will be separately standardized.

We examined several window systems in the design of, and choice of an implementation plat-
form for KUIE. These include Common Windows, CUEForms, Symbolics Flavors, CLUE/CLX.
The following tables show how the window systems we examined compare in the selected
key areas.

Public Domain

Window System Portable Compatibility Extensible Specifications
Common Windows Yes Yes Yes Yes
CUEForms Yes No Yes No
Symbolics Flavors Yes No Yes No
CLUE/CLX Yes Yes Yes Yes

Level of Detail Monolithic/
Window System Network Support Ease of Use Flexibility Multiple Screens
Common Windows No Low Medium Monolithic
CUEForms No Low Low Monolithic
Symbolics Flavors No Low High Monolithic
CLUE/CLX Yes High High Multiple Screens

The principal contenders for a standard Common Lisp user interface fall into two camps:
the X-based systems such as CLX and CLUE, and Common Windows. Within each of
these camps, minor differences exist that make applications that use one version of CLX or
Common Windows not operate on another. We will briefly discuss each of the two systems
and their future prospects.

54



XBSA Framework Honeywell Systems and
Research Center

The X-window system, or simply X, originated from the Athena Project at MIT. It is a
C-based implementation that has been adapted to several other languages including Ada
and Lisp. X consists of low level graphical services that provide a high degree of flexibility
in constructing user interfaces, but the interfaces tend to be highly complex. No support is
provided for common graphics structures such as menus, title bars, and pop-up windows.

The Lisp interface to X is called CLX. The Common Lisp User Environment (CLUE) [3) is an
X toolkit developed by Texas Instruments to provide higher level object-oriented abstractions
for constructing user interfaces. There is an ongoing debate as to whether the CLUE-level
or the CLX-level is the most appropriate to provide the object-oriented abstractions. This
discussion will inevitably result in changes to both interfaces.

Common Windows was first produced by Intellicorp to increase portability to the Knowledge
Engineering Environment (KEE) system. It is one of the earlier Lisp-based user interface
toolkits and has since been embraced by other Lisp software vendors. Franz Corporation has
committed to a complete development environment on Common Windows implemented on
top of an X base. This however, has required Franz to make custom modifications to both
Common Windows and CLX reducing the portability of any applications using it.

2.2 KUIE Prototype Implementation Platform

Due to this state of flux, we have attempted to minimize our dependence on a specific
window system. It is our intention that the complete KUIE system will provide a sufficiently
rich number of primitive object classes for creating user interfaces that direct calls to the
underlying window system will be minimal.

For the initial prototype implementation, we chose Common Windows for its high level
window operations, availability, and general acceptance. Common Windows provided the
necessary flexibility and performance. However, after discussions with several other KBSA
developers, it became apparent that Common Windows would not serve our long term needs.
The wide spread use of Common Windows is very much in doubt. We believe that it will
become extinct due to the large support that has been given to X-windows. The number of
platforms supporting X-windows and the scope of the X-windows standard (OSF, ANSI/ISO)
means that it delivers a portability that Corrnon Windows will never achieve.

As a result we have moved to using the CLUE system constructed on top of CLX as the
window system platform. CLX alone represents relatively low-level functionality of the X-
windows protocol. Using the CLUE toolkit makes the task of constructing KUIE interfaces
significantly easier.

The kind of interoperability made possible by X means that user interface policy can be
provided by special window manager programs, independent of both client programs and
the window system. Common Windows is not prepared for this kind of world; it will end up
conflicting with or duplicating the control of window titles, window geometry, etc., that is

55



KBSA Framework Honeywell Systems and
Research Center

provided by an X window manager.

Although we may have to wc-k harder short term, the adoption of CLX as the basis of
the window environment will ensure compatibility with emerging standards and commercial
products.

2.3 Design Goals

In designing KUIE, three principle goals were important:

Object-Oriented Abstractions The benefits of object-oriented abstractions for user in-
terfaces have been demonstrated in several operational systems [10, 9]. The approaches
taken have proven to be capable of managing the complexity inherent in user inter-
faces constructed for applications, yet be highly flexible for constructing novice user
interface features [8].

CLOS Compatibility The ratification of CLOS as part of the Common Lisp language [21
has provided an industry-wide base for object-oriented programming. Close association
with the CLOS standard will ensure its use and acceptance by a larger community.

Portability Applications should be easily portable to any hardware/software environment
which supports CLOS and an associated window system. We have attempted to avoid
specific dependencies upon an underlying window system thus enabling KUIE interfaces
to be constructed on a variety of window systems. (Note: A high degree of portability
is a KUIE design goal, but differences between hardware and window system platforms
result in different implementations of window coordinate systems, handling of regions,
sizes and resizing, etc., which make achieving this goal difficult. Ease of portability
in KUIE will come with the correct choice of a window system as an implementation
platform.)

Extensibility The interface should provide the ability to define new types of user interface
objects which refine and extend the behavior of the basic object types. KUIE provides
this ability through the CLOS features of class specialization, method mixing, and
inheritance.

Modularity KUIE should comprise a well-defined and self-suficient layer of the user inter-
face programming system. Using KUIE, an application programmer should be able to
implement most types of user interfaces without accessing underlying software layers
and without knowledge of the implementation internals of KUIE objects.

56



KBSA Framework Honeywell Systems and
Research Center

2.4 Overview

An interactive application program can be considered to consist of a collection of functions,
some of which perform the processing that is essential to the application's purpose (e.g. text
editing, knowledge base management, etc.). Other functions exist solely for the purpose of
communicating with the application's human user. In KUIE, such human interface functions
are represented by specializations of the contact object class. The contact class defines a
primitive graphical object that is capable of being positioned and displayed on a graphics
screen. Contacts are responsible for presenting application information to the user on the
display screen, and for informing the application of input sent by the user via interactive
input devices (such as the keyboard and the pointer). A contact generally embodies a
component of the user interface that knows how to:

e display its contents,

o process input events that are directed to it, and

* report its results (if any) back to the application.

A contact provides a relatively high-level abstraction for user interface programming. Objects
physically placed on the user's screen are subclasses of the contact class. The purpose of
such an abstraction is twofold:

* To simplify and raise the level of the dialog between the application and the user. A
contact insulates the application programmer from detailed behavior of a user interface
component (such as displaying its contents and acquiring its input). As an "agent"
of the application, a contact object can directly communicate with the user in terms
closer to the application's domain.

* To define a uniform framework within which many different types of user interface
objects can be combined. The contact class raises to a higher level the commonality
between a great variety of interface objects - menus, forms, dials, scroll bars, buttons,
dialog boxes, text entry, etc.

The subclassing and inheritance properties of CLOS are important to the use of contacts.
A contact subclass implements a specific interface technique for input and output. Thus,
a contact subclass can represent either an extension of a technique (such as a hierarchical-
pop-up-menu which is a subclass of a pop-up-menu class), or it can provide a variation in
style (as in a drop-shadow-pop-up-menu subclass). This protocol is expected to lead to the
development of contact "libraries", providing a rich repertoire of interface techniques and a
choice of several functionally interchangeable styles.

57



KBSA Framework Honeywell Systems and

Research Center

2.5 The User Interface Programming System

Contact objects represent an intermediate level of abstraction within a large user interface
programming system. KUIE relies upon the services of a lower-level subsystem typically
referred to as a window system. The window system provides programmer interfaces for con-
trolling interactive I/O hardware such as the display screen, the keyboard, and the pointer.

Currently, KUIE is defined in terms of CLUE/CLX using the X Window System. Most
window systems, including Common Windows, contain a component that is cormnonly called
the window manager. The window manager is the part of the window system that provides
a user interface to various operations on windows (i.e., changing a window's position, size,
visibility, etc). We have assumed the existence of an underlying window system that performs
these services and therefore has not been included in the KUIE specification.

KUIE distinguishes two different aspects of programming the user interface:

e defining a contact, and

* using a contact

The application programmer, who instantiates and uses a contact object, does not need to
know how the class and methods of the contact were implemented by the contact program-
mer. In particular, the window system interfaces used by the contact programmer need
not be visible to the KUIE application programmer. This distinction contributes to the
separation of the application programming from the user interface prograrming.

2.6 Constructing User Interfaces With KUIE

KUIE defines two categories of user interface builders: the application programmer and the
contact programmer. The application programmer has knowledge of the application that is
being constructed and defines how the screen should appear to the user of the application.
The application programmer will use and combine the existing contacts to achieve the desired
user interface. The contact programmer constructs new contacts and specializations of exist-
ing contacts that may be used in new applications. The needs of the contact programmer are
different than those of the application programmer in that he must be aware of the specific
protocols that must be maintained for contacts and how to use the inheritance hierarchy to
achieve the desired results. This difference in perspective between contact programmers and
applcation programmers separates knowledge of the application from knowledge of the user
interface. This is a primary goal of user interface management systems.

New contacts that require complex screen management operations may require the contact
programmer to use underlying window system calls. Extensions of this form may introduce
window system level dependencies that will limit the portability of applications using the

58



KBSA Framework Honeywell Systems andResearch Center

special contact. Consequently, contact programmers should avoid directly using window
system services where possible.

KUIE graphical objects know how to organize themselves for presentation. They know how to
present themselves, and how to unpresent themselves. Further, in our model there are mrxins
that combine these graphical objects and their presentations with additional attributes, such
as mouse sensitivity, repositioning, etc. These graphical objects may be simple, such as an
object representing a simple dot, or label (text string), or the object may be a composition
of several parts, such as a line, a labeled box, or a graph.

In the case of an object representing a simple thing, the object's organization is to center
its graphical element in a region, the dimensions of which are such that it is the smallest
rectangular region that can fully encompass the graphical element.

In the case of a composite object, the object organizes itself by first calling down to all
of its parts to organize themselves. Each organization of a component part results in that
component's region being returned by the Organize method. The composite object then
organizes these subregions into a new region.

When an object is presented, it displays its graphical elements in the region defined by the
object of which it is a part (unless the object presenting itself is a stream, and the stream
presenting itself is not a part of any other stream). The object then calls down its list of its
parts to present themselves.

2.7 Network Support

Since KUIE is implemented on top of CLUE/CLX, the place to start examining the issues
of networking and network support in KUIE is at the CLX level. KUIE provides an object
oriented interface to the basic X paradigm found in CLX and shared by CLUE. This basic X
paradigm is one of "one client, one display" (where "display" means a CLX display object).
Refer to the X, CLX, and CLUE documentation for a complete description of this paradigm.
In summary, KUIE windows operate in a network of separate servers, clients, and managers,
each (in general) with its own address space.

Since all the KUIE objects are also KBSA objects and thus are distributed, not only can a
client use multiple displays, a client can also share a single display object among multiple
processes.

There are still some unanswered questions regarding the handling of a distributed indepen-
dent "mouse process" which arises when a client is sharing an event stream with other client
programs.

Protocols are being investigated to address the following kinds of networking issues:

* How will the mouse process be aware of all client displays since any client can create

59

I



KBSA Framework Honeywell Systems and
Research Center

its own display event stream?

e What if both the mouse process and the client process are interested in enter/leave
events?

a Who removes events from the queue?

a How will the mouse process be able to find the CLOS object associated with each client
window id?

e How are remote clients handled?

* How does mouse process feedback fit in with the window manager and other user
interface policy arbiters for the server?

2.8 Event Dispatch

KUIE events include user input events, client synthesized events, and window system events.
The KUIE event translation scheme can be extended to handle other types of events. In
general, these events are handled by handle-event methods specialized on contacts.

2.9 The Contact Class

The fundamental properties of a contact are defined by the contact class.

Contact Class

(defclass contact 0
((parts :type (listtof contact)

:accessor contact-parts
:initform nil
:initarg parts)

(parent :type (or null contact)
:accessor contact-parent
:initform nil
:initarg parent)

(x :type integer
:accessor contact-x
:initform 0
:initarg x)

(y :type integer
:accessor contact-y

60



KBSA Framework Honeywell Systems and
Research Center

:initf orm 0
initarg y)

(width :type integer
:accessor contact-width
:initarg width
:init[orm 60)

(height :type integer
:accessor contact-height
:initarg height
:initform 50)

(state :type (member '(nil organized exposed))
:accessor contact-state
:initform nil
:initarg exposed)

(stream :type stream
:accessor contact-stream
:initform nil

:initarg stream)))

The Contact class defines the most primitive graphical object. It has a region which it
occupies, a window stream upon which it is drawn, a presentation state, and a list of graphical
objects it is related to in some class specific manner.

A contact may be a singleton or an aggregate. Aggregate contacts are graphical objects
composed of other graphical objects. The constituents are specified in the parts slot of the
contact and are physically drawn within the region defined by the paient contact. For each
operation applied to a contact, the operation will be performed on the contact, and then
recursively performed on each of contacts in the parts slot.

For example a graph made up of labeled boxes will be represented by a top level graph
contact object. The parts slot will contain box contact objects and arrow contact objects.
The parts slot of each box contact will contain a single label contact.

The slots of the contact class are described below.

parts

The list of constituents that make up the contact. If this slot is non-NIL,
the contact is an aggregate and cuntains a list of contacts that make
up this contact. By building hierarchies of contacts, complex graphical
structures may be composed. If the slot is NIL, then the contact is a
singleton.

61



KBSA Framework Honeywell Systems and
Research Center

stream

The stream object that the contact is displayed on. A contact is always
associated with a stream object. All of the parts of an aggregate contact
have the same stream object.

state

The state variable which controls the visual effect of the contact. A
contact may be in one of three states: organized, presented, and nil
(see section 2.10). The organized state denotes that the contact has
been positioned on the stream object. The presented state denotes
that the object has been physically displayed on the screen. Contacts
may be unpresented to remove or hide the object.

x,y,width,height

These geometrical attributes of a contact window are pixel values that
describe the position of tbe contact within the stream object. The
height and width must be specified before the contact is organized or
presented (see section 2.10). When a contact is organized, the x and y
values of any constituent contacts are set. This establishes the position
of the constituent contacts within the region of the parent contact.

2.10 Manipulating Contacts

The creation of a contact object is actually a two-step process in which a contact instance
is first organized and then presented. Organization consists of setting the attributes of the
contact and positioning the objects in the contact's parts slot. Presentation consists of
drawing the contact on the graphics screen.

make-instance Function

(make-instance contact-class-name initargs)

A contact is created using the CLOS make-instance function. An instance of the class
specified will be created and initialized.

organize Method

(defmethod organize ((c contact)))

62



KBSA Framework Honeywell Systems and
Research Center

The organize method positions the constituents of an aggregate contac' within the region
defined by the parent. Organize assigns positions to objects in the parts list of a contact and
recursively calls the parts to organize themselves. The positioning algorithm used is class
specific.

present Method

(defmethod present ((c contact)))

Present physically draws a contact object on the stream object specified by the contact and
calls the objects in the contact's parts list to present themselves.

unpresent Method

(defmethod unpresent ((c contact)))

The unpresent removes the object from the users screen. This method may be used to
provide pop-up icons that are removed after some user action.

stream Class

(defclass stream (contact))
((x-extent :type integer

: accessor stream-x-extent

:.initform 0
:initarg x-extent)

(y-extent :type integer
: accessor stream-y-extent
:initform 0
:initarg y-extent)

(height-extent :type integer
: accessor stream-height-extent
:initform 0
: initarg height-extent)

(width-extent :type integer
: accessor stream-width-extent
:initform 0
: initarg width-extent)

(border-width :type integer

: accessor stream-border-width
:initform 0
: initarg border-width)))

63

' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~E a'm I -II l'P l I ' T W I ' ' ! 1 1 F ' , RMSMrOr



KBSA Framework Honeywell Systems and
Research Center

The stream class defines a basic window object for displaying contact objects. The window
may optionally have an extent that is larger than the size of the viewing area. In such cases,
scroll bars are automatically added to the window.

Each contact object must be assigned a stream before it can be presented. All contacts
within the same aggregate hierarchy must have the same stream.

The slots of the stream class are described as fojiows:

x-extent,y-extent

These slots define the placement of the window on the parent window.
If no parent window is defined, then the values are relative to the user's
screen. The corresponding x and y values inherited from the contact
class define the position of the viewing region of the window.

height-extent, width-extent

These slots define the height and width of the extent of the window.
These correspond to the height and width slots inherited from the con-
tact class which refer to the size of the visible area within the extent.
The height-extent and width-extent values must be greater than or
equal to the height and width values. If the height-extent and width-
extent are greater than the stream height and width, scroll bars will be
included in the window.

2.11 Handling User Input

User input is handled using "mixin" classes and through the generation of special event
objects.

sensitive Class

(defclass sensitive )
(active :type boolean

:accessor sensitive-active
:initform t
:initarg active))

The sensitive class enables events to be generated by making contacts mouse sensitive. The
sensitive class is not intended to be instantiated but instead is a "mixin" which is used as
a superclass for a user defided contact class. When a contact is presented that is sensitive,

64



KBSA Framework Honeywell Systems and
Research Center

the underlying window level mechanisms are established to make the contact on the users
screen mouse sensitive and consequently capable of generating events.

Whenever a user action occurs on a sensitive contact, an event object is generated. The
contact associated with the event is sent the handle-event message with the associated
event and stream objects. The application developer is able to customize the handling of
events by specializing new handle-event methods for the event of interest. By using the class
hierarchy, a wide range of flexibility and tailorability is possible.

event Class

(defclass event 0 0)

The following is a partial list of pre-defined event classes exist and are generated as a result
of the corresponding mouse operations:

(defclass button (event) ())
(defclass button-down (event) 0)
(defclass button-up (event) 0)
(defclass left-button (button) 0)
(defclass left-button-up (left-button button-up) 0)
(defclass left-button-down (left-button button-down) 0)
(defclass middle-button (button))
(defclass middle-button-up (middle-button button-up) 0)
(defclass middle-button-down (middle-button button-down) 0)
(defclass right-button (button))

(defclass right-button-up (right-button (button-up)) 0)
(defclass right-button-down (right-button button-down) 0)

handle-event Method

(defmethod handle-event ((self contact)(event event)(stream stream))

The handle-event method is sent tL the contact that is responsible for the event. By defining
new handle-event methods, the user is able to tailor the event handling mechanism. For
example, by defining the me iod

(add-method #'handle-event
(make-instance 'method

:lambda-list '(contact event stream)
:specializers (list (find-class 'my-contact)

(find-class 'left-button)

6E



KBSA Framework Honeywell Systems and
Research Center

'(eql ,*current-stream*))
:function #'(lambda (contact event stream) ... )))

The left-button-up and left-button-down event will be handled but not middle or right button
events. The expression (eql *current-stream*) is a CLOS construct that enables methods
to be specialized on specific object instances, in this case is the current window.

moveable Class

%defclass moveable (sensitive))

The moveable class is a mixin that enables objects to be moved on the user's screen. The
mouse may then be moved to indicate the contact's desired new position. Clicking left on
a moveable object unpresents the object from the screen and replaces the object with an
outlined box enclosing the region occupied by the object. Clicking left again will re-present
the object on the screen at the new position. Any constituent contacts will be reorganized
with respect to the the new region.

2.12 Ongoing Expansion of Classes

The next two sections describe the classes defined in the prototype KUIE. Many more classes
are under development. More sophisticated windows and menus are notable among the
on going development: classes, methods, and protocols for windows with Symbolics style
pointer/documentation capabilities, scrolling, more presentation-types, and display-lists, as
well as accepting-values menus and greater support for menus with complex items.

2.13 Predefined Contacts

The following section contains the interface specifications to predefined contacts that have
been created to permit limited user interfaces to be constructed without references to the
supporting window system.

icon Class

(defclass icon (contact)
((bitmap :accessor icon-bitmap

:initform nil
:initarg bitmap)))

66



KBSA Framework Honeywell Systems and
Research Center

The icon class contains a bitmap object that is directly displayable on the users screen.

pop-up-menu Class

(defclass pop-up-menu (contact)
((selection-list :type list

:accessor pop-up-menu-selection-list
:initform nil
:initarg selection-list)

(result :type t
:accessor pop-up-menu-result
:initform nil
:initarg result)))

The pop-up-menu class defines objects to draw pop-up menus. The selection-list contains a
property list of string/value pairs. The strings will be displayed on the menu for selection.
The value corresponding to the string selection made is returned in the result slot.

box Class

(defclass box (contact)
(line-width :type integer

:accessor box-line-width
:iLitform 1
:initarg line-width))

The box class defines an unfilled rectangle on the region defined by the contact. The outline

of the box is drawn with width line-width.

filled-box Class

(defclass filled-box (box))

The filled-box class defines a filled rectangle on the region defined by the contact.

label Class

(defclass label (contact)
(string :type string

:accessor label-string
:initform "
:initarg string))

(font :type string
:accessor label-font
:initform nil
:initarg font))

67



KBSA Framework Honeywell Systems and
Research Center

The label defines a string. Contacts may be labelled by associating the contact with a label
contact.

line Class

(defclass line (contact)
(pointl :type integer

:accessor line-pointl
:initform 0
:initarg pointi)

(point2 :type integer
:accessor line-point2
:initform 0
-: initarg point2)

(width :type integer
:accessor line-width
:initform 3
:initarg width))

This class defines a line between pointl and point2.

arrow Class

(defclass arrow (line))

The arrow class is a specialization of a line that draws an arrow from pointl to point2.

circle Class

(defclass circle (contact)
(radius :type integer

:accessor circle-radius
:initform 10
:initarg radius))

The circle class defines a circle that has a size defined by the radius slot.

filled-circle Class

(defclass filled-circle (circle))

A filled-circle is a specialization of a circle that is filled in.

DAG Class

68



KBSA Framework Honeywell Systems and

Research Center

(defclass DAG (contact))

The DAG class defines a directed acyclic graph. The parts of the DAG must be instances of
the box class and arrow class.

text-window Class

(defclass text-window (contact))

The text-window defines a formatted text output window whose size is defined by the contact
region.

lisp-listener Class

(defclass lisp-listener (contact))

The lisp-listener class defines a window running a lisp-listener whose size is defined by the
contact region.

69



4-CU

usu
U 0

4-

-E
- U

E t
4- 1 4-

00

u "

. u o

7 1

711.



(f) a

4-J

U

uC42
4-. a
V)

w)4- -,I 4-2
DU M

*0o 0
€ E >0

u "(u

0

4--J

(Ia)

w u

U CU
720

E
x E
w 0

4- 0

72



0
~4-J

44-J

4-J 4-J

V 3



u4-J

44

,0

'4-4

g4.

0.6

-o o

L ~
0_- x o

LL u uJ U
74



u Q

U.

E. a a)

E) Qua)

0. 0

0 oo

00 C- 0.-.->

o C)

)~U) -

Efl 0

a) a).1 ) a A-
o% L'- ^ -3203 W 0Z

0o'1
E 0E0~ j 0
0> 0. >-

a) (In

75



The X-window system (X):

* C-based implementation

* Originated from the Athena Project at MIT.

& Easily accessible

e Used widely in the technical community

* adapted to several other languages including A

(CLX)

o Low level graphical services

76



L-

wU C
0

-I 4-I
m

UU

S4-

V) U )

>S 0

j- u" D4 4n

(0n

Ln 0 0
-1- 0) U) Q

4-J4-4-
W u)

o 0 V +

0 +I a) IJw 4I (nt
u 4 -j

77



>>

V)V

4-)

E

em

_J a)

U o

u2

- 4 -

U 0

4-4w

0 ((A)
0 0

E ~4-
4- 3' 0 X 4-

V) ui

o

c

78



1

wbo

0. *10
.0

799



V)
U) 0 ()

o00
a) CE V

0 V
u C

- U 0.
Cu

4-1 0

Y c 4-
0~ U)

7C-

U 0
Cu u U)

4 9 0
C 4-J

0 > 2
u L.i

80



a1) IL
-C L
4 -J a

E E)
U C

>. 0 0

U) Cu

VV

4- ~4-

E- 4--

u a)

+-J

0. 0

81 4



0
4I-J

'U V 0
4.4-J

V 0.
C

CCu

4-.J 4-J

o 0u

C 4-u

4-J

4- (1)

V) U

V) cV)> ) 4-J
u 0

U,0 0.

82



. E

o 0

0 0

4J

'I-))

I-3



The Contact Class

(defclass contact ()
((parts :type (listtof contact)

:accessor contact-parts
:initform nil
:initarg parts)

(parent :type (or null contact)
:accessor contact-parent
:initform nil
:initarg parent)

(x :type integer
:accessor contact-x
:initform 0
:initarg x)

(y :type integer
:accessor contact-y
:initform 0
:initarg y)

(width :type integer
:accessor contact-vidth
:initarg width
:initform 60)

(height :type integer
:accessor contact-height
:initarg height
:initform 50)

(state :type (member '(nil organized exposed))
:accessor contact-state
:initform nil
:initarg exposed)

(stream :type stream
:accessor contact-stream
:initform nil
:initarg stream)))

84



43

43 go
p 43

43 4343
S 414

a 0 4 0 43 O *4 PO 1 4 N3
14 0 -1 to 14 0 43 .o 0 0-
MI 43 143 W0 g 4

14 .10WbUWb 0 W14(fl t 0 .3 l 0 to S 0 13 a * S fi
0 4a a @044 43+ *g40 0 x+ 0V4l 3043 41

43~U P. Uf*43Ur
43 . po U~4r

14 m
43.Q

3 43 I 14
43 43 a
~14 w bO 4

0 *r4 1
is 1 *r 0

r~414 .0

85



ob

00" 
4-)mm4-) 

0
u 4-) to)

4-) 0
N 00 0u 1

4-) 
4-

uu

00

86



Predefined Contacts (continued)

(def class box (contact)

(line-width :type integer

accessor box-line-width

:initform 1

: initarg line-width))

(def class filled-box (box))

(def class label (contact)

(string :type string

: accessor label-string

:initf arm Il

: initarg string))

(font :type string

accessor label-font

:initf arm nil1

:initarg font))

87



0
9

U)4
4.41

U0
$1 0-'

CC
oar r4 *r4

bOr4 0% o 4 bo rq00b mr
I 1:I 4 a :3

4- $4 4 -1 1, b

-r4 920 t-
1+4

U14 r4.c4 -ri r4 rl U .,,4 4

A~ 03

*rj
HO0 0 Hj

88



0

U)

*r44

H U ~ %4 4

q) 0 0w44
abO 41

Q 3 Aa 43

I 0 *rl

H 0 I I
U H 43
.fIr4 a4 0H r
U) 44 H

44 a a4 a 13

H4 r4 r4 r-I

0 0 0 0 0

89



4-)

0

4-' )

U) 0

O4-) 4-

0 I
4-IO 0 .

4-) 4-)
toI 4 b 0 k HO0 r- Ig4-) H C 0 ) 4H M 0U- - 4-)H 01 to4 U) 1 Coj a 4) 434) 4-) Q ) 43 J

OH b 4-)H Cl 0 -H 4.3 U)0

0~~~ U*HHrql
u ) u* 0C *e -H0 *

0 43. 04 00~ 0pr4 U

** 00 4-)

940



0

.4-J

*4

i~m () Q

-4-

(1) *U

0H

+j 00 0'

>P4 u -H 0

orq 0*

CL 0) 0

W Ea 4 0) U

.- Ea.4L
0 Ea 0r

CH %.of4H.-

91



U)

m

4J

Q)

V

u 43

* ( 0 41 0 -P 4
C;~4 : ~ 3

o . 4 04 9
>0 430 3

04s $03 4.
0m A) 03 0w >.2 a43.04 ;W 0 03
.0~ 43~ 43

am.~.0 0 3.

4) ~ ~ 0 43 4 ~ I~

E) 4)4 ~ . .4

42 0 0*4 0 0

44 .0 .0 .0

4-V -P N %q po V W W4

C0 .0 .0 11.004

0 .4 3 4 4 30 uWb

=-o .000-Hm ~ 4

92



?A 420

obt 4)

H- H 4

U 43 od

4)3

43U 4)4 4H
%.Oo 0*4 %. o .00

ONH
U) 0

434
13%-
0 04

%J ~ 0 .r 4)
S ) 7' a
z4

* I Ur43

q3 o I

43

93



EEU
00 .

4- em

.0

0.

cn 0

1 4)

0 0 ) 0

UU

0 0 0uu
0 +J4j EL

> 0.

94



Reusing Software Developments

Allen Goldberg *

Kestrel Institute
3260 Hillview Ave.

Palo Alto, CA 94304

August 3, 1989

1 Introduction

We are addressing the issue of reusability in the context in which software design is
achieved by a transformational development of a formal specification of the problem
into an efficient implementation. This paper explores how a specification derived
as a modification of an existing design can be realized by replaying the transforma-
tional derivation of the original and modifying it as required by changes made to the
specification.

The basic underlying assumption of this work is that design activities can be formal-
ized. Furthermore it can be done so that individual design decisions can be expressed
as transformations whose application derive an implementation from a specification.
This assumption is at the foundation of the KBSA model. The model does not as-
sume that transformations can always be applied automatically. The goal is that
key implementation decisions are to be made by the user and the more commonplace
by the automated assistant. Indeed as the technology matures, more of the decision
making will be automated.

In the KBSA model, the software maintenance problem is finessed by replay. That is,
maintenance is performed by modifying the specification and then re-implementing
the modified specification. The problem is to perform this re-implementation with
little additional work. This means automating as many of the manually-applied steps
of the original development as is possible. Replay is not restricted to the maintenance

'Supported by RADC contract F30602-88-C-0127, and NSF Grant DMC-8617759. Views and
conclusions contained within this report are the author's and should not be interpreted as represent-
ing the official opinion or policy of RADC, the b .S. Government, or any person or agency connected
with them.

95



phase. It also supports evolutionary development in which a prototype is developed
and then incremental enhancements are made and implemented with the aid of the
replay system.

Although this paper is about replay, the efficacy of the transformational approach to
non-trivial design problems is itself a key issue. Without having a transformational
system with some power and generality at hand, investigations into replay are severely
restricted.

Unlike design problems in other domains, the transformational approach applied to
software development has been extensively studied [Dij 76, Mee87, PS83, Pep83]. Pow-
erful, generic techniques such as data refinement, finite differencing, loop combining,
inversion, algorithm design, etc. have been developed. The field also benefits from
related work in compiler optimization, software specification, theorem proving, and
programming language theory and practice.

Our previous work on the Performance Assistant as well as other work ongoing at
Kestrel has led to the development of a transformational system, called KIDS which
provides a basis from which we can approach the problem of design reusability. Using
the system we have been able to carry out derivations that carry non-trivial examples
through many semantic levels and apply a wide range of design and optimization
techniques. For example in one derivation we derive from a high-level specification
of a topological sort a LISP implementation which is as efficient as any hand-coded
"ersion [L B88]. The derivation is over 40 steps long where a step involves such diverse
activity as inverting maps, computing containment relations among set-theoretic data
structures, simplifying expressions, combining loops, and selecting data structures.
Experience with this system has been the basis of the theoretical and implementation
work on replay.

In this paper we report progress in the following areas:

An approach to representing design history was developed. The approach is to
structure the derivation system using the notion of tactics, and record derivation
histories as an execution trace of the application of tactics. One key idea is
that tactics are compositional: higher level tactics are constructed from more
rudimentary using defined control primitives. This is similar to the approach
used in LCF[GMW79, Mil85] and NuPRL[BC85, Con86].

e An approach to the correspondence problem is described [Mos85b, Mos85a]. The
correspondence problem addresses how during replay a correspondence between
components of the old and new design (program) is established. Our approach
uses a combination of name association, structural properties, associating com-
ponents to one another by descriptions of objects defined in the transformations
themselves.

e An implementation of a rudimentary derivation management and replay mech-
anism for KIDS is described. Using the system we were able to perform a

96



number of interesting rederivations.

2 Approach

2.1 Recording Derivations

2.1.1 Representation of the Design

The first important technical problem faced in this work is the representation of the
design history to be used as the basis for the replay mechanism. The process of de-
velopment has been described as starting with a specification and applying a linear
sequence transformations to yield an implementation. However just recording the
linear sequence of development steps is inadequate. An analogy with mathematical
proofs is revealing. Formally a mathematical proof is also just a linear sequence of
formulas obtained by applying inference rules. This is an appropriate view for pro-
viding a simple meta-theory (e.g. to prove the soundness of the system), but for little
else. Just as a mathematical proof has structure (lemmas, case analysis, formation of
induction hypothesis, reformulation, etc.) and is constructed and explained in terms
of that structure, a similar, but formr.l, structure must be devised for transformational
developments. "

What kinds of structures do we observe in software developments that must be for-
malized? We survey a few here to motivate our solution.

s One common structure is the virtual machine model. Here the specification
is expressed in terms of an abstract language and then mapped in phases to
successively lower-level virtual machine or language levels. Compilers are often
constructed along this paradigm. The source language is at this highest abstract
level. In the first phase this may be mapped to retargetable intermediate code,
at a lower abstract level, and then in a second phase to assembly language.
Traditional compilers rarely involve more than two phases. Boyle's [BM84]
Lisp to Fortran transformation system goes through 7 phases, each mapping to
a different virtual machine level. The REFINE compiler which also is based on
the transformational model operates in 5 phases.

* A second common structure is that of stepwise problem decomposition. A
problem is decomposed into components and the implementation of each of the
components proceeds independently.

* A third is the exhaustive application of a set rewriting rules. This is typical
of routine simplification steps or steps that rewrite the program into a normal
form. It is common to apply this strategy in conjunction with the first. Each

97



phase mapping between language levels is the exhaustive application of a set of
rewriting rules.

* A fourth structure is that of case analysis. This is of course used to express
strategies which are conditioned on the form of the specification or other infor-
mation about the specification supplied to the system.

This is a representative but not exhaustive list of high-level development steps found
in systems that formally map specifications into implementations. Observe that these
high-level development steps are compositions of more elemental steps and that they
are expressible in terms of common control structures found in ordinary programming
such as conditional, sequential composition, parallel composition and iteration. For
example, a problem decomposition step is the sequential composition of a step which
divides the problem in sub-problems, and a step consisting of the parallel composi-
tion of steps that solve the subproblems. Parallel decomposition does not impose a
temporal order on development steps when no logical dependency exists.

This suggests a straight-forward approach to the problem of structuring derivations.
The development system is constructed from a set of primitive operators, using com-
position mechanisms such as the ones described above. The resulting composite
operators are called tactics.

Thii is the approach taken in LCF and NuPrl, systems aimed at the construction of
mathematical proofs, not programs. It is also the approach taken by Wile [Wil83]
The recorded derivation is simply a trace of the execution of the tactics. This is a
direct implementation of the popular notion of process programming [Ost87].

A different approach can be based on AI-style planning theory [Fic85]. Here the
description of the development step is given in terms of a goal- a declaratively stated
postcondition that describes properties of the intended result of the step. For example,
a step which transforms code into a normal form would be expressed by a declarative
description of the form to be achieved. In addition to a goal structure, there are
methods, which a:e operations that may be used to achieve a goal. It becomes the
task of the system lo synthesize a meta-program of methods whose result achieves
the goal. The planning approach is a weak method because synthesizing plans is
a difficult problem, and because declarative specification of post-conditions is often
unwieldy.

In addition to making the intuitive structure of the development explicit, the structure
must support manual as well as automatic development steps and do so in a way that
supports gradual automation. The tactic approach does this. A step within a tactic
may be to query the user for a tactic to apply. The approach also encourages a bottom-
up methodology for gradual automation in which the fundamental transformational
primitives are defined, and higher-level tactics constructed from them.

98



2.1.2 An Elementary Tactic Language

This section describes an elementary tactic language sufficient to illustrate the in-
teraction of the replay mechanism and the tactic language. A full tactic language is
under development.

The tactic language is a control language. The computation responsible for trans-
forming programs lies within primitive tactics written in some other language, which
in our case is REFINE. Primitive tactics are represented by REFINE procedures which
are called by the tactic language interpreter. The form of a primitive tactic is:

procedure-name (parameter-list) returns identifier-list

The identifier-list, and parameter-list are each lists, separated by commas, of an
identifier followed by a colon followed by a type expression. The procedure is called
with the actual parameters specified in the parameter list. The procedure transforms
the program which is stored in a global knowledge base as a side-effect. It returns
a list of values which are then bound to the variables appearing in identifier list
following the keyword returns. These variables are called tactic variables. It also
returns an indication of whether the tactic succeeded or failed.

The tactic variables appearing in the identifier list must be declared in a containing
tactic called an abstraction tactic. An abstraction tactic allows the construction of
a tactic with a name, formal parameters, local variables and a body. These tactics
have the form:

tactic-name (parameter-list) -
let identifier-list in tactic returns identifier-list

An abstraction tactic is invoked the same way as a primitive tactic. The formal
parameters are bound to the actual values, the local tactic variables are allocated
and the tactic following the keyword in is executed. The tactic fails if the tactic
following the keyword in fails.

Primitive tactics are composed using control primitives. The most elementary is
sequential composition. This is simply denoted as tactic;tactic2; ... ;tactics,. It rep-
resents the tactic which executes each tactic sequentially. This tactic fails if any of
its sub-tactics fail.

The parallel execution of tactics is denoted tactic,11tactic2 j... I1tactic'. It represents
the tactic which executes each tactic once in any order or conceptually at least, in
parallel. Parallel composition is used when there is no logical dependence among the

99



tactics, and so no temporal order on their execution should be specified. This tactic
fails if any of its sub-tactics fail.

The conditional tactic has the form

if condition then tactic elseif condition ... else tactic

The condition must be a function call which returns a boolean value. The tactic fails
if the sub-tactic that executes fails.

The syntax tactic1 ?tactic2 denotes a tactic which executes tactic,; if this fails it
executes tactic2. This is a useful exception handling mechanism.

Finally there is a repetition tactic.

while condition do tactic

Example. This is a tactic that will exhaustively find and combine all pairs of loops
that may be merged within a program part p, which is passed as a parameter.

Combine-Loops(p: program-part) =
let Loop-i : program-part,

Loop-2: program-part,
Combined-Loop : program-part

in
while exists-combinable-loops (p)

(Find- Combinable-Loops (p) returns Loop1, Loop-2;
Me rge-Loops (Loop-I, Loop-2) returns Comb in ed-Loop;
Simplify(Combined-Loop))

A tactic such as Combine-Loops may be incorporated into another tactic or may be
invoked directly by the user.

We can now define a derivation history as a trace of the tactics invoked, either man-
ually or as part of the execution of some other tactic, together with the values of the
actual parameters passed to them.

2.2 The Correspondence Problem

In this section we turn to the problem of replaying derivation histories on a modified
specification The replay mechanism will attempt to apply the same tactics to the

100



altered specification, except for conditional or repetitive tactics. If a conditional tactic
is invoked the condition will be evaluated and the then or else part will be executed
depending on the outcome of the test, not on which part was executed in the original
derivation. Similarly the number of iterations of a loop is determined by evaluation
of the condition on the loop.

The values passed as parameters to the tactics must be determined. Intuitively a cor-
respondence must be established between components of each of the designs playing
the same role. This is called the correspondence problem. Our method for establish-
ing a correspondence is heuristic. It relies on three mechanisms:

Name Correspondence. The definition of the same identifier name within the pro-
gram establishes a correspondence.

Structure Correspondence. Code appearing in the same position within the ab-
stract syntax tree correspond.

Parameter Correspondence. The execution of a tactic may cause a tactic variable
to be bound to some code. Code bound to the same variable corresponds.

Parameter correspondence is a powerful notion, because it captures a semantic cor-
respondence. Often when a tactic is applied it creates a code segment. Suppose that
the tactic is replayed a new code segment is created. With respect to the semantics
encoded in the tactic both code segments play the same role and a correspondence is
established. For example, a divide-and-conquer algorithm design tactic will generate
identifiable code components such as code for the base case; code for dividing the
problem into subproblems, etc. Parameter correspondence would identify, say, code
for the base case in each derivation as corresponding.

The replay mechanism maintains a relation called the correspondence relation. It is
a binary relation between code segments of the program as it is transformed from a
specification into an implementation. When replay begins an initial correspondence
relation is computed between the two specifications. This initial relation only uses the
name correspondence heuristic. It identifies as corresponding code used in the defi-
nition of variables with the same name. When a tactic is applied the correspondence
relation is augmented by identifying as corresponding the code segments bound to
the same tactic variable. This implements the parameter correspondence heuristic.
Never is a correspondence removed from the correspondence relation. However as
the derivation proceeds and code segments are replaced, correspondences about the
replaced segments will never be used.

If a tactic introduces a new variable into the program, when the tactic is reapplied
a correspondence between variable names are made, regardless of whether they are
given the same name (often these names are computer-generated).

The correspondence relation is used in replay as follows. When a tactic is invoked
during replay its actual parameters must be determined. It could be that the actual

101



parameter is a tactic variable with a value that was assigned by the returns clause
of a previously executed tactic. In this case the value is used. If the parameter is not
of a type representing a code segment (for example it may be an integer representing
a resource bound on an inference step), then the value from the initial derivation is
used. Otherwise the correspondence relation is used. If the actual parameter of the
original'derivation is paired with a corresponding code segment by the correspondence
relation, then the corresponding code segment is used in replay. Otherwise starting
with the actual parameter in the original specification traverse up the abstract syntax
tree until a code segment within the correspondence relation is found or the root
is reached. Starting with the corresponding code in the modified development the
corresponding path down the tree is traced to the corresponding actual parameter.
By corresponding path we mean that we follow in reverse direction the labeled path
that took us up the tree in the original program. An example is given in figure 1
Suppose we are trying to find a correspondence for program segment B in the original
program. There is no established correspondence for B in the correspondence relation.
We traverse up the tree to A which has a correspondence. (A is an if expression
and the edge we just followed came from the abstract syntax tree representing the
then part of the expression.) A' is the corresponding program part in the modified
program. We reach B' by following the corresponding labeled path. If the paths do
not correspond then replay fails on that step and manual intervention is necessary.
This heuristic of using path correspondence implements the structure heuristic. It
recognizes that designed artifacts have component structure and substructure. In
other words, components are recursively divided into subcomponents, and this parts
hierarchy can be used to find corresponding components.

2.3 An Initial Implementation

In our current implementation, we have not implemented a tactic language so that
each tactic is primitive. This means that parameter correspondence cannot be used,
since derivation structuring information is not present. However the implementation
follows the described mechanism in all other respects. We have successfully used the
replay mechanism on a number of examples. The results are described in the next
section.

Experience using our system has suggested many features that would make a replay
system user-friendly.

Viewing. Currently the system displays a window showing all the derivation steps.
The user can mouse on any step and display the program as it appears prior
to the execution of the step. The user may initiate a new derivation path from
that step and the resulting tree of derivations is displayed. A desired feature is
the ability to have more selected views, especially when the tactic language is
implemented. For example we may wish to see an "executive" view that only
shows the top. level development steps. A user may wish to explode a derivation

102



Original Program Modified Program

correspondence relation

then-part then-part

expression expression

. , _B established correspondence

Figure 1: Establishing a Correspondence

step to see its sub-tactics. A user may wish to only see tactics that succeeded;
or tactics relevant to a specified part of the program.

Editing. Prior to replay the user may wish to make edit changes to the derivation,
anticipating where replay may fail. For example a sequence of transformations
that applied to some program part may be abstracted and reapplied to a newly
introduced object. Or the user may wish to edit the derivation and reapply it
to the same specification to quickly generate a new implementation.

Debugging. Replay is the reexecution of a "process program." Thus we can imagine
a set of debugging tools that are entered at breakpoints or when the replay
mechanism fails. The debugger will allow tactic variables to be examined or
changed, as well as give access to the top-level environment.

3 Results

We have used the replay mechanism on a simple example of computing basic statistics
such as the mean, variance, and frequency. Figure 2 shows the initial specification.
An explanation of the operators appearing in the program can be found in [L B88].
Figure 3 shows the developmeLt just prior to data structure selection. Each of the
high-level operators such as reduce have been refined into loops, and these loops have

103



(Ottv&Il 4.t#.

( t so ) Secv ItVICl e ($ST.

fVo($9 Z4A1I.* (SThTICST

"Uple(ttow etl1 "0, "POKOW, ts-o))

lot.1 (MAN :,frtomVge $

lI t ll tt

Y * 1 ),
2))),413(tite

('*. Illse((ltubiS (1 I etr) r~tM,(RI!UT I i)

X * I),
S)MV..Su I ftesb a re fu MT r

C"; * AM-W.I5L SW VAS
I 01 ),

Figure 2: The Initial Specification

been fused together so that a single pass is made over the input, and so no intermediate
expressions are required. The efficiency of the computation of the map freq has been
speeded up asymptotically by iterator inversion. Data structure selection will choose
an array implementation for freq and the input sequence.

Next we modify the program by changing the definition of freq to yield histogram data,
in which ranges of data values are counted, and by the inclusion of the computation of
the maximum value. Figure 4 shows the modified program. Figure 5 shows the result
of replay. Even though the definition of freq was changed the original devefopment
was successfully applied. The other development steps, that were independent of
the change, were also replayed. Finally Figure 6, show additional development steps
needed to incorporate the computation of the maximum value into the main loop of
the program.

A second, more involved example is based on a scheduling problem in which prece-
dence constrained jobs are scheduled on a uni-processor system (only one job may be
scheduled at a time). In [L B88 we outlined this complex derivation which requires
over 40 steps. We modified the specification to solve the problem of multi-processing
scheduling and was able to successfully replay all of the steps of the derivation.

104



st$,t Aw Cl"*a If Co.91Lw P8 ?*It F.Z to"".I. *M glopifl T.eI1CS W.14I

,.Ur4(SS~fee"1I lCpt.6 (STATITICS)

trw) 321*Pl1f9 Cs. t-4494'Wst. forws., 0. 6kcter*t --
*to- (1-T-2 * 51fip Coott e.I-4 .t. orwO 2. wt c 5 -

IFell I.'lt.l

(I I I A( .9) t.It sseieesie-n -

%x *-qat 0)
I-9-2 em S
"5. (; -5 Z-V-2.

(- I- - fkn -UZ
$F .(2-3V-2 (- S U~-tU1 *-- F251.V5)

SI .f.S %a. W. U.~v - 2-1- M)2

Figure 3: The Implementation of the Original Specification

*ns.Ia "style C601 l. C&1414140 F etfol F.s. Pfttlutle CIA... stSirg ?"tics wo/lf

Vs-etion "C".Il*TTCS CW1 -11" IU9 91

P 4 4 1 Mrp( S W*n w ( S . .w ) T a n i e s o n C o wt l sl o v f 2 S I S
hat,, tst Compel bv hItrtt -

to flo"i 11l1 414 tetIs.ssA-Fa

'01.10.6043 I l'.) VI1W.(Ut "Wils.)
(f tw tO *5), i l Z ts".(I1T?9SS

* tor"1011MI t))

04. PA 11

Figure 4: The Modified Specification

105



Abstekt Ons1p*e Coots 10 cond.ition to P.14 F48 Par. I t. ike *." si.9
11

i, ?.1cs Wa.ld

fwmto. 99-3411tleso i.astm
(intia $lateepf ..

-V*~5(s) 910.45) F*Ck* InttI61189 (ST*TIIICS)
retwnI(STAM T:%,tC.. C.45eet all Ieration

tW14cate"P. real, Pool, nektvfo.. lnt.w)) ?:.&icamp,"et &Vj Ieration
* ~ metiee Cso..4e 6 Iteratio

u~~~s. ~~SimpitIFC4~1@PM4Vf
IBU (la656e P." "WiIBnu.11

(Z I x 40 (1 . 1)) PFe* I esatllv--

4), Pse.. jastialI: (KV-SISTICS)

r *-v 301" 4) tattle: anpt WXtrte
.W a. tit4 ept WUSiM -

C.~*ivS. Ittee i v4 INetue
VA Jul - 14* SI~p1IV4  W, I te4 ieftWW*0 ~ir
it ) 0.I* ().S P. N111 1 11

1. IF.too%

0 4 .4 .1.
*- 3-.z

0. 31A / 11.
(N Ii-M.15 SW* S)

Figure 5: The Modified Specification after Replay

C00.tf Focu uPlgMw 1541P114 4V

fts~t% Afle Comma t Cadislem, t3 Fold Pwo6 PVse-le.a btewm simplify lacties Wvaue

twnetIA 1X4-1i1STZIS owrile I, "TTr..
it -q(IM#,W) 0

1 Ponais) * (U .. 911)) '"ad talallt. (SSAllstICs)
Plteri(STl~e Tall.. Co." O Stla ..

UVIOIO-410. rtl. ftl ft~low. It$as II.g comJpa" Wy "OfalXs

foPr- 00--4 *Simplify ttla~epSl 5ww* 4. boeesee. q
sW*4 implify 96464. Pg S. StoaeI aksw,. S -

(s I I '"o (U. owPe eilautt
armsM. II,.) 11tIWly 5W ~ da

too". Italal. (mv.sinsft)sC)
I. 5.~~41 Compete adhhe.le

SwiW-;UtMS - 6. 64 , so Campo"a eW :wm5No,
mccIM.l fpts(s)) "tiess CampoIJ pit fteV5115

Kim I. SIO *lk 'G-ote~eP eta ~ 4. fee.,* 2. bit..a 11
4 (. * U,11q

1 4
5 ~4h4.llM44MrfIs

VAV9Ki 1-4 1.4VA r'. "5 '. eies
PWets we' "PSt *otm(mS S)) s.be~se

MM-$U~ 0 4mqt. W-.U4 tw 540* w7g Si#AIII4 -

'Sestm di A 1 / W. -amP esSI.seIMt.
* "-v*um * m

/ 4 4

ACC16

Figure 6: The Final Implementation of the Modified Program

106



4 Related Work

The literature on software reuse is very extensive, but most of it deals with component
reuse, i.e. the reuse of subroutines. A recent collection of papers, edited by Biggerstaff
and Perlis [Big89a, Big89b] emphasizes generative systems, such as ours which offer
design reuse and the promise greater productivity improvements in the long run.
Many of the existing transformational systems are described in the collection. This
is an excellent survey of the field. See also [Mos87] for a perspective on the reuse of
design plans.

There is also an extensive Artificial Intelligence literature on analogy and machine
learning. Representative of work of this kind is [Car86].

Because of the existence of a large existing base of software there is work on recovery
of design knowledge from code. In [Big88] he emphasizes the existence of semantic
clues in documentation and variable names that will aid in design recovery. We have
adopted in our use of name correspondence this idea. Examples of work on design
recovery can be found in [Wil87, SJ85, LS86].

Our tactic language is similar to [Wil83, Mil85]. A richer more theoretical approach
is being pursued by [Sin85, HdGJ*861 using the Deva language.

Closer to the spirit of the work reported here is work done at Rutgers University.
Their work is couched in a transformational framework. Two domains are addressed:
circuit designs [MB87 and heuristic search algorithms [MF89b, MF89a].

5 Conclusions

We see our initial results as rather impressive. A simple mechanism was quite effective
on the two problems sets we gave it. We have not yet stressed the system by giving
it a program with major modifications and to see how the replay mechanism fails.
However we will be quite satisfied with a system that does very well on closely related
problems. Interactive development will not progress very far if the debugging loop,
in which a user is making many small changes to their specification and recompiling
is time consuming. Our goal is to make the debugging loop fast.

Acknowledgements. I would like to thank Greg Fisher and Tom Pressburger
for useful discussions and for, along with Limei Gilham, implementing the replay
system.

107



References

[BC85] Joseph L. Bates and Robert L. Constable. Proofs as programs. A CM
Transactions on Programming Languages and Systems, 7(1):113-136,
January 1985.

[Big88] Ted J. Biggerstaff. Design Recovery for Maintenance and Reuse. Technical
Report STP-378-88, MCC Corporation, November 1988.

[Big89a] Ted J. Biggerstaff, editor. Software Reusability, Vol. 1: Concepts and
Models. ACM Press, New York, 1989.

[Big89b] Ted J. Biggerstaff, editor. Software Reusability, Vol. 2: Applications and
Experience. ACM Press, New York, 1989.

[BM84] J. M. Boyle and M. N. Muralidharan. Program reusability through pro-
gram transformation. IEEE Transactions on Software Engineering, SE-
10(5):574-5f8, September 1984.

[Car86] J. Carbonell. Derivational analogy: a theory of reconstructive problem
solving and expertise acquisition. In R. Michalski, J. Carbonell, and T.
Mitchell, editors, Machine Learning: An Artificial Intelligence Approach,
pages 371-392, Morgan Kaufmann, Los Altos, CA., 1986.

[Con86I Robert L. Constable. Implementing Mathematics with the NuPrl Proof
Development System. Prentice-Hall. New York, 1986.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

[Fic85] Stephen F. Fickas. Automating the transformational development of soft-
ware. IEEE Transactions on Software Engineering, SE-11(11):1268-1278,
November 1985.

[GMW791 Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation. Springer-Verlag,
Berlin, 1979. Lecture Notes in Computer Science, Vol. 78.

[HdGJ*86] Fatima All Hussain, Philippe de Groote, Ren6 Jacquard, Stefan
Ji.hnichen, Thanh Tung Nguyen, Michel Sintzoff, and Matthias Weber.
Esprit Project ToolUse - Requirements and Feasibility Studies for a De-
velopment Language Technical Report GMD 214, Gesellschaft far Math-
ematik und Datenverarbeitung mbH, July 1986.

(L B88] L. Blaine, A. Goldberg, T. Pressburger, X. Qian, T. Roberts, and S. West-
fold. Progress on the KBSA Performance Estimation Assistant. Technical
Report KES.U.88.11, Kestrel Institute, May 1988.

108



[LS861 Stanley Letovsky and Elliot Soloway. Delocalized plans and program
comprehension. IEEE Software, 3(3):41-49, May 1986.

[MB87] J. Mostow and M. Barley. Automated Reuse of Design Plans. Technical
Report ML-TR-14, Rutgers University, May 1987.

[Mee87] L.G.L.T. Meertens. Program Specification and Transformation (Proceed-
ings of the IFIP TC2/WG 2.1 Working Conference). North-Holland,
Amsterdam, 1987.

[MF89a] Jack Mostow and Greg Fisher. Replaying transformational derivations of
heuristic search algorithms in DIOGENES. In Proceedings of the DARPA
Case-Based Reasoning Workshop, Pensicola, FL, May 1989. Available as
Rutgers AI/Design Project Working Paper Number 113-3.

[MF89b] Jack Mostow and Greg Fisher. Replaying transformational derivations of
heuristic search algorithms in DIOGENES. In Proceedings of the AAAI
1989 Spring Symposium on Al and Software Engineering, Palo Alto, CA,
March 1989. Available as Rutgers AI/Design Project Working Paper
Number 113-1.

[Mil85] R. Milner. The use of machines to assist in rigorous proof. In C. A. R.
Hoare and J. C. Shepherdson, editors, Mathematical Logic and Program-
ming Languages pages 77-87, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[Mos85a] J. Mostow. Some requirements for effective replay of derivations. In
Proceedings of the Third International Machine Learning Workshop,
pages 129-132, Rutgers University, Skytop, PA, June 1985.

[Mos85b] J. Mostow. Toward better models of the design process. Al Magazine,
6(1):44-57, Spring 1985.

[Mos87I J. Mostow. Design by Derivational Analogy: Issues in the Automated
Replay of Design Plans. Technical Report ML-TR-22, Rutgers University,
March 1987.

[ost87] Leon Osterweil. Software processes are software too. In 9th International
Conference on Software Engineering, pages 2-13, Monterey, CA, March
30-April 2, 1987.

[Pep83j P. Pepper, editor. Program Transformation and Programming Environ-
ments. Springer-Verlag, New York, 1983.

[PS83] Helmut Partsch and R. Steinbrfiggen. Program transformation systems.
ACM Computing Surveys, 15(3):199-236, September 1983.

[Sin85] M. Sintzoff. Desiderata for a Design Calculus. Technical Report, RM
85-13, Universit4 Catholique de Louvain, June 1985.

109



[SJ851 E. Soloway and W. L. Johnson. PROUST: knowledge-based program un-
derstanding. IEEE Transactions on Software Engineering, SE-11(3):267-
275, March 1985.

[Wil83] David S. Wile. Program developments: formal explanations of implemen-
tations. Communications of the ACM, 26(11):902-911, November 1983.

[Wil87] Linda M. Wills. Automated Program Recognition. Technical Report MIT-
AI-904, MIT AI Laboratory, February 1987.

110



Building Evolution
Transformation Libraries

Lewis Johnson and Martin Feather

USC / Information Sciences Institute

Lewis Johnson is a Research Assistant Professor of Computer Science at USC and project leader

of the ARIES project at ISI. He has a Ph.D. in Computer Science from Yale University.

Martin Feather is a Research Scientist at ISI. He has a Ph.D. in Computer Science from the

University of Edinburgh.

Abstract

A major focus of the Knowledge-Based Specification Assistant effort was formalized evolution of
specifications. Evolution was accomplished by means of evolution transformations, which are
meaning-changing transformations applied to formal specifications. A sizable library of evolution
transformations was developed for our specification language, Gist. This paper assesses the
results of our previous work on evolution transformations. It then describes our current efforts to
build a versatile, usable evolution transformation library. We have identified important
dimensions along which to describe transformation functionality, so that one can assess the
coverage of a library along each dimension. Potential applicabilit) -I' the formal evolution
paradigm to other environments will be assessed, in terms of the abilit) ol other environments to
explicitly represent information along these dimensions.

1. Introduction
One major advance embodied in the KBSA vision as it is currently conceived [3] as c:ompared to

the vision articulated in 1983 [6] is in the treatment of specification evolution as a formal process.

The original KBSA report anticipated that specifications would evolve, but did not describe the

mechanism for such evolution. Research in the Knowledge-Based Specification Assistant

[9! attempted to make specification evolution formal and machine-mediated. To support this, we

constructed a library of transformations which could be employed to carry out the specification

development process. This library contains primarily so-called "evolution transformations", i.e.,

transformations whose purpose is to elaborate and change specifications in specific ways. In

addition, it contains meaning preserving transformations, used to paraphrase, simplify, and

reorganize specifications. Thus they differ from the conventional Ocorrectness-preserving"

transformations, which are applied to derive efficient implementations from specifications. Our

thesis was it was possible to develop specifications incrementally using transformations drawn

from our library, resulting in a formal, understandable, and replayable specification process.

Our exploration of the space of evolution transformations was example-driven. We

concentrated on two problems, a patient monitoring system and an air traffic control system, and

111



worked out development scenarios by hand to discover what transformations were necessary. We

then implemented general-purpose versions of those transformations, which could be applied to

achieve those developments mechanically. The result of this exploration was a sizable library

containing around 100 transformations, of a wide variety of types. This library is significantly

more extensive than similar libraries developed by Balzer [1] and Fickas 151. Although other

researchers have studied evolution steps similar to those captured by our transformations r14, 12],

they have not developed transformations to enact these steps. Because of the relatively advanced

state of our work, we are now at a point where we can consider the challenge of building a

transformation library that is extensive enough and powerful enough to apply to a wide range of

specifications.

In order to build such a library, a number of concerns must be addressed. First, there will be

many more transformations in our new system, hence we must strive to make it easy to write

them (our experience in the old system was that transformations were fairly complex to write,

and hence difficult to understand and debug). To do this, we need new representation in which

the effects of the transformations can be expressed more directly, and with a minimum of

unnecessary duplication. Second, we need to understand better how transformations are

structured, so as to achieve better reuse of components and increase overall uniformity. Third,

we needed a better characterization of the effects of transformations, both so that potential users

will be able to find the right transformation, and so that we can assess the coverage of our

library. The results of these analyses will be presented in this paper. We believe that this

analysis will help readers to better understand the key concepts of evolution transformations, and

see how these might apply to other programming or specification environments.

2. Transformations in KBSpecA
We will first summarize the status of the evolution transformation library at the close of the

Specification Assistant contract. These results have also been reported elsewhere [9].

In the Specification Assistant, evolution transformations were represented in such a way as to

support interactive application and replay. As described in [101, they were represented

declaratively using a combination of informal and formal descriptions. The informal descriptions

are outlined in this other paper; here we will take a closer look at the formal aspects.

Each transformation applied to a set of inputs, each of a particular type. Possible types were

categories of syntactic constructs, such as expression or predicate, and types defined in terms of

these, namely disjunctions, specializations, or sets of instances, e.g., a set of relation declarations.

The ability to define types in this manner came from use of our AP5 language 121.

112



Transformations typically had a set of applicability conditions, preconditions which had to be

satisfied for the transformation to be applicable. We endeavored to make each transformation's

set of applicability conditions complete, so that if its members were all satisfied, it was

guaranteed that the transformation would successfully apply. By using a set of applicability

conditions, we sought to make a distinction between possibly several reasons why a

transformation might not apply. This was used by an interactive help facility to notify the user

which precondition failed, and which input arguments were at fault, so that they could be

adjusted appropriately. It was also employed in a transformation replay facility, to determine

when previously applied transformations were no longer applicable.

Finally, each transformation had a method. The method was an imperative program written in

either our special-purpose transformation definition language Paddle [16], or Lisp. Once a

transformation's preconditions were satisfied, the method would be executed, and the result would

be displayed.

We divided our set of transformations into the following categories, to facilitate users' selection

of the the appropriate transformation through menus:

* Adding commands, which add a new construct into the specification,

* Replacement commands, which replace a construct with a new one,

* Reorganizing commands, which restructure the specification without changing its
meaning,

" Behavior changing commands, which modify the behavior described by existing
specification components,

" Data flow modifying commands, which change the flow of data through the system,
while retaining the behavior of the system as a whole,

* Terminology elaboration commands, which elaborate some part of the specification
terminology, often by adding or changing an existing declaration,

" Unfolding commands, which replace uses of a construct with equivalent but lower-level
constructs,

" Implementation / approximate unfolding commands, which replace uses of a construct
with a ntarly equivalent construct which is closer to implementation, and

" Abstracting commands, which make a specification more abstract by discarding detail.

113



3. Current Advances
We have since been restructuring and reimplementing our transformation library. Our aim is

to simplify the individual transformations, express their structure and function more

declaratively, and make them more uniform and compatible. This is intended to increase the

coverage, flexibility and extensibility of our library. In addition, we anticipate that the ideas as

embodied in this improved library will be more readily transferred to other languages.

3.1. Representation Changes

Our first improvement was to change the representation of the specizications which the

transformations evolve. This was done in order to isolate the transformations from the syntactic

diversity inherent in the specification language, and to increase the compatibility between our

representation and KBRA's presentation framework [13]. To make this improvement we changed

the Specification Assistant from manipulating Gist parse trees - the obvious representation of the

specification language's many syntactic constructs - to manipulating a more abstract winternalm

representation. In this, specifications are represented as objects in an attribute-value notation, a

form which is much more amenable to analysis and manipulation. We are finding that the

transformatioris operating upon this internal form are considerably simpler than their equivalents

operating upon the old parse tree representations. We employ translators to convert between the

old surface syntax for Gist and the internal grammar. Thus the surface syntax becomes merely a

presentation of the underlying system description, one of many possible presentations in the spirit

of the KBRA framework.

Next, we have changed the representation of the transformations themselves. As alluded to in

our accompanying paper in this volume [10], we now express the transformations in Gist. Thus

our transformations are Gist programs that modify Gist specifications. Advantages stem from

the increased uniformity - tools that operate upon Gist (e.g., for explanation and analysis) can

now be applied to the transformations - and the shift from viewing specifications as being merely

parse trees to being databases of inter-related information that can be queried and updated. This

approach makes use of an enhanced version of our Popart-DB facility [111] for automatically

generating database models from grammars. The approach of describing operators as assertions

and deletions from a database is common to most Al planners, such as Grapple [7].

Finally, we have extended our representation of transformations to include declarations of not

only the inputs to, but also the outputs from each transformation. This is an important step

toward improving our characterization of the effects of each transformation, it enhances

understandability and reasoning about transformations (e.g., makes it easier to automate the

application of transformations as substeps to achieving a larger transformation).

114



Representation of inputs and outputs to transformations helps to make explicit the data flow

view of Gist programs. Data flow presentations are an important requirements formalism, so a

proper integration of data flow and Gist will be necessary as part of the new ARIES requirements

/ specification assistant. However, in the process we have encountered a major incompatibility

between the data flow view as it is conventionally used Gist's database modeling view. In the

data flow view, processes interact with the environment only through fixed input and output

ports. In the database modeling view, facts about the environment are represented as a database

of assertions which processes can freely access and modify. Naive chawacterizations of the data

flow inherent in these data accesses and assertions are either much too complex or not

meaningful. One naive solution would be to treat the global database as a single data store that

is input by every process and output by ev, ry prozess in some modified state. This solution is

inadequate because it tells us nothing about what actually changed in the database. Another

naive solution is to treat the tuples of the database as individual data items which are separately

input and output from the process. This view typically gives us far too many data flow links, so

again we get a poor understanding of what the process is doing. These problems manifest

themselves in our transformations because we find that although we have identified the major

objects that are input and output from a process, we have not characterized the side effects can

result in the specification apart from the manipulation of the input and output objects. What is

required, then, is a way of segmenting database accesses into meaningful units, such that a small

number of such units enter and leave the process. Possible ways of segmenting the data is to

group relations into complex objects, or to treat all tuples of a relation as a single data object.

Kevin Benner, formerly of RADC and currently at ISI, is trying to develop an effective

characterization of data flow that is compatible with the assertional style of specification.

3.2. New Observations on Transformation Structure

3.2.1. Structure-adding transformations

As a result of these advances in representation, we can make new observations about evolution

transformations First, we now see a uniformity to the structure-adding transformations (which

comprise some 60% of the transformation library we have accumulated so far). Each such

transformation:

" instantiates a template,

" inserts it into the specification, and

" propagates any necessary further changes through the specification.

The purpose of this functionality clearly overlaps with that of cliche-based systems such as

KBEmacs [15], PROUST [8], or KBRA. Instantiating a cliche in these system involves adding

115



structure. The difference is in having made the above distinction between instantiation, insertion

and propagation. Cliche libraries state the constraints that must be satisfied in order to

incorporate each template into the system description. They either rely upon the user to modify

the surrounding text to satisfy the constraints, or they employ constraint propagation techniques

to make the required further changes. Our approach instead has been incorporating the

propagation phase as part of the transformation. The advantage of our approach is that we can

incorporate specialized propagation tactics if we choose, rather than relying upon some general-

purpose constraint propagation technique. The disadvantage is that we do not make the

constraints themselves explicit, nor do we take advantage of general-purpose constraint

propagation mechanisms when they would suffice.

Another ad -antage of our approach is that it makes possible the declarative expression o the

effects of transformations which would be hard to represent in the -liche approach. For example,

our "Build Declaration From Reference" constructs a declaration from some use of an undeclared

concept. Its effect can be characterized as completing (or improving the completeness of) an

incomplete specification by addition of the appropriate declaration. The actual form of the

declaration is heavily dependent on, and derived from, the use. Thus in case there is no single

structure that could be expressed as a cliche and instantiated uniformly in every situation of use.

The remainder of our evolution transformations, those that do something other than adding

structure, has no obvious analogy within the cliche approach. An interesting sub-category is that

of transformations to re-organize the specification while leaving its meaning unchanged, these are

applied to:

" reorder the specification components for better presentation,

" rewrite specification components into an equivalent form using different language
constructs, or

* eliminate redundancies and make explicit some otherwise implied features of the
specification.

3.2.2. Categorising the effects of transformations

As outlined earlier, we divided our library of specifications into a number of categories to assist

in user selection. This categorization showed some signs of inadequacy, in that its classes were

not completely independent, and membership of a class conveyed only a vague notion of what the

transformation did. We now have a understanding of how this categorization could be improved.

The most obvious distinction between transformations - whether or not they "preserve

correctness" (i.e., leave the functional Lehavior denoted by the specification unchanged) - is but

one of many useful distinctions. There are properties other than functional behavior which are

116



equally important for designing systems; some such properties that we have identified are;

" the structural organization of the specification, i.e., the organization of components
into modules and the scope of their definition,

* the entity-relationship model defined in the specification,

" the flow of data between system components,

" the definition-use structure of the specification,

" the calling hierarchy in the specification (its control flow), and

" the functional behaviors.

We believe that a characterization of our transformations along this improved set of dimensions

will help the following:

* assisting the user to select the appropriate transformation(s),

* replaying transformations - one important use of replay is in merging the effects of
separately considered evolutions, as described in [4], and

* filling tht library of transformations - these dimensions can be used as the basis for
estimating the extent to which our transformations cover the space of possible changes
to specifications.

We believe that systems can be described altng each dimension as a network where the nodes

are system components or behavior states, and the meaning of the arcs depends upon the

dimension being considered. From this viewpoint, the structure of of all basic meaning-changing

transformations becomes similar to that of the cliche-adding transformations. they make a change

along some dimension, and then propagate further changes that are needed to integrate the initial

change into the specification. The change performed by the cliche-adding transformations is to

add a new node to the network; others delete nodes, replace nodes, and reroute arcs.

We find that the capabilities of AP5 - a database model which supports associative retrieval

and can be extended with updatable deri, ed relations - are crucial to representing these

dimensions.

3.3. Building a More Complete Library

Given the above analysis, we can now assess what will be required to construct a useable

transformation library. First, we must verify that all of the significant dimensions of system

descriptions have been identified. Our previous example-driven approach to transformation

development has uncovered a number of dimensions, and as we broaden our system

representation to include more non-functional requirements, new dimensions ill likely emerge.

117



Along each dimension, the nodes and arcs may fall into different categories, the significant

categories must be identified. For example, the entity-relationship view in Gist treats types,

relations, and events as different categories of nodes, the relevant arcs are specialization-of

and parameter-of.1 Then, we must ensure that at least some examples of each kind of network

change are supported, i.e., adding and deleting nodes and arcs, and rerouting arcs. It may be

necessary to construct specialized transformations according to the type of arc (e.g., Add

Specialization) or the type of node (e.g., Add Relation).

As we indicated above, there may be multiple valid ways of integrating a change into a

specification. In such cases, the alternative methods must be identified and formalized. The user

can then have the option of choosing which method to apply. Transformations which arbitrarily

choose a particular integration method are unlikely to get broad user acceptance. Generally, we

wish to reduce the apparent complexity of transformations through this more uniform view of

their effects and operation. Even large transformations that perform several changes should be

simple to comprehend as a set of major changes, together with propagated effects.

We are already well on our way to providing this basic foundation for a transformation library.

It is our hope that the library will achieve coverage by providing a set of compatible "building-

block" transformations which users will easily be able to compose to build more transformations.

4. Applicable Results and Future Challenges

It is a straightforward matter to retarget our approach to evolving Gist specifications to many

other languages. The issue at stake is whether the same dimensions of description that we have

identified can be made explicit in programs in another language. Certainly other specification

languages which are based on the entity-relationship approach or the data flow approach are

likely candidates. Most programming languages are susceptible to formal evolution as well. The

problem with evolving program codes, however, is that the necessary information for effective

evolution is not present. For example, Lisp programs are not strongly typed, this means that it is

impossible to propagate changes to the entity-relationship view of a Lisp program.

The main technical prerequisite to our evolution approach is a knowledge representation

framework that supports retrieval and updates of the relevant program features in an abstract

form. We i t'ly heavily upon our AP5 and Popart-DB tools, other frameworks such as Refine can

provide similar capabilities. Without suitable abstractions, transformations are difficult to write

and understand, and are unlikely to be versatile enough to support the construction of a good

library.

l 1Event" is the general category consisting of procedures and demons. Specialization-or is the subtype relation, but
generalized to apply to relations and events as well.

118



In the mean time, we see some serious technical challenges ahead before evolution technology

can be considered mature. First, the structure of our transformations is still not made adequately

explicit in the form of the transformations. The instantiation, modification, and propagation

steps are all bundled into the transformation methods. The constraints underlying the

propagation activity.are not represented. We will be directing effort in the future to overcoming

these remaining representational problems. It will then be possible for our system to take a more

active role in interactive planning of specification changes. Failed preconditions on

transformations could then trigger a search of the transformation library for transformations that

could make the preconditions true. The system could provide suggestions at each stage as to

what transformations would be appropriate to perform.

Another major challenge is making effective use of evolution transformations in a multi-person

project. In such a project, one developer's change may result in changes to a part of the system

being developed by someone else. Two developers may attempt to elaborate the same

specification in incompatible ways. Thus activity coordination will be required in order to avoid

misuse of transformations. We believe that some of our previous work in studying how

elaboration steps can interfere with each other will give us insights into this problem.

119



References

1. Balzer, R. Automated Enhancement of Knowledge Representations. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, AAAI, August 18-23, 1985, pp. 203-207.

2. Cohen, D. AP5 Manual. USC-Information Sciences Institute, 1985. Draft.

3. Elefante, D. What is KBSA? Proceedings of the Computers in Aerospace VII Conference,
1989.

4. Feather, M.S. Detecting interference when merging specification evolutions. Accepted for the
5th International Workshop on Software Specification and Design, May 1989.

5. Fickas, S. Automating the Specification Process. Tech. Rept. CIS-TR-87-05, Department of
Computer and Information Science, University of Oregon, 1987.

6. Green, C., D. Luckham, R. Balzer, T. Cheatham, C. Rich. Report on a Knowledge-Based
Software Assistant. Tech. Rept. RADC-TR-83-195, Rome Air Development Center, August,
1983.

7. Huff, K.E., and Lesser, V.R. The GRAPPLE Plan Formalism. Tech. Rept. 87-08, U. Mass.
Department of Computer and Information Science, April, 1987.

8. Johnson, W.L.. Intention-Baeed Diagno8i8 of Novice Programming Errors. Morgan
Kaufmann, 1986.

9. The KBSA Project. Knowledge-Based Specification Assistant: Final Report.

10. Johnson, W.L., and Myers, J. Relating Formal and Informal Descriptions. Proceedings of
the 4th Knowledge-Baed Software Assistant Conference, 1989. to appear.

11. Johnson, W.L., aT.. Yue, K. An Integrated Specification Development Framework. Tech.
Rept. RS-88-215, USC / Information Sciences Institute, 1988.

12. Johnson, P. Structural Evolution in Exploratory Software Development. Proceedings of the
AAAI Spring Symposium on Software Engineering, 1989.

13. Sanders Associates. Knowledge-Based Requirements Assistant - Interim technical report.
Software Systems Engineering Directorate, March, 1986.

14. Narayanaswamy, K. Static Analysis-Based Program Evolution Support in the Common Lisp
Frzmework. Proceedings of the 10th International Software Engineering Conf., 1988.

15. Waters, R.C. KBEmacs. A Step Toward the Programmer's Apprentice. Tech. Rept. 753,
MIT Artificial Intelligence Laboratory, May, 1985.

18. Wile, D. P0 PART. Producer of Parser8 and Related Tools. System Builders' Manual.
USC Information Sciences Institute, 1981.

120



COORDINATORS AND COORDINATOR
GENERATORS

W. G. Morris
Senior Engineer

Software Options, Inc.
22 Hilliard St.

Cambridge, MA 02138
(617) 497-5054

chip%soi@harvard. harvard. edu

Biography 'Chip' Morris received his Ph.D. in Mathematics from the University of
Wisconsin, Madison in 1982. He has worked at Software Options since 1985, leading
the implementation of a highly optimizing code generator for procedural languages. His
other interests include software engineering and management, computer algebra, and
combinatorics.

Abstract A coordinator is a reactive facility that manages communication and coor-
dination among people and automated tools in a software engineering environment. A
coordinator generator translates an abstract protocol into a coordinator. In this paper we
give some requirements for the formalism that describes an abstract protocol, including an
analysis of its graphical component (sketches) and its program components (refinements
and interface pragmatics). We also discuss the problems posed by long-term execution of
coordinators, the demands placed on database connections, and the challenges posed to
programming languages used to refine sketches. We illustrate these issues with examples
of existing coordinators and some potential applications for coordinator technology.

1 Introduction

Coordination is usually the last thing to be added to a software engineering environment.
First we design the languages and build compilers, editors and debuggers. Then we invent
some simple means for a single programmer to lash together the tools at the terminal.
Eventually we may consider what happens when more than one programmer changes a
document; along comes version control. When a project gets big enough, lasts a long
enough time, or must comply with a funding agency's documentation standards, we begin
to think about how managers, designers and programmers qhould communicate to get the
project done soon and well.

121



What software engineering environments need, right from the start, is a facility to
manage communication and coordination among the participants in the software life
cycle: a coordinator. A coordinator should be reactive in Harel's sense[2], something
that continuously responds to and stimulates its environment. Its actions and reactions
are computer-mediated and embody the protocols for communication in a programming
environment.

Different environments, of course, use different rules and customs for communication.
Because each coordinator must have detailed knowledge about the protocols it manages,
no single coordinator will serve all projects. This suggests that we must be able to
easily build customized coordinators. Just as the difficulty in hand-writing a new parser
for each new language led to the development of parser generators, so we propose the
development of coordinator generators.

A protocol is, informally, a set of procedures, rules and customs that govern the
practice of some domain of activity. We use "protocol" in this informal sense, but we
also wish to think of a protocol as an abstract, mathematical object which may have a
formal representation. In the latter sense we sometimes speak of a protocol abstraction,
expressed in some formalism.

In this paper we first outline some desirable features of coordinators. Next we dis-
cuss protocol abstractions and coordinator generators. Finally, we summarize some of
the technical challenges posed by coordinators and suggest wider applications of the
technology.

2 Coordinators

For our purposes a coordinator is a reactive facility that manages communication and
coordination among people and automated tools in a computer-mediated environment.
While it is useful to refer to a coordinator as a single object, it will generally not be a
single program or process. Rather, it will be a distributed collection of processes and
associated databases that function together as an active microcosm of the protocol they
represent.

A coordinator is a multi-user facility. It must respond to simultaneous messages
from many sconces and model concurrent tasks with a rich interaction among the people
and tools that it mediates. It should alert a user to changes in relevant status while
concealing irrelevant details. Much of its utility will lie in the extent to which it eliminates
unnecessary message traffic among participants in a protocol.

Users should have a clear model of their role in the protocols in which they are
involved. They should be able to ask questions like

* Which activities do I take part in?

* What should I do next in activity X?

9 What has happened so far in activity Y?

122



e What is the status of the report I wrote last week?

* Who is waiting for results from me?

A coordinator should present views appropriate to the interests and expertise of the user.
Managers may want to see PERT or Gantt charts. Programmers may want personal to-do
lists, calendars of meetings, and status reports on software modules or bug reports. All
of these reports may be regarded as aspects of the current state and the history of a
coordination protocol.

Figure 1: Trouble Report Protocol

Integration Component
Supervisor Developer

igoo ,erouble Report T

Classify andAnlz

I~ e r r n S p r is r s re p n i l fo o r i ai g t e eol tio te sy tmPh

Prroposal

Evaluate Patch GeneratePac

n eg aton Su E v aluatsr sp sbe atc co r i a i G e ne a t e of tch y tm h

other represents the developer of a typical system component. Each oval node describes

123



the current protocol state of the organization within whose border it lies. Arcs show
state transitions, and those between organizations typically represent the transmission of
messages whose nature is given by arc labels.

A graphical representation can clarify complex protocols, such as the one used by
MONSTR, a coordinator created to aid the processing of software trouble reports [4].
Winograd [12] describes another example of a coordinator based on a state diagram
describing conversations. His work has evolved into a network tool for maintaining
structured conversations, largely replacing traditional electronic mail functions.

One of the most vexing aspects of software development is that plans and method-
ologies, not to mention personnel and resources, change while the project is in progress.
Any coordinator that depended on a fixed protocol must either be very specialized (such
as Winograd's Coordinator or MONSTR) or be doomed to be discarded when the cost
of working around its obsolete requirements grows too great. The alternative, of course,
is to allow flexibility in the specification of the protocol and the ability to cut over, i.e.,
incrementally to change the protocol and incorporate the changes into an executing co-
ordinator. We consider the ability to manage cutover gracefully to be one of the primary
requirements for implementing coordinators.

In practice, protocols vary greatly in the degree of control they exert over their
participants. Similarly, a coordinator may merely track activities or it may control details
like user permissions and file access. Since a salient advantage of a coordinator is that it
shields users from exposure to unnecessary information and choice, what may appear to
be a restriction actually increases productivity. Experience with MONSTR suggests that
"guided communication" and central access to information about the state of the protocol
were the major sources of its success (Knobe [9]).

It is important to understand that many of the methods currently used to mitigate
coordination problems are not coordinators. The UNIX make facility is not a coordina-
tor. Traditional project planning tools, PERT charts for example, are not coordinators.
Neither is reactive, nor do they deal well with multiple users. Electronic mail is not a
coordinator, lacking structure or much ability to inquire about the state of the "protocol".
Version control systems such as RCS are not coordinators. The "integration module"
that ties together a set of single-user CASE tools is not a coordinator, although the most
sophisticated such environments seem to be evolving coordination facilities that may, in
time, gracefully handle many users.

3 Coordinator Generators

To live up to their potential, coordinators must contain considerable information about
the domain of activity being coordinated. The situation is analogous to parsing a pro-
gramming language; soon enough it becomes apparent that writing a parser for each
language and language variant is a task best delegated to computers themselves. Thus,
just as parser generators were developed to mechanically build parsers for large and use-
ful classes of languages, so we propose to construct a coordinator generator that can

124



build coordinators for large and useful classes of activity domains.
In order to mechanically generate a coordinator we first need a formalism in which to

specify coordinators. This formalism should allow us to express the essential features of
a protocol without the complicating details of implementation. However, a coordinator
does not execute in isolation; it must be able to communicate with people, databases,
and other processes across many computers over indefinite spans of time. Thus we will
need to augment the abstract description of a protocol with pragmatic details about its
execution environment.

In Section 3.1 we discuss the requirements for a protocol formalism and briefly
describe our approach. We reflect on the challenges these requirements pose for the
execution environment in Section 3.3. Finally we turn in Section 3.4 to some details
concerning the coordinator generator itself.

3.1 Formalisms

3.1.1 Requirements

Before considering any particular formalism, let us review our requirements for a for-
malism.

Formal Syntax and Semantics Just as parser generators required a means to specify
grammars, so coordinators require a means to describe protocols. When writing down a
formal version of a protocol we must make precise our informal, intuitive understanding
of its workings. This involves building a protocol abstraction and expressing it in some
formalism analogous to, say, a BNF grammar.

A well-defined syntax and semantics is, of course, necessary for mechanical transla-
tion, but we wish to emphasize that it may not be possible to reduce all of the aspects
of a protocol to a single formalism. Nor is it desirable to try. Many aspects of a coordi-
nator, such as details of the user interface or low-level process communications, are best
handled by a programming language. But the high level aspects of coordination should
be directly expressible in a form particularly suited to the purpose.

Concurrency and Iteration All interesting cases of coordination involve concurrency,
so its expression should be natural in any formalism for protocols. Iteration, too, should
be natural. Often a protocol will consist of a "conversation" between two agents in which
messages are exchanged over and over until some criterion is satisfied.

Re-Use There are many situations that occur repeatedly in protocols, the conversation
mentioned above being one example. To support modularity and re-use a formalism
should allow fragments, or perhaps entire protocols, to be used as parts of new protocols.
One method of particular utility is composition, making the "output" of one protocol the

125



"input" of another. The product of a conversation could be the input of another. The
results of a test run could be data for a design review.

Accessibility Not only programmers and software engineers will be reading protocols.
Managers especially, and even customers, will need to understand and even themselves
write large portions of a protocol. It is therefore essential that the formalism be in
large part accessible to non-technical personnel. This would suggest that a coordinator
formalism should have a substantial visual component.

Accessibility also suggests that the formalism should be amenable to presentation in
different views, each appropriate to its audience. The manager should be able to see a
high level view involving all of the persons under his/her authority. But programmers
should be able to see just those tasks relevant to them or be able to track documents
under their responsibility.

History A formalism should allow the protocol designer to specify what constitutes the
history of activities in a protocol. When it is useful to describe a sequence of events as
belonging to a particular activity, the formalism should allow it. Users need to be able
to ask "What has happened to document X" or "Review progress to date on activity Y."

Analysis Besides semi-mechanical coordinator generation a formalism should support
effective analysis. Among the questions an analyzer should be able to address are: Are
there states of a particular protocol that can never be reached? Are there constraints on
the protocol, such as limits on time or resources, that can be expressed formally and
checked?

Cutover One of the most subtle and difficult criteria to satisfy is the ability to modify
a protocol during its execution. The formalism must support this in a natural way by
enabling one easily to identify the parts of an executing model that are affected by a
change in the protocol abstraction. Generally, a "small" change in the specification should
produce a corresponding "small" change in the execution. Moreover, the formalism
should support the kind of analysis needed to determine when cutover is feasible, or
what conditions must be imposed to make it feasible. We expect that many, probably
most, of the situations requiring cutover will be expressible as incremental change and
propagated to the executing coordinator.

Scale It is essential that we be able to model very large protocols efficiently. While this
appears to be a question of implementation, in fact the choice of formalism may have
a profound effect. (A small change in a language's grammar may make it considerably
more difficult to parse.) All of the desirable features such as reuseability and support for
cutover are even more important in large examples.

126



3.1.2 Alternative Formalisms

In some sense the most general specification of protocols is as programs, and Osterweil
has suggested treating them as such [10]. We agree that there are many aspects of a
coordinator that require the generality of a programming language, so we must allow
the possibility of combining programs with some other formalism to specify fully a
protocol. Some researchers tackle coordinator problems using inferential, or "rule-based"
techniques, for example Huff and Lesser [6], and Kaiser [8]. However, despite the appeal
of inferential and pure programming methods, our decision to emphasize interaction and
communication suggests that we explore the consequences of combining visual methods
with programs.

Among visual formalisms two are of particular interest, Harel's statecharts [2] and
hierarchical colored Petri nets [7].1 Both have a well-defined syntax and semantics, sup-
port concurrency and iteration, allow hierarchy and alternative views, and are relatively
accessible to non-technical readers. While we regard statecharts as a reasonable alterna-
tive, we favor hierarchical colored Petri nets (h-CPNs) for two reasons. First, it is much
easier to see how to compose Petri nets than statecharts. Second, statecharts separate
the visual representation of control from that of data-flow. While this is an advantage in
some realms, our experience indicates that for coordination it is more natural to combine
data and control flow as is most commonly done with h-CPNs. We will discuss the use
of hierarchical colored Petri nets when we examine sketches, below.

3.2 Protocol Abstractions

In this section we describe one method of formalizing protocols. It is based on work in
progress at Software Options, 'tnd should be taken only as an indication of the direction
of our effort. We expect the details to change as we draw closer to a complete formal
description of coordination proocols.

We propose to think of a protocol abstraction as having two parts, a sketch and
refinements. A sketch is a diagrammatic rendering of a protocol based on a well-defined
visual formalism, hierarchical colored Petri nets. Refinements are program fragments
that provide details of the actions described by the sketch while preserving the sketch's
semantics.

3.2.1 Sketches

Colored Petri nets were invented by Jensen as an extension of predicate/transition nets[l],
which were themselves a higher-order version of the original net formalism of Petri [11].
We do not describe Petri nets in detail here, but give an informal presentation of their
role in sketches in an example, below.

Huber, Jensen, and Shapiro [5] further elaborated colored Petri nets by added hierarchy
in conjunction with their work on design/CPN, a product of Meta Software, Inc. A

'We also wish to mention Holt's diplans[3] with which we have too little familiarity to comment here.

127



principal motive for all these extensions is the well-known problem of scaling of Petri
nets to large systems. Colored Petri nets (CPNs) allow the designer to make use of a
system's symmetries to simplify their representation as nets while adding flexibility.

In colored Petri nets the tokens have attributes called colors. By using colors one
can give tokens individual identity, thus allowing them to represent data flowing among
the places as well as control elements. This is very natural in systems where the flow
of control depends on flow of data, say when a document moves from one person to
another. One place in the net may represent the first person reading the document, and
the subsequent place the second.

Figure 2 shows a colored Petri net for a simple edit/review protocol. Ovals are places
that represent a state of the protocol. Although "state" implies a static condition, in a
protocol a state often suggests that some activities are taking place which are simply
irreducible with respect to the protocol.

Each place has a color-set (written in slant type) that describes the kinds of tokens that
may appear in that place. Thus the place Ready To Review may contain only reviewers.
The arcs bear expressions (in this case simply variables) whose types are constrained to
be a color-set, and only tokens having a color from that color-set may flow along the arc.

The boxes in Figure 2 are transitions. Places with arrows into a transition are input
places for that transition, and places with arrows out of transitions are its output places.
A binding of an arc label has a meaning analogous to that in programming languages:
substitution of an admissible value (a color) for each variable in the expression.

A transition is enabled if there is a binding of its input arcs and sufficient tokens in
its input places so that tokens can flow along the input arcs according to the colors given
by the values of arc expressions. For example, if the place Ready To Review contains at
least one reviewer token, and Document Pending contains a document token, then the
transition Begin Review is enabled. When it occurs, it removes one document token and
one reviewer token from their respective places. It then places the document token right
back in the Document Pending place and the reviewer token in the Reviewing place.
The two headed arrow between Document Pending and Begin Review is shorthand for
one input arrow and one output arrow bearing the same arc expression.

A distribution of tokens on the places is called a marking. We begin "execution" of the
net with an initial marking consisting of three reviewer tokens in Ready To Review and
one author token in Drafting Document. At first only the Submit transition is enabled.
It occurs, placing the author token into Waiting Comments and the document into
Document Pending. Now Begin Review is enabled in three possible ways, depending
on which reviewer is bound to r.

The execution of the net continues, which transitions occurring when they are enabled
and tokens moving about the net. Execution ceases when no transitions are enabled. At
any point during execution we can inspect the "state" of the protocol by seeing where
the tokens are. In subsequent paragraphs we discuss how net execution can be a useful
model of a coordination protocol.

128



Figure 2: Edit/Review Protocol

d:~~ docm
Win aJarRw

ajkuviTwer

a129



Queries The sketch in Figure 2 shows how a coordinator might support queries about
the state of the system. For example, we can establish by inspection that there is always
only one author token present on the net. The question "What is the author doing now?"
then has three possible answers depending on the location of the author token in one of
the three places it can reside. Hierarchical CPNs also allow one to prove facts about
the net (such as "there is only one author token at any moment") or determine what
distributions of tokens are possible.

The author might be inclined to ask about the location of his/her document, and similar
reasoning shows that the question is well-formed and has three answers: "Pending,"
"Under Revision" or "Complete." Once again, thd fact that it is provable that there is
at most one document token on the net allows us to refer to the document. The net
is designed so that initially, while the author token occupies Drafting Document, no
document is yet in existence.

Another natural query that should be available to each agent involved in the protocol
is "What can I do next?" This question can be answered in terms of which transitions are
enabled. If the Begin Review transition is enabled, then every person whose reviewer
token is in Ready To Review has "Begin Review"on his/her task queue.

Decisions A person often has more than one task available, that is, his/her token oc-
cupies a place for which more than one transition is enabled. This situation is known
as conflict, and it may be used to represent a decision. In Figure 2 if the author and
document tokens are in Revising Document then two transitions, Re-Submit and Finish
are enabled. The net itself does not determine which should occur, so we may use this
situation to model decision by outside agents, e.g., the author.

Another way in which decisions may be modelled is when more than one binding
enables a transition. This happens when Document Pending holds the document and
there is more than one reviewer in Ready To Review. Any one of the reviewer tokens
may be bound to r, but which one is not determin&i by the net. One can imagine this
being represented in an executing coordinator by presenting a menu item to each of the
reviewers asking them if they wish to "Begin Review."

Conversion to a Coordinator The coordinator that results from Figure 2 would reside
in a library much like an executable object. A user, presumably someone who wants a
paper reviewed or perhaps a manager, would invoke an instance of this coordinator. It
would prompt for the identity of the author and the number and identity of the reviewers.
(Although the sketch specifies three reviewers, it could be modified slightly to allow n
users, where n is bound at invocation or during execution,) It would then begin with
the initial marking (the author in Drafting Document and the reviewers in Ready To
Review, presenting status information as required by the participants. When the author
is done with the draft, he/she has some standard may of indicating this to the coordinator
(perhaps a menu choice, depending on the user interface), and the coordinator would
proceed with the protocol.

130



3.3 Execution Environment

We have already hinted .at aspects of the execution environment, and in this section we
address three issues presented by coordinators: long-term execution, connections with
existing databases, and the user interface.

Long-Term Execution Activities ir, a large software project may persist over very
long time periods, so a coordinator must be kept in a reliably persistent form. Should the
system crash, it must be possible to recover information about the state of the protocol
quickly. We are assisted by the fact that a coordinator's work is not particularly CPU
intensive. Each "transaction" will tend to be brief and involve relatively small parts of
the total data structure. The load imposed imposed by each transaction should therefore
be small. We have already implemented such a "very long execution" mechanism and
intend to use it as our coordinator execution platform.

Database Connections A coordinator will generally require substantial amounts of
information from databases that already exist on the host system. User identities, access
privileges, document libraries and code repositories are a few examples that will arise even
in the simplest protocols. This may require dealing with databases with heterogeneous
facilities. Some may be simple text files, others will have customized interfaces (such as
version control systems), and still others will have sophisticated query languages.

There are two basic approaches to this problem: strong and weak coupling. A strongly
coupled approach essentially abandons the goal of adapting to an existing heterogeneous
set of tools and opts for customizing each part to work closely with the others. However,
the utility of a coordinator generator in dealing with a wide variety of protocols suggests
that we try to attack the problems presented by weak coupling and allow ourselves access
to existing databases and associated tools. We call this the database connection problem.

Because a coordinator must be reactive, it must be sensitive to changes in a database
that affect its protocol. In effect, all of the rele.vant databases must support stimu-
lus/response rules for reacting to events. Since few indigenous databases are likely to
have this facility, a coordinator environment will have to provide some special interface
to achieve the same effect.

Our solution lies in the language of the programs that form a part of sketches. In
addition to providing stimulus/response rules, the language should encapsulate database
primitives in a uniform interface, helping make coordination models portable from one
environment to another. The language might also provide a number of abstractions,
such as constructs that permit the statement of object relationships using first-order logic,
the retrieval of sets of objects through inferential queries, and description of atomic
transactions together with associated rules for maintaining database consistency, and the
modular expression of stimulus/response rules for reacting to model events. By providing
these facilities we make very limited demands on existing databases.

131



User Interface A idea of a coordinator does not require a sophisticated user interface
for many interactions. Intending a coordinator to be a tool of wide applicability, we favor
a weak coupling of the user interface to the central executing model. At the very least
there should be a notification mechanism to alert participating users to the change in a
protocol's status and a corresponding means for the user to send messages back to the
coordinator.

3.4 Generators

A coordinator generator translates coordinator specifications into executable realizations
of their original protocol abstractions. Such a realization, a coordinator in our terminol-
ogy, incorporates the protocol in a reactive, ongoing model. In general, the implementa-
tion of such a model should be distributed, not embodied in some central process, and it
should tolerate failures of the underlying computing machinery, since the activities being
modeled may last for months or years. Moreover, the state of an executing protocol
realization must be accessible and even modifiable, to facilitate protocol cutover.

We have implemented a mechanism for the long-term execution of programs that
we propose to use in realizing coordinators. The coordinator generator will essentially
compile a sketch into a program specially suited to this mechanism. For very long
executions the states of programs are no longer implicit objects like the volatile states
of programs produced by usual compilation. Instead they are explicit objects having a
machine-independent representation and residing in a special database. Translation of a
sketch breaks it into transition programs, which are so named because when an event that
is to cause a transition between protocol states occurs, it activates one of these program
fragments. The fragment fetches the proper state object, carries out the appropriate
(usually very brief) action, saves the resulting state object, and returns to dormancy.

Using transition programs takes full advantage of the transaction-like nature of inter-
action with a coordinator. Even if the host system crashes during a transition program,
almost the entire state of the protocol will be unaffected. We can rely on the integrity of
the database used to store program state rather than inventing new mechanisms.

4 Summary

At Software Options we are in the process of implementing a prototype coordinator
generator that can support the kind of protocols typically found in a software engineering
environment. To build a particular coordinator we begin with a sketch that describes the
protocol in a high-level visual formalism, in our case hierarchical colored Petri nets. We
augment the sketch with protocol refinements, programs that detail some of the high-level
operations of the sketch. The result is a protocol abstraction that embodies the protocol
and permits analysis of its formal properties, but has little detail about its implementation.

In order to produce a running coordinator, we supplement the protocol abstraction
with interface pragmatics that detail the database connections, user interface, and process

132



communication for the host system. The result is a specification that is transformed by
the coordinator generator into a very long executing program.

4.1 Technical Challenges

Coordinators and coordinator generators present many technical challenges that we must
address even in a first implementation. While we do not mean to suggest that we
will provide complete solutions to these problems, we think that coordinators, besides
being of value in their own right, will serve as an important platform for research. For
example, protocol abstractions are a challenging application of visual formalisms, and our
requirements of accessibility and formal rigor will help clarify the value of hierarchical
colored Petri nets.

Coordinators also challenge traditional approaches to programming languages. The
programs that make up protocol refinements should be as high-level as possible, using
locutions natural to the domain being modelled. It should support polymorphism in types
and procedures and extensible syntax, so that non-programming experts can understand
the details of a protocol abstraction.

The need to manage persistent data also imposes new requirements on a programming
language. Because a coordinator must fit into an existing environment of heterogeneous
databases and standards for inter-process communication, the language in which we spec-
ify coordinators must directly address the database- connection problem. This also sug-
gests extending a general-purpose language to encompass database primitives and other
features discussed in Section 3.3.

We have already partly addressed the problem of long-term execution of programs at
Software Options by implementing low-level mechanisms for storing program state and
altering it via brief transition programs. These mechanisms also give skeletal support for
cutover, the change in an executing coordinator caused by an incremental change in its
protocol abstraction.

4.2 Coordinators in Other Domains

Although we have discussed coordinators in the context of software engineering envi-
ronments, it is apparent that our means of expressing abstract protocols does not limit
us to this domain. As part of ongoing work for the Air Force, we have been pursuing
an example of coordination during the process used by the military services for systems
acquisition. Figure 3 shows the top-level view of a sketch describing the process leading
up to issuing a Request for Proposals, based on a 1982 document published by the Air
Force Electronic Systems Division.

Our experience with this example shows the flexibility and potential utility of co-
ordination technology for a wide range of endeavors. It involves a large number of
individuals, organizations and documents with essentially asymmetrical interactions. The
process takes place over eighteen-months and has numerous variations and exceptions

133



that must be handled in "real time". In practice, it would also be likely to undergo change

during its lifetime both in structure and in the identities of its participants.

Figure 3: Protocol for Issuing a Request for Proposals

BgnRPDevelopment

System Program

Office Main Activities

Cost ModelStrategy Panel

AssembleD&F/AP

oordinate Release

of Draft RFP

Rees RPMdl tat Contract Straten

to Industry Paper

(Prepare Final RFP J

134



References
[1] H.J. Genrich and K. Lautenbach. System modelling with high-level petri nets.

Theoretical Computer Science, 13:109-136, 1981.

[2] David Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

[3] Anatol W. Holt. Diplans: a new language for the study and implementation of co-
ordination. ACM Transactions on Office Information Systems, 6(2):109-125, April
1989.

[4] Anatol W. Holt and Paul M. Cashman. Designing systems to support cooperative
activity: an example from software maintenance mangement. In Fifth Internation
Computer Software & Applications Conference, pages 184-191, IEEE, November
1981.

[5] Peter Huber, Kurt Jensen, and Robert M. Shapiro. Hierarchies in coloured Petri
nets. In Tenth International Conference on Application and Theory of Petri Nets,
June 1989. (Submitted).

[6] Karen E. Huff and Victor R. Lesser. A plan-based intelligent assistant that supports
the software development process. SIGPLAN Notices, 24(2):97-106, February 1989.

[7] Kurt Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozenberg, edi-
tors, Petri Nets: Central Models and Their Properties (Lecture Notes in Computer
Science No. 254), pages 248-299, Springer-Verlag, Berlin, 1986.

[8] Gail E. Kaiser. Rule-based modeling of the software development process. In
Proceedings of the Fourth International Software Process Workshop, Devon, UK,
pages 36-38, ACM Sigsoft, May 1988.

[9] Kathleen Knobe. Early experience with monstr: a software maintenance manage-
ment tool. In Proceedings of 23rd IEEE Computer Society International Conference,
pages 214-218, IEEE, September 1981.

[10] Leon Osterweil. Software processes are software too! In Ninth International
Conference on Software Engineering, pages 2-13, IEEE, Monterey, CA, April 1987.

[11] Wolfgang Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Sci-
ence, Springer Verlag, 1985.

135



[12] Terry Winograd. A language perspective on the design of cooperative work. In IreneGreif, editor, Computer-Supported Cooperative Work: A Book of Readings, chap-
ter 23, pages 623-653, Morgan Kaufman Publishers, Inc., San Mateo, California,
1988.

136



Coordinator

* Enactment of a formal protocol

* Dynamic, persistent microcosm

• Reactive - can track and affect activities

• Provides role-specific perspectives

0 Shows history and status

09009*

* Evolves as protocol changes

137



Trouble Report Protocol

Integration Component
Supervisor Developer

trouble Report

Iteruntion

Classify and
DispatchAnlz

T-rminaQuery

Afe~r:poal aha,18

Evaluate Patch GeneratePProposal Proposal

Not OK
o~K

Evaluate Patch Generate Patch
. Not OK

._ Termination _ Accept

After'. Holt & Cashman, 1981

138



Experimental Applications

• Software Project - Design Phase

- Frequent changes in protocol

- Iteration and feedback

* Monitoring trouble reports

- NSW procedures encoded in MONSTR

- Many similar data objects

- Multiple perspectives

- Protocols to handle exceptions

° Acquisition management

- RFP development (AFSC/ESD)
- Concurrency

- Ad hoc roles

- Complex organizational structure

- Multiple perspectives

139



Technical Challenges

• Visual formalism

- Well-defined syntax and semantics

- Usable by non-technical personnel

- Editing and reporting

* Flexible (extensible) specification language

- Support high-level database operations

- Adapt to particular coordination setting

• Strong database connections

History of protocol

- Indiginous data bases

- Stimulus/response model

• Long-term computations

• Managing cutover
140



THE RLF LIBRARIAN: A REUSABILITY LIBRARIAN
BASED ON COOPERATING KNOWLEDGE-BASED SYSTEMS

Raymond C. McDowell
Keith A. Cassell

Unisys Defense Systems
Paoli Research Center

PO Box 517
Paoli, PA 19301-0517

(215) 648-7529

ray@prc.unisys.com

Raymond McDowell is a member of the research staff at the Software Technology
Laboratory of the Unisys Paoli Research Center. He is interested in the application of
artificial intelligence to software engineering. Mr. McDowell received the BS and MS
degrees in computer science from the Massachusetts Institute of Technology.

Keith Cassell was a research scientist in the Knowledge Systems Center of the
Unisys Paoli Research Center. His primary interests are knowledge representation and
software reusability. Mr. Cassell received his BS in biology and MS in computer science
from the University of Texas at Austin. He may currently be reached at Lockheed,
0/96-20 B/30E, 2100 E. St. Elmo, Austin, TX 78744, (512) 448-5716,
cassell@bstc.lockheed.com.

Abstract

Knowledge-based techniques provide tremendous leverage for managing and using
repositories of reusable software. The Unisys Reusability Library Framework demon-
strates this by providing an intelligent Librarian application that operates on a model
of a software domain. The Librarian uses structured inheritance networks to model the
library domain and organize the repository contents. The resulting structure of the
domain model allows convenient repository browsing and component retrieval and pro-
vides a foundation for a variety of powerful tools. Rule-based inferencers complement
this structure by making heuristic knowledge and advice available to the user. This
makes the domain knowledge and repository organization more accessible to the user.
The RLF uses a hybridization of these two knowledge representation paradigms, taking
advantage of the strengths of each to provide intelligent assistance in the use and
management of a software repository.

Copyright © 1989 by Unisys Corporation

141



1. Introduction

Software reusability environments evolved to enable programmers to take advan-

tage of the large assortment of previously written code when producing new systems.

For reuse to be practical, it must be possible to locate previously written code and

make whatever modifications are necessary in less time than it would take to write the

code from scratch. At first glance, this would seem a simple organizational task; how-

ever, there is thus far no consensus as to what the best organization is. There is no

standard hierarchy of components, and there is no agreed upon set of software attri-

butes that serves as an index into these components. Furthermore, attributes that are

relevant for one software domain (e.g., statistical packages) may not be relevant to oth-

ers (e.g., speech recognition systems).

To overcome this problem, it is necessary to devise a way of storing knowledge

about software components that is versatile enough to represent the myriad domains of

software while still providing fast and accurate access to those components. The Reu-

sability Library Framework (RLF) projectt has incorporated ideas from knowledge

representation research to devise a flexible and powerful modeling system. This paper

discusses the knowledge representation paradigms used and the benefits of their applica-

tion to software reuse.

2. The Reusability Library Framework

The RLF project applies knowledge-based techniques to software reuse, construct-

ing an intelligent Librarian application that operates on models of software domains

[Solderitsch89]. At the core of the RLF Librarian is the AdaKNET subsystem, a

tThe Reusability Library Framework project begin under the STARS Foundations program with a contract ad-

ministered by the Naval Research Laboratory (contract number N00014-88-C-2052).

142



structured inheritance network knowledge representation system that provides a taxon-

omy of the reuse domain. This is supplemented by the AdaTAU subsystem, a rule-

based inferencing system that provides heuristic guidance on the insertion and retrieval

of parts from the repository.

2.1. Domain Modeling

We use AdaKNET and AdaTAU to provide a knowledge-based framework for

modeling complex domains. For a reusability library, domain modeling involves group-

ing software into meaningful classes based on their attributes, and appropriately classi-

fying software based on these attributes. To be maximally efficient, all listed attributes

of a software unit should be relevant, and there must be a sufficient number of attri-

butes to adequately differentiate between different classes. We anticipate rapid change

in the kinds of software being developed over the following years. Thus, it is important

to have a representation scheme capable of evolving with its domain.

The components of the RLF Librarian provide such a scheme. In the following two

subsections, we discuss the rationale behind our choice of knowledge representation sys-

tems for modeling the software stored in reusability libraries.

2.2. AdaKNET: A Structured Inheritance Network Modeling System

Structured inheritance networks are a common way of representing knowledge in

artificial intelligence applications. They provide a well-understood formal model that

has served as the basis of many expert system applications. AdaKNET is based on

KNET [Searls89], a Unisys proprietary system, and on KL-ONE [Brachman85].

143



Structured inheritance networks are directed graphs whose nodes represent objects

and classes of objects, and whose edges represent relationships that exist between these

objects. Taken as a whole, the network describes a domain, allowing applications using

the network to exhibit behavior that seems intelligent or knowledgeable about the

domain. A sample AdaKNET network is shown in Figure 1. The nodes of the network,

depicted as ovals, are called concepts; in a librarian application, concepts can be used

to represent such things as software units, categories of software units, algorithms, data

values, data structures, and designs. AdaKNET networks have two primary types of

links: specialization links and aggregation links. The specialization links, depicted as

wide arrows, are used to indicate that the class of objects represented by one concept is

a subset of the class of objects represented by another concept. The narrow arrows

with a name and range are aggregation links, which show the attributes or component

parts of a concept.

The specialization links of an AdaKNET network form a hierarchy of object

classes in the modeled domain. One concept specializes another if the first concept

represents a subset of the category described by the second concept. In Figure 1, the

concept "Stack-Operation" is a specialization of the concept "Data-Structure-

Manipulator", indicating that a stack operation is a specific kind of data structure

manipulator. A concept may directly specialize more than one concept; for instance,

"Pop-Directory-Stack" specializes both "Operating-System-Operation" and "Pop".

For a reuse library, the AdaKNET specialization hierarchy provides a software

taxonomy that facilitates the location of units in the repository. To locate needed

code, one starts at a category that is general and moves through more specific

categories until the desired code is found. It is expected that inexperienced library

144



CODE

STC-REMOVE-MNT

O REMOVE-ELEMENT-
FROM-END

Figure 1: A Small AdaKNET Network

users will spend much of their time searching for applicable softw2,re by browsing the

specialization hierarchy in this manner. A concept may have multiple "parents" in the

specialization hierarchy; this enhances browsing by allowing that concept to be located

through more than one search path. If a library user is looking for a routine that will

pop a directory from a stack, he could come to "Pop-Directory-Stack" either from

"Stack-Operation" or from "Operating-System-Operation". Such flexibility is particu-

larly important for the naive user.

145



Aggregation links, also called roles, model the structure and attributes of objects.

Roles have three properties: a name, which identifies the component or attribute

modeled by the role, a type, which indicates the kind of thing that the component is or

the kind of value that the attribute has, and a range, which specifies the number of

these components or attributes the object may have. "Data-Structure-Manipulator" in

Figure 1 has a single role which indicates that it has one or more "effects", each of

which is a "Data-Structure-Change." The roles of a concept model necessary conditions;

for an object to be included in the class denoted by a concept, it must satisfy the condi-

tions imposed by all of the roles of that concept.

AdaKNET's aggregation links are useful to the Librarian in several ways. A

concept's roles characterize the concept by describing the attributes and components of

the objects in the class that the concept models. Thus the user need not rely solely on

descriptive concept names in navigating through the taxonomy; the roles can also be

used to clarify the meaning of coLcepts and to distinguish between similar concepts.

Notice also that roles can be used to represent partial information; the range may be as

broad or narrow as desired, and the type may be as general or specific as desired. This

is not only useful for modeling categories of software, but also for representing specific

software units whose characteristics may be variable, such as Ada generic units and

software which may be automatically generated. Finally, the aggregation links enable

the Librarian to support a query interface to the repository in addition to the hierarchi-

cal search approach described above. This allows the user to ask to see the set of

soft ware units that have certain characteristics or the concept representing the most

general class of software with those characteristics. The combination of querying and

browsing lets the user rapidly focus on items of interest by placing him at a relevant

146



concept in the taxonomy and allowing him to examine the various software units that

meet his stated requirements.

In AdaKNET, a concept inherits the roles of the concepts it specializes; that is,

each role defined at the parent concept is also a role of the child. Since a "Stack-

Operation" is a kind of "Data-Structure-Manipulator", it has one or more "effects",

each of which is a "Data-Structure-Change". When a concept directly specializes more

than one other concept, it will inherit attributes from all of its parents. Inheritance

allows economy of representation by associating a characteristic with the most general

concept having that characteristic; all specializations of that concept will automatically

have that characteristic associated with them. To define a new concept, one must only

specify that concept's parents and the information which distinguishes it from its

parents. Such distinguishing information may be new roles introduced at the specializa-

tion or further restrictions on inherited roles (e.g. narrowing the range or specializing

the type). The "Pop" concept in Figure 1 restricts the inherited "effects" role by nar-

rowing the range to indicate exactly one effect and narrowing the type to be "Remove-

Element-From-Top".

The AdaKNET structured inheritance network subsystem provides a flexible and

powerful means for modeling the library domain and organizing the repository contents.

The specialization hierarchy provides a taxonomy for informal browsing, while its

aggregation links support queries which can quickly focus the user on software units or

categories that meet his needs. Among the benefits that an AdaKNET model provides

for the Librarian are multiple access paths, efficient representation, and reasoning with

partial information. In addition, it provides a foundation for intelligent assistance via

the inferencing capabilities of AdaTAU.

147



2.3. AdaTAU: A Rule-Based Inferencing System

Like AdaKNET, AdaTAU is based on a Unisys-proprietary system called TAU (for

Think, Act, Update) [Matuszek88]. AdaTAU is a forward-chaining rule-based system

that processes two kinds of information: rules and facts. The state of an AdaTAU

inference session is described by the current collections of rules and facts.

All facts are stored in fact bases that are accessible for the purpose of checking

the applicability of rules (and therefore the addition of new facts). In its simplest form,

AdaTAU processes a collection of rules and facts by firing all applicable rules until no

new facts can be added to the fact base.

AdaTAU has a more complex, distributed mode of action as well. In distributed

AdaTAU, there are a number of distinct rule and fact base pairs known as inferencers.

A focusing mechanism determines which of these inferencers are active and may also

transport facts between them, thus providing a mechanism for partitioning global

knowledge into manageable subunits.

The current version of the Librarian uses distributed AdaTAU to provide advice

for a user by associating inferencers with AdaKNET concepts. When a user requests

advice at some position in the library, an inferencer there initiates a rule-based dialo-

gue. If the user's answers indicate that another concept is more likely to contain the

information that the user wants, control is passed to the inferencers housed at that

other concept (which may represent either a specific component or a class of com-

ponents). This pattern of rule-based interaction followed by a change of position in the

network continues until the user requests a halt or until no further advice is available,

leaving the user positioned at the most applicable concept.

148



Rule-based advice greatly enhances the ability of the Librarian. Any static organ-

ization of a library, including one based on a structured inheritance network, will be

better-suited for some classes of users than for others; however, a good Librarian must

serve a variety of people with different needs and abilities. By using AdaTAU to cap-

ture knowledge about a user's competence, we provide a means of effectively aiding

both advanced and novice users. Similarly, we can provide rule bases to supply advice

based on knowledge specific to a particular task (e.g. development or quality assurance).

In addition, the inferencers capture knowledge that is poorly suited to or obscured

by AdaKNET. One such use of AdaTAU is to slice through complicated portions of a

network, revealing a relationship several links removed from the concept currently

being examined. More importantly, AdaTAU enables the use of heuristic knowledge

such as weighting the relative importance of attributes, and it facilitates reasoning

when the user can not provide otherwise needed information.

By adding heuristic knowledge to the Librarian, AdaTAU removes some of the rea-

soning pressure from the library user. It elicits information from the user according to

his needs and abilities, and uses this information to concentrate on the most relevant

parts of the underlying network. In this way, AdaTAU magnifies the effectiveness of

the Librarian by making the domain knowledge and library organization captured by

AdaKNET more accessible to the user.

3. Future Enhancements

This paper indicates some of the strengths that knowledge-based techniques can

bring to reusability library technology. For the future, we intend to enhance the

Librarian with features such as a graphics-oriented user interface and an underlying

149



database management system. More interesting, however, are the additions we intend

to make that exploit the underlying knowledge representation of the Librarian.

There is a rich heritage of artificial intelligence research that we can exploit, par-

ticularly for structured inheritance networks. One problem we intend to address is that

of software configuration jFalacara88], that is, ensuring that all auxiliary required units

are made available together with the main software unit. This corresponds closely to

the problem of hardware configuration, to which Unisys has already successfully applied

structured inheritance network technology [Searls89].

We also intend to further exploit classification technology based on structured

inheritance networks. Applications using this technology take a description of an item

and use it to insert the item into the appropriate part of a network. Significant work

has already been done in both automatic classification [Schmolze83l and in interactive

classification [Finin86]. By applying this work to the RLF, we may be able to further

automate portions of the component installation and retrieval tasks.

Similarly, machine learning research may help automate network construction. By

starting with basic descriptions and applying conceptual clustering techniques

[Fisher85], it may be possible to semi-automatically reorganize the knowledge base for

maximal efficiency.

We would like the Librarian to be more than a passive tool. A library user should

be able to easily find items in the library; however, we feel that a good tool should do

more than that. Among the enhancements we are considering are facilities to keep

track of the use of the system (as advocated by 'Jones [Jones86]). By collecting usage

statistics, we can determine the most heavily used portions of a library and adjust its

150



contents and organization accordingly.

4. Conclusions

Much work has been done in artificial intelligence on ways of representing large

bodies of knowledge using structured inheritance networks and rule-based systems. The

RLF draws on this work to provide an effective environment for modeling a software

library.

The structure supplied by the AdaKNET framework provides most of the RLF's

power. By having concepts associated with their attributes and strictly enforcing inher-

itance conditions, AdaKNET provides a structured environment that allows not only

convenient browsing and retrieval, but also more advanced classification and library

reorganization tools. The AdaKNET aggregation hierarchy provides leverage for

software configuration as well.

The RLF's rule-base system, AdaTAU, provides complementary functionality. It is

well-3uited for capturing heuristics and other poorly structured information not readily

expressed by AdaKNET and further allows the Librarian to cater its interaction to

different groups of users.

We use a hybrid of these two systems to model a software domain. By using

domain-specific libraries, the Librarian can take advantage of specialized knowledge

about a domain to assist the user in his selection and retrieval of software units, utiliz-

ing each knowledge-based subsystem to its best advantage. We believe that our hybrid

approach can be expanded upon, ultimately resulting in the construction of a truly

intelligent librarian application.

151



References

[Brachman85] R. J. Brachman and J. Schmolze, "An Overview of the KL-ONE
Knowledge Representation System," Cognitive Science, 9(2) (Spring
1985), pp. 171-216.

[Falacara88] G. Falacara, M. Angevine, S. Bailey, and J. Laird, "A Tool For Ada
Run-Time Tailoring," Proceedings AdaExpo '88, Oct. 1988.

[Finin86] T. Finin, "Interactive Classification: a Technique for Acquiring and
Maintaining Knowledge Bases," Proceedings of the IEEE, 74(10) (1986),
pp. 1414-1421.

[Fisher85] D. Fisher and P. Langley, "Approaches to Conceptual Clustering,"
Proceedings of the Ninth Int. Joint Conf. on Artificial Intelligence, Los
Angeles, CA, 1985, pp. 691-697.

[Jones86] W. Jones, "On the Applied Use of Human Memory Models: the
Memory Extender Personal Filing System," International Journal of
Man-Machine Studies, 25(2) (1986), pp. 191-228.

[Matuszek88] P. Matuszek, J. Clark, J. Sable, D. Corpron, and D. Searls, "KSTAMP:
A Knowledge-Based System for the Maintenance of Postal
Equipment," Proceedings of the Third US Postal Service Advanced
Technology Conference, 1988, pp. 421-435.

(Schmolze83] J. Schmolze and T. Lipkis, "Classification in the KL-ONE Knowledge
Representation System," Proceedings Int. Joint Conf. on Artificial
Intelligence, Karlsruhe, West Germany, 1983, pp. 330-332.

[Searls89] D. B. Searls and L. M. Norton, "Logic-Based Configuration with a
Semantic Network," Journal of Logic Programming (in press), 1989.

[Solderitsch89] J. Solderitsch, K. Wallnau, and J. Thalhamer, "Constructing Domain-
Specific Ada Reuse Libraries," Proceedings of Seventh Annual National
Conference on Ada Technology, March 1989, pp. 419-433.

152



oo T

0:

Cl) )

ccE

U))c

mi (1 00E

o.

153



E

oD~
Cl) 10,

0 c: 0
o co

CZ 0
"o4-

c' (1)

(D C

o~o-

C

O 0

154



C:

c E-

0 00

> 0~

0 C/

-00
0~)

(n -0 ) -

(D 4-J

LM C Ea): C

Qu a 4 -J 4)-4-

.C0 E E

4-j -

C/) o)0

155



C \JJ cio-

o 00
0 0

0 C0)

0 0C 000r0
0000000L

m o 0

co

C) 0000 00
00 0~o -0 0

- (( 0 0 0

U)U)0 0 0

000 00 CJl

o0 (0 0 o (0 (0(0Oz

0156



0 Low

0.

-0 a

ON L 0 (20

E -0
> +-

E 0 CO o1
0 L- (

00

157



coE

A Cw4 c8
co 0)m

0.0

00
I.E C

.C 0 oc

0 0a
C C

*0 4 0 *QE
a. 'aC CL

E -

0 CC 0.0.

E 0- S

(D (

158



CD

CD L4 ) ~0 C)

CD,

C)C

cz o*. a

< L

coo
EE

-o-

0- C 0 CLC 0 CM
-W ~0 =1. 0 -
1.. -o a U)

(1) - 0

:D 0 0~

a))
0 L

Ez E CoO0C-
U) ~'.,

-0 0 -CDCI

0 -0 x 0)C

159



oo
0 E--

00 >'l
(D (

coCC

M0

coo

,* °

160



Q(I)

-0 0
0 0)

0 Ut 4-

000
0 4-) -

000

0= 0
04-4 -

i-rn I) I O .) c

0) - 4 ) :161



WI'

4-0

0 cz

00
c~ C

.gm crE C

co 0 cz
OW) C/) i

U))
(1) 0

0 a)CZ0 C

0 00

c16



EE
00 9

090

C.

0

ClE

16



E
C o

a))

IS

0 2 C

0.

(D0
CC

.2

164



2

0 a

0 U.
Cia E

M 00-

a(a

'0< o
Lca w

EE

165



1... co l

CO) C o

00

0 a) 3)
(I) U)

- C,

Q 0

-0

CC

0mC -Cd

oo 0 a)
3-: Cd ) 0l

0 a.0

166



C,)
00
0(
00

L.c <C. O c

00

E a

"a Q

EaE
C.CD

02

0

16



4-'1
C3

0 00
Cl

o 0
C/C

0) U)
0~ 2)

C E E-

EC) C cz c

C: CL 0 0 +-a a

a) oCtC c >La. 0) 0 ~ E >oCZ

~- oE E E * ~E

L+-j 0 0CZ

Q0 0

cz E E 4--168



0)E
E

cCo

_w 0

0o coC

-,e,
0 C10

cu (J.

ClC)
L)

V-n 0- a
(I) -.- C0

0

0)0
cC

0)0

0)0

cu

169N



ci))

0 (3) C o

CC

E. a

ooa

-)c :+#co 0E
0)*a10Q) a C3

0 =C)o CO 0 coc
C.) Cci .0 I )

CZ Z 170 Z"L



A SOFTWARE ASSISTANT FOR AUTOMATIC
TEST EQUIPMENT ENGINEERING

David R. Harris
Sanders Associates, Inc

95 Canal St.
Nashua, NH 03061

(603) 885-9182

Mr. Harris joined Sanders Associates, Inc. in 1979 and has worked on intelligent engi-
neering assistant programs for the past 6 years. Currently he is co-principal investigator
on the Requirements/Specification Facet for KBSA. Prior to this assignment he helped
develop the Test Engineer's Assistant, served as principal investigator for KBRA (The Re-
quirements Assistant for KBSA), and has contributed to several automatic progiamming
efforts within the Lockheed Corporation. His interests include knowledge representation,
presentation architectures, requirements engineering, and intelligent automated support
for engineering problem solving.

Abstract The Test Engineer's Assistant is a knowledge-based assistant - a machine junior
partner, to experienced engineers - for solving the problems of automatic test equipment
configuration. In this paper, we consider a scenario of engineer-assistant interaction, we
look at representation issues for domain artifacts, process knowledge, and requirements
to code transformations, and finally we look at this assistant from the perspective of the
Knowledge-Based Software Assistant paradigm.

Copyright (C) 1989 by Sanders Associates, Inc.
171



1 Introduction -

The applicability of Knowledge-Based Software Assistant (KBSA) [Green et all technol-

ogy to specific application domains is an important issue. We need to understand how

KBSA general purpose capabilities match or improve on expectations and practices (man-

ual and/or automated) of system/software engineers in specific domains. Codification of

reusable domain knowledge, development of special purpose presentations. and consid-

erations of domain-specific entry points for re-engineering all will help with technology

transfer.

The Test Engineer's Assistant We can investigate these issues through the Test En-

gineer's Assistant (Tess), a knowledge-based assistant for the important area of automatic

test equipment engineering. Automatic Test Equipment engineering is a very promising

area for automation since engineers perform analysis mostly off-line with little machine

assistance and often delayed feedback on the impact of engineering decisions The Tess

prototype system supplies machine assistance in several important ways which will be de-

scribed in this paper. Tess is written in Socle [Harris-86], a Sanders developed knowledge

representation and reasoning system, and runs on Symbolics 36xx computers Although

Tess development at Sanders preceded KBRA [Czuchry, Harris] development (KBRA is

the KBSA requirements assistant), information on Tess has not been widely distributed

172



and a retrospective report will help. bring several technology transfer issues into focus.

The Application Domain Tess mediates the configuration - hardware/software selec-

tion and setup - of multi-purpose automatic test equipment (ATE) components to meet

the testing needs of individual electronic countermeasures (ECM) systems. These coun-

termeasures systems protect aircraft by either warning a pilot of a potential threat or

emitting signals which actively mislead threatening radar systems. Testing ensures that

ECM systems will detect and respond appropriately. Broadly, test set configuration plays

a role in the rapid reprogramming of suites of systems that must be quickly modified to

meet changing threat situations.

Highly skilled test engineers determine the testing needs for each countermeasures system

under test (SUT). Unique configurations may be required for particular aircraft installa-

tion, antenna positioning, or mission.

Figure 1 below displays a high level view of this process as currently performed. In SUT

partitioning, a requirements analysis task, engineers analyze the system to be tested along

with the capabilities and limitations of state-of-the-art test equipment in order to determine

configuration requirements. Later, engineers determine test order and specify the ATE

hardware setup and the software configuration - parameterization of reusable software

modules - needed for each test to be performed. In some cases additional SUT-specific

software may need to be developed. (SUT-specific software development was not selected

173



as a task to be covered by the Tess prototype.) Finally mission data tables (MDT's)

containing encoded parameterization data are created. This data tailors reusable software

modules during ATE operation.

drWrite

SUT-,pmc

SUT software
technique

and'

modes Fst

U CToninm T s uiremen g e G eci o M D
SUT

ATE
data

driven
software

Figure 1: Test Configuration Process

Te.s/KBSA Common Themes Tess formalizes engineering decision making and au-

torn atically derives implementations from high level specifications. Importantly, Tess plays

the role of a junior partner to an experienced test engineer. As Tess designers, we were

very concerned with the division of labor between the engineer and the junior partner. The

engineer always controls the development and can deviate from standard practice when

creative solutions to problems are required. Meanwhile, Tess makes extensive use of en-

coded knowledge of the testing domain in order to propagate ramifications of engineering

decisions, check for consistency, and remind the engineer of available options and typical

174



practices. The codification of this knowledge was the most important segment of Tess

development.

Tess includes a program generator which can be compared to transformational approaches

envisioned for KBSA at large. This program generator transforms high level specifications

into mission data tables.

This prototype leverages off of much of the same technology that supports KBRA, but

covers the entire software life-cycle while providing only a portion of the broadly applicable

services provided by KBRA.

2 A Scenario of Engineer-Tess Interaction

A brief scenario points out key Tess features and sets the stage for more detailed descrip-

tions of the underlying inference capabilities of Tess. The screen images, showing work in

progress, should give the reader a sense of actual Tess use.

2.1 Process Model

First, note that in the upper left hand corner of figure 2, a "Road Map" presents an inten-

tional view of the process. That is to say, it shows a plan for completing the configuration

task and indicates where the engineer is working within that plan.

175



___________ ntpectijn flow~ 14

RGPQ N=CEED

is a,~410 ON As 5hVi cvrpjie-f

lAWB

Figure 2: Requirements Acquisition Using Tess

176



The engineer can move immediately to any point on the map. For example, in order to

work on definition of a test, the engineer has used the mouse pointing device to select

"TEST" from the options available in the road map display. This action shifts the focus of

attention to a test definition presentation. Note that the circle near "TEST" is darkened

indicating this focus.

2.2 Dealing With Standard Engineering Artifacts

The lower pane of figure 2 contains a graphical reminder of engineering knowledge. In this

example, the engineer studies a range gate pull off (RGPO) electronic countermeasures

technique in order to determine testing requirements. The top graph shows a dotted

pulse-train response superimposed over a fixed repetition interval radar pulse train. The

dotted pulse repeats with'an increasing time delay. This delay is plotted as a function of

time in the bottom graph. The engineer works with this presentation to select parameters

that are to be measured (i.e., parameters are selected from the mouse-sensitive items at

the right of the screen) and defines the pass-fail criteria for each parameter. Tess supports

this activity by supplying defaults and automatically deriving dependent parameters. For

exdmple, the walkout period is the sum of the initial dwell time plus the time of the

walkout itself The displays, default values, and relationships require knowledge of signal

primitives, signal processing capabilities, and ECM techniques.

177



Figure 3: Measurement Specification

178



Specification evolution continues through engineer interactions with other displays. For

example, when the engineer works on the measurement subsystem, Tess displays diagrams

such as figure 3 above. Using this diagram, the engineer can indicate an intention to focus

on the characteristics of a measurement receiver. Before any receiver entries are made by

the engineer, Tess fills in values. Default values are provided (a default identifier for the

receiver is set to 1), choices are listed (bandwidth might be set to 1 khz, 500 khz etc) and

propagated values are recorded (in order to meet a 3000 usec processing time constraint,

the receiver can only be stepped through 5 positions.) If the engineer adds the start and

end frequencies, Tess derives the step size (i.e., step-size = (end - start)/number-of-steps).

2.3 Trade-off analysis

Later in the session, the engineer decides that 3 steps are required in order to adequately

test the response characteristics. This conflicts with the processing time restriction. Tess

informs the engineer of the conflict and identifies the options for retraction (i.e., the new 8

steps or the 30C0 usec maximum time previously asserted). Assuming the engineer retracts

the 3000 usec, Tess automatically updates values for the processing time and for the step

size.

Tess initiative relies on the underlying constraint propagation technology that also under-

lies KBRA. The constraint inference engine captures dependencies and supports engineer.

179



ing problem solving by providing engineers with immediate feedback of ramifications of

decisions and by allowing engineers to review dependencies and change their minds.

Subsequent to the development in the scenario, the engineer will continue to work flexi-

bly until the test is completely defined. When the entire configuration is specified, Tess

automatically generates executable MDT code which will run on the ATE.

3 Knowledge Realms

Requirements, specifications, and implementations are all stored in a central repository

of knowledge-based objects. Frame inheritance, default reasoning, and constraint prop-

agation maintain consistency and derive new facts as specifications are acquired. The

knowledge base consists of a taxonomy of concepts managed by test engineers. When

appropriate, default values (e.g., confidence levels, tolerance values for measurements, test

names, test name formats) and domain formulas (e.g., physical relationships between pa-

rameters, interval algebra) are encoded.

Figure 4 indicates the top nodes in a taxonomy of Tess object types. Whenever possible,

representations are test-set independent. In this way we guarantee the applicability of

much of the Tess knowledge base generically for many countermeasures engineering prob-

lems. This reflects our vision for an on-line community memory of engineering practice.

180



APPLICATION
ARTIFACTS TRANSFORMATIONS PROCESS DATA STRUCTURES

Device Viewpoint SUT Partitioning Table

Technique Table-builder Mission Data Reprogrmg.

Signal Primitive Bitpack Test Definition

Test Pointer

Measurement
Parameter
Evaluation

Figure 4: Taxonomy of Object Types in Tess

181



Test-set independent knowledge has been developed for countermeasures techniqueb, tech-

nique parameters, signal processing primitives (such as pulse trains, walkoffs, bandpasses,

amplitude modulations), antennas, test name formats, receivers, interval arithmetic, and

units used for dimensional analysis. A review of the representational approach for several

of these object types will be informative.

3.1 Application Artifacts

3.1.1 Why is a technique more than a signal?

Figure 5 summarizes the internal description of the RGPO technique. Each bubble is la-

beled with an object type and a high level supertype (either technique, signal primitive,

parameter, or interval). Reusable formulas are attached to these object types. For exam-

ple, in interval objects mn-pt, max-pt, center, and width are constrained by a midpoint

formula. Arrows in the figure represent roles of an object type. For example, the figure

contains an arrow which indicates that the transmit-signal role of RGPO is played by

objects of type TIME-WALK-OFF.

Such technique representation presented us with some uausual challenges. Techniques can

be organized along the following dimensions:

1. Graphical display.

182



(ae-tea |e~

Technique

race ve-signal trasmiflt-signa~l optional

Pu;3e-Tr*ain:, Time--tlk-Of: HookF
S na-Pgnal-Pritiv Booan-Paramete

amlitude wt it rep-interval

r ,,.,,, ,°,omain,°, ran"°Poer Pr \ i

Parameter Parmeter

Full-Cycle: Walk-Delay:
Interval Interval

mim-pt max-p I-t mxp

Deell-Time: End-Of-Walk-Ott Inium-Dalay Maximum-DOelay:
Paramtor Parameter Parameter Parameter

Figure 5: Technique Definition

183



2. Purpose of the technique

3. Identification of hardware and hardware parameters used to generate the signal.

4. Important parameter abstractions

Each of these dimensions are needed to support retrieval of information in flexible ways

during specification evolution.

A simple mathematical representation is insufficient for two reasons. First, techniques

are often best described by the relationships between the receive signal and the response

signal. For example, the RGPO technique can best be understood by considering the

walk-off characteristics of the generated pulse in response to the received pulse as baseline.

Second, engineers think of transmit and receive signals as composed of more primitive

signal cliches such as bandpass, pulse-train, and W'alk-off. These cliches are particularly

useful in providing engineers with building blocks for description of new techniques. Tess

supports this domain modeling activity. With Tess support, the engineer can describe new

techniques through composition of Tess-presented cliches. The new techniques can be used

in SUT partitioning or saved for use in other configuration problems.

In addition reusable formulas form another point of departure from straight forward rep-

"resentation. Formulas which interrelate parameters in a technique definition (e.g., center

frequency = average of upper and lower) and formulas which relate parameters of two

184



different techniques (e.g., bandwidth of a noise technique is the total spectral coverage

of a packet switching technique [i.e. noise pa:kets are alternated in frequency to gain

broader coverage]) are attached to object types and inherited by instances of the tech-

niques. [Harris-88] contains a general discussion on the impact of formulaic knowledge on

domain modeling.

3.1.2 Test Specification Knowledge

In Tess, a configuration specification is a collection of test object instances. Importantly,

this approach to test specification provides for a fine-grained representation allowing re-

quired and optional parts to be specified in any order without forcing completion too early

- completion at any level is not required before proceeding to the next. The encoded test

object types include many examples of test, measurement setup, parameter, evaluatior,,

and device.

MDT's are highly condensed tables which encode the specification information. Tess users

do not interact with MDT descriptions. Tess helps engineers focus on the specification

without concern for MDT representation.

Internally, Tess operates on MDT's at two levels - a kniowledge level and an implementation

level. At the knowledge level an MDT is a collection of table instances which profit

from inheritance and default reasoning just like other knowledge-based objects Important

185



attributes of these objects include table type, number of words, and octal word entries

Implementation level MDT's are generated from table objects through a straight forward

process which resolves pointer information and stores words in arrays.

Importantly, MDT's represent an entry point for re-engineering associated with SUT test-

ing needs. In typical practice test modules remain intact and basic table structures are

stable. If ECM characteristics change dramatically, MDT's may need to be redefined to

support more sophisticated processing. This redefinition occurs through modification of

data layout language programs and support for MDT redefinition is an area of future

growth for Tess.

3.2 Process Knowledge

The process knowledge realm contains information about what is required to complete a

task and the likely order for achieving tasks. Stereotypical work practices are displayed to

remind the engineer of where he or she is in a formalized process. Tess process knowledge

includes heuristics such as SUT-specific work (e.g., establish fields for unique test names to

be displayed to an ATE npratn) shnuld be completcd prior to work on in~'ividual tests.

Figure 6 displays each task with a subtask decomposition below it.

In the current prototype this process is hardwired in. In the future we will provide some

automatic planning capabilities. We are currently using the DEVISER [Verel system to

186



Deterine DtermieMisoatio

elaceabitenqus alyi
units

a m biguity process in in / .ations a

groupssinl

Figure 6: Process Model

187



explore AI planning techniques for the general requirements acquisition and analysis do-

main. Plans in this domain cover general problem solving strategies such as brainstorming,

decomposition, selecting from alternative designs (the work reported on in [Potts, Bruns] is

vtry relevant here), and negotiation to reconcile conflicts in work products. We are encour-

aged by the University of Massachusetts research on planning in the software engineering

domain [Huff, Lesser) and by the high level editing commands of the KBSA specification

assistant [Johnson,et all and we believe that much of this work will be applicable to re-

quirements engineering as well. For further development in the ATE domain, we anticipate

expressing test engineering process knowledge in planning formalisms and relating it to the

general problem solving strategies under development for general requirements acquisition

4 Transformations

There are two forms of transformations used in Tess. Viewpoints take requirements to

specifications, and Data Layout Language (DLL) programs take specifications to MDT

implementations.

188



Reqtur ents: 1
SUTI

PartitioningjIVie".oints
Specification:

Dentio fofwTst
Senio oflowtTDLL Programi

Misuiozn
Data

Tables

Figure 7: Transformations from requirements to code

189



1he !eaE.s eween re--rem= a~d S~e~fiaE,2Zs camlared as t1he re:PaL-ashio be-

t-- e- ~tec~ es 2211 teSIS Wh! a t--t =ay b i serfcaz fsz a singe -ai

it is ofien tfhe case tha tech-;= e totstr.ai are. maaqY- tc-c-n an both directions-

Oze test may ineasuae rharacdeziscrcs of =any tch-niqces. A s~tence H~ tets, sharing pa-

wta-m easiemn may be required to fully tes. a sing, e technique-. A characterizan

of this is to think of each test imuoses, a siewpocint on the techninue. That is to sav, a test

lacks for speii features of a SignMal and may ignore important technique nuances entirely-.

The viewpoint defines precisely the parameters off the Signal that are measurable by the

test- For example, az amplitude- modulation test will look at the amplitude modulation of

a Packet switching technique while ignoring the interplay between the individual packets

of the technique.

Viewpoint transformations represent this relationship. Each viewpoint is a function w hose

domain is the technique and whose range is the test. Both technique and test contain

parameter lists which are related through viewpoint-specific constraint formulas. As il-

Itistrated in figure 8. a packet- noise-for-har-age-nnise viewpoint equates center frequency

Of the spectral interval of the transmit signal to the set up frequency for the sensor of

the measurement setup. Viewpoints are much like overlays in the Plan Calculus 'Rich'

of the Programmer's Apprentice. Overlays map between instances of plans - language

190



m.dependent des 'i ns af FMV~ams - = ' are msed to ca~strmrt the -, ==et t.t __ v a

pctia pgrm.In camparia2 Tievrpci nts ccn~strnct trees rhich are rery sha~zw and

staep at the sDecificatic - -lee

traailt-signal zasuexant-setup

Bandp-esi: Single-Packet-neazurezent:
sic-ml-Prs 1Vasurement

flatn ss, coverase sensor

Spectral-Flatness: S cra-nevlSlept-Receier
%ZLara e~/ Interval / Receiver !:-

cents5 setup-f requency

EQUATE

Figure 8: Viewpoint, Example

Engineers take the initiative in viewpoint selection. While many heuristics are possible,

Tess initiative would not substantially increase productivity and would likely be viewed as

limiting the engineers ability to construct creative solutions.

The output of the viewpoint transformations is a collection of test instances- The spec-

ification is complete when the engineer and Tess fill in all required attributes of these

instances.

191



4.2 Data Layout Language

The Data Layout Language (DLL) is a language for design cf higly condensed Variable

length data structures such as M.DT tab!es. Such data structures typicaly appe in

embedded systems wcrk. Declarative expressions for table word filling (bitpacked words,

integers, multi-word records, etc.), locators (tab!e number, word number, bit positions).

and retrieval of fiffer values from the specfication constitute the vocabulary of the language.

In Tess, a DLL program takes specifications and transforms them into the target MDT The

transformations operate on the representation of the specification and use knowledge of

MDT data structures. Execution of this description results in building of knowledge-based

table and record objects.

DLL is modeled on the Design Procedure Language (DPL) [Batali, Hartheimer] developed

at MIT for designing large scale integrated circuits. DLL data table entries are analogous

to DPL circuit component artifacts.

DLL addresses the need for engineering support at the MDT level. Declarative DLL table

layout descriptions are Lisp code which when invoked retrieve data and generate the tables.

Hence we have a merging of two functions which are conventionally separate. The vehicle

for data base description and the vehicle for data base generation are one in the same.

Any changes in MDT design automatically change the generator. A number of freedoms

are provided for writing a DLL program. For example, locators are evaluated at table

192



building time and actual locations .f zords within tables or fields within words can be

ignaored when constructing tables.

Descriptions of DLL constructs Table definitions are shownin figure 9. Each includes

a name, an optio-nal list of local bindings, and a ist of locator filler pairs. Locators indicate

the starting word position in the table and the number of words that are being described.

If the number is not provided, it is calculated from the filler. A wildcard argument, ,

indicates that the filler should occupy the next available word.

Record definitions are expressed similarly and are often invoked by the FOR-EACH-OF-

THE macro which builds a record for each entry in a list (e.g., TEST-RECORDS are built

for each entry in TESTS *hen a SEQUENCE table is built).

Fillers are bitpacked words, integer words, extra precision multiple words, or entire records

made up of several words. In addition a special pointer word holds the place for an

array index which is computed when an implementation MDT is constructed. Fillers are

computed by macros, suLh as BITPACK, which take locator filler pairs as arguments and

return an octal number with encoded specification information stored in the appropriate

fields - indicated by the starting bit and number of bits found in the locator. For example,

(bitpack (0 8) (>> bandwidth) (8 8) (>> center-frequency))

will return the octal number obtained by placing a receiver bandwidth in the lower 8 bits

193



(deftable seauence (-aux (tests (>> configuration tests)))

* 1 (bitpack (0 8) (>> test-id-words) (8 8) 0)

* 2 (integer (>> version-number))

* (for-each-of-the tests (test-record)))

(defrecord test-record (&aux (id (>> test-id)))

a wdl (characters *cu-rent-item*)

a wd2 (double-index-pointer (test-descriptor-block *current-item*)))

(deftable test-descriptor-block (&aux (type 'fixed))

" wd3 (bitpack (st4 1n5) (>> retry-count) (st5 1n6) (>> failure-action))

" wd4 (pointer (pass-fail-criteria (>> parameters-to-measure domain)))

* wd5 (pointer (hardware-set-up (>> measurement))))

Figure 9: Interpretation written in DLL

194



and the center frequency in the upper 8 bits.

Tess assumes that specification properties are stored on frames, but the retrieval facilities

are separable from the Data Layout Language and could be written to retrieve cata from

other knowledge base formats or directly from the engineer- This can be accomplished by

redefining >>, a macro whose arguments point to a database location.

5 Conclusion

Support for ATE configuration requires knowledge-based approaches. Tess combines an

inference mechanism and encoded knowledge of application artifacts, process, and trans-

formations. Throughout an ATE configuration, Tess acts as a junior partner drawing on

reusable descriptions of application artifacts for consistency checking and propagation

The Tess interface allows a user to work interactively with graphical displays, bring up

graphical displays which serve as reminders of the engineering practice, review work that

has been done, obtain explanations for facts, and be reminded of where in the configuration

process he or she is now concentrating.

We have described many of the significant components including technique description,

test components, process knowledge, viewpoint transformations, and the Data Layout

Language.

195



Exa=ning Tess as a domain-specific knowledge-based software assistant, suggests several

concerns for KBSA technology transfer.

System level issues strongly interact with software development issues. Performance re-

quirements for Tess-generated software are very dependent on the rapidly changing hard-

ware capabilities of the ATE world. Significant knowledge-based assistance requires that

we address system level knowledge within the KBSA paradigm.

Extensive domain modeling is required. Domain description that is roughly 5 times the

size of the knowledge base in the Tess prototype or roughly 100 times the size of the Air

Traffic Control knowledge base in KBRA will be required.

Presentations need to show the interconnections between system parameters at the level

of domain knowledge. In KBRA, users establish non-functional properties through neutral

spread-sheets. We need to do better. The technique and test diagrams which help Tess

users visualize important data modeling and performance relationships indicate the form

of engineering visualization that is required.

Process knowledge is important. Even in the limited Tess process formalism, this encoded

knowledge is helpful. Important questions will arise as we try to place domain-specific

process models into richer domain independent formalisms.

196



Acknowledgments Important contributions to the work described in this paper were

made by Dr. Charles Rich of MIT's A Lab azd Sanders colleagues J. Terry Ginn and

Lynne Higbie. I would also like to thank Richard Goller for many helpful suggestions on

the paper.

197



6 References

1- Batali, Hartheimer, "The Design Procedure Language Manual", MIT/AI Memo 598,

1980.

2- Czuchry, Harris, "KBRA, A New Paradigm for Requirements Engineering", IEEE

Expert, Nov. 1988.

3. Green, Luckham, Balzer, Cheatham, Rich, "Report on a Knowledge-based Software

Assistant" RADC-TR-83-195, 1983.

4. Harris, D. "A Hybrid Structured-Object and Constraint Representation Language",

Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia,

PA, 1986.

5. Harris, D. "Issues on the Knowledge-based Requirements Assistant: Reusable For-

mulas", Proceedings of the 3rd Annual KBSA Conference, Utica, NY, 1988.

6. Huff, Lesser, "A Plan-based Intelligent Assistant That Supports the Process of Pro-

gramming", Univ. of Mass at Amherst TR87-09, Sept 1987.

7. Johnson, Cohen, Feather, Kogan, Meyers, Yue, Balzez, "The Knowledge-Based Spec-

ification Assistant" RADC-TR-88-313, Final Technical Report, 1989.

8. Potts, Bruns, "Recording the Reasons for Design Decisions", Proceedings 10th It.

Conf. on Software Engineering, p418-427,1987

198



9. Rich, "A Formal Representation of Plans in the Programmer's Apprentice", Pro-

ceedings 7th It. Joint Conf. on Artificial Intelligence, Vancouver, Canada 1981.

10. Vere, "Planning in Time: Windows and Durations for Activities and Goals", IEEE

Transactions on Pattern Analysis and Machine Intelligence, v5, p2 4 6 -2 6 7 , 1983.

199



KBSA FOR AUTOMATED SOFTWARE ANALYSIS,
TEST GENERATION AND MANAGEMENT*

Gordon B. Kotik, President
Lawrence Z. Markosian, Vice President for Applications Development

Reasoning Systems, Inc.
3260 Hillview Avenue
Palo Alto, CA 94304

Tel.: (415) 494-6201
Internet: kotik@reasoning.com, zaven@reasoning.com

Author Biographies. Gordon Kotik and Lawrence Markosian are founders of
Reasoning Systems, Inc. Before becoming President Mr. Kotik was Vice President for
Product Development at Reasoning. Before the formation of Reasoning Mr. Kotik was
one of the principal architects of the CH knowledge-based programming environment at
the Kestrel Institute. Mr. Kotik has supervised projects involving development and
maintenance of submarine tracking software.

Prior to the formation of Reasoning, Mr. Markosian applied AI technology to DOD
prob!ems including data fusion, tactical air battle management and control system
reconfiguration at Systems Control Technology. Previously Mr. Markosian was a
Research Associate at Stanford University. Markosian is a member of the Association
for Symbolic Logic, the American Association for Artificial Intelligence and the
Association for Computing Machinery.

Abstract. We describe a KBSA-based approach to software analysis, management and
test generation that incorporates several technologies: object-oriented databases and
parsers for capturing and managing software; pattern languages for writing program
templates and querying and analyzing a database of software; and transformation rules for
automatically generating test casesbased on the analysis results. We present a program
transformation system, REFINETM , that incorporates these and other technologies in
an open environment for software test generation, and we demonstrate how REFINE is
used for managing the software testing process. Finally, we present examples of how
our approach is being applied to automatic test generation.

1 Overview

The literature describes a number of approaches to software analysis and test generation

[1]. We describe how to automate such approaches by building a collection of software

tools that represent and process software as network structures stored in a database. This

* Copyright (c) 1989 by Reasoning Systems, Inc. Scott Burson implemented the C Language System

and the application to boundary value test generation discussed in this paper.

** REFINE is a trademark of Reasoning Systems, Inc.

201



represention captures the abstract structure of the software, which is a network of

interacting pieces, and abstracts away from the details of the character string form of a

program. Related objects of discourse in software analysis and testing include

specifications, test suites, bug reports, related software (such as test drivers), and project

plans, most of which also exhibit a network structure that can be captured with an

appropriate database representation. Capturing the abstract structure of the software in a

database facilitates building tools that automate analysis and testing.

Typical analysis and testing tasks might include the following:

" Analysis: If I make a certain change to the program, which existing tests must be

modified or deleted and what new tests must be added? From the results of

integration testing, which modules are most likely to contain bugs?

" Testing: Create test cases directly from programs.

Software-related objects are usually represented as groups of text files in a variety of

languages, both formal and informal. The links in the network (e.g., T is the test suite

for program P) are largely informal and implicit ("Most of the short files with extension

DAT in subdirectory HARRY and written prior to 11/88 contain integration tests for the

TRANSACT system"). The programmer typically analyzes and modifies these objects

using file-based tools-text editors, string searches, etc.

Hence, software testers must map their conceptual universe, a complex network of

structured objects, onto a hierarchicalfile system and use file-based utilities to pursue the

conceptual links. The structural mismatch between the conceptual model and the file

representation makes it extremely time-consuming to answer even simple questions like

"who last modified this function" or "where are the test cases for this program".

Overall, the problems are similar to what would be encountered trying to use a bitmap

editor like MacPaint as a CAD tool-an array of bits holds all the information, but the

information cannot readily be extracted by automation tools.

In the maintenance phase of the software lifecycle, the problems are compounded. The

engineers who created the original mapping of the project onto a file system might have

202



left the company. With them went the rationale and the details of the marpin as wll as

key information about the individuAl programs, rest sites, etc. Bug fixes s to

introduce more bugs than they fix. It becomes successively more diftcul to maintain the

consistency among prog-ams, their test ca:es and documentation.

Our approach io software analysis, test generation and management is to use an

object-oriented database representation for programs and otAer software engineering

objects and to build tools to query, analyze ad transform this database-

The approach described here builds on the experie-ce of many previous systems and is

closely related to a number of current efforts. Many Lisp programming environments

have been built around a representation for Lisp programs as list stuctm-es in viraml

memory. The prime example is the Interlisp progran g environment de-eloped at

Xerox PARC [2]. Interlisp provided many analysis tools for software, inckding

Masterscope, an interactive query system for program analysis.

Language-based environments introduced the idea of building general programming

environments that could be customized to a particular programming language [3].

We illustrate our approach with examples of automatic generation of test suites.

In Section 2 we review alternative methods for representing software. Section 3 presents

REFINE, an enabling technology for software analysis and testing that uses an

object-oriented database for representing software and transformation rules for modifying

software in the database. In Section 4 we examine examples of analysis, mutation

generation, test management and test generation for C software. Section 5 summarizes

our results.

2 Alternatives For Software Representation

One basic reason why analysis and testing of software using file-oriented tools is

expensive and unreliable is that source text is a poor data structure for representing

programs and complex data. As a result, compilers have to parse and analyze the source

203



=ai to ce a be=te ireesetatibn, nzine~v &absr sy-tax trs, symnbol tabes, and

oYber dam s=tzrn s thiat canrre the absr a-re-do.ships among uo am its. The

canpiler then perforus fttnher an.alytis (eg., type checking) and ansformation (e.,

code ge e on) on the inte--l rz'on The srile of pogram representation used

by comp2,p=s is an i 'u t over sorce Mes, but it sill has drawbacks because the

r,-set.ion is no designed for use b- tools oher than the comDier.

Some of the prob!ems of compuier dam sructres (lWk of persistence, bzowsers and

query lznriaes) may be solved b relational &=I s Howvmer, relational databases

me unsuitabe for pm-gram manipuA aon bec= of (a) the limits of the relational data

model and (b) their ineffciency in execuing the graph tuaversal algorithms that occur so

frequently in program manipulation [4].

Obiect-Oriented Databases

Object-oriented databases are an emerging technology that is expected to play an

important role in engineering database applications. They preserve some of the

advantages of relational databases (persistence, browsers, and, to some extent, query

languages). They offer much more poverfui data models that directly support network

manipulation with features such as multi-valued slots, inheritance and constraint

maintenance. Furthermore, their efficiency characteristics are better-suited than those of

relational databases to fast manipulation of complex graph structures.

A practical system for software analysis and testing needs the following extensions to

object-oriented databases:

" The data definition and query languages should support the mathematical

abstractions used in high-level program representation (set notation, first order

logic, tree comparison).

" Tools must be provided for parsing source files into the database and printing the

database back to source files.

" A syntactic pattern-matching capability for describing programs in terms of

204



temiplates should be provided.

' The query language should support a rule-based prog rraming paradigm for

s-ecifying transformadons of softw-are and software-related objects.

The next section describes how the RF+iE k-nowledge-based software development

svstem retains the benefits of object-oriented databases while providing the extensions

listed above. Thus we show how REFINE can serve as a technological foundation for. a

new generation of software analysis and testing tools.

3 REFINE: An enabling technology for software analysis and

testing

REFINE [5] is an interactive software development system that integrates three key tools
to provide a basis for software analysis and testing:

* a wide-spectrum, very-high-level specfication language;

* an object-oriented database that provides the necessary abstractions listed in

Section 2;

- a language processing system that accepts definitions of programming languages

and produces syntax tools (parsers, printers and pattern matchers)

Programs are converted between source file and the object-oriented database using the

parsers and printers created by the language processing system. Thus the database is

fully integrated with conventional file-based systems and tools. The REFINE object

system and other high-level data types in the specification language (sets, sequences,

maps, etc.) support a data model for software objects that is very close to the standard

conceptual view of annotated abstract syntax trees. Tools that analyze and transform

software in the database are written in the REFINE specification language, which

provides mechanisms for template-based program description Pnd rule-based program

205



transformation.

3.1 The REFINE specification langauge

The REFINE specification language (also called REFINE) is a very-high-level, wide-

spectrum language that supports a variety of specification techniques including set-

theoretic data types, first order logic, rules, object-oriented and procedural programming.

The specification language is used as the query/update language for the database. The

compiler for the specification language is implemented as a rule-based program

transformation system. The current version of the compiler generates Common Lisp.

The compiler and most of the rest of REFINE are written in REFINE.

3.2 Object-oriented database

The REFINE database provides persistent storage of objects created using the

object-oriented part of the REFINE specification language. It includes mechanisms for

version control, multiple users with concurrency control, computed attributes, and

constraint maintenance. The database is used to manage networks of software objects

including specifications, code, documents and test cases. It is also used as a repository

for application-specific data.

3.3 Interactive graphics

REFINE contains an interactive graphics package that allows quick development of

customized end-user interfaces. The graphics system is built on the X 11 window

system and supports multiple viewports onto surfaces, graphical editing and layout of

object-oriented database structures using different styles of icons and links, and

mouse-sensitive text.

The REFINE graphics package has been used to build end-user interfaces for specifying

communication protocols and CASE tools.

206



3.4 REFLNE Language processing system

The REFINE language processing system takes as input a description of a language in the

form of a grammar. It produces a parser, printer, pattem-matcher and mouse-sensitive

text browser for the language. The language processing system is an extension of

LALR(l) parser generator technology. Grammars are written using a high-level syntax

description language that includes

" regular right-part operators

" precedence tables

" semantic actions of productions

" a mechanism for specifying lexical analyzers.

In addition, REFINE provides a capability for defining program templates. These

templates can be used-

* in pattern matching, to test whether an existing program is an instance of a

template, and

* in pattern instantiation, to build a new program that is an instance of the template.

Use of templates in program analysis and transformation applications makes the

application code clearer and much shorter-frequently an order of magnitude shorter than

the hand-coded equivalent. Examples are provided in the next section.

The language processing system has been used to build software management tools for a

number of languages, including REFINE itself, C, SQL, IBM JCL, COBOL, Ada, SDL

and NATURAL. These tools have been used for applications including automated

software maintenance, re-engineering, code generation, software test generation and test

management.

207



4 Examples

We now turn to examples of using an object-oriented database and associated

language-based tools in software analysis and testing. In addition to the examples

discussed in this section, the approach has been applied to path generation and analysis

for specifications of communication protocols [7].

4.1 Analysis Examples

The use of an abstract syntax-based representation of software for analysis is fairly

common in modem approaches to software engineering. Most software analysis tools

build such a model as a preliminary to the actual analysis phase: Perry summarizes some

of the important uses of abstract syntax tree analysis in software development in [6]. The

analysis capabilities and applications described here can be regarded as extensions of

these common analyses in that they take advantage of the novel features of the database

model of software, namely:

* an open, user-extensible, object-oriented representation of abstract syntax

* use of high-level data types and query operations

• integration of abstract syntax trees with other software objects in the

database such as documentation, test cases, and bug reports

The goal is to allow a wider class of analyses, including queries that reference diverse

software attributes (not just the abstract syntax), and to make it much easier to specify

routine analyses such as cross-reference listings.

We illustrate database queries for program analysis with an example taken from software

testing-assume all the functions in a module have been run through the test suite and

that a large number of functions failed. We would like to pinpoint the incorrect function

or functions that caused the failures. Suppose we know, in addition, that the suspect

functions were probably maintained by Bill. In modem programming systems, finding a

function is made easier by the existence of structuring mechanisms such as hierachical file

structure, modules, and class hierarchies in object-oriented programming systems.

208



However, when the volume of programs grows very large, these mechanisms are not

good enough-they are based either on file-search commands, fixed indexings of the

software (libraries), or interactive browsers. They fail to let the user bring to bear all the

available information about the hypothetical defective code. For example, the user may

know such things as:

" the probable author or authors of the code,

* data structures that are probably used in the code and

* approximately when the code was written.

The query language for the object-oriented database allows all available information to be

used in general searches through the software database. For example, REFINE stores
the abstract syntax trees for the user's specifications annotated with information such

as-
. when the program was last modified, and by whom;

" what diagnostics were issued by the compiler,

" what other programs it uses and is used by;

* what test suites are available for it;

• the complete testing history;
• what documents describe the program.

Since the representation of programs is open and extensible, other relationships can be

easily added. For example, a user can add an attribute that stores, for each program, the
name of the person responsible for maintaining that program. This attribute could then be

used in queries over the software database, as in the following example.

In a REFINE-like system, you could write a query like the one below to find a set of

candidate functions responsible for the test failures:

f f I f in application-functions &

maintainer(f) = 'Bill &

failed-test-suite(f) &

~ exists(g) (g in application-functions & f calls g &

not failed-test-suite(g)) }

209



The above query finds all functions in the application that are maintained by Bill, failed

the test suite and do not call any other function in the application that failed the test suite.

To make a facility like this more accessible to programmers, REFINE provides a

graphical user interface toolkit that can be used for specifying queries to replace the above

notation. The notation above could then be used as an accelerator for experienced users,

or for cases when the graphical interface was not powerful enough.

4.2 Test management examples

We outline RETESTS, a test management system developed in REFINE and used

internally at Reasoning Systems for managing testing of new software releases.

RETESTS is a prototype general-purpose testing system designed to support testing of

applications written in REFINE. RETESTS provides the following capabilities:

- a methodology for structuring test cases;

* a method of runing collections of test cases, recording the results, and resuming

from abnormal events such as runtime errors and infinite loops; and

* report generation for summarizing the results of testing.

RETESTS has been used at Reasoning Systems since 1985. A typical use of the system

is to develop a battery of test cases (called a "test suite") for an application and to run the

entire test suite both on a regular basis and also before events such as system releases.

Structuring tests. RETESTS models testing-related information (test cases, reports,

etc.) using REFINE object classes and attributes. RETESTS also provides a grammar

for its object classes so that test cases can be specified and viewed textually. Object

classes include-

test - item: a test case and related information

test-result: the result of running a test-item

test-harness: a collection of related test-item

test-suite: a collection of test-harness

210



system-ve-rsion: information on the software version under test

test-report: a summary of the results of executing a test-suite.

The lowest level of test case information is a single test case, which tests a specific

behavior of the application. For example, a test case might say that a function called

quick-sort, when applied to the sequence [3, 2, 1] should return the sequence [1, 2, 31.

When RETESTS runs an individual test case, it builds an object that represents the result

of executing that test case. This object stores information such as whether the test case

succeeded, and if not, how it failed (incorrect result, stack overflow, etc).

The next level structure is test-harness, which groups together a sequence of related

test cases. This is provided both for convenience in grouping related test cases and to

allow factoring common parts of test cases.

Finally, the test-suite for a complete application is a sequence of test harnesses

together with the information common to the harnesses such as the directory in which

reports should be placed.

Running tests and reporting results. RETESTS allows the user to specify the

function to be used to conduct tests, the environment in which the tests are to be run and

the predicate used to evaluate the success or failure of a test.

test-harness Test-Arithmetic-Functions

preamble Load-Sort-Functions

program-for-test Parse-Compile-Execute

comparison-predicate Boolean-Equal

test-items

a-test-item

test-datum "sort-l([l, 1, 0]) = [0, 1, il"

correct-outcome True

a-test-item

test-datum "abs(3.14159265 / 180.0 - .01745329)

< .00000001",

correct-outcome True

211



In this example of a test harness, the function Load-Sort-Funct ions is first

executed; this is a user-defined REFINE function that presumably loads the functions to

be tested, including sort-1 into the environment. The predefined REFINE function

Parse-Compile-Execute is used to conduct the tests, and Boolean-Equal is

used to evaluate the result of the tests.

Reports are written to the directory specified is the REPORTS-DIRECTORY attribute of

the test suite containing this test harness.

4.3 Transformation example: Generating test cases automatically from

software

This example focuses on perhaps the most novel capability of the REFINE

system-specifying ana automatically executing transformation rules that perform

complex modifications to software. This is the heart of providing automation for

software testing activities including automatic derivation of test cases. Many of the

analysis activities discussed earlier are performed with the goal of determining where or

how subsequent modifications to the software should be made, or what tests should be

generated. The examples apply to C software and make use of the C Language System, a

customization of the REFINE system for representing C programs.

The literature includes a number of approaches to generating test cases. We illustrate the

program analysis and transformation approach to test generation by applying it to

generating "boundary value" test cases for functions. The purpose of boundary value

testing is to determine whether the function works correctly for extremal values of its

arguments. Typical boundary values for a function whose argument is an integer are the

smallest integer representable on the machine, -2, -1, 0, 1, 2 and the largest representable

integer.

The example transformation rules look at the data type of each argument of a function and

generate a test driver that calls that function with boundary values appropriate to the data

type. For example, suppose we have a file containing the following C definition of th.

212



factorial function:

int

fact (n)

int n;

{ if (n < 2) return 1;

else return n * fact(n-1);}

Then the following test driver function is generated automatically:

test-fact

{ {int n;

int intsl [] = {-2147483648, -2, -1, 0, 1, 2,
2147483647 };

for ( il = 0;

il < sizeof intsl / sizeof *intsl;

++ il )

{ n = intsl (il]; fact(n)}}}

Several patterns and transformation rules are used to generate the test driver from the

function. For example, the function Test-Values-Declaration 5hown below

generates a C declaration based on the data type of the parameter. The function is

specified using several assertions, each of which is used to compute the value of the

function for a specified data type (only the assertions for integer and floating point data

types are shown).

function Test-Values-Declaration (param-type, values-var):

Declaration

computed-using

Test-Values-Declaration(lint', values-var) =

'int @values-var[] =

{-2147483648, -2, -1, 0, 1, 2, 2147483647};',

213



Test-Values-Declaration ( 'float', values-var)

'float @values-var[] =

-3.4028232e+38, -1.1754944e-38, 0.0,

1.1754944e-38, 3.4028232e+38};'

Other functions are used to generate the test loop and the complete testing function shown

above.

5 Summary and conclusion

We observed that software analysis and testing requires two broad categories of activities:

analyzing and transforming programs and related objects. We have described an
approach to software analysis and testing based on

* an object-oriented database representation for software lifecycle objects and
* automated transformation of the objects represented in this database.

We have found that the object-oriented database representation more closely approximates

the conceptual model held by developers than is possible with a text file-based system.

Analysis and transformation can be significantly automated by tools that take advantage
of the database representation. We have described REFINE, an environment for program
representation and transformation that provides the underlying framework needed for

software analysis and testing. We have described a tool, RETESTS, built in this
framework, that is used to manage testing REFINE applications. We have further

illustrated our approach with an example of autom atic test data generation.

The ability to support automation for test generation and management for large software

systems by using rule-based transformation is a key innovation of our approach that

distinguishes it from systems that focus only on automation of program analysis. The
features required to support this transformational technique require substantial extensions

to an object-oriented database system to support efficient representation of programs and

the ability to convert easily between the text and database representations.

214



The transformational approach to software development was first developed for

synthesizing code from high-level specifications, but its range of applicability now
appears to be much larger. It may well be that this technology will make its first
significant impact on software engineering practices in the areas of analysis and testing

rather than code synthesis.

215



References

[1 Proceedings of the Second Workshop on Software Testing, Verification and
Analysis. IEEE Computer Society Press, Washington, D.C., 1988

[2] Teitelman, W. and Masinter, L. "The Interlisp Programming Environment,"

Computer, 14 (4), pp 25-34

[3] Reps, T. Generating Language-Based Environments, MIT Press, Cambridge, MA,

1984

[4] Linton, M. "Implementing Relational Views of Programs," Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium, The Association for

Computing Machinery, NY, 1984

[5] The REFINE User's Guide. Reasoning Systems, Palo Alto, CA, 1985

[6] Perry, D. "Software Interconnection Models," Ninth International Conference on

Software Engineering, IEEE Computer Society Press, 1987

[7] Markosian, L.Z. and Riemenschneider, R.A. "Automatic generation of conformance
tests using REFINE", Reasoning Systems, Inc., 1986

216



SYSTM INTEGRATION TECHLNOLOGY

Lasz!o A. Belady
Vice President & Program Directer

Microelectronics and Computer Technology Corporation (MCC)

The greatest opportun;ry in software For rhi' U.S. and so far the greatest n'.esrnLerat n
talent and exoerience. lies in the ever increasing inegration of ompurer app cas.

There is a definite trend to interconnect islands of applications thr.ugh coimunrcacna
lines within an enterprise as .-ell as among different ones.

The computerization of a modern enterprise, therefore. becomes a single iarge applization
comprising business deve~cpment. manufacturing and marketing.. Thee iarge appi;ca-
tions are created b. Je erly intercornecting the raw .aterial which is a set of hardmre
and software boxes This set may i.,:lude hardware pieces such a m-orkstations. main-
frame and minicomputers and clme-pro,en software packages such as paroil.nurner.ca!
control. for manufacturing an decision-making software. The remarkable thing about this
is that the software is the glue which holds these boxes together and also brings the
dynamic to the system b, L.ntrolling the traffic as well as the data flow among the ditfer-
ent nodes.

Due to their very naure. these future applications systems are all customizeo and cannot
possibly be developed as standard packages serving more than one enterprise - the% must
be built ind;vidually. The team that builds these systems must consist not only of experts
in computer hardware and software but also of experts in the particular business tor
domain) for which the system is being built.

As a result of this trend, the software business will probably split into two major catego-
ries- 1) the component business developing sometimes quite large software packages to
be marketed worldwide in different large applications systems and 2) the system integra-
tion software using the components. While the former business ,ill become international
and very competitive, the U.S. has a definite built-in advantage for developing the latter
that should be exploited and emphasized. Education, on-the-job training and research
should all support this model. Computer science education should be the basis for superb
craftsmanship of software componentry, while the future engineers of integrated applica-
tions must become system engineers who are as familiar with hardware as they are with
software At the same time, research must focus on the computer-aiding of the system
development process. which includes interdisciplinary cooperative work.

In support of some of the above, the major objective of the research efforts in MCC's
Software Technology Program is to computer aid the cormplex, software intensive, system
integration and design process.

217



Gaja: An Object-Oriented Framework
for an Ada Environment

Don Vines 2ndThin Kim!
Honeywell Systems and Research Center

3660 Technolpogy IDive
Mineapolis, N 55118

For P2er See: -Proceedincgs of ie-Third Internation-,al !r'EEConfer-ence on AdalhiI
Amilic;.:ions ane' E rwonnien. The Sheraton-Wayfa inn and Conference Center,
Manchester, _New Hampshire, May'23-25, 1988, Pages 81-90.

219



KBSA'S REQUIREMENTS ASSISTANT AND AEROSPACE INDUSTRY NEEDS

Douglas A. Abbott, Ph.D.
McDonnell Douglas Corporation

MCAIR Dept 052
P.O. Box 516

St Louis, MO 63166-0516

(314) 895-1405

Dr. Abbott holds a Ph.D. in meteorology from Florida State
University. He has done extensive work on predictive modeling of
atmospheric flows using techniques such as numerical solution of
the Navier Stokes equations and ad7:anced statistical methods.
Recent interests include identification and evaluation of high
productivity software engineering environments. Prior to joining
McDonnell Douglas, Dr. Abbott served 24 years in the U.S. Air
Force, retiring in 1988 in the grade of Colonel.

Upon receipt of the Knowledge-Based Software Assistant (KBSA)
Requirements Assistant (RA) software, developed by Sanders
(Lockheed) Associates under Pha.;e I of the KBSA proof of concept
deliveries, we formulated a plan to evaluate RA's technology
transition potential, within the aerospace industry. Our plan
began with software familiarization and culminated with building
a workplace prototype. When we encountered problems with some
planned tasks, we chose not to attempt a workplace prototype.
RA's view of the evolving system differed from ours and we were
not successful in reconciling these views. In fairness to RA, we
point out that we treated it as a finished product even though
the developer recommended a different approach. However, our
approach was useful for comparing RA to Computer-Aided Software
Engineering (CASE) products. RA closely parallels the structured
analysis of requirements function within CASE tools. RA's
departure from CASE tools lies in use of artificial intelligence
(AI) and knowledge-base support to aid structured analysis. This
paper enumerates the difficulties encountered while using this
early version of RA and suggests directions for continued
research, focusing on aerospace industry needs. Our principal
finding is a conviction that the research goal, of supporting
software development outside the constraints of a formal method,
should be reassessed. We think the only merit of this goal is
that no method equates to an ability to support any method, a
flexibility which has both positive and negative qualities.
However, our primary concern is that adherence to this goal
competes with (rather than augments) the more fundamental goal of
developing effective AI support. On another tack, RA assumes
that the user is the system developer. This assumption overlooks
the process of contracting for systems and the associated need
for formal requirements documents. A more likely scenario for
the nineties is early user involvement through simulation/
prototyping rather than user development. Under this scenario,
RA needs the capability to scan a requirements document into the
notepad. and analyze it to produce user oriented simulations.

221



1. INTRODUCTION: The goal of the Rome Air Development Center

(RADC) KBSA project is to demonstrate proof of concept for a new

software engineering paradigm capable of increasing the

productivity of software engineers by an order of magnitude. The

KBSA paradigm is being developed in three phases, each phase

building incrementally on the lessons of the earlier phases.

Phase I has been completed and Phase II is just commencing.

Phase I software consists of five loosely coupled software

components, or facets. These are the RA, the Specification

Assistant, the Framework, the Performance Assistant, and the

Program Management Assistant.(3] Discussion, here, will be

limited to RA, the only facet we have evaluated to date.

To appreciate the support provided by the RA facet of KBSA,

it is useful to consider comparable features found within CASE

tools which typically follow the "Waterfall" software development

paradigm. RA corresponds closely to the Structured Analysis of

Requirements phase of CASE tool support. RA research focuses on

potential applications of AI and knowledge base capabilities to

support the task of structured analysis of requirements. The

concept is for the RA software to support an engineer, whose

primary field is not software, independent of the formal

methodologies typically imposed within CASE tool structured

analysis implementations.[2,8]

Before presenting our evaluation procedures and results, we

would like to address some factors which shaped this report.

First, user documentation, in a readily usable form, does not

exist. While this impeded our evaluation of RA, we believe that

.we gained sufficient familiarity with the software to avoid

222



erroneous conclusions. Since RA is proof of concept research

software generated under a level of effort contract, we did not

attempt to rigorously document weaknesses in the RA user

interface. Understandably, a polished user interface was not

high among research priorities. However, we do present some

concerns in this area which may impinge on the philosophy of the

development. Finally, we would like to say that it was not our

intent to criticize this research. We believe candor, offered in

a constructive spirit, provides the most effective form of

communication. We hope our inputs contribute to shaping the

implementation of the KBSA paradigm to better meet user needs.

2. RA CONCEPTS SUMMARIZED: The underlying philosophy of RA is

that the supported engineer will not be constrained to work

within a specified methodology. Rather, RA will support

individual work preferences. System requirements are entered

using any of several different presentation formats. All formats

contribute to a single knowledge-based data base, and system

development conducted within any presentation format will be

reflected in the other formats. As system requirements take

shape, a "smart" software assistant critiques new entries and

brings inconsistencies to the developer's attention (an active

role) or intervenes upon request (a passive role) to perform

assigned tasks. The presentation formats, coupled with a brief

description of their respective purposes, follow.[5]

- Intelligent Notepad: An on-line notebook for impromptu

ideas. It interprets requirement entries and creates system

objects or failing interpretation, captures the information.

223



- Context Diagram: A standard, graphical representation of

the system with its environment interfaces.

- System Function Diagram: A hierarchal, graphical view of

system level functionality.

- Internal Interface Diagram: A graphical display of the

system configuration (hardware and software) interfaces.

- Functional Decomposition Diagram: A hierarchal graphical

breakdown of system functionality.

- Data Flow Diagram: A graphical model of flow of data

through the system.

- State Transition Diagram: A graphical display of system

states and the events which trigger changes of states.

- Activation Tables: A graphical display of the active

system functions, by state.

- Calculator/Spreadsheet: The calculator is a tool for

making entries into the spreadsheet. The spreadsheet provides a

matrix view of the non-functional properties or constraints for

each system function.

- Requirements Document: A formal requirements document

based upon information entered via other presentation formats.

3. EVALUATION PROCEDURES: We attended the familiarization

training provided by the RA developer, Sanders (Lockheed)

Associates. RA training consisted of demonstrations of RA

functionality within the air traffic control (ATC) domain,

intertwined with discussions of research goals and the philosophy

of RA goals. Rather than accepting delivery of the original RA

software, developed for the Symbolics computer under the now

224



obsolete 6.1 operating system (OS), we chose to wait for delivery

of the Symbolics Genera 7-2 OS RA version and we used this

software in our evaluation.

Our initial step was to build an extremely simple system

from the ATC environment in accordance with the walk-through

example provided within the RA documentation.[4] However, when

we expanded this example using development inputs from the

multiple RA views, RA began identifying inputs as contradictory

and asking us to retract activities or data assignments. We were

not able to complete our envisioned system.

We, next, worked with a statement of requirements for an

automobile druise control (CC) system. This CC problem was

selected as it constituted a easily understood system with

sufficient complexity to test RA's software engineering support

capabilities. We first attempted to load the CC requirement

problem statement into the intelligent notepad, but RA became

hopelessly confused after entry of about five sentences and

requested a retraction with each additional input. The complex

sentence structure of the problem statement appeared to be a

likely cause of this problem, so we converted the CC problem

statement into concise statements which paralleled the ATC inputs

of our first example. We were able to go further, but we

encountered the same difficulties which arose during our attempt

to expand the ATC example. Finally, we started over and

attempted to develop the system totally within the graphical

views without using the intelligent notepad. This effort

encountered the same type of difficulties.

225



We had planned to move from the CC example into two

workplace prototypes. Candidates in scientific applications and

business applications were being considered. However, following

our experiences with the initial simple development tasks, we

concluded that RA has not reached a sufficient state of

development to warrant such tests. We hasten to point out that

Sanders Associates, the RA developer, did not misrepresent the

state of RA software. They recommended loading new systems

directly into the knowledge base. We chose not to do this as we

felt we could gain the best view of research directions by

treating RA as a finished tool and evaluating it from the

engiheer's view point.

4. THE EVALUATION EXPERIENCE: We believe our problems in

developing simple models using RA stem, at least in part, from

"over zealous behavior" on the part of RA's assistant feature.

RA checks entries in the intelligent notepad and assigns objects.

In a sense, RA develops a view of the evolving system. However,

RA's concept may not be consistent with our system view. Like

any good assistant, RA needs an ability to discern when

initiative is called for and when it would be better to get more

information from the person in charge. For example, when RA

works with the intelligent notepad, we would like to participate

in naming objects so that we can understand the system and share

the RA view. One method would be to require the engineer's

approval for object assignment. In addition, we would like RA to

use our naming conventions (rather than the corresponding RA

designation) when identifying conflicts. In this way, we would

226



be able to respond without flipping back and forth through the

pull down menus when RA asks for a retraction to eliminate a

perceived conflict.

When our evaluation experiences arrived at a point of

conflict, RA asked us to make a choice--either retract an

assignment or proceed with the knowledge that a conflict exists.

When we directed RA to accept the choice and proceed, our path

had entered a tunnel which narrowed as we proceeded, had no light

at the end, and no option to turn back. When we took this

course, we were without exception on a path leading to a "cold

boot" with subsequent total restart. If such options are to be

offered; RA needs the abiiity to "undo" N steps or to save a

"system version" prior to entering the tunnel, i.e. a provision

to backtrack from the tunnel and then take an alternative path.

Once more, a better understanding of RA's view of the system and

an effective means of reconciling this view with our own is

needed to effectively use an option to over-ride (or defer) the

conflict and proceed with development.

We believe that the divergence of RA's view and the

engineer's view of an emerging system would be reduced if RA

understood key words corresponding to the various views of the

knowledge-base. For example, "context," "external," and similar

words would help RA relate notepad entries to the context

diagram; "state," "transition," "control," and similar words

would point to the state transition diagram; etc. In addition,

the engineer needs to understand the significance of such word

usage. Whatever the source, more attention is needed to some

vehicle for common understandings between the engineer and RA.

227



Current support to such understandings appears to be inadequate.

Perhaps, the easiestway to achieve such understandings would be

by introducing a formal method for use of RA.

5. COMMENTS AND CONCLUSIONS: We believe rapid advances within

the CASE product market, results achieved after the RA contract

had terminated, produced x level of expectation on our part which

RA had no way of meeting. However, future RA research can

certainly benefit from close monitoring of the CASE industry. An

example is the use of bubble charts in structured analysis. The

industry has produced "defacto standards" for labeling,

decomposition, meanings of geometrical shapes, and related

features which provide rapid insight into functional support

features. [6,7,8,9,10] Today, most CASE tools still implement

the waterfall software engineering paradigm, but early

applications of knowledge-based support are emerging.[10] In

addition, we are seeing some examples of graphical, compilable

specifications leading to incremental prototyping capabilities.

In effect, such products implement the spiral model paradigm, a

close relative of the KBSA paradigm.[l] In the CASE market, we

observe that the gap between available CASE products and the KBSA

paradigm is systematically closing. While this is positive, in

the sense of technology transition, it challenges KBSA research

efforts to look to future needs, to address the high-risk, high-

productivity fringes so as to remain relevant. CASE tools

provide important guideposts pointing to leading edge technology

issues for KBSA research to address.

228



Earlier, we mentioned the problem of maintaining consistent

views of an emerging system in the respective "minds" of RA and

the engineer. We have some suggestions (beyond those already

provided) which may help. Currently, if we introduce a name into

the intelligent notepad which is matched in the reuseable

knowledge base, we obtain an automatic import for reuse. We

think RA should suggest import and let us make the decision

whether or not to proceed. Furthermore, if we give approval for

import, then reconciliation becomes an issue. In case of

conflict, should the imported system be held constant (because

much of the productivity potential within reuse lies in the fact

that the reuse component is tested and proven) or should the

reused component be adjusted to the new system and retested? The

engineer needs to make such decisions and once made, these

decisions must guide RA's future suggestions, e.g. conflict

resolutions, determining the system is ready to pass to the next

KBSA facet, etc.

Several other areas exist in which we would like to interact

with RA. One is spread sheet organization. We would like to

participate in the assignment of row and column labels. We would

also like to be able to pop-up a data dictionary with a list and

brief description of each assigned object and of currently

defined types (perhaps current pop-up descriptions were intended

to evolve to meet this need). It would be nice to be able to

choose a standard editor for notepad entry or editing (perhaps

using a tabulator driven indentation convention in lieu of the

implemented convention), but this is not a high priority compared

to the primary research goals, even though current notepad

229



editing procedures constitute a somewhat painful process.

Finally, we would like a pop-up list of remaining tasks which in

the view of RA would lead to a complete system, a system ready to

move to the next KBSA facet.

Next, we would like to focus on the concept of allowing the

engineer to work according to personal preference while receiving

support from RA. This is one of the fundamental concepts

underlying RA. We agree with this concept only to the extent

that if one can work in any manner, then RA can support any

formal method. We do not foresee our engineers working outside

the bounds of formal methods. In effect, software engineers have

been working in an "art form" mode since the inception of

computer programming, but studies conducted over the past ten

years consistently support the conclusion that too much

intellectual freedom is detrimental to good design and to high

productivity.[10] In particular, the process of breaking very

large projects into well defined parallel tasks which merge

smoothly upon completion, leads naturally to invocation of

disciplined methods. We suggest that our views are not unique;

nearly all users of the KBSA paradigm will be employing

disciplined methods. This is equally true within all three

principal software development categories; business applications,

scientific applications, and embedded systems applications; which

exist within today's aerospace industry. While we gain the

ability to use any formal method, we lose built-in, imposed

discipline. Such discipline can be very beneficial when managing

development of large systems.

230



Let us now look at the same issue from a different

perspective. We stated that we think RA will be employed

supporting a formal method when developing large systems. This

implies that the goal of total flexibility for the engineer is

not a high priority. However, it appears that pursuit of this

goal may retard (or at least complicate) progress toward the more

important goal of defining effective roles for AI within the

assistant. The key question is: Would research progress on AI

goals be realized more rapidly if a formal method were defined

and implemented? It is not necessary to adhere to an existing

formal method, for all such methods are today, somewhat immature.

KBSA research may be able to contribute to advancing the methods

science, as well. Certainly, effective use of AI and knowledge-

based support will require today's formal methods to evolve. We

view AI support goals as primary, for without AI and knowledge-

base support, RA becomes nothing more than a standard CASE tool.

Addressing another problem, we think that a methods

viewpoint may be the best way to introduce the perspective needed

to maintain, or reconcile, consistent views of an emerging system

between the engineer and RA. Subsequent research could then

provide additional flexibility, step by step, until RA was

totally divorced from the method, if this remains the goal.

However, we think a more fruitful path might be to adopt and

improve a formal method which permeates all KBSA facets. The

method would focus on AI and knowledge-based support, with a view

toward addressing the problem of scale. We think the future

trends within our industry applications will be toward larger

more complex software constructed by multiple teams and thence

231



assembled to perform assigned functions. If these concepts are

valid, perhaps we need to adjust the KBSA goals for RA with

regard to methods implementation.

Finally, we would like to address prerequisites for

effective industry evaluation of new software concepts, such as

RA. Formal user documentation and a short training course are

necessary, but not sufficient conditions for opening the full

power of the software and the underlying concepts to prospective

evaluators. The final ingredient is a tutorial. This tutorial

must employ a sufficiently complex example to fully exercise

software capabilities while providing a relatively simple problem

domain. The tutorial should lead the user step by step down the

path (perhaps one path of many possible paths) from problem

statement to the point where RA would hand off to another KBSA

facet. Such a tutorial may go a long way toward eliminating the

difficulties we had in maintaining a view of the evolving system

which was consistent with the view RA held.

We have made no mention of several problems which tend to

hinder the technology transfer goals of the consortium. The

existence of a "fuzzy boundary" between RA and SA has been

addressed (at least conceptually) by combining RA and SA into a

single software facet in the Phase II KBSA contract. This should

facilitate progress using simulation and incremental prototypes

to evolve the requirements and specifications to the final

system. Tighter integration with the KBSA framework and

migration to an open hardware environment with a POSIX operating

system would also contribute to technology transfer; we assume

232



the KBSA prototype contract will address such issues. Overall,

we think that Phase I software has laid a solid foundation, and

we look forward to the next iteration, the Phase ii soft-ware,

which will provide an integrated requireMents and specification

development process.

233



BIBLIOG1APHY

i. Boehn, B.W.; 1985: Spiral Model of Software Development and
Enhancement, ACM Software Engineering Notes, VOL 11, NO 4.

2. Czuchry, A. & D. Harris; 1988: KBRA: A New Paradigm for
Requirements Engineering. IEEE Expert, Winter 88. pp 21-35.

3. Green, C., D. Luckham, R. Baizer, T. Cheatham, & R. Rich,
1983: Report on a Knowledge-Based Software Assistant.
RADC-TR-83-195; Rome Air Development Center, AFSC, Griffiss
AFB, NY. 71 pp.

4. Harris, D.; 1987: A Session Using KBRA. Sanders
Associates, Nashua NH. 4 pp.

5. Harris, D. & A. Czuchry; 1988: The Knowledge-Based
Requirements Assistant Final Technical Report, Volume I.
Sanders Associates, Nashua NH. 60 pp.

6. Martin, J.; 1989: Modify Your Methods to Take Advantage of
I-CASE Tools. PC Week, Vol 6, No 6, pp 36.

7. Mason, J.; 1989: Despite Its Drawbacks, Few Can Afford to
Overlook CASE. PC Week, Vol 6, No 6, pp 89.

8. Pressman, R.S.; 1987: Software Engineering, A
Practitioner's Approach. McGraw-Hill, New York. 567 pp.

9. Pressman, R.S.; 1988: Making Software Engineering
Happen. Prentice Hall, Englewood Cliffs NJ 07632. 258 pp.

10. Yourdon, E.; 1988: Managing the Structured Technologies.
Prentice Hall, Englewood Cliffs, NJ. 267 pp.

234



'04 
~~ 

~L 
W 

I. 
__

U) )

235



z ~LU

0 0~

Z L L
o0 cr cz o.Sa)

< Z LU C- ) 0/

DJ (1 U (
z C/)

w LU 0:I I

236



z )

LU)
a. ~0 4)

0. a 0
-- CC ( ) CL

0 own.

0 o S >:,0

CL 0< N I

CD o) -4

237



z I

LU 0

E 0

z E

0 C L

< 0L
>, L j)

DUc . 0

ui~ 0 cn

238



0

Z Q
0 c0

0 1

CD U.

oL C,) IU
o Cb- 0)%0 cc

z ] 0- CL .
_0 U) 0soi 0v 0 1I

Li. CL 0 0

0- < 0IOU*

239o



I.-

Cl)U <~

z
o C/) ) 0

CI) 0:
:D cr 0LULU 0

Oz H-C/)

z LU Cl)CI

C/,) 0L
_ _ _ _

(I) D LU

Z < CD
WJ CE z C

0

o
00

z

.-J w

240



KNOWLEDGE-BASED SPECIFICATION, ANALYSIS AND
SYNTHESIS OF COMMUNICATION PROTOCOLS*

Lawrence Z. Markosian
Vice President for Applications Development

Reasoning Systems, Inc.
3260 Hiliview Avenue
Palo Alto, CA 94304

Tel.: (415) 494-6201
Internet: zaven@reasoning.com

Author Biography. Lawrence Markosian is a founder of Reasoning Systems, Inc.
Previously Mr. Markosian applied Al approaches to DoD problems at Systems Control
Technology. As a Research Associate at Stanford University, he specialized in intelligent
computer-assisted instruction systems. Markosian is a member of the Association for
Symbolic Logic, the American Association for Artificial Intelligence and the Association for
Computing Machinery.

Abstract. We present a knowledge-based workbench for communication protocol
development. The workbench uses a graphical interface for entering protocol
specifications, and a protocol description language that provides an equivalent textual
specification. Protocols entered either graphically or textually are captured in an
object-oriented database where they can be analyzed. Analysis knowledge is represented in
the workbench using a very high level, general purpose specification language augmented
by the protocol language. Once a protocol specification has been analyzed and validated, a
knowledge-based compiler transforms it into executable C code. Protocol specification,
analysis and synthesis are performed using the REFINE ** knowledge-based software
development environment.

Introduction. Communications engineers use a range of techniques for specifying

communications protocols. These techniques may employ
* graphical representations,

" event/transition tables,
* event scenarios,

* time lines,
* message format diagrams, etc.

* Copyright (C) 1989 by Reasoning Systems, Inc. Scott Burson of Reasoning Systems implemented the

communication protocol specification workbench described in this paper. Scottie Brooks incorporated the

application as a project in the REFINE Fundamentals Training Course, which is presented monthly at

Reasoning Systems.

** REFINE is a trademark of Reasoning Systems, Inc.

241



Finite state automata (FSA) are a mathematical model that underlies many of the specifica-

tion techniques. We present a knowledge-based workbench for protocol specification with

the following capabilities:

" specification of communication protocols using FSAs,
" validation of the specifications,

* simulation of the specified system and

• automatic derivation of C code to implement the specifications.

The communication workbench is built in REFINE[1], a knowledge-based environment

for software specification and synthesis. Several regional Bell operating companies are

using REFINE and the protocol workbench for developing intelligent network applications,

particularly service creation and testing. This paper emphasizes the knowledge-based

aspects of the workbench, which made it easy to develop and highly extensible. The

knowledge-based approach in developing it, as well as the domain-specific knowledge that

it contains, distinguish it from tools with similar end-user capabilities written in a 3rd

generation language such as C or FORTRAN.

Specification. Finite state automata are discussed in [2]. We provide a partial REFINE

object-oriented definition of finite state automata and related objects below.

% Definition of the FSA object class

var FSA : object-class subtype-of universe

% Definition of the attributes (slots) of an FSA

var name : map(FSA, SYMBOL) = emptymap

var FSA-States : map(FSA, set(STATE)) = emptymap

var FSA-Initial-States : map(FSA, set(STATE)) = emptymap

var FSA-Finai-States : map(FSA, set(STATE)) = emptymap

var FSA-Transitions : map(FSA, set(TRANSITION)) = emptymap

var FSA-Events : map(FSA, set(EVENT))

computed-using FSA-Events (the-fsa) =

(transition-event(tr) I (tr) tr in FSA-Transitions(the-fsa)}

242



% Definition of the STATE object class

var STATE : object-class subtype-of universe

% Definition of the TRANSITION object class

var TRANSITION : object-class subtype of universe

% Attributes of TRANSITION

var Transition-From : map(TRANSITION, STATE) = emptymap

var Transition-To : map(TRANSITION, STATE) = emptymap

var Transition-Event : : map(TRANSITION., EVENT) = emptymap

% Definition of the EVENT object class

var EVENT : object-class subtype of universe

The above specification is applicable to FSAs in general. However, in communications

applications, most events represent the transmission or reception of a message. Thus we

refine the notion of an event to capture this idea by introducing the following event

attributes:

% Attributes of EVENT

var Event-Type : map(EVENT, symbol) = emptymap

var Event-Message : map(EVENT, symbol) = emptymap

The Event-Type of an event must be one of the following symbols: TRANSMIT,

RECEIVE or SILENT. The Event-Message (i.e., the message transmitted or received) is

also represented as a symbol. An extension of the workbench might represent message as

an object class refine the concept appropriately (for example, by adding attributes for

header and body).

Silent events are state-changing events that are not explicitly associated with the

transmission or reception of a message at the communication level being modeled by the

protocol. An example of a silent event might be a timeout.

Messages to be transmitted and received by a connection establishment protocol might

243



include REQUEST-CONNECTION, CONNECTION-CONFIRMED, and

CONNECT ION-REFUSED..

These extensions to the original FSA definition give rise to the notion of a communicating

finite state automaton. There is an extensive literature on the use of communicating finite

state automata in specifying communication protocols [3].

Once the domain model for communicating finite state machines has been specified, we

turn to the definition of a language specifically for describing these objects. Such a

language is convenient to have for several reasons:

• it will sometimes be desirable for an end-user to enter a textual, rather than

graphical, description of a communication protocol;

* the protocol development workbench will need to print descriptions of protocols-

for example, to describe parts of a protocol for which there is no appropriate

graphical representation; and

• the application-specific syntax can be used to simplify the specification of the

protocol development workbench itself, in a way that will be made clear below.

Below is the REFINE definition of several of the grammar productions for the FSA

language.

FSA ::= ("fsa" name

"states" "(" FSA-States * "fi 1)1

"transitions" "(" FSA-Transitions * " " )"]

TRANSITION := [ "from" Transition-From "to" Transition-To

Transition-Event 1,

EVENT ::= 1 ":" Event-Type { ( Event-Message ] } ]

244



For each object class (FSA, TRANSITION and EVENT) the grammar specifies a

corresponding surface syntax. The syntax includes keywords, delimiters, and information

about where the values of the attributes appear. REFINE generates a parser from the

grammar that will be able to read examples of FSAs such as tht following:

fsa Connection-Establishment

states (Unconnected, Waiting-for-Confirmation, Connected)

transitions (

from Unconnected to Waiting-for-Confirmation:

transmit REQUEST-CONNECTION,

from Waiting-for-Confirmation to Connected:

receive CONFIRM-CONNECTION )

REFINE also automatically generates a printer for the FSA language, so that instances of

FSAs represented in the knowledge base can be pretty-printed in a format similar to the

above example.

Analysis. As developers of the protocol development workbench, we would like to be

able to express knowledge about protocols (for example, what constitutes a valid protocol)

in a succinct way, certainly in a way that eliminates programming details. It would be even

better if we cotld express this knowledge in a way that minimizes the need to understand

the underlying knowledge-base representation of the relevant object classes. For example,

one validation criterion for a protocol is that it have no "duplicate" transitions-i.e., no

two distinct transitions from the same state to the same successor state under the same event

type and symbol. In REFINE, this constraint can be expressed declaratively as follows:

- exists(trl, tr2) (

trl = 'from @state-1 to @state-2 : @type @msg' &

tr2 = 'from @state-1 to @state-2 : @type @msg' &

trl # tr2)

The single quotes enclose a pattern that is used to match against transitions. Within the

pattern we have used the syntax that we defined earlier for transitions and events. The

245
41



variables preceded by @ are pattern variables. When REFINE generates a parser for a

user-defined language, it also automatically generates a pattern matcher that allows the user

to write patterns as in the above example.

Why use patterns? Compare the above example with an equivalent constraint written

without patterns:

- exists(trl, tr2, evl, ev2)

evl = Transition-Event(trl) &

ev2 = Transition-Event(tr2) &

Event-Type(evl) = Event-Type(ev2) &

Event-Message(evl) = Event-Message(ev2) &
Transition-From(trl) = Transition-From(tr2) &

Transition-To(trl) = Transition-To(tr2) &

trl # tr2 )

This form is still declarative-it is a specification with no procedural content. However,

not only is this form of the constraint twice as long, but understanding it requires

understanding the details of the knowledge base representation of transitions and events.

Thus the first form achieves two levels of abstraction over an equivalent 3rd generation

language program: (1) it is purely declarative specification and (2) it uses a domain-specific

language to simplify the logic- and set-theoretic specification. The REFINE compiler

generates comparable code for both forms of the consraint.

The above validation criterion is "local"-it represents a constraint on a single protocol.

However, a communication network has many interacting protocols, which are replicated at

many nodes on the network. Each protocol may meet "local" validation criteria but the

network as a whole may fail to meet global requirements. Freedom from deadlock is an

example of a global requirement-the network should have no deadlock states. The

deadlock states in a network's state space is the set of

- network states that are

* not final states

* have no transitions out and

246



• have all communication channels empty.

After extending the communications domain model to include netwoirks, channels and
related objects, this definition of a network's deadlock states is stated in REFUNE as

follows:

function Deadlock-States (ntwk : NE SWORK)

set (NETWOR-K-STATE) =

{ ntwk-st I (ntwk-st) % The set of all

ntwk-st in Network-States (ntwk) & % .-etwork states that are

- ntwk-st in Netwrk-Final-States (ntwk) & % NOT_ fina! states,

Transitions-Out (ntwk-st) = ( I & % have No transitions out,

for-all(ch) (ch in Network-State-Channels(ntwk-st) =>
Channel-Contents(ch) = []) I

% and have all channels e nty

The above function specification is defined purely declaratively and constitutes virtually a
line-for-line formalization of the preceding infcrmally stated definition of deadlock. The

specification is declarative because no details of the procedural implementation are
provided. For example, we have specified that the value to be returned is a set but we have
given no details on how the set is to be implemented (e.g., as an array, hash table, linked
list, etc.). Nor have we provided any a!gorithm for searching the state space for deadlock

states. The REFINE program synthesis system is able to ger.-ate an executable

implementation automatically from this and related definitions [ 4]. Other global validation
criteria are easily specified, automatically implemented, and executed in REFINE, including

freedom from unspecified message receptions, lack of "dead" code, etc.

The network model is being extended to support intelligent network management, which
requires not only static analysis but simu!ation, scenario generation and execution, dynamic

monitoring and performance evaluation.

Synthesis. Once a protocol has been fully validated, a communications engineer may

wish to program a C implementation based oin the validated specification. The protocol

247



workberch that we have developed uses REF 'E's program synthesis capability to do this

automatically. As an example, we provide part of the C implementation generated for the

simple connection establishment protocol given above. The code includes--

* a data declaration for the elobal variable holding the pointer to the current state

function,

- function prototypes for the state functions (required by ANSI C),

- the state function for the first state ("Unconnected"),

- stubs for the (undefined) functions that select one of the (possibly several) enabled

transitions in a state (e.g., unconnected trazs selector) and

- exception-handling code.

void *current state ( ); void unconnected state function ( );

void waiting_forconfirmationstate function ( );

void connected state function ( );

void unconnected state function ( )

{int trans = unconnected trans selector ( );

if ( trans = trl

pipe_write( "REQUEST-CONNECTION" );

current-state =

waitingforconfirmationstate function;

else error ( "Unknown transition %d in state %s\n",

trans, "Unconnected" ); }

The application-specific C code generator for our examples of protocol specifications

constitutes less than two pages of REFINE code. The C code generator makes use of

Reasoning Systems' C Language System (CLS) [5] which contains a domain model,

parser, printer, pattern matcher and other tools for manipulating C software.

Graphical interface. FSAs have a natural graphical representation that can form the

basis for an interactive, graphical specification environment. REFINE contains a user

interface toolkit that can be used in bui!ding such an environment. A principal component

248



of this toolkit is a graphics editor that allows placing and connecting icons on surfaces and

viewing surfaces through "viewports". In addition, REFINE supplies customizable menus

and a mouse-handling capability. There is a programmatic interface to all these capabilities
so that the displays and interaction can be highly customized. The REFINE user interface

is built on X Windows for portability.

The first step in building the graphical interface for the communication protocol workbench

in REFINE was to extend the FSA domain model to include attributes that associate FSAs,

STATEs, EVENTs and TRANSITIONs with appropriate graphical objects provided by the

REFINE graphics package-SURFACE, LINK and ICON. An FSA is associated with a

SURFACE on which its diagram will be drawn, a TRANSITION is associated with a
LINK, and a STATE with an ICON. Different icon types (diamond, circle, square) were

used to denote initial, intermediate and final states.

The next step was to customize the REFINE mouse handler functions to capture the desired

interaction. Figure 1 shows a sample screen dump.

Summary and conclusion. The communications protocol workbench is a spin-off of

KBSA technology. Communications knowledge represented in the system includes-

* local and global validity criteria for communication protocols and

* programming knowledge.

The validity criteria for protocols are stated purely declaratively in either the basic REFINE

specification language or in a language developed in REFINE for describing FSAs.

The programming knowledge includes both general programming knowledge, used to

generate executable implementations of the validity criteria, as well as knowledge specific

to the communications domain that is used to generate C implementations of protocols from

very high level specifications. The general programming knowledge represented in the

REFINE program synthesis system is what makes it easy to add new capabilities, such as

new validation criteria or automatic test generation. These new capabilities can be

described purely declaratively, and the tedious programming details can be left to the

249



REFINE program synthesis system. The general programming knowledge distinguishes

the REFINE development approach from the use of a 3rd generation language such as C or

FORTRAN in building applications with similar end-user capabilities.

The workbench has an interactive graphical user interface that admits use by a

communications engineer with no knowledge of REFINE. In addition, the workbench
uses a domain-specific language both for textually describing protocols entered graphically

and for making it easier to extend the workbench's capabilities.

Tr"-,PM,,vaM£U" ISA:

U FR (smas CRF2JIRF2 0W_ NRFL FSZ

from CRFZ to RFZ wom* ACX-CAL-CF on CR-L
from CRF2 to RF2 bunmkt ACK-CANL-CF on CR-i.
from RF2 to CRF, rmWte CANCEL-CF on C4.
fta AF2 to RFZ mte CANCEL-CF on CM
fro DS2 ts RF2 "Jmm ACK-4Nr'-CF on CR-.
km SO2 to NAZ tNRuma NACK4E-CF on CR-.
fro NFZ to D2 SZtnaN HIT-CF enC
frm FS2 to IE1FZ 0"t tft

MT-CF. ACK-IT-CF. AC3-4IT-CF. CACL-CF. 1CX
H.L-cA , a---. ACK-CA L-CF -,"- .us aoFSZC
nvkg NRFZ) X

iSA Crit b no
l:R.b a yawU Jd ala' uetwd

Figure 1: Screen dump from the protocol workbench. The window on theright shows a specification of a protocol named CFR that has been entered graphically.
The top part of the window on the left shows an equivalent textual specification generated
automatically from the knowledge base using a language defined for protocols that differs
slightly from the example in the text of this paper. Below the textual specification is the
result of an analysis step--the protocol is a valid finite machine that is non- dteterministic.
The non-determinism arises from the fact that the protocol has two transitions out of state
RF2 that have the same event type (RECEIVE) and event symbol (CANCEL-CF).
Non-determinism is expressed in REFINE using patterns and the protocol language as
follows:

exists (tri, tr2)(
trl = 'from @state-1 to @state-2 : @type @msg' &
tr2 = 'from @state-i to @state-3 : @type @msg' &
state-2 state-3)

25O



References

[1] REFINE User's Guide. Reasoning Systems, Inc., Palo Alto, CA, 1985

[2] Aho, A.V., and Ullman, J.D. Principles of Compiler Design. Addison-Wesley,
Reading, MA, 1977

[3] Sunshine, C. (ed) Protocol Specification, Testing and Verification. North-Holland,
Amsterdam, 1982

[4] Smith, D.R., Kotik, G.B. and Westfold, S.J. "Research on Knowledge-Based
Software Environments at Kestrel Institute", IEEE Transactions on Software Engineering
v. SE-11, No. 11, November, 1985

[5] CLS Data Sheet. Reasoning Systems, Inc., Palo Alto, CA, 1988

251



KNOWLEDGE-BASED SOFTWARE REVERSE-ENGINEERLNG FOR
RE-ENGINEERING AND REUSE.

Mr. Philip H. Newcomb
Principal Investigator

Software Reverse Engineering
Boeing Advanced Technology Center

Boeing Computer Services
P.O. Box 24346, MS 7L-64

Seattle, Washington 98124-0346

(206) 865-3431
philn@atc.boeing.com

BIOGRAPHY

Mr. Newcomb is a specialist in the application of artificial intelligence to software engineering in
Boeing's Advanced Technology Center. His responsibilities include the investigating of reverse
engineering for scientific, engineering, business, parallel, and embedded computing systems.

ABSTRACT

Software reverse engineering is concerned with computer-aided extraction of specifications and design
from existing software systems. Software re-engineering is concerned with the transformation of
existing systems to achieve conformance with prevailing programming standards, for language
conversion, or to support rehosting to advanced computing languages or architectures. Software
reuse is concerned with identification of reusable software for adaptation to, or use within new
computing applications. A coordinated effort to reverse-engineering, re-engineering and reuse
software may lead to dramatic reductions in software maintenance costs and reduce the cost and risks of
future development by enabling present and future CASE technologies to be applied to existing software
systems. This paper describes several problems in software reverse-engineering which may be
amenable to solution by knowledge-based technology.

Introduction

A software intensive corporation, a corporation which is fundamentally dependent upon software for the
generation of goods and services, may spend several hundred million dollars a year and employ tens of
thousands of programmers to maintain a vast inventory of business, scientific, manufacturing,
engineering and embedded mission-critical software systems. It has been estimated that these
maintenance expenditures average 80% or more of software dollars and will rise above 90% during the
1990s. These spiralling software maintenznce costs are shnnling the percentage of dollars available for
new software development and herce. pose a fundamental threat to the productivity and innovation of
American industry.

Computer Aided Software Engineering (CASE) tools, advanced programning languages and development
techniques have been shcvn to demonstrate productivity improvements from 100% to 1000% with
dramatic improvement in system reliability and quality. Heretofore, however, CASE tools have had very
little effect upon the software maintenance problem. CASE has been viewed primarily as a means to
reduce cost and risk, and improve reliability and quality during the development of new software. "Ine
impact of CASE since its maturation as a technology during the early and mid 1980s has been small
relative to the size of the overall maintenance problem. Today, less than 4% of software is maintained
with CASE tools. If a means were available for existing software to be made compatible with
available advanced software engineering tools and programming techniques, enormous savings might be
achieved in software maintenance expenditures.

253



A new technology is emerging which may reduce software maintenance costs by improving maintenance
programming practices by enabling existing software systems to be migrated into CASE tools and
advanced programming environments. Reverse-engineering and re-engineering of software for reuse
(SR3) technology is concerned with the methods, tools, and techniques that reverse-engineer and
re-engineer existing software to enable programmers to more easily maintain it and reuse it in future
software development projects. If a workable approach to SR3 can be demonstrated and fielded, its
expected value is roughly equivalent to the salvage value of a company's existing software systems plus
the savings in software maintenance costs over the expected life of the systems. The dollar value of
the software for a typical large corporation, which has 500 hundred million to a billion lines of software,
may range from $12.5 Billion to S50 Billion (based upon a crude estimate of S25 to $50 to develop and
maintain a line of code). Maintenance costs for this software easily exceeds $500 Million per year. With
a modest estimated 50% reduction in maintenance costs over a ten year period and 25% salvage rate of
existing software, a conservative estimate of the expected present value of potential savings from SR3
technology may approach S5 Billion for a typical large company.

Industry-wide there are at least a 100 billion lines of software written in 3rd generation computing
languages, such as COBOL, FORTRAN, and Jovial, C and PL/l. By the method above the dollar value of
this software ranges from $2.5 to S5 trillion and its annual maintenance costs most likely ixceed $50
Billion per year. The industry-wide potential savings in software costs over a ten year period from a
proven SR3 technology could exceed $1 Trillion.

Scope of the Maintenance Problem

Software maintenance is not just the single most costly computing expenditure facing industry, it is also
the single most serious impediment to business modernization. To remain competitive businesses must
rapidly assimilate new computing intensive technologies into their existing computing infrastructures to
provide better products and services. The rate at which such modernizationcan take place limits the
ability of businesses to react to new oportunities and to adapt to changing market conditions.

Without adequate mechanisms for managing and controlling the complexity of software, the process of
developing and maintaining systems leads inexorably to exponential explosions in system complexity and
costs. As a business changes, so must the computing systems which model and automate functions
of the busincss organization. As maintenance is performed it tends to corrupt and degrade system
structure and documentation. Maintained systems have been observed to experience cycles of
exponential growth followed by a build-up of change requests until the maintained system reaches a
critical size beyond which it cannot grow without significant restructuring or redevelopment. Around
a certain critical size which varies with applicauon and language type growth slows or becomes negative.
As pressure for change continues to build up, there is a reduction in quality and further increase in
system complexity. Eventually the systems must be re-engineered or replaced.

Widescale replacement of software systems does not seem to be feasible, even with modem application
generators. A typical large business possesses hundreds of software systems that constitute a tremendous
business investment. Enormous sums have been expended to capture and transfer into a machine
executable form the functions of the business enterprise. We have succeeded in the last thirty years in
locking up in obsolete programming languages much of our knowledge about the way our businesses
operate and our complex information systems function. For most of these systems, their replacement
requires replication or extraction of the original requirements, the knowledge of what the system was
intended to do, before ihe system can be upgraded or replaced.

Reverse Engineering for Re-engineering and Reuse.

A coordinated effort to reverse-engineering, re-engineering and reuse software may lead to dramatic
reductions in software maintenance costs and reduce the cost and risks of future development by
enabling present and future CASE technologies to be applied to existing software systems. Software

254



reverse-engineering is concerned with extracting design documentation and high-level specifications
from source code, and storing this information in data-dictionaries and CASE tools. Once the code and
design are captured by CASE tools, software maintenance.is performed more reliably and economically
than by manual means. . Software reverse-engineering may be done alone or in conjunction with
software re-engineering. Software re-engineering is concerned with the restructuring, transformig and
instrumenting transformation of existing existing source code of systems to achieve conformance with
prevailing programming standards, for language conversion, or to support rehosting to advanced
computing languages or architectures. Software reuse is concerned v, ith the identificauon of reusable
software for adaptation to, or use within new computing applications. A class of tools closely related
to software reverse-engineering and re-engineering tools are software maintenance engineering tools.
Software maintenance engineering tools are smart-editing and debugging tools and environments that
help maintenance programmers analyze, debug, and test source code. Reverse-engineering, re-
engineering, reuse and maintendnce engineering tools salvage an organization's investment in emsting
software by enabling it to more effectively manage and control its information resources, by enabling
maintenance programmers to improve their ability to understand and change software, and by enabling
developers to more easily identify and reuse existing software. Dramatic reducuons in software
maintenance costs and reduction in the cost and risks of future development will result if a complex set
of methodological and functional problems are solved that lead to a comprehensive technology for
reverse-engineering, re-engineering and reuse of software large businesses.

State-of-the-Art

Recently, CASE vendors begun investigating transition pathways for reliably and economically migrate
existing software into their CASE tools. While reverse-engineering has been applied successful on a
small scale, tools and techniques that reliably and cost-effectively reverse-engineer major systems or
very large collect!ons of programs are still not yet available. Conventional technology has failed to
formulate a satisfactory approach to many significant and outstanding problems reverse-engineering and
its related disciplines.

SR3 Problems Amenable to a Knowledge-Based Solutions

This paper describes several problems, which challenge conventional approaches, whose solution, if
possible, would contribute incremental advancement towards an overall solution ol 'ue reverse-engineer
for re-engineering and reuse problem. The results of the investigation of these problems would prov ide
guidance and direction to an overall program to solve the problem of upgrading existing software to
achieve compatibility with modem computing architectures and software engineering methods.

Problem 1: Reverse-Engineering and Re-engineering of COBOL Business Systems

Despite optimistic vendor claims, reverse-engineering of COBOL into Computer Aided Software
Engineering (CASE) tools that complement a business system software development life cycle is still a
largely unsolved problem. COBOL is the single most widely used business application development
language. It is the standard for most commercial/business application development. Successful
reverse-engineering of COBOL will provide the highest return on investment. Almost all commercally
available reverse-engineering and re-engineering tools have been developed specifically for COBOL.
While vendor products are maturing quickly, the two most important elements of the overall
reverse-engineering and re-engineering problem, reverse-engineering of process models and data models
from COBOL systems, are still unsolved, particularly for very large systems, by any available tool.

The benefits of reverse-engineering of b-siness systems is quite large. COBOL maintenance
constitutes the single largest computing cost of most corporations and in the government sector. Much
maintenance costs are attributable in one fashion or another to poorly structured and poorly understood
software and uncontrolled definition and usage of data.

The data modeling problem is especially hard and complex because of the problem of resolving data

255



definition and usage across very large systems consisting of hundreds of individual programs in hhich no
standardization or convention was imposed upon the selection of record element and local and common
vanable names. In very large systems an alias rate of 30 data-names to single common data element is
not uncommon, even after the application of tools which attempt to automatically reduce data naming
redundancy. Most of these tools require manual inspection of code to resolve such data usage conflicts.
Analysts must visually inspect the program data and procedure sections to resolve the way in which data
is used. Most of these tools do not possess mechanisms for locating where data elements are used
within a program space or for categorizing the kinds of programming idioms which operate upon data
elements. Such mechanisms could significantly reduce the complexity of the task of performng data
definition and usage resolution, a task which must be performed for a common data dictionary to be
defined for a company. A few of tools are providing mechanisms for automating changing of data
name in the procedure sections of programs from a common data dictionary, but little help is available
to analysts to resolve how data elements should be renamed to clarify their usage and achieve a common
data dictionary definition.

Three forms of re-engineenng tools are becoming available. COBOL restructuring tools are available
from several vendors which automate the transformation of spaghetti code into well-structured code.
Often what results from such restructuring is somewhaz suspect. In many test cases the code does not
function correctly after it is restructured. Maintenance programmers frequently reject restructunng
tools because the tools make the code unfamiliar to them. Database re-engineering tools are available
from a few sources which will convert an RIS database into a Relation database. Such tools will read
the record structures described in the data section of program, convert the data definition through
several stages into an Entity Relationship (ER) model, and then convert the ER model into the
relational tables of a Relational Database and transform the program to run with the Relational Database.
A number of vendor products are beginning to automatically produce design artifacts such as st.-:ture
charts, data flow diagrams, data dictionaries and ERA models frc, n parsed COBOL source code and Job
Control Language. These products are useful for documenting the design of existing COBOL systems.

Knowledge-based techniques can provide assistance in the reverse-engineering of business systems by
providing techniques for parsing code to generate abstract syntax trees of the COBOL programs v hia:h
make up a large system. A composite forest of abstract syntax trees (ASTs) of all the programs which
make up a system constitutes a machine readable and manipulabl: formal structured representation of
an entire system. By means of powerful pattern-matching and transformational rules available in some
knowledge.based tools the individual programs of a large system can be altered by means of correc-ness
preserving transformations and improved code can be regenerate from the modified abstract syntax trees.
The substitution of data names consistent with the data dictionary is accomplished by means of the
straight-forward transformation of the program's AST and the regeneration of the corrected programs of
the system. A knowledge-based approach can be applied to process modeling as well as to data
modeling problems.

An important data modeling problem is the extraction of consolidated data dctionaries from large
systems. This can be accomplished by developing an intelligent assistant to analyze the data usage of
individual programs and data flow dependencies between programs and automate the process of resolving
the usage and definition of data.

Whatever solution is found eventually is not likely have a single vendor source. It is likely to be some
carefully selected composite of several vendor tools, internally developed management practices, and
procedures and methods for methodically upgrading and testing the software to be reverse-engineering
and re-engineering. The solution must be cognizant of improvements in software engineering practices
and languages and compatible with major trends in repositories and systems applications architec:lres

Problem 2: Mapping Heterogeneous Systems Into Homogeneous Systems.

Th mapping of a heterogeneous system into a homogeneous system is concerned with the identification
and development of ools and methods that would facilitate re-engineering of large heterogeneous

256



systems, systems written in many 3rd generation languages, into homogeneous systems, written in one or
two advanced (4th or 5th generation) languages. To accomplish this the AS IS model, consisting of a
data and process model of all the programs and data bases of the system, must be extracted by analysis,
and those of the systems components which are reusable must be mapped onto a TO BE model of the
desired system and rewritten in the advanced language.

Many very large applications are hybrid systems which perform business and engineering or scientific
functions. Such systems are implemented in several programming languages, such as JCL, COBOL, MARK
IV, and FORTRAN. Nearly all conventional vendor-supplied reverse-engineering products are made
for systems written in a single language, namely COBOL. These products cannot be used for
reverse-engineering or re-engineer of such large and ccmplex heterogeneous systems.

A knowledge-based approach to re-engineering of he erogeneous systems into homogeneous systems may
be possible. The generic parser generatoms and program rewriting tools available through some
knowledge-based systems enable the relatively cheap and reliable creation of parsers and domain models
for many computer languages. On a workstation equipped with sufficient main storage, secondary
storage, and virtual memory, the parsers and domain models of the languages in which the system's
programs are written can be made to be co-resident and non-conflicting so that the programs of a very
large heterogeneous system can be read into a single large AS IS model that will be resident in virtual
memory. Ideally, both the AS IS system model as well as the TO BE system models would permanently
reside in a persistent knowledge base and all analyses and re-engineering tranformations would take
place against these model.

One step in the re-engineering of the heterogeneous system involves re-engineering the data model of
the system, as discussed in problem 1. Re-engineering also involves extraction of reusable program
logic from the process model of the system. The program logic which will be preserved in the TO BE
system model is a purified representation of the business rules. Extraction of business rules requires
the analysis of program logic to formulate condition tables which capture and depict the conditions
under which the computational processes occur in a program. Automatic formulation of condition
tables of a programs logic can be accomplished with knowledge-based tools which can analyze for
dependencies between data-flow and control-flow in a program and generate data structures which
represent these relationships in the canonical formalism of a condition table. Once these condition
tables are extracted from the code, there are tools which will translate condition tables into SQL. If a
systematic approach is taken to construct maximally uniform parsers and domain models, it may be
feasible to employ common data and control structure analysis techniques to extract the condition tables
for many languages.

Problem 3: Extraction and Interchange of CASE Design Information

Industry has not yet created a common standard for CASE design information interchange. Such a
standard would define the composition of software engineering products and the interrelationships
between software engineering processes. The absence of such a standard restricts freedom in the use,
application, and interaction of CASE tools. It imposes conversion costs and forces overcommitment to a
single vendor's tool set. It is essential that interfaces standards be defined that will perrrut the
interchange of design information between CASE products and tools. Design interchange mechanisms
must be developed that enable flexible integration of sets of plug-compauble tools ,ltii the broadest
and highest quality functionality.

Many CASE vendors have created closed systems that do not support tie import and export of design
information to and from of their tools. With more than fifteen national and international CASE
standards organizations considering CASE standards, it is unlikely that agreement on CASE design
interchange format will be reached any time soon.

Knowledge-based tools may prove to be very useful as a lingua franca between CASE tools and
non-standard CASE design interchange formats. Using parsers, readers, writers, and transformations

257



applied to the. domain models of various tool's published import/export formats, interchange of
information between the tools could be accomplished relatively easily.

If a sufficiently rich CASE design interchange format existed, knowledge-based tools could be routinely
employed along with conventional tools. As software engineering evolves, tools for software
reverse-engineering, re-engineering, and reuse, formal verification, etc. will augment the traditional
CASE tools for design, analysis, code, and so on. The formal knowledge-based models of the K.BSA
facets could prove of great benefit in establishing the foundation of a CASE design interchange format
standard which can perrmt the flexible interchange of many kinds of software engineering inform ation
between knowledge-based and conventional software engineering tools.

As an example, while many conventional CASE tools possess such useful capabilities such as syntax-
directed editors or action diagrams, they do not automatically layout design artifacts such as structure
charts or data flow diagrams. Generation of such presentations has already been accomplished by
many knowledge-based tools for many kinds of CASE design artifacts. The layouts generated by auto-
layout capabilities could be made available to conventional CASE tools through a standard CASE design
interchange format.

Provided that CASE tool interfaces with their data bases were simple, clean and well defined they right
be replaced by a knowledge-base. Such a substitution would permit the flexible integration of
knowledge-based tools within a vendor's tool set.

Problem 4: Modernization of 3rd Generation Procedural Languages

Most software is expressed in 3rd generation languages that were created long before computer science
matured as a discipline. The most widely used computer languages such as COBOL and FORTRAN are
very inelegant, low-level languages when compared to many of he rule-based, non-procedural languages
used by the artificial intelligence community. It is well-known that computational formalisms such as
procedural, rule-based, logic, and object-oriented programming are ultimately computationally
equivalent. These formalisms differ significantly, however, in the way in which they represent a
computation and hence in the amount of effort required to express a programming problem and
maintain a programming solution. Through its development of more and more advanced computing
languages computer science has made continuous progress towards the objective of achieving higher and
higher levels of functionality from software with less specification. In general, the non-procedaral
programirung forms provide significantly more compact (up to a factor of 10 or hi.'gher) representation
of programming problems than do their procedural cousins. Urfortunately, the cultural inertia of 3rd
generation software has precluded the wide-scale Lse of many of very promising advances in computer
languages.

Re-engineenng of 3rd generation languages into more advanced 4th and 5th generation languages could
produce significant reductions in the sizes of the computer programs, and facilitate the use of
sophisticated programming environments and CASE environmenL., such as the DoD's Ada Programming
Support Environment (APSE). Like-to-like translations between somewhat comparable computer
languages (e.g. the translation of scientific FORTRAN software into ADA), could be accomplished
relatively straightforward with knowledge-based re-engineering tools and attain great leverage from from
such well-funded government programs as STARS and SEI. Conversions between procedural and
rule-based languages is much harder because it requires deep sensitivity to subtle differences betveen
the semantics of different programming formalisms.

There are many incremental levels of attainment achievable in the translation of 3rd generation software
into higher level languages. High quality conversions between two procedural software languages
such as FORTRAN and ADA will probably prove feasible with kmowledge-based parsers and
language-pair specific transformation libraries. A much more difficult problem is the extraction of
high quality reusable non-procedural software specifications from procedural code.

258



Problem 5: Reverse-engineering into the Knowledge Based Software Assistant

Many commercially available CASE tools and methods religiously implement some vanation on the
waterfall method of the software development life-cycle (SDLC). This software development method
has created by the the mandate of government and industrial software development standards. The CASE
tools that adhere to these standards implement assumptions about design methods and development
techniques which, it can be argued, have become antiquated because of new advances in computer
science, particularly in the knowledge-engineering, rapid prototyping, and automatic programming
fields.

The Rome Air Development Center's Knowledge-Based Software Assistant itself is a government
sponsored research effort in knowledge-based software engineering that anticipates the emergence of a
new knowledge-based SDLC which will be manifested within a mature KBSA within a few years. These
new methods and standards of the KBSA may well revolutionize software development and lead to the far
more rapid development of much higher quality software than is attainable by means of currert CASE
tools.

Methods and techniques that could reverse-engineer existing software into a form compatible with the
advanced software development tools and knowledge-bases of KBSA facets (or a collection of comparable
commercial CASE tools) could set the stage for the eventual transition from conventional to
knowledge-based software development methods.

As software is gradually transitioned into current generation CASE tools and into higher level languages,
and as KBSA concepts, facets and underlying technology migrate into indstry, the difficulty of the task
of reverse-engineering and re-engineering of existing software systems for rease and maintenance
w'hin the KBSA will decline.

Conclusion

Reverse-engineering, re-engineering and reuse have recently become centers of focus at major software
engineering conferences and forums. There have been a flood of vendor product announcements, but
for the most part, the products have fallen short of vendor claims. Reverse-engineering and
re-engineering to migrate software into CASE has an extraordinarily high potential return on investment
to end-users in maintenance savings. The application of CASE tools to existing software systems
provides the basis for a dramatic expansion of the CASE market that has spurred CASE vendors to race
to develop reverse-engineering and re-engineering tools and capabilities, particularly for the huge world
of COBOL applications. But, there are a numberof hard problems and complex issues in software
reverse-engineering, re-engineering and reuse, obscured behind the flurry and excitement of quick and
easy fixes, that will require careful study and a well thought out approach. It is not surprisingly, given
the many years of research that have gone into knowledge-based technology, particularly into language
systems and program transformation systems, that these types of tools have such great leverage potential
on reverse-engineering for re-engineering, and reuse problems.

259



"Standards, Enabling or crippling?"

Position Statement

Joshua Glasser

Honeywell Systems & Research Center

Overview

The emerging X standard, once in place, will provide a common platform of low level
graphics and windowing services. This will in itself be of great benefit. But, such low
level services, while vital, are not in themselves all that useful to the KBSA developer. Our
needs lay in higher level graphic and user interface services. Howeve;, no standards for
these higher level services have emerged. A major factor for the nonemergence of these
higher level standards has been the inability to share prototype systems between
developers. Thus, the true value of having a standard such as X: With X in place we will
have a common ground for experimentation and refinement at these higher levels.

The X Window System, or X for short, is a network transparent window system. X
allows you to run multiple applications simultaneously in windows, generating text and
graphics in monochrome or color on a bitmap display. Network transparency means you
can use a display on one mah'ne and run application programs on other machines scattered
throughout a network, and have the applications interact with you using the full graphics
facilities of the system, with the identical user interface as when you run the applications on
your local machine. X is designed to permit applications to be device independent; that is,
applications need not be rewritten, recompiled, or even relinked to work with new display
hardware.

X provides facilities for generating multi-font text and two dimensional graphics (such as
points, lines, arcs, and polygons) in a hierarchy of rectangular windows. Every window
can be thought of as a "v-tual screen", and can in turn contain windows within it (called
subwindows), to arbitrary depth. Windows can overlap each other, like stacks of papers
on a desk, and can be moved, resized, and restacked dynamically. Windows are designed
to be inexpensive resources; applications using several hundred subwindows are common.
For example, windows are often used to implement individual user interface components
such as scroll bars, menus, buttons, and so forth.

Although you can think of yourself as a client of the system, in network terms the
application programs you run are called clients, utilizing the network services of the
window system. A program running on the machine with your display provides these
services, and so is called the X server. The server acts as an intermediary between you and
the applications, handling output from the clients to the display, and forwarding input
(typed on the keyboard or entered with a tablet or mouse) from you on to the appropriate
clients for processing.

Clients and servers use a form of interprocess communication to exchange information.
The syntax and semantics of the elements of this conversation are defined by a
communication protocol. This protocol is the foundation of the X Window System.
Clients use the protocol to send requests to the server to create and manipulate windows, to
generate text and graphics, to control input from the user, and to communicate with other
clients. The server uses the protocol to send information back to the client in response to

261



various requests, and to forward keyboard and other input generated by the user on to the
appropriate clients.

Since a network round-trip is a very expensive operation relative to basic request
execution, the protocol is primarily asynchronous in nature, and data can be in transit in
both directions (client to server and server to client) simultaneously. After generating a
request, a client typically does not wait for the server to execute the request before
generating a new request. Instead, the client continues immediately, generating a stream of
requests which are eventually received by the server and executed. The server does not
acknowledge receipt of a request, and in most cases does not acknowledge execution of a
request. (This is possible because the underlying transport being used is reliable.)

The protocol has been designed explicitly to minimize the need to query the window
system for information. Clients should not depend on the server to obtain information
which the clients initially supplied. In addition, clients do not poll for user input by
sending requests to the server. Instead, clients use requests to register interest in various
events, and event notifications are sent asynchronously by the server. Asynchronous
operation may be one of the most significant differences between X and other window
systems you may be familiar with.

When client and server reside on the same machine, communication between them often
will be implemented using shared memory, for highest performance. When client and
server reside on different machines, cormmunication can take place over any network
transport layer providing reliable, in order delivery of data in both directions (usually called
a reliable duplex byte stream). In particular, TCP (in the Internet protocol family) and
DECnet streams are two commonly used transport layers. To support distributed
computing in a heterogeneous environment, the communication protocol is designed to be
independent of operating system, programming language, and processor hardware. Thus,
it is possible to simultaneously run applications written in multiple languages under
multiple operating systems on multiple hardware architectures, all sharing a single display.

Although X is fundamentally defined by a network protocol, most application
programmers do not want to think about bits, bytes, and message formats. Instead, an
interface library is used. This library provides a familiar procedural interface, masking the
details of the protocol encoding and transport interactions, and automatically handling the
buffering of requests for efficient transport to the server, much as the C standard I/O library
buffers output to minimize system calls. The library also provides various utility functions
which are not directly re!ated to the protocol but which are nevertheless important in
building applications. The exact interface for this library will differ for each programming
language. The library for the C programming language is called Xlib. The library for the
Lisp language is called CLX.

262



The figure below shows a biock diagram of a complete X environment. Each X server
corols one or more screens, a keyboard, and pointing device (typically a mousc) Wvj:h one
or more buttons on it. There -may be many X servers: typically there is one p.: worksttion
on your network. Applications can run on any machine, even those .,ithout X servers. An
application might communicate with multiple servers simultaneously (for example, tw
support computer conferencing between individuals in different locations). Multiple
applications can be active at once on a single server.

Application
(client)

Xib (cLX) - Netw'ork Server Worksttion l

Many facilities that are built into other window systems are provided by client libraries in
X. You will not find specifications of things like menus, scroll bars, &id dialog boxes, or
the interpretation of particular key and button sequences in X. To the exent possible, the
protocol and Xlib have been designed to axoid mandating such policy decisions. That is,
the protocol and Xlib should be viewed as a construction kit, providing a rich set of
mechanisms, with which a wide variety of user interface policies can be implemented.
{cite:X Window System: C Library and Protocol Reference)

There have been many toolkits implemented on top of Xlib -.hich provide higher-level
graphics libraries for things such as menus, scroll bars, dialog boxes, etc..

The standard one of these is the MIT X Consortium's Xt tool kit for C., which is
distributed along with X by MIT.

TI's CLUE is their attempt at a toolkit, to lie on top of CLX, that provides a conceptual
model similar to that of Xt, capturing the intrinsics of Xt and merging them with CLOS to
make these services available in lisp.

(It has been noted that the current release of CLUE has some problems in that it does not
yet provide everything that Xt des. However, TI is in the process of extending CLUE and
should address this immediate problem future releases of CLUE software.)

Our (Honeywell's) KUIE package is a toolkit, consisting of a set of object classes and
methods that may be used to construct application user interfaces, designed to support
KBSA activities.

Those KBSA activities demand network transparency- the ability to have an interactive
program run on a remote computer yet control a UI on a local workstation. And to provide
this, the KUIE system must be implemented atop a portable, networked window system,
or provide such a system itself.

X achieves the main requirement of a networked window system. Furthermore, the
number of platforms supporting X and the scope of the X standard (OSF, ANSI/ISO)
means that X, today, already delivers a level portability that most other window systems
may never achieve.

263



Since we are implementing KIE on top of CLUEICLX, and CLUE/CLX delivers not
only X, but those higher level capabilities of the Xt toolkit, and on a CLOS platform
besides, KUIE benefits by having to concern itself with a minimum of low level details.

Thus, we have very much brought into the X standard. X is out there, its being widely
used, it is fairly mature, it works well, and its free.

We feei that the X standard, and the common ground for experimentation and
development that X would provide, is (will be) very much an enabling contribution to the
success of ihe KBSA program.

References -- 1) X Window System: C Library and Protocol Reference Robert
W. Scheifler, James Gettys, Ron Newman Digital Press, Bedford MA, 1988

264



"'Standards, Enabling or crippling?"

Position Statement

Aaron LarzoIn

Honeywell Systems & Research Center

Overview

Below I present an overview of CLOS, some comments on standardization in general and
a brief statement about standardization in the KBSA.

£Cmmon.Lisp Objects System (CLOS) overview.

CLOS defines an object oriented language embedded within Common Lisp. The ANSI
X3J13 committee has formally adopted the CLOS specification as part of the forthcomming
ANSI Common Lisp standard. CLOS is based on research and experience with a number
of object oriented programming languages including SMALLTALK, FLAVORS, and
LOOPS. The following (taken without permission of the authors) is an excerpt from the
introduction to the specification.

The Common Lisp Object System is an object-oriented extension to Common Lisp as
defined in "Common Lisp: The Language", by Guy L. Steele Jr. It is based on generic
functions, multiple inheritance, declarative method combination, and a meta-object
protocol ...

The fundamental objects of the Common Lisp Object System are classes, instances,
generic functions, and methods.

A "class" object determines the structure and behavior of a set of other objects, which
are called its "instances". Every Common Lisp object is an "instance" of a class. The
class of an object determines the set of operations that can be performed on the object.

A "generic function" is a function whose behavior depends on the classes or identities of
the arguments supplied to it. A generic function object contains a set of methods, a
lambda-list, a method combination type, and other information. The "methods" define the
class-specific behavior and operations of the generic function; a method is said to
"specialize" a generic function. When invoked, a generic function executes a subset of
its methods based on the classes of its arguments.

A generic function can be used in the same ways that an ordinary function can be used
in Common Lisp; in particular, a generic function can be used as an argument to
FUNCALL and APPLY and can be given a global or a local name.

A "method" is an objecL that contains a method function, a sequence of "parameter
specializers" that specify when the given method is applicable, and a sequence of
"qualifiers" that is used by the "method combination" facility to distinguish among
methods. Each required formal parameter of each method has an associated parameter
specializer, and the method will be invoked only on arguments that satisfy its parameter
specializers.

265



The method combination facility controls the selection of methods, the order in which
they are run, and the values that are returned by the generic function. The Common Lisp
Object System offers a default method combination type and provides a ftcility for
declaring new types of method combination.

Standardization

In order for a standardization process to begin, several things must be in place. First the
thing to be standardized on must be understood well enough to know along what
dimensions the standardization effort should proceed. Secondly, there must be a
"'committed supporter". A committed supporter is a person/organization that is energized
enough to start the standardization effort, find people interested in being on the standards
committee and handle the initial administrative overhead associated with setting up
communication paths among the members of the standards connittee. Third, there must
be enough other people that understand the issues involved and agree that standardization is
worthwhile.

A standardization process should adhere to several policies. In order to gain widespread
acceptance, the standardization process should involve the affected community as early as
possible and remain open to community revie,. The resulting standard should remain
under the control of the community, i.e. it should be "non proprietary". Since standards
in software tend to embody abstract and complex concepts, the community needs to have
hands on experien, - with the standard in order to understand the issues being standardized.
The most desirable way to get hands on experience is to have an inexpensive (in dollars and
time) reference platform. The standard should "be at the right level", specifically lower
level details should either be hiden, or handled by referencing other standards that
encapsulate them, of course if other standards are referenced it is important that the way the
standards interact be described. And lastly, the standardization process itself should stress
the codification of existing knowledge and practices over the development of new ideas
(standards organizations are poor places to do research).

There are several effects of a standard. Standards tend to leverage effort because people
have some ownership of the ideas, expect that the standard will be valid for a period of
time, and a belief that the standard will leverage effort. Typically standards restrict research
in the area standardized on (if you have a standard presumably you understand the problem
well enough that further research is not necessary). Also, since standards are rarely
complete solutions to a problem, they tend to bring researchers together during the
standardization process and point out (presumably higher level) areas where further
research is necessary prior to standardization. Lastly, standards are slow to change.

The CLOS standardization process was instigated by several people who had substantial
knowledge of object oriented programming sy stem developmet. Xerox Corp sponsored a
development effort to create a freely available reference model and set up a forum where
interested people could communicate. During the development of the reference model,
many substantial changes were made based on the usage of a variety of users in industry,
.and acedemia. The resulting standard has been turned over to ANSI and included as part of
the Common Lisp standard. To date the CLOS specification has been widely distributed
and accepted by a large community, including most of the Common Lisp vendors.

Standardization in the KBSA

266



The decision to standardize something is a cost trade off. On one hand standardization
tends to reduce redundant efforts, on the other hand it tends to slow the evolution of the
thing being standardized on.

Before the KBSA can achieve a tight integration, it is necessary that a standard
computational model and notation be agreed upon so that cooperative development of the
information structures of the overall KBSA can begin. Although the selected computational
model may not be the one used by the final KBSA, it is important that multi facet concerns
begin to be addressed within a common formalism. The price paid for standardizing on the
computational model is that we will undoubtedly be developing better computational
models during the KBSA research, and hence will not be using the "latest and greatest'
language structures in the standard. I believe this is a necessary cost of cooperative
research on a project as complex as the KBSA. The complexity of the information model
for the KBSA is going to require hands on experience by a number of people, and I believe
that the development of the overall information model of the KBSA must begin to take
precedence over the development of new computational systems.

267



The Information Resource Dictionary System Standard

Dr. Henry C. Lefkovits
AOG Systems Corporation

Harvard. MA

The Information Resource Dictionary System (IRDS) became an ANSI Standard in October
1988 and a Federal Information Processing Standard (FIPS) in April 1989. The IRDS is a
software tool which can be used to control, describe, protect, document, and facilitate use
of an installation's information resources.

The IRDS database is composed of the IRD Schema and the Information Resource
Dictionary (IRD): the former contains a description of the structure of the IRD. Both use a
strongly typed Entity-Relationship model. Relationships are binary, and both entities and
relationships can have attributes. Attributes can be grouped to a single level.

The IRDS contains extensive facilities that allow versioning and life cycle phase control in
the IROS database. Multiple versions of an entity can exist and an audit trail is maintained
Security facilities for access control are specified.

The IRDS also contains facilities that allow an installation to fully customize the IRD Sciema
hence, the IRDS can be used to model the information resources environment of interest to
that installation. The IRDS can then serve as the central repository for the descriptions of
all the information resources of interest.

rhe IRDS Services Interface proposed standard is currently undergoing public review This
standard specifies a low-level programmatic interface to the IRDS database. This interface
will enable access to the iRDS by those tools used by the installation which require access
to metadata.

An important aspect of the IRDS is that not only can the IRDS serve as a central repository
at a single site, but facilities are specified which allow transfer of metadata from one
Standard IRDS to another Standard IRDS. Information can be extracted selectively and sent
to another IRDS; the format of the transfer file is the subject of a forthcoming standard
entitled the IRDS Export/Import File Format.

269



RELATLNG FORMAL AND INFORMAL DESCRIPTIONS
OF SYSTEMS

Lewis Johnson and Jay J. Myers

USC Information Sciences Institute
4676 Admiralty Way Marina del Rey, CA 90292

(213)822-1511 johnson@isi.edu jmyers@isi.edu

Lewis Johnson is a Research Assistant Professor of Computer Science at USC and
project leader of the ARIES project at ISI. He has a Ph.D. in Computer Science
from Yale University.

Jay Myers is a member of the ARIES project at ISI working on the acquisition,
explanation and simuiation of formal specifications. He has a Ph.D. in
Psychobiology from the California Institute of Technology.

Abstract

Communications in natural language are important for knowledge-based software
assistants. Natural language understanding tools can assist the requirements
acquisition process. On the other hand, translating formal system specifications
into English can aid understanding and validation. We are now extending the
natural language communication capabilities of our system, aiming toward
automated generation of documentation. In so doing, we are breaking down the
barrier between informal and formal specifications. Natural language is now
viewed not only as a communication medium, but also as an intrinsic part of
system representations themselves. \Ve are adopting semi-formal representations.
which intermix natural language and formal notations. Semi-formal descriptions
also serve as an appropriate medium for requirements acquisition, allowing
engineers freedom to delay modeling commitments.

1. Introduction

Communications in natural language have long been recognized as essential to

the success of knowledge-based software assistants. For several years now, ISI

has been conducting research in natural language in the context of developing

This research was supported by the Air Force Systems Command, Rome Air Development
Center, under Contract F30602-85-C-0221. Views and conclusions contained in this report are
the authors' and should not be interpreted as representing the official opinion or policy of RADC,
the U.S. Government, or any person or agency connected with them.

271



formal specifications. While we represent our specifications in a formal language.

Gist [4J, we regard natural language to be an important medium for

communicating requirements and specifications. Clients express their needs in

natural language, and are generally unable to interpret formal specifications.

System developers also benefit from natural language summaries of formal

specifications, as an aid to understanding and validation. We therefore have

been engaged in building tools for translating between natural language and

formal descriptions of systems. In this paper we will assess the status of our

natural-language-related efforts, noting where technology spinoffs are under way

and where technical effort will be required to achieve further progress.

The SAFE project (Specification Acquistion From Experts) was an early

natural language effort at ISI [1, 3]. The SAFE system would analyze

paragraphs of natural language text describing a system to be built. From this

input, it would then attempt to generate a formal specification of the system. It

made use of context information to complete the informal descriptions. Among

the natural language imprecisions it could resolve were: supplying missing

operands for actions and relations, completing incomplete references, determining

the scope of conditional statements and detecting implicitly stated associations

among objects.

Working in the opposite direction, the Gist Paraphraser [131 generates natural

language translations in order to make formal Gist specifications more

understandable. It can be used to paraphrase individual specification constructs

in English. or to output a narrative summary of an entire specification. The Gist

Behavior Explainer [14] similarly generates English explanations of behavior

traces output by symbolic evaluation of a specification. These tools were initially

developed as part of the Tools for Specification Validation and Understanding

project of RADC [2], and subsequently revised and extended in the Knowledge-

Based Specification Assistant project [7]. The coverage and versatility of the

272



Paraphraser have been significantly extended, so that it now covers all constructs

in Gist, and can generate a range of possible natural language paraphrases 19].
Figure 1-1 shows an example translation of Gist by the Paraphraser.

type physical-object
with {singleton relation

physical-obj ect-location (location) };

type aircraft subtype of physical object
with {procedure land [

definition
atomic {remove in-flightOo

update self.physical-object-location
to a ground-location}}

All aircraft are physical-objects. Each physical-object has one
physical-object-location.

Land is a procedure of an aircraft. To perform a land, the system
simultaneously (atomically) does the following. It deletes the fact that
the aircraft is in-flight. It updates the physical-object-location of the
aircraft to any ground-location.

Figure 1-1: Example of Paraphraser output

2. Assessment of Previous Work

We now have considerable experience in paraphrasing formal specifications.

Due to the careful attention given to its robustness, efficiency and ease of use,

the Gist Paraphraser has become a practical facility. It has served as an effective

tool for validating specifications. By presenting a significantly different view of a

specification, the Paraphraser frequently uncovers problems which are less

evident in the original formal syntax. For example, it often reveals missing count

restrictions on relations, such as the restriction that physical objects have only

one location.

The Paraphraser also has proven to be a useful tool for training. We have

made extensive use of the Paraphraser in our training courses for the Knowledge-

273



Based Specification Assistant. both when teaching the Gist language and when

demonstrating the evolution transformations performed by the Assistant.

Trainees find it helpful to be able to make arbitrary changes to a specification

and to see these changes reflected in the natural language paraphrase.

While our natural language paraphrasing capabilities have continued to

improve, we have not addressed the problem of interpreting natural language

input since the SAFE project. We are not alone in this regard: other

researchers, such as the developers of the ', system [5], have not pursued further

research in natural language understanding. There are a number of reasons for

this retrenchment.

First, natural language understanding systems have great difficulty tolerating

incomplete knowledge. When a sentence contains a number of words unknown

to the system, its meaning is much more difficult to discern. Current

understanding systems have been successful primarily when they can exploit

extensive domain-specific knowledge with restricted natural language inputs.

Natural language generation systems, on the other hand. can more readily

function with incomplete knowledge. For example, while the Paraphraser can

utilize grammatical information about selected definitions to help it to formulate

appropriate translations, it also has default methods to produce somewhat

clumsy, but understandable, translations when the grammatical information is

not provided.

Second, natural language understanding systems often fail to scale up because

of the increasing problem of ambiguous interpretations. In the SAFE project,

ambiguity was resolved by having the user choose among possible interpretations.

However, this reliance upon user intervention is likely to increase as the system

scales up. Furthermore, there is a risk that such choices of interpretation will be

forced at thz wrong time. Requirements analysts need the freedom to focus on

274



restricted aspects of the problem at certain times, and to postpone modeling

decisions until they become important. A naive design for a natural language

understanding system would force the user to choose an interpretation whenever

an ambiguity arises, to allow the system to parse the input. However, making

choices of interpretation, e.g., deciding which natural language statements

describe events, states and objects. involves making modeling decisions. An

effective natural language processing system must tolerate ambiguity and delay

interpretation until enough information becomes available to resolve the

ambiguity, or until the analyst is ready to make the necessary modeling choices.

3. Application: The Documentation Problem

Of the natural language processing tools that we have developed, the

Paraphaser is the one that is closest to practical applicability. We have recently

undertaken to put it to the test in our own work, in order to generate

documentation and on-line help for our evolution transformations (described in

these proceedings [8]).

The benefits of documentation to people trying to understand systems have

been well established through empirical studies. Schneiderman's results

[11] emphasize the importance of providing the right kind of documentary

information, i.e., data structures vs. control flow; whereas the choice of medium

used to present the documentation, i.e., text vs. graphics, was not important.

Soloway's work [12] shows that documentation is often consulted on an "as

needed" basis when the reader has particular questions that need answering. A

good documentation system must therefore be flexible enough to provide

information from a number of different points of view, so that the user's

questions are likely to be answered. The notation of the documentation must be

rich enough to accommodate these different points of view. Natural language

text is the only medium with the versatility to capture the wide range of

documentary information that is needed.

275



Documentation is particularly important for the evolution transformations used

to elaborate a specification. Because evolution transformations are a new

concept, they are unfamiliar to potential users. We need to be able to provide a

variety of types of information about these transformations and to present this

information at various levels of detail. The user may wish to understand the

function of a transformation in general terms, or to receive a detailed account of

what effects it will have on the specification. Users need to be able to examine

how a transformation works and to determine what substeps are involved (these

substeps may be useful to the user even if the transformation as a whole is not).

Each transformation applies to a series of arguments; the user needs to know

what each argument is, what its type is, how it will be used and how it is input

to the system.

To meet these needs, we developed an on-line help facility for the evolution

transformations in the Specificaticn Assistant. Figure 3-1 shows the on-line help

for the command Parameterize. It provides a help string describing the

command, lists the inputs required, and indicates which preconditions must be

met. The system is also able to provide interactive help when transformations

are applied. That is, when the user is trying to apply a Parameterize

transformation, the system will step the user through the process, prompting for

each input with messages such as "Please mark the the term to be parameterized

(a parameterizable declaration). Mark with meta-Mouse-L". These messages are

constructed by examining the attributes of the parameters and assembling text

strings. In addition, we aqtomatically generate similar off-line documentation for

inclusion in our reports and manuals.

In order to support both on-line help and documentation, we developed a

representation for the transformations that combined formal descriptions and

explanatory natural language text. Each form defined a nested collection of

objects and attributes, where some of the attributes were formal and some were

276



*la=- pARAMETERIZE

DEM: Term To be parameterized, a Parametenzeable construct;

chosen by (Meta-LeftMouse)
NEW-ROLE: New parameter, a role;

chosen by (User typein)
L.xdltion

The new parameter type mut be declared,
there cannot be outstmanding static analyns errors.

Figure 3-1: Documentation for the Parameterize command

not. The following is a breakdown of the common attributes and their values.

" name - symbol

" help-string - text

* display-name - text

" inputs

o name - symbol

o class - type

o display-name - text

r -recondition

o form - Lisp code

o failure-message - Lisp code

o display-string - text

* method - Lisp or Paddle code

Although a useful start, this representation had a number of shortcomings.

* The preconditions and methods were written in Lisp code; they
therefore could not be paraphrased in English. Instead a
corresponding message string had to be entered by hand.

* The definitions often contained multiple text messages which were
closely related. In particular, for the preconditions we had to enter
both a display string describing the precondition, and a piece of Lisp
code for producing the error message to display if the precondition

277



fails. The error messages potentially could have been derived from
the precondition descriptions.

o Crucial information for explaining the transformations was missing.
In our Specification Assistant training course, we made extensive use
of examples in explaining transformations, but the examples were not
a part of the on-line documentation facility itself.

We are redesigning our representation for transformations to help address these

problems and to allow us to provide better documentation. We have also begun

to use an executable subset of Gist as our transformation language, rather than

Lisp and Paddle. We expect to be able to use the Paraphraser to describe the

parts of the transformations written in Gist. We will then make less use of text

strings, and at the same time generate a wider range of documentation. We also

are including pedagogical examples in the description of the transformations.

This will allow us to automatically generate the kinds of example-oriented

documentation that we have found to be useful in our training work.

At the time of this writing we have converted about half of our transformations

to use Gist. In the meantime we have moved to a new version of Gist, and the

Paraphraser has not yet been fully converted over to use it. However, by

comparing the Gist text and the natural language descriptions, and by running

examples through the Paraphraser in the old Gist, we can get a sense now of how

useful the Paraphraser will be in generatirg documentation.

Figure 3-2 shows the new representation for Parameterize %.hich now

explicitly includes demonstration examples. By comparing the Gist expressions

and the corresponding natural language text, we can make the fol' ,ing

observations. First, some of the information provided in documentary strings is

Note that we have made some minor syntactic changes to Gist, to make it somewhat closer to
REFINE and related languages. We use *:m to mean "of type", ".8 for attribute retrieval and

" to mean *such that".

278



Transformation: Parameterize

Concept description: "Add a parameter 'o a declaration, and modify references
to include new parameter."

Parameters:

Form: dec! : concept-declaration
Display Name: "Term to be parameterized"

Form: new-parameter : parameter
Display Name: "Parameter to be addedH

Form: expression : expression-tree
default dummy-actual (new-parameter)
Display Name: "The new actual"
Concept Description: "An expression to be inserted into references

to the concept, to compute the new actual"
Notes: "The expression may freely use the names of existing formal

parameters to refer to their corresponding actual values"
Precondition:

declared (name (obj ect-type (new-parameter)),
'type-declaration,
decl)

Failure Message: format (nil,
"-A is not declared",

name (obj ect-type (new-parameter)))
Concept Description: "The type of the new parameter must be declared"

Method:
steps [add-parameter-to-signature [new-parameter, decl];

add-actual-computed-wrt-existing-actuals

[decl, expression]]
Example Spec:

{type aircraft;
relation controlled(ac : aircraft);
relation in-flight(ac : aircraft);
invariant foo for-all ac : aircraft I

in-flight(ac) => controlled(ac)}
Example Invocation:

parameterize

[declaration-of ('controlled, 'relation-declaration),
gist-template("c : controller"),
declaration-of ('controller, 'type-declaration),
gist-template ("ac. assigned-controller")]

Figure 3-2: New definition of Parameterize

279

I



simply absent from the Gist definitions. For example. one of the arguments to

Parameterize, the expression which will serve as the new parameter. carries

with it a range of documentation:

* Display Name - the phrase to use when referring to the argument

* Concept Description - a description of the function of the argument

* Notes - supplementary information about properties of the parameter

None of these is reflected in the Gist representaticn. Furthermore, it would be

inappropriate to extend the formal representation solely for the purpose of

generating this additional text. The use of the Paraphraser therefore will not

make documentary strings unnecessary.

The Paraphraser will allow us to generate text which we could not previously

provide as documention. In particular. we can paraphrase the parameters.

method and preconditions of a transformation as well as the example

specification and invocation. For example, the Paraphraser could generate the

following description of the steps comprising the Parameterize transformation:

Parameterize is a transformation. To perform a parameterize a
involving a decl, a new-parameter and an expression, the Assistant does
the following. It invokes add-parameter-to-signature with the new-
parameter and the decl. It invokes add-actual-computed-wrt-existing-
actuals with the decl and the expression.

A major concern when generating documentation is to produce text that is

meaningful to the user. In some cases, the surface description by the

Paraphraser is inadequate. Consider the following paraphrase of the

precondition of Parameterize:

There is a precondition that the DECLARED relation must hold
between the name of the object-type of the new-parameter, 'type-
declaration, and decl.

Without additional information it is not possible to get the output that we would

really like:

There is a precondition that the object-type of the new-parameter

280



must be declared as a type-declaration in the scope of decl.

This manually generated text relies upon information that is absent from the

formal representation. It indicates the significance of each parameter: that one

defines the scope in which the type must be declared, while another indicates

that the declaration should be a type declaration, as opposed to a relation or

event declaration. It would not be appropriate to extend the formal

representation solely for the purpose of generating better descriptions of the

parameters, such as "in the scope of deel". Rather, we would like to explore

ways of supplying advice to the Paraphraser in the form of short text strings that

it can insert into the text when composing a paraphrase. The presumption is

that these advice strings will appear in a fixed form, whereas the surrounding

text, which structures the paraphrase, will vary.

We conclude from these examples that the Paraphraser can assist in the

documentation process, but only if we supplE,.aent our formal descriptions of

transformations with textual phrases. We have thus adopted what we call a

semi-formal notation, i.e., one where formalism and text are intermixed, and

where the text is categorized to indicate its semantic role. Given such a semi-

formal framework, we believe the Paraphraser ran be used to generate new text

descriptions as needed.

4. Using Semi-Formal Notations

Our interest in semi-formal representations initially arose in connection with

plans to integrate requirements acquisition and specification development. We

believe that semi-formal notations potentially have a pervasive role in the

development and maintenance of software. Since code and documentation are

both products of software development projects, there are advantages to

developing them both together. Concurrent maintenance of code al:d

documentation is important in order to keep the documentation up to date.

281



Semi-formal notations help make this possible.

We make one further conjecture: that not only should the representation be

semi-formal throughout, but the representation should gradually evolve, starting

from primarily informal notations and becoming progressively more formal.

When specification components are initially introduced, they will be largely

informal, consisting of natural language descriptions of what the finished

component will do. The first step toward formality is to categorize a-d interlink

these descriptions forming a kind of hypertext. Some of the informal

descriptions wi"! then be incrementally supplemented and supplanted with

increasingly formal descriptions (e.g., components hierarchies, data flow

structures, specification language constructs). The representation never becomes

exclusively formal, because the ability to generate high-quality documentation

would be lost.

One reason that the gradual forrhalizat.on approach is attractive is that it

allows the developer to avoid premature modeling commitments. Initially writing

specifications entirely in a formal notation forces modeling commitments from

the very beginning: one needs to determine which concepts to model as types,

which to model as relations or events, and indeed which concepts to model at all.

However, the appropriateness of a domain model is determined by whether it

allows the specifier to describe the components of the system and the entities

with which the system will interact. This results in a Catch-22 situation: one

cannot formalize the domain without formalizing the system's requirements in

that domain, and one cannot formalize those requirements without stating them

in terms of domain concepts. Incremental formalization breaks this impasse.

The following example illuotrates this point. Aircraft have many properties,

including location, heading, speed, maneuverability, make, model, transponder-id

and number of pawssengers. Until we know what properties are relevant to a

282



particular air traffic control system. we do not know which to incorporate into

our model. We might think that make and model are unimportant. but if we

wish to distinguish military, commercial and civilian aircraft. knowing the make

and model would be useful. If we choose not to model certain aspects of aircraft.

it is still important to retain informal text describing those features that we

cho6se to omit. This is particularly important if we are working from a natural

language requirements document or Statement of W.Vork; then it is crucial to be

able to account for how each natural language statement is reflected in the

specification.

This accountability is another important feature of an incremental approach to

formalization. We expect many specification concepts to be ultimately grounded

in the initial natural language statements. By taking a principled step-wise

approach tu the evolution of formal specification concepts from their informal

beginnings, we can produce a record of the evolution steps linking together the

inputs and outputs of each step. Such a record will allow a developer to trace

the acquisition of a formal specification concept in order to better understand

and debug the concept or perhaps to choose a different path in order to formalize

its informal precursors.

We intend to adopt this gradual formalization approach in the ARIES

(Acquisition of Requirements Integrated with Evolution of Specifications) system.

It is fully consistent with the approach to informality taken in the Knowledge-

Based Requirements Assistant [6, 10]. We view the use of Informality as a

specification freedom, one which is gradually removed. The semi-formal

framework has the potential to extend the power of the "catch as catch can"

natural language interpretation employed by the Requirements Assistant, to go

beyond acquisition of requirements to formalization. Since all natural language

will appear within the context of a structure with formal semantics, the context

resolution problem is substantiaily resolved. Furthermore, when the system is

283



unable to interpret natural language. it will carry along the natural language

until formal interpretation becomes possible or the developer chooses to suppiy

an interpretation by hand. We thus forsee a means of providing the kind of

support for informality envisioned in SAFE. in the absence of significant

advances in natural language understanding.

284



References

1. Balzer. R.. N. Goldman, and D. Wile. "Informality in program
specifications". IEEE Transactions on Software Engineering SE-4, 2 (March
1978), 94-103.

2. Balzer. R., Cohen, D., and Swartout, W. Tools for Specification Validation
and Understanding. Tech. Rept. RADC-TR-292, Rome Air Development Center.
December, 1983.

3. Balzer, R., Goldman, N., and Wile, D. On the Use of Programming
Knowledge to Understand Informal Process Descriptions. Proceedings of the
Pattern-Directed Inference Systems Workshop, 1978.

4. Goldman, N., Wile, D., Feather, M., and Johnson, W.L. Gist Language
Description. USC Information Sciences Institute, 1989.

5. Green, C. The Design of the PSI Program Synthesis System. Proceedings of
the 2nd International Conference on Software Engineering, 1976.

6. Czuchry, A.J. and Harris, D.R. " KBRA: A New Paradigm for Requirements
Engineering". IEEE Expert 8, 4 (Winter 1988), 21-35.

7. The KBSA Project. Knowledge-Based Specification Assistant: Final Report.
USC Information Sciences Institute, September, 1988.

8. Johnson, W.L., and Feather, M. Evolution Transformations: Results and
New Directions. Proceedings of the 4th Annual Knowledge-Based Soft- iare
Assistant Conference, 1989.

9. Myers, J.J., and Johnson, W.L. Towards Specification Explanation: Issues
and Lessons. Proceedings of the 3rd Annual Knowledge-Based Software
.ssistant Conference. 1988.

10. Sanders Associates. The Knowledge-Based Requirements Assistant - Final
Technical Report. Software Systems Engineering Directorate, February, 1988.

11. Schneiderman, B. "Control Flow and Data Structure Documentation: Two
Experiments". Communications of the ACM 25, 1 (January 1982).

12. Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert, R.
"Designing Documentation to Compensate for Delocalized Plans".
Communications of the ACM 81, 11 (November 1988).

13. Swartout, W. GIST English Generator. Proceedings of the National
Conference on Artificial Intelligence, A.AAI, 1982.

285



14. Swartout, W. The Gist Behavior Explainer. Proceedings of the National
Conference on Artificial Intelligence. -AA-AI. Washington. D.C.. 1983. (Also
available as ISI/RR-83-3).

286



Relating Formal
And Informal

Descriptions of Systems

W. Lewis Johnson
Jay J. Myers

USC / Information Sciences Institute

287



Overview

Communication via informal descriptions is important for

KBSA's

" for communication with clients

* to aid in understanding and validation

" to aid in training

Two key approaches have been explored:

* informal <-> formal translation

* tools for structuring informal descriptions (e.g.,
hypertext)

This talk will assess current support for informal

descriptions in KBSA

" technical spinoffs

* places where future work can achieve high
payoff

" focus of ARIES work to achieve payoff

288



Informal-Formal Translation

e The SAFE project analyzed natural language
text to generate specifications. Also T1 system,
KBRA system.

e The Gist Paraphraser generates English from
Gist specifications. KBRA also generates
English.

Status:

* Natural language input has not passed the toy
example stage.

e Powerful, broad-coverage output capabilities
new exist.

* Demonstrated utility in validation, training,
generation of 2167 documents

289



Example Paraphrase

Gist text:

type physical-object
with {

singleton relation
physical-obj ect-location (location) };

type aircraft subtype of physical-object
with {

procedure land[]
definition
atomic {

remove in-flight( ;
update self.physical-obj ect-location

to a ground-location}}

Paraphrase:
All aircraft are physical-objects. Each physical-

object has one physical-object-location.

Land is a procedure of an aircraft. To perform
a land, the system simultaneously (atomically)
does the following. It deletes the fact that the
aircraft is in-flight. It updates the physical-object-
location of the aircraft to any. ground-location.

290



Problems with

Natural Language Input

" intolerance of incomplete knowledge

" context-dependent

* can force premature modeling and design
decisions

291



An Example

From BARTCC requirements:
"Up to 2 student positions which have all OCP

controller capabilities."

Issues to resolve:

" What is a position? -- a computer console, in a
particular operational mode.

" Are there 2 student positions, or 2 positions
with all capabilities?

* Do we really mean all capabilities?

292



Another Approach: Hypertext

Existing systems:

" gIBIS

" IDE

Hypertext objects are used to describe:

" domain concepts and requirements

" design decisions

" design components

o* rationales

Arcs link decisions to arguments and rationales, decisions

to component specifications

Hypertext supports knowledge identification, not

knowledge representation.

293



.........' Stuxlents

.N..

Prh iplez Prodic

t...............

reasnin FabPouttatatiat

.~~~ ......

.*............,**..*..., .4 .

294"X



......... .......... ........ ..........................................

..............................

. . ...............

pq

cn

cd

0 tn

0 amm

u u u
memo cz cq cq

M
0

Cd

.........................
........................
...........................................................................................................................--- ---------- ------------- ............. . .......... o .......... ; ...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... o .................................................

295



Lessons from Hypertext Experiments

e Knowledge identification is a crucial part of
requirements analysis, and must be supported.

e Hypertext is a suitable medium for knowledge
identification.

e Structured hypertext more valuable than
unstructured hypertext.

* Tools ready for application

Outstanding challenges:

" Need to combine informal and formal
descriptions.

" Need to support incremental formalization.

296



ARIES Goals

" Tight integration of hypertext and formal
descriptions

" Reusable knowledge base resulting from both
knowledge representation and knowledge
identification

" Incremental formalization of semi-formal
hypertext

" Regeneration of informal text from formalized
descriptions

297



Accomplishments So Far

" Partial integration of hypertext and formalisms

* application on editing transformations

* application on ARIES metamodel

* beginning application on ATC domain
knowledge and requirements

298



Our Model of Hypertext

Basic building block: hyperstrings - strings containing

objects

Object attributes can take hyperstrings as values

Attributes currently supporting hyperst,ings.:

* display-name

* concept-description

* notes

Objects thuLs Coan have multiple hyperstring attributes
including names!

Coverage will gradually be extended to most object

attributes

299



Mixed model for transformations

" display-name - hyperstring

" parameter - formalized, plus:

o display-name - hyperstring

o concept-description - hyperstring

o notes - hyperstring

* precondition - formalized, plus:

o concept-description - hyperstring

o failure-message - template

" method - formalized

* effects- formalized

" example-spec - formalized

" example-invocation - formalized

300



Transformation: Parameterize

Concept description: "Add a new parameter to a concept-declaration, and
modify references to include references to the added parameter."
Parameters:

Form: deci : concept-declaration
Display Name: "concept-declaration to be parameterized"

Form: param-name : symbol
Display Name: "Name of the added parameter"

Form: param-type : type-declaration
Display Name: "type of the added parameter"

Form: expression : expression-tree
default dummy-actual (new-parameter)
Display Name: "The new actual"
Concept Description: "An expression to be inserted into references
to the concept-declaration, to compute the new actual"
Notes: "The expression may use the names of existing formal
parameters freely to refer to their corresponding actual values"

Outputs:
Form: added-parameter : parameter

Display Name: "added parameter"
Precondition: not exists x:parameter I (parameter-of (decl, x) and

name (x, param-name))
Failure Message: "A parameter named Eparam-name] already exists"
Concept Description: "A parameter of the same name must not exist"

Method:
steps (add-parameter-to-signature(new-parameter, dec1]

yielding added-parameter;
add-actual-computed-wrt-existing-actuals [deci,
expression] ]

Example Spec:
type aircraft;
relation controlled(ac : aircraft);
relation in-flight(ac : aircraft);
invariant foo for-all ac : aircraft I
in-flight(ac) => controlled(ac)}

Example Invocation:
parameterize (declaration-of (' controlled,

$relation-declaration),
gist-template("c : controller"),
declaration-of ('controller0 'type-declaration),
gist-template ("ac. assigned-controller") I

301



Lessons Learned So Far

Hypertext and objectbases can be merged

Adjustable thickness is preferable

Hypertext useful even on "formalized" objects, for

documentation

302



Conjectures to Verify

Incremental formalization can be effective approach to

natural-language input

Hyperstring templates can improve natural-language

generation capability

303



KBSA Technology Transfer: An Industrial Perspective

Chunka Mul and Michael DeBellis

Andersen Consulting
Center for Strategic Technology Research

100 South Wacker Drive
Chicago, Illinois 60606

(312) 507-6318, (312) 507-6530
Chunka@andersen.com, DeBellis@andersen.com

Biography

Chunka Mui is an Associate Scientist in the Software Engineering Lab (SEL) of Andersen
Consulting's Center for Strategic Technology Research. He is the project leader for
Andersen Consulting's KBSA-related efforts. Michael DeBellis is a Research Associate
in the Software Engineering Lab.

Abstract

In the project plan proposed in their 1983 KBSA report, Green et al. predicted that the
Phase 1 KBSA facet research efforts would produce beneficial technological fallout. This
would be in the form of intermediate products that might have immediate application for a
broad segment of the software community. In order to 1acilitate the transfer of such inter-
mediate results, RADC established the KBSA Technology Transfer Consortium in 1988.
We have worked as an alpha test site within the consortium since its inception to
evaluate the Phase 1 results and transfer relevant concepts and tools into our systems
development practice. The results of our evaluation have been mixed. The consortium
itself has been very effective in establishing a channel for information exchange between
ourselves and the KBSA developers. However, the current candidates for techno!ogy
transfer have less immediate application than we had hoped. Some reasons for the lack
of significant technology transfer include the inadequate attention paid thus far to (1)
achieving significant relevance to industrial practice, (2) tackling certain important life-cy-
cle areas, and (3) validating and communicating current research results. We will expand
on these problems and offer some suggestions for dealing with them. We will also
suggest ways of facilitating future technology transfer. We assume that the reader is fa-
miliar with the KBSA program.

1. Introduction

The original project plan proposed in the 1983 KBSA report[1] outlined a 15 year, three stage KBSA

development effort. The overall plan adopted by RADC called for the simultaneous development of indi-

vidual KBSA facets through parallel research efforts. Each facet development effort was structured to

produce intermediate products in the short-term (3 to 5 years) and mid-term (5 - 10 years). It was hoped

that these intermediate products would have immediate practical application.

Copyright 0 1989 by Andersen Consulting 305



In 1988 (roughly at the short-term milestone), RADC established the KBSA Technology Transfer Consor-

tium to facilitate the transition of Phase I KBSA technoogy.[2 The consortium provides a formal relation-

ship between KBSA developers, potential users, and RADC designed to support the technology transfer

process. This relationship is designed to enhance the low-bandwidth, bilateral relationships which previ-

ously existed between some consortium members and to foster communication that previously did not

exist.

In this paper, we describe the results of our KBSA technology transfer activities over the last year. In

section 2 we analyze the contributions and shortcomings of the facet projects from the standpoint of tech-

nology transfer to industry. In section 3 we discuss problems which relate to industrial software which

have not been adequately addressed by KBSA. In section 4 we present some suggestions for integra-

tion and standardization which we believe will facilitate future technology transfer. Section 5 presents our

conclusions.

2. Facet Analysis

The 1983 KBSA report predicted that Phase I would reveal the sparkling facets of an emerging gem. We

feel, rather, that it identified a promising vein. Bits of sparkle can be seen. But it is not clear whether they

are small, isolated specks or the tips of a still-concealed precious diamond. In this section, we briefly

summarize our analysis of the individual facets. We highlight some of the concepts that we found valu-

able and some which prove to be less worthwhile. In cases where we experimented with the actual soft-

ware prototypes, we will offer some reflections from that perspective. For the sake of brevity, we assume

that the reader is familiar with each of the facets. Later sections will provide a more holistic analysis of

the Phase 1 research results.

2.1. Knowledge Based Requirements Assistant

The Knowledge Based Requiremients Assistant (KBRA) [31 provides insights Into addressing early stages

of systems development. Two important concepts in KBRA are the presentation based architecture and

306



the "catch as catch can" approach to capturing and formalizing requirements. The presentation-based ar-

chitecture provides the user with a powerful method for reviewing the evolving requirements. It is a

promising approach for general editing and manipulation of requirements throughout the various facets.

The "catch as catch can" approach to capturing requirements in the KBRA has both positive and negative

points. This approach conforms with our belief that the requirements gathering process cannot be com-

pletely well-structured or predefined. No tool can have the complete domain or process knowledge nec-

essary to turn requirements gathering into a "cookbook" process. The tool must therefore provide a

"safety net" which allows the analyst to input information that the tool does not understand.

The weakness of the "catch as catch can" approach is that it provides too little structure. The KBRA lacks

the facilities to provide feedback to the user on the consistency and completeness of the requirements. It

also provides little assistance to help guide the analyst through the requirements analysis process. This

lack of support results from the absence of either a formal requirements gathering process model or a for-

mal requirements language.

The input mechanisms developed in KBRA included a valuable experiment in the use of natural language

processing (NLP) techniques for requirements gathering. The Intelligent Notepad utilizes a case-frame

NLP scheme to interpret natural language requirements. We concluded from our own experiences and

from the results of the KBRA that natural language input is not a scaleable approach. Natural language is

ambiguous There is a great deal of variance in usage and terminology between individual speakers and

across various domains. An NLP requirements tool that has to work robustly on industrial size problems

would require an unrealistically complete knowledge-base of both application and requirement analysis

domain concepts.

2.2. Specification Assistant

The Specification Assistant[4 made clear progress towards the KBSA vision of systems development. It

307



provides the user with tools to develop and reuse specifications which are represented using the Gist[51

specification language. Gist allows for the description of a wide range of specification information, rang-

ing from abstract descriptions of the domain to compileable descriptions of program behavior.

Elaboration of the Gist specification is supported through user-directed transformations known as high

level editing commands (HLEC). The HLEC's represent a step towards the goal of machine-assisted for-

mal implementation. The HLEC's may form the basis for developing higher level plans or strategies for

specification development. Along the same lines, the annotations supported by the Specification Assis-

tant might be used to provide process guidance.

The Specification Assistant provides valuable analysis tools that support specification evaluation. The

static, resource, and ontological analysis tools provide straight-forward but critical consistency checking

mechanisms.

The Specification Assistant demonstrates that paraphrasing is a useful and realizable technique for speci-

fication understanding. We found that the paraphraser worked well. It consistently generated natural

sounding text and worked in a reasonable amount of time. On a number of occasions we found the

paraphraser useful in clarifying the meaning of a Gist specification. Paraphrasing helps to alleviate the

cognitive complexity of formal notations like Gist. This is important not only to support the specification

developer, but also to make the specification understandable to others (e.g. end-users, managers, and

maintainers) involved in the system development process.

The symbolic evaluator uses a special purpose theorem prover to generate behaviors from a high level

Gist specification. This supports the analysis of Gist specifications which are too abstract to be compiled.

However, in our experiments we could not successfully apply the symbolic evaluator to even small speci-

fications. It either failed to terminate after running for several minutes or aborted.

We believe that the problems with the symbolic evaluator have more to do with the technique in general

308



than with the current implementation in the Specification Assistant. As with many applications which uti-

lize theorem proving, the primary problem is constraining the theorem prover so that it does not spend

most of its time generating useless information. If a specification is not set up correctly, the symbolic

evaluator will generate large quantities of uninteresting behaviors. In this case "setting up correctly"

means adding many constraints (which would not be a part of the normal specification) to help the theo-

rem prover avoid generating uninteresting behaviors. While we do not doubt that advances will continue

to be made in the use of theorem provers in specialized domains, we feel that this approach has not yet

been proven viable for realistic problems in specification analysis.

2.3. Project Management Assistant

The Project Management Assistant[6 (PMA) explores a number of concepts needed for effective project

management which are not adequately supported in current generation tools. The PMA's most significant

contributions are the development of a sophisticated representation for reasoning about time and a model

of the concepts involved in project management.

The ability to reason about time is an important aspect of any project management system. The PMA

work extends the interval based representation of time developed by James Allen[7]. This provides a

foundation for the PMA to represent concepts such as one task overlapping another, one task preceding

another, etc. This general mechanism for representing time could be very useful not only for project man-

agement but for other KBSA research issues as well.

The project management model serves as the representation for abstract process models (such as

Boehm's Spiral Model[8l), instantiated for a particular project. At this point in the PMA development, it

seems that such process models could function as on-line documentation or passive record keeping

aids. The PMA will offer significant benefits if its capabilities are expanded to the point where it interacts

with project managers to provide insight on non-trivial problems and inconsistencies.

309



2.4. Performance Estimation Assistant

The Performance Estimation Assistant[9,1o (PEA) made valuable progress in providing guidance during

the transformation from program specifications to code. It showed how performance information could be

used to guide data structure selection and transformation of iteration constructs. The PEA is a part of the

larger Kestrel Interactive Development System (KIDS). KIDS utilizes information provided by the PEA to

assist in the application of interactive transformations to programs written in a single-assignment

functional language called Performo. The information provided by the PEA is crucial for supporting de-

sign exploration and optimization of software components.

The limitations of the PEA in terms of technology transfer stem from its focus on using performance infor-

mation to aid in low level transformations. In some PEA papers (e.g., [91), there is more dmphasis on the

applicaion of the low level transformations than the explanation of how the performance information is

deduced. The choice of the single-assignment functional Performo language as the object of study (as

opposed to a general specification language such as Gist or Refine) and the concentration on

performance information from the sole standpoint of low-level transformations (as opposed to being able

to take into account higher level information provided by functional and non-functional requirements)

severely limits the applicability of the PEA, even for other KBSA facets. There is also a question as to

whether the PEA will scale up to system design issues such as those discussed in Section 3.2.1.

2.5. Framework

The KBSA Frameworkli ] addressed a number of issues critical for the integration of individual facets

into a single framework. It developed a distributed object protocol using metaclass programming in

CLOS. This is the only example to-date of KBSA research which attempted to solve problems dealing

with multiple users. The Framework project also discussed various approaches to integrating different

tools and showed that for KBSA, the only feasible approach was deep integration, i.e. reimplementing

much of the tool so that it shared the same underlying knowledge representation mechanisms. This was

accomplished for the PMA and for parts of KBRA. The experience of the Framework developers in these

310



reimplementation projects will be extremely valuable in future integration efforts.

Perhaps one of the most important accomplishments of the framework was to point the way toward high-

er level compatibility standards. As the framework research points out, it will be essential for future KBSA

facets to be written using similar knowledge representation and interface tools. It is not enough for the

facets to all use common lisp. As long as they use different supporting tools (AP5, Loglisp, Refine, Socle,

etc.) the overhead in communication and in size of the lisp image will make it impossible to have several

facets cooperating in the same lisp environment. The framework project took steps towards a higher

level of standardization through its use of CLOS and CLUE (Common Lisp User Environment).

3. IndustrIal Hesitations

Given the range of valuable concepts described above, one might expect that there would be numerous

research results of immediate application to industry. This, however, is not the case. There are signifi-

cant additional development and technology assimilation costs associated with technology transfer. In

order to tip the "cost vs. benefit" scales towards industrial adoption, industry must be reasonably assured

that KBSA technology will have a positive impact on large scale systems development. In order to

achieve this level of assurance, the KBSA program needs to produce research results that are applicable

to industrial-sized problems. But the current research has not paid enough attention to a number of is-

sues necessary for industrial applicability. Additionally, inadequate attention has been paid towards the

communication of the status and potential of the program results.

KBSA does not have to prove that it has solved all the software problems of industry before it will be ac-

cepted. However, current and future KBSA efforts must extend themselves towards these critical issues.

Unless this is done, industry will hesitate to make the investments necessary to transition the technology.

This section will discuss a number of factors that have hindered technology transfer and need to be

addressed These factors are grouped into three categories: inadequate relevance to industnal practice,

inadequate attention to key life-cycle areas, and inadequate conceptual validation and communication.

311



3.1. Inadequate Relevance to Industrial Practice

KBSA research results have not yet achieved enough relevance to industrial practice to warrant the in-

vestments necessary for technology transfer. Three major factors in this category that need to be

addressed are scale, process, and usability.

3.1.1. Dealing with Issues of Scale

Issues of scale deal with the differences between programming-in-the-small and programming-in-the-

large. Programming-in-the-small deals with the development of programs by a few people, while pro-

gramming-in-the-large deals with the development of large systems by large teams of engineers. Pro-

gramming-in-the-large introduces much more complexity into the development process due to (1) the

need for collaboration between a large number of people and (2) the need to integrate large numbers of

system components. Barstow12] has described the research issues associated with each.

Most current KBSA research is focused on programming-in-the-small, while industry is very much

concerned with programming-in-the-large. In order to motivate technology transfer to industry, KBSA re-

search needs to show substantial relevance to programming-in-the-large issues. Languages and repre-

sentations must be able to describe both functional and non-functional characteristics of large systems,

not just the functional characteristics of individual programs. Reasoning processes must be tractable,

rather than growing combinatorially with the size of the system. Process support must extend to collabo-

ration between project team members, not just to the development activities of an individual.

3.1.2. Not Supporting Processes Under the Lamppost

There is an old story about a man who lost his wallet across the street, but searches for it on the opposite

side under a lamppost because the light is better. Curtis et al.[13] effectively relates this story to research

on software process models. Researchers need to understand actual software development practice in

order to develop process mdels which capture processes that actually control software productivity and

quality. They must be careful not to rely on simplifications that miss the real software problems. This ad-

312



monition holds true for KBSA, which is attempting to provide substantial process support for the software

life-cycle. Substantiation is needed that the proposed alternative relates to industrial practice and will

have a positive effect on the development of large systems.

Current KBSA research suffers a bit from the lamppost effect. The program proposes a radically d:."e.ent

approach to software development, but has offered no detailed process models whit;n deal with industrial

problems. Facet process models need to relate more to actual practice: how project teams actually

work, how systems are actually built, what information is actually available during development. KBSA

research should take advantage of empirical studies of the design process (such as [14] and [is]) to insure

a focus on high leverage activities and realistic assumptions. Section 4.1 discusses the need to develop

detailed process models as part of the conceptual integration of KBSA research.

3.1.3. Building Tools for the Common Man

Because of the technical problems associated with each facet, the KBSA developers have so far focused

almost exclusively on technical rather than usability issues. While it could be argued that usability issues

are logically subsequent to many technical issues, attention to usability must precede technology. trans-

fer.

A catch-22 situation arises around KBSA: the more powerful the tools, the more difficult it becomes to

apply them. We perceive two major usability issues for the KBSA: the cognitive effort required to utilize

KBSA's various formal representations and the complexities involved in mastering the extremely rich soft-

ware development environment which KBSA will provide.

Rich and Waters[6I] point out that an inordinate amount of effort is often required to represent and pro-

cess knowledge using formal representation languages. One of the reasons for this is that current formal

specification languages do not map well to the user's conceptual representations of software and the de-

velopment process As Sasso[17J and Soloway[18] demonstrate, such a mapping is essential to provide

313



usable tools for software develonme'.

in order to facilitate industri a acceptance of KBSA, future software will need to pay increased attention to

these usability issues and to providing friendly, intelligent interfaces. These interfaces will have to be

geared towards common practitioners, not researchers. KBSA should take advantage of the vast

amounts of existing research in computer-human interaction and h.elligent interfaces. We present an ex-

tended discussion of how such research could be incorporated into KB3A in [9l].

3.2. Addressing Key Life Cycle Areas

Another hindrance tc technology transfer results from the lack of attention paid thus far in the KBSA pro-

gram to a number of key software life-cycie areas. Issues such as system design, maintenance, and

reengineering need to be addressed by KBSA if it is to offer a comprehensive approach to systems devel-

opment.

3.2.1. System design

Systems are collections of programs, data, user interfaces, or analog devices with requirements covering

functionality, persistence of data, performance, capacity, interfaces with other systems, and other envi-

ronmental constraints. At this point, KBSA has not adequately addressed system level design. Little at-

tention has been paid, for example, to the design of system architectures. The system architecture is of

critical importance because (1) it governs the decomposition of the system into components, (2) it deter-

mines the component-to-component Interface requirements, and (3) it has a tremendous impact on the

performance and usability of the system.

Architectural design has to be dealt with at the earliest stages of the development process and will impact

all later development activities. The system architecture is heavily influenced by non-functional require-

ments such as capacity, throughput, security, operational environment, etc. KBSA needs to support the

314



capture and modeling of such information during the requirements acquisition process. The system ar-

chitecture governs the decomposition of a system; KBSA's system specification and code generation

activities cannot be independent of architecture. System level performance is influenced not only by al-

gorithm complexity but also by i/o between components, external data sources, and users. Performance

estimation assistance must extend to the system level in order to support architectural design.

3.2.2. Maintenance

Maintenance is the process of evolving the system over time as errors are discovered or requirements

change. It has been well documented that maintenance activities constitute a significant percentage of a

system's application life cycle cost. Maintenance was one of the main areas of assistance targeted by

the '83 KBSA report[i]. That report envisioned that "maintenance would be performed under the KETSA

paradigm by altering the specification and replaying the previous development process (the series of

transformations), slightly modillor, rather than by attempting to patch the implementation." This mainte-

nance strategy would be supportad by activities at each stage of the life-cycle.

Little attention, however, has been paid thus far to maintenance. Most major issues remain to be ad-

dressed These research issues include: appropriate models of design and implementation history;

formalisms for capturing and reasoning about rationales, strategies for impact analysis and replay, and

change management issues20).

3.2.3. Reengineerlng

Reengineering is the process of recovering information about an existing system through examination of

various system development artifacts, e.g. source code, documentation, etc. We feel that reengineering

is of prime importance to KBSA for two reasons.

First, as shown by Alagappan and Kozacznski[21], reengineering is sometimes a necessary component

of the system development process. This is true when some core functionality of a new system replicates

315



a portion of an existing system and, due to

the age of the existing system, the only ac- neW requirements

curate description of that needed functional- _v ,
specre pesse

ity is embodied in the system source code. system specs

The specification of this needed functionality Reengineering implementation

must then be reengineered through a ma-

chine-assisted design recovery process. features features

Figure 1 is reproduced from [211 to illustrate

this concept. odssesystem)new system

Second, reengineering may provide a meth- Figure 1
od f6r introducing the revolutionary KBSA

approach in an evolutionary manner.

Existing systems could be reengineered into KBSA representations and evolved using the new paradigm.

There are a number of significant research issues associated with this approach. But some method of

"easing" KBSA into place will eventually be needed if it is to find a place in industry.

3.3. Inadequate Conceptual Validation and Communication

A third category of factors which have hindered technology transfer is the lack of attention paid to the

conceptual validation and communication of facet capabilities. In the course of our evaluations, we had

significant problems identifying the range of each facet's capabilities and determining the generality of

those capabilities. In order to communicate the validity of KBSA concepts, it is important for each facet to

provide a complete description of its functionality and to facilitate hands-on experimentation with its soft-

ware.

3.3.1. Complete Functional Descrlptions

Many of the facet reports tend to list the various techniques or methods utilized in the prototype without

316



an explicit functional description of the program. Each facet report should, at least briefly, answer ques-

tions such as: Which life-cycle activities can and cannot the program support? How general are the

program's capabilities?

It is often difficult to determine the generality of a piece of work. However, as McCarthy[22] suggests, this

is something that the researcher should attempt to accomplish through extensive experimentation.

Experimentation will help the researcher understand what compromises had to be made in order to make

the program work through her examples. She will also gain an understanding of the difficulties involved

in developing workable examples. These experiments should then be reported to show not only how the

program works but where and how it fails to work. This will enable others to fairly evaluate the research.

3.3.2. Hands-On Experimentation

In order to facilitate hands-on experimentation, it is important to provide a detailed user's guide for the

software and numerous example scenarios which will demonstrate the ideas and functionality of the soft-

ware. The current facets provide relatively good user's guides. However, they are very weak in providing

scenarios. We found it to be very difficult to perform hands-on experimentation with the existing facet

software because of the poor quality of existing scenarios. Without a scenario one is left to try and con-

struct realistic examples from scratch. This invariably leads to discovering undocumented bugs and

going down dead ends. Where scenarios do exist in the current facets, they are either too brief (showing

only a few example commands and leaving the user unconvinced that the facet can work on any realistic

problem) or too sketchy (leaving details about how to select items or deal with potential bugs unstated).

4. Facilitating Technology Transfer

In addition to the issues of Industrialization and usability described in the previous secticn, a number of

other steps can be taken to facilitate future technology transfer. This sections discusses the need for (1)

deeper integration of the research results and (2) greater communication and cooperation within the

KBSA developer community.

317



4.1. Integration

While some might argue for hardware and software standardization and integration, we feel that this

would be premature. There are many daunting research issues facing the program--not just .regarding

integration but also regarding basic representation and problem solving. Rigid standardization at this

time would be stifling. We do believe, however, that significant steps can be taken to begin the integra-

tion process and insure that the individual KBSA efforts will move onto convergent paths.

4.1.1. Conceptual Integration

The KBSA program must begin a conceptual integration process. At this point in time, the different facets

seem to be developing in a rather unconcerted manner. Each research team has developed its own view

of the overall KBSA model. There has been a tendency to focus on facet-specific problems, while ignor-

ing important problems that overlap facets. Now is an appropriate time for the KBSA developers to work

together to build an integrated model of KBSA. We realize that a single "grand unifying theory" probably

cannot be built. But collaboration in this conceptual integration will serve to test ideas and to coordinate

future research. Two major elements make up a comprehensive KBSA model: the information model

and the process model. These are described below.

Information Model

An information model is composed of two levels, a modeling level and a knowledge level. The modeling

(or meta-knowledge) level encompasses the descriptive facilities which make up a representation, e.g.

objects, relations, constraints, etc. Constructive dialogue needs to begin regarding the descriptive capa-

bilities provided in each facet (i.e. through REFINE, AP5, LogLisp, etc.). We believe that this is feasible.

The languages used in each facet are already roughly equivalent in expressiveness. An in-depth analy-

sis of the differences should be performed with the goal of choosing or designing a unified modeling lan-

guage.

The knowledge level consists of the classes of information (expressed using the modeling facilities) which

318



describe the domains of interest, e.g. system descriptions, application domain models, and software engi-

neering knowledge. Discussions should begin to conceptually integrate knowledge level information that

is implicitly or explicitly modeled in each facet. We expect that this knowledge will sometimes

complement one another; at other times they will conflict.

Process Model

A software development process model defines a set of operations considered legitimate. More impor-

tantly, it organizes the individual operations into groups which enable, encourage, or enforce a particular

sequence of execution through the entire process. The KBSA program promises freedom from the

traditional waterfall process model but has yet to present a well-articulated alternative model. The individ-

ual facets approach this issue in different ways. Fadets range from having no explicit process model (the

KBRA), to an informal localized process model (the Specification Assistant), to providing the building

blocks for a process model without actually constructing alternative models (the PMA).

While we do not believe that there is one comprehensive, all-encompassing KBSA process model waiting

to be discovered, the development of detailed software process model alternatives would be. of immense

benefit. The question needs to be asked: Can KBSA succeed where other paradigms have failed? Can

it support process models which address recognized flaws in other models such as those identified by

Curtis[13]?:

* Does the process model provide mechanisms for managing the inevitable changes in require-

ments and for involving end-users throughout the development process?

o Does it provide insight into and improve processes that control the largest share of the variability

in software development (such as the coordination of interacting agents), thereby actually boost-

ing productivity and quality?

* Does it positively influence software development productivity and quality (and software maintain-

ability) as the size of the effort grows to programming-in-the-large and even programming-in-the-

gargantuan?

319



If successfully developed, such process models would benefit the KBSA program at two levels. At the re-

search level, they can (1) guide and structure the development of KBSA tools (in terms of their functions

and interfaces to the user and to each other) and (2) serve as the basis for the PMA's representation of

the software project. At the technology transfer level, process models would serve to (1) communicate

the added value provided by K5SA to its potential user community; (2) help the audience compare the

KBSA software development process with traditional ones; and (3) suggest promising ways to transfer

KBSA technology.

4.1.2. Platform Standardization

While discussions proceed on the unification of the KBSA modeling languages (at the level of AP5, RE-

FINE, or LogLisp), the program should adopt platform standards at lower levels. This should greatly as-

sist the development of integration guidelines which will ensure higher levels of software convergence in

the future.

Hardware Standardization

Constant debate takes place within both research and industry over the hardware platform of choice.

This debate is never-ending because the crown of hardware performance supremacy is constantly

changing. We do not believe that the KBSA program should become embroiled in this debate. Several

generations of hardware platforms have risen and fallen during the course of Phase I. We expect several

more generations to rise and fall during Phase I1. A commitment to any one hardware platform before

KBSA is ready for significant technology transfer carries with it only one guarantee. the hardware plat-

form chosen will soon be eclipsed by some other platform. Rather than hardware platform

standardization, we propose instead a standardization on the principle of hardware independence. The

route to hardware independence is through software standardization, which is explained in the next sec-

tion.

320



Software Standardization

Software evolves much more slowly than hardware. Also, software standards tend to outlive a number of

hardware generations. In order to develop greater hardware independence, we propose that the program

actively adopt the following software standards, which are supported across multiple platforms:

" Common Lisp & CLOS (the Common Lisp Object System) should be the base language and ob-

ject system.

" CLX & CLUE (the Common Lisp User Environment) should be the low level interface standard.

We believe that these choices represent significant industry trends. A move to these standards should

also be relatively straight-forward for current developers. In addition to these standards, we propose the

following guidelines:

• All high level languages utilized by the facets should have object level compatibility with CLOS.

New languages, e.g. ARIES, should be built using the Metaclass programming facility of CLOS.

Existing languages, such as REFINE, should be reimplemented on top of CLOS.

" All KBSA user interfaces should be built in an object-oriented manner through CLOS libraries

built on top of CLUE. Although we have no proposals at this point, we believe that the program

should raise this standard even more, to the level of user interface toolkits and "look and feel"

standards.

• Facet researchers are free to adopt the hardware platform of their choice, provided that they ad-

here to the hardware independence principle. Maximize productivity but minimize the incorpora-

tion of hardware-specific environments into their systems. Where such couplings cannot be

avoided, they should be made modular and easy to detach in case of a port.

The "CLOSification" of the KBSA facets accomplishes one small step towards eventual KBSA software

convergence. It will ,llow different facets to have a compatible view (albeit at a low level) of their data.

The construction of window system libraries on top of CLUE using CLOS is also consistent with industry

and research trends This opens up greater opportunity for software leverage. Experiments with both

these approaches have been undertaken by the Framework re'searth team[23.

321



4.2. Internal Technology Transfer

Much attention has been paid to the process of transferring KBSA technology from the developers to the

software community at large. This topic was the focus of a panel discussion at the 2nd KBSA

Conference in 1987. It lead to the creation of the KBSA Technology Transfer Consortium in 1988 and it

is the main theme of the 1989 KBSA Conference. The current model of technology transfer focuses on

the flow of technology from individual developers to industrial alpha test sites. While we fully support

these efforts and believe that they should continue (and expand), we believe that not enough attention

has been paid towards technology transfer between the KBSA developers themselves. We believe that

the developer community needs to be the true alpha test sites for KBSA technology, and that industrial

sites should perform beta testing on software that has already been tested within the developer communi-

ty.

As DiNitto[241 points out, there are certain natural impediments associated with the transfer of advanced

software technology. These include:

* Acquisition of custom hardware and software.

" Culture clash between researchers and industry.

" Training people in new techniques and technologies.

These impediments to transferring KBSA technology from developers to industry are not nearly as strong

when transferring technologies from one KBSA developer to another. It involves less effort for one

KBSA developer to test the software of another than it does for the same test to be made by an industrial

practitioner.

There would be a number of benefits to having developers serve as alpha test sites. This internal tech-

nology transfer would lead to a greater understanding by each developer of the work of the others. This

would encourage greter conceptual and software integration, and would help to bridge the artificial sepa-

rations caused by the facet approach. Also, the extra testing and validation that would result from devel-

oper alpha testing would mean that the products which were shipped to industrial beta sites would be

more robust, reliable, and would have deeper functionality.

322



The Aries project is a good example of internal technology transfer. It will integrate and advance the pre-

vious research of the Specification Assistant and KBRA teams to produce a combined Require-

ments/Specification tool. Facet combination is an extreme example of internal technology transfer. Less

extreme forms would also valuable and should be encouraged. For example:

• Specification and Development. In the KBSA vision, the development assistant works on the

output produced by the specification assistant. It is essential for future integration that the

developers of these facets communicate so that they have conceptually compatible views of the

specification/development process.

" Project Management and the Framework. The project management facet and the Framework

must both be intimately intertwined with the other facets. It is essential for developers working

on these facets to have a deep understanding of the functionality and conceptual models of the

other projects (and vice versa).

" Activity Coordination. Work is beginning on developing activity coordination facilities for KBSA. It

is essential for this project to incorporate the results of other projects, and for other projects to be

aware of the expectations and formalisms required in order to address activity coordination.

5. Concluding Remarks

The software problems facing industry and government today are even greater than when the KBSA pro-

gram first began. It is clear that the payoff from a workable KBSA system would be enormous. The first

round of KBSA research has led to some significant results and influences on other areas of research. In

this paper, we have evaluated that research from a technology transfer perspective and offered some

suggestions for facilitating future technology transfer.

The suggestions that we have offered are based upon our belief that technology transfer is a multi-phase

process Innovative technology such as KBSA cannot make a one-step jump from researchers to practi-

tioners We believe that it is necessary both to nurture new technologies but at the same time ensure

that they are headed towards industrial applicability. Timely standardization is necessary set the stage

323



for eventual deep integration. Greater cooperation between the various developers will lead to the

development of integrated systems which cover a broader spectrum of the software life-cycle and which

can achieve synergy by leveraging off of each others capabilities. Industrialization and humanization

should result in tools which are responsive to the requirements of industrial users.

Acknowledgements

Bruce Johnson, Gilles Lafue, Bill Sasso, and Gerald Williams have made substantial contributions to the

ideas expressed in this paper. Vairam Alagappan, Lewis Johnson, Richard Jullig, Gordon Kotik and

Aaron Larson provided valuable feedback on earlier versions of this paper.

32.4



References

[1] Green, C., Luckham, D., Balzer, R., Cheatham, T., & Rich, C., "Report on a Knowledge-Based Software
Assistant," RADC TR 83-195, Contract No. F30602-81-C-0206, Kestrel Institute, Palo Alto, CA, June, 1983.

(2] KBSA Technology Transfer Consortium, Operational Concept Agreement. RADC, 1988.
[3] Harris, D. & Runkel, J., "An Introduction to the Knowledge Based Requirements Assistant Capabilities,"

Rome Air Development Center, Contract No. F30602-85-C-0267, September, 1988.
[41 Johnson et al., "The Knowledge-Based Specification Assistant, Final Report", Rome Air Development

Center, Contract No. F30602-85-C-0221, September, 1988.
[5] Goldman, N., Wile, D., Feather, M.S. & Johnson, W.L. "Gist Language Description", 1988.
[6] Gilham, L., Jullig, R., Ladkin P., Polak, W., "Knolwedge-Based Software Project Management", Kestrel Insti-

tute, Palo Alto, CA, November, 1986, KES.U.87.3.
[7] J. Allen, Towards a General Theory of Action and Time, Artificial Intelligence 23 (2), July 1984, pp. 123-154.
[8] Boehm, B. W. "A Spiral Model of Software Development and Enhancement." IEEE Computer, pp. 61-72

(May 1988).
[9] Blaine, L., Goldberg,A., Pressburger, T., Qian, X., Roberts, T., & Westfold, S., "Progress on the KBSA

Performance Estimation Assistant", Proceedings of the 3rd KBSA Conference, 1988.
[101 Goldberg, A., "Technical Issues for Performance Estimation", Proceedings of the 2nd Knowledge-Based

Software Assistant Conference, July 9, 1987.
[11] Huseth, S. & King, T., "A Common Framework for Knowledge-Based Programming," Proceedings of the 2nd

Knowledge-Based Software Assistant Conference, 1987.
[12] Barstow, D. "Tutorial on Knowledge-Based Programming Environments," Presented at the 9th International

Conference on Software Engineering, Monterey, CA. March 30, 1987.
[13] Curtis,B., Krasner, H., Shen, V. & Iscoe, N., "On Building Process Models Under the Lamppost", 9th Interna-

tional Conference on Software Engineering, Monterey California, IEEE Computer Society Press, 1987.
[14] Boehm, B.W., Software Engineering Economics. Prentice-Hall, Englewood Cliffs, N.J., 1981.
[15] Curtis, B., Krasner, H., & Iscbe, N., "A Field Study of the Software Design Process for Large Systems" Com-

munication of the ACM Vol 31, No. 11, Nov. 1988.
[16] Rich, C., and Waters, R., "The Programmer's Apprentice: A Research Overview," IEEE Computer, 21 (11 ):10-

25 (November 1988).
[17] Sasso, W.C., "The Roles of Constructive Diagrams in Systems Development." Journal of Information Sys-

tems Management 6(1) (Winter, 1989).
[18] Soloway, E., Pinto, J., Letovsky, S., Littman, D., & Lampert, R., Designing Documentation io Compensate for

Delocalized Plans, Communications of the ACM Vol. 31, Number 1 (Nov. 1988), 1259-1267.
[19] DeBellis, M. & Mui, C., "Developing an Intelligent Interface for KBSA," to be publishcd in the proceedings of

the Workshop for Intelligent Interfaces, IJCAI, Detroit, Mich., August, 1989.
[20] Muncaster-Jewell, P., "Change Management Needs for Persistent Design Databases," Pr.ceedirgs of the

3rd KBSA Workshop, August, 1988.
[21] Alagappan, V. & Kozaczynski, W., "Specification Recovery in the Context of Re-engineering Very Large

Information Systems" to be published in the proceedings of the IJCAI '89 Workshop on Autcrmating Software
Design, August 1989.

[22] McCarthy, J., Presidents Message: We Need Better Standards for Al Research, The Al Magazine, F.!! 1984,
pp, 7-8.

[23] Huseth, S., Larson, A., Glasser, J., & Thelen, K., "KBSA Framework 36-Month Technical Report," Honeywell
Systems and Research Center, April, 1989.

[24] DiNitto "Problems and Prospects for Technology Transfer in Expert Systems", Proceedings of the 2nd
Knowledge-Based Software Assistant Conference, 1987.

325



za

CZ'

> ut

00

327



zo

Q

0
4-
zc

0 328



U
0 cflHP

0 0 rL D z
U- 0 r--iC fJ ,02Z

r~ 0 Ci:)

C/

u -4 -t

cIQ

g 4-J

329 c



o 4-j

Aci:ci
4-j~

030

Cl)cl

U) o3
C/ E(3 r) 6

330



4.2z~
/z

0z

0o
crU Z 2

0C

0
Vr

0

331



.7-
AZZj

0u

4-j cf

u(

332~



c)) 0 c 0(n)

u C) QCI 4-

-I-j (3) -

4-.' 4- c

0l U) ;_ ) ::1~C
4-j 4- 4-4 U

'-Hq 9 /

Hz Q-

p. 4  
cccu

U0 
4--1-.

(U 09

C/ 4 (1 _ r(;.

4,Z

0 ;--q 333



P(-9

4~-. Cl) f

cz 4J

Q)Q

Q cf

CZ W >
m r

u P-4C (

oqC a)4j C

cin

334



CZ 0

o~ bDOzz:

Q) (a) 0)

4-J0

b o~
uo

crj~fcz>~4 S
LQ d

(3)G 14S

4-1 U U/

-u C/)4-1c

z (1) 0 S)
G d- G 0- . 7 - 4 -

00 4 - 0

UU
CZ

335



Cuz 0

C,,

336



CCl)

_ zzz

4-j. 44O

0

C,))

0

o>
00

u~

(33



cn P

00
(t(9

00

)0

0

0 0

o C/)
CJ) C

U(U ci:)

338



crct

Hl
o.

W ; 0

oC

0

P4J

4--I

4-1* 4-000 '-. Q

(33



'n zc

00

0 03

ceoz

0

34



~~:. 0.U

ci:Z'

0

~~ >)

-0 > C C I 0).t4/1 0, , LJ>-clc IQ L

~~U) (n QC v
2 C > ,~- 0 c

0 'D. - -0 U, U,~ ~C

-~ 0.L OC UU,

> c-c

00 oc Coc E

0 c
4 ) Or U

o -L 0 4
r_ u 0 >

00

.2 CL a
o~4 -"-'.. * c

L ~ 0 0

00

om

434



Q)

Q)4 r--j

bDO bO

0 0 ;0 0-

'4-j

4-1

342



CZ

U) w )

r U Cf)

14-4 *1 -
uo~ D U)

0 O

g u

(UU

0 Q

Ur

343)



Cuf
N

*00 u <

344



4-j

00
Cuu

Cuu

~4-j

14

345



'-4U

C/)Q 4- n

"*0

4crJ

0
cf c.2 Cl)

U

'4.0 C/) 0

346



-3

Cll)

00

Cl)
Q U)

UCl

Q))

C/3

347



z Z~

cr ) -
CJ)H

cbcA 00 4-z

So ro NOJ

cjcz

4-H
Cl) )0

0z

~r
0O

C) ZCZHr
(3 n TQII

4-J348



KBSA FOR SOFTWARE MAINTENANCE AND RE-ENGINEERING

Gordon B. Kotik, President
Lawrence Z. Markosian, Vice President for Applications Development

Reasoning Systems, Inc.
3260 Hiliview Avenue
Palo Alto, CA 94304

Tel.: (415) 494-6201
Internet: kotik@reasoning.com, zaven@reasoning.com

Author Biographies. Gordon Kotik and Lawrence Markosian are founders of
Reasoning Systems, Inc. Before becoming President Mr. Kotik was Vice President for
Product Development at Reasoning. Before the formation of Reasoning Mr. Kotik was
one of the principal architects of the CHI knowledge-based programming environment at
the Kestrel Institute. Mr. Kotik has supervised projects involving development and
maintenance of submarine tracking software.

Prior to the formation of Reasoning, Mr. Markosian applied AI technology to DoD
problems including data fusion, tactical air battle management and control system
reconfiguration at Systems Control Technology. Previously Mr. Markosian was a
Research Associate at Stanford University. He is a member of the Association for
Symbolic Logic, the American Association for Artificial Intelligence and the Association
for Computing Machinery.

Abstract. We describe a new approach to software maintenance and re-engineering that
has demonstrated success in automating these hitherto intractable problems. The new
approach incorporates several technologies: object-oriented databases and parsers for
capturing and representing software; pattern languages for writing program templates and
querying a database of software to find code that matches the templates; and
transformation rules for automatically re-writing programs to meet new requirements.
We present a program transformation system, REFINE Tm , that incorporates these and
other technologies in an accessible environment for software maintenance and
re-engineering. Finally, we present examples of how our approach has been successfully
applied to maintaining software in a variety of languages.

1 Overview

Software systems are engineering artifacts of unprecedented complexity because of their

sh-.,.c size and the number and complexity of non-local and implicit interactions among

pieces. Nevertheless, most maintenance tools have been based primarily on linear text

* Copyright (c) 1989 by Reasoning Systems, Inc.

•* REFINE is a trademark of Reasoning Systems, Inc.

349



string representations of software that do not reflect the underlying, complex software

structure. We can make maintenance easier by building a collection of software tools that

represent and process software as network structures stored in a database. This

represention captures the abstract structure of the software, which is a network of

interacting pieces, and abstracts away from the details of the character string form of a

program.

Other objects of discourse in software development and maintenance include documents,
test cases, bug reports and project plans, most of which also exhibit a network structure.
Software maintainers' tasks can be characterized as analyzing and transforming complex
networks of all these software engineering objects. The goal of these analyses and
transformations is to change some properties of the program while preserving other
properties. Programming environments should provide the network representation of

software and related objects for use in writing tools that analyze and transform software.

Typical tasks under each category might be the following:

" Analysis: If I make a certain change to the program, what are all the other parts
of the program (and associated documents, test cases, etc.) I will have to change?

* Transformation: Change the program to use the X window system instead of

OldWindows.

Software development objects are usually represented as groups of text files in a variety
of languages, both formal and informal. The links in the network (e.g., document D
describes program P) are largely informal and implicit ("Most of the short files with

extension C in subdirectory LARRY and written prior to 11/88 contain C source code for
the first prototype of the FOO system"). The programmer typically analyzes and
modifies these objects using file-based tools-text editors, string searches, etc.

Hence, programmers must map their conceptual universe, a complex network of
structured objects, onto a hierarchical file system and interact with it at that level. The

difference between the conceptual model and the file representation occupies a sizeable

fraction of a programmer's time. Answering questions like "who last modified this

350



function" or "where is the user documentation for this program" can be extremely

time-consuming. Overall, the problems are similar to what would be encountered while
trying to use a bitmap editor like MacPaint as a CAD tool-an array of bits holds all the

information, but the information cannot readily be extracted by automation tools.

In the maintenance phase, the problems are compounded. The engineers who created the

original mapping of the project onto a file system might have left the company. With

them went the rationale and the details of the mapping, as well as key information about

the individual programs, documents, etc. It becomes successively more difficult to

maintain the internal consistency of programs, and also the consistency of programs with

their requirements, test cases, and documentation.

One approach to improving the situtation is to build programming environments that

support the user in mapping the network of software objects into hierarchical file
systems. This is a solid, evolutionary approach that is exemplified by tools such as

file-based programs for system modelling, version control, and configuration

management [1, 2, 3, 4]. An alternative approach is to use an object-oriented database

representation for programs and other software engineering objects and to build tools to

query, analyze and transform this database.

The approach described here builds on the experience of many previous systems and is

closely related to a number of current efforts. Many Lisp programming environments

have been build around a representation for Lisp programs as list structures in virtual

memory. The prime examrle is the Interlisp programming environment developed at

Xerox PARC [5]. Interlisp provided many analysis tools for softrware, including

Masterscope, an interactive query system for program analysis.

Language-based environments introduced the idea of building general programming

environments that could be customized to a particular programming language [6]. Much

of the effort was devoted to automating the generation of tools such as syntax analyzers,

structure editors and static semantic analyzers.

The Smalltalk-80 system represented parse trees within its compiler using instances of

Smalltalk objects (7]. More recently, this representation has been used in Smalltalk

351



compilers that perform compile-time analysis to eliminate much of the runtime
interpretation usually associated with Smalltalk execution [8].

In Section 2 we look at alternative methods for representing software. Section 3 presents
REFINE, an enabling technology for software maintenance and re-engineering that uses
an object-oriented database for representing software and transformation rules for
modifying software in the database. In Section 4 we examine actual software
re-engineering and maintenance projects undertaken using REFINE. We chose to look at
actual customer examples because we believe that examples of such use are much more
convincing than hypothetical examples that more succinctly highlight key technical
details. Section 5 summarizes our results.

2 Alternatives For Software Representation

Earlier we characterized the fundamental software maintenance activities as analyzing and
transforming networks of software engineering objects. We will now focus on
representing programs. We will evaluate various techniques for software representation
based on how well they support automating the analysis and modification of programs.

Source Files

One basic reason why analysis and transformation of software using file-oriented tools is
expensive and unreliable is that source text is a poor data structure for representing
programs. Compilers parse and analyze the source text to create a better representation,
namely abstract syntax trees, symbol tables, and other data structures that capture the
abstract relationships among program units. The compiler then performs further analysis
(e.g., type checking) and transformation (e.g., code generation) on the internal
representation.

Programmers do not generally have convenient access to the internal representation
created by compilers, so they are forced to deal directly with the "raw" form of the
program: source files. This limits their productivity in program manipulation,

particularly during maintenance where they must systematically analyze and modify large,

352



unfamiliar programs.

Compiler Data Structures

The style of program representation used by compilers is an improvement over source

files, but it still has drawbacks because the representation is not designed for use by tools

other than the compiler:

" The representation does not persist between runs of the compiler. There is no

version control of data structures, not even within a single run.

" Low-level data structures are used to encode abstract types (e.g., arrays are used

to encode sets, mappings and relations). The hand-coded implementation details

are difficult for the user to decode.

" No interactive tools are provided for browsing or editing the data structures.

* No specialized query language is provided to support basic operations such as

enumerating all the statements in a program.

Relational Databases

Some of the problems of compiler data structures may be solved by relational databases

(RLDB), namely, persistence, browsers and query languages. However, relational

databases are unsuitable for program manipulation (and engineering applications in

general) because of (a) the limits of the relational data model and (b) their inefficiency in

executing the graph traversal algorithms that occur so frequently in program

manipulation [9].

Object-Oriented Databases

Object-oriented databases are an emerging technology that is expected to play an

important role in engineering database applications. They preserve some of the

advantages of relational databases (persistence, browsers, and, to some extent, query

353



languages). They offer much more powerful data models that directly support network

manipulation with features such as multi-valued slots, inheritance and constraint

maintenance. Furthermore, their efficiency characteristics are better-suited than those of

RLDBs to fast manipulation of complex graph structures.

A practical system for software maintenance needs the following extensions to

object-oriented databases:

• The data definition and query languages should support the mathematical

abstractions used in high-level program representation (set notation, first

order logic, tree comparison)

* Tools must be provided for parsing source files into the database and printing

the database back to source files

* A syntactic pattern-matching capability for describing programs in terms of

templates should be provided.

* The query language should support a rule-based programming paradigm for

specifying transformations of software.

In the next section, we will describe how the REFINE knowledge-based software

development system retains the benefits of object-oriented databases while providing the

extensions listed above, and hence can serve as a technological foundation for a new

generation of software maintenance tools.

3 REFINE: An enabling technology for software maintenance

and re-engineering

REFINE [10] is an interactive software development system that integrates three key

tools to provide a basis for software manipulation:

354



* a wide-spectrum, very-high-level specfication language

* an object-oriented database that provides the necessary abstractions described in
the preceding section

* a language processing system that accepts definitions of programming languages
and produces syntax tools (parsers and printers)

The figure below depicts how these tools can be used in software maintenance.

Original source flies: FORTRAN Re-engineered filles: FORTRAN-77

P a s 
F o r m a t &

Print U Querying,

Displaying and

Transforming the
Object.Orienttd Database of FORTRAN Df

A FORTRAN-7l Sotware Database of Software

Query Transform

"Find all 2-byte integer "Change the 2-byto integers
variables used in calls to to 4.byte integers"
system subroutines"

Programs are converted between source file and the object-oriented database using the
parsers and printers created by the language processing system. Thus the database is
fully integrated with conventional file-based systems and tools. The REFINE object
system and other high-level data types in the specification language (sets, sequences,
maps, etc.) support a data model for software objects that is very close to the standard
conceptual view of annotated abstract syntax trees. Tools that analyze and transform
software in the database are written in the REFINE specification language, which

provides mechanisms for template-based program description and rule-based program
transformation.

355



3.1 The REFINE specfication langauge

The REFINE specfication language (also called REFINE) is a very-high-level,

wide-spectrum language that supports a variety of specification techniques including set

theory, first order logic, rules, object-oriented and procedural programming. The

specification language is used as the query/update language for the database. The

compiler for the specifcation language is implemented as an'ule-based program

transformation system; the current version generates Common Lisp and a code generator

for C is under development. The compiler and most of the rest of REFINE are written in

REFINE.

3.2 Object-oriented database

The REFINE database provides persistent storage of objects created using the

object-oriented part of the REFINE specification language. It includes mechanisms for
version control, multiple users with concurrefncy control, computed attributes, and
constraint maintenance. The database is used to manage networks of software objects
including specifications, code, documents and test cases. It is also used as a repository
for application-specific data.

3.3 Language processing system

The REFINE language processing system takes as input a description of a language in the
form of a granmnar and produces a parser, printer and pattemrn-matcher for the language.
The language processing system is an extension of LALR(l) parser generator

technology. Grammars are written using a high-level syntax description language that

includes

" regular right-part operators

* precedence tables

356



* semantic actions of productions
* a mechanism for specifying lexical analyzers.

REFTNE proides a template capability whereby templates for programs in a language
can be written in an extension of the language that includes wildcards. These templates
can be used-

* in pattern matching, to test whether an existing program is an instance of a

template, and

* in pattern instantiation, to build a new program that is an instance of the

template.

Use of templates in program analysis and transformation applications makes the

application code clearer and much shorter-frequently an order of magnitude shorter than

the hand-coded equivalent.

The language processing system has been used to build software management tools for a
number of languages, including REFINE itself, COBOL, JCL, C, SQL, Ada, and

NATURAL. These tools have in turn been used for applications inicluding automated
software maintenance, re-engineering, code generation and program verification. Users
have created domain-specific languages and tools for domains such as documentation,
testing, project management and bug reporting.

4 Examples

We now turn to examples of using an object-oriented database and associated tools in

software maintenance, drawn from our customers' and our own experience in using
REFINE.

4.1 Analysis Ex.mples

The use of an abstract syntax-based representation of software for analysis is fairly

common in modem approaches to software engineering. Most software analysis tools

357



build such a model as a preliminary to the actual analysis phase. Perry summarizes some

of the important uses of abstract syntax trees analysis in software development in [11].

The analysis capabilities and applications described here can be regarded as extensions of

these common analyses in that they take advantage of the novel features of the database

model of software, namely:

• object-oriented representation of abstract syntax

• use of high-level mathematical data types and query operations

• integration of abstract syntax trees with other software objects in the

database such as documentation, test cases, and bug reports

The goal is to allow a wider class of ahalyses, including very general software queries,

and to make it much easier to specify routine analyses such as cross-reference listings.

We illustrate database queries for program analysis with an example taken from software

reuse. In order to reuse a piece of software, you first have to be able to find it. In

modem programming systems, this task is made easier by the existence of structuring

mechanisms such as hierachical file structure, modules, and class hierarchies in

object-oriented programming systems. However, when the volume of programs grows
very large, these mechanisms are not good enough-they are based either on file-search

commands, fixed indexings of the software (libraries), or interactive browsers. They fail

to let the user bring to bear all the available information about the hypothetical extant

reusable code. For example, the user may know such things as:

* the probable author or authors of the code

• strings that are probably used in the code

" data structures that are probably used in the code

* approximately when the code was written

358



Also, the bulk of software maintenance involves programs that were created before

modem software structuring techniques were available. Therefore techniques are needed

that do not depend on program structuring methodologies but that can take advantage of

them where they have been used.

If the software is stored in an object-oriented database that has the properties discussed

earlier, then the query language for the database serves as a tool that allows all available

information to be used in general searches through the software database. For example,

REFINE stores the abstract syntax trees for the user's specifications together with

information such as:

* when the program was last modified, and by whom

" what diagnostics were issued by the compiler

* what other programs it uses and is used by

* what documents describe the program

Since the representation of programs is extensible, other relationships can be easily

added. For example, it is easy to add an attribute that stores, for each program, the name
of the person responsible for maintaining that program. This attribute could then be used

in queries over the software database.

To see how this query capability might be used, imagh,a that you are a programmer

maintaining a very large communications system that has been maintained by many other

programmers over its lifecycle. You need to use a function that will take two test

message sequences, and compute the maximal common subsequence of the two

sequences. You have reason to believe that such a function exists. The program's file

organization is undisciplined and there is no well-defined "library of test message

sequence functions" to scan.

If you were using a REFINE-like system, you could write a query like the one below to

find a set of candidate functions:

359



{f I f = 'function @@ (al:test-msg-seq, a2: test-msg-seq):test-msg-seq

begin .. end')

The above set expression can be read as "find the set of all functions that take two inputs

of type test-msg-seq and return a test-msg-seq". The expression that f is
equated to is a syntactic pattern (i.e., a program template) for such a function; it would be

written in the syntax of the language used to write the system (e.g., FORTRAN). The

"@ @" that occurs where the name of the function would go is a wild card; it means that the

name of the function is not relevant to the query. Similarly, the ".." in the begin-end is a
wild card that allows any sequence of steps as the body of the function.

If you had some ideas as to when the function had been written and by whom, you might

write a modified query such as:

(f I f = 'function @8 (al:test-msg-seq, a2:test-msg-seq): test-msg-seq

begin .. end'

& author(f) in fjoe, brenda, kelly)

& in-time-interval?(date-written(f), <"1/1/72", "1/1/78">))

To make a facility like this more accessible to programmers, we could provide a graphical

or form-based interface for specifying queries to replace the above logic-and-set-theory

notation. The notation above might then be used as an accelerator for experienced users,

or for cases when the graphical interface was not powerful enough.

In developing REFINE, we have used the capability of querying a database of software

extensively. It has been useful not only for code reuse, but for answering many other

sorts of questions such as:

" What has Joe been working on lately?

* What are all the functions that have changed since the last release?

360



• What are all the functions that elicited a particular diagnostic from the compiler?

The ability to quickly answer questions involving many different properties is one of the

most useful characteristics of databases in general; the need for answering such questions

about software during development and maintenance is a strong argument for the type of

software representation we advocate.

4.2 Program Transformation Examples

These examples focus on perhaps the most novel capability of the REFINE system-

specifying and automatically executing transformation rules that perform complex

modifications to software. This is the heart of providing automation for software

maintenance activities. Many of the analysis activities discussed earlier are performed

with the goal of determining where or how subsequent modifications to the software

should be made.

4.2.1 Porting C Applications To A Microcomputer

One common instance of non-portability in programs written in "portable" languages is

the syntax of identifiers. For example, in the C language, newer implementations for

engineering workstations usually allow identifiers to be more than 8 characters long, but

implementations for smaller machines often require identifiers to be 8 characters or less.

This means that porting a C program to run on a small machine may require renaming all

identifiers longer than 8 characters to identifiers shorter than 8 characters.

Here we have a good example of a transformation that is simple to describe and

formalize, complicated to implement using a text-based approach, but easy to implement

using a transformation-rule based approach. In fact, a bare-bones REFINE program that

performs this program transformation correctly is about 20 lines long and easy to

understand.

It is instructive to examine some of the complications that arise in performing this

361



transformation using a text-baged approach, because they are typical of problems that

arise in performing non-t.vial program manipulations on text strings.

" Lexical analysis: the text-based approach will require performing the equivalent

of lexical analysis to determine which character string in the input file defines

tokens in the C language-including details such as parsing comments and string

constants correctly.

" Identifying identifiers: the text-based approach will require knowing which

tokens are identifiers, so that we don't inadvertently rename keywords in the
language.

Avoiding conflicts: the text-based approach will require keeping track of which

identifiers (both original and shortened) have been encountered so far, so that we

don't create a name conflict arising from C's scoping rules.

Getting all the details correct using this approach will take time and experimentation. The

program will duplicate many of the analyses performed by a C compiler during

parsing--breaking the input into tokens, performing lexical scope analysis, etc. On the

other hand, the REFINE program that performs the same task has none of these

problems-the C program stored in the database embodies the results of syntactic and

static semantic analysis.

362



Here is the REFINE rule that forms the heart of the required program transformation:

rule rename-long-identifier (id) % The input to the rule is an object "id"
identifier (id) % If id is an instance of the class "identifier"

& length (name (id)) > *max-id-l.ength* % and id's name is longer than the limit
--> % Ame
new-name = make-new-name (id) % generate a new name called "new-name"

& name (id) = new-name % rename the identifier id to new-name, and
& (ref in identifier-references(id) % for each occurence of the id in the program

--> name (ref) = new-name) % rename it too to preserve consistency.

The REFINE code that applies this transformation to an entire C program is:

preorder-transform (my-program, [ 'rename-long-identifier])

which can be read as "traverse the tree rooted at the object my-program, applying the rule

rename-long-identifier at each object in the tree".

This approach can be used to solve related problems that arise in software maintenance,

such as the problem of merging two large programs written in a language that does not
support any scoping mechanism for functions.

4.2.2 Porting SQL Database Applications

This example has features that occur in a variety of software porting applications.

Suppose you are a software ,endor producing application programs that use an

SQL-based relational database. Such programs are often written in C with embedded

calls to SQL. While there are standards for SQL, the embedding of SQL in C (or other

languages, for that matter) is far from standardized-each database vendor defines its

own embedding, and they are substantially incompatible. How can a database application

written for a specific database be ported to work with a different relational database?

When we encountered an instance of this problem, we evaluated a few different

approaches including:

363



• manual recoding of the application

* restructuring the application to use macros and libraries that encapsulate the

differences between 'the database systems

* creating the new version from the original using program transformations

The first approach was feasible, but the application was already quite large and was

projected to grow to one million lines of code. Since embedded SQL was used

pervasively, the first approach would lead to a large manual recoding effort.

The second approach initially seemed promising, but on closer analysis it was fraught

with problems. The two most serious problems were:

* Encapsulating functionality in libraries of functions and/or macros

presupposes the ability to pass the variable part of the behavior as parameters to

functions or macros, but the parameterization mechanisms in C did not provide

the necessary features.

* A particular operation may have a variety of special case translations that will

result in much greater efficiency but can only be used under special circumstances

that depend on the context of the operation.

We decided to prototype the third approach-a program transformation system for

automatically porting programs different to vendors' SQL implementations. Our

prototype focussed on the most difficult part of the process, namely, the translation of

application programs involving dynamic queries-queries that are generated at runtime.

Dynamic queries allow an application to obtain arbitrary SQL queries from the user and

then pass them to the DBMS. Dynamic queries must allocate space to store the table that

results from the query. Because the details of the query are not known at compile time,

the shape of the table-the number and types of it3 columns-is also unknown at compile

time. The application must include C code to interpret a descriptor of the table's shape

that is returned (along with the a pointer to t. .able) by the database, thus allowing the

364



application to destructure the rows it extracts from the table. Other details that must be

handled at runtime include interpreting error conditions. The protocol for performing

dynamic queries and interpreting the results differs greatly among SQL vendors.

The prototype program transformation system was built in REi7,INE in one week, and

resulted in the following tools:

• Two extensions of a REFINE grammar for the C language - one each for the

two vendors' extensions of C to allow embedded SQL. From each grammar,

REFINE automatically produced a parser, printer, and pattern-matcher.

* A set of about 10 transformation rules that implement a translation strategy for

porting application code involving dynamic queries.

* A file translator that parses input files, applies the transformation rules

automatically, and prints the resulting program in an output file.

One of the transformation rules is shown below.

This experience demonstrates that real-world software porting problems can be automated

using commercially available program transformation systems.

365



The overall strategy for translating C files containing XX SQL into C files containing YY

SQL calls for-

° maintaining, in the YY (translated) version, a data area that simulates the XX

data area, together with a YY data area that will actually receive the results of the

YY SQL calls;

* including, in the YY version, code that converts YY data format to XX data area

so that the original C code that uses this data can be preserved, assuring correct

functionality; and

• adding optimizations as our understanding of performance increases.

What are the incompatibilities in SQL data area declarations that require translation? In

XX embedded SQL, it is not necessary explicitly to include a C declaration of an SQL

data area variable. In YY embedded SQL, an explicit C declaration is necessary.

Because the translation strategy calls for maintaining a simualted XX data area, the

translator will 'ave to introduce a declaration for this variable. Also, the YY version of

SQL requim two SQLDA variables, one for BIND and one for SELECT. Thus a total

of three new variables must'be declared.

Below we show a transformation rule used to introduce the new variable declarations.

Translation rules are applied after the source files have been parsed; they are applied to

the abstract syntax representation of the source code.

The rule looks for an embedded SQL data area declaration statement in the C source code.

Such a statement has the form "EXEC SQL INCLUDE SQLDA". (The syntax of this

embedded SQL statement is the same in both XX and YY embedded SQL. Translation is

needed not for this SQL statement but for the related C code.) When one is found, the

three new C variables are declared immediately following it:

* one in the declaration

xx_sqida_type xxsqlda•

to hold the simulated XX-formatted data, and

366



*the other two combined into one declaration

SQLDA * yybind-sqida, * yyselect-sqlda

to hold the BIND and SELECT results.

Note that the rule also adds comments indicating that a change was made and what the

introduced variables will be used -for.

Rule Add-YY-SQLDA-De cla rat ions (s) % The input to the rule is an object "s"
embedded-sql-statement? Cs) % If s is an embedded SQL statement

& sql-form(s) = 'INCLUDE SQLDA' % of the form "INCLUDE SQLDA"
& parent-expr(s) = the-file % and sis from thefile "the-file"
& file-definitions(the-file) =

[$preceding-def a, a, $succeeding-defal
% and sis one of the declarations in the file

& ds make-SQLDA-declarations-for-name(SQLDA"I)
% and ds is a sequence of two new variable
% declarations based on the string "SQLDA'
% (one to simulate the XX SQL data area
% and one to be the actual YY data area)-generated
% by calling a function that creates unique variable
% names-

& ds =(new-XX-decl, YY-declJ

_> ~% ±do the following:

file-definitions (the-file) -
[$preceding-defs, a, $ds, $succeeding-defsJ

% include the new variable declarations among
% the file's original declarations and

& doc-strings (new-XX-decl) % add appropriate documentation lines for both
% new variable declarations.

(tI/* CHANGE: added new variable below, used to simulate the XX *
1* Descriptor Area named SQLDA /]

& doc-strings(YY-decl)
(11/* CHANGE: added below two new variables that will hold the YY *

/* BIND and SELECT Descriptor Areas corresponding to SQLDA */t'J

367



After introducing the new variable declarations, the translator must translate C references

to the old variable (SQLDA) to references to the new variable name. When the original

C/SQL source file was first parsed, C identifier references to SQLDA were detected.

Also, while generating the new variable declarations,

make-SQLDA-declarations-for-name maintained a global mapping of old variable

names to new names. Here is the rule that translates C variable references:

Rule translate-references-to-XX-SDQLDAs (r)
identifier-ref (r) % if r is an reference to an identifier

& name(r) = "SQLDA" % and its name is SQLDA
-- > % toe

name(r) = *newXXDA name*("SQLDA")
% change the name of the identifier reference to be
% the name of the new variable introduced earlier

Several more translation rules are needed to handle data areas-for example, to translate

SQL references to the old variable names, and to add code tc translate among the different

DA formats.

4.2.4 Converting between versions of a programming language

Two of the advantages of high-level languages over assembler and machine languages are

portability and ease of integration. In theory, porting a program written in a high-level

language to a different machine is easy if there exists a compiler for the same language on

the target machine machine--one simply recompiles the source code. Also, in theory,

high-level languages make it easy to combine programs using mechanisms such as

external subroutines.

In practice, of course, it's not so simple. One reagon is that most popular high-level

languages (e.g., FORTRAN, Pascal, COBOL) have a maddening variety of dialects and

versions that at least partially (and sometimes completely) remove the. advantages

mentioned above. Programs written in one dialect cannot be compiled with a compiler

written for another dialect, and programs written in different dialects cannot necessarily

call each others' routines. These incompabilities between dialects introduce the need to

convert programs among dialects in order to combine them and run them on different

machines. Program transformation is often the most effective technology for automating

368



these conversion processes, because the necessary changes are structural (rather than

textual) in nature, and must be made pervasively across large bodies of application source

code.

An example of such a conversion task arises in connection with the language

NATURAL TM . NATURAL is a COBOL-like language used primarily for MIS

applications. There are several versions of NATURAL on different machines with
varying degrees of compatibility. In particular, there is a recent version (NATURAL 2.0)

that runs almost identically on IBM mainframes and DEC equipment. The older and most

widely used version for IBM mainframes is NATURAL 1.2, which is substantially

incompatible with NATURAL 2.0. Thus customers must convert NATURAL 1.2

applications to NATURAL 2.0 and then recompile them in order to run them on DEC

equipment.

A fully automated NATURAL 1.2 -> 2.0 converter is currently under development
using REFINE. Before choosing REFINE, the customer investigated several strategies

for conversion tools, including text-based approaches and approaches using YACC and

C. The customer and Reasoning Systems jointly developed a prototype converter using

REFINE in two weeks. The prototype included pirser/printers for subsets of both

NATURAL 1.2 and NATURAL 2.0, and transformation rules that handled several key

incompatibilities between the two language versions. The prototype was able to

completely convert several examples.

Below is an example conversion rule used in the NATURAL 1.2 -> 2.0 prototype

converter. This rule makes a conversion that is necessary because NATURAL 1.2

allows variables to be defined anywhere within a programn, whereas NATURAL 2.0

requires that all variable definitions occur within a single "data definition" clause at the

369



beginning of the program.

rule hoist-variable-definition (node)
variable (node)
& var-fmt = variable-format(node)
& *data-def-clause* = 'DEFINE DATA LOCAL $old-defs END-DEFINE'

variable-format(node) = undefined
& new-var = make-variable(var-name, var-fmt)
& *data-def-clause* =

'DEFINE DATA LOCAL $old-defs, @new-var END-DEFINE'

In this rule, the input, node, is first tested to see if it is an inline variable declaration. If

so, then var-fmt is set to the format of the inline declaration. Then (on the right hand

side of the arrow), a new variable declaration new-var is created and added to the "data

definition" clause *data-def-clause*. Also, the variable format of node is erased,

effectively deleting node from the program.

5 Summary and conclusion

We observed that software maintenance and re-engineering requires two broad categories

of activities: analyzing and transforming programs and related objects. We have

described an approach to software maintenance based on

" an object-oriented database representation for software lifecycle objects and

" automated transformation of the objects represented in this database.

We have found that the object-oriented database representation more closely approximates

the conceptual model held by developers than is possible with a text file-based system.

Analysis and transformation can be significantly automated by tools that take advantage

of the database representation. We have described REFINE, an environment for program

representation and transformation that provides the tools needed for software maintenance

and re-engineering. We have illustrated the approach with examples taken from actual

experience in re-engineering customers' code in C, SQL and NATURAL, and we have

illustrated how the maintenance of REFINE itself has been automated using the same

tools.

370



The ability to support automation in modifying large software systems by using

rule-based program transformation is a key innovation of our approach that distinguishes

it from systems that focus only on automation of program analysis. The features required

to support this transformational technique require substantial extensions to an

object-oriented database system to support efficient representation of programs and the

ability to convert easily between the text and database representations.

The transformational approach to software development was first developed for

synthesizing code from high-level specifications, but its range of applicability now

appears to be much larger. It may well be that this technology will make its first

significant impact on software engineering practices in the areas of maintenance and

re-engineering, particularly in MIS applications, rather than in software development.

Acknowledgements

The authors would like to thank Cordell Green, Scottie Brooks, Scott Burson and Peter

Ladkin for their many ideas and insights.

371



References

[1] Feldman, S. "MAKE - a program for maintaining computer programs," Software -

Practice and Experience, 9 (1979), pp 255-265

[2] Rochkind, M. "The source code control system," IEEE Transactions on Software

Engineering, SE-1 (1975), pp 364-370

[3] Leblang, D. and Chase, R. "Parallel Software Configuration Management in a

Network Computing Environment," IEEE Software, November 1987

[4] Tichy, W. "RCS - A System for Version Control," Software - Practice and

Experience, 15 (7), pp 637-645

[5] Teitelman, W. and Masinter, L. "The Interlisp Programming Environment,"

Computer, 14 (4), pp 25-34

[6] Reps, T. Generating Language-Based Environments, MIT Press, Cambridge, MA,

1984

[7] Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation.

Addison-Wesley, Reading, MA, 1983

[8] Johnson, R., Graver, J., and Zuraski, L. "TS: An Optimizing Compiler for

Smalltalk," Proceedings of OOPSLA-88, September, 1988

[9] Linton, M. "Implementing Relational Views of Programs," Proceedings of the ACM

SIGSOTI/SIGPLAN Software Engineering Symposium, The Association for

Computing Machinery, NY, 1984

[10] The REFINE User's Guide. Reasoning Systems, Palo Alto, CA, 1985

[11] Perry, D. "Software Interconnection Models," Ninth International Conference on

Software Engineering, IEEE Computer Society Press, 1987

372



An Approach to the Support
of Dynamic Extensibility
in Nonstop, Distributed

Target Environments

by
Charles W. McKay

Software Engineering Research Center
University of Houston - Clear Lake

Abstract

An increasing number of applications for computer automated
systems require large, complex, nonstop, distributed target
environments. Many of these systems must also support a growing
and changing set of demands for the deployment and operation of
mission and safety critical (MASC) components throughout a long,
incrementally evolving life cycle. Thus far, most of the reported
research on the development and application of knowledge based
paradigms to the life cycle issues of software engineering has not
focused on the specific challenges of such systems. In
particular, the paradigm is more often applied in the capture of
requirements and the development and representation of solution
specifications from which automated generations of implementations
may be produced. Subsequent changes in requirements lead to new
specifications and a new generation of an implementation which is
typically intended to replace the old one by stopping the system,
loading the new code, and beginning execution. The Portable
Common Execution Environment (PCEE) is a NASA sponsored research
project to reduce the life cycle risks of supporting a changing
set of MASC components in nonstop, distributed systems. These
issues of dynamic extensibility have led to a proposed solution
approach which exploits a knowledge based paradigm. This paper
reports the major features of this approach which is now under
study for the host development environment portion of the PCEE
project.

Key words: nonstop, distributed systems, mission and safety
critical (MASC), portable common execution environment (PCEE),
knowledge based (KB) paradigms

Introduction

An increasing number of applications require large, complex,
nonstop, distributed target environments which must support
mission and safety critical (MASC) components through a long,

373



incrementally evolving life cycle. Examples include the Space
Station Freedom Program (SSFP), moon colonization and other
programs of NASA and her international partners. The Portable
Common Execution Environment (PCEE) is a research project at
NASA's Software Engineering Research Center at the University of
Houston - Clear Lake. The program is focused on the reduction of
risks in the life cycle issues of supporting MASC components in
such applications. Although knowledge based, life cycle paradigms
clearly have much to offer in the initial development of such
systems, much of the international research has not been focused
on the problems of dynamic extensibility in incrementally
evolving, nonstop systems. (Eg, Green et al, '83) Specifically,
the paradigm is more often applied to the capture of requirements
and the representation and development of solution specifications
from which implementations can be automatically generated.
Subsequent changes in requirements result in changed solution
specifications and a newly generated implementation rather than
direct modification of the original code. However, when lives,
health, property, the environment and the success of missions
depend upon continuous operation of the target environment
resources even while modifications and extensions to the
applications and systems software are being made, then both the
paradigm and approaches to its implementation must be
reconsidered. The results must avoid a requirement of shutting
the old system down and bringing up a new one each time there is a
need to accommodate the timely introduction of safe and reliable
changes. This paper reports the early investigation of an
approach to these issues in the host environment portion of the
PCEE project. The paper begins with an elaboration of the
conceptual foundation underlying the approach now under study.
The paper concludes with the status and projections for the
future.

Key Terms

The following terminology will be used to explain the
underlying conceptual models in three environments addressed by
the PCEE project. The first underlying model describes a host
environment where computing solutions to automation problems are
proposed, developed, and sustained. Another underlying model
describes a target environment where the solutions from the host
environment will be deployed and operated. The third underlying
model describes an integration environment which bridges the first
two. A tutorial introduction to. these conceptual models and the
prerequisite concepts and principles is provided in AIRMICS, '89
with additional discussion in the report by McKay, Burgett, and
Collins (1989).

An entity is a representation which describes either a
logical or a physical "thing" having both an individual existence
and a distinct identification. A relationship is an ordered
association between two entities where the ordered association has

374



both an individual existence and a distinct identification. An
attribute is a property of an entity or of a relationship where
the property has both an individual existence and a distinct
identification. Note that attributes may include information on:
values and constraints, predicates and triggers, temporal and
spatial semantics, and normal and exception processing. (Triggers
are actions to be automatically initiated when their predicate is
satisfied. Together with entities and relationships, they may
also include semantic information on: information related to other
information, information related to behavior, behavior related to
other behavior, behavior related to context, etc.)

Abstract types define the sets of legal: contexts, values,
and operations which may be visible at the interface to any
instance of the abstract type. These contexts allow abstract
types to be constructed (via visible relationships) from other
abstract types. Examples of abstract types include but are not
limited to: data/information, processes/behaviors, interface
sets, etc.

Objects are instances of abstract types. They should be used
to structure and control complexity by abstracting a design
decision and encapsulating its associated implementation details.
Each object may consist of three parts: context information, an
abstract interface specification (AIS), and an implementation
part. For a given context, the AIS of an object specifies:

1. the services and resources to be provided, consumed, or
affected by the object

and for each service and resource,
2. how well it is to be supported (e.g., precision)
3. under what circumstances (e.g., normal versus exception

processing).

Note that the concept of services implies operations performed by
an object on behalf of a user of the object whereas the concept of
resources implies "raw" entities available to or from an object.
Thus a resource may be a type definition or a value of a data
variable.

Objects communicate by messages which specify: context,
services, and resources to be exchanged between the communicating
objects. Note that messages convey the temporal and spatial
semantics of: normal versus exception processing (i.e., context),
control flow (i.e., services), and data flow (i.e., resources) for
each communication between a source object and a destination
object. This is iii sharp contrast to the effects of more
traditional analysis and design methodologies which separately
consider control flow and data flow and lose much of the temporal
and spatial semantics (ds well as context) which describe control
and data flow interactions.

Objects may be classified into three categories based upon the
visibility of threads of control in the object's AIS: passive,

375



neutral, and active. Passive objects offer services and,
possibly, resources but they must borrow the thread of execution
of the caller in order to perform the operations associated with
the requested service. This means the thread of control is
suspended in the calling object and "loaned" to the called object
which will return it after using it to perform the requested
service. Ada packages with procedures and functions visible in
their AIS (but no tasks) are examples of passive objects. (Many
languages offer only passive objects. Hence the confusion in the
literature is exacerbated.) Such passive objects may serve as
triggers used in knowledge based systems.

Neutral objects contain resources only (e.g., type
declarations and values). They neither borrow a thread of control
(i.e., no services are provided) nor possess their own. Examples
include the relations of a relational data model (i.e., data
defined in terms of other data types and data).

Active objects possess their own visible thread of control as
in Ada tasks. Not only does this allow program structuring to
exploit parallelism inherent in the environment, but the
firewalled semantics of each active object allow program
structuring to reflect separation of concerns so that a failure in
a "nice-to-have" active object does not necessitate a failure in a
"have-to-have" active object. Active objects may, serve as pattern
matching demons in knowledge based systems. (I.e., they have
their own action rules and advance their own state in response to
or in search of a match for their predicates.)

The reader should note that each object has both an
individual existence and a distinct identification. Therefore an
object can readily be associated with an entity in an EA/RA form
of model. Thus its external relationships to other
objects/entities are depicted within the model. Furthermore, the
context, AIS and implementation parts of an object can all be
internally decomposed into an EA/RA model. In a sense, the
external relationships among objects only provide information
visible in the context and AIS pats since implementation details
are encapsulated and hidden in the implementation parts. Thus it
is reassuring to know that the same form of modeling that
represents the "whats, how well, and under what circumstances" at
the public visibility level is also an appropriate form of
modeling to represent the hidden "how tos". The reader should
also note that the relationships between communi ating
objects/entities can be readily associated with messages an, their
temporal and spatial semantics.

Just as objects, messages, and abstract types can be used to
superimpose a useful discipline upon model representations in
EA/RA form, at least two higher levels of discipline can be
superimposed on objects to facilitate constructing and sustaining
well engineered computing systems. The next level of discipline
is based upon a host environment construct called stable
frameworks. The succeeding level of discipline is based upon a

376



target environment construct called stable interface sets.
Essentially, stable interface sets allow collections of objects to
be deployed and operated such that all objects, their
interrelationships) and their key object and relationship
properties have well understood structure and behavior. Stable
frameworks are basically a configuration and change control
construct in the host environment that allow objects to be
successively combined and integrated until they reach the status
of a stable interface set which is ready for deployment.

Knowledge Based Models

Object based, semantic models in EA/RA form may be used to
represent a solution to a given problem space. Within such
models, a knowledge based paradigm may be used to capture expert
knowledge and associated knowledge handling as an important added
value to the more traditional paradigms that may constitute the
bulk of the solution. The draft standard (ANSI X3H4, 1985) 'for
the Information Resource Dictionary System (IRDS) offers a
promising opportunity to develop, sustain, and exploit standard,
machine independent, on-line representations of object based,
semantic models which integrate value added knowledge based
paradigms with more traditional designs. More will be said about
this in the next section.

Mylopoulos and Levesque (Brodie et al, 1984) classify
knowledge representation for such systems into four categories:
semantic nets, logical schemes, procedural schemes, and hybrids of
these three (eg, frames). The two part basis of the
classification rests on the concepts of states and state
transformations. State is defined as the set of all entities and
their relationships at any one time in any one model. State
ttansformation within a model causes creation/destruction or
wodification of entities or changes in their relationships.
Attributes are an important factor in states, state
transformations, and the ability to reason about the model.

The first category, semantic nets, focuses principally on
states (ie, E's and R's) of a model. The second category, logical
schemes, focuses principally on assertions about states.
Typically, such a scheme uses a collection of logical formulas to
provide a partial view of a state. Modifications occur when a
logical formula is added or deleted from the knowledge
representation. By contrast, the third scheme, procedural,
focuses on state transformations. Here a knowledge representation
corsists of a global database of assertions pL' an associated
collection of theorems (also called demons in this approach) which
watch over the database and are activated whenever the database is
modified or searched.

There are purists in each of the three categories. Claimed

advant7ges by each camp include the following. Logical scheme

377



advocates point to the easy support for inferencing rules based on
clean semantics. Critics point out the difficulty in representing
procedural and heuristic knowledge and the difficulty in
organizing and sustaining large, complex knowledge
representations. Network scheme advocates point to the ease of
organizing and graphically representing large, complex knowledge
representations plus the ease of associating access paths with
relationships. Critics point out the lack of formal semantics and
standard terminology (although IRDS is a major step toward the
resolution of abused and overloaded terms). Fans of the
procedural scheme point to the ease of specifying direct
interactions among facts with no wasteful searching. Critics
emphasize the difficulty of understanding and modifying such
representations.

In this same reference, Brodie (Brodie et al, 1984) makes the
point that real world applications can be characterized by:

. static properties of structure
dynamic properties of behavior (eg, operations and their
properties and relationships)
integrity rules (eg, constraint management) over structure
and behavior.

He concludes that none of the three approaches is recognized to be
superior in addressing all three issues.

Since none of the three models in "pure" form have been
clearly demonstrated to be adequate for modeling large, complex,
distributed applications, hybrid approaches deserve consideration.
This is particularly true of the issues of dynamic extensibility
in nonstop environments with MASC components. The next section
introduces the hybrid scheme recommended in this paper.

Recommended Approach

As pointed out earlier, objects, messages, and abstract types
can be used to impose a discipline on semantic modeling in EA/RA
form. Furthermore, IRDS provides a standard for representing
instances of EA/RA models via extensible and tailorable schemas
and dictionaries. Thus, whereas a stable framework may depict
relationships among Abstract Interface Specifications (AIS) of an
integrated collection of objects (as well as the attributes of
these AIS's and their R's), one may "look beneath" this
macroscopic view into either the AIS or the implementation part of
any object and see a further decomposition of the internals into
EA/RA form. Such recursive modeling can be easily represented in
IRDS.

More unusual as part of the approach, however, is the
proposed special treatment of attributes combined with active
interfaces in the run time environment to the IRDS compatible

378



dictionaries and schemas. The application knowledge will be
captured in the metadata and metadata processes of these
dictionaries and schemas. Access to sharable and persistent
objects in the object base will be controlled by interactions with
these active interfaces.

In IRDS, attributes are typed just as entities and
relationships are. This means that for each attribute, there is a
known (ie, constrained) set of legal values and legal operations
for each legal context of use. For example, a sensor input may
have legal values constrained to type integer and further
constrained to range between 4 and 20. Just as these constraints
can -be represented in IRDS, so can a legal extension called a
predicate set which is to be associated (ie, related) with this
attribute. As an example, each legal sample value reported from
this sensor could satisfy a predicate that triggers setting a
status bit in a bit vector representing sensors reporting legal
values since the last scan. Note that the shared and persistent
variable where the value is to be stored is accessed through its
identifier reference to the appropriate dictionary. Transparent
to the code which provides the value, the dictionary entry is
checked by a constraint enforcement procedurL to find the
definition of legal values. This procedure is a passive object
also modeled in the dictionary. Since the 4 to 20 predicate is
satisfied, another procedure call is made to the associated
trigger. This too is a procedure modelezd in the dictionary. This
trigger sets the appropriate status bit in the bit vector which is
also modeled in the dictionary. Note that the code that provides
the sensor value contains no notion of the integrity checks and
status reporting that are effected via the active dictionary.

To illustrate the concept of demons, consider this sensor
example further, Suppose that low values less than 4 are

associated with a predicate set that further discriminates these
legal values into two categories. a value of 0 (probably
indicating an "opened"' circuit) or other-than-0 (probably
indicating a "drifted" amplifier in need of recalibration). If
the predicate for less-than-4 and other.-than-0 is satisfied by the
next reported value, a call may be issued to a recalibration demon
associated with the predicate. The demon (eg., an Ada task
modeled in the dictionary) might accept this call and thus release
the thread-of-control of the caller so that it may proceed.
Later, the demon may report the results of the attempted
recalibrationo It may even signal another demon responsible for
maintaining a statistical profile of all calibration and
maintenance metrics. Once again the code that reported the sensor
value has no notion of what's going on behind the scenes. (Nor
should it have. Remember that these sensor values were identified
as shared and persistent data. Therefore the reporting coda
should not be responsible for direct storage and manipulation of
either this data or its associated meta data/knowledge.)

To support dynamic extensibility, a new meta relationship can
be defined to serve as a link from a self identifying, self

1. 379



descriptive instance of a schema and its associated dictionary to
a newly created descendant schema and its associated dictionary.
By legal extensions to IRDS to include definitions of controlled
inheritance and extensibility, the descendant schema can be
defined in the host environment with respect to the parent schema.
The changes can then be installed via messages under the control
of an interactive integration environment. Thus if, in the
preceding example, it becomes desirable to modify the definition
of one attribute of a set of software processes for the sensors,
to add two new attributes, and to inherit all other attributes
that now exist for the set, then the null value in the link field
of the current schema for this set can be replaced with a
reference to a new descendant schema with its own dictionary for
future instances of the abstract types defined in the new schema.
The integration environment may then be used to control the
individual blocking and replacement of old sets with new ones
(possibly after an observation period of monitoring the concurrent
operation of old and new) or the old sets may continue at some
locations while new ones are used in others. In this latter case,
a query of a commonly defined attribute can result in information
form new and old alike. A query of the two new attributes may
result in information reflecting only the new descendants in the
family tree with an indication that there are ancestors that lack
these attributes.

Summary

In summary, the proposal is to legally extend IRDS (which may
be done for any IRDS application according to specified rules) to
define a new level of metaknowledge associated with attributes.
le, constraints, predicates, triggers, and demons where each is
modeled in the schemas and dictionaries as a form of meta-meta
objects (eg, triggers, demons, predicates), meta-meta
relationships (eg, pradicate-calls-trigger), and meta-meta
attributes (eg, 0 and other-than-0 for less-than-4) associated
with the attributes of relationships and entities. The extensions
also include the concepts of links to descendant schemas and
associated dictionaries with controlled inheritance from the
ancestor schemas. Semantic queries may be made against a family
tree with differing attributes among members of differing
generations.

The disadvantages of such an approach appear to include the
additional complexity of metaknowledge concerning some key
attributes and relationships (although this too is simply another
level of recursion). Another potential disadvantage that must
inevitably be considered is performance (although recent
experiences with multi-processors indicate the potential to
resolve this problem). The advantages of such an approach appear
to include the following. First, Brodie's three characteristics
of real world applications can clearly be supported. Also, since
inferencing rules can be mapped to constraint management in a very

380



similar way to the preceding example, the principal benefit of the
logical model has been retained, although arguably in a less
straight forward manner. Furthermore, the authors believe that,
unlike the logical scheme, the approach offers far less difficulty
both in organizing and sustaining large, complex knowledge
representations and in representing procedural and heuristic
knowledge.

The proposed approach may complicate the current ease within
the network scheme of organizing and representing large, complex
knowledge representations. The ease of associating access paths
with relations is unchanged. However IRDS helps improve the
network disadvantage of non-standard terminology and a combination
of precise modeling and formal modeling certainly improves
semantic representations.

Fans of the procedural scheme should note that the approach
has fully retained the ability to specify direct interactions
among facts with no wasteful searching, although arguably some
ease of specification has beensacrificed. The author believes
that the highly recursive approach to modeling in EA/RA form
permitting macroscopic views (eg, object AIS's integrated into a
stable framework), microscopic views (eg, E's, A's, and R's of the
internal contexts, services, and resources of an AIS), and
"sibmicroscopic views" (eg, associating predicates, triggers and
demons with attributes) will ultimately facilitate both
understanding and modifying such representations.

Status

The PCEE project is in its first year. High level design and
assembly of the first increments of needed physical resources for
the host environment are nearing completion.

Acknowledgements

The author gratefully acknowledges the many contributions of
the team members of the PCEE project as well as those on other
projects that contributed substantially to the concepts and
principles now in use. In particular, two projects in this latter
category include AdaNET (NASA sponsored) and DOBIS (IBM
sponsored). Opinions and conclusions are solely the
responsibility of the researchers and do not necessarily reflect
those of the sponsors.

381



Bibliography

AIRMICS '89, Ada Reusability Guidelines, section titled
"Conceptual and Implementation Models" by Charles McKay, to be
published in 1989 by AIRMICS.

ANSI X3H4, Parts 1..4 (Draft Proposed) American National Standard
Information Resource Dictionary System, American National
Standards Institute, New York, 1985.

Brodie, M., Mylopoulos, J., Schmidt, J. (editors), On Conceptual
Modeling: Perspectives from Artificial Intelligence, Databases,
and Programming Languages, Springer Verlag, New York, 1984.

Green, C., Luckhau, D., Balzer, R., Cheatham, T., Rich, C., Report
on a Knowledge Based Software Assistant, Rome Air Development
Center, RADC-TR-83-195, 1983.

McKay, C., Burgett, D., Collins, G., Distributed Object Based
Information Systems (DOBIS), SERC/HTL@UHCL, (IBM Contract 2-5-
51539), 1989.

382



MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C31) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C1 systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillar"e
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.


