ey »—:.ca:‘,avaww*

e e e

HARLEE

- WPV NSTNPRVRSRV ST B PTRPL VST LLNPR R STy Me g S0 s b b L S AR Sy
» . -
o - UNCLASSIFIED
" \ 3
nnb i UOP_Y AR-006-405
s N
0
~
<+ AUSTRALIA
N
2 ELECTRONICS RESEARCH LABORATORY
é
- ' .
: < Information Technology
* L .
Division v
=n STATES
l" i"’ wr. uNITED ‘\’ oHNT\ON
. lecAL
z - 2 urronisEd 0 18 REPORT
- A v p - i3 AU) ™
' N o '
" JUL 2 4 1950 ,
TECHNICAL REPORT
. D ¢4 ERL-0513-TR
ADA COMPILER BENCHMARKING: INITIAL
INVESTIGATIONS
t >y
R. Vernik, . Turner and S.F. Landherr M
STATEMENT A
Approved for
pubiic releqie
SUMMARY .e Dismbution Uniin;red
T e
L This paper documents some initial investigations into the benchmarking of Ada compilers. A summary of
available benchmarking suites is given, although only two of these suites were used in the initial
benchmarking experiments: the ACM SIGAda Performance Issues Working Group (PIWG) benchmarks and
the University of Michigan (UMICH) benchmarks. Experiences and lessons learned in applying these suites
to the Alsys Ada compiler hosted on a Toshiba personal computer and to the DEC VAX Ada compiler hosted
on a VAX 8300 are provided. Based on these initial benchmarking experiences, several areas of possible
t further research/development are identified. In particular, the need for more advanced analysis tools is
discussed,
© COMMONWEALTH OF AUSTRALIA 1990
APRIL 1990 COPY No. 1 1
APPROVED FOR PUBLIC RELEASE
¢

POSTAL ADDRESS: Director, Electronics Research Laboratory, PO Box 1600, Salisbury, South Australia, 5108.
ERL-0513-TR

UNCLASSIFIED

90 07 >0 /é‘)

‘x

ol g e et -

\
a4

BRI

A

i

¢
<

T
_«L:' PR

|
¢
1
l

TR AN ¢

CONDITIONS OF RELEASE AND DISPOSAL

This document is the property of the Australian Government. The information
it contains is released for defence purposes only and must not be disseminated
beyond the stated distribution without prior approval.

Delimitation is only with the specific approval of the Releasing Authority as
given in the Secondary Distribution statement.

This information may be subject to privately owned rights.
The officer in possession of this document is responsible for its safe custody.

When no longer required the document should NOT BE DESTROYED but
returned to the Main Library, DSTO, Salisbury, South Australia.

|
i

(4]

i
Contents
1 Introduction L, 1
2 Available Benchmarking Tools 3
21 TypesofTestst i i e 3
22 Benchmarking Suites. oL, 4
3 Overview of IWGand UMICH 7
31 Timing Mechanisms 8
32 Language Featureand Run-time Tests 8
33 Composite/Synthetic Benchmarks 10
34 Compilation Time Measurements 11
4 Experiences and Lessons Learned 13
4.1 Lack of Documentationand Support 13
4.2 Usage of Computer Resources. 14
43 Lackof Amalysis Tools 14
44 AccuracyoftheResults 15
45 LeamingCurve L 16
4.6 SuiteSelection. oL 16
5 Future Development/Research Areas. 19
5.1 Other Suites and Techniques 19
5.2 Benchmarking Cross Compilers 20
53 AnalysisTools 20
5.4 Hybrid Measurement Techniques. 21
6 Conclusion 23
References. e e 25
Appendix I Portions of the VAX/PIWG Output. 27
Appendix I Portions of the VAX/UMICH Output. 33
Appendix I PIWG Analysis ProgramOutput. 39
Appendix IV Contents of PIWG and UMICH suites. 41
Glossary. 43
List of Tables
Table 1 Comparison of IWGand UMICH. 7
Table 2 Computer/Compiler combinations. 13
Figure 1 Validated Ada Compilers (1983-1989). 1

ST OIS g s s

47 e 1 T R TR I £ f 1T (e

ERL-0513-TR

THIS IS A BLANK PAGE

i
¢
{

TSI

_i..'

"~

s B A e 0+

1 ERL-0513-TR

1 Introduction

The number of validated Ada compilers has increased significantly over the past two years,

- {see Fig 1). This has given the software developer a much wider choice but also brings with it the

problem of compiler selection. A common misconception is that because a compiler is validated,
it will automatically be a useful development tool for a particular application. Validation simply
indicates that the compiler complies with the language standard.[1]. The validation process does
not provide information on the quality or characteristics of Ada compilation systems. There may
be several compilers which fit the general needs (e.g., host/target combination) but the developer
must determine which compilers can support the specific requirements of the application and
which compiler will be most effective. This may involve determining which compiler provides the
most efficient implementation of Ada tasking, has the lowest subroutine overheads, and provides
an effective means of run-time memory management. Moreover, an assessment of compilation
speed and library capacity limits may also be important issues in the selection process.

‘Evaluation is the key to determining whether or not the compiler can be used effectively
for software development. There are several aspects that should be considered when selecting a
compiler. These are covered in detail by Welderman in the “Ada Adoption Handbook: Compiler
Evaluation and Selection” [2]. As suggested, one technique that can aid in the selection of an
Ada compiler is benchmarking. Of benchmarking, Weiderman says:

] Derived Compilers
I Base Compilers

275

250

225

200

175

Number of 150
Validated
Compilers 125

, LNC TAB a
Unannounced a

acceston For
;NHS CRAAL I

Justification
e e e .j

100
By
Distribution |

75

50 Avadabity Codes

T Avad :.dlor
Dist ! sSpecial

25

Dec ‘83 Dec ‘84 Dec ‘85 Dec '86 Dec 87 Dec ‘88 Jun '89 A" L

* Source : AdalC Vol Vi, No. 1

Figure 1 Validated Ada Compllers (1983-1989).

s
3
s
{
K
¥
\
1
>
i

T ey

.~ -

< i E RTINS, Fomaipe gV

ERL-0513-TR 2

“Benchmarking is a black art. Benchmark design and development, as well as the use of benchmark
data, require careful and painstaking analysis by skilled technical people. Simple acceptance of raw
comparisons without an understanding of the tests and the testing environment is risky.”

Benchmarking can be a very powerful evaluation technique if used properly. However,
as with other forms of measurement, care must be taken to understand how to perform the
measurements, how to analyze what is being measured, and how these measurements can be
used to make valid decisions. Once a commitment has been made to benchmark, the following
questions arise: what benchmarking tools are available, where can the tools be obtained, and
what problems can be encountered?

Prompted by a number of enquiries regarding Ada compilers, a large number of unanswered
questions, and a number of reported potential problems [3}{4){5], we decided to gain first-hand
experience in this area. The aim of our initial investigation was to:

¢ provide details of available benchmarking tools and techniques,
¢ report on our experiences and lessons learned,
* identify areas for future research/development.

To accomplish our aim we based our work on two available benchmarking suites: the
University of Michigan (UMICH) benchmarks [6], and the Association of Computing Machinery
(ACM) Performance Issues Working Group (PTWG) benchmarks [7). These were applied to the
DEC VAX Ada compiler running on a VAX 8300 and the Alsys Ada compiler running on an IBM
compatible Toshiba personal computer (PIWG benchmarks only). This paper reports on these
initial experiences in Ada compiler benchmarking and identifies a number of areas for further
research/development which will hopefully help make benchmarking a more useful evaluation
tool and less of a ‘black art'.

’ 3 ERL-0513-TR
i
|
i
!

2 Available Benchmarking Tools

L There are several Ada compiler benchmarking suites currently available. Each is designed to
measure certain aspects of the operation and output of an Ada compilation system. The first part
of this section discusses the types of tests provided by benchmarking suites. This is followed by
an overview of some of the most commonly used suites.

2.1 Types of Tests

The types of tests provided by the benchmarking suites may include tests of:

* Individual Language Features. These tests measure characteristics of individual language
features such as procedure calls, exception handling, task creation, task rendezvous, and
dynamic storage. This information may prove useful if an application is to make heavy
use of a particular set of features.

~ * Run-time Features. The characteristics of the run-time system are examined by these tests.
This may include examination of memory management and scheduling considerations.

* Composite Code. Composite benchmarks test many features in combination. They can
take the form of an example application (e.g., a previously developed application which
will approximate the proposed development) or smaller known sections of code (e.g.,
Quicksort, Ackermann’s Function).

s

¢ Synthesised Code. Synthetic benchmarks provide a measure based on some scientif-
ically constructed code. Two of the most widely used synthetic benchmarks for Ada
compilers are the Whetstone and Dhrystone. Whetstone is structured towards numerical
computation with a heavy emphasis on floating point operations. Dhrystone produces a
measure based on what might be expected for typical systems programs using modern
programming languages.

L
&
3 * Code Optimization. These tests show the effect of optimization on the execution speed
“ < and code size.

« * Compilation Times. These tests provide measurements of the time required for compiling
; individual features (e.g., incremental time to compile 100 withs on TEXT_IO) or some
; composite of language features.

Library Capacity. Limits on the size and efficiency of the compiler library system are
assessed by these tests.

. Organizations wishing to use benchmarks to aid in the selection of an Ada compiler need to
: determine which measurements are required and then choose the appropriate tools to perform
) ¢ those measurements.

LR AT e L

ERL-0513-TR 4

2.2 Benchmarking Suites

Our investigations show that the following Ada specific benchmarking suites are currently
in general use:

University of Michigan (UMICH) Benchmarks. The UMICH tests concentrate on mea-
suring individual language features and run-time features. This was one of the earliest
Ada benchmark suites and many of its tests and techniques have been incorporated into
the more comprehensive PIWG suite. However the UMICH suite may be of value for a
more in-depth analysis of some features (e.,... subprogram calls). The problems with this
suite are that it is no longer supported and no analysis tools are provided. Documenta-
tion is limited to a README file supplied with the suite and a paper by Clapp et al [6].
References: [6](2][8][9].

Performance Issues Working Group (PIWG) Benchmarks. This suite was prepared by
the PIWG of the Association for Computing Machinery (ACM) Special Interest Group
on Ada (SIGAda). The tests have been grouped into three broad categories: compos-
ite/synthetic tests, individual timing tests, and compilation tests. The suite is distributed
by PIWG and is also available on the Ada Software Repository (ASR) which resides on
the SIMTEL20 host computer on the Defence Data Network (DDN). Due to its accessi-
bility, the PIWG suite is widely used by the Ada community. The only documentation
supplied is a README file. No analysis tools are provided.

References: [7](2](8]{9).

Ada Compiler Evaluation Capability (ACEC). The ACEC was developed by Boeing
Military Aircraft Corporation for the Ada Programming Suppoit Environments (APSE)
Evaluation and Validation (E&V) Team of the Ada Joint Program Office (AJPO). The test
suite includes: language feature tests, composite and synthetic benchmarks, optimization
tests, sorting programs, and example applications. Reported major advantages of the
ACEC are that the suite is well documented and there is some automated support for
analysis of results. However, a major problem is that the ACEC is currently under US.
export controls and so may not be readily available to prospective Australian users.
References: [2](8]{9).

The Prototype (ACEC) Benchmarks. This suite was constructed by the Institute for
Defence Analyses (IDA) for the E&V Team of the AJPO. It has been superseded by
the ACEC. The tests provide timing and storage measurements for individual language
features. The suite is available through SofTech Inc. U.S.A.

References: (4][7](8][9).

Benchmark Generator Tool (BGT). This tool generates benchmarks that measure com-
piler performance for development machines. Library Capacity Tests and Dependency
Maintenance Tests are used to address the problems arising with large system develop-
ments. The suite is available on the ASR and is also available through MITRE Corp,
McLean, Virginia. The paper by Rainier et al {10] describes the BGT in detail.
References: [10](8]{9].

Ada Evaluation System (AES). The AES was developed for the British government. This
suite evaluates Ada compilers and associated linkers/loaders, program library systems,
debuggers and run-time libraries. Organizations may purchase a simplified version of

N L)
bt st e it e o b e e

35

R

5 ERL-0513-TR

the AES (about $US 1,800) or pay the British Standards Institute (about $US 21,600) to
carry out a complete evaluation using the Assessor Support System of the AES. Copies
of existing reports may also be purchased (about $US 450 for individual reports or about
$US 3,600 annually for 12 reports). The major problems are the cost of the suite and its
availability in Australia.

References: [2][8](9].

- —————

ERL-0513-TR

THIS IS A BLANK PAGE

*y

”

7 ERL-0513-TR

3 Overview of PIWG and UMICH

This section provides a more comprehensive look at the two benchmark suites used for
our initial investigations. Appendix IV provides details of the physical make-up of the suites.
The PIWG suite covers a wider range of benchmarks than the UMICH suite. In addition
to the measurement of individual language and run-time features (the only areas covered by
UMICH), PIWG also provides synthetic and composite code measurements, and measurements
of compilation/link/execute times. Table 1 gives a summary of the tests provided by the two
suites and shows a broad comparison. Comparison is somewhat difficult in some areas because
of the different emphasis given to certain features and because of the manner in which the suites
are structured. The following paragraphs compare the UMICH and PIWG suites and give an
insight into what is actually measured by these suites.

Test PIWG UMICH

Chapter 13 Features Yes No

CLOCK Resolution and Overhead Yes Yes

Coding Style Yes No

DELAY Function and Scheduling Yes Yes

Dynamic Allocation/Deallocation Yes Yes

Exception Handling Yes Yes

Loop Overhead Yes No

Subprogram Calls Yes Yes

Task Creation/Activation Yes Yes

Task Rendezvous Yes Yes

TEXT_IO Timing Yes No

Time Arithmetic No Yes

Run-time Memory Management No Yes

Composite Benchmarks Yes No

Synthetic Benchmarks Yes No

Ada Feature Compile Times Yes No :
Composite Compile/Link/Execute Yes No §

Table 1 Comparison of PIWG and UMICH.

LY

‘;‘;““

Haee

BT

ERL-0513-TR 8

3.1 Timing Mechanisms

The timing mechanisms used for the PIWG and UMICH benchmarks follow a similar ap-
proach. Since both sets of benchmarks were intended for general use, a timing scheme was re-
quired which would allow portability of the benchmark software. Ada has a predefined CLOCK
function which can be used for time measurements. This standard function accesses the under-
lying system timer to return a time value and so its use in the benchmark programs can help
make them system independent. However, in using this approach, the benchmark designers had
to overcome a number of problems.

Time resolution was one of the major problems. For example, the simplest way to measure
execution time for an individual language feature is to isolate the feature under test and then
make time measurements before and after execution. The difference is the time required for the
operation. However, to do this, the time resolution of the measurements must be much better
than the time required by the operation under test. Time resolution is not specified by the Ada
language standard and so there is no guarantee that it will be adequate. For example, the clock
resolution for the VAXAda compiler tested is 10 milliseconds, whereas the Alsys compiler can
achieve a 1 millisecond resolution. Considering that a procedure call and return may be of the
order of 10 microseconds, it is clear some additional techniques must be applied if the Ada
CLOCK function is to be used.

To overcome these problems a dual loop timing scheme was used. This approach uses
a control loop and a test loop (the loops are the same except that the test loop contains the
feature to be measured). To obtain the desired resolution, the loops are executed a large number
of times. The execution time for the feature under test is computed from the difference in
execution times of the two loops. Although simple in concept, there were a number of issues that
needed to be considered by the benchmark developers if the benchmarks were to prove useful.
These included overcoming the effects of optimizers, ensuring sufficient measurement accuracy,
avoiding operating system distortions, and obtaining repeatable results.

Even though these issues were addressed, inaccuracies with dual loop benchmarks have
been reported (3][4][11](12). For example, Donohoe [12] reported that negative values were
produced for some of the tests when benchmarking the VAXAda compiler on a MicroVAX II
using the UMICH suite. [nvestigation showed that the VAXELN paging mechanism lengthened
the execution of loops that spanned a page boundary. As such, there were cases where the control
loop actually took longer to run than the test loop. Clearly, the dual loop approach, although
effective for most measurements, can produce inaccurate results and considerable care needs to
be taken when interpreting the results.

3.2 Language Feature and Run-time Tests

Beth the UMICH and PIWG suites provide tests for the following features:

* Task Creation and Termination. PIWG and UMICH provide composite time measure-
ments for task creation and termination. Apparently, individual measurements for elab-
oration, activation, and termination cannot be provided because of the resolution of the
CLOCK function (6]. The suites each have three tests covering different scenarios.

* Exception Handling. PTWG has five tests to measure the time taken to raise and handle
exceptions. Measurements show the effect of exception propagation with different levels

e e ——— bme s mar e vame 1 em———— ————r iy o b = e 4

9 ERL-0513-TR

of nesting. Exceptions in task rendezvous are also measured. UMICH also provides
a measure of exception propagation delay (although not as comprehensive a range as
PIWG). In addition to the tests provided by PIWG, UMICH also provides measurements
for various predefined exceptions (e.g., constraint error, numeric error, tasking error).

e Subprogram Calls. UMICH provides substantial coverage of subprogram overhead.
A good proportion of the UMICH output relates to this area. Times are provided for
entering and exiting a subprogram with various scaiar parameters and composite objects.
The three modes (IN, OUT, IN OUT) are covered. There are tests for a wide variety
of combinations (e.g., inter-package, intra-package). Measurements are also made for
situations where subprograms are part of a gemeric and the effect of using the INLINE
pragma. The PIWG measurements for subprogram calls are not as comprehensive as
UMICH. Even so, there are 11 tests which cover a wide range of possibilities.

* Dynamic Storage Allocation/Deallocation. UMICH provides a more comprehensive
set of measurements for dynamic allocation/deallocation than PIWG. PIWG has four
tests which deal with the allocation and deallocation of a 1000 integer array. UMICH
has a considerable number of tests for fixed and variable storage allocation (covering
integers, enumeration objects, strings, records, and arrays). Also, there are tests for
explicit dynamic allocation using the new allocator.

* CLOCK Function Resolution and Overhead. UMICH and PIWG both provide measure-

ments of CLOCK resolution. UMICH also provides a measurement of CLOCK function
overhead.

* Task Rendezvous. PIWG has seven tests for task rendezvous. These tests give ren-
dezvous times for a number of different cases where the number of active tasks, select
statements, and entries varies. UMICH provides a single test for task rendezvous.

* DELAY Function and Scheduling. Both PIWG and UMICH have a test to measure the
actual versus requested delay for a set of values.

UMICH provides tests for two areas not covered by PIWG:

* Run-time Memory Management. The four tests in this section check the memory man-
agement characteristics of the run-time system. The test p.ograms use the new allocator in
a loop to allocate blocks of integers and then provide checks to see whether garbage col-
lection is performed, to find the memory limit, to see if UNCHECKED_DEALLOCATION

is implemented, and to measure paging times and memory allocation in virtual memory
systems.

Time Arithmetic. There are some 15 tests of the arithmetic operators in the standard
CALENDAR package. These tests measure the overhead involved in using the "+ and
"-" functions of the package. The tests take the form of:

Time := Var_Time + Const_Duration

where Time is a TIME type as returned by the CLOCK function and Const_Duration is
a DURATION value.

- - g—— o

e ~ e e = ——— -

[P —

ERL-0513-TR 1

The following language feature and run-time tests are provided only by PIWG:

Chapter 13 Features. These PIWG tesis provide information on several language features
detailed in Chapter 13 of the Ada language reference manual (1]. The tests cover the use
of pragma PACK, UNCHECKED_CONVERSION, and representation clauses. Nine tests
are provided in this area.

TEXT_IO Timing. PIWG provides seven tests covering some of the TEXT_IO features.
File access measurements are provided using Get_Line, Put_Line, Get, and Put. Also,
there are measurements for reading and writing to local strings using Put and Get. The
final measurement in this group gives the time taken to open and close a file.

Loop Overhead. These tests measure the overhead associated with the for loop, the
while loop, and the use of an exit statement within an infinite loop. Two additional tests
measure the effect of pragma OPTIMIZE(TIME), and pragma OPTIMIZE(SPACE).

Coding Style. These tests measure the difference in execution time for coding:
Is_Smaller := Number_1 < Number_2;
or alternatively doing the same thing by using:

if Number_1 < Number_2 then
Is_Smaller := TRUE;

else
Is_Smaller .= FALSE;

end if;

This is the only aspect of coding style that is measured.

3.3 Composite/Synthetic Benchmarks

Synthetic benchmarks included in PIWG are:

Whetstone Benchmark. Whetstone provides a single number (Kilo Whetstones per Sec-
ond) which rates a computer/compiler combination as to how efficiently it executes those
features which are most commonly used in actual programs. Originally developed in AL-
GOL 60, Whetstone reflects numerical computing, particularly floating-point arithmetic.

Dhrystone Benchmark. Dhrystone is similar to Whetstone, however it has been de-
signed to reflect how efficiently systems applications (i.e., applications which place more
emphasis on the use of enumeration, record, and pointer data types) will execute. The
distribution of Ada features in Dhrystone is based on actual statistics for systems pro-
gramming applications. Although Dhrystone is more representative of modern program-
ming languages than Whetstone, it does not include features such as tasking or exception
handling.

Composite benchmarks provided by PIWG include:

Henessy Benchmark. The Hennessy benchmark is a collection of well-known program-
ming problems such as the Towers of Hanoi, Eight Queens, Quicksort, Bubble Sort, Fast
Fourier Transform and Ackermann’s function. They can be used for comparing the Ada
language with other programming languages.

<
h-
g5

~ -3
e

1 ERL-0513-TR

¢ Tracker Algorithm. There are four tests in PIWG which relate to the “Tracker” application
program. The PIWG does not provide information on the rationale for testing this
application or how the data can be used. A search of other relevant literature failed
to explain its relevance.

3.4 Compilation Time Measurements

The compilation tests in PIWG are in two distinct groups. The first group consists of composite
compile/link/execute time measurements for example applications. One of these applications is
a program to solve some basic physics problems. It uses a number of packages which must be
compiled. PIWG are using the results of these tests to plot industry trends for compiler and
environment performance.

The second group (covered in the third run of PIWG) consists of the compile-only tests for
various Ada features. These measure things like “the incremental time to compile N nested
blocks” and “the incremental time to compile N withs on TEXT_IO”. The tests are sets of
increasingly larger compilations which can be used for plots of feature versus compilation time.
There are some 71 different measurements made in this run.

12
THIS IS A BLANK PAGE

ERL-0513-TR

B NP

13 ERL-0513-TR

4 Experiences and Lessons Learned

One of the major reasons for undertaking this initial study of Ada compiler benchmarking
was to gain first-hand experience in the application of the benchmarking suites and to provide
details of the lessons learned. This section covers the experience gained and lessons learned by
using the PIWG and UMICH benchmarks. Sample outputs have been provided in the appendices
for both the VAX/UMICH and VAX/PIWG combinations. Appendix I contains portions of runs
1, 2, and 3 for the VAX/PIWG combination and the outputs of c_run, i_run, and tm_run for
the VAX/UMICH combination are provided in Appendix II. Hopefully, the information in this
section will aid others who are (or are considering) benchmarking Ada compilers.

Table 2 shows the computer/compiler combinations that were used to run the two suites.

Some of the lessons learned from our initial experiences in Ada compiler benchmarking
include:

¢ The lack of documentation and support can make benchmarking a difficult and time
consuming task.

* Compiling, linking, and running the benchmarking suites requires a considerable amount
of computer resources (CPU time and secondary storage).

* The lack of analysis tools undermines the ability to obtain clear and concise results from
the output generated by a given suite.

* The results obtained may lack accuracy and may be erroneous.
¢ Considerable expertise and experience is needed if benchmarking is to be successful.

¢ The appropriate suite needs to be selected in order to obtain the required information.

4.1 Lack of Documentation and Support

A major problem with both the UMICH and PIWG suites is that they both lack documentation
and support. README files are supplied with both suites but the information they provide is not
comprehensive. In trying to get the chosen suite to run to completion it is likely that unexpected
problems will be encountered for which no documentation exists. As with many areas in the

Benchmark Suite Compiler Op Sys Host Target
UMICH VAX Ada V1.5 | VAX/VMS 4.7 | VAX 8300 VAX 8300
PIWG VAX Ada V1.5 | VAX/VMS 47 | VAX 8300 VAX 8300
PIWG Alsys V3.2 MS-DOS 3.3 Toshiba 5100 | Toshiba 5100

Table 2 Computer/Compiler combinations.

—— e

C o e (SRR TR

ERL-0513-TR 14

computing field, without documentation even the simplest problems can take hours or even days
to solve. For example, some of the problems that we encountered included:

* “Insufficient Virtual Memory” errors were raised with the VAX/PIWG combination.
During the third run (compile time measurements) of the PIWG suite, INSVIRMEM errors
were raised (specifically, while trying to compile the tests Z000172 and Z000173, which
measure the incremental time to instantiate 200 and 500 integer_io(integer) packages
respectively). The problem was solved by increasing the amount of virtual memory
available to the compilation processes. This was achieved by a ‘trial and error’ adjustment
of certain system parameters (Working Set Extent and Page File Quota). Varying the load
on the system together with adjustment of vital system parameters will affect the timing
measurements of the tests. These effects need to be understood and taken into account.
Tests need to be re-run after adjustments are made.

+ Storage errors were encountered with the Alsys/PIWG combination. These errors were
raised by the compiler during the first and third runs of the suite (execution performance
measurements and compile time measurements respectively). Adjustment of the number
of buffers used for internal data structures (using the MAC_BUFFERS option of the
COMPILE command) and the size of the heap eliminated these errors in the first run
but they were still present during the third run at the time this paper was written and
are still under investigation. The problem with adjusting the buffers is that it will have
an effect on the timing measurements being taken.

* A File Creation Error was raised by the operating system with the Alsys/PIWG combi-
nation. MS-DOS reported a File Creation Errorbecause DOS was not allowing a sufficient
number of open files to access system calls. Adjustment of the FILES variable in CON-
FIG.SYS solved the problem.

4.2 Usage of Computer Resources

Running the suites consumed a considerable amount of computer resources; this needs to
be considered and planned for (e.g., the VAX/PIWG (third run) took approximately 2 hours of
CPU time and 4 hours real time to complete). Running the suites on a non-dedicated time-shared
system will have a notable effect on the response times of other processes as well as distorting
the measurements that are being made by the benchmarking processes. If benchmarking is to
be used to aid compiler selection, then hardware must be dedicated to the task. A measurement
plan needs to be developed so that benchmark resuits can be obtained for different loading levels.
Personnel performing the benchmarks will need to be able to control these loading levels so that
meaningful results can be derived. In our case, the only time that we could gain “dedicated”
access to the VAX computer was after hours.

4.3 Lack of Analysis Tools

No analysis tools are supplied with either the UMICH or PIWG suites, which makes analysis
of the considerable amount of data that is produced an involved and lengthy process. In the
case of the PIWG suite, the Performance Issues Working Group itself carries out analysis of
the data that is sent back to them from organizations that have run the suite on their specific
computer/compiler combination(s). PIWG expect to receive back the best repeatable time (BRT)
for each of its tests. The TAPEDIST.LTR file supplied with the suite states:

e 7 TN PR 2 A Y

"

15 ERL-0513-TR

“PLEASE send at least one measurement. If you can, make a second and third run to determine
stability. If more than one run is made, supply the average and the number of runs averaged.
Throw out anomalous large and small runs. We want the best repeatable time that can be achieved
without changing the test suite.”

A portion of the output produced by the first run of the PIWG suite is shown in Appendix L
Having to read through several such output files in order to determine the BRT for each test is
both tedious and time consuming.

As part of this initial study, a program was written in Ada to help determine, from the output
produced by the PIWG suite, the BRT for each test. The program’s input consists of a number
of output files produced by running the PIWG suite. Each test’s CPU time is read from each of
the files, forming a list of times for each test. The list is then sorted into ascending order and
the BRT extracted (if one exists) by comparing each value with the next value in the list. If two
of the values are within five percent of each other then the lower is reported as being the BRT.
Appendix III contains the output produced by the analysis program.

The analysis program output displays the necessary information in a much more concise
format and also makes the detection of unusual results (e.g., zero or negative results) much
easier. This program is simple and did not take long to develop but the inclusion of such tools
in benchmark suites would make the task of the benchmarker much faster and simpler.

4.4 Accuracy of the Results

The measurements obtained from a given suite are dependent on factors such as the architec-
ture of the system, the system software, other applications that are present on the system, and the
construction of the tests themselves. These factors may cause unacceptable results (e.g., negative,
non-repeatable positive or zero measurements) that need to be detected and explained. Both
negative and zero results were produced during the initial investigations described here (nega-
tive and zero results from the VAX/UMICH runs and zero results from the PIWG combinations).
Much work has been done by the Software Engineering Institute (SEI) dealing with timing issues
of Ada benchmarks. Weiderman in [2] lists the factors which need to be considered:

¢ Memory effects: Cycle stealing, Boundary alignment, Memory interleaving, Multi-level
memories.

* Processor effects: Pipelined architectures, Interrupts, Clocks.

* Operating and run-time system effects: General overhead, Periodic and asynchronous
events, Garbage collection, Multiprogramming.

* Program translation effects: Optimization, Asymmetrical translation, Hidden paral-
lelism.

all of which are explained in detail in [5)[11][2].

The point being made is that simply running benchmarks then making decisions based on
the results produced could prove to be misleading. Even seemingly acceptable results should
be treated with caution.

ERL-0513-TR 16

4.5 Learning Curve

As with any other area, benchmarking has an associated learning curve. The potential
benchmarker will need to:

* Have a sound knowledge of the Ada language. Although the UMICH and PIWG
suites could be run without any knowledge of the Ada language itself, understanding
the results requires a good knowledge of Ada. If erroneous results are encountered then
understanding why they occurred would most likely involve delving into the source code
of the tests and the timing mechanisms provided.

* Know how to use the compiler(s) of interest. The environments provided with their
respective compilers are likely to be quite different and a person intending to benchmark
a given number of compilers would need to become proficient at using each of them.

¢ Have a sound knowledge of the operating environments being used. If the com-
piler/benchmark suite combinations are to be run under different operating systems then
the benchmarker will need to be familiar with each of them. The task of creating direc-
tories to house the files associated with a given suite will need to be carried out (e.g., the
source files, the output files, Ada libraries, etc., are likely to be kept in their own directo-
ries). The command files/scripts that are used to compile/link/run the tests may need to
be modified, which requires a knowledge of the operating system’s command language.
Knowledge of the system software will also be necessary when analyzing the produced
results (e.g., the actions of system processes will need to known and understood).

* Have a sound knowledge of the chosen machine’s architecture. Knowledge of the
peripheral devices, memory, interrupts, clocks, etc., will be needed if the results are to
be understood.

* Know about benchmarking techniques and pitfalls. The techniques used to construct
the tests and the pitfalls involved with this process should be known and understood
by the benchmarker. If the performance of a number of compilers is being measured to
aid selection then it is essential to ensure that the tests being used accurately reflect the
actual workload that the compiler will be placed under. Comparison between results can
lead to inaccurate conclusions (e.g., if a test’s code needs to be changed to allow it to be
compiled by a number of compilers, what are the effects of the changes). If the compilers
are being tested on different machines, how comparable are those machines (such things
as memory size, need to be taken into account). See [13] for a discussion of these topics.

i In short, the solutions to the problems that may arise will involve a sound knowledge of

: several different areas. If the benchmarker does not possess this knowledge then time and effort
will be spent gaining it and the process of benchmarking could turn out to be both costly and
time consuming.

4.6 Suite Selection

Before an appropriate benchmarking suite can be selected, the required measurements must
be identified (e.g., compilation time, link time, execution efficiency of the generated code, library
capacity, etc.). If benchmarking is being used as an aid in selecting a compiler for a specific project,
the project’s software requirements would need to be well defined and understood so that they

17 ERL-0513-TR

can be correlated with compiler measurements. The benchmarker may find that a single suite will
not cover all that is required; supplementing part or all of one suite with part or all of another
or constructing custom benchmarks may be the only way to obtain the required information.

[a)

Y N TaRCR

CTNRIMAFT DAL s ey

g

. md

ERL-0513-TR

18

THIS IS A BLANK PAGE

(4]

19 ERL-0513-TR

5 Future Development/Research Areas

Our initial Ada compiler benchmarking experiences have highlighted a number of areas where
additional research/development is needed. These include:

e evaluating other benchmark suites and techniques,
+ gaining experience in benchmarking cross compilers,
¢ defining tools for analysis of results,

* experimenting with the use of hybrid measurement techniques for benchmarking.

5.1 Other Suites and Techniques

The extent of our benchmarking experience is limited to the application of the PIWG and
UMICH benchmarks. Although these suites can provide some valuable information on Ada
compilers, we discovered several areas where they were limited. These include:

* inadequate documentation,

e lack of analysis tools,

* lack of measurements for code size,

* no assessment of compiler limitations for large developments,
* no assessment of performance for a complete application.

The recently released ACEC is reported to have overcome some of these deficiencies [12].
This suite is far more extensive than either the PIWG or UMICH, is well documented, and could
well form the baseline for Ada compiler benchmarking. As such, the ACEC warrants further
investigation. A major problem for Australian organizations wishing to use these benchmarks is
that the ACEC is controlled by U.S. export restrictions. If the ACEC cannot be obtained because
of these restrictions, the Australian Ada community will need to look closely at how the available
suites can be consolidated and enhanced to provide a comprehensive and usable set of tools.

A significant risk area in Ada development is the ability of the Ada compilation system to
handle large quantities of Ada code. Failure to determine the compiler's characteristics in this
area could lead to a ‘inidstream’ change of compilers. This could result in time and cost over-
runs because of the time taken to select the new compiler and to integrate the new compiler
into the development environment, loss of development continuity, and retraining. The BGT has
been developed to help prevent these problems by uncovering limits in Ada compilation systems
during the Ada compiler selection process. Since the Australian defence industry will soon be
engaged in some large scale Ada developments, use of the BGT should be considered and so
warrants further investigation.

Experience in the application of several benchmark suites would allow the benchmarks to be
categorized as to their applicability, ease of use, accuracy, availability, and support. In addition,

.

ERL-0513-TR 20

based on this experience, a method for the effective application of benchmarks and the analysis
of results could be defined to help formalize the benchmarking process.

Techniques other than those used by the currently available benchmark suites also warrant
further investigation. The performance of a complete application cannot be predicted purely
by the measurement of individual language features. For example, Ada rendezvous times may
be acceptable when measured in isolation, but what is the effect if a number of tasks are run
concurrently? Benchmarks such as PIWG give some useful information for comparisons of Ada
compilers, but do not address these loading effects. One way to overcome this problem is to use
a representative system for compiler evaluation (one that exhibits the same characteristics as the
proposed system). Another approach is to use a technique such as that used in the Benchmark
Synthesis System [14]. Here, the basic concept is to use a mechanism for describing the anticipated
load (a load description language), synthesize Ada code from this scale model, then execute the
instrumented Ada code in the target environment. Problems to be addressed for this approach
would include the effects of compiler optimization, and clock resolution for timing purposes.

5.2 Benchmarking Cross Compilers

As Ada becomes more widely used in time-critical applications and embedded systems, more
emphasis will be placed on benchmarking cross compilers. The problems of benchmarking host
compilers are reasonably well understood and recorded [5]. However, a whole set of additional
problems and experiences is associated with benchmarking cross compilers {3]. There are a
number of questions which need to be answered. For example, are the current benchmarks
sufficiently accurate to perform fine-grain analysis for time-critical applications? What is the
best way to benchmark a cross-compiler? What additional tools and techniques are required to
effectively perform such benchmarks?

5.3 Analysis Tools

As mentioned earlier, a major problem with the PIWG and UMICH benchmarks is that they
lack analysis and data reduction tools. Since the suites include some 136 and 150 different tests
respectively, analysis tools are essential if effective use is to be made of the results. The situation
could be even worse for the more advanced suites such as the ACEC (which includes over 1000
tests) if sufficient analysis support is not provided. Tools need to be provided to analyze the
vast amounts of data provided by the benchmark suites. Some areas where analysis tools could
be used include:

* comparison of features for different implementations,
* identification of inconsistent results,

* repeatability analysis,

* aids for interpreting results.

The ACEC is reported to include a tool which performs statistical analysis of the results
collected from several target systems. Although this is a start, the need for further automation in
the analysis subsystem has been reported [2]. An area of further research may be to investigate
the tools necessary for the analysis and reporting of benchmark results, and to define how these

[B
’ 8
B

&

L5

“E

-k

_a "
...
2208
YA

S—— —~—————r

21 ERL-0513-TR

tools could be integrated into an overall benchmark analysis and reporting environment. The
use of graphical techniques for the comparison of results should form part of the investigation.
Perhaps the ACEC (if available) could be used to perform measurements for such an environment.

5.4 Hybrid Measurement Techniques

There are cases where the measurement of individual language features using benchmarking
suites such as PIWG and UMICH provides erroneous results. Indeed, the problems associated
with the lack of precision of the Ada clock and dual loop benchmarks are well documented
[3l[11]{2]. Negative or zero results can be expected because of these problems. Additional
techniques need to be employed to study these erroneous results, provide for fine-grain analysis
of language features, and to verify timing results.

Hardware measurement tools have been used to verify benchmark timing results. For
example, the SEI used a Gould K115 logic analyzer to measure task rendezvous times for the
Systems Designers (SD) Ada-Plus MC68020 cross compiler [3]. This involved examining assembly
code and load maps, allowing for word boundaries, calculating offsets, and instrumenting the
hardware. This complex process limited the usefulness of the tool.

To overcome some of the problems of directly using a hardware measurement tool, a hybrid

measurement approach may be possible. This would involve using optimized software probes,

a piece of purpose-built hardware attached to the computer bus, and a general purpose mea-

surement device such as a logic analyzer. The software probes would trigger the purpose-built

hardware (perhaps external registers) and the logic analyzer would make measurements on this

external hardware. The probes would be inserted at the source code level at the feature to be

measured and so the tedious and error-prone process of examining assembler code and load

maps for each measurement would be eliminated. This technique has been used successfully

i to measure performance of computer systems {15] and warrants further investigation for use in
benchmarking.

A e MR B ok b b L o

R T

A Ly -‘r';‘ .

(et LagerZRe |
I ¢

ERL-0513-TR

22

THIS IS A BLANK PAGE

Tedy
=,

-

e e e b b——— o St 4 0 v v

23 ERL-0513-TR

6 Conclusion

Benchmarking can be a very useful technique for evaluating Ada compilers. We found that
in addition to obtaining a quantitative assessment, benchmarking also provided a qualitative
assessment of the compilers and operating environment. By running the PIWG and UMICH
suites, we found that we gained considerable insight into its ease of use, reliability, and integration
with other tools and operating environments.

Our initial experiences have highlighted a number of potential problems. One of the major
problems is the skill level and experience required to perform the benchmarks and analyze the
results. This is definitely not the domain of the novice programmer. Personnel involved in
benchmarking should have a sound systems background, understand the limitations of the tools,
and understand the principles of measurement. Management should be aware that there needs
to be some investment in time and resources if benchmarking is to be undertaken. The results
provided by a ‘half-hearted’ approach to benchmarking could lead to poor decisions which may
translate to increased project risk and cost.

Ada compiler benchmarks are available to make a variety of measurements. Benchmarks can
provide data on individual la.;guage features, compiler limitations, compiler performance, and
loading effects. Clearly, if benchmarks are going to be used to help evaluate and select an Ada
compiler, a measurement plan needs to be defined, outlining what is to be = .red, which tools
are to be used, and how the measurements are to be analyzed.

There are several areas where additional research and development is needed to help support
the benchmarking process. One of the major areas is the use of analysis tools. The large amounts
of data provided by benchmark suites need to be piocessed irto a more readable form. This would
then help facilitate compiler comparisons, help identify erroneous or inaccurate measurements,
and in general aid the compiler selection process. Additional analysis tools need to be developed
and the use of graphics for displaying results should be considered. Finaily, hybrid measurement
techniques show promise for validating measurements provided by the benchmark suites and for
providing ‘fine-grain’ analysis of language features. This technique warrants further investigation.

——

¥ N,

ERL-0513-TR

24

THIS IS A BLANK PAGE

ts

f1]
2
(31
[4]
{5]
(6
[7]
(8]
19

(10]

1]

f12)

[13)

(14]

(15]
(16

25 ERL-0513~-TR

References

Department of Defence, Washington, D.C., Ada Programming Language. ANSI/MIL-STD-
1815A-1983.

Weiderman, N., “Ada Adoption Handbook”, Tech. Rep. CMU/SEI-87-TR-13, Software Engi-
neering Institute, March 1989.

Donohoe, P., “Ada Performance Benchmarks on the MC68020: Summary and Results, Version
1.0”, Tech. Rep. CMU/SEI-87-TR-40, Software Engineering Institute, December 1987.
Landherr, S., et al, “Evaluation of Ada Environments (chapter 8) ACEC”, Tech. Rep.
CMU/SEI-87-TR-1, Software Engineering Institute, March 1987.

Altman, N., “Factors Causing Unexpected Variations in Ada Benchmarks”, Tech. Rep.
CMU /SEI-87-TR-22, Software Engineering Institute, October 1987.

Clapp, Russell M., et al., “Towards Real-Time Performance Benchmarks for Ada”, Communi-
cations of the ACM, vol. Vol. 29, pp. 760-778, August 1986.

Donohoe, P., “A Survey of Real-Time Performance Benchmarks for the Ada Programming
Language”, Tech. Rep. CMU/SEI-87-TR-28, Software Engineering Institute, December 1987.
Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, E&V
Guidebook, Version 1.1, August 1988. AFWAL TR-5234-4.

Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, E&V
Reference Manual, Version 1.1, October 1988. AFWAL TR-5234-3.

Rainier, Stephen R, et al, “The Benchmark Generator Tool: Measuring Ada Compilation
System Performance”, in Third International IEEE Conference on Ada Applications and
Environments, 1988.

Altman, N. and Weiderman, N., “Timing Variation in Dual Loop Benchmarks”, Tech. Rep.
CMU/SEI-87-TR-21, Software Engineering Institute, October 1987.

Donohoe, P., “Ada Performance Benchmarks on MicroVAX II: Summary and Results, Version
1.0”, Tech. Rep. CMU/SEI-87-TR-27, Software Engineering Institute, December 1987.
Dongarra,], et al., “Computer benchmarking: paths and pitfalls”, IEEE Spectrum, pp. 38-43,
July 1986.

Knight, John C., and Crowe, Richard H., “A System for Evaluating Ada Implementations
Using Synthesized Benchmarks”, in Third International IEEE Conference on Ada Applications
and Environments, 1988.

McKerrow, P., Performarce Measurement of Computer Systems. Addison-Wesley, 1988.

Hook, A. A, et al.,, User's Manual for the Prototype Ada Compiler Evaluation Capability (ACEC)
Version 1. Institute for Defence Analyses, October 1985.

CORELes e L ol - B ’

ERL-0513-TR a

THIS IS A BLANK PAGE

27 ERL-0513-TR

Appendix L.
Portions of the VAX/PIWG Output.

Portion of the output of RUN 1 (produced by COMPILE.COM).

Test Name: AQ00090

Clock resolution measurement running

Test Description:

Determine clock resolution using second differences
of values returned by the function CPU_Time_ Clock.

Number of sample values is 12000

Clock Resolution = 0.009948730468750 seconds.
Clock Resolution {(average) 0.009948730468750 seconds.
Clock Resolution (variance) 0.000000000000000 seconds.

Test Name: AQ00091 Class Name: Composite
0.9250 is time in milliseconds for one Dhrystone

Test Description:

Reinhold P. Weicker’s DHRYSTONE composite benchmark

Test Name: A000093 Class: Composite

Average time per cycle : 786.79 milliseconds

Average Whetstone rating : 1271 KWIPS

Test Description:
ADA Whetstone benchmark using standard internal math routines

Test Name: A000094 Class: Composite
Perm 2.09
Towers 3.66
Queens 1.17
Intmm 1.09
Mm 1.08
Puzzle 9.05
Quick 1.03
Bubble 1.58
Tree 1.79
FFT 1.90
Ack 71.53

ERL-0513-TR 28

Test Description:
Henessy benchmarks

B000001 application program, tracker
TRACK USING COVARIANCE MATRIX

Time Required : 6.71900E+01 Seconds for 10000 Repetitions
TRACK USING COVARIANCE MATRIX - SUPPRESS
Time Required : 4.72600E+01 Seconds for 10000 Repetitions

B000002 application program, tracker
TRACK WITH COVARIANCE MATRIX FLOAT 6 DIGITS

Time Required : 2.83100E+01 Seconds for 10000 Repetitions
TRACK WITH COVARIANCE MATRIX FLOAT 6 DIGITS ~ SUPPRESS

Time Required : 1.91500E+01 Seconds for 10000 Repetitions

B000003 application program, tracker
TRACK WITH COVARIANCE MATRIX - FLOAT 9 DIGITS

RO

Time Required : 4.46700E+01 Seconds for 10000 Repetitions

TRACK WITH COVARIANCE MATRIX - FLOAT 9 DIGITS SUPPRESS

Time Required : 3.41500E+01 Seconds for 10000 Repetitions

B000004 application program, tracker
TRACK WITH COVARIANCE MATRIX - FLOAT INTEGER

Time Required : 3.38700E+01 Seconds for 10000 Repetitions
TRACK WITH COVARIANCE MATRIX - FLOAT INTEGER SUPPRESS

Time Required : 1.95000E+01 Seconds for 100000 Repetitions

U AT U Y APMATAL S A R R R e e

Test Name: €000001 Class Name: Tasking
CPU Time: 7600.1 microseconds
Wall Time: 8200.1 microseconds. Iteration Count: 2 .

Test Description:
Task create and terminate measurement
with one task, no entries, when task is in a procedure

., ..
—— e SRR A SO S A
T R - h

€S

29 ERL-0513-TR

using a task type in a package, no select statement, no loop,

Test Name: C000002 Class Name: Tasking
CPU Time: 7450.0 microseconds
Wall Time: 7450.0 microseconds. Iteration Count: 2

Test Description:

Task create and terminate time measurement.

with one task, no entries when task is in a procedure,

task defined and used in procedure, no select statement, no loop

Test Name: c000003 Class Name: Tasking
CPU Time: 7600.4 microseconds
Wall Time: 7549.7 microseconds. Iteration Count: 2

Test Description:

Task create and terminate time measurement
Task is in declare block of main procedure
one task, no entries, task is in the loop

Portion of the output of RUN 2 (produced by ZCOMPILE.COM).

$ RUN AQ00051

CPU time now= 14.5600 WALL time now= 42614.1800 seconds.
$ RUN A000051 ! calibrate time to measure time
CPU time now= 15.0900 WALL time now= 42616.6400 seconds.
$ RUN A000051
CPU time now= 15.5600 WALL time now= 42620.4800 seconds.
$ ADA 2000001 ! FLTIO
S ADA 2000002 ! REFUNCT
$ ADA 2000003 ! PREAL
S ADA 2000004 ! PUBASIC
$ ADA 2000005 ! PUMECH
$ ADA 2000006 ! PUELEC
$ ADA 2000007 ! PUOTHER
$ ADA 2000008 ! MKSPMECH
$ ADA 2000009 ! MKSPELEC
$ ADA 2000010 ! PCONSTANT
$ ADA 2000011 ! PUOBASIC
$ ADA 2000012 ' PUOMECH
ADA 2000013 ' PUOELEC
$ ADA 2000014 ! PCCONST

ERL-0513-TR 30

ADA 2000015 ! PUCONV
ADA 2000016 ! PUCMKS spec
ADA Z000016A ! PUCMKS body
ADA Z000017 ! PUCENGL spec
Z2000017A ! PUCENGL body
ADA 2000018 ! PHYSICS1
ACS LINK 2000018
RUN 2000018
Test printout and value of acceleration,
9.80665E+00 meter per second squared = G
1.10325E+01 meter
1.50000E+00 second
2.08030E+01 meter per second
ADA 2000020 ! GENPREAL
ADA 2000021 ! ALLSTMT
ADA Z000022 ! GENSORTSH
ADA 2000023 ! GENSHELLI
ACS LINK 2000023
RUN 2000023
UP SORTED DATA
1 1.00000E+00 AAA FIRST 1.09
2 2.00000E+00 BBB SECOND 2.09
3 3.00000E+00 CCC THIRD 3.09
4 4.00000E+00 DDD FOURTH 4.09
DOWN SORTED DATA
4 4.00000E+00 DDD FOURTH 4.09
3 3.00000E+00 CCC THIRD 3.09
2 2.00000E+00 BBB SECOND 2.09
1 1.00000E+00 AAA FIRST 1.09
in the bag
gone fishing
end FISH
ALL STATEMENTS_PROCEDURE_2
into LOOP_NAME_1
2000021 finished

WY ©n
>

W Ly W AN N W

Portion of the output of RUN 3 (produced by Z00011D.COM).

ADA 2000111 ! just invoke compiler to get some memory
RUN AQ00052 ! the executable comes from the SECOND RUN
RUN A000053

RUN A000054

ADA 2000110

RUN A000055 ! time for minimum compile (1)
Measurement

CPU Time: 2.85 seconds

WL W» D W»

DRI RD S ATVIS S

Wall Time:

$ RUN A000052
$ RUN A000053
$ RUN A000054
$ ADA 2000111

$ RUN A000055 !

< Measurement
CPU Time:
Wall Time:
$ RUN A000052
$ ADA 2000110
$ RUN A000053
$ RUN AQ000054
$ ADA 2000111
$ RUN A000055
Measurement
z CPU Time:
Wall Time:
$ RUN A000054
$ ADA 2000111
$ RUN A000055
- Measurement
CPU Time:
Wall Time:
$ RUN A000054
$ ADA 2000112
$ RUN A000055
Measurement
CPU Time:
Wall Time:
$ RUN 2000054
$ ADA 2000113

(&)

Measurement

CPU Time:

Wall Time:

i $ RUN A000054

t $ ADA 2000114
$ RUN A000055
Measurement
CPU Time:
Wall Time:
$ RUN A000054
$ ADA 2000121
$ RUN A000055
Measurement
CPU Time:

¢ Wall Time:

$ RUN A000055 !

31 ERL-0513-TR

6.12
check that

seconds
(3) about (2) -

(1)
time to compile 100 INTEGER declarations (2)

7.25
12.46

seconds
seconds

incremental time to compile 100 INTEGER declarations (3)
4.03 seconds
6.12 seconds

incremental time to compile 100 INTEGER declarations
4.22 seconds
6.55 seconds

check against previous for consistancy

incremental time to compile 200 INTEGER declarations

7.60
9.69

seconds
seconds
incremental time to compile 500 INTEGER declarations

18.51
29,02

seconds
seconds
incremental time to compile 1000 INTEGER declarations

36.97
43.07

seconds
seconds
incremental time to compile and initialize 100 TNTEGERS

6.07
8.07

seconds
seconds

;.'I;fa
Y

ERL-0513-TR

$ RUN A000054
$ ADA 2000122
$ RUN A000055
Measurement
CPU Time:
Wall Time:

$ RUN A000054
$ ADA 2000123
$ RUN A000055
Measurement
CPU Time:
Wall Time:

$ RUN A000054
$ ADA 2000124

$ RUN A000055 !

Measurement
CPU Time:
Wall Time:

$ RUN A000054
$ ADA 2000131

$ RUN A0Q00055 !

Measurement
CPU Time:
Wall Time:

$ RUN AQ00054
$ ADA 2000132

$ RUN A000055 !

Measurement
CPU Time:
Wall Time:

$ RUN AQ00054

! each component named,

! each component named,

32

incremental time to compile and initialize 200 INTEGERS

11.89
14.99

seconds
seconds

! incremental time to compile and initialize 500 INTEGERS

29.38
33.93

seconds
seconds
incremental time to compile and initialize 1000 INTEGERS

58.42
61.70

seconds
seconds
increnemtal time to compile and init 100 INTEGER array

3.60
7.64

seconds
seconds
in reverse order

increnemtal time to compile and init 200 INTEGER array

5.46
5.49

seconds
seconds
in reverse order

3

33

ERL-0513-TR

Appendix II.
Portions of the VAX/UMICH Output.

c_run.log

Subprogram Overhead (generic, cross package)
Number of Iterations = 10000 * 10
Time |Direction|# Passed| Type | Size of |

(microsec.)| Passed {in Call | Passed |Passed Var|
| 16.0 | | 0| | |
| 22.2 | I | 1 |INTEGER | !
| 25.0 | 0 | 1 | INTEGER | |
| 27.6 | I0 | 1 |} INTEGER I |
| 26.5 | I | 10 |INTEGER |]
| 50.5 | 0 | 10 |INTEGER | 1
| 83.7 | I 0 | 10 |INTEGER | |
| 329.2 1 I | 100 |INTEGER | |
] 856.8 | o} ' 100 |INTEGER | |
| 1324.0 | IO | 100 |INTEGER | !
| 22.7 { - | 1 [ENUMERATION | |
| 27.9 | 0 | 1 |ENUMERATION] |
1 28.7 | IO] 1 |ENUMERATION | |
] 43.4 | I | 10 |ENUMERATION | |
| 87.7 | o] | 10 |ENUMERATION | |
J 99.6 | I0 | 10 |ENUMERATION |)
| 432.5 | I | 100 |ENUMERATION | |
| 472.2 | 0 | 100 |ENUMERATION | |
| 947.2 | I0 I 100 |ENUMERATION | !
| 19.4 | I | 1 JARRAY of INTEGER | 1
| 17.5% [0] 1]ARRAY of INTEGER | 1 |
] 19.8 | I0 | 1 [ARRAY of INTEGER | 1 |
18.4	I	1	ARRAY of INTEGER	10
27.4]	1	ARRAY of INTEGER	10
15.5	IO	1 JARRAY of INTEGER	10	
] 24.0] I	1	ARRAY of INTEGER	100	
] 17.5	0	1	ARRAY of INTEGER	100
37.1	10 } 1 {ARRAY of INTEGER] 100			
19.0	I	1	ARRAY of INTEGER 1 10000	
21.4	(o]	1	ARRAY of INTEGER	10000
17.2	IO	1	ARRAY of INTEGER	10000
19.4	I	1	RECORD of INTEGER	1
! 20.0] 0 1 1	RECORD of INTEGER] 1			
28.3	Io i 1	RECORD of INTEGER	1	
18.4	I	1	{RECORD of INTEGER	100
20.1	0	1	RECORD of INTEGER	100

ERL-0513-TR 34

| 26.9 | I o0 | 1 |RECORD of INTEGER | 100 |

i_run.log

Subprogram Overhead (inline)
Number of Iterations = 10000 * 10
Time |Direction|# Passed| Type | Size of |

(microsec.)| Passed |in Call | Passed |Passed Var |

{Raw Time for TEST #1: 81.7 Raw Time for CONTROL #1: 81.3

|Raw Time for TEST #2: 87.5 Raw Time for CONTROL #2: 90.9

[Raw Time for TEST #3: 84.6 Raw Time for CONTROL #3: 86.0

| 0.4 | | 0| | |

{Raw Time for TEST #1: 148.6 Raw Time for CONTROL #1: 137.4

|Raw Time for TEST #2: 128.2 Raw Time for CONTROL #2: 147.4

|Raw Time for TEST #3: 149.9 Raw Time for CONTROL #3: 138.6

I -9.2 | I | 1 | INTEGER |

|Raw Time for TEST #1: 150.7 Raw Time for CONTROL #1: 158.6

|Raw Time for TEST #2: 132.3 Raw Time for CONTROL #2: 146.5

|Raw Time for TEST #3: 145.5 Raw Time for CONTROL #3: 150.3

| -14.2 | (0] | 1 |INTEGER | |

|Raw Time for TEST #1: 119.3 Raw Time for CONTROL #1: 128.9

|Raw Time for TEST #2: 105.3 Raw Time for CONTROL #2: 111.1

|Raw Time for TEST #3: 138.8 Raw Time for CONTROL #3: 130.8

| -5.8 | I0 | 1 |JINTEGER |

|Raw Time for TEST #1: 104.6 Raw Time for CONTROL #1: 111.9

|Raw Time for TEST #2: 91.3 Raw Time for CONTROL #2: 97.7

|Raw Time for TEST #3: 87.4 Raw Time for CONTROL #3: 93.1

| -5.7 | I | 10 |INTEGER | |

|Raw Time for TEST #1: 139.8 Raw Time for CONTROL #1: 136.8

|Raw Time for TEST #2: 129.0 Raw Time for CONTROL #2: 125.8

|Raw Time for TEST #3: 117.3 Raw Time for CONTROL #3: 129.4

| -8.5 | © | 10 |INTEGER | i

|Raw Time for TEST #1: 189.6 Raw Time for CONTROL #1: 179.8

|Raw Time for TEST #2: 184.5 Raw Time for CONTROL #2: 165.2

|Raw Time for TEST #3: 176.4 Raw Time for CONTROL #3: 166.6

| 11.2 | I0 | 10 |INTEGER |

{Raw Time for TEST #1: 680.8 Raw Time for CONTROL #1: 341.7

|Raw Time for TEST #2: 729.7 Raw Time for CONTROL #2: 368.4

|Raw Time for TEST #3: 697.2 Raw Time for CONTROL #3: 369.6

| 339.1 | I | 100 | INTEGER | |

|Raw Time for TEST #1: 1123.6 Raw Time for CONTROL #1: 610.4

|Raw Time for TEST #2: 1032.5 Raw Time for CONTROL #2: 550.8

|Raw Time for TEST #3: 1124.5 Raw Time for CONTROL #3: 674.3

| 481.7] 0 | 100 |INTEGER | | .
|Raw Time for TEST #1: 2008.0 Raw Time for CONTROL #1: 1668.5)
IRaw Time for TEST #2: 2024.4 Raw Time for CONTROL #2: 1785.1 ! A
IRaw Time for TEST #3: 2149.3 Raw Time for CONTROL #3: 1957.3 T

B

] 339.5%
|Raw Time
|Raw Time
|Raw Time
| 12.5
fRaw Time
|Raw Time
|Raw Time
| ~13.8
|Raw Time
|Raw Time
< IRaw Time
| ~22.8
|[Raw Time
|Raw Time
|Raw Time
N i 12.2
|Raw Time
JRaw Time
{Raw Time
| 27.1
|Raw Time
|Raw Time
|Raw Time
{ 42.2

! IO
for TEST
for TEST
for TEST

for TEST
for TEST
for TEST

for TEST
for TEST
for TEST

for TEST
fer TEST
for TEST

for TEST
for TEST
for TEST

for TEST
for TEST
for TEST

| I o

#1
#2
#3

#1:
#2:
#3:

#1:
#2:
#3:

#1:
#2:
#3:

#1:
#2:
#3:

#1:
#2:
#3:

f

35

100 |INTEGER
130.4 Raw Time for
152.0 Raw Time for
133.7 Raw Time for

1 |ENUMERATION
116.7 Raw Time for
148.6 Raw Time for
120.9 Raw Time for

1 [ENUMERATION

95.3 Raw Time for
124.8 Raw Time for
104.8 Raw Time for

1 |ENUMERATION
113.2 Raw Time for

96.7 Raw Time for

116.8 Raw Time for
10 [ENUMERATION
154.1 Raw Time for
138.5 Raw Time for
147.3 Raw Time for
10 |ENUMERATION
290.8 Raw Time for
268.8 Raw Time for
292.3 Raw Time for
10 |ENUMERATION

CONTROL #1:
CONTROL #2:
CONTROL #3:

|

CONTROL #1:
CONTROL #2:
CONTROL #3:

!

CONTROL #1:
CONTROL #2:
CONTROL #3:

CONTROL #1:
CONTROL #2:
CONTROL #3:

CONTROL #1:
CONTROL #2:
CONTROL #3:

CONTROL #1:
CONTROL #2:
CONTROL #3:

!

149.
117.
150.

158.
130.
153.

|
S
9
1
!
2
5
4
{
120.7
118.1
.2
|
S
8
3
|
4
8
1
1
6
1
)
l

130

84.
111.
110.

112.
148.
160.

226.
247,
246,

ERL-0513-TR

[N

ERL-0513-TR 36
tm_run.log
Number of Iterations = 10000
TIME and DURATION math
uSEC. Operation
Raw test time (seconds) : 3.20 3.37 3.61
Raw control time (seconds): 0.93 1.13 1.01
220.00 Time := Var_time + Var_duration
Raw test time (seconds) : 2.47 2.317 2.60
Raw control time (seconds): 1.30 1.12 0.98
108.00 Time := Var_time - Var_duration
Raw test time (seconds) : 2.33 2.61 2.58
Raw control time (seconds): 1.03 1.34 1.24
129.00 Time := Var_duration + Var_time
Raw test time (seconds) : 2.68 2.70 2.99
Raw control time (seconds): 1.00 1.27 1.23
114.00 Time := Var_time + Const_duration
Raw test time (seconds) : 2.97 3.20 2.98
Raw control time (seconds): 1.21 0.92 0.92
182.00 Time := Var_ time - Const_duration
Raw test time (seconds) : 3.77 3.63 3.57
Raw control time (seconds): 1.27 0.90 1.06
178.00 Time := Const_duration + Var_time
Raw test time (seconds) : 2.49 2.20 2.22
Raw control time (seconds): 1.95 1.75 1.54
69.00 Duration := Var_time - Var_time
Raw test time (seconds) : 1.48 1.31 1.55
Raw control time (seconds): 1.56 1.22 1.25
0.00 Duration := var_duration + var_duration
Raw test time {seconds) : 0.96 1.04 1.19
Raw control time (seconds): 1.10 0.94 0.91
5.00 Duration := Var_duration - Var_duration
Raw test time (seconds) : 0.97 1.02 1.56
Raw control time (seconds): 0.97 0.94 1.10
-0.99 Duration := Var_duration + Const_duration
Raw test time (seconds) : 1.54 1.54 1.53
Raw control time (seconds): 1.12 1.01 1.19
29.00 Duration := Var_duration - Const_duration
Raw test time (seconds) : 1.22 1.30 1.64
Raw control time (seconds): 1.41 1.46 1.30
-10.00 Duration := Const_duration + Var_duration
Raw test time (seconds) : 0.88 0.88 0.94
Raw control time (seconds): 1.11 1.02 1.13

.29
.96

.21
.01

.37
.94

.03
.12

.74
.07

.72
.91

2.43
.51

.22
.02

.15
.41

.06
.10

.30
.01

.23
.57

.88
.02

.11
.91

.06
.99

.23
.99

.25
.89

.19
.14

.68
.94

.69
1.89

.59
.76

.06
.28

.93
.96

.31
.05

.19
.29

.96
.09

o,

A S ——

-14.00 Duration :=
Raw test time (seconds) :
Raw control time (seconds):

3.00 Duration := Const_duration + Const_duration

Raw test time (seconds) :
Raw control time (seconds):
-0.99 Duration :=

1§t b A ——— < i S e st T

Const_duration - Var_duration
0.94
1.11

37

1.17
1.21
Const_duration - Const_duration

1.06
1.34

0.93
0.94

ERL-0513-TR

R S,

ERL-0513-TR

THIS IS A BLANK PAGE

~
4

39 ERL-0513-TR

Appendix IIL
PIWG Analysis Program Output.

PIWG Analysis Report - produced on 12/7/1989.

| Test | Time being | Repeatable | Best REPEATABLE |
| Name | Analyzed | (Yes/No) | Time | 1
- 1 | | | | ‘
| AS0 | Clock Res | Yes | 0.000061 Sec |
| A91 | Time for 1 Dhry | Yes | 0.897000 mSec |
| AS3 | Time per cycle | Yes | 786.790000 mSec |
| A94 | Perm | Yes I 2.000000 sSec |
- | A94 | Towers | Yes | 3.120000 Sec |
| A94 | Queens | Yes | 1.160000 Sec |
| A94 | Intmm | Yes | 1.070000 Sec |
| A94 | Mm | Yes | 1.080000 Sec |
| A94 | Puzzle | Yes | 9.010000 Sec |
z | A94 | Quick | Yes I 1.030000 sSec i
| A94 | Bubble | Yes | 1.580000 Sec |
| A94 | Tree | Yes | 1.790000 Sec |
| A94 | FFT | Yes | 1.820000 Sec |
| A%4 | Ack | Yes [71.530000 Sec |
: | B1 | No suppress | Yes | 63.060000 Sec |
| Bl | Suppress | Yes | 47.260000 Sec |
| B2 | No suppress | Yes | 27.380000 sSec |
| B2 | Suppress | Yes | 18.360000 Sec |
| B3 | No suppress | Yes ! 44.360000 sec |
1 | B3 | Suppress | Yes | 34.150000 Sec |
| B4 | No suppress | Yes | 32.850000 Sec |
| B4 | Suppress | Yes | 19.470000 Sec |
| C1 | CPU time | Yes I 7600.100000 uSec |
| C2 | CPU time | Yes] 7450.000000 uSec |
| C3 | CPU time | Yes] 7599.800000 uSec |
s | D1 | CPU time | Yes | 15.600000 uSec |
| D2 | CPU time | Yes | 3699.800000 uSec |
| D3 | CPU time | Yes | 14.100000 uSec |
| D4 | CPU time | Yes | 5249.600000 uSec |
| E1 | CPU time | Yes | 562.500000 uSec |
| E2 | CPU time | Yes | 818.700000 uSec |
| E3 | CPU time | Yes | 681.300000 uSec |
| E4 | CPU time | Yes | 650.000000 uSec |
i ES | CPU time | Yes | 349 .900000 uSec |
| F1 | CPU time | Yes I 21.900000 uSec |
L3 | F2 | CPU time | Yes | 0.000000 uSec |

ERL-0513-TR 40

Gl CPU time Yes 1625.000000 uSec
G2 CPU time Yes 5906.300000 uSec
G3 CPU time Yes 3906.300000 uSec
G4 CPU time Yes 5843.700000 uSec
GS CPU time Yes 375.000000 uSec
G6 CPU time Yes 1078.100000 uSec
G7 CPU time Yes 54998.800000 uSec
H1 CPU time Yes 0.400000 uSec
H2 CPU time Yes 900.000000 uSec
H3 CPU time Yes 812.500000 uSec
H4 CPU time Yes 278.100000 uSec
H5 CPU time Yes 0.000000 uSec
H6 CPU time Yes 29.700000 uSec
: CPU time Yes 63.300000 uSec
H8 CPU time Yes 24.,200000 uSec
HY CPU time Yes 70.300000 uSec
Ll CPU time No *

L2 CPU time No *

L3 CPU time Yes 0.000000 uSec

LS CPU time Yes 13.400000 uSec
Pl CPU time Yes 0.400000 uSec
P2 CPU time Yes 28.900000 uSec
P3 CPU time Yes 27.000000 uSec
P4 CPU time Yes 0.000000 uSec
P5 CPU time Yes 27.700000 uSec
P6 CPU time Yes 2%.700000 uSec
p7 CPU time Yes 31.300000 uSec
P10 CPU time Yes 50.800000 uSec
P11 CPU time Yes 85.900000 uSec
P12 CPU time Yes 43.700000 uSec
P13 CPU time Yes 60.200000 uSec
; T1 CPU time Yes 1181.200000 uSec
: T2 CPU time Yes 1349.900000 uSec
T3 CPU time Yes 1250.000000 uSec
T4 CPU time Yes 1362.500000 uSec
TS CPU time Yes 1270.000000 uSec
T6 CPU time Yes 2059.900000 uSec
T8 CPU time Yes 2825.000000 uSec

! | { |
! ! | |
| 1 | |
| | l |
{ | | |
| | | |
| | 1 {
t		
[1
1		
	t !	
!		
i		
		t
i		
t		
L4	CPU time	Yes
{ t		
		i
	1	
1 I l		
1		
1		
1		
!	1	
		i
i		
		!
)		
1 !)		
]		
)		
	J	
		1

et e s e 8 o o i o " o e " - " = - =_ - - -~ - ————

e A R KTUA T S A K

o,
b

41 ERL-0513-TR

Appendix IV.
Contents of PIWG and UMICH suites.

PIWG Suite.

The PIWG suite consists of approximately 230 files which are arranged as:

1 README file. This file provides details of how the suite is arranged and some basic
information on how to perform the tests.

Approximately 205 Ada source files. These are the actual tests. The README file
indicates what each file does.

Approximately 20 command files. Command files are provided for different platforms
(e.g., .BAT files are provided for PCs and .COM files for VAX/VMS environments). These
files may need to be modified if the tests are to be run with different compilers.

1 sample output file. This file shows the output produced by the tests.

2 distribution information files. One of these file contains a “results form” which shouid
be completed and forwarded to PIWG by the users of the suite so that the central PIWG
database can be updated with the test results. The other file contains a tape distribution
tree which contains the names and addresses of distributors of the tape.

UMICH Suite.

The UMICH suite consists of approximately 200 files which are made up of:

1 README file. This file provides an explanation of the tests. A reference to a report that
discusses timing issues, rationale, and results for the Verdix Ada compiler is also given.

Approximately 160 Ada ' surce files. These are the actual tests. The README file explains
the naming conventions used for these files.

Approximately 30 command files. These command files contain the necessary commands
to compile and run the tests. Once again, modification of these files will be needed if the
tests are to be run on different platforms.

1 main unit file list file. This file lists the names of the main procedures of the tests along
with the name of the files in which their source code is contained.

S T P DUPL e - S
7 N

: .- 1
ERL-0513-TR 42
]
THIS IS A BLANK PAGE
;
3

v et~ b S S el < e =

b
I
*

43

Glossary.

ERL-0513-TR

ACEC — Ada Compiler Evaluation Capability
ACM — Association for Computing Machinery
AdaIC — Ada Information Clearing house
AES — Ada Evaluation System

AJPO — Ada joint Program Office

APSE — Ada Programming Support Environment
ASR — Ada Software Repository

BGT — Benchmark Generator Tool

BRT — Best Repeatable Time

DDN — Defence Data Network

DEC — Digital Equipment Corporation

E&V — Evaluation & Validation

IDA — Institute for Defence Analyses

PIWG — Performance Issues Working Group
SD — Systems Designers

SEI — Software Engineering Institute

SIGAda — Special Interest Group on Ada
UMICH — University of MICHigan

VAX — 32 bit computer manufactured by DEC

ERL-0513-TR 4

THIS IS A BLANK PAGE

BocRime et
-

DISTRIBUTION

DEPARTMENT OF DEFENCE
Defence Science and Technology Organisation
Chief Defence Scientist
First Assistant Secretary Science Policy (FASSP)
Counsellor Defence Science Washington
Counsellor Defence Science London
Electronics Research Laboratory
Director, Electronics Research Laboratory
Chief, Information Technology Division
Head, Software Engineering
Publicity and Component Support Officer, Information Technology Division
Joint Intelligence Organisation (DSTI)
Libraries and Information Services

Librarian, Technical Reports Centre, Defence Central
Library, Campbell Park

Document Exchange Centre
Defence Information Services and Science Liaison Branch for:

Microfiche copying
United Kingdom, Defence Technical Information Center
United States, Defense Technical Infomration Center

Canada, Director, Scientific Information Services

e am e - o

ERL-0513-TR
Copy No. i

} 1

Cnt Sht Only

Cnt Sht Only

(oo
w
A

1
?
i
3
4
;

ERL-0513-TR

New Zealand, Ministry of Defence
National Library of Australia
British Library, Document Supply Centre
Main Library Defence Science and Technology Organisation Salisbury
Library, Aeronautical Research Laboratories
Library, Materials Research Laboratories
Librarian, DSD, Melbourne
UNITED KINGDOM
Institution of Electrical Engineers
Author

Spares

24

26

27-28

32

33-35

36 -40

T e

D e

g e

Yy

(Y

DOCUMENT CONTROL DATA SHEET

Security classification of this page : [

UNCLASSIFIED |

2 [SECURITY CLASSIFICATION

1 [DOCUMENT NUMBERS

a. Complete
AR Document : Unclassified
Number : AR-006405 — —

b. Title in

Isolation : Unclassified

Series ¢. Summary in
Number : ERL-0513-TR Isolation : Unclassified -
Other | 3 [DOWNGRADING / DELIMITING INSTRUCTIONS
Numbers : J L/DHM 11993
4 Tme -

; ADA COMPILER BENCHMARKING: INITIAL INVESTIGATIONS.

[

S [PERSONAL AUTHOR (S)

6 [DOCUMENT DATE |

[

LApnl 1990

]

R. Vernik _

I. Turner 7.1 TOTAL NUMBER
: S.F. Landherr l OF PAGES 43
} .| 72numeer oF
i I REFERENCES 16
i B L
8 (8.1 CORPORATE AUTHOR (S) 9 [REFERENCE NUMBERS
} Electronics Research Laboratory { aTask: DST89/047 o
| l b. Sponsoring Agency :

_-.4{’ T T - R
8. 2 DOCUMENT SERIES 10 c —T
and NUMBER \ COST CODE |

Technical Report

e po | 223AA254
11 [IMPRINT (Publishing organisation) 1 '2[COMPUTER PROGRAM (S)

| (Title (s) and fanguage (s))

| Defence Science and Technology | ‘
! Organisation Salisbury |
! L
13 [RELEASE LIMITATIONS (of the documant)] T
i
i Approved for Public Release.
{ .
Security classification of this page : | UNCLASSIFIED

|
Security classification of this page : UNCLASSIFIED 1
14 [ANNOUNCEMENT LIMITATIONS (of the informatior on these pages)]
|
; No limitation

15 [DESCRIPTORS 16 [CosaTI CODES 4
—a. U

; [
| TYerms _Ada fprogramming language}/'

. -~"" Compilers BenCii e XS, . 1205

> ‘ 2
. b. Non - Thesaurus ‘
Terms ‘

B '
17 "SUMMARY OR ABSTRACT

(if this is security classified, the announcement of this report will be similarly classified)

\| t
\\This paper documents some initial investigations into the benchmarking of Ada compilers.
A summary of available benchmarking suites is given, although only two of these suites were
used in the initial benchmarking experiments: the ACM SIGAda Performance [ssues Working
Group tPFW@& benchmarks and the University of Michigan {UMIER) benchmarks. Experiences
and lessons learned in applying these suites to the Alsys Ada compiler hosted on a Toshiba .
personal computer and to the DEC VAX Ada compiler hosted on a VAX 8300 are provided. s
Based on these initial benchmarking experiences, several areas of possible further
research/development are identified. In particular, the need for more advanced analysis tools

o 1 , A
lSdlSCuSSQd.K‘oLJ Jﬁff‘fﬂl"',""»"- .

Security classification of this page : | UNCLASSIFIED

