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SUMMARY

This technical paper summarizes the work performed by Systems Exploration, Inc. (SEI)
to redesign and enhance the Integrated Maintenance Information System Diagnostic Module (IMIS-
DM) and diagnostic maintenance environment. The diagnostic module is part of an ongoing IMIS
research and development (R&D) effort by the Air Force Human Resources Laboratory (AFHRL)
to access and integrate maintenance information from multiple sources and present the information
to technicians through a rugged, hand-held computer. The diagnostic module, redesigned in
Smalltalk/V and utilizing information from the Content Data Model (CDM), provides technical
support to the maintenance technician oy furnishing a wide range of capabilities assisting in the

selection of an efficient sequence of maintenance tasks.

One of the major outcomes of this effort was the IMIS-DM redesign u:.ag Object-Oriented
(OO0) rapid prototyping techniques to create a diagnostic module compatible with hierarchical data
base concepts employed by the AFHRL CDM. Another major outcome was the enhancement of the
IMIS-DM assessment operations. The enhanced IMIS-DM now provides three modes of
assessment (functional, physical, and degraded) whereas the previous version provided only the
functional mode. Other enhancements to the IMIS-DM further expanded diagnostic capabilities
with the implementation of algorithms to provide an access group option, "But Not" data entry,

presentation of test results, and a revised criticality function.

Enhancements to the IMIS diagnostic maintenance environment provide maintenance
technicians with a test result data validity check and the ability to specify unsuccessful maintenance
actions. All enhancements, with the exception of the physical assessment module, were
implemented in the OO rapid prototyping environment offered by Smalltalk/V. The physical

assessment module was implemented in Smalltalk/V logic-based PROLOG.




PREFACE

This paper provides a summary of the Integrated Maintenance Information System
Diagnostic Module (IMIS-DM) redesign and enhancement for the Air Force Human Resources
Laboratory, Combat Logistics Branch (LRC), under the terms of contract #F33615-88-C-0004,
Task Order #0012. The task monitor was Lt. Janet Murphy, AFHRL/LRC.

Research was performed by the Dayton regional office of Systems Exploration, Inc. (SEI).
Principal investigators were Garth Cooke, Nicola Maiorana, Theodore Myers, and Johnnie

Jernigan.
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I. INTRODUCTION

Purpose

The Air Force Human Resources Laboratory (AFHRL) is engaged in a long-term program
to improve information presentation in the maintenance environment. Research and Development
(R&D) in the maintenance environment has led to an Integrated Maintenance Information System
Diagnostic Module (IMIS-DM) capable of utilizing existing data parameters and producing
effective isolation and repair recommendations. This report describes the design of the Object-
Oriented (OO) Smalltalk/V IMIS-DM and enhancements. The redesigned diagnostic module was
developed using rapid prototyping techniques and the logic-based programming of Smalltalk/V.

Background

The IMIS-DM, or Maintenance Diagnostic Aiding System (MDAS), was a product of
earlier R&D efforts and was designed to assist aircraft maintenance technicians in the identification
and repair of malfunctioning equipment. A key feature of the diagnostic module is that its
algorithms are designed to minimize time to repair an aircraft rather than time to isolate a fault. This
philosophy incorporates rectification actions into the overall diagnostic sequence when appropriate,
resulting in the repair of faulty components and physical damage in minimum time. The diagnostic
module employs special subroutines modifying the split-half dependency model by applying
fault/symptom/component matching, component histories, probabilistic data, logistics constraints,
and operational constraints.

Fault/symptom matching is employed throughout the diagnostics modeling scheme. The
term "fault” is used to describe a functional or physical manifestation of some low level physical
failure. Under normal circumstances, it is likely there would be only one fault present in a system
at any time. The purpose of a diagnostics task would be to isolate that fault and rectify conditions
causing it. Throughout this report, we use the term fault to refer to both the single fault present in
the system (that which is bad) and to all possible faults that can cause a symptom. A symptom is a
machine-generated code or a verbal description indicating a malfunction exists within a system.
The symptom implicates one or more possible faults causing the malfunction. Use of these terms
can be confusing in a hierarchically-arranged data base such as the Content Data Model (CDM)
because the thing called a fault at one level of the hierarchy may be referred to as a symptom in a
lower level of the hierarchy. This is illustrated in Table 1.

In the radar system example shown in Table 1, the lists of possible faults are neither all
inclusive nor necessarily correcily stated.The lists are merely illustrative. As each fault is isolated at
any level of the hierarchy, that fault can become a descriptive symptom of lower level faults farther
down in the hierarchy.

Previous R&D efforts in diagnostics produced the IMIS-DM, an almost purely functional
assessment module for isolating and repairing faulty components. Therefore, the software once
called MDAS is now designated as the functional assessment module. Below is a brief discussion
of the functional assessment module's initialization and operations processes. Detailed information
about algorithms and operations can be found in the technical paper, Integrated Maintenance

Information System (IMIS) Diagnostic Module (Cooke, Jernigan, Maiorana, and Myers, 1990).

During initialization, data can be entered in the functional assessment module automatically
and manually. Automatic data collection loads system specific data files from the CDM and allows
downloading of system health information from an aircraft data bus. At present, the operator
performs manual data entries such as symptoms, parts and test equipment availability, critical
states, and aircraft configuration. In the future, several of these entries may also be automated




Table 1. Hierarchical Fault/Symptom Logic

Radar System Example
Maintenance Level Symptom Faults
On-Equipment Radar Inoperative Transmitter Bad
Receiver Bad
Antenna, No Sweep?
Off-Equipment Antenna, No Sweep Motor Frozen
Servo Inoperative
Power Circuit Bad?
Off-Equipment Power Circuit Bad Transformer
Resistor
Capacitor

Note.
a. This fault is isolated through testing.

through links to the Core Automated Maintenance System (CAMS), supply computers, and so on.
Figure 1 shows the sequencing of algorithms and analyses performed by the initialization process
and functional assessment module.

After initialization the functional assessment module uses automatic and manual data input
to evaluate fault combinations and to rank tests. The module then compares tests, by time analyses
and failure probabilities, to repair or replace activities; thus, it identifies the action with the highest
likelihood of fixing the problem in the least amount of time. Three lists of ranked tests and/or
rectifications are developed and can be selected and presented to the maintenance technician: (a)
ranked tests, (b) ranked rectifications, and (c) interleaved tests/rectifications. Although a "best"
action is recommended, the technician can choose any of the listed options. When the technician
selects a test or rectification/maintenance action, the presentation system displays technical order
instructions for performing the selected activity. If the selected action is a test, the functional
assessment module evaluates the status of the faults based on the test outcome and evaluates
available options. If the selected action is a rectification or maintenance action, the functional
assessment module reinitializes the fault/symptom status using results obtained from a functional
check. This procedure continues until the fault is isolated and the system is repaired.

II. IMIS DIAGNOSTIC MODULE (IMIS-DM) DESIGN
IMIS Controller

The IMIS controller is an executive system that controls and manipulates three subsystems:
(a) an applications system (such as IMIS-DM, pre/post flight, phase inspection, and weapons
load), (b) the data base module, and (c) the presentation system. Figure 2 illustrates the system.
The applications system is identified as the diagnostic module.
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The diagnostic module is comprised of four major submodules: (a) the diagnostic
controller, (b) the physical assessment module, (c) the functional assessment module, and (d) the
degraded mode module. The diagnostic controller module regulates data items, diagnostic
groupings, performance of its submodules, and interfacing to the IMIS controller. Interfaces
between the IMIS controller and the diagnostic controller provide the means to extract diagnostic
data from the data base and present information to the presentation system. The functional
assessment module was described briefly in the background; the remaining diagnostic modules are
new developments and are described in this section.

The data base module, in CDM hierarchical format, contains both Technical Order (TO) and
diagnostic data information. The TO information consists of procedural text, graphical illustrations,
and data element information; the diagnostic data contains mapping and probabilistic data for faults,
tests, symptoms, and rectifications. Diagnostic data are used by the IMIS-DM; the TO information
is used mainly by the presentation system.

The presentation system provides interfaces for aircraft system health checks, maintenance
technician input, display of diagnostic module results, technical data for maintenance tasks, and
system specific graphics. System health checks from MIL-STD-1553 data bus downloads and
maintenance technician input give the diagnostic module pertinent information about the aircraft
under investigation, logistic constraints, operational constraints, and task performance. The
diagnostic module gives the presentation system fault isolation and repair information. The data
base module supports both the diagnostic module and the presentation system.

Smalltalk/V Module Development

The first diagnostic module was written using the C programming language. We converted
this module from C to Smalltalk/V. There are two reasons why Smalltalk was selected as a
development language. The first is the rapid prototyping capabilities available through Smalltalk
and facilitated through the Smalltalk environment. This environment contains most of the low-level




functions used in software development. The environment also allows a programmer to compile
and test smaller pieces of code within the environment. Moreover, the Smalltalk environment
allows the code to be reused. The second reason for selecting Smalltalk is for ease of integration
into the presentation system.

Smalltalk is a high-level, OO programming environment. The basic building blocks in the
Smalltalk environment are objects. Objects can be as simple as numbers, strings, and arrays, or
they can be as complex as menus, data base managers, and diagnostic modules. Everything is an
object in Smalltalk. Objects can store data in variables, perform functions, or both. All objects are
types or instances of some Smalltalk class. An instance is an object described by a particular class
type. A Smalltalk class describes the variable names and the functions for instances of itself. The
variable names, also known as instance variables, are descriptive tokens where objects store data.
The data stored in the instance variables are other objects. The class also describes the methods for
its instances. Methods have the names of actions or functions that objects can perform. The method
description describes each method's function in terms of Smalltalk code. The method names are
passed to the object as messages to perfomm a particular action.

Diagnostic Module Controller

The diagnostic module controller uses hierarchical data from the CDM data base. The
controller creates multiple diagnostic groups based on interdependent symptoms. These groupings
are based on faults relating to common tasks (tests or rectifications). Each diagnostic group is
independent and the status of the faults (plausible, exculpated, rectified, and so on) is stored in the
diagnostic group to which it belongs.

To begin the diagnostic process, symptoms are passed to the diagnostic module controller
by the IMIS controller. Each symptom maps to, or spans, a set of faults. Furthermore, these
spanned faults can map to a set of subfaults, forming a fault tree. The lowest level faults in the fault
tree are evaluated to find tests and rectifications pertaining to the original symptom. Diagnostic
groups are then created by categorizing symptoms with common tests and rectifications.
Symptoms that do not possess common tests and rectifications are considered independent and are
categorized into separate diagnostic groups.

Physical Associations Model

The diagnostic module, originaily designed to evaluate fault isolation and repair alternatives
from almost a purely functional standpoint, has been enhanced to perform both functional and
physical assessment. When diagnostics are approached from a purely functional standpoint, we
cannot adequately address events causing malfunctions of other components, or malfunctions
caused by a nearby physical event. For example, a technician may enter a compartment of an
aircraft and observe that hydraulic fluid has leaked all over the bay causing a failure in a Line
Replaceable Unit (LRU). Repair of that LRU would not be appropriate until the hydraulic line is
repaired and the bay is cleaned. Many external causes of the functional problem (i.e., aircraft battle
damage, bird strikes, environment extremes) could create problems with the sys.em under
investigation. Hence, some physical model should be developed to produce an efficient cause and
effect or physical association isolation and repair strategy.

In order to work with physical associations, we need to look at what makes a physical
association reasonable. One key element is physical proximity. However, proximity is not enough
by itself. There must be a physical event occurring that can affect systems, components, or parts
near the event for a valid physical association. A physical event in this context implies that some




foreign agent can act externally to the affected component and cause a failure. This implication,
then, implies there must be a source of the foreign agent and the component(s) in the vicinity must
be vulnerable to damage by that agent.

If we only consider the battle damage source, there are many assessment models available
that may prove more effective for this limited role than this modified diagnostic module. However,
if we consider other sources of damage, such as heat, damaging liquid contamination, and high
vibration levels, we can look inside the weapon system to find potential sources of the damaging
physical agents. When we look at the weapon system for these sources, we define the limits of the
universe of possible physical associations. Most normal physical hazards associated with operating
in an airborne environment are already built into the Mean Time Between Failures (MTBF) and the
fault weightings considered in the functional diagnostic module (e.g., routine g-loads, normal
vibration levels, operating temperature extremes, and humidity). Consequently, the physical
associations model must address hazards outside the range of "normal" hazards associated with
operating in an airborne environment.

Therefore, the hazards to which aircraft parts and components may be subjected are few.
Among these are (a) temperature extremes, specifically high temperatures; (b) liquids such as fuel,
lubricants, hydraulic fluid, water, and so on; and (c) physical abuse. Physical abuse is the most
widespread category because it includes both internal and external sources and has a wide range of
potentially severe effects. These sources can be internal (explosion of Cartridge Activated Device
(CAD); rupture of pressure vessels; slow burning/misfire of CAD; and loss of containment of high
energy, spinning devices) or external (dropped objects, bird strike, mid-air collision, Foreign
Object Damage (FOD), and battle damage).

Physical Effects Mapping

With a developed restricted hazards list we must identify, within some boundary (e.g., an
avionics bay, an engine bay), each of the components containing hazards to either itself or to other
components within the boundary. Finally, we must identify those components within the boundary
that are vulnerable to these hazards. Vulnerable, in this case, refers to the functional model and
implies some component may not operate within prescribed functional limits because of the effect
created by a hazard normally contained within some other component.

This problematic relationship where components are vulneratle to hazards contained within
some other component is a migration of the hazard. Each hazard in the restricted hazards list has
individual migration traits and must be mapped according to the particular hazard. For instance,
high temperature hazards tend to manifest themselves where the heat is exhausted and in the upper
area of a bay; whereas, fluids tend to migrate with gravity to the lower areas of the bay. Physical
abuses also tend to follow the migration concept and tend to affect their components within
restricted geometric bounds. The logical approach to tracking and marking boundaries or hazard
areas can be described within a three-dimensional coordinate system.

Assuming data to support the above discussion are available, then the diagnostic model
must be altered to consider the effects of these physical relationships. If, during a diagnostic or
other maintenance task, evidence of the presence of a physical hazard is discovered, the
maintenance technician is faced with two problems. First, he must identify the source of the hazard




and, if necessary, rectify the failvre that released the hazard.! Then, he must identify and, if
necessary, repair any failed components. The data to support this scheme could be represented as
in Table 2.

Physical Model Operation

The logic flow for physical assessment modeling appears as in Figures 3 and 4 as a result
of the above source and effects theory. This logic flow maximizes the capabilities built into the
current functional assessment module and expands upon the processing and modeling schema. The
branching and control mechanisms have been built into the current diagnostic module using the
logic-based PROLOG of Smalltalk/V. This paper briefly describes the physical assessment
module's operation. Details of the algorithms and operations in these figures can be found in the
report In Maintenance Information m (IMIS) Diagnostic Module R ign (Cooke,
Jernigan, Maiorana, and Myers, 1990).

Table 2. Hazard Source and Effects Mapping

Rectification Hazard Vulnerability Source Fault(s) Effect Fault(s) Location
(Rect) (H) V) F(s) F(e) (LOO)
A a - 1 -
b - 2 -
- c - 1,34
B c - 5 -
- a - 6,7.8
C - c,a - 9
Rect ID Hazard Hazards Faults Functional XY, Z
contained Rect is which faults Location
in Rect vulnerable can lead which may for Rect
to to Hazard result from
release exposure to
Hazard

Upon initialization, manual and automatic system health information and physical evidence
information (e.g., hazard codes, location) is entered. The diagnostic controller module then
determines how to approach the diagnostic problem based on the data entries observed and
diagnostic groupings available. The functional assessment approach is initiated when only
functional symptoms have been observed and there is no physical evidence of a potential problem.
If physical evidence appears during functional isolation and repair assessment, the diagnostic
controller module redirects efforts to physical isolation and repair assessment without losing the
information gained from previous actions.

The second approach, physical assessment, is initiated when physical evidence of a
problem is observed, e.g., bullet hole in engine bay, hydraulic fluid in avionics bay. The physical
assessment module performs diagnostics by first addressing source faults. Figure 4 provides the
logic flow for alleviating source faults (AS on Figure 3). Initially, source repair is performed on

I 'The individual technician is central to the discussions in this paper. For simplicity, we
have used the singular pronoun "he” to designate the individual technician (whether that person is a
man or a woman).
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Note.
aA description of the damage codes and formulas for modifying probabilities of
components and faults are as follows:

Damage Code - (DC)

Code Value Desc

DS 100 Destroyed

DM 80 Damaged (dented, soaked, scorched)

SP 20 Suspected (dinged, scratched,
dampened, liquid spots)

OK 1 No Apparent Effect

bModifying probabilities of source components and faults. The following formulas are
evaluated to obtain normalized modified source component and fault probabilities for a given
location. Although formulas 3 and 4 are only listed once, both component and fault probabilities
are calculated using the same formulas, but are performed separately.

Cinp 1
Prob,; = MTBF (Fs)
1
lfMTBF (FS) ( 1)
1
Prob; | = MTBEF(Fs)
1
MTBE(Fs) 2)

PI'Obi'Z =PI'0bi'1 * DC (3)

Prob 2

Y Prob;, @

Prob; =

Where, DC = component damage code value,
Fs = source fault,
Comp. = component,
LOC = location,
Probi, 1 = probability of the ith source component or fault,
Probi,2 = modified probability of the ith source component or fault, and
Probi,F = normalized modified probability of the ith source component or

fault.

“Modifying probabilities of effected components and faults. The following formulas are
evaluated to obtain normalized modified effect component and fault probabilities for a given
location. Although formulas 7 and 8 are only listed once, both component and fault probabilities
are calculated using the same formulas, but are performed separately.

10




Prob;; =
Lsmres ®
1
Prob, , = —J1BL(Ee)
BT (6)

Pn)bi.z = PIObi.l * DC (7)

Prob;
Pobp =2
w2 - (8)
Where, Fe = affected fault,
Probj, 1 = probability of the ith affected component or fault,
Probj,2 = modified probability of the ith affected component or fault, and
Probi,F = normalized modified probability of the ith affected component or

fault.

components showing obvious physical damage, then the functional assessment module is activated
to alleviate source faults that are not so obvious. The second step in the physical assessment
module is to isolate and repair affected components. Again the approach to physical assessment of
affected components is to first repair obviously damaged components. When all known damaged
components are repaired, the diagnostic controller module reverts to functional assessment to
complete the aircraft repairs.

As shown in the figures, the physical assessment module's logic flow maximizes the
maintenance technician's abilities to evaluate and act upon physical evidence without being delayed
by the details of the general technical data required to identify, clean up, and evaluate hazard
exposure. However, the processing is available to provide additional information to assist the
novice through the details if necessary.

PROLOQG Physical Associations Modul

Although Smalltalk/V offers well-developed rapid prototyping techniques within an QO
environment, it also offers the opportunity for logic-based programming or PROLOG. With the

-development of the physical assessment module theories and operations described in Section II, a

logic-based system could more closely duplicate this logical decision process designed from a
maintenance technician’s viewpoint.

The first step in implementing the logic-based physical assessment module was to identify
and develop a mock hierarchical CDM dictionary containing all of the necessary data elements
required of the physical module. This was just an extension of the newly developed functional
model's mock CDM dictionary and was implemented within tae Smalltalk OO environment. Initial
format and mapping of the physical module's CDM elements are described in Table 3.
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Table 3. CDM Requirements for Physical Associations

Rect Hazard ID Hazard Names
Rectification Hazard Codes
Affected Faults Hazard Meaning
Source Faults
Hazards Vulnerable to Damage Names

Hazard Names Damage Codes
Hazards Contained Damage Meaning
Hazard Names
System Name System Name
System Code

System Meaning

After implementing the above CDM elements, we identified the constraints of the
Smalltalk/V PROLOG environment. The major constraint imposed was that Smalltalk/V PROLOG
had no input or output functions and all user and data interfaces had to be developed within the
Smalltalk/V OO environment to test the accuracy of the physical module. Therefore, Smalltalk/V
OO Physical Presentation Module (PhysPresModule) and Physical Model categories were
developed to help interface with the functioning and testing of the logic-based physical assessment
module.

The PhysPresModule simulates the CDM data capture and manipulation by the IMIS
controller and the user interfacing of the presentation system. Two classes, the PhysController and
the PhysModel category, were created to implement the Smalltalk PROLOG version of the physical
assessment module. The PhysModel class describes the rules and functions needed to perform the
logical diagnostic decision process of the physical assessment module. This class is a subclass of
the PROLOG class, which is a subclass of Logic in the PROLOG-V category. Once lists of
pertinent data are passed from the PhysController class to the PROLOG data base, rule firing
dictates the logical approach of physical diagnostics as described in Section II. If any information
or user interface is required, the PhysModel simply uses Smalltalk/V commands to access and
perform methods within the PhysPresModule. Responses are then passed to the PROLOG
dictionary. The PhysController class describes the instance variables and functions needed to
perform and interface the PhysModel of Smalltalk/V PROLOG. The main objective of this class is
to act as an interface between the Smalltalk/V MDAS controller and the PROLOG physical
assessment module.

Degraded Mode

Degraded mode occurs when the diagnostic module can no longer recommend an action
and all suspected faults, given symptom occurrence, have been eliminated from consideration.
This situation can happen if the diagnostic module is given incorrect or incomplete data. At tuis
point, normal diagnostics are suspended and the diagnostic module is in the degraded mode once
the technician approves this action.

The objective of the degraded mode is to have a test fail, resulting in a plausible set of
faults, and/or do a rectification that passes the system health. In certain situations, the technician
may choose to put the system into degraded mode in one of two ways. One, the technician can
select degraded mode if he decides the diagnostic module is no longer helping in troubleshooting.
Or, in response to the recommendation of the diagnostic module, he can revert to the degraded
mode.
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The diagnostic module will recommend degraded mode of operation if:

1. a symptom is present but all suspected faults that could have caused the symptom are
eliminated from consideration through passed tests or alleviation of another symptom;
or,

2. if rectifications have been performed for the second time on the same components
where the fault is suspected; or,

3. asymptom is confirmed present and is not in the data base.

Although the maintenance technician has full control of degraded mode selection, degraded
maode is necessary to continue diagnostics when:

1. the diagnostic module recommends the degraded mode based on the above occurrences;

2. Can Not Duplicate (CND)/Intermittent (unverifiable starting points) messages are
received; and,

3. whenever the technician chooses, i.e., the technician does not want to follow any of the
diagnostic module's recommendations.

When the degraded mode is selected, the physical and functional assessment modules are
suspended by the diagnostic controller module and a message appears notifying the technician he
has entered degraded mode. This message remains on the screen at all times during degraded mode
assessment.

While in degraded mode, the physical and functional assessment modules are not able to
provide the technician with any recommended actions. To aid the technician, a smart Table Of
Contents (TOCQC) is created. The smart TOC consists of two lists. The first list contains ranked
rectifications based on component MTBFs. The components with the lowest MTBFs are ranked
highest on the list. The second list contains an ordered list of tests based on probability of failure,
calculated by summing the failure rates of all spanned faults. Moreover, to provide a more accurate
test ranking, any information gained during physical and functional assessment is used to alter the
test's failure probabilities. When modifying the test's failure probabilities, exculpated faults are not
used in computations of tests containing them.

Upon display of the TOC, the technician selects a test or rectification from the ranked lists
and performs the selected action. Depending on the action performed and its results, diagnostics
can proceed in several ways. At the completion of any action, the maintenance technician must
either suspend diagnostics, select another action from the TOC, or exit the degraded mode. The
technician must consider the precedences described below, reflecting logical continuation of
isolation and repair.

1. If a test is selected during degraded mode assessment and a fail result is exhibited, a
new plausible set is established. The degraded module then records the new plausible
set of faults for further isolation and repair. Once a new plausible set of faults is
established, degraded mode can be exited and physical or functional assessment can
proceed from the new plausible set.

2. If atestis selected during degraded mode assessment, and a pass result is exhibited, the
degrade:} module records the exculpated faults, eliminates the performed test from
consideration, and reranks the TOC's test list. The maintenance technician can then
select and perform another action from the TOC.
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3. If a rectification is selected and performed during degraded mode assessment, and
changes to the system are exhibited as a result of a functional check, the degraded
module records the appearance of new symptoms and/or existing symptoms are
modified or deselected. Given the new set of observed symptoms, degraded mode can
be exited and diagnostics can proceed with physical or functional assessment.

4. If a rectification is selected and performed during degraded mode assessment, and no
changes to the system are exhibited as a result of the functional check, the degraded
module records that rectification, eliminates the performed rectification from
consideration, and reranks the TOC's rectification list. The maintenance technician can
then select another action from the TOC.

Hence, the diagnostic module can continue fault isolation and repair when faced with incorrect or
missing data.

1. DIAGNOSTIC ENHANCEMENTS
Enhanced Diagnostic Module Functions

The enhancements described in this section have created a more efficient and accurate
diagnostic module. The module now performs degraded mode and critical fault assessment, and
captures information gained from previously failed tests. It also considers dependent symptom
occurrence and time saved for accessing groups of components or LRUs for testing and repair.
Other enhancements to the diagnostic module allow for changes to test and functional check
outcomes in case of incorrect entry of results.

Failed Faults from Previous Test

Under unusual circumstances, earlier versions of the diagnostic module could lose fault
isolation information due to fault combination manipulations. A new type of fault list is used in the
enhanced version to correct this problem. This new list type is called the isolated faults list.
Whenever the plausible fault list contains only one fault, the fault is placed in the isolated faults list
before other processing is done. When the plausible set is rebuilt, the isolated faults list is searched
for the first isolated plausible fault. If one is found, all other faults are moved to the maybe set.
Because the fault is the only one in the plausible set, the module will recommend its rectification
with a 100 percent probability.

Acc TOUu

An access group is a group of components unveiled by removing a panel or cover. When
ranking tests or rectifications, a diagnostic advisor should consider access group factors for
rectification and testing time efficiency. Diagnostic efficiency may be gained when actions
performed on access groups reveal more fault-associated components but have high access times.
Previous IMIS-DM versions did not consider access times in the ranking of tests and rectifications.
Access times in previous versions were assigned to each individual action and were not considered
for a commonly accessible group of actions.

The method of approach used to develop this capability was essentially the same as that
used to develop a Multiple Outcome Test (MOT) evaluation capability described in the paper
Integrated Maintenance Information System (IMIS) Diagnostic Module (Cooke, Jernigan,
Maiorana, and Myers, 1990). The access group algorithm is designed so that once access is
gained, each test in the group can be accomplished as though no access time is required. In
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addition, the best test evaluation in these circumstances is merely an extension of the current best
test algorithm. This feature was created by adding an enhancement factor to the best test that
accounts for the additional fault isolation capability obtained by gaining access.

The enhancement factor used is:

PS PS
SFR(1) XFR()

N |21 i=1
3 X
k=1 FR(PS) = FR(PS)
Fj= Nx 2T
Where, EF i = the enhancement factor for test j,

FR(PS) = the sum of all the failure rates for faults in the plausible set,
PS )
2. FR(1) = the sum of the failure rates for spanned faults for a given
i=1

test (T) in the plausible set of faults,

PS
2FR(0) = the sum of the failure rates for unspanned faults for a given
i=1

test (T) in the plausible set of faults,

N

2 = the sum of the products of spanned and unspanned

k=1
tests within the access group,

2T = the sum of all test times including access time for the group,
e.g., for an access time of 10 minutes creating access to three
five-minute tests, X T = 25, and

N = the number of tests in the access group.

The enhancement factor is set to zero if no additional tests are included in the access group.
Hence, the best test algorithm used in the IMIS-DM after this enhancement is shown below and
specific formulas for individual variables can be found in the report referenced above.

R.I
BT = max —.-! + EF.
T, j

Best Test value,
sparseness ratio of the test span,

Where, BT
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the average information gain, and
time to accomplish test j.

"But Not" Data Entry

The "But Not" algorithm implemented in the redesigned diagnostic module retrieves
information from test results in the form of observed outcomes and spanned faults, and determines
what faults are implicated and exculpated based on the test performed and outcome observed.
Previous versions of the diagnostic module did not include "But Not" data entry logic when
manipulating faults from test results. The exclusion of this "But Not" data entry logic resulted in
inefficient fault isolation and repair decisions because faults known to be good remained under
investigation.

The "But Not" algorithm development approach first identified what test outcomes would
be returned from test results and how faults would be manipulated. Every test has one pass
outcome and at least one fail outcome. Pass outcomes only exculpate faults and if a pass outcome
is observed, no fail outcomes can be exhibited. Fail outcomes, however, can implicate and
exculpate faults simultaneously.

There are two types of tests the "BUT NOT" algorithm operates on: BINary (BIN) tests
and MOTs. The BIN tests are very simple tests that exhibit either a pass or fail outcome, while the
MOTs are more complex. MOTs have one pass outcome and two or more fail outcomes. There are
three types of MOT tests: (a) Complete And Enter One (CAEQ), (b) Complete And Enter All
(CAEA), and (c) Exit At First Failure (EAFF). The CAEO MOT is completed in full and only one
outcome can be entered upon completion of the test. However, CAEA MOTs are also completed in
full but all observed outcomes are entered. EAFF MOT' are only completed to the point at which
the first failure is observed and at that point the observed outcome is entered.

Each outcome exhibited from a test result maps to a set of spanned faults, exculpated and/or
implicated. BIN, CAEO, and CAEA tests have one pass outcome that, when observed, exculpates
all faults spanned by the pass outcome. When a fail outcome(s) is observed from these tests, the
diagnostic module implicates and exculpates all faults for the observed fail outcome(s) and then
exculpates all the implicated faults of the non-observed outcomes. The EAFF also exculpates all
faults of the observed pass outcome. But, if a fail outcome is observed the "But Not" algorithm
exculpates all implicated faults for prior non-observed outcomes in the performed sequence and
implicates and exculpates faults of the observed outcome. Because of the implementation of the
"But Not" data entry logic, known good faults are exculpated while suspected faults are isolated
and repaired.

Account for TOC Actions

Earlier versions of the diagnostic module did not effectively allow choices to be made from
the TOC. This limited the maintenance technician'’s ability to perform tasks he considered pertinent
but were not in the interleaved actions list. Accounting for TOC actions was implemented easily
within the diagnostic module. Now, whenever a TOC test or rectification is chosen, the diagnostic
module only needs to be informed the action selected was not from the interleaved actions list. If a
test is selected, the observed test outcomes need to be passed to the diagnostic module as well.
Furthermore, if the task pertains to any of the existing diagnostic groups, that group will be
updated. If no appropriate diagnostic group exists, one is created.
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hange Test Result

If a maintenance technician erred in the selection of a test outcome, carlier diagnostic
module versions would not allow correct entries to be made easily. To ease changing a test's
result, the previous actions list is used. The previous actions list contains a list of all the tests and
rectifications previously performed. It also keeps a copy of the machine's diagnostic state before
the action. Once a previous test is selected, the new results are passed to the diagnostic module.
The diagnostic group pertaining to that test is removed and replaced with the copy stored with the
previous action. If no diagnostic group exists, the copy stored with the test is added to the list of
diagnostic groups. The new test results are passed to the diagnostic group. The next item in the
previous actions list belonging to the same diagnostic group as the test is updated with the new
diagnostic group. Then the diagnostic group is updated with the results of the action. This process
is repeated until the previous actions list is exhausted.

Change Functional Check Result

Previous versions of the diagnostic module would not allow a maintenance technician to
change manually entered functional check results. If a maintenance technician erred when selecting
functional check results, the diagnostic module would continue diagnostic evaluation with incorrect
system information and proceed to an incorrect isolation and repair decision. The previous actions
list is accessed so the technician can change functional check results. The previous actions list
contains a list of all the functional checks, tests, and rectifications previously performed by the
maintenance technician, and records a copy of the machine's diagnostic state before each action.
Once a previous functional check is selected, the new results are passed to the diagnostic module.
The diagnostic group pertaining to that functional check is removed and replaced with the copy
stored with the previous action. If no diagnostic group exists, the copy stored with the functional
check is added to the list of diagnostic groups. The new functional check results are passed to the
diagnostic group. The next item in the previous actions list belonging to the same diagnostic group
as the functional check is updated with the new diagnostic group. Then the diagnostic group is
updated with the results of the action. This process is repeated until the previous actions list is
exhausted.

Revised Criticality

A criticality function has been designed for situations when operational demands prevent
maintenance practices that take a minimum time to repair a malfunctioning system. Under some
circumstances, operational requirements would declare a system usable if it can be determined the
fault present in the system is in a part of the system not essential for the next sortie. The diagnostic
data allow faults which may or may not be designated as critical to be assigned to certain systems
and subsystems. If a system or subsystem has been declared critical, then the diagnostic module is
modified to make recommendations based upon a criticality algorithm.

In developing the revised criticality algorithm, we modified the definitions of critical tests
and rectifications to include multiple fault scenarios. The revised definitions are:

1. Critcal Test - A test that examines all potential faults declared critical.
2. Cntcal Rectification - A rectification that acts to repair all faults declared critical.
Based on these definitions, we developed a revised criticality algorithm to allow a critical

fault decision at the earliest possible time in the maintenance process. The revised criticality
algorithm now utilizes information theory to calculate a value for steps to isolate and repair
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(Equation 1), steps to operationally ready or fly (Equation 2), and total steps to repair (Equation 3).
Information theory shows the minimum number of steps to fault isolation in a given set of faults is
expressed by the base 2 logarithm of the number of faults in the plausible set (Log2 #F).

The values from Equations 1-3 are then used to evaluate advantages to operational
considerations (Equation 4) and cost to total maintenance steps (Equation 5), an isolation and repair
decision is then made based on the revised criticality formula (Equation 6). The revised criticality
algorithm formulas expressed below are a summary of investigations and theories employed in the

development of the revised criticality function. Details of the algorithms can be found in the

Integrated Maintenance Information System (IMIS) Diagnostic Module Redesign (Cooke, et. al.,
1990).

STREP = {X[Pfns * Log(2*#fns)]} + {Z[Pfs * Log2(2*#fs)]} + 1 ()
STFLY = { X[Pcf * Log2(2*#cfs)]} + 1 (2)
STTOT = {X[Pfns * Logp(2*#fns)]} + {Z[Pcf * Logp(2*#cfs)]} + 1 3)
Where, STREP = the steps required to repair a system when the most appropriate
test is performed first,
STFLY = the steps to declare a system ready for operations when a critical

test is performed as the first test,

STTOT = the steps to perform maintenance required to bring the system to

operational condition after a critical test,

2Pfns = the sum of the probabilities of the non-spanned faults,

#fns = the number of non-spanned faults,

2Pfs = the sum of the probabilities of the spanned fauits,

#fs = the number of spanned faults,

2 Pcf = the sum of the probabilities of the faults in each test outcome
that implicates critical faults, and

#cfs = the number of faults spanned in each test outcome that spans

critical faults.
The advantage to operational considerations is:
ADVOPS = STFLY - STREP (4)
The cost to total maintenance steps is:
STMAIN = STTOT - STREP (3)

The decision equation for whether the critical test should be preferred over a conventionally
chosen test is then expressed as:

When Val*ADVOPS = STMAIN, do the critical test. (6)

Where, Val
ADVOPS
STMAIN

the value of an operational hour over a maintenance hour,
the advantage to operations of performing a critical test first, and
the cost of total maintenance steps.

nuu
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Enhanced Diagnostic Presentation Capabilities

The enhancements described in this section have created a more efficient and accurate
diagnostic presentation environment for the maintenance technician with a data validity check on
test outcome information to control entry of incorrect or out-of-bounds test values and a feedback
entry for the maintenance technician to indicate an unsuccessful maintenance action.

Data Validity Check

The maintenance technician must enter the results of a test. In previous versions, no test
data validity checks were available to the technician to designate whether a particular test result was
within the expected values of an acceptable test result. For instance, a particular voltage check (test)
on a wire within a wire bundle should result in 5 +/- .01 volts for a pass and 0 to 4.989 volts for a
fail, indicating the acceptable range of test voltage values is between 0 and 5.01 volts. In previous
versions, if the maintenance technician tested the incorrect wire in the bundle and returned a value
of 6 volts from the check, the options would be to pass or fail the test. After making a test entry,
the presentation module would accept the word of the technician that the test was performed
properly and the results were correct. This test entry was then provided to the diagnostic module
with no test data error checks and in doing so, diagnostics proceeded down the wrong path to fault
isolation and repair.

Hence, as a result of this investigation, the diagnostic presentation system was equipped
with a data validity check, which retrieves pertinent test data values from the data base and requires
a value from the maintenance technician that is within the expected realm of the test outcome.

Feedback Entry

Maintenance actions are rectifications that do not remove and replace (R&R) components
but rather adjust components. Previous versions of the presentation module treated each
maintenance action as an R&R and did not consider instances when a repair or R&R would be
required if the maintenance action was unsuccessful or could not be performed properly. For
instance, consider what would happen if a maintenance action on a component could not be
performed successfully and the presentation module only acknowledges R&Rs. First, the
presentation module would require a functional test even though nothing was fixed. Then, the
diagnostic module, being given incorrect information on the outcome of the maintenance action,
could suggest another maintenance action on the same component, perform a R&R on another
component ignoring the faulty one, or perform further unnecessary tests on the faulty component
or other components.

A maintenance action, when used as a rectification, presents the unique situation of a
passed test requiring a system health check. The reason is the maintenance action, if successful,
was a rectification (with a system health mapped as its conformation test). But, if the maintenance
action was unsuccessful it mimics a test that implicates a set of faults. An example, as illustrated in
Table 4, is a system with potential faults of Out Of Alignment and Will Not Align among its set of
manifested failures. The Out Of Alignment requires an alignment maintenance action while the Will
Not Align requires an R&R. If the align rectification is accomplished, its success must be
determined before proceeding. The test mapped to the Out Of Alignment is, "was the maintenance
action successfully completed?" If the answer is yes, then the system health check must be
performed to ensure the Out Of Alignment fault was the fault present in the system and the
alignment did in fact remove the Out Of Alignment fault. If the answer is no, then the fault Will
Not Align is implicated and diagnostics and repairs associated with its set must be performed. A
third option occurs if the alignment was started but could not be completed. In this case, both the
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Out Of Alignment and Will Not Align faults are implicated and the repair actions required by these
faults are indicated. Hence, each of these outcomes obviously produces different sets of implicated
and exculpated faults and system health information.

Table 4. Maintenance Acton Test Example

Select the output that represents the results of the maintenance action.

Completed? Successful?
Outcome #1 yes yes (pass)
Qutcome #2 yes no (Fail 1)
Qutcome #3 no -—- (Fail 2)
Outcome #1 Exculpated both faults -- Out of Alignment and Will Not Align
Outcome #2 Implicates fault -- Will Not Align
Outcome #3 Implicates both faults -- Out of Alignment and Will Not Align

The maintenance action is mapped to Out of Alignment while the repair is mapped

to both Out of Alignment and Will Not Align.

Therefore, the logic to handle this unique situat: ~n requires data element modifications and
presentation software modifications. Withir th¢ CDM rectification data elements for maintenance
actions, the author is required to list both tests (aligned and system health) in sequence to prove
that the Out Of Alignment fault was ~t fault and that the maintenance action did fix the problem.
The first test is an MOT similar to the exampie celow o - binary test. The second is the system
health and is recommended if the first test passes.

IV. CONCLUSIONS

The IMIS-DM and presentation module provide the routines and interfacings that integrate
many diagnostic theories to effectively and efficiently fix aircraft systems. These theories provide
the means for incorporating information into the overall diagnostic decision making process and
utilizing the information to its fullest extent when analyzing, displaying, and fixing the current
problem.

Because of R&D efforts in the diagnostic arena, the diagnostic module can assess improper
system behaviors caused by physical events resulting from failures of source components and
causing malfunctions in other components or affected components. These events would be caused
by temperature extremes, a release of fluids, and physical abuses including aircraft battle damage.
One of the most important efforts to upgrade the diagnostic module involved an object-oriented
redesign of the C-programmed diagnostic module (now called the functional assessment module).
This redesign effort created a diagnostic module compatible with the hierarchical structure
employed by the CDM and created a system that provides rapid prototyping for future diagnostic
enhancements and the interfacing necessary for the physical assessment module previously
described.
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Enhancements as a result of previous research have allowed the diagnostic module to
function effectively under less than adequate data availability conditions with the implementation of
the degraded mode module. Other changes have provided tools to the technician to change the
results of erred test and functional check results and to select actions from the TOC. Revised
criticality, failed faults from previous tests, access groups, and "But Not" data entry have added
time to repair efficiency by including more maintenance environment information and better
utlization of all information during the diagnostics decision process.

Enhancements to the presentation module include the data validity check to inspect test
values returned by the maintenance technician in case incorrect procedures were followed during
testing or incorrect measurement was taken and the implementation of an effective means to
approach maintenance actions. Previous versions of the presentation module processed
maintenance actions as rectifications. The current version of the diagnostic module provides for
successful maintenance actions requiring functional check performance and unsuccessful
maintenance actions requiring rectification actions.

(4]
—
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GLOSSARY

Action. A diagnostic or corrective procedure performed by a maintenance technician.
Aircraft Configuration. Placements or layouts of aircraft system components.
Availability. A component's or test equipment's obtainability for use in the diagnostics process.

Best Rectification. A multiple fault algorithm that chooses the optimum action from among
available rectification actions.

Best Test. A diagnostic software algorithm that chooses the optimum test from among those
available at any point in the diagnostic sequence.

Component. The lowest physical level of indenture on which a maintenance technician at a given
level of maintenance (i.e., organizational, intermediate, and depot (O, I, D)) will normally
work. For example, an organizational level maintenance technician would consider a Line
Replaceable Unit (LRU) as a component; whereas, an intermediate level technician would
consider the LRU an end item and the Shop Replaceable Unit (SRU) a component.

Critical Rectification. A rectification that acts to repair all faults declared critical.

Critical Test. A test that examines all potential faults declared critical.

Criticality. A measure of need for a particular system capability. For example, a fault in an air-to-
ground function might not be critical for an air defense sortie, whereas a fault in an air-to-

air function would be critical for the same sortie requirement.

Dominant Action. A rectification action whose likelihood of success is so great it is
recommended before available tests that would reduce the plausible set.

Failure Rate. The inverse of Mean Time Between Failures (MTBF).

Fault. The cause of an equipment malfunction. The manifestation, through either inference or
direct observation, of a failure within a system.

Feedback Analysis. The process of collecting parameters while in the maintenance/diagnostic
environment and using these parameters to update current logistics information.

Feedback Loop. An interconnection of faults and signals such that no single test point can
successfully isolate the fault location.

Functional Check. A test performed to ensure a rectification action has been successful in
restoring a system to operational status.

Maintenance Action. A rectification that does not involve removal and replacement of a
component, but is merely an adjustment.

Mean Time Between Failures (MTBE). The unit of reliability used as a predictor of fault
likelihood. Its inverse is the failure rate.
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Multiple Faults. An event where two or more faults (failed components) exist simultaneously in a
given system.

Multiple Qutcome Test (MOT). A test procedure without a binary pass/fail result. The procedure
may have any number of outcomes; however, each outcome is unique and distinguishable
from all other outcomes.

Plausible Set. The set of possible faults that could logically have led to an observed or indicated
faulty condition. The elements in this set of faults contain single faults or combinations of
faults that are not redundant.

Rectification. The repair of a fault(s) which alleviates a symptom or set of symptoms.

Repair Time. The time required to complete system repair after a fault is isolated. It may include
access times. It will include reinstallation of original components removed unnecessarily as
part of diagnostics, secure and closure, and final functional check.

Support Equipment. Tools or devices needed to perform an action.

Symptom. A machine-generated or verbal description code indicating that a malfunction exists
(e.g., "Receiver, no audio”).

Test. A prescribed sequence of actions whose result will implicate or exonerate a set of faults.
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APPENDIX: SMALLTALK DEFINITIONS
Diagnostic Module's Smalltalk Class Structure

To implement the Smalltalk version of the diagnostic module several classes were created:
controller, previous action, diagnostics, sets, a combination generator, combination, tasks and
ranked task. The diagnostics and controller classes are the primary classes used in the module
redesign and are discussed below.

Diagnostics Class. The diagnostics class describes the instance variables and functions
needed to perform diagnostics. Each instance of this class is equivalent in functionality to the
diagnostic module written in C. The difference is the C version allowed only one diagnostic group,
now there can be many.

Controller Class. One instance of the controller class is needed to perform diagnostics.
This instance creates, monitors, and controls one or more diagnostic groups. This process is
described in Section II. Furthermore, the interface into the diagnostic module is defined by the
controller class. This feature gives the presentation system a focal point of communication to the
diagnostic module and the ability to port the diagnostic module to different presentation systems. In
the C version, this interface was spread throughout the presentation system and porting the
diagnostic module was more difficult. More details on the interface are described in the Appendix.

Passing Information to The Diagnostic Module Controller

Crtical Faults. Informing the diagnostic module controller of critical faults is done through the
"setCriticalFaults:" message. This message requires a parameter consisting of a list of critical
faults.

Qbserved Symptoms. To manually set observed symptoms the "addSymptoms:" message is used
along with a list of symptoms.

Results of a Test. The "ranTest:withOutcomes:" message is used to pass the results of a test. This
message requires two parameters. The first parameter is the instance of test that was performed.
The second is a list of outcomes observed as a result of performing the test.

Rectification Performed. To inform the diagnostic controller a rectification has been performed the
"performRectification:” message is used. The parameter passed along with this message is the
rectification.

Changed Results from a Previous Test. The message "change Results From Previous Test: with
Outcomes:" is used to change results from a previous test. The first parameter used for this method

is a test element from the previous actions list. The elements from the previous actions list contain
necessary information. The necessary information includes the machine's state before the test was
performed as well as the test. The second parameter is the new outcomes or test results. The
current machine state is replaced with the one stored in the previous action element. Now the
machine state is modified with the new test results. Using other tasks performed after the test was
run initially, the current machine state is updated.

Retrieving Information from The Diagnostic Module Controller

taining the List of Previous Actions. To obtain a previous actions list from the diagnostic
controller the "previousActions” method is used. This method returns an ordered list of tests and
rectifications. The test items will also contain the observed outcomes of the test.
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Qbtain the Best Task. To obtain the top interleaved task from the diagnostic controller, use the
"bestTask" message.

QObtaining Ranked Lists. There are three types of ranked lists obtainable from the diagnostic
controller: (a) interleaved tasks, (b) ranked tests, and (c) ranked rects. The interleaved tasks list is
a ranked listing of tests and rectifications based on the dominant action algorithm. To retrieve an
interleaved tasks list from the diagnostic controller, use the “interleavedTasks" message. The
ranked tests list is an ordered list of tests based on the best test algorithm. To obtain the ranked
tests list from the diagnostic controller, use the "rankedTests" message. The ranked rectifications
list is an ordered list of rectifications based on the best rects algorithm. To obtain the ranked
rectifications list from the diagnostic controller, use the "rankedRects" message.
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