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ABSTRACT

In Very Large Scale Integration (VLSI) chips, metal migration(MM) is an im-
portant problem from the reliability standpoint. Furthermore, as the feature size is
scaled down, MM becomes an even greater problem because of the higher current

densities that would exist in the power and ground busses. Because of the complex-

- ity of VLSI power busses, there exists a need for a computer-aided design tool to

correctly predict the likely failure site(s). This thesis deals with a primitive splitting
algorithm that calculates current density waveforms efficiently. These waveforms are
used to find the Median Time to Failure (MTF), a major parameter of concern in
predicting MM. This algorithm has been motivated by examining the equipotential
plots obtained through finite-element method analysis of simple regions. It has been

successfully implemented and tested, and some examples are described.
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CHAPTER 1

INTRODUCTION

In Very Large Scale Integration (VLSI) chips, metal migration(MM) is a great
problem from the reliability standpoint. It might cause a chip to fail prematurely,
although the devices themselves are fully functional. Furthermore, as the feature size
is scaled down, MM becomes an even greater problem bec_ause of the higher current
densities that would exist in the power and ground busses.

Because VLSI layouts are so complex, there exists a need for computer-aided
design (CAD) tools to correctly predict the possible failure site(s) due to MM. The
main parameter of concern in MM is median time to failure (MTF'), which is a function
of current density. This thesis is concerned with the calculation of current density
waveforms in metal busses.

Current density in a conductor is linearly related to the gradient of the potential
distribution in it. The Laplace equation with mixed boundary conditions may be
solved to obtain this distribution. However, since metal busses in VLSI circuits have
complex geometry, it is impossible to solve for the distribution analytically. Therefore.
a numerical technique such as the finite-element method (FEM) is required. However,
an accurate FEM analysis of compler geometry is computationallv prohibitive.

Thus, a computationally efficient algorithm is needed to calculate current den-

sity in conductors. One such algorithm which has been motivated by examining the
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equi‘potentia.l plots of certain simple shapes called primitives has been developed and
implemented. Right-angle bends and T-shaped junctions are examples of such prim-
itives. It is found through FEM analysis that the equipotential lines become roughly
straight and parallel about one width away from the inner corner. Therefore, forcing
the equipotential lines to be straight and parallel at a distance of one width will not
cause serious error in current density computations. This allows decomposition of
the entire conductor into a set of primitives. FEM analysis may then be performed
separately on these regions.

Actually, FEM analysis is performed beforehand to accurately model the primi-
tives. Once primitives in the conductor pattern are identified, a table look-up is used
to obtain equivalent resistances and capacitances. Thus, instead of performing FEM
analysis, a resistance-capacitance (RC) network may be built which captures all the
information about the conductor pattern. This RC network is then solved to obtain
the current in the conductor, and this current value, when divided by the width _of

the conductor, gives the current density.




CHAPTER 2

METAL MIGRATION IN VLSI

Metal migration (MM), also known as electromigration or electrotransport, is a
commonly observed phenomenon in light bulbs: the breakage of the filament is due to
metal migration. In VLSI circuits, MM can cause the circuit to fail in the following

two ways{l]:

(1) at contact windows to the underlying diffusion, etch pit formation can cause

failure, and
(2) an open circuit in the power or ground line can cause failure.

This thesis is concerned only with the latter mode of failure.

2.1 Metal Migration Phenomenon

MM is the transportation of metal atoms in a conductor due to the current in
it. Metal atoms are thermally activated and become positive metal ions. These ions
experien‘ce two opposing forces: the electrostatic force of the applied electric field.
and the force due to collision with electrons. The force due to the collision is greater
than the electrostatic force. Therefore, the metal ions will move in the direction of the
electron flow. Eventually, the conductor experiencing MM will fail, and the failure

will be manifested as a oreak in the line.




2.2 Median Time to Failure

Time to failure is found to follow a lognormal distribution. In order to characterize
it, the median time to failure (MTF) is used, and it is related to current density as
follows [2}:

MTF o Jog @/ (2.1)

where

Q is the activation energy of low-temperature metal self-diffusion along grain

boundaries,
K is Boltzmann'’s constant, and
T is the temperature in degrees kelvin.

The expression for Jog looks very much like the expression for finding the root mean
squared value:

T
Jeﬁ,;%/o F(D)dt. (2.2)

The function f is a nonlinear function and is approximated as
ftHy=J", (2.3)

where

4

1.0 if J <10%4/cm?

n=4 15 if10° < J < 10%4/cm? -

| 20 if J 2 10°4/cm?




The current density value J g should contain the effects of all possible current den-
sities that might occur. Theoretically, it is possible to compute all possible current
loading waveforms at contacts and then use these waveforms to compute all possible
current density waveforms. This, however, is computationally prohibitive. Instead,
CREST (3] views the currents as stochastic processes and uses probabilistic methods
to find expected current waveforms. If these expected waveforms are used, only the
expected, not actual, current density waveforms may be found.

[t is shown ix; (4] that MTF due to a random current density depends only on the

expected waveform of a nonlinear function of the current density, E{f(J)]. Thus,

I =g [ EU(as (24)

However, since f is a nonlinear function, the computation of the expected value is

difficult. The Taylor series expansion of E[f(J)] is [5]
2
E[f(I)] = F(EW]) + F(EUNZ, (2.5)

where

o} = E[(J - E[J))?] (2.6)

is the variance. Using f(E[J]) instead of E[f(J)] amounts to making a first-order
approximation for J.g. Since CREST also outputs variances, the second-order ap-
proximation according to Equation (2.5) may be found. Moreover, this approximation
1s exact in the regions where f may be represented by straight lines. Therefore, using

the expected current density waveforms will still lead to an accurate MTF value.




2.3 Metal Migration Scaling

The current trend is toward smaller feature sizes. If technology is scaled by a
factor a, the widths of metal lines are scaled by 1/a, and MTF is scaled by 1/a®
[6]. Therefore, MM will become a more severe problem as technology is scaled down,

magnifying the need for prediction and compensation for MM.




CHAPTER 3

FINITE-ELEMENT METHOD ANALYSIS

Finite-element method (FEM) analysis of the primitives serves two purposes: it
accurately models the resistance of the primitives, and it provides justification for
the dimensions of the primitives. In order to model a primitive with an equivalent
resistance, the voltage difference and the current between two nodes are needed. In
FEM analysis, voltages at boundaries are specified as part of the boundary conditions.
Since the conducting boundaries correspond to nodes, the voltage difference is triv-
ially obtained. Computing the current, however, is an involved process because the
potential distribution ¢ is needed. Once the potential distribution is found, current

density in the conductor can be obtained by using the relations
E(z,y) = -Vé(z,y) (3.1)

and

J=ak. (3.2)

Current is found by summing the current density over a cross section of the conductor.

Finally, equivalent resistance is calculated using the equation

R, =V/I. (3.3)
The potential distribution which is needed for primitive modeling is also used for
primitive specification. Equipotential lines can be drawn using the potential distri-

bution, and upon examining these lines, the distance from the corner of a right-angle
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bend or from the edge of contact can be mel'tsured, at which point the lines may be
assumed to be straight and parallel. This distance is then used to set the dimensions

of the primitives.

3.1 The Problem

The electrostatic potential distribution ¢ in any three-dimensional region that is
free of sources and sinks satisfies a partial differential equation known as the Laplace
equation. For VLSI conductors, the thickness or the depth of the metal is very small
compared to the lateral dimensions. Therefore, the variation of ¢ perpendicular to
the surface may be ignored, and a two-dimensional Lafplace equation may be used

instead. For any two-dimensional region, the Laplace equation may be written as
V3¢(z,y) =0 (3.4)
with mixed boundary conditions
(a) Dirichlet: ¢(z,y) = ¢(z,y) on conducting sides and
(b) Neumann: ‘?ﬁ = 0 on insulating sides

where ‘-;-3 is the normal component of the gradient V¢ along the insulating sides. The
Dirichlet boundary condition fixes the conducting sides at certain potentials, and the
Neumann boundary condition ensures that no current passes through the insulating

sides.
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Figure 3.1: Triangularization of a contact region

3.2 The Numerical Solution

The idea behind FEM is to break the region of interest into elements (triangles,
rectangles or polygons) which have a fixed number of degrees of freedom, and to use
the local, approximate solutions in the elements to build up a solution for the entire

domain.

3.2.1 Division into elements

Any polygon or polygons may be used in breaking the region into elements. In
addition to the nodes at the vertices, the elements may have additional nodes if more
degrees of freedom are desired. For simplicity, only the triangle with three degrees
of freedom corresponding to the three vertices will be used as the element in the
following discussion. |

Figure 3.1 shows a 1egion containing contact divided into triangles. Note that the

square corresponding to the contact is not divided because this square is not part of
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the metal region. Also note that the elements are right triangles. Using right triangles

simplifies matrix formulation, as will be discussed below.

3.2.2 Approximate representation of ¢ inside triangular element

The most general representation of a smooth function over a small area is a poly-
nomial of finite degree. Therefore, ¢ may be represented inside the triangular element
as

B(2,y) = a1 + T + a3y + ATy + asz? + - (3.5)

Terms are selected on the basis of completeness and compatibility. The potential ¢
should vary linearly along all the sides because ¢ has to match the ¢ of neighboring
triangles at two vertices on each side. Since the element has three degrees of freedom,
three terms are chosen. Thus, the first three terms of Equation (3.5) are selected to

represent ¢ inside the triangular element:
#(z,y) = a1 + a3z + agy. (3.6)

Equation (3.6) can be rewritten in terms of the ¢ at the vertices. In other words,
¢ inside the triangular region may be completely determined using the representation
for ¢ in Equation (3.6), given the values of ¢ at the vertices. Thus, using generalized

coordinates 1,2, and 3 corresponding to the vertices of the triangular element,

¢(3, y) = fl(za y)¢1 + f?(xv y)¢2 + f3(zv y)¢3 (37)

The function f; is called an interpolation function and has the property that it is
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equal to 1 at node i and equal to 0 at the other two nodes.

fi(z,y) = (a; + bz + ¢iy)/28, i=1,2,3 (3.8)

where

@ = Y3 — ZTaya,
bl = Yya—Y3
G = Z3—-7I3
1
A = 5(32313 = Z3yz + T3y1 — T1ya + T1Y2 — T2th),

and the other a;’s, b;’s, and ¢;’s can be obtained by cyclic permutation of the subscripts

1,2, and 3. The A is‘simply the area of the triangle.

3.2.3 Matrix formulation over the entire region

It can be shown that of all continuous functions ¢ satisfying the Dirichlet boundary
condition, the exact solution of the Laplace equation with both Dirichlet and Neu-
mann boundary conditions is distinguished by the minimum of the potential energy

[7]. The potential energy is

(6) = [ 3(V8) dady (3.9)

where the integration is over the area of the metal region.
In FEM analysis, Equation (3.9) is expressed as a sum of the potential euergies

in each element

m= Y a (3.10)
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where [V is the total number of elements and
-
= - . 3.11
= [[ §V0dzdy (3.11)

Equation (3.10) holds true if ¢ is continuous over the entire domain. This condition
is satisfied with the representation of ¢ given in Equation (3.7).

Differentiating Equation (3.7),

2 e TR (bt dah+ ioba) 20, (3.12)
-3-3 = 3,685 = (h101 + baes + bac3) 200, (3.13)

From Equations (3.11), (3.12), and (3.13), the expression
7o = {817 Hl4]n (3.14)

can be derived where

[¢]n = ¢

| % |
and the element stiffness matrix is

L

8+d baby + 261 baby + cacy
1
[k]n = A baby + 20 B+3 baby+cacy

_babi+cacx bbz + c3c2 b§+c§

The ei~ment stiffness matrix is symmetric and positive definite. Equation (3.10)

may be written as

I = {6 (K] (3.15)
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where [¢] is the global potential vector and [K] is the global master stiffness matrix.
The element K;; of the global master stiffness matrix represents the i** generalized
load due to j** generalized global coordinate.

Since [K] is the summation of symmetric positive definite matrices [k]., it has

these properties also, and Equation(3.15) may be rewritten as

1 Kaa Kaﬂ ¢a
= 5[4aps] (3.16)
KT, Ksg | | vs
where ¢, is the unknown vector and Qg is the known vector, whose components

are given the values as part of the boundary condition on the conducting boundary. -

Minimizing [T with respect to ¢, yields
Koota = -Kaﬂ‘r’ﬁ- (3.17)

The above is solved using LU factorization followed by forward and backward substi-
tutions.

If a right triangle is used as the element, the element stiffness matrix becomes

C% C2Cy 0
1
fh=1x | s B+3 baby |

0 bk 8]

-

because b, and c3 are (. The presence of 0 values in the matrix results in a sparser
global stiffness matrix. For 4 finely discretized region with a very large number of
nodes, the solution will require sparse matrix techniques, and the use of a right-

triangle element aids in reducing the computation time.
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3.2.4 Convergence of FEM

Because FEM is based on the local, approximate solution for the Laplace equation
inside the element, the solution obtained is not exact, and some notion of convergence
is needed to justify that the solution obtained is valid. The notion of convergence
may be approached from two points of view: either the number of degrees of freedom
per element can be increased to infinity with the element size fixed, or the sizé of
elements may be allowed to shrink to zero with the number of degrees of freedom per
element fixed. Since the foﬁa method involves reformulating the local solution. the
latter method is generally used.

For the finite-element solution to converge to the exact solution, two criteria must

be satisfied (7].

1. The function (in this case Equation (3.9)) must be mathematically defined -

over the entire domain.

2. The highest derivatives of the dependent variables in the integrand of the
function in terms of the generalized coordinates must be able to represent any

constant within an element as the element size approaches zero.

The first criterion means that there should not be any discontinuities of local solutions
and their derivatives across element boundaries. This is assured because the local
representation of ¢ was chosen to be compatible. The highest derivatives are first-

order derivatives of ¢ with respect to z and y, and upon examining Equation (3.7),
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Figure 3.2: Equipotential plot of a region containing a right-angle bend
it is seen that any constant may be represented by these two derivatives, satistying

the second criterion.

3.3 Examples and Primitive Specification

The equipotential lines of an L-shaped region (L), a width change region (W),
and contact regions (V) are shown in Figures 3.2, 3.3, and 3.4, respectively. The
boundary conditions used are as follows: for the L region, the top side ard the right
side are set at 1 and 0 V, respectively; for the W region, the left and the right sides
are set at 1 and 0 V, respectively; for the V region, the entire via and the right side

are set at | and 0 V, respectively; the other sides are insulating boundaries. These
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Figure 3.3: Equipotential plot of a region with width change
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Figure 3.4: Equipotential plot of a contact region

equipotential “lines” have been obtained by mapping vertices within some potential
values, e.g., between 0.09 and 0.11 V, to black and the rest to white, so these are
actually equipotential “region” plots. It isAdeterm.ined by inspection of the plots that
the equipotential lines become roughly straight and parallel about one width away
from the inner corner in the L region, one width away from the width change point
in the W region, and one width from the edge of via in the V region. This distance
of one width defines the primitives, as will be seen in the following chapter.
Although no FEM analysis has been performed in the three-way junction or the
four-way junction regions, the same types of straightening out of equipotential lines
that occur in the L region were assumed to occur at a distance of one width from

the inner corners because these regions can be considered as superpositions of L
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type regions. The equivalent circuits were formed based on certain considerations as

described in Chapter 4.




CHAPTER 4

PRIMITIVE SPLITTING ALGORITHM
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FEM analysis works well for a simple geometry, but for complex conductor pat-

terns, it is computationally unfeasible. An algorithm which overcomes the problems

with FEM analysis is based on polygon splitting (8]. The idea is to split the con-

ductor pattern into primitive shapes and build an equivalent RC network using RC

models of the primitives. Splitting the conductor pattern into a set of primitives

is equivalent to forcing the equipotential lines to become parallel at the conducting

boundaries between the primitives. Since it was shown in the preceding chapter that

the equipotential lines become roughly parallel at a distance of one width away from

abrupt changes, the primitive splitting algorithm will incur little error in the actual

current density calculations, provided that the primitives are defined properly.

4.1 Primitives

The primitives were developed assuming that the layout conforms to Manhat-

tan geometry, i.e., only right-angle bends are allowed. This assumption simplifies

the primitive development and algorithm implementation. Six primitives have been

developed and are discussed below.

In the following discussion and in Figures 4.1 - 4.8, R,y is the sheet resistivity of

metal conductor, in /0, and C,, is the capacitance per unit area, in pF/um?. The
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Primitive S Equivalent Circuit
Figure 4.1: S primitive and its equivalent RC model

darkened sides in Figures 4.1 - 4.8 represent the conducting faces of th~ primitive and
the remaining outer sides represent the insulating faces. The equivalent resistances
are different for each primitive and are discussed below. The equivalent.capacitances,
however, are obtained in a straightforward manner. Since only the paralle]l plate
capacitance is considered in the primitives, the capacitance of a piece of metal rect-
angle is C = C,wl, where w aﬁd 1 are the width and length of the metal recta.ngie,
respectively. If a metal rectangle has only two sides conducting, the capacitance is
split between the two nodes corresponding to the two conducting faces. If the metal
rectangle has more than two sides conducting, an extra node is created in the middle
and the whole capacitance is put there. This extra node is also required for equivalent

resistance modeling. The six primitives are defined as follows.

(1) (S) Straight-line segment of length | and width w as shown in Figure 4.1.
There are no restrictions on the relative magnitudes of | and w. The equivalent

resistance and capacitance are R = Ry,l/w and C = C, wl.

(2) (L) L-shaped right-anglz bend of smaller width w; and larger width w, as
shown in Figure 4.2. This primitive is defined as having an “inner” rectan-

gle and two abutting squares. The equivalent resistance of the entire prim-
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Primitive L Equivalent Circuit

Figure 4.2: L primitive and its equivalent RC model

itive is Req = R, where a is a correction factor as a function of w;/w;
due to the bend obta.ix:;ed through FTM anaiysis (shown in Figure 4.3 [9]
by the solid line). This resistance is split into three distinct resistors, two
of them being R,,. Therefore, the equivalent resistance of the inner rectan-
gle becomes R = Ry (a —2). The équivalent capacitances are C, = C,,w3/2,

C:= Cox(wg + Wlwz)/z, C= Cox(wg + waz)/l and C, = Coxwf/z

(3) (W) Width-change of smaller width w, and larger width w, as shown in Fig-
ure 4.4. This primitive is composed of two abutting squares of different sizes.
The equivalent resistance for the entire primitive is Req = Ren 3, where 5 is a cor-
rection factor as a function of w;/w; due to the width change obtained through
FEM analysis (shown in Figure 4.3 by the dashed line). This resistance is split
into two distinct resistors, each with resistance R = R,,8/2. The equivalent

ca.pa.cibanca are 01 = Cogwg/21 C2 = Co;(W¥ + wg)/2v and C3 = Coxwf/g‘
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Figure 4.3: Plots of correction factors a (due to bends) and 3 (due to width change)
as functions of width ratio
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Figure 4.5: V primitive and its equivalent RC model

(4) (V) Via or contact region consisting of two rectangles a;nd a square via of
length w. placed in the center, as shown in Figure 4.5. The length of each rect-
angle is w + w./2 where w is the height or the width of the rectangle. The equiv-
alent resistance is R = R,y where v is a correction fa.f:tor as a function of w./w
due to current crowding at the via ;btained through FEM analysis, as shown

in Figure 4.6. The equivalent capacitance is C = Cox[(2W + wc)w — w2]/4.

(5) (T) Three-way junction consisting of an inner rectangle and three abut-
ting squares as shown in Figure 4.7. There are no restrictions on the relative
magnitudes of w; and w;. The equivalent resistances are R; = R,hz—‘;}1 and
R; = Ru(a =2 = 32). The correction factor a is the same correction factor
used for the right-angle bend and is a function of min(w;, w3}/ max(w;, wz).
The equivalent resistances were derived in the following way. First. R,'s were
considered as conducting and R; was considered floating. In this case, the re-
sistance is the same as that which would be found in an S primitive. Thus.

2R, = Rawa/w,, from which R, is obtainea. Then, a combination of R, and

R; is considered conducting while the other R, is left floating. In this case,
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R, + R3 = Ra(a — 2), and R; can be obtained. The equivalent capacitances

are C, = Coxwi/l C:= Coxwg/zv and C3 = C,,wyws.

(6) (F) Four-way junction containing an inner rectangle and four abutting
squares as shown in Figure 4.8. As in the T primitive, there are no restric-
tions on the relative magnitudes of w, and w;. The equivalent resistances are
Ri = Ra32 and R; = Rz, First only the straight-line segment consisting
of R,’s was considered in order to obtain the equation for R;. Then, the same

procedure was repeated for R;. The equivalent capacitances are C, = Co,w?/2.

Cz = Coxw3/2, and C;3 = Cowyws.

4.2 The Algorithm

The primitive splitting algorithm is based on the set of primitives defined above.

The main procedure is as follows:

Procedure Estimate Current Density
begin
read in OCT cell and create data structure;
convert geometry to MHS format;
identify L, T, and F primitives;
identify W primitive;
identify V and S primitives;

create SPICE deck of the geometry;
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Figure 4.8: F primitive and its equivalent RC model
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solve the RC network for voltages;
calculate current density;

end

Each of the major subroutines will be discussed below.

4.2.1 OCT/VEM

The OCT [10] database system and the tools using this system were developed
at the University of California, Berkeley. It has its own way of enco;iing layout
information. Therefore, it has routines which support the modification and retrieval
of information from the database. VEM is the graphics editor which works in the OCT
environment. If metal conductor patterns conform to the set of primitives defined
above, there would be no need for VEM. However, in most cases, the conductor
patterns contain geometry that cannot be decomposed into a set of valid primitives.

In this case, the layout must be modified, and VEM is used for this purpose.

4.2.2 Data structure

The data structure used in the implementation of the polygon-splitting algorithm

is a linked list of coordinates, pointers, and associated information.

struct RECTANGLE_LIST {
int LoverLeft_x, LowverLeft_y, UpperRight_x, UpperRight_y;

int inner_rectangle_flag, primitive_type;
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int nodc_nuﬁ:-up, node_num_down, node_num_left, node_num_right;
int center_node_nunm;

struct RECTANGLE_LIST *next, *previous;

struct RECTANGLE_LIST »right, *left, *up, *down;

struct RECTANGLE_LIST =contact_link;

The first four variables are self-explanatory. Inner_rectangleflag is used to indicate
that the rectangle is the inner or the center rectangle in the T, L, or F primitives.
Primitive_type specifies one of the six primitives available. The node.num.xxxxx vari-
ables hold the node numbers of the corresponding RC network. The center_.node_.num
holds the number of the node that is in the middle of the equivalent RC model of
the L, T, or F primitive. The *next and *previous pointers are used to maintain the
linked list. The *right, *left, *up, and *down pointers are needed to point to the
abuatting neighbors in their respective directions. The *contactlink is a link between
the contact and the rectangle which encloses it and is used fpr contact merging and
V primitive identification.

There are altogether six linked lists which are maintained in the program that use
the above structure: a list for each of the metal one, metal two, poly, and metal one
to diffusior contact layers; two lists for metal one to metal two contact layers, one to
form V primitives in metal one and the other one to form V primitives in metal two.

Although the contact lists do not use any of the flags and any of the pointers except
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(a)

(b) (c)
Figure 4.9: (a) a metal region, (b) not in MHS form, (¢) in MHS form

for the *contactlink pointer, they use this data structure for simplicity. In addition
to the above lists, there is a linked list of labels. This is a straightforward linked list

which oonl_:ains the coordinates and the label.

4.2.3 MHS format

Once the OCT cell is read in and the data structure is built, the rectangles must
be put in a maximally horizontal strip (MHS) form. MHS form means that the
geometry is described in such a way that it first maximizes the horizontal length and
then maximizes the height. For example, Figure 4.9(a) is a polygon which may be
described in more than one way. Figure 4¢.9(b) shows a description not in MHS form,
but Figure 4.9(c) shows a description which is :n MHS form.

The algorithm which converts an arbitrary description of geometry into MHS form

is given below.




Procedure MHS
begin
split current rectangle into left and right pieces if either
lover left corner x or upper right corner x of another
rectangle is within the lower left x and upper right x
of current rectangle
split current rectangle into upper and lover pieces if either
lower left y or uppser right y of another rectangle is within
the lover lof* y and upper right y of current rectangle
combine rectangles along the x direction to form as large a
rectangle as possible
combine rectangles along the y direction to form as large a
rectangle as possible

end

The idea is to break the rectangle under consideration into smaller rectangles when-
ever a corner of another rectangle is seen within the limits of the rectangle. Then
rectangles are combined along the x-direction to maximize the horizontal length be-

fore combining along the y-direction to maximize the height.
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Figure 4.10: Valid combination of abutting horizontal rectangles

4.2.4 Identification of L, T, and F primitives

The MHS format discussed above is used to simplify the identification of the L,

T, and F primitives. The following is the procedure that performs this identification.

Procedure Identify L, T, and F Primitives

begin
identify horizontal and vertical rectangles;
combine horizontal rectangles to maximize height;
find inner rectangle of L, T, and F primitives;
form the complete L, T, and F primitives;

end

A rectangle is horizontal (vertical) if its length (height) is at least twice its height
(length). Rectangles must be identified as either horizontal or vertical in order to
perform the transformation shown in Figure 4.10. The idea is to maximize the width
of the conductor the current flowing in it will see. Because the MHS format guarantees
that the vertical strips are already as wide as possible, only the vertically abutting
horizontal strips need to be checked to see if they can be combined into a wider strip.
The requirements for combining are that the rectangles have to be horizontal, that

they are abutting vertically as shown in Figure 4.10, and that the resulting rectangles
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arror: neither
— horizontal nor
vertical

Figure 4.11: Invalid combination of abutting horizontal rectangles

after combination are also both horizontal. Figure 4.11 shows an invalid combination
where one of the rectangles ends up being neither horizontal nor vertical. Requiring
that the rectangles be either horizontal or vertical does not impose any additional
restrictions on the geometry other than that the geometry must be decomposable into
a set of primitives because the resulting rectangles must be at least two squares long
in order to form valid primitives.

Now, wherever a horizontal rectangle abuts a vertical rectangle, an L, T, or F
primitive will be formed. The first step is to form the inner rectangle of these primi-
tives. Only two rectangles, one vertical and one horizontal, are taken at a time and
their connectivity is tested. The six valid r.ela.tive positions of two rectangles and
their transformations are shown in Figure 4.12. Each of these cases must be treated
separately because the transformed rectangles differ in number and coordinates. In
addition to the above six cases, there is a case where a vertical rectangle meets a
rectangle already identified as the inner rectangle. In this case, no transformation
will be performed. Figure 4.13 shows configurations that are invalid because in these
cases proper L, T, or F primitives cannot be formed.

Once the identification of these inner rectangles is complete, the program links

the abutting neighbors to each other using *up, *down, *left, and *right pointers.
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Figure 4.12: Formation of the inner rectangle of L, T, or F primitives

Figure 4.13: Invalid combination of abutting rectangles
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Figure 4.14: Formation of complete L, T, and F primitives
Then, each inner rectangle is visited and the neighbors are split to form a square and
a rectangle so that complete L, T, and F primitives may be formed. After all the
splittings are done, each inner rectangle is visited again and depending on how many
abutting squares there are, it is identified as either L, T, or F primitive. Figure 4.14

shows the transformations to form the L, T, and F primitives.

4.2.5 Identification of W primitive

The identification of the W primitive is not as involved as that of the L, T, and
F primitives. Possible locations of W primitives are where two rectangles of different
width or of different height abut as shown in Figure 4.15. These rectangles must
be straight rectangles which are not part of L, T, or F primitives. Figure 4.15 also
shows the transformations that would be performed on these rectangles to create W

primitives, given that the rectangles are long enough.
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Figure 4.15: Formation of W primitive

4.2.6 Identification of V and S primitives

At this point, all L, T, F, and W primitives have been identified, and the remaining
rectangles can only be either V or S primitive. Before the identification and formation
of V primitives can proceed, contact merging is performed. This merging is done when
two or more contacts are found inside the same rectangle, and the distance between
any two of those contacts is less than twice the smaller dimension of the rectangle.
The diffusion contacts are merged in a straightforward fashion. The metal one to
metal two contacts are merged as well, but one of the metal one to metal two list
of contacts is merged using the smaller dimension of metal one as the criterion for
merging, and the other list of contacts is merged using the smaller dimension of metal
two as the criterion for merging. After merging, the two lists of metal one to metal
two contacts are examined to determine the connectivity. The V primitives of metal
one will be formed using the contact list where the dimension of metal one was used
for merging, and the V primitives of metal two will be formed using the other contact

list.
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Figure 4.16: Formation of V primitive
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Figure 4.17: Formation of V primitive with relaxed constraint where only one side is
conducting ' '

Any straight segment containing a contact or a merged contact is a candidate for
a V primitive. Figure 4.16 shows the formation of a V primitive. Normally, there
should be enough room to form the complete V primitive. However, in the special
case where only one side of the straight segment is conducting, the side that is not
conducting may have shorter than the required length as shown in Figure 4.17.

The remaining rectangles that are not part of L, T, F, W, or V primitives are all

S primitives.

4.2.7 Creating SPICE deck for simulation

Each rectangle is visited once and the equivalent RC model of the rectangle is
written out in SPICE format. For the L, T, and the F primitives, only the inner
rectangle has to be treated differently. The abutting square limbs can be treated as
S primitives because the equivalent RC models of the limbs are exactly the same as

that of the S primitive. This approach is correct because the total resistance from
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one end of a primitive to another end is the same, and the total capacitance is the
same.

After the RC network has been created, current loading waveforms at contacts
created by CREST, a probabilistic simulator, are appended. Because the current
loadings at contacts are waveforms and not simple dc values, the current densities

will also be waveforms.

4.2.8 Solving the RC network

Although SPICES is currently used to solve the RC network, a very efficient al-
gorithm can be used to speed up the process. When an RC network and current
loadings are put into matrix form using modified nodal analysis, an Az = b type of
equation results where A is an n x n conductance matrix, z is a vector of unknowns,
and b is a vector of sources. This equation can then be solved using Gaussian elimina-
tion or Doolittle’s or Crout’s methods using LU factorization followed by forward and
backward substitutions. SPICE assumes that every circuit it is given is nonlinear.
Therefore, SPICE reformulates the A matrix, LU factorizes it, and performs forward
and backward substitutions at every time step. For a linear RC network, if a fixed
time step is used, the A matrix needs to be formulated only once, LU factorization
performed only once, and then only forward and backward substitutions need be per-
formed for different b vectors at every time step to obtain the solution vector z. With
SPICE, the computation time at each time step is on the order of V3 where .V is

the number of nodes. Once the LU factorization is performed, the computation time
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at each time point due to forward and backward substitutions is on the order of N?.

Thus a fair amount of savings can be realized over SPICE.

4.2.9 Calculating current density

SPICES finds voltage waveforms at specified nodes. In the L, T, F, W, and V
primitives, since current density is not uniform in the region, a single value cannot
characterize the current density in the region. However, in the S primitive, the current
density is uniform, and therefore a meaningful current density value can be obtained.

The current density is

_(B-W)

J RW °

(4.1)

where R and W are the resistance and the width of the S region, respectively. The
current density thus calculated is in A/um. Note that this is the surface current den-
sity. The assumption is that the current density is uniform in the vertical dimension.
Therefore, this value would have to be divided by the thickness of the metal to obtain
the volume current density, which is required for MTF calculation.

IntheL, T, and F primitives, the J,,, value, which is the peak current density that
exists at the inner corners of the primitives, can be obtained. Analytical calculations
(11] as well as FEM analysis show that the current density becomes infinite at the
inner corner if it is perfectly sharp. However, in reality, it will not be perfectly sharp
but instead will have a small curvature. Given the radius of this curvature r. the

width of smaller limb w, the width of larger limb W, and the current density in the

EEE——————————— R
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bulk region, Jyyik,

Joorn = 1.04J,,.,,,,(‘5;1—;,l)1/3 (4.2)

where r, = r/w is the normalized radius and S = W/w is the width ratio [11]. The
radius of curvature at the corners depends on the metal deposition technique and
photoﬁthograph.)' constraints. The quantity Jy,u is the uniform current density found
in the narrower limb far enough away from the corner that the equipotential lines are
straight and parallel. Scanning Electron Microscopy failure analyses of damage due
to MM show that the right-angle bend is not a preferential dmaée site. However,
it might still be useful to know how much larger than the bulk value the magnitude
of the current density is at each corner, since local heating may be caused by this

singular point.

4.3 Implementation and Examples

The above algorithm has been implemented in the C language on a MicroVax
workstation running Ultrix-32 V3.1 (Rev. 9). A user’s manual of the implementation
can be found in the Appendix. Figure 4.18(a) shows a power bus of a sample cell
after it has been decomposed into primitives. Figure 4.18(b) shows a close-up of the
box in Figure 4.18(a), and the T, L, S, W, and V primitives can be clearly seen. In
the implementation, the V and the S primitives that are not connected to anything,
i.e., dangling, are ignored and given no node numbers to save computation time. Vias

that do not appear exactly in the middle of the metal bus are handled by treating
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Figure 4.18: Vdd bus of a sample cell after decomposition into primitives,
(b) close-up of box in (a)
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Figure 4.19: Sample current waveform from CREST

them as if they were in the middle to save the modification that would otherwise have
to be made.

There are 653 nodes in the equivalent RC network of the bus. It took SPICE3
67 minutes on the SUN 3/50 to simulate the network with the current waveforms
provided by CREST. The reason for the long time expended is that, in addition to
the inefficient algorithm used in SPICES3 for this type of circuit, the piecewise linear
current waveforms (Figure 4.19 shows a sample current waveform) have breakpoints
at different times. Breakpoints cause SPICE3 to decrease the step size, resulting in
long simulation time.

Figure 4.20 shows four current density waveforms calculated in the numbered
regions in Figure 4.18. The numbers match the current density to the region. Current

densities J, and J, are the uniform current densities in straight regions, and current
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Figure 4.20: Current density waveforms calculated in the numbered regions in the

Vdd bus
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densities J.,pnz a0d Jeorne are the current densities at corners. Since J.,rnz has the
same bulk current density as J;, Jernz should be just a multiple of J;. The same
holds true for Jeorns and Js.

The dimensions of the inner rectangle of the L primitive for which J.,ra; is found
is 5 um by 16 um. Thus, S = 3.2 and r, = 0.002 for a radius of curvature of 0.01 um.
According to Equation (4.2), Jeornz should be 8.51 times J;. Similarly, the dimensions
of the inner rectangle of the T primitive inside which J.,rn4 is found are 41 um by 6
um, and J.orme should be 8.83 times Js.

These predictions are confirmed and can be seen in Figure 4.20. The value of
the first peak of J; is 0.388 mA/um and the value of first peak of Jirmz is 3.35
mA/pm, s0 Jeoraz is 8.62 times J;. Similarly, the peaks of J3 and J.orns are 0.614
mA/um and 5.398 mA'/ um, and J.opne is 8.79 times J3. The reason the values are not
exactly the same as predicted is that the Jy; waveform for Jeoenz is not calculated
in the same resistor as the resistor for which J; is calculated, but rather in the
resistor corresponding to the appropriate limb of the L or T primitive. - This still
gives the correct waveform since the limb has the same equivalent circuit model as
an S primitive. However, since these réistors have very low resistances, the voltage
difference between two nodes is very small, and the limited precision of SPICE3 results

in slightly different values for currents through the two resistors.
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Since CREST provides expected current waveforms at contact points, these cur-

rent density waveforms are also expected waveforms. As was seen in Chapter 2,

expected current density waveforms still give accurate MTF values.
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CHAPTER 5

CONCLUSIONS

The primitive splitting algorithm has been successfully implemented and tested.
However, the process of editing a given power or ground bus into a geomz‘ry con-
forming to the set of primitives is seen to be a bottleneck. Manual editing is not too
time-consuming for a small design, but for a large design, it becomes a very tedious
job since VEM is slow to update design changes in a big layout. Although having
more primitives will alleviate this problem, some editing will most certainly be nec-
essary for most conductor patterns that would exist in commercial chips. Because
there is little understanding of what is and is not a good modification, rules governing
the modifications for an artificial intelligence type of program cannot be set down.
The Adaigner might wish to use his judgment in modifying some portion of the lay-

out, even if such an artificial intelligence tool is available. As a compromise, a set

" of macros or remote procedure calls can be written which perform certain types of

simple modifications over an area specified by the user.

Another area of concern is the relatively long time it takes for SPICE3 to calculate
voltage waveforms. As was discussed in the previous chapter, efficient RC network
simulation algorithms will shorten the computation time. In aldition, if there were
fewer break points in the piecewise linear current waveforms provided by CREST. the

computation time could be reduced further. The actual expected current waveform
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found by performing exhaustive simulation of the possible current waveforrns is seen
to be much smoother than the expected current waveforms computed by CREST [4].
Therefore, a low-pass filtering routine can be written to smooth out the jags such as

those seen in Figure 4.19.




APPENDIX

JET USER’'S MANUAL

Overview

The Current Densitity Estimation Tool (JET) is meant to be used in conjunction
with two other tools, iCHARM [12], an extractor, and CREST, a probabilistic simu-
lator. In addition to the above tools, the user must have access to OCT/VEM and
should be able to edit in the physical view.

The overall procedure is as follows. The description of the layout in CIF format is
run through iCHARM. The extractor identifies power and ground busses and outputs
the description in CIF format, which has to be converted into OCT. ICHARM also
extracts a circuit description from the layout and outputs the description in SPICE
format. This SPICE deck is run through CREST which generates current waveforms
at contacts. JET then takes the bus description from iCHARM and the current
waveforms from CREST and generates an RC network with current sources in SPICE
format. This SPICE deck is run through SPICE3 or any other RC network simulator,
and voltage waveforms are generated. These voltage waveforms are then run through

a post processor to generate current density waveforms.




iCHARM and CREST

The extractor performs several functions. It identifies the power and ground busses
and merges diffusion contacts appearing in the same diffusion region into one contact
to whigh it gives a numerical label. This same label goes into the SPICE description
as well as into the CIF file. CREST generates current waveforms at the contacts, and

they are identified in JET by the label.

Format

In the CIF description of geometry, diffusion and polycrystalline layers can also
be included, but these will be ignored by JET. Only four layers are of importance:
CMF (metal one), CMS (metal two), CCA (metal one to diffusion contact), and CVA
(metal one to metal two contact). The CCA contacts must have labels if they are
to be recognized as current sinks. In addition to CCA labels, there are two special
labels “0” and “l1,” corresponding to the GND power source and the Vdd pcwer
source, respectively. These labels must be on CVA contacts, but there is no limit on
the number of CVA contacts with these labels on them. The CIF description of the
geometry must be converted into OCT format using the tool ciftooct.

The CIF description will normally have two subcells, one for GND and one for
Vdd. These in turn will become tw~ subdirectories in OCT. Inside the GND cell. only

“0” must appear and inside the Vdd cell, only “1” must appear, for obvious reasons.
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The CREST output consists of piecewise linear (PWL) current sources in SPICE
format. A current source starts with “I” followed by a label to make it unique, usually
the label of the contact it is associated with, and then two node numbers, one of them
being the label on the contact and the other one being zero. The order of the node
numbers will depend on whether it is connected to the Vdd bus or the GND bus. If
it is connected to the Vdd bus, the label will appear first. In the PWL description.

all the numbers and parentheses must be separated by white spaces.

Primitive Shapes

JET attempts to decompose the layout into S, T, F, L, W, and V primitive shapes

which are described below.

S is a straight region in the conductor pattern where two opposite ends of the

rectangle are conducting.

L is a right-angle bend. It is composed of a “center” rectangle and two squares

connected to adjacent sides of the center piece.
W is a width change. It is composed of two adjoining squares of different sizes.

V is composed of two abutting rectangles of the same width. A contact via
appears at the junction between the two rectangles, and each rectangle contains
half of the contact. The length of each of the rectangles must be half the

contact length plus the width of the rectangle, so that a square may fit exactly
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in the region from the edge of the contact to the edge of the rectangle. The
restriction on the length of the rectangle is relaxed if it is a dangling piece, i e.,
not connected to other metal. In this case, the length of the rectangle may be

shorter.

T is a three-way junction. The T primitive is composed of four pieces: the
center rectangle and three squares abutting the center rectangle, forming a T

shape.

F is a four-way junction, composed of a center rectangle and four adjoining

squares.

Since the program can recognize only the above primitives, any geometry that
cannot be decomposed into a set of the primitives defined above cannot be processed
and the user is informed of this by error messages. Any part of the bus that cannot

be processed by the program must be modified manually.

OCT/VEM

The OCT/VEM is used for two reasons: the main reason is the required editing
mentioned above; the second reason is that JET obtains geometry directly from the
OCT database using OCT functions. The OCT/VEM technology recognized by JET

is called “mosis.”
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Technology File

JET requires a technology file of its own from which it obtains resistance and
capacitance information. There should be 5 lines in the file. Each line should contain
the variable name and the value, separated by white space. The five variables are as

follows:
SIGMAL: sheet resistivity of metal one, given in /0;
SIGMAZ2: sheet resistivity of metal two, given in /0;
ALPHAL: capacitance per unit area of metal one, given in pF/um?;
ALPHAZ2: capacitance per unit area of metal two, given in pF/um?;

RADIUS: radius of curvature at corner of bend, given in um.

Error Messages

When an unprocessable geometry is encountered, JET informs the user of the
fact. Error messages are of the form “message: coordinates.” The coordinates given
are in the following order: lower left-hand x, lower left-hand y, upper right-hand x.
upper right-hand y.

The following is a list of error messages and their meaning. In the following list,
horizontal rectangle means that it is wider than it is tall, and vertical rectangle means

that it is taller than it is wide,
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neither horizontal nor vertical strip: the rectangle encountered is neither

twice as wide as it is tall nor twice as tall as it is wide.

non-horizontal strip after height expansion: after combining two horizon-
tal rectangles abutting vertically to form rectangles that are as tall as possible,

the resulting rectangle(s) is(are) not horizontal.

invalid combination during primitive id: improperly formed T, F, or L

primitive.

unable to form primitive figure: improperly formed T, F, or L primitives.
There is not enough space next to the center pfece of the T, F, or L primitives

to form squares.

unable to split rectangles due to width change: the rectangles are not

long enough to be broken into squares adjacent to the width change boundary.

contact not contained in metal: the contact is not contained in any metal.
Sometimes, this might be intentional. This is only a warning, however, and the

program will continue execution.

V primitive cannot be formed: the metal region which contains the contact

is not long enough to form proper V primitives.

contact not contained in straight region: only straight regions are allowed

to contain contacts.
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node xxx in CREST output file not found: this should not happen if the

same contact labels were given to CREST and to JET.

JET-

As was mentioned above, the CIF description from iCHARM must be converted

into OCT before JET can be used. Typing
ciftooct -f cifinfile CIF.filename

will accomplish this task. Once this is done and the current waveforms from CREST

are available, JET can be used. To run JET, type
jet cell name CREST.waveform.filae.

The cell name will normally be either Vdd or GND. JET will first break the geom-
etry into maximally horizontal strip format, and write over the original cell in this
format. The modified geometry will look the same, except that the rectangles will now
be in maximally horizontal strip format. JET then tries to identify the primitives.
Whenever it encounters an unprocessable shape, it will print out an error message
and continue execution until the completion of that phase and then exit. If there are
any error messages, the user will have to modify the layout so that JET can properly
decompose the layout into primitives. When modifying the power and ground cusses.
the user should try to keep the width the same and lengthen the metal lines in order

to obtain accurate current density waveforms.
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When the program has decomposed the busses into primitives, it will write out
a cell called cell.name.p, where cell.name is the name specified when JET was
invoked. Different primitives will be mapped to different colors in cell_name.p. The
T, F, L, W, and V primitives in metal one will be mapped to blue and in metal two
will be mapped to purple. The S primitive in either metal is mapped to red. However.
if S or V primitives represent part of the geometry that is dangling, they are mapped
to green. The program will then ask the user to input a pair of coordinates inside a
rectangle of interest. Only S primitives and centers of T, F, and L primitives may be
specified. If an S primitive is specified, the program will calculate the uniform current
density in the rectangle. If one of the center rectangles is specified, the program will
calculate the maximum current density in the center rectangle, which would occur at
one of the corners. For the L primitive, there is only one corner of interest. For the
T and F primitives, there is more than one corner, and JET calculates the maximum
current density for the corner closest to the coordinate specified. Tbis input will
result in a .PRINT statement with two voltages in the SPICE deck. The first voltage
will be either the left or the tep node voltage, and the second will be either the right
or the bottom node voltage of the specified piece of metal. When the user is done.
he must type -999 -999 to signal the end of input. When JET completes execution.

the SPICE deck will be in a file called cell.name.spice.

RN e S e A oo N
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SPICE3

SPICE3 is used to calculate the voltage waveforms. It was chosen over SPICE2

because it has more precision. To run SPICE3, type
spice3 -b cell.name.spice >spice.out.file.

The -b flag stands for batch mode.

Post Processor

JET writes another file called cell.name.tmp.mult. This file contains the multi-
plication factors by which the difference of voltage waveforms must be multiplied to

obtain the current density waveforms. To obtain the current density waveforms, type
postjet cell.name spice.ocut.file.

The cell.name is specified so that the program will know which file contzins the
multiplication factors. This tool will generate the current density waveforms and put
them in files call.name. jx, where x is an integer starting from 1. The format of the
current density waveforms is in two columns, the first one being the time in seconds

and the second one being the current d: nsity in A/um.
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