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ABSTRACT

This thesis presents a new method of decentralized linear, time-invariant control system syn-

thesis based on the algebraic Riccati equation (ARE). The basic decentralized design guarantees

dosed-loop stability and a predetermined level of worst-cast disturbance attenuation. Certain

modifications of the basic design guarantee the stability and disturbance attenuation to be ro-

bust despite plant uncertainty or reliable despite control-component outages. Other modifications

guarantee that a subset of the controllers will be open-loop stable.

The derived decentralized control law consists of a full-order observer of the plant in each control

channel. Each observer includes estimates of the controls generated by the other channels and of

plant disturbance inputs, based on its own estimate of the state of the plant. All of the observer

gains are computed from the solution of a single Riccati-like algebraic equation, while feedback

gains are computed from a state-feedback design ARE. The existence of appropriate solutions to

the design equations is sufficient to guarantee the various properties of the closed-loop system.

A convexity property of a certain matrix Riccati function allows parameterization of families of

control laws with the same desired properties. Each value of the parameter results in controller of

the same order as the plant.
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Chapter 1

Introduction

1.1 The H. Control Problem

The so-called H,, criterion for control system design has grown popular since it was first intro-

duced by Zames in [37]. Defined for a stable transfer-function matrix T(s) as

IITloo = sup a, {T(jw)} (1.1)
wER

(where o .- {} denotes the maximum singular value), or equivalently as

ITIloo = sup IlZI12 (1.2)

(where z(s) = T(s)w(s), and 1 -11 denotes the root-integral-square norm in either the time domain

or the frequency domain), the HOO norm represents a worst-case cost when the objective is to keep

11z112 as small as possible.

The formulation of the standard H,, control problem for the linear, time-invariant case generally

includes a plant of the form

= Ax + Bu + Go, (1.3a)

y =Cz+w, (1.3b)

(Hz)
z = I (1.3c)

(U)

where z is the state of the plant, u is the control input, y is a measured output, z is an output to be

regulated, and w0 and w are square-integrable disturbances. The problem is to design a feedback

I1



controller which uses the measurement y to produce a control input u such that, when the loop is

closed, the transfer-function matrix from we = (u') to z has a small H,, norm. This H.o norm

represents a worst-case disturbance attenuation for the closed-loop system. Figure 1.1 depicts the

problem setup. (Figures are grouped at the end of the chapter.)

Many familiar problems, in addition to the disturbance-rejection problem, can be recast as a

version of this standard problem. Figure 1.2 shows how a frequency-weighted disturbance-rejection

problem, a model-reference problem, and a tracking problem can be transformed into the standard

form of Figure 1.1. In each case, any exogenous input is included in the disturbance vector w, and

the regulated output vector z is the error to be minimized. Note that for the tracking problem, and

for the model-reference problem when M(s) is not strictly proper, z must be allowed to depend

directly on the exogenous input. While this is not the case for the plant (1.3), this generalization

can be accommodated; see [15].

Closely related to the H. disturbance-rejection problem is that of robust stabilization of a

plant Po(s) + A(s), where the nominal plant Po(s) is known, but A(s) is restricted only by a bound

on IAzleo. The controller which solves this robust stabilization problem with the largest admissible

bound on IlAIIo is that which provides the smallest possible Ho, norm for the nominal closed-loop

system [38]. See [12] and its references for a survey of the literature up to 1987 on robust stability

and Ho, performance.

Until quite recently, the computations for designing an Hoo-optimal controller (summarized

in [23]) were formidable: They included stable coprime factorizations of the plant and a stabiliz-

ing controller, plus a parameterization of all stabilizing controllers [36], leading to an equivalent

model-matching problem; inner-outer and spectral factorizations, leading to an equivalent Hoo-Loo

approximation problem [24]; and solution of the Ho,-Loo approximation problem by Hankel-norm

approximation methods [16].

Developments in the last few years, however, have simplified Ho control design considerably.

Results such as those in [19], [221, and [251 have established that robustly stabilizing control designs

can be computed from algebraic Riccati equation (ARE) solutions. Still more recently, [14], [17],

[21], and [39] have given H. disturbance-rejection designs also computed from ARE solutions, and

[3] has given an ARE-based design which simultaneously gives H,, and LQG cost bounds for the

closed-loop system.

2
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Given any control input u to the plant (1.3), define the cost functional

SIIWOI12 IJ(u) = sup( too • 2 o),to#}

Note that the measurement (1.3b), and hence the measurement noise w, is not considered in this

definition. Therefore, the cost J(u) is associated with open-loop controls or state-feedback controls.

In the case where u is a state-feedback control, J(u) is the H. norm of the closed-loop transfer-

function matrix from wo to z. Define the optimal cost as

a00 = inf {J(u) : u E L2(0, oo)). (1.4)

The following theorem from [14] gives a means of determining ct., and also establishes that there

exists a state-feedback control law which achieves any Hoo-norm bound larger than aoo.

Theorem 1.1. For the plant (1.3) with (A, B) stabilizable, and (A, H) detectable, the bound

ao <a

holds if and only if

ATX + XA + _!XGGTX - XBBTX + HTH =0 (1.5)

with X >_ 0 and A. =_ A - BBTX + 0- 2GGTX Hurwitz. If so, then use of the state-feedback

control law

u = -BTXZ (1.6)

stabilizes the plant, and gives a closed-loop transfer-function matrix

T(s)= H (sI - A + BBTX)-'GT (s) _BTX)

from wo to z satisfying IITIloo < a.

Note that there may be several solutions X > 0 to the ARE (1.5). The condition that A, must

be Hurwitz specifies a particular solution X _: 0, and also assures that the Hamiltonian matrix

associated with the ARE (1.5) has no jw-axis eigenvalues.

Theorem 1.1 establishes a relationship between Hoo-optimal control and LQ-optimal control.

The state-feedback control law given by (1.5) and (1.6) becomes Hao-optimal as a approaches the

3



lower bound a., reflecting a great concern with disturbance rejection, along with confidence in

the disturbance "directions" characterized by the matrix G; on the other hand, as a approaches

0o, the design becomes LQ-optimal, reflecting little concern with the particular disturbance wo.

Of course, choosing a very large in a design does not imply that the closed-loop system will have

a very large H, norm; rather, the bound 1TITo 0 < a becomes very conservative for a > aoo.

An easy method for computing a tighter H00-norm bound for the design of Theorem 1.1, as well

as for various ARE-based state-feedback designs, is developed in [28]. Applied to examples, this

method shows that even the LQ-optimal design corresponding to a = oo above often has acceptable

disturbance-attenuation properties. The results of [28] and the results of this thesis share the same

ARE-based approach to computing or guaranteeing H00-norm bounds; however, the results of [28]

are not considered here in detail, since they are essentially analysis tools which provide a posteriori

bounds for systems designed by several methods. This thesis is concerned with new design methods

which provide a priori bounds for the closed-loop systems.

If the control u for plant (1.3) must be generated by a controller that uses only the measurement

y given by (1.3b), then the greatest lower bound of the set of achievable closed-loop Ho" norms

is generically greater than ao. defined in (1.4). The following theorem from [14,13] gives a means

of determining this greatest lower bound, and also gives an output-feedback control law which

guarantees any given H0 0-norm bound achievable by output feedback.

Theorem 1.2. In the plant (1.3), assume (A,B) stabilizable, (A,C) detectable, (A,G) stabilizable,

and (A,H) detectable. Then there exists a stabilizing controller such that the closed-loop transfer-

function matrix T(s) from we to z satisfies IT100 < a if and only if

ATX + XA + _!XGGTX - XBBTX + HTH -0 (1.5)

with X > 0 and Aa M A - BBTX + a- 2GGTX Hurwitz,

AY + YAT + -IYHTHY - YCTCY + GGT -0 (1.7)
a2

with Y > 0, A - YCTC + a-2YHTH Hurwitz, and

a,,fYX} < a2 . (1.8)

If so, then the output-feedback control law

(A + -LGGTX - BBTX- LC) + Ly, (1.9a)

4
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u= - BTXf (1.9b)

with

L= (I-a-2YX) 1 YCT (1.10)

stabilizes the plant and gives a closed-loop transfer-function matrix from we to z satisfying IITIIk <

The controller (1.9) can be rewritten in the form

-Af Bu GioL(y - Cf), u= -BTXf, (1.11)

with

eo = "GTX,. (1.12)

The form (1.11) is essentially that of an observer: It mimics the plant dynamics (1.3a) and includes

a correction term based on the measurement y. Unlike a standard observer, it includes a term

representing an unmeasurable disturbance. Equation (1.12) corresponds to a state-feedback model

of the disturbance w0 . Like an LQG-optimal control law, then, the H, control of Theorem 1.2 has

an observer structure, with the observer gains computed from an algebraic Riccati equation. As

in an LQG design, the observer design equation (1.7) is a dual form of the state-feedback design

equation (1.5). In fact, setting a = oo reduces (1.5) and (1.7) to LQG design equations.

The difference between the LQG and ffo designs can be interpreted as in the state-feedback

case: The H,, design is more concerned with disturbance rejection. The form (1.12) represents an

approximation of the disturbance woworst = -GTXz, which is given in [33] as a worst disturbance

in a game setting where the state-feedback control u plays against the disturbance w0 and initial

conditions.

The set of all stabilizing output-feedback controllers guaranteeing a particular HOo-norm bound

is given in [13] as follows:

Theorem 1.3. If the conditions of Theorem 1.2 are satisfied, then the set of all finite-dimensional

stabilizing output-feedback controllers guaranteeing JTIh0o < a is given by

- (A + AGGTX - BBTX - LC) + Ly + (I- a-2YX) Bv (1.13a)

u = -BTX + v, (1.13b)

IS



where L is given by (1.10), and v is given in the frequency domain by v(s) = Q(s)(y(s) - C(s))

with Q(s) being any finite-dimensional, stable transfer-function matrix satisfying IIQ loo < a.

Note that picking Q(s) = 0 results in the central control law of Theorem 1.2. It is possible that

some controller given by Theorem 1.3 may be of lower order than the plant, but there is no clear

way of choosing Q(s) to be sure to obtain such a lower-order controller. Further, many choices of

Q(s) will yield controllers of order higher than the plant.

1.2 The Decentralized Case

The Ho, control problem can be generalized to the decentralized case, where the plant is described

by
q

i = Ax + Buj + Gwo, (1.14a)
i=1

yc =i+wi, iE {1,2,...,q}, (1.14b)

(H.T

Z = 1 (1.14c)

Uq

The decentralized control structure consists of the restriction that each control input ui must

be generated by an independent controller which uses only the corresponding measurement yi.

This restriction corresponds to the practical need in some situations to control a large system by

means of several controllers which, because of physical separation or other reasons, cannot exchange

measurement or control information. The goal is to design dynamic controllers

=Adi&i + BdiYi, i E f{1, 2,...,?q}, (1.15a)

ui = Cditi, i E {1,2,. .. ,q}, (1.15b)

which will stabilize the decentralized plant (1.14), and provide a predetermined H.-norm bound

for the closed-loop system.

Many past results in decentralized control are concerned with conditions for existence of sta-

bilizing decentralized control laws. Davison reviews some of these results in [9]. One important
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result [32] is based on the concept of the "fixed modes" of a decentralized plant. A decentralized

fixed mode of plant (1.14) is defined as any eigenvalue of A which cannot be moved by a static

decentralized feedback; that is, the set of fixed modes is defined as

n A{A + BKC},
KeD

where D is the set of block-diagonal matrices whose blocks are sized to conform in the obvious way

with the sizes of the blocks of B and C defined by

B= (B B 2 ... B),

CT= (cT c," ... C~

and A{.} denotes the set of eigenvalues. The main result of [32] is that a plant can be stabilized by

a linear, time-invariant decentralized control law if and only if it has no fixed modes in the closed

right-half plane. Hence, the concept of a (decentralized) fixed mode is an extension of the concept

of an uncontrollable or unobservable mode in the centralized case. An algebraic condition given in

[1] equivalent with the presence of fixed modes in a strictly-proper decentralized plant is that, for

some renumbering of control channels, for some integer t < q, and for some complex number s,

( sl A B, . B1

rank Ct+1  ... 0 < n. (1.16)

C' 00

If (1.16) holds, then s is a fixed mode of the plant. The degenerate case t = 0 in (1.16) corresponds

to a plant which is not observable by all the measurements jointly, while t = q in (1.16) corresponds

to a jointly uncontrollable plant.

Some other results give conditions under which a decentralized plant can be made controllable

and observable through a single control channel by some feedback applied in the other channels.

For example, a main result of [11], restated as Corollary 2 of [5], states that if a controllable two-

channel plant is completely observable by one channel, there exists some nondynamic feedback in

that channel which will make the plant completely controllable by the other channel. That is, if

(A, [B1 B2]) is a controllable pair and (A, C2) is an observable pair, then there exists a constant

7



matrix K such that (A + B 2KC 2, B 1) is a controllable pair. Other results (for example, Corollary 3

of [5] and Theorem I of [6]) give more general, but more complicated, conditions related to the zeros

of the plant's transfer-function matrix and the connectivity of the plant's graph. More recently,

[35] gives extensions of the results of [5] and [6] to the multi-channel, non-strictly-proper case.

Results in [351 depend on the concept of a strongly-connected plant. A decentralized plant with

the open-loop transfer-function matrix P(s) given by(yi(,S) P11(s) . Piq(s) (, u(a)

Pq (3)... Pqq(S) Uq(e))

is defined to be strongly connected if for every renumbering of control channels, and for every

integer t satisfying 0 < t < q,

0o.

Pt,,+1(8) ... Ptq(s) )
A main result of [35] is that if a decentralized plant is strongly connected, and if it has no fixed

modes, then almost any preapplied nondynamic decentralized feedback makes the plant controllable

and observable in each control channel.

In (7] appear necessary and sufficient conditions for existence of a solution to a decentralized

robust servomechanism problem. The key point of (71 is that, provided the outputs to be regulated

can also be measured, a decentralized control which provides tracking and disturbance rejection

for a certain class of reference and disturbance inputs exists for almost all plants. For decen-

tralized plants composed of interconnected subsystems, [7] and [8] establish similar facts: If each

subsystem admits a solution to a centralized robust servomechanism problem, then the compos-

ite system admits a solution to the decentralized robust servomechanism problem, provided the

subsystem interconnections are sufficiently weak or that the subsystems are interconnected only

through subsystem inputs and outputs.

There have been a number of approaches to decentralized design. Existence results like those

of [5] and [35] suggest a simple one: Preapply to the plant a non-dynamic decentralized feedback

- almost any one will do - which will transfer sufficient control authority to one control channel

8



that the system can be at least stabilized from there. However, there is a great deal of design

freedom in this approach, and no dear way of making optimal design choices. The existence results

of [7] and [8] also suggest a design approach for decentralized control of composite systems: Design

a separate controller for each subsystem, ignoring interconnections. This approach is depicted

in Figure 1.3. While there are many good ways of designing the subsystem controllers, there is

generally no guarantee that they will stabilize the overall system.

A decentralized design approach is given in [20] for so-called multilevel systems. Multilevel

systems, some examples of which are depicted in Figure 1.4, are composite systems whose subsystem

interconnections are one-way and loop-free. The approach is to design optimal controllers for the

subsystems starting at the top level, optimizing each controller without accounting for the dynamics

of lower-level subsystems. The inputs from higher-level subsystems are modelled as disturbance

inputs obeying known dynamic equations, since higher-level subsystem controls are designed earlier.

Thus, the design method is sequential in nature. The resulting design guarantees stability, plus

optimality of each separate subsystem given the designs of higher-level subsystem controllers.

Another sequential design procedure for general decentralized systems appears in [10]. Here,

the t~h controller is designed to control the plant plus the first i - 1 controllers. That is, the ith

controller design views the first i - 1 controllers not as sources of disturbance inputs, but as part

of the plant to be controlled. The resulting designs guarantee stability, and each controller can be

designed to optimize a cost functional which depends only on the plant and previously-designed

controllers.

A drawback of sequential designs is that, when dynamic compensators are used, the effective

order of the plant to be controlled increases with each controller added. Many controller designs

result in controllers the same order as the plant model; thus it is easy to envision a sequential design

where the first controller designed has order n, the second has order 2n, the third has order 4n, and

so on. To get around this problem, some controller reduction may be done at each step so as to keep

each controller at some fixed order. Once all the controllers are designed, they may be redesigned,

now taking into account the presence of all designed controllers, but retaining the same low order.

Hence, such a design is both sequential and iterative, with each controller refined at each iteration.

For example, in the iterative sequential design in [2], each controller design takes into account the

presence of previously designed controllers, but is obtained from optimal projection equations and

9



therefore has a fixed (low) order. The design equations correspond to a necessary condition for

the decentralized control law to minimize a steady-state cost functional in the presence of random

noise inputs, subject to the a priori constraints on controller order. If the design equations can be

solved, the cost associated with the closed-loop system is guaranteed to decrease with each design

iteration.

A nonsequential approach applicable to general decentralized systems [18] is to consider the

whole plant in the design of each controller, but to ignore the effects of other controllers. This

approach ia depicted in Figure 1.5. Under certain restrictions on the strength of plant/controller

interconnections, the controllers acting together are guaranteed to stabilize the plant. The restric-

tions are technical conditions which grow out of a study of stability via *eneralized overlapping

decompositions of the closed-loop system.

1.3 Reliable Control

In a centralized control system, controller failure leaves the plant without control input. This

condition is undesirable, especially if the plant is unstable. On the other hand, a single controller

failure in a decentralized control system is not necessarily catastrophic, even for an unstable plant.

Hence, the use of multiple controllers in a decentralized control design provides the potential for

increased system reliability. However, for existing design methods, whether or not a given decen-

tralized system is actually reliable despite possible controller outages depends upon the particular

example, and can be determined by analysis only when the design is completed.

In [26], Siljak considers the approach of designing multiple separate controllers, each of which

stablizes the plant by itself. There are technical restrictions on plant/controller interconnections

necessary to guarantee that all the controllers together, or some subset of the controllers, also

stabilize the system.

In (4], Cho, Bien, and Kim consider the approach of designing a redundant controller to operate

in parallel with a baseline stabilizing controller. The redundant controller is a model-reference

adaptive controller whose reference model is that of the baseline closed-loop system. For various

failure modes, the redundant scheme guarantees stability and asymptotic reference-tracking.

In (31], Vidyasagar establishes some results on the reliable stabilization of a plant by two

controllers summed together. For example, given any stabilizing controller for a plant, [31] gives

10



I a means of computing a second stabilizing controller such that the two controllers added together

also stabilize the plant. The computation involves stable coprime factorizations of the plant and

the first controller, and may result in a second controller of high order.

Related to the issue of reliable control is that of strong stabilization, defined as the stabilization

of a plant by an open-loop stable controller. If the input of a strongly stabilizing controller becomes

disconnected from the plant output, at least the controller will not apply unwanted large inputs to

the plant. The so-called "pole-zero interlacing property" given in (31] is a well-known necessary and

sufficient condition for the existence of a strongly stabilizing controller. As with existing reliable

designs, strong stability results are mainly concerned that the system simply remain stable despite

a controller failure.

1.4 Contribution of This Thesis

This thesis presents a new method for designing decentralized control systems to accomplish

a variety of design goals. The basic design method produces a decentralized control law which

guarantees closed-loop stability and a worst-case (H,,) disturbance-attenuation bound when applied

to the plant (1.14). The control law consists of a fll-order observer in each control channel. Like

the centralized controller (1.9), each observer uses an estimate such as that given in (1.12) to

approximate the disturbance w0. In addition, each observer uses estimates of the controls applied

in the other channels. These estimates correspond to the strategy shared by the controllers for

approximating the state-feedback control law given by (1.5) and (1.6).

The decentralized control law uses the state-feedback gains computed from (1.5) for feedback

of the state estimates, and observer gains computed from a single Rlccati-like design equation;

hence, the controllers are designed all together, rather than sequentially. Since each controller is

based on a full-order observer of the plant, each has the same order as the plant. The existence of

appropriate solutions to the design equations is sufficient to guaxantee the stability and performance

of the closed-loop system under the decentralized control law. No other condition on the subsystem

interconnections or the plant/controller interconnections is needed. Of course, the design equations

will have no solution if the plant has any unstable fixed modes.

Variations on the design equations allow the design of robust, reliable, or strongly-stabilizing

decentralized control laws. Each design guarantees stability and a predetermined degree of distur-

11



bance attenuation. In addition, the robust design can tolerate constant plant uncertainties from a

given bounded set; the reliable design can tolerate outages of any or all controllers in a predefined

subset of controllers; and the strongly stabilizing design guarantees that all controllers from some

predefined subset will be open-loop stable. A centralized reliable design is also developed which

can tolerate outages of some sensors or actuators.

The various robust, reliable, and strongly stabilizing designs developed can be combined into a

design which will guarantee any or all of the desired properties at once.

Finally, a convexity property of the matrix Riccati function

R(X) = FTX + XF + 2XGGTX + HTH, (1.17)

with F Hurwitz, allows easy computation of families of matrices Z 2 0 satisfying R(Z) _ 0, and

hence, families of decentralized control laws with any of the desired properties. For any control law

in the family, the decentralized controllers all have the same order as the plant.

Chapter 2 describes the approach taken to developing new decentralized control laws. The main

result of Chapter 2 is Lemma 2.1, which is the basis for all the designs which follow. The result

consists of a sufficient condition in the form of an algebraic Riccati inequality

R(X) = FTX + XF + -LXGGTX + HTH< (1.18)
a2

which guarantees the Hoo-norm bound IITIIko < a for the transfer-function matrix

T(s) = H(sI - F)-G.

Based on Lemma 2.1, simple new derivations of the control laws of Theorems 1.1 and 1.2 are given.

These derivations give insight into the decentralized designs presented in the following chapters.

Chapter 3 presents the basic decentralized control design, which is characterized by closed-

loop stability and a predetermined degree of worst-case disturbance attenuation. The basic design

results in a closed-loop system which satisfies (1.18) with equality holding. Two examples follow

the derivation.

Chapter 4 presents a decentralized design which has the properties of the basic design, and

is also robust with respect to structured uncertainty in the plant. The robust design results in a

closed-loop system whose matrices satisfy (1.18) for any plant uncertainty in a bounded admissible

12



set. Following the derivation is a robust state-feedback design example. This example illustrates

the concept of robust design, while avoiding the complicating details of decentralized design.

Chapter 5 presents new results on reliable control. Similar to the robust design, the reliable

design method results in a closed-loop system which satisfies (1.18) for any admissible controller

failures. The design method is first developed in the centralized case, where reliability is guaran-

teed despite possible outages of some sensors or actuators. Then, a decentralized design method is

derived which guaratees reliability with respect to possible controller outages. An example demon-

strates that the resulting reliable decentralized design can tolerate controller outages which would

cause instability for the basic design. A new design method is also presented which guarantees that

the controller, or some prespecified subset of controllers in the decentralized case, will be open-loop

stable.

Chapter 6 presents the properties of the matrix Riccati function R(X) which allow computation

of families of decentralized control laws with desired disturbance-attenuation, robustness, reliability,

or strong stabilization properties. A family of state-feedback designs is presented first. Then it is

shown that a family of centralized observers with the desired properties can be computed for each

member of the family of state-feedback controls. In the decentralized case, however, only one set

of decentralized observer gains can be computed for each state-feedback control, yielding a family

of decentralized control laws corresponding exactly with the family of state-feedback control laws.

13
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(c) A tracking problem.

Figure 1.2: Reformulation of familiar problems to fit the standard form.
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Figure 1.3: Decentralized design ignoring subsystem interconnections.
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Figure 1.4: Some examples of multilevel systems.
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Chapter 2

The Approach

2.1 The Key Lemma

The following lemma establishes a sufficient condition, in the form of an "algebraic Riccati

inequality," for a given system to be stable and have a particular Ho"-norm bound. The lemma is

a simple extension of Lemma 1 of [34].

Lemma 2.1. Let T(s) = H(aI - F)-G, with (F, H) a detectable pair. If there exist a real matrix

X > 0 and a positive scalar a such that

FTX + XF + _XGGTX + H T H 0, (2.1)
4 a 2

then F is Hurwitz, and T(s) satisfies

Proof. Suppose (2.1) holds, with X _> 0. To show that F is Hurwitz, let v 0 0 satisfy

Fv = Av.

Multiply (2.1) on the left by v" and on the right by v to obtain

2Re(A)v*Xv + - v'XGG TXv + v*HT Hv < 0. (2.3)

Now, 2Re()v*Xv < 0 since all other terms on the left-hand side of (2.3) are non-negative. If

Re(\)v*Xv < 0, then v*Xv > 0 and Re(X) < 0. If, on the other hand, Re()v*Xv = 0, then all

terms in (2.3) must be zero. Therefore, the eigenvector v of F is in the null space of H. Since
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(F, H) is detectable, the corresponding eigenvalue must be in the open left-half plane. In either

case, Re(A) < 0; thus, F is Hurwitz.

Now, to prove (2.2), let w E Ra; add and subtract jwX to obtain from (2.1)

-(-jwI - FT)X - X(jwl - F) + 1 XGGTX + HTH < 0. (2.4)

Since F is Hurwitz, (jwl - F) is invertible. Define

K(jUw) = -AGTX(jWl - F)-1 ;

pre-multiply (2.4) by !GT(-jwI - FT)- 1, and post-multiply by !(jwI - F)-IG to obtain

-K(jw) - KT(-jw) + KT(-jw)K(jw) + -LTT(-jw)T(jw) : 0,
a2

which gives

I - ITT(-jw)T(jw) _ (I - K T (-jW)(I - K(jw)].
a2

Therefore, for all w E B?,

I - -T(j)T(jw) _ [I - K(jw)][I - K(jw)] 2_ 0,
a2

which implies (2.2). Q.E.D.

2.2 The General Approach

Lemma 2.1 suggests a particular view of the H.0 control designs of Theorems 1.1 and 1.2, along

with a new approach to decentralized H,, design. The approach is to first fix a controller structure,

so as to determine the form of the closed-loop system

*e = Fexe + Gewe, Z = Hexe, (2.5)

and then select controller gains so that, for some P. 2: 0, the algebraic Riccati equation

FTX + XeF, + -LXeGeG 0 (2.6)

has a solution Xe 0. By Lemma 2.1, if (Fe, He) is a detectable pair, then the closed-loop system

(2.5) is stable, and T(s) = H.(sI - Fe)-Ge satisfies JITJIJ0 < a.
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In the designs of Theorems 1.1 and 1.2, controller parameters are chosen to depend on solutions

of the design equations (1.5) and (1.7), so that a solution X. >_.0 of (2.6) is guaranteed to exist,

with P, = 0. In Chapter 3, this same approach is applied to decentralized control. To guarantee

that (2.6) is satisfied, the observer gains are computed from the solution of a Riccati-like algebraic

equation.

Choosing Pe = 0 in (2.6) yields what we shall call the "basic design," characterized by stability

and the Hoe-norm bound IT11h 0 _ a. Choosing some other Pe _> 0 allows greater design freedom

to obtain "special designs" with additional desired properties. Specifically, particular choices of

P, > 0 are used in this thesis to guarantee the following additional properties:

(i) Robustness with respect to constant structured uncertainty in the plant A-matrix, when the

uncertainty belongs to a predetermined bounded set;

(ii) Reliability with respect to controller outages, where outages may occur in any or all of the

controllers in a predefined subset of controllers;

(iii) Strong stabilization, in the sense that all controllers in a predefined subset of controllers will

be guaranteed open-loop stable.

2.3 The Approach Applied to Centralized Control

To provide insight into the approach to decentralized design described above, a new derivation

of the control law of Theorem 1.2 is now given, based on Lemma 2.1. This derivation, which also

appears in [291, is not a complete proof of Theorem 1.2, in that it establishes only that the design

is sufficient to guarantee a predetermined H00-norm bound, and not that any achievable bound can

be obtained using such a design. For this reason, not all the conditions appearing in Theorem 1.2

are needed.

The problem here is to derive control laws to stabilize the plant (1.3) and provide an H00-norm

bound for the closed-loop transfer function matrix from the disturbance we = (") to z. By Lemma

2.1, a sufficient condition for a state-feedback control u = K: to stabilize the plant and guarantee

the H00-norm bound 1Th00, :_ a is that the feedback gain matrix K satisfy

(A + BK)TX + X(A + BK) + 1 XGGT X + (HT KT )  -- 0 (2.7)
12
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with X > 0. Rearrange (2.7) as

ATX+xA+- XTX X-XBBTX + (KT + XB)(K + BTX) + HTH =0. (2.8)

Setting K = -BTX in (2.8) gives the state-feedback design equation (1.5). By Lemma 2.1, if

X > 0 solves (2.7), the control law (1.6) results in a closed-loop system with an Hoo-norm bound of

a. (Note that the detectability condition of Lemma 2.1 is satisfied if (A, H) is a detectable pair.)

In the output-feedback case, an observer-based control law will be used to approximate a state-

feedback control u = Kx. To mimic the dynamics of the plant (1.3), the observer takes the form

=Af+Bu+Gfo+L(y-Cf), u= Kf, (2.9a)

where a state-feedback model of the disturbance too is assumed as

o = Kdf. (2.9b)

The feedback gain K, observer gain L, and disturbance-estimate gain Kd will be chosen so that,

when controller (2.9) is applied to the plant (1.3), the closed-loop system will satisfy the hypotheses

of Lemma 2.1.

Introduce the error vector e = - z, and write the closed-loop system as

()= + G ) wze ++Bewe? (2.10a)

GKd A + GKd - LC e -G L

Z (x)(2.10b)
K K e

Similar to the state-feedback case, the goal is to find Xe > 0 such that

T "e ( 0 O0) (2.11)

To ensure decoupling of (2.11) into a state-feedback design ARE and an observer design equation,

look for a block-diagonal solution

X=( 0 ) 00 X,

20



Then, the upper-left block of (2.11) is exactly Equation (2.7). If, as in the state-feedback solution,

X > 0 solves (1.5) and the feedback gain is given by

K- -BTX, (2.12)

then the upper-left block of (2.11) is satisfied. The upper-right block of (2.11) then gives

-XBBTX + KTGTXl -LXGGTX, + XBBTX =0,a2

which is satisfied if

Kd= 7GTX. (2.13)

Given the choices (2.12) and (2.13), the lower-right block of (2.11) gives

XI(A + a- 2GGTX - LC) + (A + a-2GGTX - LC)TX 1
+ I X(GGT X 0. (2.14)

+ ~X 1 (GGT + LLT)X 1 + XBBTX -0

Add to (2.14) the design equation (1.5) to obtain the ARE

(X + X)A + AT(X + X) + -(X + XI)GGT(X + XI) - a2CTC + HTH
(2.15)

+ (.!XL ,rCT) (.LTX1 - aC) =O,

which suggests the choice for the observer gain L as

XiL = a 2CT. (2.16)

In order that L satisfying (2.16) is guaranteed to exist, impose the restriction X1 > 0. Now

introduce

Y =a 2 (X + XI) - I > 0 (2.17)

to transform (2.15) into the design ARE (1.7). A solution Y > 0 of (1.7), with a 2 Y - 1 > X,

guarantees Xe > 0 solves (2.11) when gains K, Kd, and L are computed from (2.12), (2.13), and

(2.16). Hence, by Lemma 2.1 the closed-loop transfer-function matrix T(s) = #e(SI - Fe)-Ge

satisfies 1TIIh 00 _< a, provided (Pe, e) is a detectable pair.

The needed detectability condition is satisfied if (A, H) is a detectable pair and A, = A +
- 2GG 1'X - BBTX is Hurwitz. To see this, let VT - (vT vT) satisfy

a-2GGTX A + a- 2 GGT X - LC (218
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A ( HBTX)(V2) (2.19)

and try to show that Re(,) < 0. The upper half of (2.18) and the lower half of (2.19) give

Av = An1, while the upper part of (2.19) gives Hul = 0. Since (A, H) is assumed a detectable

pair, this implies either Re(,\) < 0 or vi = 0. Suppose v, = 0; then the lower half of (2.18) gives

( QA + -GGTX - LC) v2 = AV2. (2.20)

Therefore, pre-multiplying (2.14) by v2 and post-multiplying by v2, and using (2.16), gives

2Re(A)v2Xlv 2 + 1 2v2XIGGTX l v2 + a2 v2CTCv 2 + v2XBBTXv 2 = 0. (2.21)

Since every term but the first in (2.21) is nonnegative, the first term gives

Re(A)v2Xlv 2 <0 . (2.22)

If inequality holds in (2.22), then Re(,) < 0. If equality holds in (2.22), then every term in (2.21)

is zero. Hence, Cv2 = 0 and BTXv 2 = 0, and thus (2.20) gives

(A + _2GGTX - BBTX) V2 = In2.

By assumption, A + a- 2GGTX - BBTX is Hurwitz; therefore, Re(,\) < 0.

The following theorem summarizes the result.

Theorem 2.1. Suppose (A, H) is a detectable pair, X > 0 satisfies the state-feedback design ARE

(1.5) with A, = A + a- 2GGTX - BBTX Hurwitz, and Y > 0 satisfies the observer design ARE

(1.7) with q',mf{YX} < a 2. If the observer gain is given by

L = (I - ac2 YX)- 1YC T, (2.23)

then the dynamic controller

~=(A + GG TX -BB TX -LC)f+ Ly (2.24)

U = -BTxf (2.25)

stabilizes the plant (1.3), and the closed-loop transfer-function matrix T(s) = fIe( I- Fe)-Ge

satisfies llTll00 < a.
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2.4 The Approach to Computing Families of Controllers

Lemma 2.1 provides not only a new way of designing control laws which guarantee stability

and an HO-norm bound, but also a method of characterizing families of such controllers. Such

a characterization is based on the following convexity property of the matrix Riccati function R

defined in (1.17): If there are several matrices Xi > 0 which satisfy the ARE R(X) = 0, then any

convex combination Z of the Xi's satisfies R(Z) :_ 0. This fact allows easy computation of a family

of matrices Z _> 0 satisfying

ATZ + ZA + -LZGGTZ - ZBBTZ + HTH < 0.

For any such Z, it is shown that the state-feedback control u = -BTZX provides stability and the

Ho,-norm bound IIT11. < a.

Any member of the family of state-feedback controls can be used as a reference for centralized

or decentralized observer-based controls. In the centralized case, the convexity property of the

dual-form Riccati function associated with observer design also permits computation of a family of

observer gain matrices. In the decentralized case, however, the Riccati-like design equation does

not allow this freedom. As a result, the freedom in computing the family of decentralized control

laws is just that freedom available in computing the family of state-feedback control laws.

The remainder of the thesis develops the various new control design methods based on Lemma

2.1, starting with the basic decentralized design, and proceeding to robust and reliable designs, and

finally to families of designs, all guaranteeing predetermined levels of worst-case (Ho.) disturbance

attenuation.
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Chapter 3

The Basic Decentralized Control

Design

The same approach applied to the centralized control problem in Section 2.3 is now applied to

the decentralized problem. The design derived here also appears in [30].

3.1 Design Derivation

Consider the plant (1.14) with (A,H) a detectable pair. For convenience, adopt the following

notation:

U,

(U2 I
Bju,= (BI B 2 ... Bq) Bu, (3.1a)

Uq

Y2 2 W2
y C + Cz + W, (3.1b)
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tOO

we W (3.1c)

S-BiBT, iE{1,2,...,q}, (3.1d)

S = S1 +S 2 +... + $ = BBT.  (3.1e)

The problem is to design a controller for each of the q control channels, where the it h controller

uses the local measurement yi to generate the local control ui for the plant.

The basic decentralized control law to be developed stabilizes the plant and provides a predeter-

mined Ho-norm bound for the closed-loop transfer-function matrix from we to z. The controllers

which make up the control law are based on observers which form estimates fi, i E {1,2,... ,q},

of the state x for feedback. The state estimates are used for feedback so as to approximate the

state-feedback control

u = -BTXz, (3.2)

where X > 0 satisfies the ARE

ATX + XA + _.XGGTX - XSX + HTH = O. (3.3)

That is, the ith control is given by

ui- -BT x, (3.4)

which approximates a subvector of the state-feedback control (3.2). To mimic the plant dynamics

(1.14a), the ith observer should ideally have the form

qi = A&, + E Bjuj + Gwo + Lj(y - Cifi), (3.5)

i=l

where Li is some observer gain matrix. However, since the disturbance w0 and the controls ui,

j 9 i, are not available to the observer, (3.5) cannot be implemented directly. Just as the centralized

observer (1.11) uses (1.12) as an estimate of the worst disturbance, the ith decentralized observer

replaces w0 in (3.5) by

o= - .GTXf,. (3.6)

a2
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The ith observer also replaces ui, j ? i, by

= -BT (3.7)

which are approximations, based on the state estimate of the ith controller, of the controls applied

by the other controllers according to their shared strategy. With the control (3.4), the observer

structure (3.5), and estimates (3.6) and (3.7), the ith controller becomes

= (A + -LGGTX - SX - LC,) f, + Ly,, (3.8a)

u, = -BTXf,, (3.8b)

where the observer gains Li, i E {1,2,. .. , q}, are to be determined.

Applying the q controllers (3.8) to the plant (1.14) gives a closed-loop system of order (q + 1)n

described by

A -BBTX c  z+(G 0(W Feze+Gw. (3.9a)

L.C A c - LcC. J L, ) L 0 OJ\W(

Ze (3.9b)

where fT (fT fT . ), nd

A00 = Diag (Aa, Ao,.. .,A) (3.10a)

A, = A + IGGTX _ SX, (3.10b)

BC = Diag (Bi, B 2 ,..., Bq), (3.10c)

Cc = Diag (C1,C2,... ,C), (3.10d)

Lc = Diag (LI,L 2,... ,Lq), (3.10e)

X= Diag (X,X,... ,X). (3.10f)

For convenience, define also

IT =[I I ... I] E ,xq,, (3.10g)

Gc = IG, (3.10h)
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A, = A00 + I0BBTX,. (3.10i)

Then, transforming coordinates of (3.9) such that the last qn state variables are the errors ej =

fi - , i E (1,2,...,q), gives

X, et + OeWe, Z = He~e,

where

PMeM e( A-SX B TX ~~= ; G 0 (3.11a)
cca2GGTX A, - LC,, JG LJ

Hie =HeM. H )0 ~( ) (3.11b)

The existence of a (q + 1)n x (q + 1)n matrix X. 2_ 0 satisfying

pT +X +1s = 0+H~e (3.12)

will by Lemma 2.1 guarantee stability and an Hoo-norm bound for the closed-loop system (3.9).

Assume the form

.=c (X 0) (3.13)IX 0
with X _ 0 solving (3.3) and X, > 0 undetermined, and decompose the left-hand side of (3.12)

into appropriately sized blocks as

FTx1 1 Un U12  (3.14)
±A2  .C j a uIT 22 )

Then, it turns out that the off-diagonal block U12 is identically zero, and that (3.3) gives U11 = 0.

Hence, independent of L, and X 1 , (3.14) becomes

with

U22 = (A, - L0c )TXI + XI(A0 - LCO) + AXI(G.G T + LjLT)XI + XBBTX,.
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Defining W = a2 XjI, this reduces to

U22 = X,{WAT + A0W + ,WXBcTBXCW - WCTccW (3.15)

+ GcGT + (L- WCT)(LT - CoW)}Xl.

It is now possible to pick X, (or, equivalently, W) and Lc such that U22 = 0. While it is logical

in view of Lemma 2.1 to try to eliminate the last term in (3.15), this is not generally possible,

since L, must be block-diagonal. Thus, Lc is chosen to eliminate the n x n main-diagonal blocks

of Lc - WCj. This requires

Lc = WoCG (3.16)

where WD is given by

W 11  W12 ... Wi9

W = W 21 W22  ... W2q WD = Diag (W1,,W2,,...,W9),

wq w 2 ) ... wD)

or

L, = W, CT, i E {1,2,...,q}. (3.17)

Then, (3.15) becomes

U22 = -rX{WAT + AvW + -llWXCBcBTXCW - WCcTCcW + GcG (3.18)

+ (W - WD)CTCo(W - WD)}X,.

Therefore, if W > 0 satisfies the Riccati-like algebraic equation

WA T + AW + -WXoBcBTXCW - wCTCcWC C (3.19)
+GcG~ + (W - WD)CYCc(W - WD) = 0,

then U22 = 0, and (3.12) is satisfied. Since W > 0 is required, e > 0 holds automatically;

therefore, provided (P., fie) is a detectable pair, Lemma 2.1 gurantees that ', is Hurwitz and that

T(s) = fi.(sI - P,)-10. satisfies IITIIoo _< a. The following lemma establishes the detectability

condition.

Lemma 3.1. Given the definitions (3.10) and (3.11), where X > 0 satisfies (3.3), W > 0 satisfies

(3.19), and L, satisfies (3.16), the pair (fr', He) is detectable under the following three conditions:
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(i) (A,H) is a detectable pair;

(ii) A. =_ A + a- 2 GGTX - SX is Hurwitz;

(iii) A. + SX has no eigenvalues on the jw-axis.

Proof. Suppose A is an eigenvalue of P. corresponding to an unobservable mode of (F. ReH); that

is, some vT = (vT vT ) 0 0 satisfies

A. -L.C. V2

and

iv =2 (3.21)I _BTX _BTx,

The proof now consists of showing that Re(A) < 0.

The lower block of (3.21) and the upper block of (3.20) combine to give Av = Av1 , while the

upper block of (3.21) gives Hv1 = 0. Since (A, H) is assumed a detectable pair, this implies that

either Re(A) < 0 or v, = 0. If vi = 0, then the lower block of (3.20) gives

(A0 - L.C',)v2 = Av2. (3.22)

The detectability proof is completed by showing that A, - LC is Hurwitz. The bracketed expres-

sion in (3.15) is equal to zero; therefore

(A, - LeC)W + W(A, - L Cc)T + -LWXBB TXW + GcGT + LL T = 0. (3.23)

Let q* be a left-eigenvector of A, - LcCc corresponding to the eigenvalue A. Multiply (3.23) on the

left by ," and on the right by q7 to obtain

2Re(A,)YI*Wq + -? 1 7WX cBTB jXW + + + -*LcLT 7 = 0. (3.24)

Since every other term in (3.24) is nonnegative, Re(A)7?*W?7 < 0, with W > 0 assumed; therefore,

Re(A) < 0. The following argument demonstrates that Re(A) # 0. If Re(A) = 0, then every

term in (3.24) must be zero; hence, il*Lc = 0. Then A is an eigenvalue of A.. But a similarity
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transformation on A, reveals that it can have no imaginary eigenvalues: If

M=

then
A.+SX SX ... SqX

M_- AM _.Ac 0 ,

(a 1
where A, is assumed Hurwitz, and A. + SX is assumed to have no imaginary eigenvalues. Q.E.D.

Under the conditions of Lemma 3.1, Fe is Hurwitz by Lemma 2.1. Therefore, Fe is also Hurwitz,

and the closed-loop transfer-function matrix T(s) = He(sI - Fe)-'G = #e(sI- e)- 1 .Ge from w.

to z satisfies ITIk,. < a. Condition (iii) of Lemma 3.1 is a new technical condition which must be

introduced for the decentralized control problem.

The following theorem summarizes the result:

Theorem 3.1. Let (A, H) be a detectable pair and a be a positive scalar. Suppose X > 0 satisfies

ATX + XA + -XGGTX - XSX + H TH =0, (3.3)

Ac = A+ a-2 GGTX - SX is Hurwitz, and A, + SX has no jw-axis eigenvalues. Let W > 0 satisfy

the Riccati-like algebraic equation

WAT + A 0W + j-rWXCBBYXcW - wcyccw (3.19)

+ GcGT + (W- WD)CcTC(W- WD) = 0.

If the observer gains Li, i E {1, 2,. .. , q}, are given by

Li = WflC( , (3.17)

then the decentralized feedback control law

=-(A + -IGGTX -SX-LjC 1),,+L,y, iE{1,2,...,q}, (3.8a)
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u- -BTXfi, i:E1,2,...,q, (3.8b)

stabilizes the plant (1.14), and the closed-loop transfer-function matrix

T(s) = H.(sI- F.)-'G.

from we to z (with Fe, G., and H. defined in (3.9)) satisfies

11Thoo <_ a.

3.2 Example 1

Consider the plant (1.14) with q = 2 and

- 1 1 1001

0 00 02 B= B2 G=
0 -2 -3 0 0

-- 1 2 -1 01 )0)

C1 =[1000] C2 =[00101 H=[1 -10.

The spectrum of A is {-2.56,-1.32 ± j2.92, +0.191; hence, the plant has an unstable mode.

To compute a decentralized control for this plant, first form the coefficients of (3.19) from

the plant matrices and the state-feedback design equation solution. Then, solve (3.19) by an

iterative method: Compute an approximate solution Wo by ignoring the complicating term Q =

(W - WD)CTCC(W - WD). Then use Wo to compute an approximation of Qo of Q, and use Q0

in the obvious way to compute the next approximate solution W1 . Iterate this procedure until the

candidate solution W makes the matrix norm of left-hand side of (3.19) less than some acceptable

tolerance; then take Wi as the solution W of (3.19). The tolerance used for this example was 0.001.

Table 3.1 compares the closed-loop eigenvalues and H.0 norms of state-feedback designs with

those of decentralized observer-based control designs for several values of a. For a > 4, the state-

feedback eigenvalues are easily recognizable in the spectra of the decentralized-control systems; for

smaller a, more interaction with other poles is evident. The sequence of candidate solutions of the

Riccati-like equation converges for a > 2, while the state-feedback design Riccati equation has an

appropriate solution for a > 1.3.
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Table 3.1. Closed-loop spectra and H.o norms for varying a.
State Feedback Decentralized Control

Spectrum IIT1I. Spectrum IITIk,
-0.24 -0.24 -2.52 -1.26±j2.90

a = 20 -2.54 2.30 -0.38 -2.54 -1.47+j2.97 3.64
-1.45±j2.98 -1.07 -2.70 -1.45±j2.98
-0.24 -0.24 -2.52 -1.26±j2.90

a = 16 -2.54 2.30 -0.38 -2.54 -1.47±j2.97 3.63
-1.45±j2.98 -1.08 -2.70 -1.45±j2.98
-0.24 -0.25 -2.52 -1.26±j2.90

= 12 -2.54 2.29 -0.38 -2.54 -1.47±j2.97 3.59
-1.45±j2.98 -1.08 -2.70 -1.45±j2.98
-0.24 -0.27 -2.52 -1.26+j2.90

a = 8 -2.54 2.27 -0.37 -2.54 -1.47±j2.97 3.49
-1.45+j2.98 -1.09 -2.70 -1.45±j2.98
-0.27 -0.35-j0.08 -1.26±j2.91

a - 4 -2.54 2.15 -1.18 -2.54 -1.47±j2.97 3.05
-1.46±j2.98 -2.49 -2.71 -1.45±j2.98
-0.46 -2.36±jO.85 -1.21±j2.98

= 2 -2.54 1.76 -0.48 -2.53 -1.47±j2.98 1.995
-1.46±j2.98 -1.38 -2.79 -1.45±j2.94
-2.59

= 1.3 -3.11 1.30 none none
I -1.45±j2.94

3.3 Example 2

Consider the 5th-order plant (1.14) with q = 2 and

0 1 4 -4 1 0 0

-3 -1 1 2 1 4 0 0

A= 0 1 -1 -1 0 ,BI= 0 ,B 2 = 0, G= 1,

2 1 -1 0 1 0 0 0

-1 2 1 -2 -2 0 2

CI=,C2 H= 0 0 1 0 0

ko 1 ooo 0o00 o00o 1/ ooo0

The spectrum of A is

A(A) = {-0.0108 - j3.717, -3.7138, - 1.5906, + 1.3262);
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hence, the plant has an unstable mode and a lightly-damped stable mode. This section gives the

results of Hoo-norm-bounding control designs for this plant. First, state-feedback solutions are

presented, then observer-based solutions, both centralized and decentralized. For various values

of the design parameter a, the spectrum, feedback and observer gains, and H. norm for the

closed-loop system are given.

3.3.1 State feedback

State-feedback designs can be computed for values of a varying from c to 1.069199. For a -

1.069198, the solution X of the state-feedback design ARE (3.3) has a negative eigenvalue; hence,

for all practical purposes, a.. = 1.069199.

The dosed-loop poles are the eigenvalues of F = A - SX. Figure 3.1 shows the position of the

closed-loop poles for a varying from oo to a.. Note that as a decreases from oc to 2.0, the poles

barely move. As a decreases from 2.0 to 1.1, the most oscillatory mode is damped somewhat, and

the other complex pole-pair meets at the real axis and splits into a real pair. Finally, as a decreases

in the short interval from 1.1 to a.., the dosed-loop poles are extremely sensitive to variations in

a: The two remaining complex poles move leftward in the complex plane and meet at the real axis;

then one pole goes toward -oo. Naturally, moving a pole far into the left-half plane requires high

feedback gains: The LQ feedback matrix is(L -051 -1.00 -0.21 -0.98 -0.80
-0.48 -0.40 0.44 -0.94 -0.47

with resulting closed-loop spectrum

A(F) = 1-0.92 ± j3.98, -1.78 ± jO.35, -3.54}

while a nearly Ho-optimal (a = 1.07) feedback matrix is

K( 13.21 -3.67 -51.59 61.76 7.93

-66.51 3.97 189.88 -235.86 -40.62I with resulting spectrum

A(F) = {-81.54,-10.51,-3.65,-2.63,-1.57).

These gains are much larger than the LQ gains, and they also have different signs. Reducing a

to a. = 1.069199 results in gains (and one closed-loop pole) of magnitude larger than 10s .
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3.3.2 Centralized observer feedback

Observer-based centralized controls can be computed by the method of Theorem 2.1 for values

of a ranging from oo to 1.913. For a = 1.912, the solutions X and Y of (3.3) and (1.7) do not

satisfy the condition af{YX} < a2.

Figure 3.2 shows the position of the closed-loop poles for a varying from oo to 1.913. As a falls

from oo to 3.0, the most oscillatory modes are damped somewhat, and all but the leftmost of the

real poles move to the left on the real axis. As a falls from 3.0 to 2.4, the two leftmost real poles

meet, split into a complex pair, circle leftward, meet again on the real axis, and move apart. Again,

as a approaches its minimum, one pole moves off toward -oc. As a decreases from oo to 1.913,

each real-axis pole effectively shifts from its original LQG position to the LQG position vacated by

the pole to its left, leaving the rightmost LQG position vacant and moving the leftmost real-axis

pole toward -oo.

The LQG (a = oo) observer-gain matrix is

1.37 -0.71 0.09 0.21

-0.71 1.95 0.79 0.70

LLQG = 0.40 0.24 0.26 0.31

0.09 0.79 1.03 0.15

0.21 0.70 0.15 0.61

with resulting closed-loop spectrum

A(F) = {-0.92 + j3.98, -1.78 ± jO.35, -3.54, -1.09 ± j3.82, -1.32,- 1.69, -3.78},

while the observer-gain matrix for a = 1.92 is

2.47 1.90 3.26 1.29

1.90 94.47 98.89 24.57

L = 1.55 25.95 27.67 7.12

3.26 98.89 105.59 25.42

1.29 24.57 25.42 7.04

with resulting spectrum

A(Fe) = {-204.31, -1.22 + j4.41, -1.47 ± j3.29, -1.75 ± j0.42, -3.83, -3.51,- 1.65}.

Reducing a to 1.913 results in some gains (and one pole) with magnitudes on the order of 10'.
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3.3.3 Decentralized control

Decentralized controls can be computed using the simple iterative method described in Section

3.2 for values of a ranging from oo to 2.3323. The smaller the value of a, the more iterations are

required to obtain convergence: For example, to satisfy a tolerance of 0.001 on the largest singular

value of the left-hand side of the Riccati-like equation, a = 10 requires only 6 iterations, while

a = 2.35 requires 47 iterations. To speed up computations for small a, the solution for a slightly

larger a can be used as the starting point; however, this "imbedding" practice seems to result in

convergence of the algorithm only when using the starting point W = 0 also results in convergence.

For a = 2.3322 and below, the algorithm does not seem to converge.

Figure 3.3 shows the position of the closed-loop poles for a varying from oo to 2.3323. As a

decreases, the oscillatory modes are damped, and the real poles move to the left on the real axis.

Again, as a approaches its minimum, the poles on the real axis seem to be shifting left into the

positions originally occupied by other poles for a = oo.

For a = oo, the observer-gain matrices are

1.63 -0.90 0.07 -0.31

-0.90 2.61 0.98 1.15

L1 = 0.41 0.40 , L2= 0.31 0.44

-0.04 1.33 1.38 0.16

0.32 0.65 0.16 1.22

while the observer-gain matrices for a = 2.3323 are

3.03 -3.17 5.45 0.97

-3.17 19.26 10.08 6.02

L= 0.33 3.71 , L2 = 3.58 1.86

-2.16 18.89 11.80 2.40

0.76 2.92 2.40 3.48

Since the solution for a = 2.3323 displays somewhat higher gains and an eigenvalue moving to

the left, it seems a reasonable hypothesis that solutions may exist for smallk a, giving a high-gain

result as in the state-feedback and centralized observer cases.
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3.3.4 Spectrum and Ho, norm comparisons

The spectra for state-feedback solutions and subspectra for centralized and decentralized

observer-based solutions are shown for various values of a in Table 3.2. The state-feedback poles

are recognizable among the poles of both observer-based solutions. Although the state-feedback

root-locus plot (Fig. 3.1) appears quite different from the other two (Figs. 3.2 and 3.3), the

observer-based solutions no longer exist when a is small enough that the state-feedback poles have

moved significantly from their LQ positions.

The Hoo norms of the closed-loop systems are compared for a < 5 in Figure 3.4. The norms

are seen to be monotone increasing with a. For a = oo, the Ho, norms are IItk = 1.55 for

state feedback, IITIIoo = 3.322 for centralized observer feedback, and fITIIoo = 4.61 for decentralized

observer feedback, where T(s) is the closed-loop transfer function matrix in each case. As the theory

guarantees, the H, norms are always smaller than the design parameter a. In the state-feedback

and centralized observer-based designs, the actual Ho, norms and the bound a are very close for

a close to the minimum value. In the decentralized case, the actual norm approaches the bound

a in the neighborhood of a = 2.5, then falls away slightly from the bound as a approaches the

minimum value for which solutions of the Riccati-like design equation were computed. The "slack"

in the bound suggests that decentralized designs guaranteeing smaller norms may exist, possibly

corresponding to solutions of the Riccati-like equation for smaller values of a. Such solutions would

have to be obtained by methods different from those used in this example.
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Table 3.2. Closed-loop eigenvalues.
State Feedback Centralized Decentralized
_ _Output Feedback Control
-0.92±j3.89 -0.92±j3.89 -0.92±j3.89

= 00 -1.78:j0.35 -1.78-j0.35 -1.781j0.35
- 3.54 -3.54 ... -3.54 ...
-0.92±j3.89 -0.95±j3.93 -0.88j3.94

av = 10 -1.78+j0.35 -1.77-j0.34 -1.77+jO.34
- 3.54 -3.54 ... -3.54 ...
-0.94±j3.89 -0.97±j4.03 -0.87±j4.02

cv = 5 -1.78-j0.35 -1.71-j0.35 -1.74-jO.32
- 3.54 -3.55 ... -3.56 ...

-0.99±j3.89 -1.01-j4.17 -0.86±j4.18
a = 3 -1.78:j0.35 -1.731j0.43 -1.66-jO.46

- 3.54 -3.60 ... -3.58
-1.03±j3.89 -1.04±j4.26 -0.90±j4.35

a = 2.5 -1.78:j0.36 -1.74-j0.43 -1.72-j0.46
- 3.54 -3.46 ... -3.67 ...
-1.12+j3.89 -1.17±j4.39

c = 2 -1.78:j0.36 -1.75-j0.42
-3.54 -3.51 ...
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Chapter 4

Robust Decentralized Control

Consider again the decentralized plant (1.14), now including the structured plant uncertainty

r

A= Ao+ _GkMkHk, (4.1)
k-_I

where Ao is known, the Gk's and Hk'S give the structure of the uncertainty, and each unknown

constant matrix Mk satisfies

Am{MkMk} <uT , k~ {l,2,...,'r. (4.2)

If each positive bound 0 k is sufficiently small, then the design equations to be derived for robust

control will have appropriate solutions. The design developed in this chapter accounts for the

uncertainty (4.1), and gives a robust decentralized control law for the plant. The decentralized

results also apply easily to the simpler state-feedback and centralized output-feedback cases, which

are omitted.

4.1 Robust Design Derivation

With no plant uncertainty assumed, the basic control law of Theorem 3.1 guarantees stability

and the Ho,-norm bound lIT Ilco 5 a for the closed-loop system (3.9) by providing a solution X, > 0

to the algebraic Riccati equation

F +XeFe+GG + TXG.GX + HTHe + P. = 0 (4.3)a2 eee+Je e+e
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with P. = 0, and (F., He) a detectable pair. Now suppose that, like the controller (3.8) of the basic

design, the ih controller has the form

i = (Ao. - LjCj)fj + Ljyi (4.4a)

ui = -BTXfi. (4.4b)

Suppose also that Li, i E {1, 2,. .. , q}, are chosen so that

FTX. + X.Fo. + ' X.GGIx. + HTH, + P. = 0 (4.5)

for some P. - 0, where (Foe, Ge, H.) describes the nominal closed-loop system. In (4.4) and (4.5),

plant uncertainty terms are omitted, so that

Fo. AO -BBTX. I
LX Ao, -c 6LCJ

where Ao,, = Diag(Ao.,Ao ,... ,Ao.). We now proceed to determine a choice of Pe 0 in (4.5)

which will guarantee

FTX, + XeF + " X.G.G TX. + HTH. _0 (4.6)

where

F. Fo.+~ (0)Mk 0.oe+ 1: G.kMkH.k. (4.7)
k=1fi h=1

Assuming (4.5) holds, then

FTX + XeFe + !XG.G X, + HTH = -P + (F. - Foe)'Xe + X.(F. - Fo.)
Ct (4.8)= P, + H, I MTk'TvXe + X.GekMkHek}.

k=i

Recall that ak is given by (4.2), and set

= ~{HtHek + cXeGekGeXe} T { HHek + XeGekMkMTGeXe}, (4.9)
k=-I
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so that (4.8) gives

FT X . + X eF. + x X .GG e + H eTHX
- T { T¢j i4 G g* + XeG g, MiHg,- HejHAk - XeGeMMkTGTXe}

I¢ 1- {X~e(a I- _ M~k )GTkIX.} 410P

TherXGore ifMXMig_)Gsatisfie (4.10)
k=1

= H~k - XeGeklc {Hek - MkTGe~Xe}
k=1

I Xe Ge, (v2I - Mk~4) GX}<0
k-I

Therefore, if Xe 2! 0 satisfies (4.5), with P. given by (4.9), then (4.6) holds, satisfying the main

hypothesis of Lemma 2.1 for the uncertain system.

The next step in the derivation of the robust control is to determine the needed modifications

to the design equations (3.3) and (3.19) so that X, 2_ 0 satisfies (4.5), with Pe given by (4.9). By

examination of (4.5) and (4.9), and of the definitions of G. and He given in (3.9), it is easily seen

that

FTx, + XFw + lxeG.GTeee + HTHe + P. FTX. + X.Fo. + -LX.G, + GT+Xe + HT+H.+,

where

Ge+ G,, G+ =(G aaGl ... aaG,), (4.11a)
0 L e

H)

He+ H= (~X )H+ ( H1 ) (4.11b)0 -BTCo ,X.

H,

Hence, the robust design is obtained by replacing the triple (A, G, H) with the triple (Ao, G+, H+)

in the design equations (3.3) and (3.19) for the basic design. Using the augmented matrices G+ and

H+ in the design equations is similar to introducing additional disturbance inputs and regulated

outputs into the problem. Therefore, the smallest value of a for which the design equations will

have a solution will be larger for the robust design than for the basic design.
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Recall that, in the basic design, the controller dynamics depend on an assumed worst distur-

bance, and hence on the matrix G. Therefore, replacing G with G+ in the design affects not only

Ge, but also F0e.

The final step in deriving the robust design is to establish that (F,, He) is a detectable pair.

Note that Lemma 3.1, applied to the modified design, establishes that (Foe, He+) is a detectable

pair, provided (Ao, H) is a detectable pair, Ao, - Ao-+a-2G+G+X- SX is Hurwitz, and Aoa + SX

has no jw-axis eigenvalues. Let v 9 0 satisfy

Fev = AV, He? = 0. (4.12)

The detectability proof consists of proving that Re(A) < 0. Multiply (4.10) on the left by v* and

on the right by v to obtain

2Re(A)vGX . v + ", -k

a2 XeeEXe v- {HT, - XeGekk Hk-Mi~e

k k1 (02 ,(4.13)

+ V {XeGei k~ MkMk ) GX} JV < 0.
k_-1

Since every term in (4.13) but the first is nonnegative, this implies

Re(A)v*Xev <_ 0. (4.14)

If inequality holds in (4.14), then v*Xev > 0 and Re(A) < 0. If equality holds, then every term in

(4.13) is zero. This gives

{Hek-MTG TXe}V'=0, kE (1,2,...,r}. (4.15)

But, since (4.2) implies that I- MkM T is nonsingular, (4.13) also gives G T Xv = 0; therefore,

(4.15) gives

H kv=0, kE{1,2,...,r}. (4.16)

Hence, (4.7) and (4.12) give Fov = Av, while (4.11b) and (4.12) give HTHe+v = 0. Since

(Foe, H.+) is a detectable pair, this implies Re(A) < 0.

Theorem 4.1 summarizes the result. The following definitions are convenient:

Aoa =Ao+ -G+GTX-SX, (4.17a)

AoC= Diag (Ao., Ao ,... ,Ao), (4.17b)
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Aoc = Aoac + I.BBX.X, (4.17c)

G + = IG+. (4.17d)

Recall that I is given by (3.10g).

Theorem 4.1. Suppose the plant (1.14) has constant structured uncertainty (4.1), with

A..jM&M,} <Uk, kE {1,2,...,r}.

Define G+ and H+ as in (4.11), and let X > 0 satisfy

A0oX + XAo + -XG+G£X - XSX + H +H+ - 0, (4.18)

and W > 0 satisfy the Riccati-like algebraic equation

W4 + AocW + " WXcBCBTXCW - w cTcw (4.19)

+Gc+GT+ + (W - WD)CTCC(W - WD) = 0.

Suppose also that (Ao, H) is a detectable pair, A0. is Hurwitz, and Aa, + SX has no eigenvalues

on the jwi-axis. Then the decentralized control law

, = (Ao. - LC,) & + Ljy,, i E {1,2,...,q),

uj =-BT7Xfi, i E 1,2,...,q},

with Li = WiiC, i E {1,2,... ,q}, robustly stabilizes the uncertain plant, and the closed-loop

transfer-function matrix T(s) from w. to z qatisfies

IITIIJ. a.

There is no explicit restriction on the size of the bounds ak in Theorem 4.1. However, the larger

the Ok's are taken to be, the larger a will need to be to obtain solutions to the design equations

(4.18) and (4.19); if the Ok's are taken to be too large, no solutions may exist at all. If bounds ak

on the size of the uncertainty are known accurately, then these bounds should be incorporated in

G+ (or H+), and hence in the design equations. If the design equations can then be solved, then

the design can tolerate uncertainties of the specified size. On the other hand, if uncertainty bounds

are not accurately known, the choice of the ao''s may be used to reflect a relative weighting to be
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given by the design to disturbance attenuation and robustness considerations. Since changing the

values of the ak's in this case is equivalent to rescaling the Gk's and Hk's while holding the ak's

fixed, it may simplify the design procedure to set

1a--- k E 11,2,...,r),
a

and scale the Gk's and Hk's so as to reflect the tradeoff between robustness and disturbance

attenuation. Then, the size of the uncertainty which may be tolerated is determined indirectly by

finding the smallest value of a for which the design equations can be solved. This variation on the

design of Theorem 4.1 is given in Theorem 4.2.

Theorem 4.2. Suppose the plant (1.14) has constant structured uncertainty (4.1), with

Tj 1
,\.. IMkM <2-, k E {1,2,. ,r}.

Define G+ = (G G, ... G,) and HT+ = (HT HT ... HT). Let X > 0 satisfy (4.18) and let

W > 0 satisfy the Riccati-like algebraic equation (4.19). Suppose also that (Ao, H) is a detectable

pair, A0 is Hurwitz, and A0 + SX has no eigenvalues on the jw-axis. Then the decentralized

control law

ui - BT Xi, i E {1,2,...,q},

with Li = WiiC T , i E {1,2,..., q}, robustly stabilizes the uncertain plant, and the closed-loop

transfer-function matrix T(s) from we to z satisfies

ITh00 < .

4.2 Example

This section presents an example of robust state-feedback control design. The example illustrates

the difference between the robust designs of Theorems 4.1 and 4.2, and the use of the parameter a,

to 4etermine the largest uncertainty in a certain class for which the design guarantees stability and

the predetermined H00-norm bound. For these purposes, the state-feedback example is adequate,

and has the advantage of avoiding the complication of decentralized design, already studied in

Chapter 3.
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Consider the plant of Section 3.2, now in a state-feedback setting, where the matrices

-2 1 1 1 0 0 1

Ao=( E- ( ) 10-10
-2 -1 2 -1 0 1 0

describe the nominal plant. Introduce the structured uncertainty

A = Ao + G1 M1 H1 ,

where M1 is an unknown scalar, and G, and H1 are given by

G1 , = (0 0 1 0). (4.20)
(o)

This represents an uncertainty in the (4,3) element of the A-matrix of the plant. As in the decen-

tralized design of Theorem 4.1, the robust state-feedback control is found by doing a basic design,

but with the augmented matrices G+ and H+ in place of G and H, where in this case

0 0 1 0 -i 0
G+ 1 )H+= 1

1 0 0 0 1 0

0 aa1

The state-feedback design equation becomes

qx + XAo + - XG+G - XSX + H+TH, 0,

or equivalently

ATX + XAo + -LXGGTX + 0,XGIG TX-XSX+HT H+HTHI 0. (4.21)

In the second quadratic term of (4.21), the a's cancel out, allowing computation of a solution for

a = c. By setting a = 0o and solving (4.21) with various values of a,, one may determine a largest

plant perturbation (corresponding to fMI I = aim,.) for which at least stability can be guaranteed
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using the robust state-feedback design. Then, given any a1 < al.., one may determine a number

a0 In such that for any a > amin there exists an appropriate solution of (4.21), and therefore an

associated design guaranteeing the robust Ho,-norm bound J1T 4,,o < a for the closed-loop system.

Table 4.1 gives, to the nearest 0.1, the values of amin computed for various values of al, and shows

clearly the tradeoff between robustness and optimal disturbance rejection. In this example, the

largest admissible plant perturbation is given approximately by a, = 1.8.

If al = a -1 , as in Theorem 4.2, then for G, and HI given by (4.20) the design equation becomes
±X~aT+l~rX-XX+ T T I-. (.2

ATX + XAo + -2X (GG + G ) -s HH H1 -0 (4.22)

The approximate smallest value of a for which (4.22) has an appropriate solution is amin = 1.4,

which corresponds to a plant uncertainty bound al = 0.71.

Table 4.1: Approximate minimum Ho,-norm bounds for various plant uncertainties.

al1 1.0 1.2 1.4 1.6 1.81
min1 1.4 1.5 1.6 1.8 3.0
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Chapter 5

Reliable Control Design

This chapter develops reliable centralized and decentralized control designs which guarantee

stability and H. disturbance attenuation despite possible measurement or control failures. First

is presented an example which establishes the desirability of a reliable decentralized design. Next,

centralized reliable designs are presented which guarantee stability and an Ho-norm bound despite

possible outages of sensors or actuators within predefined susceptible sets. The cases of sensor and

actuator outages are treated separately, resulting in two designs with different reliability properties.

Then; decentralized reliable designs are presented which guarantee stability and an Hoo-norm bound

despite possible outages of whole controllers within a predefined set of susceptible controllers. The

controller outages are modelled first as measurement outages, and then as control input outages,

resulting in two distinct designs with the same reliability properties.

5.1 Motivation

The 4th-order example of Section 3.2 is used to motivate the development of a reliable decentral-

ized control. In this example, stability and a predetermined Ho-norm bound are guaranteed by the

basic decentralized design for various values of the design parameter a. Table 5.1 gives the actual

H,, norms of the closed-loop systems corresponding to several values of a. In addition to the case

when no controller failure occurs, Table 5.1 gives the conditions corresponding to a failure of each

of the two controllers. A failure of Controller #1 results in instability for each design computed,

while a failure of Controller #2 results only irt an increased Ho, norm for the closed-loop system.
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Table 5.1. H.o norms for the basic
decentralized design.

no failure #1 fails #2 fails
a = 20 3.64 unstable 5.34
a = 16 3.63 unstable 5.30
o = 14 3.61 unstable 5.28
a = 12 3.59 unstable 5.23
a = 8 3.49 unstable 5.04
a = 4 3.05 unstable 4.19
o = 2 1.995 unstable 2.46

Since the plant is open-loop unstable, a failure of both controllers at once necessarily results in

instability; however, it would be desirable to alter the design so as to guarantee at least stability,

and, better still, some level of disturbance attenuation for the closed-loop system if only one con-

troller should fail. While the basic design in this case still works well if only Controller #2 fails,

it is not acceptable if Controller #1 fails. Therefore, a design reliable with respect to failure of

Controller #1 is desired.

The approach to reliable design developed here is similar to that for robust design developed'in

Chapter 4. The essential idea is that, if there exists Xe _ 0 satisfying

FTX, + XeFe + -X,GG X + HTH + P = 0 (5.1)

with some P, 2_ 0, then the resulting closed-loop system will by Lemma 2.1 be stable and have Ha,-

norm bound ct. By judicious choice of P,, additional system properties associated with reliability

can be assured. Then, perturbations are introduced into the basic design equations such that (5.1)

is satisfied for that choice of P,. As in the robust design, the appropriate choices of P are equivalent

to appending columns or rows to G or H in the basic design equations.

5.2 Reliable Centralized Design

The problem addressed here is that of designing a centralized controller which is reliable despite

possible sensor or actuator outages. The outages will be restricted to occur within a presclected

subset of available measurements or control inputs. The controllers developed will guarantee closed-

loop stability and a predetermined H,.-norm bound, regardless of admissible sensor or actuator

failures. The cases of sensor and actuator outages are treated separately, and two designs are
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developed to handle the two cases. However, it will be clear from the results that controllers which

can handle both sensor and actuator outages can be obtained by combining the designs.

Consider first the design of a controller that can tolerate the outage of certain sensors which

provide the various elements of the measurement vector y. Let S1 C {1, 2,..., dim(y)} correspond

to a selected subset of sensors susceptible to outages. Introduce the decomposition

C = C0 + Co, (5.2)

where Ca denotes the measurement matrix associated with fl, and CO denotes the measurement

matrix associated with the complementary subset of measurements. In other words, CO is the

same as C, but with rows corresponding to susceptible sensors zeroed out. Let w C fl correspond

to a particular subset of the susceptible sensors that actually experience an outage, and let To(s)

denote the transfer-function matrix of the resulting closed-loop system. It is convenient to adopt

the notation
C = C., + Cr, (5.3)

where C,, and Car have meanings analogous to those of Co and C1 in (5.2). Since w C fP, CTCW _

CTCa. Also decompose the observer gain as

L = L, + Lo (5.4)

so that

LC = LC , + LGC,.

(Lr has columns zeroed out corresponding to sensors which have actually failed.) Then the following

result holds:

Theorem 5.1. With all assumptions and the design otherwise as in Theorem 2.1, assume X > 0

and Y > 0 satisfy the AREs

ATX + XA - XSX + -. XGGTX -r HTH + a2 COCO =0, (5.5)
a2

AY + YAT +-YHTHy -YC C 2 Y + GG =0, (5.6)

02

respectively. Then, for sensor outages corresponding to any w C S1, the closed-loop system is stable,

and IIT rlIko < a . I



Remark: With all sensors operational, corresponding to w = 0, T,(s) = T(s) is the transfer-

function matrix from we to z, where

Iv (t'o), z = (HT).

Theorem 5.1 covers this case automatically, since w = 0 C f. If sensors corresponding to a

nonempty subset w C 0l fail, then Tra(s) is the transfer-function matrix from we to z, where

tUeG

with wr, containing only those components of measurement noise associated with operational sen-

sors.

Proofi The design equations (5.5) and (5.6) arise from replacing H in the description of the plant

by the augmented matrix
H+ = (cjH

+1 CO (5.7)

and changing the design equations accordingly. If (5.5) and (5.6) have appropriate solutions, then

Theorem 2.1 guarantees that Xe > 0 satisfies

F6 X. + XeFe + XeGGT'Xe + HT+H.+ = 0, (5.8)

where the augmented closed-loop system is described by the matrices

F, = ) (, G. G 0 ), H+ (5.9)
LC A,-LC ) 3 L 0 -BTX

and (Fe, H,+) is a detectable pair. The actual closed-loop system with no sensor outages is described

by the matrices

LC Aa-LC )(0 L H (0 -BTX

For sensor outages corresponding to w C fl, the controller becomes

= (A + -LGGTX - SX - LC)E + Ley, (5.1la)

u - BTXf. (5.11 b)
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The controller dynamic structure is not affected by a sensor outage; only the controller input

structure is effectively changed. Given (5.11), the closed-loop system matrices become

Fe = SX G =(G , He H . (5.12)
(LrCr, A, - LC Gr 0 Lr, 0 -BTX

The following useful relations are derived from (5.9), (5.10), and (5.12):

F. =Fe.,+ ( 0) EFQ + L.C., (5.13a)

GGT (GGT 0 + (o T

eeGT 0 ~ LrLT ) (L,) (0 LT) = GeTGer + LewL T (5.13b)

HTHe+=HH+a(2 CT CnO 0) (5.13c)

Use (5.8) and (5.13) to obtain
F~erXe + XeFe. + rXeGeGT Xe + H HT (5.14)

Tr TTec20(.4
-C.LeXe - XeL.Ce. - ,XeLwLvxe - (C 0).

Therefore, since -CTCo -f CTC, (5.14) gives

FeaXe + XeFe + XGeGeGTXe+HTHe
_5 -CTLT Xe - XeL.C. - c'cXLX C e (5.15)

- ( Xe + aCT.) (ILTXe + o 1 <- 0.

Hence, provided (Fer, He) is a detectable pair, Lemma 2.1 guarantees that Fer is Hurwitz, and that

Tr,(s) = H,(sI - Fe 1,)-1Ge,, the transfer-function matrix from wer to zr,, satisfies IITrII1 < a.

The detectability proof is routine: If T = (VT vT) # 0 satisfies Frv = Av and Hey = 0, then

Av, = Av, and Hv, = 0, with (A, H) assumed a detectable pair. Therefore, either Re(A) < 0 or

v, = 0. Suppose vj = 0; then Fv = Frv = Av and He? = 0 gives He+v = 0. Since (F, He+) is a

detectable pair, Re(A) < 0. Q.E.D.

Consider now the design of a controller that can tolerate the outage of certain actuators which

provide the various elements of the control vector u. Let fl C {1,2, ...,dim(u)} correspond to a

selected subset of actuators susceptible to outages. Introduce the decomposition

B = Bn + Bn, (5.16)
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where BO denotes the control matrix associated with the set 11, and B denotes the control matrix

associated with the complementary subset of control inputs. In other words, B is the same as

B, but with columns corresponding to susceptible actuators zeroed out. Let w C fl correspond

to a particular subset of the susceptible actuators that actually fail, and let Ta(s) denote the

transfer-function matrix of the resulting closed-loop system. It is convenient to adopt the notation

B = B, + Br (5.17)

where B,,, and Br have meanings analogous to those of B0 and B in (5.16). Since w C fl,

BWBE < Br Be. Then the following result, dual to Theorem 5.1, holds:

Theorem 5.2. With all assumptions and the design otherwise as in Theorem 2.1, assume X > 0

and Y > 0 satisfy the AREs

ATX + XA - XBnBX + -XGGTX + HTH -0, (5.18)

AY + YAT + LYHTHY -yCTCy + GGT + a 2 BnBT = 0, (5.19)a2

respectively. Define

G+ (G aBa), (5.20)

and let the controller be given by

= (A + -G+G+X - SX - LC), + Ly, (5.21a)

u = -BTXf. (5.21b)

Assume the controller is open-loop (internally) stable. Then, for actuator outages corresponding

to any w g 1l, the closed-loop system is stable, and IITllI. a.

Remark: For actuator outages corresponding to w C 0l, Trp(s) is the transfer-function matrix from

we to zQ, where zr, excludes control components associated with failed actuators.

Proo The design equations (5.18) and (5.19) arise from replacing the matrix G in the description

of the plant (1.3) with the augmented matrix G+, and introducing the corresponding changes in

the design equations. If (5.18) and (5.19) have appropriate solutions, then Theorem 2.1 guarantees

that X, _> 0 satisfies
FTX. + XeFe + lXG+G + TH 0, (5.22)

a2e
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where the augmented closed-loop system is described by the matrices

F, - A) , .+ ( + , H. H 0 (5.23)
(LC A. - LC )0 L )0 -BTX

with A, - A + a- 2G+GTX - SX and (Fe, He) a detectable pair. When there are no actuator

outages, the actual closed-loop system is described by the matrices

Fe = ), G = ( H = (. (5.24)
(LC Aa - LC 0 L 0 -BT X

For actuator outages corresponding to w g fl, the controller becomes

S= (A+A G+G T .- SX-Lc) + L (5.25a)

= -BXf. (5.25b)

The controller dynamic structure is not affected by actuator outages; only the controller output

structure is effectively changed. Given (5.25), the closed-loop system is described by the matrices

A -Br~BTX0-Br G 0 ) I0e
F, ( ) Ge ( H He ( B . (5.26)LC A, - LC 0 L 0 -BX

The following useful relations are derived from (5.23), (5.24), and (5.26):

Fe = Fer- (B-)(0 BIX)- F. - B.(o BIX), (5.27a)0!
1HH Hr H,, + 0( 0~( RIX), (5.27b)-//r+/ +XBW)

G+G+= G G + (B+B 00) (5.27c)

Use (5.22) and (5.27) to obtain

F 7 Xe + XeF, + 7XeGeGTXe + HLHre (5.28)

< -(X.B - ( ) (BLX, - (o BIX)) <0.

Provided (Fr, He~r) is a detectable pair, Lemma 2.1 guarantees that Fer is Hurwitz, and that

Tr(s) = HeQ(al - Fer)-Ge satisfies IITrlIIo < a. To prove detectability, let vT = (VT VT) 0 0
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satisfy Ferv = Av and Herv = 0; then Av1 = Avu and Ht1 = 0, with (A,H) assumed a detectable

pair. Therefore, either Re(A) < 0 or v, = 0. If v, = 0, then Frv = Av gives
(A + 1 G+GTX - SX - LC)v2 = Av2. (5.29)

By the assumption that the controller is open-loop stable, (A+a-2G+G TX-SX- LC) is Hurwitz;

therefore, Re(A) < 0. Q.E.D.

The design given in Theorem 5.2, unlike that given in Theorem 5.1, requires that the controller

turn out stable in order to guarantee reliable closed-loop stability. If the design does not result in

a stable controller, it may be combined with a strongly stabilizing design developed in Section 5.5;

then the assumption of open-loop stability of the controller will hold automatically.

Note that to achieve reliability with respect to sensor outages, it is sufficient to modify the

feedback and observer gains; however, to achieve reliability with respect to actuator outages, the

observer structure must also be modified. The structural modification required is the inclusion of

G+ in the controller dynamic matrix.

5.3 Reliable Decentralized Design

Let fl 9 {1,2,... ,q} correspond to a subset of controllers subject to outages. The problem is

to compute a decentralized control law which guarantees closed-loop stability and an Hoo-norm

bound in spite of controller outages corresponding to any subset w C fl. Without loss of generality,

fl = {t + 1,t + 2,... ,q} and w = {r+ l,r+2,... ,q}, with r > t. Introduce the decompositions
~B = (B1... B, 0... 0) +(0.,..0 B,+1 ... Bq) =_ Br. + B.,, (5.30a)

B- Diag(B1,... ,B,,0,... ,0) + Diag(0,. .. ,0,B+l,... ,Bq) B.Q + B.,, (5.30b)

C, 0

C + -C. + C., (5.30c)0 C'+1

0 Cq
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C, = Diag(Ci, ... ,C,,0,... ,0) + Diag(0... ,0Cr+1,...Cq)- C-Q,+ Cc , (5.30d)

L= Diag(Ll,... ,LrO.. ,O) + Diag(O,... ,0,Lr+I,... ,Lq) E Le + Le,. (5.30e)

Also decompose the disturbance and regulated output vectors as

W'! ra;(5.31a)
(WO) W / w

Z= UU.).(5.31b)

W

Finally, define

Ba = (Bt+l ... Bq), (5.32a)

T). (5.32b)

Note that for any w _ (1,

BaB - BwBT, (5.33)

COCn 2! CSC". (5.34)

When no controller failures occur, the closed-loop system is described by matrices of the form

F, A B--" G. G' 0= H'HLC A,,- LcC) e 0 0 -BeXc

where A., = Diag(Aa, A ,... ,A,). Suppose that controller failures take the form

yi=O, iEw. (5.35)

The closed-loop system then takes the form

A - B B TXc ) t) ( ) Ferze + Gwte, (5.36a)

Z = (_- = H.T,(b.36b)
\0 -Bx
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Because of the assumed mode of failure, given by (5.35), the disturbances wi, i E w, do not enter the

system (5.36). In fact, (5.36) is a controllability canonical form, with ,, i E w, the uncontrollable

parts of the extended state vector. Note also that

d, - LCe = Diag(A. - LIC 1, A, - L2 C 2 ,.. .,Aa - LqCq), (5.37)

where A. - LiCi is the open-loop dynamic matrix of the th controller. Because of the form of

(5.36), the open-loop eigenvalues of the controllers which have failed appear directly as modes of

the dosed-loop system. This means that a design guaranteeing reliable stability will automatically

guarantee that all controllers susceptible to outages are open-loop stable.

It is convenient to note that F, and Geo, are related to F and Ge by

Fo=F.- )(C, 0)-F.-L.C.,,, (5.38a)

GLo = G. - (5.38b)
(0 L,,

GGerG = G.G ., L Lr. (5.38c)

The design which follows will guarantee that &, is Hurwitz, and that the transfer-function matrix

Tr(s) = H,(aI - Fr.)- G . satisfies IIT a4I _5 a, for controller outages associated with any w C f.

The case where no controllers fail (represented by w = 0 g fl) is always admissible; hence, the

design will automatically guarantee that F is Hurwitz and that T(s) = He(sI - F,)-G satisfies

ITh 0 :5 a. The following theorem gives the reliable design method.

Theorem 5.3. With all assumptions and the decentralized design otherwise as in Theorem 3.1,

let X > 0 satisfy

+ XA + - XGG1 X - XBBTX + HTH + a2CTCO = O, (5.39)
a2

where fl _ (1,2,... q}. Then, for controller outages corresponding to any w C Q1, the closed-loop

system (5.8) is internally stable, and the closed-loop transfer-function matrix TQ(s) from wQ to

zx satisfies IITGII00 <5 a. In addition, all controllers corresponding to the "susceptible" set Ql are

open-loop stable.
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Remark: The design given in Theorem 5.3 results from replacing H in the description of the plant

(1.14) with the augmented matrix

H+ = (5.40)

and changing the design equations accordingly. This substitution results in no change in the design

equation (3.19), and is equivalent to selecting Pe in (5.1) as

P, = c > . (5.41)
0 0)

The basic decentralized design computed for the augmented plant will provide reliable control for

the actual plant.

Proof. Just as in the development of Section 3.1, the existence of appropriate solutions to the

perturbed design equations (5.39) and (3.19) guarantees that X. > 0 satisfies

FTXe + XF + -LXeGeGXe + H+He+ = 0, (5.42)

where

He+ H+ 0 ) (5.43)o~ -B Txo

Now (5.38), (5.40), (5.42), and (5.43) give
FTX. + XF. r. X. G. r, GTr.+HTHF6 ;6 +X 6 F6 e + a-y•eeGe Xe + He

-CL,, X. - XL,,,, - 1 XLLTX. a2(Co )(CQ 0).

Therefore, by (5.34),

FXe + XeFai + 'XeGeQGLX + HTH

< -ceLWX. - XeL.C. - ' XCLwLLX.C - c,.

xL, + aCT) ( LLx + ')5 <o

Hence, provided (F.r, He) is a detectable pair, Lemma 2.1 guarantees that Fe,, is Hurwitz, and that

T&,(s) = He(Is - Fe)-Gee, the transfer-function matrix from wer to zr,, satisfies IITrljoo < a.

The detectability proof is the same as that of Lemma 3.1: Assuming v 9 0 satisfies F,6 v = Av and

Hey = 0 gives Avu = Avl and Hvi = 0, with (A, H) assumed a detectable pair. Therefore, either

Re(A) < 0 or vi = 0. If vi = 0, then (Acc - LcCc)v 2 = Av2, and hence (Ac - LC,)v2 = Av2, where

Ac - LC, is known to be Hurwitz. Q.E.D.
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Recall that the closed-loop system (5.36) assumes measurement failures corresponding to each

i E w. If instead there are control input failures, that is, if the controller failures are given by

u, =O, iew, (5.44)

then the closed-loop system has the form

=A -+LcC:) 0 ) - Frze + G we (5.45a)
L.C A.. - L.C. 0 L, (O

z = 0 T )E H~are, (5.45b)(0-BT.Xo,)(

where Fer has been redefined. Note that (5.45) is an observability canonical form, with fi, i E W,

the unobservable parts of the extended state vector. In fact, for a given decentralized control

law, (5.36) and (5.45) are just two different realizations of the same transfer-function matrix.

However, the form (5.45) leads to the need for a different matrix P in (5.1) to guarantee reliable

stability and performance, and hence to a different control law. Again, the closed-loop eigenvalues

of the controllers which fail appear directly as modes of the closed-loop system; unlike the proof

of Theorem 5.3, however, the following development must assume that all the controllers turn out

open-loop stable. If some controllers turn out unstable, the design of Theorem 5.4 may be combined

with a strongly stabilizing decentralized design developed in Section 5.5.

It is convenient to note that Feag and HeQ are related to F and H. by

FB( ) (0 T X) & F6 + BW(0 BT X) (5.46a)

Fe r.(0 =. 0 ) (5.46b)

Heo = H. + 0 BTX (5x6b

HTH = HTH. - ( )(0 BT Xc). (5.46c)

The following theorem gives the design method:

Theorem 5.4. With all assumptions and the decentralized design otherwise as in Theorem 3.1,

let X > 0 satisfy

ATX + XA + 1 XGGTX - XSQX + HTH - 0, (5.47)
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and let W > 0 satisfy

WAT + Ac+W + 'TWXCBcBT XCW - wCTCcW + GcGT (5.48)

+ a 2 oISo4' + (W - WD)CTC,(W - WD) = 0,

where

' =(II ... I]

Ac+ = Ac + Diag(SnX, SoX,..., SnX),

Sn = BnBT,

s = Sn + So,

and fl C {1,2,... ,q}. Let the controllers be given by

i= (A + G+Tx- SX - LC) + Lyi, i E {1,2,...,q}, (5.49a)

u = -Bf Xfi, i E 1,2, ... ,jq}, (5.49b)

and assume all controllers are open-loop (internally) stable. Then, for controller outages corre-

sponding to any w _ f0, the closed-loop system (5.45) is internally stable, and the closed-loop

transfer-function matrix T,(s) from WeG. to zr, satisfies IITlIoo < c-

Remark: The design equations (5.47) and (5.48) arise from replacing G in the plant description

(1.14) with the augmented matrix G+ given by

G+ = (G aBn), (5.50)

and changing the design equations accordingly. This substitution affects both the state-feedback

design ARE and the Riccati-like design equation for computing decentralized observer gains. The

substitution is equivalent to selecting Pe in (5.1) as

AP=X. (o 0)X, : . (5.51)

The basic design computed for the augmented plant will provide reliable control for the actual

plant.
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Proof. As in the development of Section 3.1, the existence of appropriate solutions to the design

equations (5.47) and (5.48) guarantees that Xe _2 0 satisfies

FeXe + XeFe + XG+G + HTH" = 0. (5.52)

Unlike the dual case, the additional columns of G+ enter into the linear coefficient matrix Fe of

(5.52), as well as into the quadratic coefficient as explicitly indicated. This is because the controller

structure (5.49) is affected if G is replaced by G+. Hence, F and Ge+ are now given by

F A -BB G+ = 0 (5.53)
L.C Aac - LcCc 0 Lc

with Ac = Diag(A, A,...,,A,) and A, = A + a-2G+GTX- SX. Manipulations of (5.52) similar

to those of the dual case, using (5.46), (5.50), and (5.53), give

F Xe + X Fr. + 1 X G GTX' + HK H

_ (X.Bew - (C ))(BT X' - (0 BTXC) < 0.

Provided (Fr ,Hrc) is a detectable pair, therefore, Lemma 2.1 guarantees that Fr is Hurwitz,

and that TQ (s) = Heo(sI - Fea,)- 1 Ge satisfies IITGjI :5 cf. To establish detectability, let VT =

(vT v4) # 0 satisfy Frv = Av and Hov = 0. Then Av, = Av and Hv, = 0. Since (A,H) is a

detectable pair, this implies either Re(A) < 0 or v, = 0. Suppose v, = 0; then FV = Av gives

(Ac - LcC)v 2 = AV2. (5.54)

Since all controllers are assumed open-loop stable, (5.54) gives Re(A) < 0. Q.E.D.

The two decentralized design methods given in Theorems 5.3 and 5.4 assume controller failures

modelled as, respectively, measurement failures and actuator failures. The failures considered inca-

pacitate entire controllers, so that measurement failures and actuator failures have the same effect

on the closed-loop transfer-function matrix. Although the two designs have the same reliability

goals, they axe nevertheless different: The first automatically guarantees reliable stability if the de-

sign equations have appropriate solutions, whereas the second may exist but not guarantee reliable

stability if the controllers are not open-loop stable; the first design involves only modification of

feedback and observer gains as compared with the basic design, while the second requires also a
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change in the observer structure; and the range of the design parameter a for which the two designs

are computable may differ.

In the centralized case considered in Theorems 5.1 and 5.2, the failures considered are those of

individual sensors or actuators. Therefore, the two centralized design methods differ not only in the

view taken of controller failure, and in other technical terms, but also in the reliability properties

they seek to guarantee.

5.4 Example

For the plant of the example in Section 3.2, the reliable decentraized control design method

of Theorem 5.3 was applied for various values of the design parameter a. Table 5.2 gives the

actual Ho, norms of the closed-loop transfer-function matrices resulting when the reliable design

was computed for several values of a. For the sake of comparison, the comparable portion of Table

5.1, corresponding to the basic decentralized designs, is reproduced. In addition to H,, norms for

the case where no controller failure occurs, the H. norms corresponding to a failure of each of the

two controllers are given.

Table 5.2 shows that, unlike the basic design, the reliable design guarantees stability and Hoo-

norm bound a in spite of a possible failure of Controller #1. In fact, a failure of Controller #1

actually results in a reduced H. norm for the closed-loop system. This is possible because, when

Controller #1 fails, the disturbance w, and the control input ul are removed from consideration. A

significant proportion of the cost associated with the design is the result of expended control energy,

which is reduced when a controller fails. However, this reduction in cost does not constitute a good

argument for discarding Controller #1 and using Controller #2 alone. The use of two controllers

increases the reliability of the system, in that a single controller failure will not result in system

instability. Note that no solution was found to the Riccati-like algebraic equation for the reliable

Table 5.2. H. norms for basic and reliable decentralized designs.
Basic Design Reliable Design

no failure #1 fails #2 fails no failure #1 fails #2 fails
a = 20 3.63 unstable 5.34 6.95 6.25 7.03
a = 16 3.63 unstable 5.30 7.65 6.38 7.82
a = 14 3.61 unstable 5.28 8.28 6.32 8.59
a = 12 3.59 unstable 5.23 No solution to RLAE found.
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design with a < 13, while solutions were computed for the basic design with the design parameter

value as small as a = 2. This difference represents the tradeoff between reliability and disturbance

attenuation guaranteed by the respective designs.

5.5 Strongly Stabilizing Designs

The designs given in Theorems 5.3 and 5.4 provide decentralized control laws which are reliable

with respect to controller outages. For the design given in Theorem 5.3, all controllers susceptible to

outages are automatically stable; however, for the design given in Theorem 5.4, the controllers must

be assumed to turn out stable for the closed-loop system to be guaranteed stable. A decentralized

design is now developed to guarantee open-loop stability of some subset of controllers, without

regard for performance in case of a controller outage. This design may be combined with that of

Theorem 5.4 so as to guarantee beforehand that specified controllers will turn out open-loop stable.

As a special case, a strongly stabilizing centralized design is also derived.

With the design otherwise as in Theorem 3.1, suppose Equation (3.19) is replaced by

WA T + OcW + I WXCBCBTXCW - WCTCoW + GCG'(TAC 7 (5.55)
+ (W - WD)C c(W -WD) + P = O.

For any P > 0, the design guarantees closed-loop stability and the Ho,-norm bound IITIIo, < a.

The object is to select P > 0 so that the i h controller is open-loop stable. Rewrite (5.55) as

W(A .- LCCc)T + (Ac - LcCC)W + -WX1B2 B XW + GCG T + LCL T + P -0. (5.56)

Recalling the definitions Aac = Diag(A, ,,A... ,Ac), I~c = [I I. .11, and A, = A,,c + IcBBTX,

rewrite (5.56) as

W(A c - LoC)T + (A. - LcCo)W + lyWXcBcBTXcW (5.57)

+GcG T + LL' + P + IcBOYXCW + WXCBCTI =O.
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The Oh n x n main-diagonal block of (5.57) is

(WI

Wii(A, - LjCi)T + (A. - LjC)Wjj + -."(Wil ... Wi)XcBcBTXc : )
(W )\wqi (5.58)(w'1

+GG T+L,LT+P ,+ BBrX, : + (Wjj... Wq)XBBT -O,

SWq.)

where the linear coefficient (A. - LiCi) is the open-loop dynamic matrix of the ith controller. To

ensure that (A, - LiCi) will be Hurwitz, let Pii = a -5 
= a 2BBT. Then (5.58) becomes

W,,(A. - LjCI)T + (A. - LjC)Wjj + GGT + LLT

-(eB + "(W, 1 ... Wiq)XcBc)(cBT + W i ( 5 ,

with Wii > 0. To see that this is sufficient to guarantee that (A. - LiCi) is Hurwitz, let v 0 0

satisfy (A, - LiCi)Tv = Av. Then (5.59) gives

2Re(A)v*Wiiv + v*LiLTv < 0,

and hence Re(A) <0 0. But inequality must hold here, because Re(A) = 0 implies LTv = 0, and

hence ATV = Av, with A, assumed Hurwitz.

Note that P > a 2S guarantees that the ih controller will be stable, independent of the other

main-diagonal blocks of P. Therefore, several controllers may be simultaneously guaranteed open-

loop stable by selecting the main-diagonal blocks Pii of P to satisfy Pij 2: 0 if the ith controller

need not be stable, and Pii > a 2S if the ith controller must be stable. The other blocks of P may

be chosen in any way that makes P > 0, such as setting them all to 0.

The following theorem summarizes the result.

Theorem 5.5. Let P be ,.ny qn x qn matrix satisfying

P > Diag(P,... ,Ptt,O,...,0),
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where Pii = a2S for i E {1,2,... ,t}. With all assumptions and the design otherwise as in Theorem

3.1, suppose EquatioiT3.19) is replaced by

W + AXW + -TWXBoBIXCW - WCTCCW + GCGC (5.60)

+ (W - WD)CTc(W - WD) + P = O.

Then the design, in addition to its other properties, guarantees that the controllers in the first t

control channels are all open-loop stable.

The result of Theorem 5.5 is easily specialized to the centralized case. It is important to note,

however, that the solution W of the Riccati-like design equation with q = 1 is not the same as the

solution Y of the observer design ARE in the centralized case. Therefore, the reformulation of the

design equations to guarantee strong stabilization in the centralized case is not as simple as that

given in Theorem 5.5. The following theorem gives the correct formulation.

Theorem 5.6. With all assumptions and the design otherwise as in Theorem 2.1, let Y > 0 satisfy

the ARE

YFT + FY + -LYHTHY - yCTCY + -LYXSXY + GGT + ac2 S =0, (5.61)

a2  a

where F = A - SX, S = BBT. Then the system is strongly stable, and the closed-loop transfer-

function matrix satisfies ITIk, < a.

Proof For the special case q = 1, the strong stabilization result of Theorem 5.5 still holds. In this

case, the design equation (5.60) is

W(A + a-2GGTX)T + (A + w- 2GGTX)W + WXSX(5.62)

- WCTCW + GGT + a 2S = O.

Hence, the proof consists of showing that (5.61) implies (5.62). Recall the assumption from Theorem

2.1 that am. {YX} < a 2 or (a2 Y - 1 - X) > 0. This implies that there exists a matrix W > 0 such

that

W-1 = y-1 _ a-2X. (5.63)

Then, routine manipulations of (5.61) give the equivalent equation

YAT + AY + -LYHTHY - yCTCy + GGT + 2 YW- 1SW- 1Y = 0. (5.64)
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Pre- and post-multiply (5.64) by Y- 1 , and use (5.63) to obtain

AT(a- 2 X + W - 1 ) + (a- 2X + W-I)A + (- 2X + W-)GGT(&-2X + W - 1 ) (5.65)

+ HTH - CTC + a 2W- 1SW - 1 =0.

Now, divide the state-feedback design ARE (3.3) by a 2 to obtain

AT(a- 2X) + (a- 2X)A + (a-2X)GGT(a- 2X) - 1 XSX + 1LHTH = 0, (5.66)

and subtract (5.66) from (5.65) to obtain

ATW - I + W- 1A + (a-2X)GGTW- 1 + W-GGT(a-2 X) (5.67)

+ W-lGGTW - 1 - CTC + rXSX + a2W- 1 SW - 1 =O.

Finally, pre- and post-multiply (5.67) by W, and rearrange terms to obtain (5.62). Q.E.D.
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Chapter 6

I Parameterization of Families of

I Controllers

6.1 Preliminary Results

This chapter gives some properties of a certain matrix Riccati function related to the computation

of families of control laws. The matrix Riccati function is studied in greater detail in (27].

Let F be Hurwitz, and define the matrix Riccati function R by
R(X) = FTX + XF + -IXGGTX + HTH.

a2

The following property, given in [34], holds:

Lemma 6.1. If R(X) = 0, then X > 0.

Proof. Suppose R(X) = 0; that is, 1

R(X) - FTX + XF + aXGG2 X + HTH =0. (6.1)

Define P - ;-XGGTX + HTH. Then (6.1) becomes FTX + XF + P = 0, with F Hurwitz and

P > 0. By inertia theorems of the Lyapunov equation (see, for example, [16]), X > 0. Q.E.D.

The following lemma gives a matrix convexity property for R:
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Lemma 6.2. For i E { r,..).,r}, let Xi be symmetric matrices and /3 be nonnegative scalars

satisfying - f3 = 1. Then
Er

Proof. Compute

R #/iXi} FT {OiiXi}I + { I~i F + { 1 Xi} GGT {Z3x 1 } + HTH

= (FTXi + XF+ HTH) + 1EE:ijXjGG

1i (i ) -.72 D3iGT s ( sXG X GTi=1 j1=1 =1 ~

= >93Rtx----3x GGTXir - i-I { } +

- ,R(Xi) - -IFji8jXiGGT (Xi - Xj)
=ii=lj=

= iAR(X)- 2EE8i#,jXiGGT(Xi - Xj) + -aEE 8j18.,XtGGT(x -x)

.__ i=lj=l i=lj=l

r r i-1#iR(Xi) # _ - X, + 3 1  G)
i--i-

(6.3)

Therefore, R{Efi Ti3R(X,)} _t ffi R(X,), the desired result. Q.E.D.

The following corollary identifies a class of easily computable matrices Z > 0 for which R(Z) <_

0:

Lemma 6.3. Let Z be any convex combination of matrices Xi 2! 0, i E {1,2,..., r}, satisfying

R(X,) = 0. Then Z > 0 satisfies
R(Z) <_ 0. (6.4)

Proof. Express Z as

z =
i=1

where E r i = 1. From Lemma 6.1, Z > 0, and from Lemma 6.2,

R(Z) = R {3X ,} < ER(X,) = 0.
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Q.E.D.

6.2 A Family of State-feedback Controls

Consider the plant (1.3) with (A,H) a detectable pair. To derive a characterization of a family

of stabilizing state-feedback controls which guarantee a predetermined Hoo-norra bound, start with

the design

u = -BTXZ (6.5)

where

ATX+ XA + -XGGTX - XBBTX+HTH =O, X>O. (6.6)

Rearrange (6.6) as

FTX + XF + - XGGTX + (XBBTX + HTH) = 0, (6.7)
a2

with F = A - BBTX. Since (A, H) is a detectable pair, so is (F, HTH + XBBTX). Therefore, by

Lemma 2.1, F is Hurwitz, and the transfer function

T(s) = ( (j - F)-'G-BTX)

from wo to z satisfies IITIt,, < a. Note that any matrix X >_ 0 satisfying (6.6) gives this result,

so that if (6.6) has more than one positive semi-definite solution, any one of them can be used to

define the control (6.5). In fact, since Lemma 2.1 would still apply if the left-hand side of (6.7)

were negative semi-definite, any control law given by

U = -B Tz, (6.8)

ATZ+ ZA + -LZGGTZ _ ZBBTZ + HTH <0, Z>0 (6.9)
C12

provides stability and the Ho-norm bound a for the closed-loop system.

A given solution X > 0 of (6.6) will be called the "central" solution. Given such a central

solution, a family of matrices Z > 0 satisfying (6.9), and hence a family of stabilizing state-feedback

control laws which guarantee the closed-loop bound ITII00 < a, is characterized.
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Take X > 0 to be the central solution of (6.6), and hence a solution of (6.7) with F = A- BBTX.

Given this fixed matrix X, define the matrix Riccati function R by

R(M) = FTM + MF + -LMGGTM + (XBBTX + HTH). (6.10)

By Lemma 6.1, each solution of R(X,) = 0 satisfies Xi > 0. Let Z > 0 be any convex combination

of solutions Xi of R(Xi) = 0. By Lemma 6.3,

R(Z) E FTZ + ZF + 1 ZGGTZ + (XBBTX + HTH):5 0. (6.11)

To see that Z >_ 0 satisfies (6.9), rearrange (6.11) to obtain

ATZ + ZA + 1ZGGTZ - ZBBTZ + HTi

< -ZBBTZ + ZBBTX + XBBTZ - XBBTX

= -(Z - X)BB T (Z - X)5 _0.

The following theorem summarizes the characterization of a family of state-feedback Ho con-

trols:

Theorem 6.1. Let F = A - BBTX where X > 0 solves the ARE

TX + XA + AXGGTX - XBBTX + H TH = 0. (6.12)

Then, for any convex combination Z of solutions Xi of the ARE

FTX, + XF + -LXGGTX, + (XBBTX + H T H) =0, (6.13)

FZ = A - BBTZ is Hurwitz, and the state-feedback control law

u - -BTZz

guarantees that

T(S) = (s Z - Fz)-
BTZ

satisfies IT1ho0 < a.
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6.3 A Family of Output-feedback Controls

The approach of Theorem 6.1 extends to the output-feedback case: Start with Z > 0 a convex

combination of solutions Xi of (6.13). Define
A~z 1

U1 = ATZ + ZA + -LZGGTZ - ZBBTZ + HTH. (6.14)
a2

By Lemma 6.3, U, < 0. The following theorem now gives a family of observers for each state-

feedback Ho control characterized by such a Z.

Theorem 6.2. Assume A + a- 2GGTZ - BBTZ is Hurwitz. Let Y > 0 satisfy

AY + YAT + -LYHTHY - YCTCY + GGT = , (6.15)

with (A - yCTC) Hurwitz. Let V > 0 be any convex combination of solutions Y of

(A - YCTC)yI + YI(A - YCTC)T + 1Y,(IT H _ U,)y, + (yCTCy + GGT) = 0 (6.16)

satisfying a.{VZ} < a 2 , and define the observer gain L by

L = (I - a- 2VZ)-VCT = (V- - a- 2 Z)-CT. (6.17)

Then, the controller

= (A + -LGGTZ - BBTZ - LC) + Ly, (6.18a)

u = -BTzX, (6.18b)

stabilizes the plant (1.3), and provides the closed-loop H,-norm bound IITIko < a.

Proof. First note that, since U1 : 0, (HTH - UI) > 0. By Lemma 6.3,
(A - YCTC)V + V(A - YCTC)T + -LV(HTH - U,)V + (yCTCy + GGT) 0 O. (6.19)

a2

Algebraic manipulations similar to those in the proof of Theorem 6.1 give

AV + VAT + IVHTHV - VCTCV + GGT < 1 VUV. (6.20)
a2  a2

Pre- and post-multiply (6.20) by aV - 1 to obtain

(a 2 V 1 )A + AT( 2 V - 1 ) + HTH - a2 CT C + (a2V-I)GGT(a2V- ) < U1. (6.21)
a2
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Subtract (6.14) from (6.21) to obtain

(a2V - 1 - Z)A + AT(a 2V - i - Z) - a2cTc + L(2V-1)GGT(a2V - 1)

+ZBBTZ - -ZGGTZ < 0 a2 (6.22)

Define X1 = (a2 V - 1 - Z) > 0. Then (6.22) becomes

XIA + ATX 1 - a 2CTC + 1(X! + Z)GGT(X1 + Z) + ZBBTZ - ZGGTZ <0 . (6.23)

Now define U2 5 0 as the left-hand side of (6.23); rearranging terms, (6.23) becomes

U2 - XI(A + a- 2GGTZ - LC) + (A + a- 2GGTZ - LC)TX 1 (1 1 T T< .(6.24)
+a2CTC + 7-X,GGTX + ZBBTZ <0.

With the controller (6.18), the closed-loop system transformed to error coordinates is described by

A ( - BBTZ -BBTZ G 0~
a- 2GGTZ A + a-2GGZ - LC -G L)

A. H 0
_BTZ _BTZ

Define

and consider the quantity

X,F + F,, X, + 2XeG, G, X + A-T A.. (6.25)

The two off-diagonal blocks of (6.25) are identically zero. The upper-left block of (6.25) gives U1

defined in (6.14), and the lower-right block gives U2 defined in (6.24); therefore,

0 U

By Lemma 2.1, F, is Hurwitz, and T(s) = /,(sI - PF)- 1 0, satisfies IlTi, _ a, provided (Pe, te)

is a detectable pair. Detectability is proved exactly as in the development of Theorem 2.1. Q.E.D.
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Recall that Theorem 1.3 gives a parameterization of the set of all output-feedback controllers

guaranteeing the Ho,-norm bound a. Some of these controllers are of high order, and are therefore

undesirable. By contrast, Theorem 6.2 characterizes a family of controllers with realizations all of

the same order as the plant, which all guarantee the Ho-norm bound a.

6.4 A Family of Decentralized Controls

A generalization of Theorem 6.2 to the decentralized case cannot be readily obtained. Manip-

ulations like those in the proof of Theorem 6.2 applied to the Riccati-like (decentralized) design

equation do not give the desired result. Therefore, while Theorem 6.2 gives a family of observer

designs for each state-feedback design, the next theorem gives only one decentralized observer de-

sign for each state-feedback design of Theorem 6.1. The definitions of Z and U1 assumed in the

theorem statement are as above.

Theorem 6.3. Assume A + a- 2GGTZ - BBTZ is Hurwitz and A + a- 2GGTZ has no jw-axis

eigenvalues. Let W > 0 satisfy the Riccati-like algebraic equation

AW + WAC' + a2 , - WCTCCW (6.26)

+GcGT + (W - WD)CycG(W - WD) = 0,

and compute Lc = Diag (L 1,L 2,... ,Lq) as

L. = WDc T . (6.27)

Then, the control law

=(A + AGGTZ - BBTZ -LC,)+L,y,, i E {1, 2,... ,q}, (6.28a)

u- -BTZ,, iE {1,2,...,q}, (6.28b)

stabilizes the plant (1.14), and provides the closed-loop H,,-norm bound IITIk < a.

Proof. Using (6.27), rewrite (6.26) as

(Ac - LcCc)W + W(AC - LCc )T + -LWXcBBTXcW + GcGT + LjLT = 0. (6.29)
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Pre- and post-multiply (6.29) by aW - to obtain

(2W-1)(Ac - LCC) + (A, - LcC)(a2W - 1) + XCBCBYXC (6.30)
1,, +LoLT)(a 2W-1) =0
a2

With controllers (6.28), the closed-loop system is described by the matrices

PeA -BBTZ -BBcTZc ) e G 0a-2GcGT Z A,, - LcC, -Ge L,

(6.31)

-Bz -BCo

where (6.31) differs from (3.11) only in that X has been replaced everywhere by Z. Define

0 a2W-1

and consider the quantity

X.e. + P.11e + 1 X I.Oe f + Ht.- (6.32)

The two off-diagonal blocks of (6.32) are identically zero. The upper-left block of (6.32) gives U1

defined in (6.14). The lower-right block is zero by (6.30). Therefore,

1 U 0 0 .+eP '+ 72+ f(" 0- jITI -" , (u 0 ) 0 .)

By Lemma 3.1, (.,,He) is a detectable pair; therefore, by Lemma 2.1, the closed-loop system is

stable, and the closed-loop transfer-function matrix T(s) = fIl(sI -e)-0e satisfies JITIIoo < a.

Q.E.D.

Similar to Theorem 6.2 in the centralized case, Theorem 6.3 gives a family of decentralized

control laws which guarantee a predetermined Hoo-norm bound for the closed-loop system, and

which are characterized by controllers of the same order as the plant. Unlike the centralized case,

the family of decentralized controls consists of only a single controller associated with each member

of a family of state-feedback controls.
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Chapter 7

Conclusions

This thesis has presented a unified approach to the design of robust and reliable decentralized

control systems. The basic decentralized design developed includes an observer-type controller in

each control channel, which uses a state-feedback model for unknown disturbances. Feedback gains

are computed from a state-feedback design ARE, and observer gains axe computed from a Riccati-

like algebraic equation. The existence of solutions to the design equations guarantees that the

closed-loop system matrices satisfy an algebraic Riccati inequality, which is sufficient to establish

stability and a predetermined H,, disturbance-attenuation bound. This bound is included in the

design equations as the parameter a. Appropriate solutions to the design equations will exist only

for sufficiently large values of a.

No necessary condition, other than the absence of unstable fixed modes, has been found for

the solution of the Riccati-like equation to exist. On the other hand, neither has any sufficient

condition for its solution been derived. A simple iterative method for solving the Riccati-like

algebraic equation has been used with excellent results; however, there is no guarantee that this

iterative method will yield a solution whenever one exists. Existence conditions and computational

methods for solutions of the Riccati-like equation are subjects for future research.

A modification of the basic design produces a decentralized control law which is robust with

respect to structured plant uncertainty. The design modification is equivalent to including addi-

tional disturbances and regulated outputs in the nominal plant description. In addition to the

choice of the design parameter a, there is freedom in the robust design to specify bounds ck on

the norms of uncertainty terms for which robustness is desired. If these bounds are too large,
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appropriate solutions to the design equations will not exist. The ak's may be varied as design

parameters to determine the largest uncertainty bounds for which the robust design exists. Alter-

natively, the ak's may be chosen simply to define a relative weighting to be given to robustness and

disturbance-rejection considerations in the design.

Another modification of the basic design produces centralized and decentralized control laws

which provide stability and Ho. disturbance attenuation not only when the system is operating

properly, but also in the presence of certain system measurement or control input failures. The

design modification is equivalent to including in the plant description additional disturbances or

regulated outputs to account for possible control input or measurement outages, respectively. Given

the existence of appropriate solutions of the design equations, the reliable designs can tolerate

system component outages within a prespecified set of susceptible sensors or actuators in the

centralized case, or within a prespecified set of susceptible controllers in the decentralized case.

Of course, for appropriate solutions of the design equations to exist, the measurement and control

components not included in the susceptible set must be able to stabilize the system by themselves.

In the case of control laws designed to tolerate possible actuator outages, the additional condi-

tion that the control law be open-loop stable is required. If such a design is attempted, but results

in an unstable controller, dosed-loop system stability is not guaranteed. In this case, the design

can be further modified to include strong-stabilization properties. In the decentralized case, for

example, the combined design modifications would consist of (i) appending the columns of aBn

to the disturbance matrix G in the plant description, and (ii) adding a constant block-diagonal

matrix, with a 2BBT blocks on its main diagonal, to the left-hand side of the Riccati-like design

equation.

The robust and reliable designs are obtained at the cost of allowing a higher Hoe disturbance-

attenuation bound. This is natural, since the larger the Hoe-norm bound is allowed to be, the larger

is the set of controllers which will guarantee that bound. For a sufficiently large bound, then, the

corresponding set of controllers may include controllers with desired special properties. The design

methods presented in this thesis select such controllers from among all controllers which guarantee

the specified disturbance-attenuation bound.

A convexity property of a certain matrix Riccati function is used to develop a parameterization

of families of controllers which provide stability and Hoe disturbance attenuation. This param-
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eterization has two advantages over the one given in Theorem 1.3: First, it includes families of

decentralized control laws. Second, it gives only controller realizations of the same order as the

plant. Hence, the order of the plant is an upper bound for the order of a minimal realization of any

of the controllers in a given family. One criterion for choosing among the controllers could be the

order of their minimal realizations. How to choose from the family a controller with a lower-order

minimal realization is a problem for future research.
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