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ABSTRACT

e

This thesis presents a new method of decentralized linear, time-invariant control system syn-
thesis based on the algebraic Riccati equation (ARE). The basic decentralized design guarantees
closed-loop stability and a predetermined level of worst-cast disturbance attenuation. Certain
modifications of the basic design guarantee the stability and disturbance attenuation to be ro-
bust despite plant uncertainty or reliable despite control-component outages. Other modifications
guarantee that a subset of the controllers will be open-loop stable.

The derived decentralized control law consists of a full-order observer of the plant in each control
channel. Each observer includes estimates of the 'controls generated by the other channels and of
plant disturbance inputs, based on its own estimate of the state of the plant. All of the observer
gains are computed from the solution of a single Riccati-like algebraic equation, while feedback
gains are computed from a state-feedback design ARE. The existence of appropriate solutions to
the design equations is sufficient to guarantee the various properties of the closed-loop system.

A convexity property of a certain matrix Riccati function allows parameterization of families of
control laws with the same desired properties. Each value of the parameter results in controller of

the same order as the plant.
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Chapter 1

Introduction

1.1 The H, Control Problem

The so-called H,, criterion for control system design has grown popular since it was first intro-

duced by Zames in [37]. Defined for a stable transfer-function matrix T'(s) as

ITlleo = sUP Omax {T(jw)} (1.1)
w€ER

(where Omax{-} denotes the maximum singular value), or equivalently as

ITlleo = sup [|z]lz (12)

lhwtla=1
(where 2(s) = T(s)w(s), and |- ||2 denotes the root-integral-square norm in either the time domain
or the frequency domain), the H,, norm represents a worst-case cost when the objective is to keep
lIzll2 as small as possible.
The formulation of the standard H, control problem for the linear, time-invariant case generally

includes a plant of the form

z = Az + Bu + Guwo, (1.3a)

y=Cz + w, (1.3b)

[7)
z= , (1.3¢)
u

where z is the state of the plant, u is the control input, y is a measured output, z is an output to be

regulated, and wo and w are square-integrable disturbances. The problem is to design a feedback




.controller which uses the measurement y to produce a control input u such that, when the loop is
closed, the transfer-function matrix from w, = (}°) to z has a small H, norm. This H, norm
represents a worst-case disturbance attenuation for the closed-loop system. Figure 1.1 depicts the
problem setup. (Figures are grouped at the end of the chapter.)

Many familiar problems, in addition to the disturbance-rejection problem, can be recast as a
version of this standard problem. Figure 1.2 shows how a frequency-weighted disturbance-rejection
problem, a model-reference problem, and a tracking problem can be transformed into the standard
form of Figure 1.1. In each case, any exogenous input is included in the disturbance vector w, and
the regulated output vector z is the error to be minimized. Note that for the tracking problem, and
for the model-reference problem when M(s) is not strictly proper, z must be allowed to depend
directly on the exogenous input. While this is not the case for the plant (1.3), this generalization
can be accommodated; see [15).

Closely related to the H,, disturbance-rejection problem is that of robust stabilization of a
plant Py(s)+ A(s), where the nominal plant Po(s) is known, but A(s) is restricted only by a bound
on ||A||co- The controller which solves this robust stabilization problem with the largest admissible
bound on ||A|| is that which provides the smallest possible Ho norm for the nominal closed-loop
system [38). See [12] and its references for a survey of the literature up to 1987 on robust stability
and H, performance.

Until quite recently, the computations for designing an H,-optimal controller (summarized
in [23]) were formidable: They included stable coprime factorizations of the plant and a stabiliz-
ing controller, plus a parameterization of all stabilizing controllers [36], leading to an equivalent
model-matching problem; inner-outer and spectral factorizations, leading to an equivalent Ho,- Lo
approximation problem [24]; and solution of the H,-Lo, approximation problem by Hankel-norm
approximation methods [16].

Developments in the last few years, however, have simplified H., control design considerably.
Results such as those in [19], [22], and [25] have established that robustly stabilizing control designs
can be computed from algebraic Riccati equation (ARE) solutions. Still more recently, [14], [17],
[21], and [39] have given H, disturbance-rejection designs also computed from ARE solutions, and
(3] has given an ARE-based design which simultaneously gives Ho, and LQG cost bounds for the

closed-loop system.




Given any control input u to the plant (1.3), define the cost functional

J(u) = sup {-"lluj—(%z- :wp € L2[0,00), wp # 0} .

Note that the measurement (1.3b), and hence the measurement noise w, is not considered in this
definition. Therefore, the cost J(u) is associated with open-loop controls or state-feedback controls.
In the case where u is a state-feedback control, J(u) is the Ho norm of the closed-loop transfer-

function matrix from wg to 2. Define the optimal cost as
Qoo = inf {J(u) : u € L3[0,00)}. (1.4)
The following theorem from [14] gives a means of determining o, and also establishes that there

exists a state-feedback control law which achieves any Hoo-norm bound larger than o

Theorem 1.1. For the plant (1.3) with (A, B) stabilizable, and (A, H) detectable, the bound
ax < @
holds if and only if
ATX + XA+ %XGGTX -XBBTX + HTH =, (1.5)

with X > 0 and Aq = A — BBTX + a~2GGT X Hurwitz. If so, then use of the state-feedback
control law

u=-BTXz (1.6)
stabilizes the plant, and gives a closed-loop transfer-function matrix

T(s) = (_ ;’T x) (sI - A+ BBTX)"'G

from wq to z satisfying ||T||e < a.

Note that there may be several solutions X > 0 to the ARE (1.5). The condition that A, must
be Hurwitz specifies a particular solution X > 0, and also assures that the Hamiltonian matrix
associated with the ARE (1.5) has no jw-axis eigenvalues.

Theorem 1.1 establishes a relationship between H,-optimal control and LQ-optimal control.

The state-feedback control law given by (1.5) and (1.6) becomes H,-optimal as a approaches the




lower bound @, reflecting a great concern with disturbance rejection, along with confidence in
the disturbance “directions” characterized by the matrix G; on the other hand, as a approaches
0o, the design becomes LQ-optimal, reflecting little concern with the particular disturbance wyq.
Of course, choosing a very large in a design does not imply that the closed-loop system will have
a very large H,, norm; rather, the bound ||[T||lc < a becomes very conservative for a » au.
An easy method for computing a tighter H,,-norm bound for the design of Theorem 1.1, as well
as for various ARE-based state-feedback designs, is developed in [28]. Applied to examples, this
method shows that even the LQ-optimal design corresponding to a = oo above often has acceptable
disturbance-attenuation properties. The results of [28] and the results of this thesis share the same
ARE-based approach to computing or guaranteeing Hoo-norm bounds; however, the results of [28]
are not considered here in detail, since they are essentially analysis tools which provide a posteriori
bounds for systems designed by several methods. This thesis is concerned with new design methods
which provide a priori bounds for the closed-loop systems.

If the control u for plant (1.3) must be generated by a controller that uses only the measurement
y given by (1.3b), then the greatest lower bound of the set of achievable closed-loop H, norms
is generically greater than a., defined in (1.4). The following theorem from [14,13] gives a means
of determining this greatest lower bound, and also gives an output-feedback control law which

guarantees any given H-norm bound achievable by output feedback.

Theorem 1.2. In the plant (1.3), assume (A,B) stabilizable, (A,C) detectable, (A,G) stabilizable,
and (A,H) detectable. Then there exists a stabilizing controller such that the closed-loop transfer-

function matrix T(s) from w, to z satisfies ||T|| < a if and only if
ATX + XA+ ZIEXGGTX ~XBBTX +HTH =0 (1.5)
with X > 0 and A, = A - BBTX + a~*GGT X Hurwitz,
AY +YAT + %YHTHY —YCTCY +GGT =0 (L7)
withY >0, A -YCTC + a~?Y HTH Hurwitz, and
omax{Y X} < a?. (1.8)
If so, then the output-feedback control law

é = (A + a—lg-GGTX _BBTX - LC) £+ Ly, (1.9a)




u=-BTX¢ (1.9b)

with
-2 -l AT
L=(I-a%YX)" YC (1.10)

stabilizes the plant and gives a closed-loop transfer-function matrix from w, to z satisfying ||T||cc <

a.
The controller (1.9) can be rewritten in the form
€ = AE + Bu+Gin + L(y - C¢), u=-BTXE, (1.11)
with
iy = %GTX& ' (1.12)

The form (1.11) is essentially that of an observer: It mimics the plant dynamics (1.3a) and includes
a correction term based on the measurement y. Unlike a standard observer, it includes a term
representing an unmeasurable disturbance. Equation (1.12) corresponds to a state-feedback model
of the disturbance wy. Like an LQG-optimal control law, then, the H,, control of Theorem 1.2 has
an observer structure, with the observer gains computed from an algebraic Riccati equation. As
in an LQG design, the observer design equation (1.7) is a dual form of the state-feedback design
equation (1.5). In fact, setting a = oo reduces (1.5) and (1.7) to LQG design equations.

The difference between the LQG and H,, designs can be interpreted as in the state-feedback
case: The H, design is more concerned with disturbance rejection. The form (1.12) represents an
approximation of the disturbance wg worst = %GTX z, which is given in [33] as a worst disturbance
in a game setting where the state-feedback control u plays against the disturbance wp and initial
conditions.

The set of all stabilizing output-feedback controllers guaranteeing a particular H..-norm bound

is given in [13] as follows:

Theorem 1.3. If the conditions of Theorem 1.2 are satisfied, then the set of all finite-dimensional

stabilizing output-feedback controllers guaranteeing ||T || < a is given by

= (A + ;1-2-GGTX -BBTX - LC) E+Ly+ (I - a"YX) - Bv (1.13a)
u=-BTX¢t+v, (1.13b)
5




where L is given by (1.10), and v is given in the frequency domain by v(s) = Q(s)(y(s) — C&(s))

with Q(s) being any finite-dimensional, stable transfer-function matrix satisfying ||Q]lcc < .

Note that picking Q(s) = 0 results in the central control law of Theorem 1.2. It is possible that
some controller given by Theorem 1.3 may be of lower order than the plant, but there is no clear
way of choosing Q(s) to be sure to obtain such a lower-order controller. Further, many choices of

Q(s) will yield controllers of order higher than the plant.

1.2 The Decentralized Case

The H,, control problem can be generalized to the decentralized case, where the plant is described

by

q
& = Az + ) Biu; + Guo, (1.14a)
i=1
yi=Ciz+w;, i€ {1,2,...,q}, (1.14b)
Hz -

u
z= . . (1.14¢)

Uq

The decentralized control structure consists of the restriction that each control input u; must
be generated by an independent controller which uses only the corresponding measurement y;.
This restriction corresponds to the practical need in some situations to control a large system by
means of several controllers which, because of physical separation or other reasons, cannot exchange

measurement or control information. The goal is to design dynamic controllers
€ = Agili + Buiwi, €{1,2,...,q}, (1.15a)

U = CdiEiv t€ {1, 2,... ,Q}, (115b)

which will stabilize the decentralized plant (1.14), and provide a predetermined H,-norm bound
for the closed-loop system.
Many past results in decentralized control are concerned with conditions for existence of sta-

bilizing decentralized control laws. Davison reviews some of these results in [9]. One important
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result [32] is based on the concept of the “fixed modes” of a decentralized plant. A decentralized
fixed mode of plant (1.14) is defined as any eigenvalue of A which cannot be moved by a static
decentralized feedback; that is, the set of fixed modes is defined as

ﬂ A{A+ BKC},

KeD

where D is the set of block-diagonal matrices whose blocks are sized to conform in the obvious way

with the sizes of the blocks of B and C defined by
B= (B B; ... By),
cT=(crcf ... cl),

and A{-} denotes the set of eigenvalues. The main result of [32] is that a plant can be stabilized by
a linear, time-invariant decentralized control law if and only if it has no fixed modes in the closed
right-half plane. Hence, the concept of a (decentralized) fixed mode is an extension of the concept
of an uncontrollable or unobservable mode in the centralized case. An algebraic condition given in
(1] equivalent with the presence of fixed modes in a strictly-proper decentralized plant is that, for

some renumbering of control channels, for some integer ¢ < ¢, and for some complex number s,

s[-A Bl e Bg
Cor 0 ... 0

rank | Y | <n (1.16)
C; 0 ... 0

If (1.16) holds, then s is a fixed mode of the plant. The degenerate case t = 0 in (1.16) corresponds
to a plant which is not observable by all the measurements jointly, while ¢ = ¢ in (1.16) corresponds
to a jointly uncontrollable plant.

Some other results give conditions under which a decentralized plant can be made controllable
and observable through a single control channel by some feedback applied in the other channels.
For example, a2 main result of [11)], restated as Corollary 2 of [5], states that if a controllable two-
channel plant is completely observable by one channel, there exists some nondynamic feedback in
that channel which will make the plant completely controllable by the other channel. That is, if

(A,[B1 By)) is a controllable pair and (A, C3) is an observable pair, then there exists a constant




matrix K such that (A + B3 KCj, B) is a controllable pair. Other results (for example, Corollary 3
of [5] and Theorem 1 of [6]) give more general, but more complicated, conditions related to the zeros
of the plant’s transfer-function matrix and the connectivity of the plant’s graph. More recently,
[35] gives extensions of the results of [5] and [6] to the multi-channel, non-strictly-proper case.
Results in {35] depend on the concept of a strongly-connected plant. A decentralized plant with

the open-loop transfer-function matrix P(s) given by

yl(.s) Pu(s) qu(.s) ul(s)

210)) Pp(s) ... Pyyls) ug(s)
is defined to be strongly connected if for every renumbering of control channels, and for every

integer t satisfying 0 < ¢t < g,

P1'¢+1(8) cee qu(s)
: : # 0.
})g'g.g.l(s) cee qu(s)

A main result of [35] is that if a decentralized plant is strongly connected, and if it has no fixed
modes, then almost any preapplied nondynamic decentralized feedback makes the plant controllable
and observable in each control channel.

In (7] appear necessary and sufficient conditions for existence of a solution to a decentralized
robust servomechanism problem. The key point of [7] is that, provided the outputs to be regulated
can also be measured, a decentralized control which provides tracking and disturbance rejection
for a certain class of reference and disturbance inputs exists for almost all plants. For decen-
tralized plants composed of interconnected subsystems, (7] and [8] establish similar facts: If each
subsystem admits a solution to a centralized robust servomechanism problem, then the compos-
ite system admits a solution to the decentralized robust servomechanism problem, provided the
subsystem interconnections are sufficiently weak or that the subsystems are interconnected only
through subsystem inputs and outputs.

There have been a number of approaches to decentralized design. Existence results like those
of [5] and [35] suggest a simple one: Preapply to the plant a non-dynamic decentralized feedback

— almost any one will do — which will transfer sufficient control authority to one control channel




that the system can be at least stabilized from there. However, there is a great deal of design
freedom in this approach, and no clear way of making optimal design choices. The existence results
of [7] and (8] also suggest a design approach for decentralized control of composite systems: Design
a separate controller for each subsystem, ignoring interconnections. This approach is depicted
in Figure 1.3. While there are many good ways of designing the subsystem controllers, there is
generally no guarantee that they will stabilize the overall system.

A decentralized design approach is given in [20] for so-called multilevel systems. Multilevel
systems, some examples of which are depicted in Figure 1.4, are composite systems whose subsystem
interconnections are one-way and loop-free. The approach is to design optimal controllers for the
subsystems starting at the top level, optimizing each controller without accounting for the dynamics
of lower-level subsystems. The inputs from higher-level subsystems are modelled as disturbance
inputs obeying known dynamic equations, since higher-level subsystem controls are designed earlier.
Thus, the design method is sequential in nature. The resulting design guarantees stability, plus
optimality of each separate subsystem given the designs of higher-level subsystem controllers.

Another sequential design procedure for general decentralized systems appears in [10]. Here,
the *® controller is designed to control the plant plus the first i — 1 controllers. That is, the ith
controller design views the first i — 1 controllers not as sources of disturbance inputs, but as part
of the plant to be controlled. The resulting designs guarantee stability, and each controller can be
designed to optimize a cost functional which depends only on the plant and previously-designed
controllers.

A drawback of sequential designs is that, when dynamic compensators are used, the effective
order of the plant to be controlled increases with each controller added. Many controller designs
result in controllers the same order as the plant model; thus it is easy to envision a sequential design
where the first controller designed has order n, the second has order 2n, the third has order 4n, and
so on. To get around this problem, some controller reduction may be done at each step so as to keep
each controller at some fixed order. Once all the controllers are designed, they may be redesigned,
now taking into account the presence of all designed controllers, but retaining the same low order.
Hence, such a design is both sequential and iterative, with each controller refined at each iteration.
For example, in the iterative sequential design in [2], each controller design takes into account the

presence of previously designed controllers, but is obtained from optimal projection equations and




therefore has a fixed (low) order. The design equations correspond to a necessary condition for
the decentralized control law to minimize a steady-state cost functional in the presence of random
noise inputs, subject to the a priori constraints on controller order. If the design equations can be
solved, the cost associated with the closed-loop system is guaranteed to decrease with each design
iteration.

A nonsequential approach applicable to general decentralized systems [18] is to consider the
whole plant in the design of each controller, but to ignore the effects of other contrullers. This
approach is depicted in Figure 1.5. Under certain restrictions on the strength of plant/controller
interconnections, the controllers acting together are guaranteed to stabilize the plant. The restric-
tions are technical conditions which grow out of a study of stability via generalized overlapping

decompositioné of the closed-loop system.

1.3 Reliable Control

In a centralized control System, controller failure leaves the plant without control input. This
condition is undesirable, especially if the plant is unstable. On the other hand, a single controller
failure in a decentralized control system is not necessarily catastrophic, even for an unstable plant.
Hence, the use of multiple controllers in a decentralized control design provides the potential for
increased system reliability. However, for existing design methods, whether or not a given decen-
tralized system is actually reliable despite possible controller outages depends upon the particular
example, and can be determined by analysis only when the design is completed.

In [26], Siljak considers the approach of designing multiple separate controllers, each of which
stablizes the plant by itself. There are technical restrictions on plant/controller interconnections
necessary to guarantee that all the controllers together, or some subset of the controllers, also
stabilize the system.

In (4], Cho, Bien, and Kim consider the approach of designing a redundant controller to operate
in parallel with a baseline stabilizing controller. The redundant controller is a model-reference
adaptive controller whose reference model is that of the baseline closed-loop system. For various
failure modes, the redundant scheme guarantees stability and asymptotic reference-tracking.

In [31], Vidyasagar establishes some results on the reliable stabilization of a plant by two

controllers summed together. For example, given any stabilizing controller for a plant, [31] gives

10




a means of computing a second stabilizing controller such that the two controllers added together
also stabilize the plant. The computation involves stable coprime factorizations of the plant and
the first controller, and may result in a second controller of high order.

Related to the issue of reliable control is that of strong stabilization, defined as the stabilization
of a plant by an open-loop stable controller. If the input of a strongly stabilizing controller becomes
disconnected from the plant output, at least the controller will not apply unwanted large inputs to
the plant. The so-called “pole-zero interlacing property” given in {31] is a well-known necessary and
sufficient condition for the existence of a strongly stabilizing controller. As with existing reliable
designs, strong stability results are mainly concerned that the system simply remain stable despite

a controller failure.

1.4 Contribution of This Thesis

This thesis presents a new method for designing decentralized control systems to accomplish
a variety of design goals. The basic design method produces a decentralized control law which
guarantees closed-loop stability and a worst-case ( H,) disturbance-attenuation bound when applied
to the plant (1.14). The control law consists of a full-order observer in each control channel. Like
the centralized controller (1.9), each observer uses an estimate such as that given in (1.12) to
approximate the disturbance wg. In addition, each observer uses estimates of the controls applied
in the other channels. These estimates correspond to the strategy shared by the controllers for
approximating the state-feedback control law given by (1.5) and (1.6).

The decentralized control law uses the state-feedback gains computed from (1.5) for feedback
of the state estimates, and observer gains computed from a single Riccati-like design equation;
hence, the controllers are designed all together, rather than sequentially. Since each controller is
based on a full-order observer of the plant, each has the same order as the plant. The existence of
appropriate solutions to the design equations is sufficient to guarantee the stability and performance
of the closed-loop system under the decentralized control law. No other condition on the subsystem
interconnections or the plant/controller interconnections is needed. Of course, the design equations
will have no solution if the plant has any unstable fixed modes.

Variations on the design equations allow the design of robust, reliable, or strongly-stabilizing

decentralized control laws. Each design guarantees stability and a predetermined degree of distur-
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bance attenuation. In addition, the robust design can tolerate constant plant uncertainties from a
given bounded set; the reliable design can tolerate outages of any or all controllers in a predefined
subset of controllers; and the strongly stabilizing design guarantees that all controllers from some
predefined subset will be open-loop stable. A centralized reliable design is also developed which
can tolerate outages of some sensors or actuators.

The various robust, reliable, and strongly stabilizing designs developed can be combined into a
design which will guarantee any or all of the desired properties at once.

Finally, a convexity property of the matrix Riccati function
R(X)= FTX + XF + %xcc’x +HTH, (117)

with F Hurwitz, allows easy computation of families of matrices Z > 0 satisfying R(Z) < 0, and
hence, families of decentralized control laws with any of the desired properties. For any control law
in the family, the decentralized controllers all have the same order as the plant.

Chapter 2 describes the approach taken to developing new decentralized control laws. The main
result of Chapter 2 is Lemma 2.1, which is the basis for all the designs which follow. The result

consists of a sufficient condition in the form of an algebraic Riccati inequality
T 1 T T
R(X)=F X+XF+;2-XGG X+H' HLO (1.18)
which guarantees the Hy,-norm bound ||T||cc < a for the transfer-function matrix
T(s) = H(sI - F)™1G.

Based on Lemma 2.1, simple new derivations of the control laws of Theorems 1.1 and 1.2 are given.
These derivations give insight into the decentralized designs presented in the following chapters.

Chapter 3 presents the basic decentralized control design, which is characterized by closed-
loop stability and a predetermined degree of worst-case disturbance attenuation. The basic design
results in a closed-loop system which satisfies (1.18) with equality holding. Two examples follow
the derivation.

Chapter 4 presents a decentralized design which has the properties of the basic design, and
is also robust with respect to structured uncertainty in the plant. The robust design results in a

closed-loop system whose matrices satisfy (1.18) for any plant uncertainty in a bounded admissible
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set. Following the derivation is a robust state-feedback design example. This example illustrates
the concept of robust design, while avoiding the complicating details of decentralized design.

Chapter 5 presents new results on reliable control. Similar to the robust design, the reliable
design method results in a closed-loop system which satisfies (1.18) for any admissible controller
failures. The design method is first developed in the centralized case, where reliability is guaran-
teed despite possible outages of some sensors or actuators. Then, a decentralized design method is
derived which guaratees reliability with respect to possible controller outages. An example demon-
strates that the resulting reliable decentralized design can tolerate controller outages which would
cause instability for the basic design. A new design method is also presented which guarantees that
the controller, or some prespecified subset of controllers in the decentralized case, will be open-loop
stable.

Chapter 6 presents the properties of the matrix Riccati function R(X) which allow computation
of families of decentralized control laws with desired disturbance-attenuation, robustness, reliability,
or strong stabilization properties. A family of state-feedback designs is presented first. Then it is
shown that a family of centralized observers with the desired properties can be computed for each
member of the family of state-feedback controls. In the decentralized case, however, only one set
of decentralized observer gains can be computed for each state-feedback control, yielding a family

of decentralized control laws corresponding exactly with the family of state-feedback control laws.
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Figure 1.1: The standard H,, problem setup.
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Figure 1.2: Reformulation of familiar problems to fit the standard form.
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Figure 1.3: Decentralized design ignoring subsystem interconnections.

Figure 1.4: Some examples of multilevel systems.

15




K2 K2
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Chapter 2

The Approach

2.1 The Key Lemmma

The following lemma establishes a sufficient condition, in the form of an “algebraic Riccati
inequality,” for a given system to be stable and have a particular H-norm bound. The lemma is

a simple extension of Lemma 1 of [34).

Lemma 2.1. Let T(s) = H(sI - F)~'G, with (F, H) a detectable pair. If there exist a real matrix
X 2 0 aad a positive scalar a such that

FTX+XF + i—,XGGT X+HTH <9, (2.1)

then F is Hurwitz, and T(s) satisfies
1Tloo < a. (2.2)

Proof: Suppose (2.1) holds, with X > 0. To show that F is Hurwitz, let v # 0 satisfy
Fy = Ao, |
Multiply (2.1) on the left by v* and on the right by v to obtain
2Re(\)v* Xv + ;lgv‘XGGTXv +vHTHv <. (2.3)

Now, 2Re(A)v*Xv < 0 since all other terms on the left-hand side of (2.3) are non-negative. If
Re(A\)v*Xv < 0, then v*Xv > 0 and Re(A) < 0. If, on the other hand, Re(A)v*Xv = 0, then all

terms in (2.3) must be zero. Therefore, the eigenvector v of F is in the null space of H. Since
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(F, H) is detectable, the corresponding eigenvalue must be in the open left-half plane. In either
case, Re(A) < 0; thus, F is Hurwitz.
Now, to prove (2.2), let w € IR; add and subtract jwX to obtain from (2.1)

—(=jwI - FT)X - X(jwI - F) + %XGGTX +HTH<O. (2.4)
Since F is Hurwitz, (jwl — F) is invertible. Define
K(jw) = ZI;GTX(ij - )G,
pre-multiply (2.4) by LGT(—jwI — FT)~!, and post-multiply by 2(jwl — F)~'G to obtain

_K(ju) - KT(=jw) + K7 (i) K(jw) + =TT (~jw)T(jw) £,

which gives
1 . . . .
I~ —TT(=jw)T(jw) 2 [ - KT (=jw)llf - K()]
Therefore, for all w € R,
1,.,. . . \e .
I - =T*(jw)T(jw) 2 [ - KGu)'[I - K(w)] 2 0,
which implies (2.2). Q.E.D.

2.2 The General Approach

Lemma 2.1 suggests a particular view of the H,, control designs of Theorems 1.1 and 1.2, along
with a new approach to decentralized H,, design. The approach is to first fix a controller structure,

so as to determine the form of the closed-loop system
2. = Fez. + Gew., z= H.z., (2.5)
and then select controller gains so that, for some P, > 0, the algebraic Riccati equation
FTXo 4 XoFe+ —X.GoGTX, + HTH, + P. = 0 (2.6)

has a solution X, > 0. By Lemma 2.1, if (F,, H.) is a detectable pair, then the closed-loop system
(2.5) is stable, and T'(s) = H.(sI — F.)"'G. satisfies ||T|jcc < a.
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In the designs of Theorems 1.1 and 1.2, controller parameters are chosen to depend on solutions
of the design equations (1.5) and (1.7), so that a solution X, > 0 of (2.6) is guaranteed to exist,
with P, = 0. In Chapter 3, this same approach is applied to decentralized control. To guarantee
that (2.6) is satisfied, the observer gains are computed from the solution of a Riccati-like algebraic
equation.

Choosing P, = 0 in (2.6) yields what we shall call the “basic design,” characterized by stability
and the Hoo-norm bound ||T|jec £ @. Choosing some other P, > 0 allows greater design freedom
to obtain “special designs” with additional desired properties. Specifically, particular choices of
P. > 0 are used in this thesis to guarantee the following additional properties:

(i) Robustness with respect to constant structured uncertainty in the plant 4-matrix, when the

uncertainty belongs to a predetermined bounded set;

(ii) Reliability with respect to controller outages, where outages may occur in any or all of the

controllers in a predefined subset of controllers;

(iii) Strong stabilization, in the sense that all controllers in a predefined subset of controllers will

be guaranteed open-loop stable.

2.3 The Approach Applied to Centralized Control

To provide insight into the approach to decentralized design described above, a new derivation
of the control law of Theorem 1.2 is now given, based on Lemma 2.1. This derivation, which also
appears in [29)], is not a complete proof of Theorem 1.2, in that it establishes only that the design
is sufficient to guarantee a predetermined H,-norm bound, and not that any achievable bound can
be obtained using such a design. For this reason, not all the conditions appearing in Theorem 1.2
are needed.

The problem here is to derive control laws to stabilize the plant (1.3) and provide an H,-norm
bound for the closed-loop transfer function matrix from the disturbance w, = (%) to z. By Lemma
2.1, a sufficient condition for a state-feedback control ¥ = Kz to stabilize the plant and guarantee

the Hoo-norm bound ||T||ec < a is that the feedback gain matrix K satisfy

(A+BK)TX + X(A + BK) + -&I;XGGTX +(AT KT (g) -0 2.7)
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with X > 0. Rearrange (2.7) as
ATX + XA+ -C%XGGTX -XBBTX + (KT + XB)YK+BTX)+ HTH=0.  (2.8)

Setting K = —BTX in (2.8) gives the state-feedback design equation (1.5). By Lemma 2.1, if

X 2> 0 solves (2.7), the control law (1.6) results in a closed-loop system with an H,-norm bound of

a. (Note that the detectability condition of Lemma 2.1 is satisfied if (4, H) is a detectable pair.)
In the output-feedback case, an observer-based control law will be used to approximate a state-

feedback control u = Kz. To mimic the dynamics of the plant (1.3), the observer takes the form
£ = Af+ Bu+Gio + L(y - C§), u= K¢, (2.9a)
where a state-feedbacl; model of the disturbance wp is assumed as
o = Kq4€. (2.90)

The feedback gain K, observer gain L, and disturbance-estimate gain K4 will be chosen so that,
when controller (2.9) is applied to the plant (1.3), the closed-loop system will satisfy the hypotheses
of Lemma 2.1.

Introduce the error vector e = £ — z, and write the closed-loop system as

; A+ BK BK G 0 . .
(’f) = + (’) + ("’°) = Foz, + Gowe,  (2.10a)
¢ GKy A+GKy-LC € -G L w
H 0\ [z\ -
z= ( ) = A.z.. (2.10b)
K K | \¢

Similar to the state-feedback case, the goal is to find X. > 0 such that

o - 1 -~ == - m s 00
F,TX,+X,Fe+a—2X,GeGZ'X,+Hf e= . (2.11)
00

To ensure decoupling of (2.11) into a state-feedback design ARE and an observer design equation,

look for a block-diagonal solution




Then, the upper-left block of (2.11) is exactly Equation (2.7). If, as in the state-feedback solution,
X > 0 solves (1.5) and the feedback gain is given by

K = -BTX, (2.12)
then the upper-left block of (2.11) is satisfied. The upper-right block of (2.11) then gives
-XBBTX + K1GTX, - %XGG’TXI +XBBTX =0,

which is satisfied if
1

a?

Given the choices (2.12) and (2.13), the lower-right block of (2.11) gives

K;= —<GTX. (2.13)

X1(A+a2GGTX - LC) + (A+a"2GGTX - LC)TX,

+ 2X,(GGT + LLT)X, + XBBTX =0. 219
Add to (2.14) the design equation (1.5) to obtain the ARE
(X+X1)A + AT(X +X1)+ H(X + X1)GGT(X + X1) - a®*CTC + HTH (2.15)
+ (3%1L-.aCT) (2L7X; - aC) =0,
which suggests the choice for the observer gain L as
XL =o*CT. (2.16)

In order that L satisfying (2.16) is guaranteed to exist, impose the restriction X; > 0. Now

introduce

Y=a(X+X))'>0 (2.17)

to transform (2.15) into the design ARE (1.7). A solution Y > 0 of (1.7), with a?Y-! > X,
guarantees X, > 0 solves (2.11) when gains KX, K4, and L are computed from (2.12), (2.13), and
(2.16). Hence, by Lemma 2.1 the closed-loop transfer-function matrix T(s) = H.(sI - F.)"'G.
satisfies ||T|loo < @, provided (F%, A.) is a detectable pair.

The needed detectability condition is satisfied if (A, H) is a detectable pair and A, = A +
a~2GG*X - BBTX is Hurwitz. To see this, let v7 = (v] o) satisfy

N A-BBTX -BBTX "
Fev = = Av, (2.18)
e ?GGTX A+a*GGTX -LC | \»
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_ H 0
Aow=| ("‘) =0, (2.19)
-BTX -BTx ) \n

and try to show that Re(A) < 0. The upper half of (2.18) and the lower half of (2.19) give
Avy = vy, while the upper part of (2.19) gives Hv; = 0. Since (A, H) is assumed a detectable
pair, this implies either Re(A) < 0 or v; = 0. Suppose v; = 0; then the lower half of (2.18) gives

(A + %GGTX - LC) vy = Av,. (2.20)
Therefore, pre-multiplying (2.14) by v3 and post-multiplying by vz, and using (2.16), gives
2Re(A)v3 X, vz + ?:-,v;x,GGwa, +a?u3CTCvg + v3X BBT Xvg = 0. (2.21)
Since every term but the first in (2.21) is nonnegative, the first term gives
Re(A)v3X3v, < 0. (2.22)

If inequality holds in (2.22), then Re()) < 0. If equality holds in (2.22), then every term in (2.21)
is zero. Hence, Cv; = 0 and BT Xv; = 0, and thus (2.20) gives

(A+a ?GGTX - BBTX) v; = Av,.
By assumption, A + a~2GGT X — BBT X is Hurwitz; therefore, Re(\) < 0.
The following theorem summarizes the result.

Theorem 2.1. Suppose (A, H) is a detectable pair, X > 0 satisfies the state-feedback design ARE
(1.5) with Aq = A+ a~*GGTX - BBTX Hurwitz, and Y > 0 satisfies the observer design ARE
(1.7) with omax{Y X} < a?. If the observer gain is given by

L=(-a?rXx)'rc?, (2.23)

then the dynamic controller
£ = (A + %GGTX - BBTX - LC) £+ Ly (2.24)
u=-BTX¢ (2.25)

stabilizes the plant (1.3), and the closed-loop transfer-function matrix T(s) = H.(sI - F.)"'G.
satisfies ||T|| < a.
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2.4 The Approach to Computing Families of Controllers

Lemma 2.1 provides not only a new way of designing control laws which guarantee stability
and an H.,-norm bound, but also a method of characterizing families of such controllers. Such
a characterization is based on the following convexity property of the matrix Riccati function R
defined in (1.17): If there are several matrices X; > 0 which satisfy the ARE R(X;) = 0, then any
convex combination Z of the X;’s satisfies R(Z) < 0. This fact allows easy computation of a family

of matrices Z > 0 satisfying
ATZ 4 ZA+ 26672 - ZBBTZ + HTH <o.

For any such Z, it is shown that the state-feedback control u = — BT Zz provides stability and the
Hy-norm bound ||T}|» < a.

Any member of the family of state-feedback controls can be used as a reference for centralized
or decentralized observer-based controls. In the centralized case, the convexity property of the
dual-form Riccati function associated with observer design also permits computation of a family of
observer gain matrices. In the decentralized case, however, the Riccati-like design equation does
not allow this freedom. As a result, the freedom in computing the family of decentralized control
laws is just that freedom available in computing the family of state-feedback control laws.

The remainder of the thesis develops the various new control design methods based on Lemma
2.1, starting with the basic decentralized design, and proceeding to robust and reliable designs, and
finally to families of designs, all guaranteeing predetermined levels of worst-case (H,) disturbance

attenuation.
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Chapter 3

The Basic Decentralized Control

Design

The same approach applied to the centralized control problem in Section 2.3 is now applied to

the decentralized problem. The design derived here also appears in [30].

3.1 Design Derivation

Consider the plant (1.14) with (4, H) a detectable pair. For convenience, adopt the following

notation:

Uy
q ug
Y " Biu;= (B, B;...B,)
i=1
Ug
n Ch w)
Y2 Ca we

Yq Cq Wy

= Bu, (3.1a)

=Cz+w, (3.1%)




= (“’°) (3.1¢)

We = »
Wq
S;=B;Bf, ie{1,2,...,q}, (3.1d)
S=5+81+...+S5,=BB". (3.1¢)

The problem is to design a controller for each of the ¢ control channels, where the i*P controller
uses the local measurement y; to generate the local control u; for the plant.

The basic decentralized control law to be developed stabilizes the plant and provides a predeter-
mined H.,-norm bound for the closed-loop transfer-function matrix from w, to z. The controllers
which make up the control law are based on observers which form estimates &;, i € {1,2,...,q},
of the state z for feedback. The state estimates are used for feedback so as to approximate the

state-feedback control

u=-BTXz, 3.2)
where X > 0 satisfies the ARE
ATX + XA+ Z%XGGTX -XSX+HTH =0. (3.3)
That is, the i*h control is given by
u; = =BT X¢&;, (3.4)

which approximates a subvector of the state-feedback control (3.2). To mimic the plant dynamics

(1.14a), the itk observer should ideally have the form

q
& = A&+ ), Bjuj + Guwo + Li(yi - Ci&i), (3.5)

i=1
where L; is some observer gain matrix. However, since the disturbance wp and the controls u;,
J # i, are not available to the observer, (3.5) cannot be implemented directly. Just as the centralized
observer (1.11) uses (1.12) as an estimate of the worst disturbance, the {*® decentralized observer
replaces wo in (3.5) by
iy = ﬁGTX&-- (3.6)
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The *® observer also replaces u;, j # i, by
# = - B X¢&, (3.7)

which are approximations, based on the state estimate of the i*P controller, of the controls applied
by the other controllers according to their shared strategy. With the control (3.4), the observer

structure (3.5), and estimates (3.6) and (3.7), the i*® controller becomes
f',- = (A + %GGTX -5X - L.'C.‘) &+ Ly, (3.8a)
w; = - BT X¢&;, (3.85)

where the observer gains L;, i € {1,2,...,q}, are to be determined.
Applying the ¢ controllers (3.8) to the plant (1.14) gives a closed-loop system of order (g + 1)n
described by

. _RRAT
(1.’) - 4 BB X. (z) + G o (wo) = Feze + Gewe (3.9a)
§ LC Age—LC. | \§ 0 L | \¥
H 0 z\ _
°= ( 0 -BTX, ) (f) = Heze, (3.99)

where (T = (¢T €7 ... {g‘), and

Aqc = Diag (Ag, Aay ..., Ag) (3.10a)

Ag=A+ EI;GGTX - §X, (3.106)

B, = Diag (B1, B, ..., B,), (3.10¢)

C. = Diag (C1,C3,...,C,), (3.10d)

L. = Diag (L1, Ls,--.,L,), (3.10¢)

X. = Diag (X, X;..., X). (3.101)

For convenience, define also

IT=(Ir1... N€ R™, (3.109)

G. = I.G, (3.10h)
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A. = Aac +1.BBTX.. _ (3.104)

Then, transforming coordinates of (3.9) such that the last gn state variables are the errors e; =

& -z, 1€{1,2,...,q}, gives
éG = ngg + Gewe, zZ= ﬁeie,
where

_ A-SX -BBTX, G 0
F,=M'F.M, = e, Ge=M1G. = . (3.11a)
a_zacGTX AC - LcCc —Gc Lc

. H 0 I 0
He = HeMe = y Me = . (3.11b)
-BTX -BIX, I I

The existence of a (¢ + 1)n X (¢ + 1)n matrix X, > 0 satisfying
ere o= 1laoxoams  oap=
FTX,.+ X .F. + ?x,a,afx, +ATH, =0 (3.12)

will by Lemma 2.1 guarantee stability and an Ho.-norm bound for the closed-loop system (3.9).

_ (x 0 )
X. = ) (3.13)
0 X,

with X > 0 solving (3.3) and X; > 0 undetermined, and decompose the left-hand side of (3.12)

Assume the form

into appropriately sized blocks as
S N P Un U
TR + XFo+ S XGOTR + ATH.= | 2 "1 ). (3.14)
a T
Uiz Un
Then, it turns out that the off-diagonal block Uiz is identically zero, and that (3.3) gives Un = 0.

Hence, independent of L. and X), (3.14) becomes

.o e e 0 0
FTX, + X .F.+ %X,G,G{x, +A7H, = ( ) ,
0 Uz

with

Un = (Ac = LCT X1 + Xi(Ac = LeCO) + 2 Xa(GeGT + LLT) X + XcB.BTX..
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Defining W = a? X7}, this reduces to

U = XHXi{WAT + AW + Y WX B.BTXW - WCTC.W

. . (3.15)
+ GGT +(L.-WCH(UT - C.W)}X,.

It is now possible to pick X; (or, equivalently, W) and L. such that Uz; = 0. While it is logical
in view of Lemma 2.1 to try to eliminate the last term in (3.15), this is not generally possible,
since L. must be block-diagonal. Thus, L. is chosen to eliminate the n X n main-diagonal blocks
of L. — WCT. This requires

L.=wpCT, (3.16)
where Wp is given by
Wi Wi ... Wy,
Wn ng Wg ]
W= . . . ! ' Wp = Dlag (W119W22s-"’WQQ)7
qu qu se qu
or
Li=w;CT, ie{1,2,...,q}. (3.17)

Then, (3.15) becomes

Un = HX{WAT+AW + WX B.BTX.W - WCTC.W + G.GT

(3.18)
+ (W -Wp)CIC(W - Wp)}X.
Therefore, if W > 0 satisfies the Riccati-like algebraic equation
WAT + AW + XWX .B.BTX.W - WCTC.W (3.19)

+GCGZ + (W - WD)CcTCc(W - WD) =0,

then Uz2 = 0, and (3.12) is satisfied. Since W > 0 is required, X. > 0 holds automatically;
therefore, provided (F., A.) is a detectable pair, Lemma 2.1 gurantees that F, is Hurwitz and that
T(s) = H.(sI - F,)"'G. satisfies |T||oc < a. The following lemma establishes the detectability

condition.

Lemma 3.1. Given the definitions (3.10) and (3.11), where X > 0 satisfies (3.3), W > 0 satisfies
(3.19), and L. satisfies (3.16), the pair (F., H.) is detectable under the following three conditions:
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(i) (A,H) is a detectable pair;
(ii) Aa = A+ a~2GGT X - §X is Hurwitz;
(iii) Aa + SX has no eigenvalues on the jw-axis.

Proof: Suppose ) is an eigenvalue of F. corresponding to an unobservable mode of (£, H,); that

is, some vT = (v] v]) # 0 satisfies

_ A-BBTX -BBTX. \ (v
Feo= = Av (3.20)
a"3G.GTX A.-L.C. | \™
and
" H 0
Hov= ( ) (”‘) =0. " (3.21)
-BTX -BTx. |\

The proof now consists of showing that Re(\) < 0.

The lower block of (3.21) and the upper block of (3.20) combine to give Av; = Av;, while the
upper block of (3.21) gives Hv, = 0. Since (A, H) is assumed a detectable pair, this implies that
either Re(A) < 0 or v; = 0. If v; = 0, then the lower block of (3.20) gives

(Ac - Lccc)”2 = Av;. (3.22)

The detectability proof is completed by showing that A, —~ L.C, is Hurwitz. The bracketed expres-

sion in (3.15) is equal to zero; therefore
1
(Ac— L.C)W + W(A. - L.C)T + ;-WXCBCBZ'XCW +GGT+L LT =0. (3.23)

Let n* be a left-eigenvector of Ac — L.C. corresponding to the eigenvalue A\. Multiply (3.23) on the
left by n* and on the right by 5 to obtain

" 1 . » "
2ReAI" W + =1 WX.B.BTX.Wn+n'G.GTn+n"L.LTn=0. (3.24)

Since every other term in (3.24) is nonnegative, Re(A\)n*Wn < 0, with W > 0 assumed; therefore,
Re(A) < 0. The following argument demonstrates that Re(A) # 0. If Re(A) = 0, then every

term in (3.24) must be zero; hence, n*L. = 0. Then ) is an eigenvalue of A.. But a similarity
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and the closed-loop transfer-function matrix T(s) = He(sI — F.)"'G. = H.(sI - F,)"'G. from w,
to 2 satisfies ||T||ooc < a. Condition (iii) of Lemma 3.1 is a new technical condition which must be
introduced for the decentralized control problem.

The following theorem summarizes the result:

Theorem 3.1. Let (A, H) be a detectable pair and a be a positive scalar. Suppose X > 0 satisfies
ATX + XA+ %XGGTX -XSX + HTH =0, (3.3)

Aq. = A+ a~2GGT X - SX is Hurwitz, and A, + SX has no jw-axis eigenvalues. Let W > 0 satisfy
the Riccati-like algebraic equation

WAT + AW + LWX.B.BTX.W - WCIC.-W

. . (3.19)
+ GG: + (W -Wp)C;C(W - Wp) =0.

transformation on A, reveals that it can have no imaginary eigenvalues: If
I
-I1I
M = . . . ’
-1 o0 ... 1 :
then ‘
Aa+5X 52X ... §X
A, ... 0
M-lAcM = * . . b
Aa
where A, is assumed Hurwitz, and A, + SX is assumed to have no imaginary eigenvalues. Q.E.D.
Under the conditions of Lemma 3.1, F. is Hurwitz by Lemma 2.1. Therefore, F, is also Hurwitz,
If the observer gains L;, i € {1,2,...,q}, are given by
L; = wiCT, (3.17)

then the decentralized feedback control law

: 1

f.' = (A + EZ-GGTX -5X - LiCi) fi + L.'y;, i€ {1,2,. .o ,q}, (384) '
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uwi=-BTX&, i€{1,2,...,q}, (3.8b)

stabilizes the plant (1.14), and the closed-loop transfer-function matrix
T(s) = H.(sI - F.)"'G.

from w, to z (with F,, G., and H, defined in (3.9)) satisfies

ITlleo < e
3.2 Example 1
Consider the plant (1.14) with ¢ = 2 and

-2 1 1 1 0 0 1

3 0 o 2 1 0 0

A= B; = Bs = G =

-1 0 -2 -3 0 0 1
-2 -1 2 -1 0 1 0

Ci1=[1000] C,=[0010] H=[10 ~-10].

The spectrum of A is {-2.56,—~1.32 £ j2.92, +0.19}; hence, the plant has an unstable mode.

To compute a decentralized control for this plant, first form the coefficients of (3.19) from
the plant matrices and the state-feedback design equation solution. Then, solve (3.19) by an
iterative method: Compute an approximate solution Wy by ignoring the complicating term Q =
(W = Wp)CTC.(W — Wp). Then use Wy to compute an approximation of Qo of Q, and use Qg
in the obvious way to compute the next approximate solution W;. Iterate this procedure until the
candidate solution W; makes the matrix norm of left-hand side of (3.19) less than some acceptable
tolerance; then take W; as the solution W of (3.19). The tolerance used for this example was 0.001.

Table 3.1 compares the closed-loop eigenvalues and H, norms of state-feedback designs with
those of decentralized observer-based control designs for several values of a. For a > 4, the state-
feedback eigenvalues are easily recognizable in the spectra of the decentralized-control systems; for
smaller a, more interaction with other poles is evident. The sequence of candidate solutions of the
Riccati-like equation converges for a > 2, while the state-feedback design Riccati equation has an

appropriate solution for a > 1.3.
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State Feedback Decentralized Control
Spectrum | ||T]le Spectrum 1Tl 0o
-0.24 -0.24 -2.52 -1.26%+32.90
a=20|-2.54 2.30 -0.38 -2.54 .1.474352.97 | 3.64
-1.45+352.98 -1.07 -2.70 -1.45+32.98
-0.24 -0.24 -2.52 -1.2613;2.90
a=16 [-2.54 2.30 -0.38 -2.54 -147+5297 | 3.63
-1.45+52.98 -1.08 -2.70 -1.45+32.98
-0.24 -0.25 -2.52 -1.26%3;2.90
a=12 | -2.54 2.29 -0.38 -2.54 -147+352.97 | 3.59
-1.45+352.98 -1.08 -2.70 -1.45%52.98
-0.24 -0.27 -2.52 -1.261+352.90
a=8 |-2.54 227 -0.37 -2.54 -147%52.97 | 3.49
-1.454+32.98 109 -2.70 -1.45+72.98
-0.27 -0.35£50.08 -1.26+32.91
a=4 |-2.54 2.15 -1.18 -2.54 -147+352.97 ] 3.05
-1.46+52.98 249 -2.71 -1.45+52.98
-0.46 2.36£;0.85 -1.21£;2.98
a=2 |-2.54 1.76 -0.48 -2.53 -1.47+;2.98 | 1.995
-1.46+32.98 -1.38 -2.79 -1.45%;2.94
-2.59
a=13]|-3.11 1.30 none none
-1.45+352.94
3.3 Example 2
Consider the 5'"-order plant (1.14) with ¢ = 2 and
( 0 1 4 -4 1) (o) (o) (1
-3 -1 1 2 1 4 0 0
A= 0 1 —1 -1 0 ’ Bl= 0 , Bx= 0 ’ G= 1
2 1 -1 0 1 0 0 0
\ -1 2 1 -2 -2 \ 0 \ 2 \ 1
( 10000GC
10000 00010
Cl= ’ C'2= 3 H= 00100
\0 1000 00001
00010

Table 3.1. Closed-loop spectra and H., norms for varying a.

The spectrum of A is

A(A) = {-0.0108 + ;3.717, -3.7138, - 1.5906, + 1.3262};
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hence, the plant has an unstable mode and a lightly-damped stable mode. This section gives the
results of H.o-norm-bounding control designs for this plant. First, state-feedback solutions are
presented, then observer-based solutions, both centralized and decentralized. For various values
of the design parameter a, the spectrum, feedback and observer gains, and H,, norm for the

closed-loop system are given.

3.3.1 State feedback

State-feedback designs can be computed for values of a varying from oo to 1.069199. For a =
1.069198, the solution X of the state-feedback design ARE (3.3) has a negative eigenvalue; hence,
for all practical purposes, a,, = 1.069199.

The closed-loop poles are the eigenvalues of F = A - SX. Figure 3.1 shows the position of the
closed-loop poles for a varying from 0o to a.,. Note that as a decreases from oo to 2.0, the poles
barely move. As a decreases from 2.0 to 1.1, the most oscillatory mode is damped somewhat, and
the other complex pole-pair meets at the real axis and splits into a real pair. Finally, as a decreases
in the short interval from 1.1 to au, the closed-loop poles are extremely sensitive to variations in
a: The two remaining complex poles move leftward in the complex plane and meet at the real axis;
then one pole goes toward —oo. Naturally, moving a pole far into the left-half plane requires high

feedback gains: The LQ feedback matrix is
-0.51 -1.00 -0.21 -098 -0.80

Kig =
-0.48 -040 044 -0.94 -0.47

with resulting closed-loop spectrum
A(F) = {-0.92 + ;3.98, -1.78 + ;0.35, —3.54}
while a nearly Hoo-optimal (a = 1.07) feedback matrix is

13.21 -3.67 -~51.59 61.76 793
-66.51 3.97 189.88 -235.86 -40.62

K =

with resulting spectrum
A(F) = {-81.54,-10.51,-3.65,—2.63, ~1.57}.

These gains are much larger than the LQ gains, and they also have different signs. Reducing a

to ag = 1.069199 results in gains (and one closed-loop pole) of inagnitude larger than 10°.

33




3.3.2 Centralized observer feedback

Observer-based centralized controls can be computed by the method of Theorem 2.1 for values
of a ranging from oo to 1.913. For a = 1.912, the solutions X and Y of (3.3) and (1.7) do not
satisfy the condition omax{Y X} < a?.

Figure 3.2 shows the position of the closed-loop poles for a varying from co to 1.913. As o falls
from oo to 3.0, the most oscillatory modes are damped somewhat, and all but the leftmost of the
real poles move to the left on the real axis. As « falls from 3.0 to 2.4, the two leftmost real poles
meet, split into a complex pair, circle leftward, meet again on the real axis, and move apart. Again,
as a approaches its minimum, one pole moves off toward —o00. As a decreases from oo to 1.913,
each real-axis pole effectively shifts from its original LQG position to the LQG position vacated by
the pole to its left, leaving the rightmost LQG position vacant and moving the leftmost real-axis
pole toward —oo.

The LQG (a = oo) observer-gain matrix is
( 137 -0.71 0.09 0.21 \

-0.71 1.95 0.79 0.70
Lige = 040 0.24 0.26 0.31
009 0.79 1.03 0.15
\ 021 070 015 061

with resulting closed-loop spectrum
A(F.) = {-0.92 £ ;3.98,-1.78 + j0.35, -3.54, -1.09 + 53.82, -1.32,-1.69, —3.78},

while the observer-gain matrix for a = 1.92 is

(247 190 326 1.29 )
1.90 94.47 98.89 24.57
L=| 155 2595 2767 T7.12
326 98.89 105.59 25.42
\ 129 2457 2542 7.04 )

with resulting spectrum
A(F.) = {-204.31,-1.22 + j4.41,-1.47 £ 53.29,-1.75  j0.42, -3.83, -3.51, —1.65}.

Reducing a to 1.913 results in some gains (and one pole) with magnitudes on the order of 103.
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3.3.3 Decentralized control

Decentralized controls can be computed using the simple iterative method described in Section
3.2 for values of a ranging from oo to 2.3323. The smaller the value of a, the more iterations are
required to obtain convergence: For example, to satisfy a tolerance of 0.001 on the largest singular
value of the left-hand side of the Riccati-like equation, @ = 10 requires only 6 iterations, while
a = 2.35 requires 47 iterations. To speed up computations for small a, the solution for a slightly
larger a can be used as the starting point; however, this “imbedding” practice seems to result in
convergence of the algorithm only when using the starting point W = 0 also results in convergence.
For a = 2.3322 and below, the algorithm does not seem to converge.

Figure 3.3 shows the position of the closed-loop poles for a varying from oo to 2.3323. As a
decreases, the oscillatory modes are damped, and the real poles move to the left on the real axis.
Again, as a approaches its minimum, the poles on the real axis seem to be shifting left into the
positions originally occupied by other poles for a = oo.

For a = o0, the observer-gain matrices are

( 163 —0.90 ) ( 0.07 —0.31\
-0.90 2.61 098 1.15
Li=]| 041 040 |,Lz=]| 031 044 |,
-0.04 1.33 1.38 0.16
\ 032 065 ) \ 0.16 122 }

while the observer-gain matrices for a = 2.3323 are

( 303 -3.17 ) ( 545 097 )
~3.17 19.26 10.08 6.02
Li=| 033 371 |,L:=| 358 186
_2.16 18.89 11.80 240
Lot 292 ) | 240 348

Since the solution for a = 2.3323 displays somewhat higher gains and an eigenvalue moving to
the left, it seems a reasonable hypothesis that solutions may exist for smallc - a, giving a high-gain

result as in the state-feedback and centralized observer cases.
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3.3.4 Spectrum and H, norm comparisons

The spectra for state-feedback solutions and subspectra for centralized and decentralized
observer-based solutions are shown for various values of @ in Table 3.2. The state-feedback poles
are recognizable among the poles of both observer-based solutions. Although the state-feedback
root-locus plot (Fig. 3.1) appears quite different from the other two (Figs. 3.2 and 3.3), the
observer-based solutions no longer exist when a is small enough that the state-feedback poles have
moved significantly from their LQ positions.

The Ho, norms of the closed-loop systems are compared for @ < 5 in Figure 3.4. The norms
are seen to be monotone increasing with a. For a = oo, the H,, norms are ||T||oc = 1.55 for
state feedback, |[T||lco = 3.322 for centralized observer feedback, and ||T|| = 4.61 for decentralized
observer feedback, where T'(s) is the closed-loop transfer function matrix in each case. As the theory
guarantees, the H,, norms are always smaller than the design parameter a. In the state-feedback
and centralized observer-based designs, the actual H,, norms and the bound « are very close for
a close to the minimum value. In the decentralized case, the actual norm approaches the bound
a in the neighborhood of a = 2.5, then falls away slightly from the bound as a approaches the
minimum value for which solutions of the Riccati-like design equation were computed. The “slack”
in the bound suggests that decentralized designs guaranteeing smaller norms may exist, possibly
corresponding to solutions of the Riccati-like equation for smaller values of a. Such solutions would

have to be obtained by methods different from those used in this example.
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Table 3.2. Closed-loop eigenvalues.

State Feedback Centralized Decentralized
Output Feedback Control
-0.92+353.89 -0.92+;53.89 -0.921+;3.89
a=o00 |-1.78+50.35 -1.78+350.35 -1.784+350.35
-3.94 354 ... 354 ...
-0.921:53.89 -0.951+53.93 -0.881+353.94
a=10 | -1.78%+;0.35 -1.77450.34 -1.77+50.34
-3.54 -3.54 ... 354 ...
-0.94153.89 -0.97+74.03 -0.87+54.02
a=5 |-1.78+5035 | -1.71+;0.35 -1.74+50.32
-3.54 -3.55 ... -3.56 ...
-0.994+;53.89 -1.01+54.17 -0.861+54.18
a=3 |-1.78£j0.35 | -1.73+j0.43 -1.66+30.46
- 3.54 -3.60 ... -3.58 ...
-1.03£;3.89 -1.04+374.26 -0.90+;4.35
a=25]|-1.78+70.36 | -1.74+;0.43 -1.72+50.46
-3.54 -3.46 ... -3.67
1.12+;380 | -1.17£;4.39
a=2 | -1.78+;0.36 -1.75+50.42
-3.54 -3.51
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Chapter 4

Robust Decentralized Control

Consider again the decentralized plant (1.14), now including the structured plant uncertainty
r
A= Ao+ Y GiMiHy, (4.1)
k=1
where Ag is known, the G;’s and Hj's give the structure of the uncertainty, and each unknown

constant matrix M, satisfies
Amax {MkM,Z'} <o?, ke{,,2,...,r}. (4.2)

If each positive bound o} is sufficiently small, then the design equations to be derived for robust
control will have appropriate solutions. The design developed in this chapter accounts for the
uncertainty (4.1), and gives a robust decentralized control law for the plant. The decentralized
results also apply easily to the simpler state-feedback and centralized output-feedback cases, which

are omitted.

4.1 Robust Design Derivation

With no plant uncertainty assumed, the basic control law of Theorem 3.1 guarantees stability
and the H-norm bound ||T||ec < a for the closed-loop system (3.9) by providing a solution X, > 0
to the algebraic Riccati equation

1
FTX.+ X.F. + ;X,G,G,T X.+HTH.+ P.=0 (4.3)
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with P, = 0, and (Fe, H.) a detectable pair. Now suppose that, like the controller (3.8) of the basic
design, the i*® controller has the form 4

& = (Aoa - LiCi)& + Liyi (4.4a)
w = - BT X¢;. (4.45)

Suppose also that L;, i € {1,2,...,q}, are chosen so that
FEX. + XoFou + 2 X.GoGTX, + HTH, + P. =0 (4.5)

for some P, > 0, where (Fp, G, H.) describes the nominal closed-loop system. In (4.4) and (4.5),

plant uncertainty terms are omitted, so that
Ao -BBTX.
FOe = ’
LcC A()ac - LcCc

where Agoc = Diag(Aoa, Aoas - .- Aoa). We now proceed to determine a choice of P, > 0 in (4.5)

which will guarantee

FTX, + X.Fo+ 21 X.GeGTX. + BTH. < 0 (4.6)
where
r Gk r
Fo=Fo.+ . Mi(He 0)= Foe+ Y G MiHoi. (4.7)
k=1 0 k=1

Assuming (4.5) holds, then

1
FTX.+ X.F.+ ﬁx,a,c;{x, +HIH, = =P, + (F. - Fo.)"X. + Xo(F. - Fo.)

r 4.8
= —Pe + z {HZLMEGZ;Xe + XeGekMkHek} . ( )
k=1

Recall that o} is given by (4.2), and set

r r
Pe=Y {HLHa +olXGuGLX.} 2 3 {HLHu + XCuaMiMIGLX},  (49)
k=1 k=1
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so that (4.8) gives
FTX.+ X.F. + %x,a,c:{x, + HTH,
r
= ¥ {ELMIGLX. + X.GueMyHoi — HY He - XGaaMyMFGTX. }
k=1
r
-3 {X.Gur(otl - MiMT)GT X, } (4.10)
k=1
= - {H% - X.GuMi} {Ho - MTGT X}
kfl
-Z {XeGek (a,fI - M,,MZ') GZ;,X,} <0.
k=1
Therefore, if X, > 0 satisfies (4.5), with P, given by (4.9), then (4.6) holds, satisfying the main
hypothesis of I.emma 2.1 for the uncertain system.
The next step in the derivation of the robust control is to determine the needed modifications
to the design equations (3.3) and (3.19) so that X, > 0 satisfies (4.5), with P. given by (4.9). By

examination of (4.5) and (4.9), and of the definitions of G, and H, given in (3.9), it is easily secn

that

1 1
FIX.+ X.Foe + ;fx,G,G,Txe +HTH, + P. = FEX.+ X.Fo. + —XGe + GT. X.+HL H..,

where
Gey 0
Gep =] , Gy =(G @0yGy ... ag,G,), (4.11a)
0 L
H
H 0 H
Ho=| % JH =] ] (4.116)
0 -BTx, :
H,

Hence, the robust design is obtained by replacing the triple (A, G, H) with the triple (Ao, G4, H4)
in the design equations (3.3) and (3.19) for the basic design. Using the augmented matrices G, and
H, in the design equations is similar to introducing additional disturbance inputs and regulated
outputs into the problem. Therefore, the smallest value of a for which the design equations will

have a solution will be larger for the robust design than for the basic design.
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Recall that, in the basic design, the controller dynamics depend on an assumed worst distur-
bance, and hence on the matrix G. Therefore, replacing G with G4 in the design affects not only
Ge, but also Foe. |

The final step in deriving the robust design is to establish that (Fe, H.) is a detectable pair.
Note that Lemma 3.1, applied to the modified design, establishes that (Fp., H.4+) is a detectable
pair, provided (Ao, H) is a detectable pair, Ago = Ao+a'2G+G€,X —SX is Hurwitz, and Ao +5X

has no jw-axis -eigenva.lues. Let v # 0 satisfy
Fo=Av, H,v=0. (4.12)

The detectability proof consists of proving that Re(\) < 0. Multiply (4.10) on the left by v* and
on the right by v to obtain

1 r
2Re(A)v*X.v + ?v‘X,GcGZX,v + Yo {a%- XeGerMi} {Ho - M{GT X} v
k=1 )

= (4.13)
+ Yo {XGux (o}1 - MM )GhX}v<o.
k=1
Since every term in (4.13) but the first is nonnegative, this implies
Re(M)v*X.v L 0. (4.14)

If inequality holds in (4.14), then v*X.v > 0 and Re()) < 0. If equality holds, then every term in
(4.13) is zero. This gives

{Ha- MTGLX }v=0, ke{1,2...,r}. (4.15)

But, since (4.2) implies that 021 — M; MT is nonsingular, (4.13) also gives GT. X.v = 0; therefore,
(4.15) gives
H,v=0, ke{l,2,...,r}. (4-16)

Hence, (4.7) and (4.12) give Fo.v = Av, while (4.11b) and (4.12) give HL, Hc4v = 0. Since
(Foes Hey ) i8 a detectable pair, this implies Re(A) < 0.

Theorem 4.1 summarizes the result. The following definitions are convenient:
1
Ao = Ao + E,-G+G£x -SX, (4.17a)

Agac = Diag (Aaas Aoar - - - » Ava)s (4.175)
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Aoe = Aoac + I. BBT X, (4.17¢)
Gc+ = ICG.'.. (4.17d)
Recall that I, is given by (3.10g).

Theorem 4.1. Suppose the plant (1.14) has constant structured uncertainty (4.1), with
max { MM} < 0v, k€ {1,2,...,7}.
Define G, and H, as in (4.11), and let X > 0 satisfy
ATX + XAo + %xma{x -XSX+HTH, =0, (4.18)
and W > 0 satisfy the Riccati-like algebraic equation

WAL + AocW + al,‘,-WXchBcTXcW -wcrTew

(4.19)
+Ge4+GT, + (W - Wp)CTC.(W - Wp) = 0.

Suppose also that ‘(AO,H ) is a detectable pair, Ao, is Hurwitz, and Aoy + SX has no eigenvalues

on the jw-axis. Then the decentralized control law

& = (Aoa— LiC)&+ Livi, i€{L,2,...,q},

uwi=~BTX&, ie{1,2,...,q},

with L; = W.-.-C..T , t € {1,2,...,q}, robustly stabilizes the uncertain plant, and the closed-loop

transfer-function matrix T(s) from w, to z <atisfies
[Tlleo < .

There is no explicit restriction on the size of the bounds o) in Theorem 4.1. However, the larger
the o;’s are taken to be, the larger a will need to be to obtain solutions to the design equations
(4.18) and (4.19); if the ox’s are taken to be too large, no solutions may exist at all. If bounds o
on the size of the uncertainty are known accurately, then these bounds should be incorporated in
G4 (or H,), and hence in the design equations. If the design equations can then be solved, then
the design can tolerate uncertainties of the specified size. On the other hand, if uncertainty bounds

are not accurately known, the choice of the o4’s may be used to reflect a relative weighting to be
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given by the design to disturbance attenuation and robustness considerations. Since changing the
values of the o;’s in this case is equivalent to rescaling the G’s and H,’s while holding the o,’s

fixed, it may simplify the design procedure to set
1
0’5:;, k€{1,2,...,1‘},

and scale the Gi’s and Hi’s so as to reflect the tradeoff between robustness and disturbance
attenuation. Then, the size of the uncertainty which may be tolerated is determined indirectly by
finding the smallest value of a for which the design equations can be solved. This variation on the

design of Theorem 4.1 is given in Theorem 4.2.

Theorem 4.2. Suppose the plant (1.14) has constant structured uncertainty (4.1), with
1
Mmax { M MF } < = ke{L,2,...,7}.

Define G4 = (G Gy ... G,)and HT = (HT HY ... HT). Let X > 0 satisfy (4.18) and let
W > 0 satisfy the Riccati-like algebraic equation (4.19). Suppose also that (Ao, H) is a detectable
pair, Aoo is Hurwitz, and Ags + SX has no eigenvalues on the jw-axis. Then the decentralized
control law
& = (Aoa ~ LiC& + Livin 1€ {1,2,...,4},
v, = -BTX¢&, ie{l,2,...,q},

with L; = W;CT, i € {1,2,...,q}, robustly stabilizes the uncertain plant, and the closed-loop

transfer-function matrix T(s) from w, to z satisfies

1Tl < @

4.2 Example

This section presents an example of robust state-feedback control design. The example illustrates
the difference between the robust designs of Theorems 4.1 and 4.2, and the use of the parameter o,
to determine the largest unc.ertainty in a certain class for which the design guarantees stability and
the predetermined H-norm bound. For these purposes, the state-feedback example is adequate,
and has the advantage of avoiding the complication of decentralized design, already studied in
Chapter 3. '
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Consider the plant of Section 3.2, now in a state-feedback setting, where the matrices

-2 1 1 1 00 1
3 0 o0 2 10 0
Ag = B = G= H=(10 -10)
-1 0 -2 -3 00 1
-2 -1 2 -1 01 0

describe the nominal plant. Introduce the structured uncertainty
A= Ao+ GiMH,,

where M, is an unknown scalar, and G; and H, are given by

G ,Hy=(0 0 1 0). (4.20)

-0 O O

This represents an uncertainty in the (4,3) element of the A-matrix of the plant. As in the decen-
tralized design of Theorem 4.1, the robust state-feedback control is found by doing a basic design,

but with the augmented matrices G4 and H, in place of G and H, where in this case

1 0

0 0 10 -10
G+ = 3 H+ = .

1 0 00 10

0 ao

The state-feedback design equation becomes
T 1 T T
Ay X + X Ao+ a_2’XG+G+X -XSX + H+H+ =0,
or equivalently
ATX + X Ao + ;lz-XGGTX +0?XG1GTX - XSX + HTH + AT H, = 0. (4.21)

In the second quadratic term of (4.21), the a’s cancel out, allowing computation of a solution for
a = 0o. By setting a = oo and solving (4.21) with various values of o7, one may determine a largest

plant perturbation (corresponding to |Mi| = a4,,,) for which at least stability can be guaranteed

48




using the robust state-feedback design. Then, given any oy < 0y,,,, one may determine a number
Omin Such that for any @ > apyin there exists an appropriate solution of (4.21), and therefore an
associated design guaranteeing the robust Ho,-norm bound ||[T||e < a for the closed-loop system.
Table 4.1 gives, to the nearest 0.1, the values of amin computed for various values of o, and shows
clearly the tradeoff between robustness and optimal disturbance rejection. In this example, the
largest admissible plant perturbation is given approximately by a3,.,, =1.8.

If 01 = a~!, as in Theorem 4.2, then for G; and H; given by (4.20) the design equation becomes
ATX + XAo + -&17)( (GGT + G,G{) X-XSX+HTH + HTH, =0. (4.22)

The approximate smallest value of a for which (4.22) has an appropriate solution is amin = 1.4,

which corresponds to a plant uncertainty bound oy = 0.71.

Table 4.1: Approximate minimum H.-norm bounds for various plant uncertainties.

op 110 12 14 16 1.8
Omin |14 15 16 1.8 3.0
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Chapter 5

Reliable Control Design

This chapter develops reliable centralized and decentralize(i control designs which guarantee
stability and H, disturbance attenuation despite possible measurement or control failures. First
is presented an example which establishes the desirability of a reliable decentralized design. Next,
centralized reliable designs are presented which guarantee stability and an H-norm bound despite
possible outages of sensors or actuators within predefined susceptible sets. The cases of sensor and
actuator outages are treated separately, resulting in two designs with different reliability properties.
Then, decentralized reliable designs are presented which guarantee stability and an H,-norm bound
despite possible outages of whole controllers within a predefined set of susceptible controllers. The
controller outages are modelled first as measur«ment outages, and then as control input outages,

resulting in two distinct designs with the same reliability properties.

5.1 Motivation

The 4*P.order example of Section 3.2 is used to motivate the development of a reliable decentral-
ized control. In this example, stability and a predetermined H.,-norm bound are guaranteed by the
basic decentralized design for various values of the design parameter a. Table 5.1 gives the actual
H,, norms of the closed-loop systems corresponding to several values of a. In addition to the case
when no controller failure occurs, Table 5.1 gives the conditions corresponding to a failure of each
of the two controllers. A failure of Controller #1 results in instability for each design computed,

while a failure of Controller #2 results only in an increased H,, norm for the closed-loop system.
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Table 5.1. Ho, norms for the basic
decentralized design.

no failure | #1 fails | #2 fails
a=20 3.64 unstable 5.34
a=16 3.63 unstable 5.30
a=14 3.61 unstable 5.28
a=12 3.59 unstable 5.23
a=8§8 3.49 unstable 5.04
a=4 3.05 unstable 4.19
a=2 1.995 unstable 2.46

Since the plant is open-loop unstable, a failure of both controllers at once necessarily results in
instability; however, it would be desirable to alter the design so as to guarantee at least stability,
and, better still, some level of disturbance attenuation for the closed-loop system if only one con-
troller should fail. While the basic design in this case still works well if only Controller #2 fails,
it is not acceptable if Controller #1 fails. Therefore, a design reliable with respect to failure of
Controller #1 is desired.

The approach to reliable design developed here is similar to that for robust design developed in
Chapter 4. The essential idea is that, if there exists X, > 0 satisfying

1
FTX.+ X.F. + zt-,-x,c:,c{x, +HTH.+P.=0 (5.1)

with some P. > 0, then the resulting closed-loop system will by Lemma 2.1 be stable and have H,-
norm bound a. By judicious choice of P,, additional system properties associated with reliability
can be assured. Then, perturbations are introduced into the basic design equations such that (5.1)
is satisfied for that choice of P.. As in the robust design, the appropriate choices of P, are equivalent

to appending columns or rows to G or H in the basic design equations.

5.2 Reliable Centralized Design

The problem addressed here is that of designing a centralized controller which is reliable despite
possible sensor or actuator outages. The outages will be restricted to occur within a preselected
subset of available measurements or control inputs. The controllers developed will guarantee closed-
loop stability and a predetermined Heo-norm bound, regardless of admissible sensor or actuator

failures. The cases of sensor and actuator outages are treated separately, and two designs are
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developed to handle the two cases. However, it will be clear from the results that controllers which
can handle both sensor and actuator outages can be obtained by combining the designs.

Consider first the design of a controller that can tolerate the outage of certain sensors which
provide the various elements of the measurement vector y. Let @ C {1,2,...,dim(y)} correspond

to a selected subset of sensors susceptible to outages. Introduce the decomposition
C =Cq+Chy, (5.2)

where Cq denotes the measurement matrix associated with 2, and Cy denotes the measurement
matrix associated with the complementary subset of measurements. In other words, Cq is the
same as C, but with rows corresponding to susceptible sensors zeroed out. Let w C Q correspond
to a particular subset of the susceptible sensors that actually experience an outage, and let T;(s)
denote the transfer-function matrix of the resulting closed-loop system. It is convenient to adopt
the notation

C=C,+Cs , (5.3)

where C,, and Cj; have meanings analogous to those of Cq and Cgq in (5.2). Sincew C Q, CIC, <

CECq. Also decompose the observer gain as
L = Lw + LG) (5-4)

so that
LC=L,C,+ L;C;.

(Lg has columns zeroed out corresponding to sensors which have actually failed.) Then the following

result holds:

Theorem 5.1. With all assumptions and the design otherwise as in Theorem 2.1, assume X > 0
and Y > 0 satisfy the AREs

ATX + XA- XSX + ;1,-XGGTX + HTH 4 a*CICa =0, (5.5)
AY +YAT 4 —I;YHTHY -YC{CaY +GGT =0, (5.6)
a

respectively. Then, for sensor outages corresponding to any w C (Q, the closed-loop system is stable,

and ||T; ||l £ a.

52

SR Gk SN G Sk AR SN SR R G SN S SIS GEEk AN SEEE.  GESR.  enee . eaes




T N U T O B T BT W B T GE T T B T R —

Remark: With all sensors operational, corresponding to w = @, T;(s) = T(s) is the transfer-

function matrix from w, to 2, where

e (2) (%)

Theorem 5.1 covers this case automatically, since w = @ C . If sensors corresponding to a

nonempty subset w C  fail, then T;(s) is the transfer-function matrix from w.g to z, where

Weg = (wo) [)
W

with wg containing only those components of measurement noise associated with operational sen-

80r8S.

Proof. The design equations (5.5) and (5.6) arise from replacing H in the description of the plant

Hy= ( " ); (5.7

by the augmented matrix

aCq
and changing the design equations accordingly. If (5.5) and (5.6) have appropriate solutions, then
Theorem 2.1 guarantees that X, > 0 satisfies

1
FTX,+ X.F. + ?X,GCGZ'X, +HL A =0, (5.8)

where the augmented closed-loop system is described by the matrices

A -SX G 0 H 0
F,. = ’ G. = ( ’ He+ = * ’ (59)
LC A,-IC 3 L 0 -BTx

and (F., H.;) is a detectable pair. The actual closed-loop system with no sensor outages is described

by the matrices

!

A -5X G 0 H 0
F, = , Ge = , He = . (5.10)
LC A,-LC 0 L 0 -BTX

For sensor outages corresponding to w C {2, the controller becomes
: 1
€=(A+— GTX - §X - LC)E + Lay, (5.11a)

u = -BTX¢. (5.11b)
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The controller dynamic structure is not affected by a sensor outage; only the controller input

structure is effectively changed. Given (5.11), the closed-loop system matrices become

A -SX G 0 H 0
Feo = y Gew = y He = . (5.12)
LeCy Ao -LC 0 Lg 0 -BTXx
The following useful relations are derived from (5.9), (5.10), and (5.12):
0
Fo=Fpo+ (Lw)(cw 0)E Fca‘l"LeuCewy_ (5.130)
T GGT 0 0 T T T
G.G, = + (0 L,) =GeaGop + Lewly,, (5.130)
0 LgLT L.
T T 2 Cg Ca O
H Hy=H,H.+a . (5.13¢)
0 0
Use (5.8) and (5.13) to obtain
Fz..:,Xe + XeFeil + $X¢G¢0GZ“;X¢ + HeTHc (5 14)

T
= —CLLIT X, -~ X.LowCow — 2 XcLowlZ,X. - a®(58)(Cq 0).
Therefore, since —-C3Cq < -CIC,, (5.14) gives

FLX, + X.Fu+%X.GaGLX,+HTH,

< =CTLLT X, - XeLeyCop — 2 XeLow LT X — a*CLC., (5.15)

= - (4XLo+aCL) (LLT X, +aCa) <0.

Hence, provided ( F,g, H.) is a detectable pair, Lemma 2.1 guarantees that F,; is Hurwitz, and that
To(s) = He(sI - Fo5)"1Geg, the transfer-function matrix from weg to zg, satisfies ||Tz/lo < a.
The detectability proof is routine: If vT = (vF vJ) # 0 satisfies F.gv = Av and H.v = 0, then
Av; = Av; and Hv; = 0, with (A, H) assumed a detectable pair. Therefore, either Re(A) < 0 or
v; = 0. Suppose vy = 0; then F.v = Fov = Av and H.v = 0 gives Heyv = 0. Since (F,H.4)is a
detectable pair, Re(A) < 0. Q.E.D.

Consider now the design of a controller that can tolerate the outage of certain actuators which
provide the various elements of the control vector u. Let @ C {1,2,...,dim(u)} correspond to a

selected subset of actuators susceptible to outages. Introduce the decomposition

B = Bq + By, (5.16)
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where Bg denotes the control matrix associated with the set 2, and Bp denotes the control matrix
associated with the complementary subset of control inputs. In other words, By is the same as
B, but with columns corresponding to susceptible actuators zeroed out. Let w C 2 correspond
to a particular subset of the susceptible actuators that actually fail, and let T;(s) denote the

transfer-function matrix of the resulting closed-loop system. It is convenient to adopt the notation
B=B,+ B, (5.17)

where B, and B; have meanings analogous to those of Bq and Bg in (5.16). Since w C 9,
B,BT < BqBZ. Then the following result, dual to Theorem 5.1, holds:

Theorem 5.2. With all assumptions and the design otherwise as in Theorem 2.1, assume X > 0
and Y > 0 satisfy the AREs

ATX + XA - XBoBIX + %XGGTX +HTH =0, (5.18)
AY +YAT ¢ %YH.THY -YCTCY + GGT + o®*BgaBY =0, (5.19)

respectively. Define
G+ = (G aBg), (5.20)

and let the controller be given by
: 1
E=(A+ 3-5G+GIX - SX - LC)¢+ Ly, (5.21a)

u = -BTX¢. (5.21b)

Assume the controller is open-loop (internally) stable. Then, for actuator outages corresponding

to any w C Q, the closed-loop system is stable, and [|Ty|| < @.

Remark: For actuator outages corresponding to w C €2, T;(s) is the transfer-function matrix from
w, to zg, where z; excludes control components associated with failed actuators.
Proof: The design equations (5.18) and (5.19) arise from replacing the matrix G in the description
of the plant (1.3) with the augmented matrix G, and introducing the corresponding changes in
the design equations. If (5.18) and (5.19) have appropriate solutions, then Theorem 2.1 guarantees
that X, > 0 satisfies

FTX, + X.F, + ﬁxecﬁagx, +HTH, =0, (5.22)
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where the augmented closed-loop system is described by the matrices

A -5X Gy 0 H 0
Fg = 9y G¢+ = + [ He = ) (5-23)
LC A.-LC 0 L 0 -BTx

with Ao = A+ a”G+GIX - SX and (F., H.) a detectable pair. When there are no actuator
outages, the actual closed-loop system is described by the matrices

A -SX G 0 H 0
F. = , Ge = , He = . (5.24)
LC A,-LC 0 L : 0 -BTx

For actuator outages corresponding to w C 2, the controller becomes
é = (A + $G+G1X -5X - LC) £+ Ly, (5.25a)

u=-BTX¢. (5.25b)

The controller dynamic structure is not affected by actuator outages; only the controller output

structure is effectively changed. Given (5.25), the closed-loop system is described by the matrices

A -BBTX G 0 H 0
Fo = “e 1, 6. = , Hep = . (5.26)
ILC A,-IC 0 L 0 -BIx

The following useful relations are derived from (5.23), (5.24), and (5.26):

F.=F.— (%") (0 BYIX) = F.; — B..(0 BTX), (5.27a)
HTH.= HLH. + 0 (0 BT x), (5.275)
XB,
T r 3| BaBY 0
Ge+GT, =G.GT + a . (5.27¢)
0 0

Use (5.22) and (5.27) to obtain

FeTG‘,Xe + XgFeQ + éXQGeGZ'X¢ + HeTGpHeGl

s - (X.,B,,, - (x%.)) (BLXe - (O BZ,'X)) <0. (5:28)

Provided (F,g, H.z) is a detectable pair, Lemma 2.1 guarantees that F,; is Hurwitz, and that

Ta(s) = Heg(sI - Fop)~'G. satisfies ITzlle € a. To prove detectability, let ol = (vf va Y#0
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satisfy Feqov = Av and Hegv = 0; then Avy = Av; and Hvy = 0, with (A, H) assumed a detectable
pair. Therefore, either Re(A) < 0 or v; = 0. If v; = 0, then F.5v = Av gives

(A+ %G.,.GIX - §X - LC)vg = Aoy, (5.29)

By the assumption that the controller is open-loop stable, (A+a'2G+GIX —~S§X - LC) is Hurwitz;
therefore, Re()) < 0. Q.E.D.

The design given in Theorem 5.2, unlike that given in Theorem 5.1, requires that the controller
turn out stable in order to guarantee reliable closed-loop stability. If the design does not result in
a stable controller, it may be combined with a strongly stabilizing design developed in Section 5.5;
then the assumption of open-loop stability of the controller will hold automatically.

Note that to achieve reliability with respect to sensor outages, it is sufficient to modify the
feedback and observer gains; however, to achieve reliability with respect to actuator outages, the
observer structure must also be modified. The structural modification required is the inclusion of

G in the controller dynamic matrix.

5.3 Reliable Decentralized Design

Let @ C {1,2,...,q} correspond to a subset of controllers subject to outages. The problem is
to compute a decentralized control law which guarantees closed-loop stability and an H.,-norm
bound in spite of controller outages corresponding to any subset w C Q. Without loss of generality,

Q={t+1,t+2,...,q}andw={r+1,r+2,...,q}, with » > ¢. Introduce the decompositions
B=(By...B, 0...0)+(0...0 B,41...B,) = By +B., (5.30a)

B. = Diag(B,...,B,,0,...,0) + Diag(0,...,0, Br41,...,B,) = Beg, + Bou, (5.30b)

(C ) (0\

C' 0
0 Cf+l

Lo/ \a )
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Cc=Diag(c],-.-,Crgo,-o.,o)+Diag(o,..-,o,Cr+l,-o.,Cq)ECcQ+Cay, . (5.30d)
L. = Diag(L1,...,Ly,0,...,0) + Diag(0,...,0, Lr41,... 5 Lg) = Lew + Low- (5.30e)
Also decompose the disturbance and regulated output vectors as

Wo

wo w,
w, = (w) =| wy | = (';:'), (5.31a)
Wy
Hz
z
z=| ug | = (u:,,) (5.31b)
Uy
Finally, define
BQ = (Bg+1 o Bq), (5.320)
c3 =(ck,...ch. (5.32b)
Note that for any w C Q,
BoBj > B,BI, (5.33)
CiCa 2 CIC.. (5.34)

When no controller failures occur, the closed-loop system is described by matrices of the form

A -BBT G 0 H 0
FG = ’ GC = ] He = y
LcC Aac - LcCc 0 Lc 0 -BZ'XC

where Aqc = Diag(Aa, Aas - .- ,Aa). Suppose that controller failures take the form
=0, i€w. (5.35)

The closed-loop system then takes the form

. —BBT
(’.) = 4 BE'X. (’) + G 0 ("’°) = Fopze + Gegte, (5.36a)
§ LeyCo Age-LcC. | \& 0 Ly | \¥
<70 (’) H (5.36b)
= = ez, .
0o -BTx. ) \§




Because of the assumed mode of failure, given by (5.35), the disturbances w;, i € w, do not enter the
system (5.36). In fact, (5.36) is a controllability canonical form, with §;, i € w, the uncontroilable
parts of the extended state vector. Note also that

Aac - LCCC = Diag(Aa - LlCl, Aa - Lng, cooy Aa - Lqu), (5-37)

where A, — L;C; is the open-loop dynamic matrix of the #*# controller. Because of the form of
(5.36), the open-loop eigenvalues of the controllers which have failed appear directly as modes of
the closed-loop system. This means that a design guaranteeing reliable stability will automatically
guarantee that all controllers susceptible to outages are open-loop stable.

It is convenient to note that F.; and G, are related to F, and G, by

F;Q = Fe bt (Lo )(Cw 0) = Fe - Leucew, (5.3841)
0 0

Gga, = Gg -~ 3 (5.386)

GeaGT, = G.GT - L LT, (5.38¢)

The design which follows will guarantee that F,g is Hurwitz, and that the transfer-function matrix
To(8) = He(sI — Fei)~'Geg satisfies ||T)|co < @, for controller outages associated with any w C Q.
The case where no controllers fail (represented by w = @ C ) is always admissible; hence, the
design will automatically guarantee that F, is Hurwitz and that T'(s) = H.(sI - F.)"1G., satisfies
IT|loo € a. The following theorem gives the reliable design method.

Theorem 5.3. With all assumptions and the decentralized design otherwise as in Theorem 3.1,
let X > 0 satisfy

ATX + XA+ -O%XGGTX — XBBTX + HTH + a*CICq = 0, (5.39)

where Q C {1,2,...,q}. Then, for controller outages corresponding to any w C Q, the closed-loop
system (5.8) is internally stable, and the closed-loop transfer-function matrix T;(s) from w,; to
zg satisfies ||T;)lo < a. In addition, all controllers corresponding to the “susceptible” set Q are

open-loop stable.
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Remark: The design given in Theorem 5.3 results from replacing H in the description of the plant

H+ = ( " ), (5.40)

aCq

(1.14) with the augmented matrix

and changing the design equations accordingly. This substitution results in no change in the design
equation (3.19), and is equivalent to selecting P, in (5.1) as

2c¥Cq 0
p=| ¥-a0 > 0. (5.41)
0 o0

The basic decentralized design computed for the augmented plant will provide reliable control for
the actual plant.
Proof Just as in the development of Section 3.1, the existence of appropriate solutions to the

perturbed design equations (5.39) and (3.19) guarantees that X, > 0 satisfies

1
FTX,+ X.F. + FX,G,GZXe +HI H., =0, (5.42)
where
H 0
Hoe=| "% : (5.43)
0 -BZ.XC

Now (5.38), (5.40), (5.42), and (5.43) give

FLX. + X.Fut%X.GaGLX, +HTH,
= —CLLTX. - XeLouCou — A X.LewLT, X, — a2(58)(Ca 0).

Therefore, by (5.34),

FLX. + X.Fao+ %X.GeaGTL X.+HTH.
< -CLLT X, - X.LooCow — 2 XLewLlT X, - a*CL,C..
= ~(4X.Le +aCL) (LLL X, +aCs) 0.

Hence, provided (F.g, H.) is a detectable pair, Lemma 2.1 guarantees that F,; is Hurwitz, and that
Te(s) = He(Is = Feg)"'Gea, the transfer-function matrix from w.g to zg, satisfies ||T;lle < .
The detectability proof is the same as that of Lemma 3.1: Assuming v # 0 satisfies F ;v = Av and
H.v = 0 gives Avy = Av; and Hv, = 0, with (A, H) assumed a detectable pair. Therefore, either
Re(A) < 0or vy =0. If v; =0, then (Ayc = L.C.)v2 = Avy, and hence (A, — L.C.)v; = Avy, where
A. - L.C,. is known to be Hurwitz. Q.E.D.
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Recall that the closed-loop system (5.36) assumes measurement failures corresponding to each

i € w. If instead there are control input failures, that is, if the controller failures are given by
fl,' = 0’ i e w, (5'44)

then the closed-loop system has the form

; A -ByBLX. G 0
E LcC Aac - LCCC f 0 Lc w

H 0 z\ _
. ( anx, ) () e 150

where Fog has been redefined. Note that (5.45) is an observability canonical form, with §;, i € w,
the unobservable parts of the extended state vector. In fact, for a given decentralized control
law, (5.36) and (5.45) are just two different realizations of the same transfer-function matrix.
However, the form (5.45) leads to the need for a different matrix P, in (5.1) to guarantee reliable
stability and performance, and hence to a different control law. Again, the closed-loop eigenvalues
of the controllers which fail appear directly as modes of the closed-loop system; unlike the proof
of Theorem 5.3, however, the following development must assume that all the controllers turn out
open-loop stable. If some controllers turn out unstable, the design of Theorem 5.4 may be combined
with a strongly stabilizing decentralized design developed in Section 5.5.
It is convenient to note that F.; and H.g are related to F, and H, by

B
Fuu=F.+ ( 0“’) (0 BLX.)=F. + B.,(0 BL X.) (5.46a)
0 0
Hep=H.+ (5.46b)
0 BT X,
AT H., = HTH. - 0 (0 BLX,). (5.46¢)
X:Bo

The following theorem gives the design method:

Theorem 5.4. With all assumptions and the decentralized design otherwise as in Theorem 3.1,
let X > 0 satisfy
ATX + XA+ = XGGTX - XSoX + HTH =0, (5.47)
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and let W > 0 satisfy

WAL, + AW+ ZWX.B.BTX.W - WCTC.W +G.GT

+ a?I.SqIT + (W ~ Wp)CTC(W - Wp) =0, (549
where
IT=[11...1]
Ay = A, + Diag(Sa X, SaX,...,SaX),
Sa = BoBJ,
§ = Sq + 5q,
and Q C {1,2,...,q}. Let the controllers be given by
é = (A+ 5G+GIX - 5X — LC)& + Livi, $€{1,2,0-,a), (5.49a)
w;=-BYX&, ie{1,2,...,q}, (5.49b)

and assume all controllers are open-loop (internally) stable. Then, for controller outages corre-
sponding to any w C Q, the closed-loop system (5.45) is internally stable, and the closed-loop

transfer-function matrix T;(s) from wg to zg satisfies || Tg||oo < .
Remark: The design equations (5.47) and (5.48) arise from replacing G in the plant description
(1.14) with the augmented matrix G given by

G4+ = (G aBy), (5.50)

and changing the design equations accordingly. This substitution affects both the state-feedback
design ARE and the Riccati-like design equation for computing decentralized observer gains. The

substitution is equivalent to selecting P, in (5.1) as
Sqg 0
P. =X, ( a ) X, > 0. (5.51)
0 0

The basic design computed for the augmented plant will provide reliable control for the actual
plant.




Proof. As in the development of Section 3.1, the existence of appropriate solutions to the design

equations (5.47) and (5.48) guarantees that X, > 0 satisfies
FTX.+ X.F. + ;ng.,G,+GZ'+X, +HTH. =0. (5.52)

Unlike the dual case, the additional columns of G, enter into the linear coefficient matrix F, of
(5.52), as well as into the quadratic coefficient as explicitly indicated. This is because the controller

structure (5.49) is affected if G is replaced by G;. Hence, F, and G.+ are now given by

A =BBTXx Gy, 0
F.= T, Ga=| T : (5.53)
LCC AGC - LcCc 0 Lc

with Asc = Diag(Aq, Aay...; Aa) and Aq = A+a~2G;GT X ~SX. Manipulations of (5.52) similar
to those of the dual case, using (5.46), (5.50), and (5.53), give

FLX. + X.Fa+ %X.G.GTX.+HLH.
< —(XeBew — (4.3, )(BLX. - (0 BLX.) <0.

Provided (F.g, H.z) is a detectable pair, therefore, Lemma 2.1 guarantees that F.g is Hurwitz,
and that Ty(s) = Heg(sI — Fuz)~'G. satisfies [[T;jjoo < a. To establish detectability, let vT =
(vT vT) # 0 satisfy Fogv = Av and Hegv = 0. Then Av; = Avy and Hv; = 0. Since (4,H) is a
detectable pair, this implies either Re(A) < 0 or v; = 0. Suppose v; = 0; then F.;v = v gives

(Age = LCe)va = Avy. (5.54)

Since all controllers are assumed open-loop stable, (5.54) gives Re()) < 0. Q.E.D.

The two decentralized design methods given in Theorems 5.3 and 5.4 assume controller failures
modelled as, respectively, measurement failures and actuator failures. The failures considered inca-
pacitate entire controllers, so that measurement failures and actuator failures have the same effect
on the closed-loop transfer-function matrix. Although the two designs have the same reliability
goals, they are nevertheless different: The first automatically guarantees reliable stability if the de-
sign equations have appropriate solutions, whereas the second may exist but not guarantee reliable
stability if the controllers are not open-loop stable; the first design involves only modification of

feedback and observer gains as compared with the basic design, while the second requires also a
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change in the observer structure; and the range of the design parameter a for which the two designs
are computable may differ.

In the centralized case considered in Theorems 5.1 and 5.2, the failures considered are those of
individual sensors or actuators. Therefore, the two centralized design methods differ not only in the
view taken of controller failure, and in other technical terms, but also in the reliability properties

they seek to guarantee.

5.4 Example

For the plant of the example in Section 3.2, the reliable decentralized control design method
of Theorem 5.3 was applied for various values of the design parameter a. Table 5.2 gives the
actual H,, norms of the closed-loop transfer-function matrices resulting when the reliable design
was computed for several values of a. For the sake of comparison, the comparable portion of Table
5.1, corresponding to the basic decentralized desiéns, is reproduced. In addition to H,, norms for
the case where no controller failure occurs, the H,, norms corresponding to a failure of each of the
two controllers are given.

Table 5.2 shows that, unlike the basic design, the reliable design guarantees stability and Hq.-
norm bound « in spite of a possible failure of Controller #1. In fact, a failure of Controller #1
actually results in a reduced H, norm for the closed-loop system. This is possible because, when
Controller #1 fails, the disturbance w; and the control input u; are removed from consideration. A
significant proportion of the cost associated with the design is the result of expended control energy,
which is reduced when a controller fails. However, this reduction in cost does not constitute a good
argument for discarding Controller #1 and using Controller #2 alone. The use of two controllers
increases the reliability of the system, in that a single controller failure will not result in system

instability. Note that no solution was found to the Riccati-like algebraic equation for the reliable

Table 5.2. H, norms for basic and reliable decentralized designs.

Basic Design Reliable Design
no failure | #1 fails | #2 fails | no failure | #1 fails | #2 fails
a=20 3.63 unstable 5.34 6.95 6.25 7.03
a=16 3.63 unstable | 5.30 7.65 6.38 7.82
a=14 3.61 unstable | 5.28 8.28 6.32 8.59
a=12 3.59 unstable 5.23 No solution to RLAE found.
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design with a < 13, while solutions were computed for the basic design with the design parameter
value as small as a = 2. This difference represents the tradeoff between reliability and disturbance

attenuation guaranteed by the respective designs.

5.5 Strongly Stabilizing Designs

The designs given in Theorems 5.3 and 5.4 provide decentralized control laws which are reliable
with respect to controller outages. For the design given in Theorem 5.3, all controllers susceptible to
outages are automatically stable; however, for the design given in Theorem 5.4, the controllers must
be assumed to turn out stable for the closed-loop system to be guaranteed stable. A decentralized
design is now developed to guarantee open-loop stability of some subset of controllers, without
regard for performance in case of a controller outage. This design may be combined with that of
Theorem 5.4 so as to guarantee beforehand that specified controllers will turn out open-loop stable.
As a special case, a strongly stabilizing centralized design is also derived.

With the design otherwise as in Theorem 3.1, suppose Equation (3.19) is replaced by

WAl + acW + ZWX.B.BTX.W -WCIC.W +G.GT

(5.55)
+ (W-Wp)CIC.(W -Wp)+P=0.

For any P 2> 0, the design guarantees closed-loop stability and the H-norm bound ||T||e < a.
The object is to select P > 0 so that the i*® controller is open-loop stable. Rewrite (5.55) as

1 .
W(Ae — L.C.)T + (Ac ~ LLCOW + Z;WXCBCBZ'XCW +GGT+L.LT+P=0 (556)

Recalling the definitions A,c = Diag(Aa, 4a)...,4a), IZ' =([l1I...1},and A, = A4c + ICBBZXC,
rewrite (5.56) as

W(Aae — LeCe)T + (Aae — LCo)W + XWX B.BT X.W

(5.57)
+G.GT + L LT + P + I.BBTX.W + WX_.B.BTIT = 0.
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The it n X n main-diagonal block of (5.57) is

W,
Wii(Aa = LiCi)T + (Aa = LiC)Wis + J(War ... W;g) X B.BT X,
W .
v (5.58)
Wi
+GGT + L,LT + P; + BBTX, : + (Wi ...Wi)X.B.BT = 0,
Wi

where the linear coefficient (4, — L;C;) is the open-loop dynamic matrix of the ith controller. To

ensure that (A, — L;C;) will be Hurwitz, let P; = a2§ = a?BBT. Then (5.58) becomes

Wii(Aa = LiCi)T 4 (Aa = LiCi)Wii + GGT + L;LT
Wi,
=~(aB + (Wi ... W;)X.B.)(eBT + 1BTX.| : |)<y,
W,

(5.59)

with W; > 0. To see that this is sufficient to guarantee that (4, — L;C;) is Hurwitz, let v # 0
satisfy (Ao — L;C;)Tv = Av. Then (5.59) gives

2Re(A\)v*Wiiv + v LiLTv <0,

and hence Re()\) < 0. But inequality must hold here, because Re()\) = 0 implies LTv = 0, and
hence ATv = v, with A, assumed Hurwitz.

Note that P; > a?S guarantees that the it} controller will be stable, independent of the other
main-diagonal blocks of P. Therefore, several controllers may be simultaneously guaranteed open-
loop stable by selecting the main-diagonal blocks P;; of P to satisfy P;; > 0 if the i*h controller
need not be stable, and P; > a?§ if the i*h controller must be stable. The other blocks of P may
be chosen in any way that makes P > 0, such as setting them all to 0.

The following theorem summarizes the result.

Theorem 5.5. Let P be «ny qn x gn matrix satisfying

PZ Diag(Pu,...,P“,O,...,O),
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where P;; = oS fori € {1,2,...,t}. With all assumptions and the design otherwise as in Theorem

3.1, suppose Equation (3.19) is replaced by

waAT + AW+ LWX.B.BTX.W - WCTC.W +G.GT

(5.60)
+ (W -Wp)CTC.(W -Wp)+ P =0.

Then the design, in addition to its other properties, guarantees that the controllers in the first t

control channels are all open-loop stable.

The result of Theorem 5.5 is 'ea.sily specialized to the centralized case. It is important to note,
however, that the solution W of the Riccati-like design equation with ¢ = 1 is not the same as the
solution Y of the observer design ARE in the centralized case. Therefore, the reformulation of the
design equations to guarantee strong stabilization in the centralized case is not as simple as that

given in Theorem 5.5. The following theorem gives the correct formulation.

Theorém 5.6. With all assumptions and the design otherwise as in Theorem 2.1, let Y > 0 satisfy
the ARE

YFT+ FY + -:—,YHTHY -YcTey + %YXSXY +GGT +a?5 =0, (5.61)

where F = A~ 5X, S = BBT. Then the system is strongly stable, and the closed-loop transfer-

function matrix satisfies || T} < a.

Proof. For the special case ¢ = 1, the strong stabilization result of Theorem 5.5 still holds. In this
case, the design equation (5.60) is

W(A+a2GGTX)T + (A+a 2GGTX)W + LWXSXW

(5.62)
- WCTCW + GGT + a?S = 0.

Hence, the proof consists of showing that (5.61) implies (5.62). Recall the assumption from Theorem
2.1 that omay {Y X} < a® or (a?Y~! — X) > 0. This implies that there exists a matrix W > 0 such
that

W-l=zY-1_a%X. (5.63)

Then, routine manipulations of (5.61) give the equivalent equation

1

YAT + AY + Fwﬂmf -YCTCY + GGT + a?’YW-1SW-1Y = 0. (5.64)
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Pre- and post-multiply (5.64) by Y -1, and use (5.63) to obtain

AT(a 2 X +W=1) + (@?X+WH)A+ (a2 X + W H)GGT (a2 X + W)

(5.65)
+ HHTH-CTC+?W-lsSW-! =0.
Now, divide the state-feedback design ARE (3.3) by a? to obtain
AT(a"2X) + (@"2X)A + (a~2X)GGT(a~2X) - -alaxsx + %HTH =0,  (5.66)
and subtract (5.66) from (5.65) to obtain
ATW-' + WA+ (a *X)GGTW-! + W-1GGT(a™?X) (5:67)

+ W-IGGTW-1-CTC + LXSX + AW-1SW-1 = 0.

Finally, pre- and post-multiply (5.67) by W, and rearrange terms to obtain (5.62). Q.E.D.
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Chapter 6

Parameterization of Families of

Controllers

6.1 Preliminary Results

This chapter gives some properties of a certain matrix Riccati function related to the computation
of families of control laws. The matrix Riccati function is studied in greater detail in [27].

Let F' be Hurwitz, and define the matrix Riccati function R by
R(X)=FTX + XF + ;lz-XGGTX +HTH.

The following property, given in [34], holds:

Lemma 6.1. If R(X) =0, then X > 0.

Proof: Suppose R(X) = 0; that is,
1

R(X)=FTX + XF + JXGGTX +HTH =0. (6.1)

Define P = ;XGGTX + HTH. Then (6.1) becomes FTX + XF + P = 0, with F Hurwitz and
P 2 0. By inertia theorems of the Lyapunov equation (see, for example, [16}), X > 0. Q.E.D.

The following lemma gives a matrix convexity property for R:
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Lemma 6.2. Fori € {1,...,r}, let X; be symmetric matrices and (3; be nonnegative scalars

satisfying 3 ;_, Bi = 1. Then

Proof: Compute

=1 =1

{Zﬂ' } < Zﬂ R(X)). (6.2)

R {Zr:ﬂ.-x.-} = FT {iﬂ;Xg} {Zﬂ.X.} F+= {Zﬂ x,} GGT {Eﬂ.Xl} +HTH

i=1 i=1

=1

i=1

= E(FTX +X;F+HTH)+ — ZZZﬂ.ﬂ,X GGTX;

=1 i=lj=1
= ZﬂiR(X.')— Ex. GTX.{):ﬂ,} ,ZZﬂ.ﬂ,x.GG X;
=1 j=1 i=1y=1
= Y BiR(X;) - EZﬂ.ﬂ,x. GGT(X; - X;)
i=1 2 i=1=1
r r i-1
= Y BiR(X:) - }:}_‘;ﬂtﬂ,x. GGT(X; - X;) + ,2 Z BiB; X:GGT(X; - X)
=1 t-l;"l i=lj=i41
r r i=-1 r i-1
= Ep,-zz(x,-)- Zzﬂ.ﬁ,x .GGT(X; - X;) + ,Zzﬂ.ﬂ,x, GGT(X.X;)
i=1 i=1j=1 i=lj=1
r r =1
= YHRX) - =YY AiBi(Xi - X)GGT(X; - X;).
=1 i=1j5=1
! (6.3)
Therefore, R{3_ 7, Bi R(X:)} € Ti=1 BiR(X;), the desired resuit. Q.E.D.

The following corollary identifies a class of easily computable matrices Z > 0 for which R(Z) <

0:

Lemma 6.3. Let Z be any convex combination of matrices X; > 0, ¢ € {1,2,...,r}, satisfying

R(X;) =0. Then Z > 0 satisfies

Proof. Express Z as

R(Z) <.

Z= Zr:ﬂixi,

i=1

(6.4)

where }_7_; A; = 1. From Lemma 6.1, Z > 0, and from Lemma 6.2,

R(Z) = R{Z':ﬂ.'x.-} < iﬂ.‘R(Xi) =0.

i=1 i=1
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Q.E.D.

6.2 A Family of State-feedback Controls

Consider the plant (1.3) with (A, H) a detectable pair. To derive a characterization of a family

of stabilizing state-feedback controls which guarantee a predetermined H,,-norm bound, start with

the design
u=-BTXz (6.5)
where
ATX + XA + %xccT X-XBBTX+HTH=0, X >0. (6.6)
Rearrange (6.6) as
FTX+XF+ %XGGTX +(XBBTX + HTH) =0, (6.7)

with F = A — BBTX. Since (4, H) is a detectable pair, so is (F, HT H + X BBT X). Therefore, by

Lemma 2.1, F is Hurwitz, and the transfer function

H
T(s) = ( ) (sI - F)™'G
-BTX

from wp to z satisfies (|T||cc < a. Note that any matrix X > 0 satisfying (6.6) gives this result,
so that if (6.6) has more than one positive semi-definite solution, any one of them can be used to
define the control (6.5). In fact, since Lemma 2.1 would still apply if the left-hand side of (6.7)

were negative semi-definite, any control law given by
u=-BT2Zz, (6.8)

ATZ+ZA+ %zc:GTz —ZBBTZ+HTH <0, Z>0 (6.9)

provides stability and the Ho-norm bound a for the closed-loop system.
A given solution X > 0 of (6.6) will be called the “central” solution. Given such a central
solution, a family of matrices Z > 0 satisfying (6.9), and hence a family of stabilizing state-feedback

control laws which guarantee the closed-loop bound ||T}|, < a, is characterized.
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Take X > 0 to be the central solution of (6.6), and hence a solution of (6.7) with F = A- BBTX.
Given this fixed matrix X, define the matrix Riccati function R by

R(M)=FTM + MF + ZI;MGGTM +(XBBTX + HTH). (6.10)

By Lemma 6.1, each solution of R(X;) = 0 satisfies X; > 0. Let Z > 0 be any convex combination
of solutions X; of R(X;) =0. By Lemma 6.3,

R(Z)=FTZ+2F + -‘;I;ZGGTZ +(XBBTX+HTH)< 0. (6.11)
To see that Z > 0 satisfies (6.9), rearrange (6.11) to obtain

ATZ + 24+ ;lizaaTz ~ZBBTZ + HTH
<-ZBBTZ +ZBBTX + XBBTZ - XBBTX
=—(Z-X)BBT(Zz-X)<O.

The following theorem summarizes the characterization of a family of state-feedback H, con-

trols:

Theorem 6.1. Let F = A — BBTX where X > 0 solves the ARE
ATX + XA+ ;lz-XGGTX -XBBTX +HTH = 0. (6.12)
Then, for any convex combination Z of solutions X; of the ARE
FTX; + X:F + %X.-GGTX.- +(XBBTX + HTH) =0, (6.13)
Fz = A - BBTZ is Hurwitz, and the state-feedback control law
u=-BTZz
guarantees that

H
T(s) = ( ) (sI - Fz)™'G
-BTZ

satisfies ||T|| < a.
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6.3 A Family of Output-feedback Controls

The approach of Theorem 6.1 extends to the output-feedback case: Start with Z > 0 a convex

combination of solutions X; of (6.13). Define

Uy=ATZ+ 24+ ZI;ZGGTZ -ZBBTZ + HTH.

(6.14)

By Lemma 6.3, U; < 0. The following theorem now gives a family of observers for each state-

feedback H,, control characterized by such a Z.

Theorem 6.2. Assume A+ a~*GGTZ — BBTZ is Hurwitz. Let Y > 0 satisfy
AY +Y AT + ZYHTHY - YCTCY +GGT =0,
with (A = YCTC) Hurwitz. Let V > 0 be any convex combination of solutions Y; of
(A-YCTOY: +Yi(A-YCTC)T + ;lz-ﬁ(HTH -+ (CTcy +GGTY=0
satisfying am{VZ} < a?, and define the observer gain L by
L=(I-2"?v2)"'VCT = (V-1 - a~2Z)-1CT.

Then, the controller

E=(A+ %GGTZ —BBTZ - LC) + Ly,
u=-BT2Zz,
stabilizes the plant (1.3), and provides the closed-loop H,-norm bound ||T||e < a.
Proof: First note that, since U; < 0, (H TH - U;) > 0. By Lemma 6.3,
(A-YCTC)V + V(A -YCTC) + %V(HTH — UV +(YCTCY +GGT) < 0.
Algebraic manipulations similar to those in the proof of Theorem 6.1 give
AV + VAT + —VHTHV - VCTCV 4 GGT < VLY.

Pre- and post-multiply (6.20) by aV~! to obtain

(02v-1)A + AT(Q2‘/-1) + HTH - achC + ‘_1]'?(&2V-I)GGT(G2‘/-1) <.
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Subtract (6.14) from (6.21) to obtain

(@®V-! = 2)A + AT(a?V-! - 2) - a*CTC + ;lz-(an-l)GGT(azv_l) (6.22)
+ZBBTZ - -;—,ZGGTZ <0 |

Define X; = (a?V~! —= Z) > 0. Then (6.22) becomes
X1A + ATX, — a?CTC + %(Jr1 + Z)GGT (X, + Z) + ZBBTZ - al-g-zaaTz <0. (623
Now define U; < 0 as the left-hand side of (6.23); rearranging terms, (6.23) becomes

Uz=X1(A+2a2GGTZ - LC)+ (A+a"3GGTZ - LC)T X,

1 (6.24)
+a2CTC + ?XIGGTXI +ZBBTZ <.

With the controller (6.18), the closed-loop system transformed to error coordinates is described by

F A-BBTZ -BBTZ = G 0
¢ a-GGTZ A+a-26GTz-1c ) = |\ -¢ L]’

“m.

]
T —
|

Y o
N

|
U;,o
N
N

Define

and consider the quantity
X.G.GTX.+ HTA.. (6.25)
The two off-diagonal blocks of (6.25) are identically zero. The upper-left block of (6.25) gives U;
defined in (6.14), and the lower-right block gives U, defined in (6.24); therefore,
S = oamos - a oame  smo Up 0
X Fo+ FTX, + i,X,G,G,T X.+ HITH, = { ! <0.
a \ 0 Uz

By Lemma 2.1, F, is Hurwitz, and T(s) = H.(sI - F) 1@, satisfies ||T||o < a, provided (£, A.)

is a detectable pair. Detectability is proved exactly as in the development of Theorem 2.1. Q.E.D.
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Recall that Theorem 1.3 gives a parameterization of the set of all output-feedback controllers
guaranteeing the H.,-norm bound a. Some of these controllers are of high order, and are therefore
undesirable. By contrast, Theorem 6.2 characterizes a family of controllers with realizations all of

the same order as the plant, which all guarantee the Ho-norm bound a.

6.4 A Family of Decentralized Controls

A generalization of Theorem 6.2 to the decentralized case cannot be readily obtained. Manip-
ulations like those in the proof of Theorem 6.2 applied to the Riccati-like (decentralized) design
equation do not give the desired result. Therefore, while Theorem 6.2 gives a family of observer
designs for each state-feedback design, the next theorem gives only one decentralized observer de-
sign for each state-feedback design of Theorem 6.1. The definitions of Z and U, assumed in the

theorem statement are as above.

Theorem 8.3. Assume A + a~*GGTZ — BBTZ is Hurwitz and A + a~*GGT Z has no jw-axis
eigenvalues. Let W > 0 satisfy the Riccati-like algebraic equation

AW +WAT + %WXCBCBZ' Xw-wcTew (6.26)
4+G.GT + (W - Wp)CTC(W - Wp) = 0,

and compute L. = Diag (L1, La,...,Ly) as

L.=WpCT. (6.27)

Then, the control law
£ = (A + ;lz-GGTZ -BBTZ- L.-c.-) £+ Liyi, i€{L2...,q} (6.28a)
= -Bfz¢&, ie{1,2,...,4}, (6.28b)

stabilizes the plant (1.14), and provides the closed-loop He,-norm bound ||T || < a.

Proof. Using (6.27), rewrite (6.26) as

1
(Ac = L.COW + W(A. - L.C.)T + -a—z-WXchBcTXcW +GGT + L LT = 0. (6.29)
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Pre- and post-multiply (6.29) by aW=! to obtain

(®W=1)(Ac - LCe) + (A; — L.C.)(e*W™) + X.B.BT X,

(6.30)
+=3(PWYGGT + LIT)@W™) = 0.
With controllers (6.28), the closed-loop system is described by the matrices
P A-BBTZ -BB7Z. P A
: a-*G.GTZ A.-LC. | =~ \ -G. L. )’
(6.31)

. ); 0
He ?
-BTz -BTZ,

where (6.31) differs from (3.11) only in that X has been replaced everywhere by Z. Define
- z 0
Xe = 20,
0 o?w-?

and consider the quantity
XFo+ FTX. + 5 X.G.CTX, + T R.. (6.32)

The two off-diagonal blocks of (6.32) are identically zero. The upper-left block of (6.32) gives Uy
defined in (6.14). The lower-right block is zero by (6.30). Therefore,

s = am s ) R - P U, 0
RFo+ IR+ X667 X + AT . = ! <0.
0 0
By Lemma 3.1, (F., A.) is a detectable pair; therefore, by Lemma 2.1, the closed-loop system is
stable, and the closed-loop transfer-ifunction matrix T(3s) = A.(sI - F,)"1G., satisfies Tl £ a.

Q.E.D.

Similar to Theorem 6.2 in the centralized case, Theorem 6.3 gives a family of decentralized
control laws which guarantee a predetermined H.-norm bound for the closed-loop system, and
which are characterized by controllers of the same order as the plant. Unlike the centralized case,
the family of decentralized controls consists of only a single controller associated with each member

of a family of state-feedback controls.




Chapter 7

Conclusions

This thesis has presented a unified approach to the design of robust and reliable decentralized
control systems. The basic decentralized design developed includes an observer-type controller in
each control channel, which uses a state-feedback model for unknown disturbances. Feedback gains
are com:puted from a state-feedback design ARE, and observer gains are computed from a Riccati-
like algebraic equation. The existence of solutions to the design equations guarantees that the
closed-loop system matrices satisfy an algebraic Riccati inequality, which is sufficient to establish
stability and a predetermined H,, disturbance-attenuation bound. This bound is included in the
design equations as the parameter a. Appropriate solutions to the design equations will exist only
for sufficiently large values of a.

No necessary condition, other than the absence of unstable fixed modes, has been found for
the solution of the Riccati-like equation to exist. On the other hand, neither has any sufficient
condition for its solution been derived. A simple iterative method for solving the Riccati-like
algebraic equation has been used with excellent results; however, there is no guarantee tha! this
iterative method will yield a solution whenever one exists. Existence conditions and computational
methods for solutions of the Riccati-like equation are sub jects for future research.

A modification of the basic design produces a decentralized control law which is robust with
respect to structured plant uncertainty. The design modification is equivalent to including addi-
tional disturbances and regulated outputs in the nominal plant description. In addition to the
choice of the design parameter a, there is freedom in the robust design to specifv bounds o} on

the norms of uncertainty terms for which robustness is desired. If these bounds are too large,
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appropriate solutions to the design equations will not exist. The ox’s may be varied as Qesign
parameters to determine the largest uncertainty bounds for which the robust design exists. Alter-
natively, the o;’s may be chosen simply to define a relative weighting to be given to robustness and
disturbance-rejection considerations in the design.

Another modification of the basic design produces centralized and decentralized control laws
which provide stability and H,, disturbance attenuation not only when the system is operating
properly, but also in the presence of certain system measurement or control input failures. The
design modification is equivalent to including in the plant description additional disturbances or
regulated outputs to account for possible control input or measurement outages, respectively. Given
the existence of appropriate solutions of the design equations, the reliable designs can tolerate
system component outages within a prespecified set of susceptible sensors or actuators in the
centralized case, or within a prespecified set of susceptible controllers in the decentralized case.
Of course, for appropriate solutions of the design equations to exist, the measurement and control
components not included in the susceptible set must be able to stabilize the system by themselves.

In the case of control laws designed to tolerate possible actuator outages, the additional condi-
tion that the control law be open-loop stable is required. If such a design is attempted, but results
in an unstable controller, closed-loop system stability is not guaranteed. In this case, the design
can be further modified to include strong-stabilization properties. In the decentralized case, for
example, the combined design modifications would consist of (i) appending the columns of aBq
to the disturbance matrix G in the plant description, and (ii) adding a constant block-diagonal
matrix, with a?BBT blocks on its main diagonal, to the left-hand side of the Riccati-like design
equation.

The robust and reliable designs are obtained at the cost of allowing a higher H,, disturbance-
attenuation bound. This is natural, since the larger the H-norm bound is allowed to be, the larger
is the set of controllers which will guarantee that bound. For a sufficiently large bound, then, the
corresponding set of controllers may include controllers with desired special properties. The design
methods presented in this thesis select such controllers from among all controllers which guarantee
the specified disturbance-attenuation bound.

A convexity property of a certain matrix Riccati function is used to develop a parameterization

of families of controllers which provide stability and H,, disturbance attenuation. This param-
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eterization has two advantages over the one given in Theorem 1.3: First, it includes families of
decentralized control laws. Second, it gives only controller realizations of the same order as the
plant. Hence, the order of the plant is an upper bound for the order of a minimal realization of any
of the controllers in a given family. One criterion for choosing among the controllers could be the
order of their minimal realizations. How to choose from the family a controller with a lower-order

minimal realization is a problem for future research.
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