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Abstract

The objective of this research effort has been to develop algorithms for in
situ location and identification, by ultrasound, of flaws in plates or laminated
layered elastic materials. Achieving this objective requires detailed knowledge
of the excitation, propagation, scattering and detection of high frequency sound
waves in the unflawed and flawed environments. Based on an understanding of
these fundamental wave phenomena, one may then attempt to construct
analytical models with accompanying algorithms, so as to parametrize the NDE
problem in terms of "gooat observables."

During the contract period, carefully selected prototype problems have been
investigated to determine "good observables" for particular flawed
environments. Two major phases have received attention: a) phenomena
within a flat layered plate, especially beam-to-mode conversion, and the
consequent interaction with a weak debonding flaw; b) characterization of
transducer outputs in terms of "good" wave objects that facilitate coupling into
and out of the plate environment. The analytical tools rely on spatial and
spectral domain formulations and they comprise self-consistent hybrid beam-
mode methods; complex source modeling of Gaussian beams, with complex ray
tracing to track such beams; and decomposition of general waveflelds into
Gaussian beams. Thus, Gaussian beams, which are "good observables", are
central to the problem strategy. Specific accomplishments during the contract
period include construction of analytical models and their numerical
implementation for the following problems in category a): (i) detailed
understanding of the beam-to-mode conversion mechanism in an unflawed
elastic plate, and the observable displacements generated thereby on the plate
surface; (ii) surface displacements generated due to interaction of the waves in
(i) with a localized smoothly tapered weak debond zone; (iii) beam-
observable-based parametrization of the results in (i) and (ii), and con-truction
of a beam algorithm for compact forward and inverse analysis of th' scattered
data. In category b), model outputs from a piston-type trarducer in an
unbounded elastic medium have been decomposed rigorously into Gaussian
basis beams. For future applications, these building blocks should facilitate the
systematic study of transducer excited plates, generalization to curved plates,
etc., in terms of robust algorithms that are closely linked with what is actually
observed.
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I. Background

The objective of this research effort has been to develop algorithms for in
situ location and Identification, by ultrasound, of flaws in plates or laminated
layered elastic materials. Achieving this objective requires detailed knowledge
of the excitation, propagation, scattering and detection of high frequency sound
waves in the unflawed and flawed environments. Based on an understanding of
these fundamental wave phenomena, one may then attempt to construct
analytical models with accompanying algorithms, so as to parametrize the NDE

problem in terms of "good observables."

During the contract period, carefully selected prototype problems have been
investigated to determine "good observables" for particular flawed
environments. Two major phases have received attention:

a) phenomena within a flat layered plate, especially beam-to-mode conversion,
and the consequent interaction with a weak debonding flaw

b) characterization of transducer outputs in terms of "good" wave objects that
facilitate coupling into and out of the plate environment

The analytical tools rely on spatial and spectral domain formulations, and they
comprise self-consistent hybrid beam-mode methods; complex source modeling
of Gaussian beams, with complex ray tracing to track such beams; and
decomposition of general waveflelds into Gaussian beams. Thus, Gaussian
beams, which are "good observables", are central to the problem strategy.

Specific accomplishments during the contract period include construction of
analytical models and their numerical implementation for the following
problems in category a):

(i) detailed understanding of the beam-to-mode conversion mechanism in an
unflawed elastic plate, and the observable displacements generated thereby
on the plate surface

(ii) surface displacements generated due to Interaction of the waves in (i) with

a localized smoothly tapered weak debond zone

(iii)beam-observable-based parametrization of the results in (I) and (ii) and

construction of a beam algorithm for compact forward and inverse analysis
of the scattered data

In category b), model outputs from a piston-type transducer in an unbounded
elastic medium have been decomposed rigorously into Gaussian basis beams.
For future applications, these building blocks should facilitate the systematic
study of transducer excited plates, generalization to curved plates, etc., in terms
of robust algorithms that are closely linked with what is actually observed.

The problem strategy is summarized in Figs. la, b.



IH. Summary of Results

In what follows, the cited publications are those listed in Section III. Copies

of the manuscripts have previously been furnished to the sponsor.

A. Modeling of Wave Phenomena within a Bonded Two-Layer

Aluminum Plate in Vacuum (Two-Dimensional)

1. Gaussian P-beam excitation of the unflawed (perfectly bor ed) plate

This study was performed to clarify in detail the beam-to-mode conversion
when an obliqueiy injected high-frequency compressional (P) beam excites the
plate. The Gaussian beam has been modeled by the complex-source-point

(CSP) method, and the elastic potentials and displacements in the interior and
on the surface of the plate have been computed via P-SV-coupled normal mode
expansion (SV denotes vertically polarized shear) [1-31. The results from this
reference calculation have been analyzed and subjected to various spatial and
spectral fllterings to establish "good" signal processing [4]. It was observed that
the field initially has beam-like features, thereby suggesting that the mode

algorithm does not furnish a good parametrization in that regime.

Some of these results are schematized in Figs. 2 and 3.

2. Scattering from a weak, smoothly varying, localized debond for the
problem in 1: normal mode reference solution

The debond, which is sensitive to horizontal shear along the bond line but
not to compressional waves, was modeled by springs with Gaussian stiffness
profile. The equivalent sources induced in the debond zone were treated in the
Born approximation (i.e., proportional to the field at the bond line in absence
of the flaw) because of the "weak debond" assumption. The scattered fields

have been computed via the normal mode algorithm, with excitation terms
provided by the induced source distribution. In the beam-like regime of Fig. 3,
the observed displacements on the upper surface reveal a clearly identifiable
flaw-generated beam-like precursor [5,6] which suggests that an observable-
based efficient algorithm should be based on beam rather than mode

decomposition.

Some of the results are shown in Fig. 4.

3. Observable-based beam parametrization of the problem in 2.

Because the reference data in 2. clearly establish beams as the physical
observables (see Fig. 4), the problem has been re-parametrized in terms of
beams. Algorithms have been developed for simple construction and

interpretation of the displacements on the surface of the plate generated under

unflawed and flawed conditions, and for the reconstruction of the input beam

source and the flaw characteristics from the on-surface data [7].

I.mmmnmm | ~ ~ m =
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Some results are schematized in Figs. 5a, b.

4. General conclusion

The beam parametrization in 3. furnishes a promising algorithm for
detecting, locating, and identifying the strength of smoothly variable weak
debonds of moderate extent.

B. Modeling of Transducer Outputs in Terms of Gaussian Beams

While some ultrasonic transducers generate outputs that resemble Gaussian

beams (GB), this is not the case in general. It is desirable to decompose
arbitrary outputs into Gaussians because GB basis fields have favorable
propagation characteristics under rather general environmental conditions. The
study was initiated in two dimensions, and it expresses an arbitrary source field
in an infinite elastic medium rigorously in terms of Gaussian elements spaced
self-consistently on a (configuration)-(spectral wavenumber) lattice. The
physical behavior of the resulting field representation, as well as its convergence
properties, depend strongly on the choice of wide, narrow or "matched" beam
elements. These aspects have been investigated in detail for smooth and
abruptly truncated source profiles that simulate transducer outputs [8,9]. The
extension to three dimensions has been performed thereafter [10].

Some results are shown in Fig. 6a, b. A future phase would couple these
basis beams to the plate environment, either directly from the surface or, when
the plate is immersed, from a transducer in the fluid through the fluid-plate

interface.
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Objective of the Research

** To develop algorithms for ultrasound in-situ detection and
identification of fault zones in layered media in terms of
good observables = good parametrization..

** Good observabls (either steady-state or transient) are closely
tied to the physics of wave phenomena.

** Wave phenomena: dilatational, shear, anisotropic species, etc.
** Examples of good observables in layered media:

rays
beams
guided modes (trapped, leaky, interfacial)

** Most versatile parametrization: ray - mode algorithm{beam
Combines f rays and modes self-consistently, utilizing

beams)
the best features of each
Robust under gradual changes from prototype models

P/\Pp/ P

Ile
Rays or Beams Guided

(Same Modes
Trajectories
and Coupling

as Rays)

Angular Spectrum Partition for Hybrid Algorithm

Source , m Spectral gap

Mode

Fig. lb
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(a) real source coordinates (x',z') (P-wave isotropic line source).

^Z

0.1 A--*~IISV

0.04," ,

I jS I I-. ./

Si" I/ .....4" p

I -
,

0.05 0.08 0.11 0.14 0.17 0.23

(b) complex source coordinates (x',z1) (P-wave beam source). The beam

parameter 'b is related to the (l/e) beam width we at the waist,

We=(2b/kp) 112. Also shown on this figure are the axes of the incident and

reflected P-beams (d-shed lines), and of the coupled SV-beams (solid

lines) and their relationship to the cross sections in Fig. 2.

Pi g. 2 Elastic aluminum plate with thickness a, characterized by wave
velocities VpV s and by density p.
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Parametrization of scattering from weak bonding
flaw in a two-layer Aluminum Plate

0.0 Y\
\, Debonding stiffness profile:

P-beam A \/ K = K o exp -In 0.05 2

Perfect Bonc
0.15

. /Scattered field behaves like
,/, . \/ \/\ '. , \//" ..... Gaussian beam

rnperf t' '

0.3 - I ' '
xf= .06  .18 .3 .42 .54

X(in)

Fig. 4a

Complex magnitude Real part

12.924 6' 12.854

+ 10.0 - SC,

Horizontal displacements on top surface 11 5.0 SC .3
sv 2 . 13 4  sv 1.941

juil = input beam . 2.0 v 1,

lu'l = flaw scattered field
lul = total field E _

12.885 12.83 .l,

Scattered precursor (SC) is 10. 5l
clearly visible W 5.

.06 .18 .3 .42 .54 .06 .18 .3 .42 .54

X(in) X(in)

Flg. 4b

M IIlI~mlII~m~ili l~liii • mII I
i IW 4..~



Test Problem: Two-lyer Aluminum Plate with Weak Debond

T. Forward nroblem: Horizontal (lisplacenients ii on imnner pl1ate
scitter-d incident

2-dim. Gaussian US, z (in.) Aluminum plate
P-beam input I - SV beam -Thickness: a=.3"

f2Mz trajectories V Propagation speeds:

Beam waist :J Bon Lin =1.2O9xl0 5 in.Isec

W=.0335" TPIK V. =2.36x1O5 in.Isec

C.450 I debond N - Density:

(x5,zs)=(0",y.061') I .' N. a P=2.53x1 0 -4 Ib-sec 2/iri
N a~gSubscripts:

.09 .1 .30 p: comp.(P) wave
z (in.) s: shear (SV) wave

Weak Debond

Gaussian pliability profile: 1/K(x,zf) = (l/KO) exp (-[(Xxf),WK1]2)

1/K0 = (1/5.000 x109 lb/in3 ) , WK = .026"

Synthetic reference ("measured") data

1.5 withouflaw 12.92 Pae10

410 /

Scttre /Total4-Scatteed 0 7000
precursor /,

Incid~ent -

2.135 -/

0 r113000
0.0 0.2 x (in.) 0.4 0.6

Beam Parametrization

Scattered scIuS 9 max Incident luImax
displacement. u cdisplacement u

upper surface as /s upper surface as..

N/ /
flaw L sorc beam

N //waist 2w p()r

NI projected beam
- w~ Q waist plane lower surfaceN

Fig. 5a,
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II. Inverse problem: Flaw reconstruction

A. Fit projected Gaussian wavefront to "measured" phase and amplitude
data

B. Back-propagate precursor to waist plane: establishes flaw location
C. Back-propagate incid. portion to source, then forward-propagate to

flaw: establishes flaw strength and width

Test Results for Pliability Profile

Flaw parameters Original values Reconstructed values

(xf,zf) (in.) (.09,.15) (.082,.168)
KO (lb/in.3 ) 5.000 x109 5.002 x109
WK (in.) .02599 .02565

1/K 0 = /Au max I tzx max. Tzx = tangential stress

III. Conclusion

+ Beam parametrization furnishes promising algorithm for detecting,
locating and identifying strength of weak debonds of moderate
extent

* Extension to three-dimensions, non-Gaussian inputs, and nonplanar
plates is. planned

Flg. 5b
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Transducer output modeling by Gaussians on a self-consistent (coordinate)-
(spectrum) lattice

Aperture distribution Bcam lattice decomposition

F(x, t)=f(x)ewt beam tilt n m k(Spectrum)
f(x)=h(x)e - ia x  

n t t E 1 fLx=27r, Lx=beam waisl
f(x)=h(x) e-iax n ~

n-0 I -- x(Ccordinate)

_ _ _ _ _ _ _ _ _ _ _ _ n--I

m=-2 m-0 m-2-- beam dispIacement

f (x) =11A,,nW (X-=Mz,,) enf'
n m

YZ W(X) ex (_EX2, 2 / J~(X) 1 dx= 1

Fig. 6a

Transducer output modeling: (cosinej distribution

1 Narrow 1 072"(81 elements) * Narrow
n=b \ (27 elements)

(b) I (a)
a) Aperture profile reconstruction: Narrow MatchedAperture 

(25 -

2a 5 A (aperture width) -Profile (2 e
0Matched ent

L. (2)25 (narrow beams<2a (matched beams)

-a

I n= nf(x)=cos 2(7rx/2a)

-15 -9 -3 0 3 9 15 -a 0 a

Gaussian amplitude coefficients Field Synthesis

Narrow beams: along a-O line

Matched beams: around m==n=O (central beam)

,1.02 6.27
b) Near field (R=10p) x 1 x 6 Central Ref. Solution;raitonpten 5 /Narrow Beams - Beam \(27 elements);

radiation pattern -a a Ref. Solution" Matched Narrow Beams/-8 -(27 clements); (m=n(O) e ems
'zMatched Beams W/ ace em

f(x)-cos 2 (rx/2a) (25 elcmcnts) C (25 elements)
Central \ f

r6 Matched / 06/B a m I

• go-9 - 30 -30 0 30 60 0 90 , - go -60 -30 0 30 60 0 90

Fig. Ob
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