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Abstract

The oblective of this research effort has been to develop algorithms for in
situ location and identification, by ultrasound, of flaws in plates or laminated
layered elastic materials. Achieving this obJective requires detailed knowledge
of the excitation, propagation, scattering and detection of high frequency sound
waves in the unflawed and flawed environments. Based on an understanding of
these fundamental wave phenomena, one may then attempt to construct
analytical models with accompanying algorithms, so as to parametrize the NDE
problem in terms of “"gooa observables.”

During the contract period, carefully selected prototype problems have been
investigated to determine "good observables” for particular flawed
environments. Two malor phases have received attention: a) phenomena
within a flat layered plate, especially beam-to-mode conversion, and the
consequent interaction with a weak debonding flaw; b) characterization of
transducer outputs in terms of "good™ wave objects that facilitate coupling into
and out of the plate environment. The analytical tools rely on spatial and
spectral domain formulations and they comprise self-consistent hybrid beam-
mode methods; complex source modeling of Gaussian beams, with complex ray
tracing to track such beams; and decomposition of general waveflelds into
Gaussian beams. Thus, Gaussian beams, which are "good observables”, are
central to the problem strategy. Speciflc accomplishments during the contract
period inciude construction of analytical models and their numerical
iinplementation for the following problems in category a): (i) detailed
understanding of the beam-to-mode conversion mechanism in an unflawed
elastic plate, and the observable displacements generated thereby on the plate
surface; (ii) surface displacements generated due to interaction of the waves in
(i) with a localized smoothly tapered weak debond zone; (iii) beam-
observable-based parametrization of the results in (i) and (ii), and con=truction
of a beam algorithm for compact forward and inverse analysis of the scattered
data. In category b), model outputs from a piston-type trar .ducer in an
unbounded elastic medium have been decomposed rigorouslv into Gaussian
basis beams. For future applications, these building blocks should facilitate the
systematic study of transducer excited plates, generalization to curved plates,
etc., in terms of robust algorithms that are closely linke< with what is actually
observed.




I. Background

The oblective of this research effort has been to develop algorithms for in
situ location and identification, by ultrasound, of flaws in plates or laminated
layered elastic materials. Achieving this objective requires detailed knowledge
of the excitation, propagation, scattering and detection of high frequency sound
waves in the unflawed and flawed environments. Based on an understanding of
these fundamental wave phenomena, one may then attempt to construct
analytical models with accompanying algorithms, so as to parametrize the NDE
problem in terms of "good observables.”

During the contract period, carefully selected prototype problems have been
investigated to determine “good observables” for oparticular flawed
environments. Two major phases have received attention:

a) phenomena within a flat layered plate, especially beam-to-mode conversion,
and the consequent interaction with a weak debonding flaw

b) characterization of transducer outputs in terms of "good” wave objlects that
facilitate coupling into and out of the plate environment

The analytical tools rely on spatial and spectral domain formmnulations, and they
comprise self-consistent hybrid beam-mode methods; complex source modeling
of Gaussian beams, with complex ray tracing to track such beams; and
decomposition of general waveflelds into Gaussian beams. Thus, Gaussian
beams, which are "good observables”, are central to the problem strategy.

Specific accomplishments during the contract period include construction of
analytical models and their numerical implementation for the following
problems in category a):

(i) detailed understanding of the beam-to-mode conversion mechanism in an
unflawed elastic plate, and the observable displacements generated thereby
on the plate surface

(ii) surface displaéements generated due to interaction of the waves in (i) with
a localized smoothly tapered weak debond zone

(iii) beam-observable-based parametrization of the results in (i) and (ii) and
construction of a beam algorithm for compact forward and inverse analysis
of the scattered data

In category b), model outputs from a piston-type transducer in an unbounded
elastic medium have been decomposed rigorously into Gaussian basis beams.
For future applications, these building blocks should facilitate the systematic
study of transducer excited plates, generalization to curved plates, etc., in terms
of robust algorithms that are closely linked with what is actually observed.

The problem strategy is summarized in Figs. 1a, b.




II. Summary of Results

In what follows, the cited publications are those listed in Section III. Copies
of the manuscripts have previously been furnished to the sponsor.

A. Modeling of Wave Phenomena within a Bonded Two-Layer
Aluminum Plate in Vacuum (Two-Dimensional)

1. Gaussian P-beam excitation of the unflawed (perfectly bor<ed) plate

This study was performed to clarify in detail the beam-to-mode conversion
when an obliqueiy injected high-frequency compressional (P) beam excites the
plate. The Gaussian beam has been modeled by the complex-source-point
(CSP) method, and the elastic potentials and displacements in the interior and
on the surface of the plate have been computed via P-SV-coupled normal mode
expansion (SV denotes vertically polarized shear) [1-3]. The results from this
reference calculation have been analyzed and subjected to varicus spatial and
spectral fllterings to establish "good” signal processing [4]. It was observed that
the fleld initially has beam-like features, thereby suggesting that the mode
algorithm does not furnish a good parametrization in that regime.

Some of these results are schematized in Figs. 2 and 3.

2. Scattering from a weak, smoothly varying, localized debond for the
problem in 1: normal mode reference solution

The debond, which is sensitive to horizontal shear along the bond line but
not to compressional waves, was modeled by springs with Gaussian stiffness
profile. The equivalent sources induced in the debond zone were treated in the
Born approximation (i.e., proportional to the fleld at the bond line in absence
of the flaw) because of the "weak debond” assumption. The scattered flelds
have been computed via the normal mode algorithm, with excitation terms
provided by the induced source distribution. In the beam-like regime of Fig. 3,
the observed displacements on the upper surface reveal a clearly identiflable
flaw-generated beam-like precursor [5,8] which suggests that an observable-
based eflicient algorithm should be based on beam rather than mode
decomposition.

Some of the results are shown in Fig. 4.

3. Observable-based beam parametrization of the problem in 2.

Because the reference data in 2. clearly establish beams as the physical
observables (see Fig. 4), the problem has been re-parametrized in terms of
beams. Algorithms have been developed for simple construction and
interpretation of the displacements on the surface of the plate generated under
unflawed and flawed conditions, and for the reconstruction of the input beam
source and the flaw characteristics from the on-surface data (7].




Some results are schematized in Figs. 5a, b.

4. General conclusion

The beam parametrization in 3. furnishes a promising algorithm for
detecting, locating, and identifying the strength of smoothly variable weak
debonds of moderate extent.

B. Modeling of Transducer Outputs in Terms of Gaussian Beams

While some ultrasonic transducers generate outputs that resemble Gaussian
beams (GB), this is not the case in general. It is desirable to decompose
arbitrary outputs into Gaussians because GB basis flelds have favorable
propagation characteristics under rather general environmental conditions. The
study was initiated in two dimensions, and it expresses an arbitrary source fleld
in an inflnite elastic medium rigorously in terms of Gaussian elements spaced
self-consistently on a (conflguration)-(spectral wavenumber) lattice. The
physical behavior of the resulting fleld representation, as well as its convergence
properties, depend strongly on the choice of wide, narrow or "matched” beam
elements. These aspects have been investigated in detail for smooth and
abruptly truncated source proflles that simulate transducer outputs [8,9]. The
extension to three dimensions has been performed thereafter [10].

Some results are shown in Fig. 6a, b. A future phase would couple these
basis beams to the plate environment, either directly from the surface or, when
the plate is immersed, from a transducer in the fluid through the fluid-plate
interface.
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Objective of the Research
*x To develop algorithms for ultrasound in-situ detection and
identification of fault zones in layered media in terms of
g200d observables /> good parametrization.-
** Good observables (either steady-state or trans:ent) are closely
tied to the physics of wave phenomena.
*x Wave phenomena: dilatational, shear, anisotropic species, etc.
*x Examples of good observables in layered medxa
rays
beams
guided modes (trapped, leaky, interfacial)
** Most versatile parametrization: ray |° - mode algorithm
_ beam
Combines rays and modes self-consistently, utilizing
beams
the best features of each
Robust under gradual changes from prototype models
PG 7N | e
O\ / R ;S
7
18
)
¢
]
\ v~ ~ ;—W_J
Rays or Beams Guided
(Same = Modes
Trajectories
and Coupling
as Rays)
1N J
Angular Spectrum Partmon for Hybrld Algorithm
Mo
Source ¢ Spectral gap

Mode: X
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(a) real source coordinates (x’,z’) (P-wave i{sotropic line source}.

Az
0.1 |
{ e
—1 P
\ b _— |
0.04%0_ :
|
i
|
]
0.05

(b) complex source coordinates (x!,z') (P-wave beam source). The beam
parameter ‘b is related to the (l/e) beam width w, at the waist,
we=(2b/kp)‘/2. Also shown on this figure are the axes of the incident and
reflected P-beams (dashed lines), and of the coupled SV-beams (solid
lines) and their relationship to the cross sections in Fig. 2.

IMig. 2 Elastic aluminum plate with thickness a, characterized by wave
velocities Ve Vs and by density p.
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hybrid alogarithm
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beam - like - I
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Amplitude profiles of the P-wave potential & (dashed) and the SV-
wave potential ¥ (solid) due to a P-beam input. observed at
successive plate cross sections in the interval from x= 0.05 in. to
Xx= 0.23 in. The frequency is 60 MHaz.

The beam parameters are:
x'=0, z'=0.04in., a=0.548, b=0.1in. The vertical axis measures the

cross sectional coordinate z. The horizontal axis measures |® | and
|¥ |, respectively, on different scales, with the maximum in each
wave denoted by the number listed. This flgure should be viewed

together with Fig. 3, which shows the disposition of the incident and
reflected beam axes.
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Parametrization of scattering from weak bonding
flaw in a two-layer Aluminum Plate

0.0 m
/ Debonding stiffness profile:
’ ! X% ’
P;beam/ /{/ | K =K, exp| -I/n 0.05 [—[—]
£0.15 [ L
N \ /'/\ H i
\ Y / Scattered field behaves like
,mpe,, ot y /\ L Gaussian beam
Bonde\ / A !
03l \M A
X¢=.06 .18 .3
X (in)
Flg. 4a
Complex magnitude Real part
f,’,: - YT;.QE& T o 12.854
-~ 10.0- E hSC
2 sc o H
Horizontal displacements on top surface % 5.0 ;ﬂ
2 @

N
o
T

[ul] = input beam - sv 12 ;34 SV ~ 1.941
. c - < sv o -
ju€| = flaw scattered field SRS Lok ) ‘M’
lul = total field - e =t w
x
- 12885 1283
Scattered precursor (SC) is _ 100 St h 4
clearly visible 2 Lo z [ ! ‘VV'M\M
S S A ] F; P S St ‘ Lo 4
06 18 .3 .42 54 .06 .18 .3 .42 54
X{in) X (in)
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Test Problem: Two-layer Aluminum__Plate with Weak Debond

I. Forward problem: Horizontal displacements u_on_upper. plate
scatterad incident

2-dim. Gaussian To x (in.) Aluminum plat'e
P-beam input | beam — -Thickness:  a=.3"
f=20 MHz | - trajectories Propagation speeds:
Beam waist : | Bond Line Vs=1.209x105 in./sec
w_=.0335" | - T v, =2:36x10% in./sec
P 30 P
Cpo+50 b ~p Density:
(x4,25)=(0",.06") [-15 N p=2.53x10-% Ib-sec?/in
L N Subscripts:
4’ . 09 15 30 p: comp.(P) wave
z (in.) s: shear (SV) wave

Weak Debond .
Gaussian pliability profile: 1/K(x,zg) = (1/Kg) exp ('[(X'Xf)/WK]z)
1/Kp = (1/5.000 x109 Ib/in3) , wg = .026"

Synthetic reference ("measured”") data

15 Ph 11000
with flaw ase ,g-\
~ — — without flaw 12.92 .o ~
G
™ Scattered Total 17000 o
- precursor
E :
M 5k g
p—{
= 2.135 -
0 T T 3000
0.0 0.2 X (1n) 0.4 0.6
Beam Parametrization
Scattered - 1aS9
e ————— u .
displacement, u®® . /| max Incidert i
displacement, u
~L
upper surface 4 upper surface

source beam
waist, 2ZWp,(0)

projected beam
waist plane

© wg ()

Flg. 5a
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II. Inverse problem: Flaw reconstruction

A, Fit projected Gaussian wavefront to "measured” phase and amplitude
data

B. Back-propagate precursor to waist plane: establishes flaw location

C. Back-propagate incid. portion to source, then forward-propagate to

flaw: establishes flaw strength and width

Test Results for Pliability Profile

Flaw parameters Original values Reconstructed values
(xf,zf) (in.) (.09,.15) (.082,.168)
Ko (Ib/in.3) 5.000 x107 5.002 x10°
wk (in.) .02599 .02565
1/Ko =[Aulmax /szxlmax.’ T,x = tangential stress

III. Conclusion

* Beam parametrization furnishes promising algorithm for detecting,-
locating .and identifying strength of weak debonds of moderate
extent

* Extension to three-dimensions, non-Gaussian inputs, and nonplanar

plates is. planned

Flg. 5b
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Transducer
(spectrum) lattice

output

Apcrture distribution

modeling
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by Gaussians

on a self-consistent

(coordinate)

Beam lattice decomposition

: beam tiit k(Spectrum)
— -twt nm
Fix,D=f(x)e '« }
f(x)=h(x) e-iax nm1 rfz —J Ly
n=0 5
- X n=-1
" 2a J a2 meo
|
—_ { Q}(
f(x) —;%Amnw(x~mh‘) e
Yz

Transducer output modeling:

a) Aperture profile reconstruction:
2a = 5/\p {aperture width)

L = gZa)/ZS(narrow beams
x = a (matched beams

Narrow beams: along ua=0 line

QL, =27, L =beam wais

X (Ccor_dinate)

m=2 — beam displacament

1
w(X)=(£2—)2exp(~nx2/L,2) . Jwx)Pax=1

Fig. 6a
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Near field (R=101)
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